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ABSTRACT 

The efficiency of technological processes particularly depends on the efficiency of

control system used. The construction of control system on the base of traditional

technology for complicated processes characterizing with non-linearity and uncertainty is

not enough satisfy such characteristics as high speed, reliability, accuracy, adequacy of the

model. In this condition one of perspective way of construction of control system is the use

of neural technology that satisfy above characteristics of the system. The thesis is devoted

to development of neural control system for technological processes. To solve the given

problem at first stage the states of application problems of neural control system for

technological processes are given, the mile stone achievements to the problem are clarified.

Using proposed structure the development of neural control system is performed.

Controller is constructed on the base of neural network. The main problem of neural system

synthesis is its learning. As a learning algorithm the "error back propagation algorithm" is

chosen and its description is given.

Using learning algorithm and desired time response characteristics of the system the

synthesis of neural controller for technological processes control is carried out. The

modeling of the given system is performed. Results of simulations of the developed and

traditional control system show the improved time response characteristics of previous.
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INTRODUCTION 

By increasing complexity of the technological processes, uncertainty of an

environment where technological processes take place the model of control system

becomes very complicated. In addition, the frequently changing of the enviromnentaI

conditions in the form of unusually disturbance forces to apply artificial intelligence

methodologies with self-training and adapting capability. One of these technologies are

neural networks. Application of neural network for constructing control system allows

us to increase their computation speed, validity, self-training and adapting capability.

Number of functions and possibilities of living organisms are realized by some

neural structures. On the base of such structures one can get good models. Neural

networks have such characteristics as: vitality, parallelism of computations, learning

and generalization abilities, analytic description of linear and non-linear problems etc.
ı

Due to these characteristics Neural network becomes great of importance for application

in such areas such as artificial behavior, artificial intelligence, theory of control and

decision making, identification, optimal control, robotics etc.

One of perspective way of application of neural networks is the construction of

control system for technological processes.

It is clear that the efficiency of using of any approach is defined by the criterions

of calculations speed, reliability, vitality, flexibility, accuracy etc. If we consider

previous systems, such as control systems developed on the base of traditional methods,

control systems based on knowledge base (such as expert systems) considerable have

disadvantage by their speed, vitality, adaptability, flexibility etc.

Because of it is necessary to develop intellectual control system on the base of

neural network satisfying above characteristics.

The thesis consists of introduction, 3 chapters and conclusion.

Chapter 1 describes the state of application problems of artificial intelligence

methods to solve control problems and the mile stone.achievements to the problem.

Chapter 2 describes the architecture of neural control systems for technological

processes. The structure of neural system and description of the functions of its main

blocks are given. The mathematical models of neuron, neural network structures and

their operation principle. The different neural network structures are described. The

main problem in neural network is its learning. In the thesis the descriptions of the

different learning algorithm are given. To train neural control system the supervised
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learning algorithm- real time back propagation for recurrent neural network is chosen

and its description is given.

Chapter 3 describes the development of neural control system for technological

process. The desired time response characteristic of system, neural control system's

learning algorithm and characteristics of the technological processes are described.

Using these the synthesis procedures and simulation of neural control system are

performed.

Conclusion presents the important obtained results and contributions in the

thesis.
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1. APPLICATIONS OF NEURAL NETWORKS FOR CONTROL 
PROBLEM 

1.1. Introduction to Neural Computing and Categories of Neural Network 

Applications to Guidance and Control 

"Future computer generation imitates man". "Many small cells are stronger than one

large ce11". Such headlines are to be found in the media in connection with a new kind of

information processing, the so-called "Artificial Neural Networks (ANN)". As the term

suggests, these networks are an attempt to-imitate the biological paradigm, our brain, in
structure and function.

In the course of evolution our central nervous system (brain and spinal cord) has

developed into a gigantic information-processing network to which the sensory paths fromı .
sense organs lead and from which the motor paths lead to the muscles. All stimuli are

supplied to the central nervous system where they are processed into perceptions,
sensations etc. and trigger off our actions.

In our organism many organ systems work together. Only the central nervous

system communicates as superior system with all others-by collecting their information and
coordinating their functions.

Basically similar problems will be found in future technical equipment and systems.

Based on the structure of the biological brain, the creation of artificial neural networks

(abbreviated ANN) is aimed to technically realize capabilities and characteristics such as

self organization, learning and associative memory. This is achieved by the particular

structure of neural networks where a large number of simple processor elements (PE) are

interconnected with uni-directional signal channels to single or multi-layer networks. All

processing elements are working in parallel as compared to one central, extremely efficient

computer for sequential arithmetic and/or symbolic Information processing.

For the solution of a problem with a conventional computer (e.g. personal computer

(PC)) an algorithm, a procedure-or a set of nıles has to be developed and coded in software,

i.e. a sequence of Instructions. These instructions are then carried out sequentia1lyby the
computer.

By contrast, ANNs are not programmed but trained and learn like their biological

paradigm, the brain. This is done by changing the intensity of the connections between the



processor elements and by generating or eliminating structural connections. Thus the

"knowledge" of an ANN lies in the topology and in the intensity of its connections, i.e. the

strength of the connection weights between the PEs.

With their capabilities of self-organization, learning (adaptation) and association,

ANNs can be used wherever it is difficult to describe a problem algorithmically, the

development of the operational software is very cost-intensive or wherever unprecise,

incomplete or even contradictory input data must be considered. Owing to the parallel

information processing ANN are fault-tolerant and thus very reliable.

Ever-increasing requirements placed on more demanding and complex systems on

the one hand and financial resources getting increasingly scarce on the other force us to

tilter out key technologies showing the potential for a high cost-benefit ratio to meet the

increased requirements. In this' respect Artificial Neural Networks represent a new

technology in the field of signal and information processing for Guidance and Control

systems.

1.2. General Structure of Guidance and Control Problems 

G.a.C. problems extend over several hierarchicalJy structured levels and the

communication functions between these levels as shown in Fig. 1.1.
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The represented interconnection of the different function levels (scenario, mission,

trajectory, air vehicle state) can be conceived of as a hierarchically structured control

system. The objects on which G.a.C. functions are performed on the mentioned levels

represent the control plants. Information processing by which actuation is generated on all

levels from sensor information represents the controller which is of primary concern here

(Fig. 1.2).
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Figure 1.2. Common Strncture of G.a.C. Levels

The controlling feedback chain typical of all G.a.C. levels requires functions such as

recognizing and assessing the situation; defining action goals; generating optimum or

favorable solutions; decision-making; planning and finally performing as well as

monitoring of actions. Hence, behavior levels of mental capabilities can be assigned to the

function levels (Fig. 1.1 ).

For reasons of human limitations in more demanding dynamic scenarios and in the

operation of complex, highly Integrated Systems, there is the necessity for extended

automation of these functions on higher levels such as trajectory control as well as mission

management and control. Furthermore, the implementation of intelligent functions on lower

levels such as the fusion and interpretation of sensor data, multifunctional use of sensor
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information and smart/brilliant sensors become inevitable.

The technical implementation of the intelligent G.a.C. feedback chain functions

leads to a signal processing structure which contains conventional arithmetic, symbolic and

sub-symbolic elements (Fig.1.3). Whereas the symbolic element can be implemented

utilizing expert-system software-techniques, the sub-symbolic element represents the

application of ANNs. In building ANNs the brain is utilized as biological paradigm.

The following its function and structure are to be briefly explained as far as this is

important for understanding ANNs.
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Figure 1.3. Activity chain implementation elements

1.3. General remarks for ANN application 
Concerning the potential application it can be said that in many problems with only

small or almost no knowledge existing on the object concerned, or where the parameters

and states of this object can neither be described mathematically nor by rules and facts in a

some how reliable manner, the development of sequential algorithms for conventional

4



processors is extremely difficult. The necessary expenditure of cost and time-for the

algorithm and software development, verification and validation is correspondingly high.

Contrary to the sequential conventional information processing, the processing of

information utilizing neural nets offers In general considerable advantages for all

applications which are characterized by limited knowledge on the object. In contrast with

the programmed sequential computing, ANN can be applied successfully for the solution of

problems with inexact and incomplete or even contradictory input data.

The ability of neural nets to learn by examples (training patterns) or even

unsupervised is of particular importance. It is not necessary to program a task-specific

function or information. If representative example data are available in sufficient number

and by training of the net with these data, due to its generalization property the net can

tolerate input data which are superimposed by noise and disturbances, for the recognition of

the input patterns.

By the use of non-linear processing elements in the network, multi-level nets can
L

form complex decision -areas in the feature space. This corresponds mathematically to a

non-linear mapping of the input vector space onto that of the output vector. This allows also

the modeling of non-linear systems.
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Figure 1.4. G.a.C. applications of Neural Computing and AI
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1.4. Categories for ANN application 

It has already been mentioned that G.a.C. problems extend over several

hierarchically structured levels. In order to perform G.a.C. functions on these levels, the

implementation of a controlling feedback chain typical of all G.a.C. levels is required.

Technical apparatus which implements the feedback chain in a real-time autonomous

system requires the solution of perception-problems as associated with the sensors and

cognition problems (e.g. recognition, hypothesis testing) as far as the remaining functions

are concerned. Very often in such systems, exploratory, goal-oriented actions will be

performed resulting in a perception-cognition-action-recognition cycle.

It has been mentioned that for the implementation of such quasi mental functions

elements of artificial intelligence are required. In addition to more conventional expert

system techniques ANN will-gain an increasing importance within this scope. Therefore,

the application potential for ANN covers many areas, extending from relatively simple

applications in intelligent sensory and actuator systems to highly complex mission and

scenario management problems.

Areas which represent potential categories' for successful ANN application and

which are recurring in many G.a.C. systems are the following:

>- pattern recognition, signal classification associative memories

~ self-organization, learning

~ knowledge acquisition, adaptive-expert systems

';,- adaptive signal-processing

';,- control, stabilization, guidance decision finding

>- optimization procedures

>- integration and fusion of multiple sensor data

>- robotics, sensory-motor control

1.5. Neuro Control 

The application of ANN for control, stabilization and guidance of objects can be

considered as a further step in the evolution control techniques to face up to the challenges

within the scope of more complex systems which require more adaptation and self­

organization capabilities. Thereby, the main problem Is concerned with the real-time
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control of objects which are nonlinear and noisy and where the dynamics of which is time­

varying, only incomplete or even unknown at all.

As common to all ANN, a characteristic feature of the neuro controllers is that they

are not programmed but trained either supervised off-line or unsupervised on-line.
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Figure 1.5. Neuro Control

As a generalized example the structure of a fault-tolerant, adaptive/learning neuro

control system especially suitable for applications on the lower levels of the G.a.C. systems

hierarchy (missiles, manned/unmanned air vehicles, robotics, mobile robots etc.) is shown

in Fig. 1.5. As can be seen by this example, neuro-control systems can include subsystems

for pattern recognition in sensor data, failure detection and identification, dynamic

modeling etc. which are realized as ANN, however, are only of secondary importance for

the actual neuro-control problem.

1.6. ANN Summary 
The main features are as follows: Artificial neural nets

~ are computers that learn how to solve problems.
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;.. problem solving is based on sample data and learning mechanisms.

;.. they do not require expert knowledge representation, logical inferencing schemes,

statistical algorithms specialist/analyst to develop and code a solution.

';, they are trained to identify self-containedly the key features and associations

enabling them to distinguish different patterns.

}o,,, can learn on-line real-time or can be trained off-line by a sample data set.

;.. do require an appropriate architecture with sufficient capacity and paradigmatic

learning/training scheme.

:;.. they consist of three major elements: organized topology of interconnected

processing elements, method of encoding information, method of recalling

information.

Their strengths and weaknesses are summarized as follows:

Strength:

}o,,, unique solutions based on user data examples

,. no need to know algorithms

;.. less/no software needed, more hardware-processing power required

:;.. provides solutions to problems such as: pattern matching and recognition, data

compression, near-optimal solutions to optimization problems, non-linear system

modeling and control, function approximation etc.

';, inherent parallel processing structure yields faster solutions to a number of

computation-intensive problems

}o,,, internal generation of complex decision areas by means of non-linear combination

of input vector components robust performance in view of noisy and disturbed input

signals

:;.. inherently fault-tolerant

ANN weaknesses are that they are not applicable to all processing problems and do

require training and test data examples -with' a few exceptions.

A comparison of ANN with conventional digital computers is summarized in table

1. 1 This leads directly to some remarks regarding the utilization of ANNs.
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Table 1.1: Comparison CONV. Digital Vs Neural processing

Feature Digital Computer Neural processing
Processing Order Program with serially Parallel programs with

performed instrnctions comparatively few steps

Knowledge Storage Static copy of knowledge is Information stored ın the
stored in addressed memory interconnections of the
location. neurons

New information destroys Knowledge adapted by
old information changing interconnection

strength
Processing control Central processmg unit No control nor monitoring of

monitors all activities and a neuron activity
has access to global
information, creating Neuron's output only a
processıng bottleneck and function of its locally
critical point of failure available information from

interconnected neighbors
Fault Tolerance Removal of any processing Distributed

component leads to a defect knowledge/information
representation across many

Corruption of memory ıs neurons and their
irretrival, leads to a failure interconnection

If portion of neurons
removed, information
retained through redundant
distributed encoding

FAULT lNTOLERENr FAULT TOLERENf

1. 7. Applications of Artificial Neural Networks for Control Problem 

In the design of autonomous computer-based systems, we often face the

embarrassing situation of having to specify, to the system, how it should carry out certain

tasks, which involve computations known to be intractable or are suspected of being so. To

circumvent such impasses, we resort to complexity reducing strategies and tactics, which

trade some loss of accuracy for significant reductions in complexity. The term

9



computational intelligence refers to such complexity reduction methods and to the research

aimed at identifying such methods. In this paper we describe briefly some of our own work

in this area and then develop a computational intelligence view of the task of process

monitoring and optimization, as performed by autonomous systems. Some important

current fields of discovery in computational intelligence include neural-net computing,

evolutionary programming, fuzzy sets, associative memory and so on. [1]

Some of the theory-bound evolutional trends in real-time AI applications are

pointed out based on analysis of essential properties of real-time Systems as well as Al

based Systems [2]. The evolutional mainstream is increasing interdisciplinary integration.

Three subtrends are illustrated on examples: mechanical combination of methods, A'

methods used for approximate solution of classical problems, and abstract methods applied

in new domains. In addition similarity between integrated circuits and real-time systems

design and increased use of formal verification at the early stages of systems development

are pointed out.

A new control system for the intelligent force control of multifingered robot grips

which combines both fuzzy based adaptation level and neural based one with a

conventional Pill-controller [3]. The most attention is given to the neural based force
ı

adaptation level implemented by three layered back propagation neural networks. A

computer based simulation system for the peg-in-hole insertion task is developed to analyze

the capabilities of the neural controllers. Their behavior is discussed by comparing them to

conventional and fuzzy based force controllers performing the same task.

Increasingly artificial neural networks are finding applications ın process

engineering environment. Recently the department of Trade and Industry in the UK has

supported the transfer of neural technology to industry with a £5.7M campaign. As part of

10



the campaign, the University of the New Castle and EDS Advanced Technologies Group

have setup a Process Monitoring and Control Club.[4]

This paper presents two case studies from the work of the Club. Firstly, the ability

of neural networks to provide enhanced modeling performance over traditional linear

techniques is demonstrated on real process data. Secondly, the ability of neural networks to

capture non-linear system characteristics is exploited in a novel way in a condition

monitoring exercise. The process studied in both applications is the melter stage of the

BNFL Vitrification Process. The process involves the encapsulation of highly active liquid

waste in glass blocks to provide a safe and convenient method of storage.

Process with (partly) unknown or complex dynamic behaviors need complex control

schemes. Neural networks offer interesting perspectives both for identifications and control

of these processes, because neural networks can approximate any (non-linear) continuous

function. Especially adaptive control using neural networks offer good possibilities, due to

the possibility to learn online. The NECTAR-project (Neural and Expert ConTrol of

AircRaft) aims at studying both neural and expert systems structures for highly demanding

control environments. [5]

A pilot study is described on the practical application of artificial neural networks.

The limit cycle of the attitude control of a satellite is selected as the test case. One of the

sources of the limit cycle is a position dependent error in the observed attitude. A

Reinforcement Learning method is selected, which stable to adapt a controller such that a

cost function is optimized. An estimate of the cost function is learned by a neural 'critic'.

The estimated cost Unction is directly represented as a function of the parameters of a

linear controller. The critic is implemented as a CMAC network. Results from simulations

show that the method is able to find optimal parameters without unstable behavior. ın

11



particular in the case of large discontinuities in the attitude measurements, the method

shows a clear improvement compared to the conventional approach: the RMS attitude error

decreases approximately 30%.[6]

The logical design of a neural controller is achieved by representing a neural

computation as a stochastic timed linear proof with a built-in system for rewards and

punishments based on the timeliness of a computation performed by a neural controller.

Logical designs are represented with stochastic forms of proofnets and proofboxes. Sample

applications of the logical design methodology to the truck-backer upper and a Real Time

object recognition and tracking system (RTorts) are presented. Performance results of the

implementation of the target dynamics identification module of the RTorts are given and

compared to similar systems. [7]



2. STRUCTURE AND LEARNING OF NEURAL NETWORKS 

2.1. Biological brain as paradigm, Artificial Neuron 

Two different functions of the brain are to be looked at. First, there is the rational

thinking with a function in conscious steps performed in a particular serial sequence. The

digital computers we use today with a sequential processing of instructions listed in

programs (computers in so-called von-Neumann architecture) were developed in the 1940s

based on the investigation of sequentially conscious thinking.

On the other hand, there are the much more complex structures of unconscious

thinking or unconscious intelJigence. Here, a lot of environment data are processed within

the context of our sensory perception and characteristics extracted. The sensorimotor

control of our motions as well as three-dimensional thinking are largely unconscious. The

structures of unconscious thinking provide the basis for the enormous capacity of our

memory. All of these functions performed unconsciously are running parallel in networks

in which so-called neurons interact due to a close interconnection and by means of

electrochemical processes.

Our brain is organized as highly Integrated system in functional units, which are

interconnected via variable connections, with each functional unit having about one

thousand to one hundred thousand nerve cells. These each have ten to ten thousand equally

variable, so-called synaptic connections to other neurons. In total, our central nervous

system roughly contains the astronomical number of one hundred to one thousand billion

nerve cells. It is clear that this enormous information-processing system cannot be

completely structured and programmed prenatally even if genetic information is taken into

account. The brain has the capability to organize itself, learn and establish associations.

To imitate biological Information processing models for different levels of

organization and of abstraction have to be considered. First, there is the level of the

individual neuron where it is a matter of representing the static and dynamic electrical

characteristics as weII as the adaptive behavior of the neuron. on the network level the

Interconnection of identical neurons to form networks is examined to describe specific

sensor and ınotoricity-related functions such as filtering, projection operations, controller

function. In nonlinear, biological system, Networks on the mental function level are the

13



most complicated ones and comprise functions such as perception, solution of problems,

strategic proceeding etc. These are the networks on the highest level of biological

information processing.

2.1.1. The Biological Neuron 
The most basic element of the human brain is a specific type of cell, which

provides us with the abilities to remember, think, and apply previous experiences to our

every action. These cells are known as neurons, each of these neurons can connect with

up to 200000 other neurons. The power of the brain comes from the numbers of these

basic components and the multiple connections between them. All natural neurons have

four basic components, which are dendrites, soma, axon, and synapses. Basically, a

biological neuron receives inputs from other sources, combines them in some way,

performs a generally nonlinear operation on the result, and then output the final result.

The figure below shows a simplified biological neuron and the relationship of its four

components.

Figure 2.1. Biological Neuron
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2.1.2. The Artificial Neuron

The basic unit of neural networks, the artificial neurons, simulates the four basic

functions of natural neurons. Artificial neurons are much simpler than the biological

neuron; the figure below shows the basics of an artificial neuron.

Note that various inputs to the network are represented by the mathematical symbol,

x(n). Each of these inputs are multiplied by a connection weight, these weights are

represented by w(n). In the simplest case, these products are simply summed, fed through a

transfer function to generate a result, and then output.

X 0

ı "' .E w
1

;<: i sunmenon

Y "'f(!:1 Irenster

Prnce~:ôinü
E!ercıEt1t .

lnpus \-,

Figure 2.2. Artificial Neuron

Even though all artificial neural networks are constructed from this basic building

block the fundamentals may vary in these building blocks and there are differences.

2.2. Neural Networks Characteristics 
Neural networks are information processing systems. In general, neural networks can

be thought of as ''black box" devices that accept inputs and produce outputs. Some of the

opera-dons that neural networks perform include:
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• classification - an input pattern is passed to the network and the network produces a

representative class as output.

• pattern matching - an input pattern is passed to the network and the network produces

the corresponding output pattern.

• pattern completion - an incomplete pattern is passed to the network and the network

produces an output pattern that has the missing portions of the input pattern filled in.

• noise removal - a noise-corrupted input pattern is presented to the network and the

network removes some (or all) of the noise and produces a cleaner version of the input

pattern as output.

• optimization - an input pattern representing the initial values for a specific optimization

problem are presented to the network and the network produces a set of variables that

represent a solution to the problem.

• control - an input pattern represents the current state of a controller and the desired

response for the controller and the output is the proper command sequence that will

create the desired response.

Neural networks consist of layers of processing elements and weighted connections.

Each layer in a neural network consists of a collection of processing elements (PEs ). Each

PE collects the values from all of its input connections, performs a predefined mathematical

operation (typically a dot-product followed by a threshold), and produces a single output

value.

Figure 2.3 illustrates a typical neural network with three layers denoted Fx, Fv, and F2. The

bottom layer, Fx, accepts inputs into PEs x., xı, x-. A collection of weighted connections

(sometimes called "weights" or "connections") connect the F, PEs to the F, PEs. The F,

Plis.y, and Y2, are the hidden layer. Similarly, the F, PEs are connected to the Fz PEs which

form the output layer. The weight names serve as both a label and a value.

As an example, in Figure 2.3 the connection from the Fx PE x1 to the Fy PE y2 is the

connection weight w12 (the connection from x, to yı. By adjusting the connection weights,

inforınation is stored in the network. The value of the connection weights are often

determined by a neural network learning procedure (although sometimes they are

predefined and hardwired into the network).By performing the update operations for each

of the PEs the neural network recalls information.
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Figure 2.3. A typical Neuarl network

There are two important features illustrated by the neural network shown in Figure 2.3

that apply to all neural networks:

• Local Operations. Each PE acts independently of all others. A PE's output relies

only on its constantly available inputs from the abutting connections. The information

provided by the adjoining connections is all a PE needs to process. Information from

other PEs where an explicit connection does not exist is not necessary.

• Distributed Representation. The large number of connections provides a large

amount of redundancy and facilitates a distributed representation. A large number of

connections must be eliminated for a significant amount of information to be destroyed.

The first feature allows neural networks to operate efficiently in parallel. The last
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feature provides neural networks with inherent fault-tolerance and generalization qualities

that are very difficult to · attain from typical computing systems. In addition to these

features, neural networks can learn arbitrary nonlinear mappings given the proper topology,

nonlinear processing elements from nonlinear threshold operations, and appropriate

learning rules. The ability to learn nonlinear mappings simply by presenting instances of

input and output patterns is a powerful attribute shared by few systems.

There are three primary situations where neural networks are useful:

• Situations where only a few decisions are required from a massive amount of data(e.g.

speech and image processing).

• Situations where nonlinear mappings must be automatically acquired (e.g. loan

evaluations and robotic control).

• Situations where a near-optimal solution to a combinatorial optimization problem is

required very quickly (e.g. airline scheduling and telecommunication message routing).

To summarize, the foundations of neural networks consist of an understanding of the

nomenclature and a firm comprehension of the rudimentary mathematical concepts used to

describe and analyze neural network processing. In a broad sense, neural networks consist

of three principle elements:

• Topology. A neural network's organization into interconnected layers.

• Leaming. The adj ustınent of weights to store information.

• Recall. Retrieving information stored in the weights.

2.3. Dissecting Neural Networks 

A convenient neural network analogy is the directed graph, where the edges and nodes

correspond to weights and PEs, respectively. In addition to connections and processing

elements, threshold functions and input/output patterns are also basic elements in the

design, implementation and use of neural networks. After a description of the terminology

used to describe neural networks, each of these elements will be examined in tum.

2.3.1. Terminology 

Unfortunately, neural network terminology remains varied, with a standard yet to be

adopted. To illustrate some of the terminology introduced here, please refer to Figure 2.4
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Figure 2.4. Two Layer Feed Forward Network and Weight Matrix

Input and output vectors (patterns) are denoted by subscripted capita] letters from the

beginning of the alphabet. The input m patterns are denoted as Ak= (akı, ak2, ... , aıa1t k = 1,

2,3 .... m., and the output patterns as Bk= (bıcı, bıcı .... bıan); k = 1,2,3 .... m.

The PEs in a layer will be denoted by the same subscripted variable. The collection of

PEs in a layer form a vector and these vectors wil1 be denoted by capital letters from the

end of the alphabet. In most cases three layers of PEs will suffice. The input layer ofPEs is

denoted as Fx = (x., x2, ... , xn), where each Xi receives input from the corresponding input

pattern component aki. The next layer of PEs will be the Fy PEs, then the F2 PEs (if either

layer is necessary). The dimensionality of these layers depends on its use. Using the

network in Figure 2.4 as an example, the second layer of the network is the output layer,

hence the number of F, PEs must match the dimensionality of output patterns. In this

instance, the output layer is denoted as Fy = (yı, y2, ... ,yp), where each Yj is correlated with

the j 'th element of Bk.

Connection weights are stored in weight matrices. Weight matrices will be denoted by

capital letters toward the middle of the alphabet, such as U, V, and W. Referring to the

example in Figure 2.4 this two layer neural network requires one weight matrix to fully

connect the layer of n F, PEs to the layer of p F, PEs. The matrix shown in Figure 2.4
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describes the full set of connection weights between F, and Fy, where the weight Wij is the

connection weight from the i'th F, PE, Xi, to the j'th F, PE, Y.i

2.3.2. Input and Output Patterns 

Neural networks can not operate unless they have data. Some neural networks require

only single patterns and others require pattern pairs. Note that the dimensionality of the

input pattern is not necessarily the same as the output pattern. When a network only works

with single patterns, it is an autoassociative network. When a network works with pattern

pairs it is heteroassociative.

One of the key issues when applying neural networks is determining what the patterns

should represent. For example, in speech recognition there are many different types of

features that can be employed, including: linear predictive coding coefficients, Fourier

spectra, histograms of threshold crossings, cross-correlation values. The proper selection

and representation of these features can greatly affect the performance of the network.

2.3.3. Connections 

A neural network is equivalent to a directed graph (digraph). A digraph has edges

(connections) between nodes (PEs) that allow information to flow in only one direction (the

direction denoted by the arrow). Information flows through the digraph along the edges and

is collected at the nodes. Within the digraph representation, connections determine the

direction of information flow. As an example, in Figure 2.2 the information flows from the

Fx layer through the connections, W, to the Fy layer. Neural networks extend the digraph

representation to include a weight with each edge (connection) that modulates the amount

of output signal passed from one node (PE) down the connection to the adjacent node. For

simplicity, the dual role of connections will be employed. A connection both defines the

information flow through the network and it modulates the amount of information passing

between to PEs.

The connection weights are adjusted during a learning process that captures

information. Connection weights that are positive valued are excitatory connections. Those

that with negative values are inhibitory connections. A connection weight that has a zero

value is the same as not having a connection present. By only allowing a subset of all the

possible connections to have non-zero values, sparse connectivity between PEs can be

simulated.
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Figure 2.5. The Processing Element

It is often desirable for a PE to have an internal bias value (threshold value). Panel (a)

of Figure 2.5 shows the PE Yj with three connections from Fx (wı, w2- wj) and a bias

value, 8j . It is convenient to consider this bias value as an extra connection, Woj, emanating

from the F, PE xo, with the added constraint that x- is always equal to 1 as shown in panel

(b). This mathematically equivalent representation simplifies many discussions.

2.3.4. Processing Elements 

The processing element (PE) is the portion of the neural network where all the

computing is performed. Figure 2.5 illustrates the most common type of PE. A PE can have

one input connection, as is the case when the PE is an input layer PE and it receives only

one value from the corresponding component of the input pattern, or it can have several

weighted connections, as is the case of the F; PEs shown in Figure 2.5 where there is a

connection from every F, PE to each F, PE. Each PE collects the information that has been

sent down its abutting connections and produces a single output value. There are two

important qualities that a PE must possess:

Local Operations: Described earlier
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Single Output Value: Each PE produces a single output value that is propagated

through the connections from the emitting PE to other receiving PEs or it will be output

from the network.

These two qualities allow neural networks to operate in parallel. The value of the PE and its

label use the same symbol. As an example, the output PE label Yj in Figure 2.5 represents

both the PEs placement in the network and its value.

There are several mechanisms for computing the output of a processing element. The

output value of the PE shown in Figure 2. 5(b), yj is a function of the outputs of the

preceding layer, Fx = (x., x2, ... , x11) and the weights from Fx to Yi

Wj=(wıj, W2j, ... , w11j). Mathematically, the output of Yj is a function of its inputs and its

weights,

(2.1)

2.3.4.1. Linear Combination

The most common computation performed by a PE is a linear combination (dot­

product) of the input values. X, with the abutting connection weights, Wj followed by a

threshold operation. Using the PE in Figure 2.5(b) as an example, the output Yi is computed

using the equation.
l,

(2.2)

where ~ = (Wıj,1¥:ır·····Wn;) and f is one of the threshold functions. The dot product

update has a very appealing quality that is intrinsic to its computation. Using the

relationship Aı.• Wi = cos(Ak.w_Dl!A.ı-L;wAI it is seen that the larger the dot product

(assuming fixed length Ak and Wj) the more similar the two vectors are. Hence, the dot

product can be viewed as a similarity measure.

2.3.4.2. Mean-Variance Connections

In some instances PEs will have two connections interconnecting PEs instead ofjust one as

shown in Figure 2.6.
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Figure 2.6. Dual Connections

One use of these dual connections is to allow one set of the abutting connections represent

the mean of a class and the other the variance of the class. In this case, the output value of

the PE depends on the inputs and both sets of connections, i.e. yj=F(X, Yj, W.i) where the

mean connections are represented by Wi = (wı; w2i- ... , W11j) and the variance connections

Vı=(vıj,V2j,... , Vnj) for the PE Yj

2.3.4.3. Min Max Connections

Another less common use of dual connections is to assign one of the abutting vectors,

say Vi to become the minimum bound for the class and the other vector, Wj, to becomes the

maximum bound for the same class. By measuring the amount of the input pattern that falls

within the bounds, a min-max activation value is produced. Figure 2. 7 illustrates this notion

using a graph representation for the min and the max points.

dimension

Figure 2.7. Min-Max Classification
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The ordinate of the graph represents the value of each element of the min and max

vectors and the abscissa of the graph represents the dimensionality of the classification

space. The input pattern, X, is compared with the bounds of the class. The amount of

disagreement between the classes bounds, Vj and Wj, and input pattern, X, is shown in the

shaded regions. The measure of these shaded regions produces an activation value Yi.

2.4. Threshold functions 
Threshold functions, also referred to as activation functions, squashing functions, or

signal functions, map a PE's (possibly) infınite domain to a prespecifıed range. Although

the number of threshold functions possible is quite varied, there are five that are regularly

employed by the majority of neural- networks:

(1) linear, (2) step, (3) ramp, (4) sigmoid, and (5) Gaussian. With the exception of the linear

threshold function, all of these introduce a non-linearity in the network dynamics by

bounding a PE's output values to a fixed range.

2.4.1. Linear Threshold Function 
The linear threshold function (see Figure 2.8(a)), produces a linearly modulated output

from the input x as described by the equation

j(.x) =OC X (2.3)

where x ranges over the real numbers and a is a positive scalar. if a=l, it is equivalent to

removing the threshold function completely.

2.4.2. Step Threshold Function 
The step threshold function, (see Figure 2.8(b)), produces only two values, f3 and 8 .If

the input to the threshold function, x, equals or exceeds the threshold value, 9 , then the

step threshold function produces the value f3, otherwise it produces the value - ô , where f3

and a are positive scalars.

2.4.3. Ramp Threshold Function 

The ramp threshold function, (see Figure 2.8(c)), is a combination of the linear and step

threshold functions. The ramp threshold function places an upper and lower bound on the

values that the threshold function produces and allows a linear response between the

bounds. These saturation points are symmetric around the origin and are discontinuous at

the points of saturation.
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2.4.4. Sigmoid Threshold Function

The sigmoid threshold function, (see Figure 2.8(d)), is a continuous version of the

ramp threshold function. The sigmoid CS-shaped)function is a bounded, monotonic, non­

decreasing function that provides a graded, nonlinear response within a prespecified range.

The most common sigmoid function is the logistic function

1J(x)= (2.4)

where (a> O (usually a = 1), which provides an output value from O to I.

2.4.5. Gaussian Threshold Function

The Gaussian threshold function, (see Figure 2.8(e)), is a radial function (symmetric about

the origin) that requires a variance value, v >O, to shape the Gaussian function. In some

networks the Gaussian function is used in conjunction with a dual set of connections

f(x)v
I .fa} ·71·x

. ..

(c)

(e)

Figure 2.8. Threshold Functions
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2.5. Neural Network Topologies 

The building blocks for neural networks are in place. Neural networks consist of

layer(s) of PEs interconnected by weighted connections. The arrangement of the PEs,

connections and patterns into a neural network is referred to as a topology.

2.5.1. Layers 

Biologically, neural networks are constructed in a three dimensional way from

microscopic components. These neurons seem capable of nearly unrestricted

interconnections. This is not true in any man-made network. Artificial neural networks

are the simple clustering of the primitive arrificial neurons. This clustering occurs by

creating layers, which are then connected to one another. How these layers connect may

also vary. Basically, all artificial neural networks have a similar structure of topology.

Some of the neurons interface the real world to receive its inputs and other neurons

provide the real world with the network·s outputs. All the rest of the neurons are hidden

form view.

Figure 2.9. layers structure
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As the figure above shows, the neurons are grouped ınto layers The input layer

consist of neurons that receive input form the external environment. The output layer

consists of neurons that communicate the output of the system to the user or external

environment. There are usually a number of hidden layers between these two layers; the

figure above shows a simple structure with only one hidden layer.

When the input layer receives the input its neurons produce output, which

becomes input to the other layers of the system. The process continues until a certain

condition is satisfied or until the output layer is invoked and fires their output to the

external environment.

To determine the number of hidden neurons the network should have to perform

its best, one are often left out to the method trial and error. If you increase the hidden

number of neurons too much you \.VİI1 get an over fit, that is the net will have problem

to generalize. The training set of data will be memorized, making the network useless

on new data sets.

2.5.2 Communication and types of connections

Neurons are connected via a network of paths carrying the output of one neuron

as input to another neuron. These paths is normally unidirectional, there might however

be a two-way connection between two neurons, because there may be an another path in

reverse direction. A neuron receives input from many neurons, but produce a single

output, which is communicated to other neurons.

The neuron in a layer may communicate with each other, or they may not have

any connections. The neurons of one layer are always connected to the neurons of at

least another layer.

2.5.2.1 Inter-layer connections

There are different types of connections used between layers, these connections

between layers are called inter-layer connections.

• Fully connected Each neuron on the first layer is connected to every neuron on

the second layer.
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• Partially connected A neuron of the first layer does not have to be

connected to all neurons on the second layer.

• Feed forward The neurons on the first layer send their output to the neurons

on the second layer, but they do not receive any input back form the neurons

on the second layer.

• Bi-directional There is another set of connections carrying the output of the

neurons of the second layer into the neurons of the first layer.

Feed forward and bi-directional connections could be fully or partially connected.

• Hierarchical If a neural network has a hierarchical structure, the neurons of

a lower layer may only communicate with neurons on the next level of layer.

• Resonance The layers have bi-directional connections, and they can

continue sending messages across the connections a number of times until a

certain condition is achieved.

2.5.2.2 Intra-layer connections

In more complex structures the neurons communicate among themselves within

a layer, this is known as intra-layer connections. There are two types of intra-layer

connections.

• Recurrent The neurons within a layer are fully- or partially connected to one

another. After these neurons receive input form another layer, they communicate their

outputs with one another a number of times before they are allowed to send their

outputs to another layer. Generally some conditions among the neurons of the layer

should be achieved before they communicate their outputs to another layer.

• On-center/off surround A neuron within a layer has excitatory connections to

itself and its immediate neighbors, and has inhibitory connections to other neurons. One

can imagine this type of connection as a competitive gang of neurons. Each gang

excites itself and its gang members and inhibits all members of other gangs. After a few

rounds of signal interchange, the neurons with an active output value will win, and is
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allowed to update its and its gang member's weights. (There are two types of

connections between two neurons, excitatory or inhibitory. In the excitatory connection,

the output of one neuron increases the action potential of the neuron to which it is

connected. When the connection type between two neurons is inhibitory, then the

output of the neuron sending a message would reduce the activity or action potential of

the receiving neuron. One causes the summing mechanism of the next neuron to add

while the other causes it to subtract. One excites while the other inhibits.)

2.6. Single-layer Networks: Autoassociation, Optimization, and Contrast

Enhancement
Beyond the instarloutstar neural networks are the single layer intraconnected neural

networks. Figure 2.1O shows the topology of a one-layer neural network which consists of

n F, PEs. The connections from each Fx PE to every other Fx PE and itself, yielding a

connection matrix with n2 entries. The single-layer neural network accepts an n­

dimensional input pattern in one of three ways:

• PE Initialization Only. The input pattern is used to initialize the Fx PEs and the

input pattern does not influence the processing thereafter.

PE Initialization and Constant Bias. The input pattern is use to initialize the F, PEs and

the input remains as a constant valued input bias throughout processing.

Constant Bias Only. The PEs are initialized to all zeroes and the input pattern acts as a

constant valued bias throughout processing.

Figure 2.10. Single layer Neural Network



One-layer neural networks are used for pattern completion, noise removal,

optimization, and contrast enhancement. The first two operations are performed by

autoassociatively encoding patterns and typically using the input pattern for PE

initialization only. The optimization networks are dynamical systems that stabilize to a state

that represents a solution to an optimization problem and typically uses the inputs for both

PE initialization and as constant biases. Contrast enhancement networks use the input

patterns for PE initialization only and can operate in such a way that eventually only one

PE remains active. Each of these one-layer neural networks are described in greater detail

in the following paragraphs.

2. 7.Multi-layer Networks: Heteroassociation and Function approximation 

A multi-layer neural network has more than two layers, possibly many more. A general

description of a multi-layer neural network is shown in Figure 2. 1 I, where there is an input

layer of PEs, Fx, L hidden layers of Fy PEs and a final output layer, Fz. The Fy layers are

called hidden layers because there are no direct connections between the input/output

patterns to these PEs, rather they are always accessed through another set of PEs such as

the input and output PEs. Although Figure shows connections only from one layer to the

next, it is possible to have connections that skip over layers, that connect the input PEs to

the output PEs, or that connect PEs together within the same layer. The added benefit of

these PEs is not fully understood, but many applications such as prediction and

classification are employing these types of topologies.

COMPUTED OUTPUTS

i

INPUTS

Figure 2.11. General Multi-layer Neural Network
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Multi-layer neural networks are used for pattern classification, pattern matching and

function approximation. By adding a continuously differentiable threshold function, such as

a Gaussian or sigmoid function, it is possible to learn practically any nonlinear mapping to

any desired degree of accuracy. The mechanism that allows such compJex mappings to be

acquired is not fully understood for each type of multi-layer neural network, but in general

the network partitions the input space into regions and a mapping from the partitioned

regions to the next space is performed by the next set of connections to the next layer of

PEs, eventually producing an output response. This capability alJows some very complex

decision regions to be performed for classification and pattern matching problems, as well

as applications that require function approximation.

There are several issues that must be addressed when working with multi-layer neural

networks. How many layers is enough for a given problem? How many PEs are needed in

each hidden layer? How much data is needed to produce a sufficient mapping from the

input layer to the output layer? Some of these issues have been successfully dealt with. As

an example, there have been several researchers that have proven that three layers is

sufficient to perform any nonlinear mapping (with the exception of a few remote

pathological cases) to any desired degree of accuracy with only one layer of hidden PEs.

Although this is a very important result, it still does not indicate what the proper number of

hidden layer PEs is, or if the same solution can be obtained with more layers but fewer

hidden PEs and connections overall.

2.8. Randomly Connected Networks 

Randomly connected neural networks are networks that have connection weights that

are randomly assigned within a specific range. Some randomly connected networks have

binary valued connections. Realizing that, a connection weight equal to zero is equivalent

to no connection being present, binary valued random connections create sparsely

connected networks. Randomly connected networks are used in three different ways:

• Initial weights The initial connection values for the network prior to training are

pre-set to random values within a predefined range. This technique is used extensively

in error-correction learning system.

• Pattern preprocessing - A set of fixed random binary valued connections are placed
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between the first two layers of a multi-layer neural network as a pattern preprocessor.

The use of such random connections can be used to increase the dimensionality of the

space that is being used for mappings in an effort to improve the pattern mapping

capability. This approach was pioneered with the early Perceptron and has been used

recenfly in the Sparse Distributed Memory.

• Intelligence from randomness - Early studies in neural networks spent a great deal

of effort analyzing randomly connected binary valued systems. The model of the brain

as a randomly connected network of neurons prompted this research.

2.9. Neural Network Learning 
Perhaps the most appealing quality of neural networks is their ability learn. Learning,

in this context, is defined as a change in connection weight values that results in the capture

of information that can later be recalled. There are several different procedures available for

changing the values of connection weights. After an introduction to some terminology,

eight different learning methods will be described. For continuity of discussion, the

learning algorithms will be described in point-wise notation {as opposed to vector notation).

In addition, the learning algorithms will be described using discrete time equations (as

opposed to continuous time). The use of discrete-time equations makes them more

accessible to digital computer simulations.

2.9.1. Supervised vs. Unsupervised Learning

All learning methods can be classified into two categories, supervised learning and

unsupervised learning. Supervised learning is a process that incorporates an external

teacher and/or global information. The supervised learning algorithms that will be

discussed in the following sections include error correction learning, reinforcement

learning, stochastic learning, and hardwired systems. Examples of supervised learning

include; deciding when to tum off the learning, deciding how long and how often to present

each association for training, and supplying performance {error) information. Supervised

learning is further classified into two subcategories; structural learning and temporal

learning. Structural learning is concerned with fınding the best possible input/output

relationship for each individual pattern pair. Examples of structural learning include pattern

matching and pattern classification. The majority of the learning algorithms discussed

below focus on structural learning. Temporal learning is concerned with capturing a

32



sequence of patterns necessary to achieve some final outcome. In temporal learning the

current response of the network is dependant on previous inputs and responses. In structural

learning, there is no such dependence. Examples of temporal learning include prediction

and control. The reinforcement learning algorithm discussed below is an example of a

temporal learning procedure.

Unsupervised learning, also referred to as self-organization, is a process that

incorporates no external teacher and relies upon only local information during the entire

learning process. Supervised learning organizes presented data and discovers its emergent

col1ective properties. Examples of unsupervised learning that will be discussed in the

following sections includes Hebbian learning, principle component learning, differential

Hebbian learning, min-max learning, and competitive learning.

2.9.2. Off-line vs. On-line Learning

Most learning techniques utilize off-line learning. When the entire pattern set is used to

condition the connections prior to the use of the network, it is called off-line learning. As

an example, the backpropagation training algorithm is used to adjust connections in multi­

layer neural network, but it requires thousands of cycles through all the pattern pairs until

the desired performance of the network has been achieved. Once the network is performing

adequately, the weights are frozen and the resulting network is used in recall mode

thereafter. Off-line learning systems have the intrinsic requirement that all the patterns have

to be resident for training. Such a requirement does not make it possible to have new

patterns automatically incorporated into the network as they occur, rather these new

patterns must be added to the entire set of patterns and a retraining of the neural network

must be done again.

Not all neural networks perform off-line learning. There are some networks that can

add new information "on the fly" non-destructively. If a new pattern needs to be

incorporated into the network's connections, it can be done

2.9.3. Hebbian Correlations

The simplest form of adjusting connection weight values in a neural network is based

upon the correlation of PE activation values. The motivation for correlation-based

adjustments has been attributed to Hebb (1949) who hypothesized that the change in a

synapses efficacy (its ability to fire, or as we are simulating it in our neural networks, the
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connection weight) is prompted by a neuron's ability to produce an output signal. If a

neuron, A, was active, and A's activity caused a connected neuron, B, to fire, then the

efficacy of the synaptic connection between A and B should be increased.

2.9.4. Principle Component Learning

There are some neural networks that have learning algorithms designed to produce, as

a set of weights, the principle components of the put data patterns. The principle

components of a set of data are found by forming the covariance (or correlation) matrix of a

set of patterns and then finding the minimal set of orthogonal vectors that span the space of

the covanance matrix. Once the basis set has been found, it is possible to reconstruct any

vector in the space with a linear combination of the basis vectors. The value of each scalar

in the linear combination represents the "importance" of that basis vectors (Lawley &

Maxwel1, 1963). It is possible to think of the basis vectors as feature vectors and the

combination of diese feature vectors is used to constrnct patterns. Hence, the purpose of a

principle component network is to decompose an input pattern into values the represent the

relative importance of the features underlying the patterns.

2.9.5. Differential Hebbian Learning

Hebbian learning has been extended to capture the temporal changes that occur in

pattern sequences. This learning law, entitled Differential Hebbian Learning, has been

independently derived by Klopf (I 986) in the discrete time form and by Kosko (I 986) in

the continuous time form. The general form, some variants, and some similar learning laws

are outlined in the following sections. There are several other combinations that have been

explored beyond those that are presented in this section.

2.9.6. Competitive Learning

Competitive learning is a method of automatically creating classes for a set of input

patterns. Competitive learning is a two step procedure that couples the recall process with

the learning process in a two layer neural network (see Figure 2.12). In Figure 2.12 each F,

PE represents a component of the input pattern and each Fy PE represents a class

34

_)



• Each Fy PE represents a class
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Figure 2.12. Competitive Learning neural network

2.9.7. Min-Max Learning
Min-max classifier systems utilize a pair of vectors for each class For the

classj, represented by the PE Yj and defined by the abutting vectors Vj (the min vector) and

(the max vector). Leaming in a min-max neural system is done using the equation
(2.5)

for the min vector and
new ( · old

Vij =max akı, Vij (2.6)

for the max vector.

2.9.8. Error Correction Learning
Error correction learning adjusts the connection weights between PEs in proportion to the

difference between the desired and computed values of each output layer PE. Two layer

error correction learning is able to capture linear mappings between input and output

patterns. Multi-layer error correction learning is able to capture nonlinear mappings

between the inputs and outputs.

2.9.9. Reinforcement Learning
Reinforcement learning is similar to error correction learning in that weights are

reinforced for properly performed actions and punished for poorly performed actions. The
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difference between these two supervised learning techniques is that error correction

learning utilizes more specific error information by collecting error values from each output

layer PE, while reinforcement learning uses non-specific error information to determine the

performance of the network. Where error-correction learning has a whole vector of values

that it uses for error correction, only one value is used to describe the output layer's

performance during reinforcement learning. This forın of learning is ideal in situations

where specific error information is not available, but overall performance information is,

such as prediction and control.

A two-layer neural network such as the one found in Figure 2.13 serves as a good

framework for the reinforcement learning algorithm. The general reinforcement learning

equation is

,new - old (· -e \-ı\ 11 - wij + a , 1 ı::u (2.7)

where, r is the scalar success.failure value provided by the environment, 01 is the

reinforcement threshold value for the j'th F, PE, t!ij; is the canonical eligibility of the weight

from the i'th F, PE to the j'th FYPE, and O<a < 1 is a constant-valued learning rate. In error

correction learning, gradient descent in error space controlled learning. In reinforcement

learning it is gradient descent in probability space.

COMPUTED OUTPUTS

INPUTS

Figure 2.1 O. Reinforcement learning Neural Network
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The canonical eligibility of Wij is dependant on a previously selected probability

distribution that is used to determine if the computed output value equals the desired output

value and is defined as

(2.8)

where gi is the probability of the desired output equaling the computed output, defined as

(2.9)

which is read as the probability that yj equals h!tj given the input, At_, and the corresponding

weight vector, Wj.

2.9.10. Stochastic Learning

Stochastic learning uses random processes, probability, and an ene-y relationship to

adjust connection weights in a multi-layered neural network. Using the three-layer neural

network shown in Figure 2.14 to illustrate the learning algorithm, the stochastic learning

procedure is described as follows:

1. Randomly change the output value of a hidden layer PE (the hidden layer PEs utilize a

binary step threshold function).

2. Evaluate the change using the resulting difference in the neural network's energy as a

guide. If the energy after the change is lower, keep the change. If the change in energy is

not lower after the random change. accept the change according to a pre-chosen probability

distribution.

3. After several random changes, the network will eventually become "stable." Collect the

values of the hidden layer PEs and the output layer PEs.

4. Repeat steps 1-3 for each pattern pair in the data set, then use the collected values to

statistically adjust the weights.

5. Repeat steps 1-4 until the network performance is adequate.
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Figure 2.14. Three Layer Network

2.9.11. Error Backpropagation 
We have already seen how to train linear networks by gradient descent. In trying to do the

same for multi-layer networks we encounter a difficulty: we don't have any target values

for the hidden units. This seems to be an insurmountable problem - how could we tell the

hidden units just what to do? This unsolved question was in fact the reason why neural

networks fell out of favor after an initial period of high popularity in the 1950s. It took 30

years before the error backpropagation (or in short: backprop) algorithm popularized a way

to train hidden units, leading to a new wave of neural network research and applications.

In principle, backprop provides a way to train networks with any number of hidden

units arranged in any number of layers. (There are clear practical limits, which we will

discuss later.) In fact, the network does not have to be organized in layers - any pattern of

connectivity that permits a partial ordering of the nodes from input to output is allowed.
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Figure 2.15. simple structure of neural network

In other words, there must be a way to order the units such that all connections go

from "earlier" (closer to the input) to "later" ones (closer to the output). This is equivalent

to stating that their connection pattern must not contain any cycles. Networks that respect

this constraint are called feedforward networks; their connection pattern forms a directed

acyclic graph or dag.

2.9.11.1. The Algorithm

We want to train a multi-layer feedforward network by gradient descent to approximate

an unknown function, based on some training data consisting of pairs (x,t). The vector x

represents a pattern of input to the network, and the vector t the corresponding target

(desired output). As we have seen before, the overall gradient with respect to the entire

training set is just the sum of the gradients for each pattern; in what follows we will

therefore describe how to compute the gradient for just a single training pattern. As before.

we will number the units, and denote the weight from unit j to unit i by Wij-

Definitions:

• the error signal for unit j:

(2.10)
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• the (negative) gradient for weight WiJ

(2.11)

• the set of nodes anterior to unit i:

(2.12)

• the set of nodes posterior to unit j:

Pj ~ {i 3w11} (2.13)

The gradient. As we did for linear networks before, we expand the gradient into two

factors by use of the chain rule:

~ ~~~- -~~~
,..,,... ~ ;,,"=«-tme:i i:Jrı1ı, (2.14)

The first factor is the error of unit i. The second is

(2.15)

Putting the two together, we get

(2.16)

To compute this gradient, we thus need to know the activity and the error for all

relevant nodes in the network,

Forward activaction. The activity of the input units is determined by the network's

external input x. For all other units, the activity is propagated forward:

(2.17)

Note that before the activity of unit i can be calculated, the activity of all its anterior nodes

(forming the set Ai) must be known. Since feedforward networks do not contain cycles,

there is an ordering of nodes from input to output that respects this condition.

Calculating output error. Assuming that we are using the sum-squared loss

- I~,. _ .,:z}!; = - ., it,;;= y,,t2~·, ---,
a (2.18)
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the error for output unit o is simply

;
DıJ (2.19)

Error backpropagation. For hidden units, we must propagate the error back from the

output nodes (hence the name of the algorithm). Again using the chain rule. we can expand

the error of a hidden unit in terms of its posterior nodes:

i)i

(2.20)

Of the three factors inside the sum, the first is just the error of node i. The second is

Bart, 8 )"
. Oyj < ; [JyJ ktt_/i)i,f;: ih ~ Wı;

(2.21)

while the third is the derivative of node j's activation function:

Bfi (net/}
Üt1iit.1;

" (2.22)

For hidden units h that use the tanlı activation function, we can make use of the special

identity tanh(u)' = 1 - tanh(u}2,giving us

(2.23)

Putting all the pieces together we get

fi_; - ı; (ntd1} I:: c; 't1),J

·1-t:J.\, (2.24)

Note that in order to calculate the error for unit j, we must first know the error of all its

posterior nodes (forming the set Pj). Again, as long as there are no cycles in the network,

there is an ordering of nodes from the output back to the input that respects this condition.

For example, we can simply use the reverse of the order in which activity was propagated

forward.

2.9.11.2. Matrix Form 

For layered feedforward networks that are fully connected - that is, each node in a given

layer connects to every node in the next layer - it is often more convenient to write the

backprop algorithm in matrix notation rather than using more general graph forın given

41



above. In this notation, the biases weights, net inputs, activations, and error signals for all

units in a layer are combined into vectors, while all the non-bias weights from one layer to

the next form a matrix W. Layers are numbered from O (the input layer) to L (the output

layer). The backprop algorithm then looks as follows:

Initialize the input layer:

(2.25)

Propagate activity forward: for 1 = 1, 2, ... , L,

(2.26)

where b, is the vector of bias weights.

Calculate the error in the output layer:

- -"L - i - fjL (2.27)

Backpropagate the error: for l = L-1, L-2,... , 1

(2.28)

where T is the matrix transposition operator.

Update the weights and biases:

(2.29)

We can see that this notation is significantly more compact than the graph form, even

though it describes exactly the same sequence of operations.

2.10. Hardwired Systems 
There are some neural networks that have their connection weights predetermined for a

specific problem. These weights are "hard-wired" in that they do not change once they have

been determined. The most popular hardwired systems are the neural optimization net­

works. Neural optimization works by designing a cost function that, when minimized,

solves an unconstrained optimization problem. By translating the energy function into a set

of weights and bias values, the neural network becomes a parallel optimizer. Given the

initial values of the problem, the network will run to a stable solution. This technique has

been applied to a wide range of problems, including scheduling, routing and resource

optimization.
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Two other types of hardwired networks include the A\ alanche Matched Filter and the

Probabilistic Neural Network. These networks are considered hardvired systems because

the data patterns are normalized to unit length and used as connection weights. Despite the

lack of an adaptive learning procedure, each of these neural networks are very powerful in

their own right.

2.11. Summary of Learning Procedures 
There are several attributes of each of the neural network learning algorithms that have

been described.

• Training Time - How long does it take the learning technique to adequately capture

information (quick, slow, very slow, and extremely slow)?

• On-Line/Off-Line - Is the learning technique an on-line or an off-line learning

algorithm?

• Supervised/unsupervised - Is the learning technique a supervised or unsupervised

learning procedure? Linear/Nonlinear - Is the learning technique capable of capturing

nonlinear mappings?

• Structural/Temporal Does the learning algorithm capture structural information,

temporal information, or both?

• Storage Capacity is the information storage capacity good relative to the number of

connections in the network?

2.12. Machine Learning 
Neural networks are not the only method of learning that has been proposed for

machines (although it is the most biologically related). There are a large number of

machine learning procedures that have been proposed over the course of the past thirty

years. Carbonell (1990) classifies machine learning into four major paradigms: "Inductive

learning (e.g., acquinng concepts from sets of positive and negative examples), analytic

learning (e.g., explanation-based learning and certain forms of analogical and case-based

learning methods), genetic algorithms (e.g., classifier systems), and connectionist learning

methods (e.g., nonrecurrent "backprop" hidden layer neural networks)." It is possible that

some of the near-term applications might find it useful to combine two or more of these

machine learning techniques into a coherent solution. It has only been recently that this

type of approach has even been considered.
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2.13. Recurrent Network
Consider the following two networks

Figure 2.16. feed forward networks

The network on the left is a simple feed forward network of the kind we have already

met. The right hand network has an additional connection from the hidden unit to itself What

difference could this seemingly small change to the network make?

Each time a pattern is presented, the unit computes its activation just as in a feed forward
\

network. However its net input now contains a term which reflects the state of the network (the

hidden unit activation) before the pattern was seen. When we present subsequent patterns, the

hidden and output units' states will be a function of everything the network has seen so far. The

network behavior is based on its history, and so we must think of pattern presentation as it

happens in time.

2.13.1. Network topology

Once we allow feedback connections, our network topology becomes very free: we can

connect any unit to any other, even to itself Two of our basic requirements for computing

activations and errors in the network are now violated. When computing activations, we required

that before computing Yi, we had to know the activations of all units in the posterior set of nodes,
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Pi. For computing errors, we required that before computing oı : we had to know the errors of all

units in its anterior set of nodes, Ai.

For an arbitrary unit in a recurrent network, we now define its activation at time tas:

yi(t) = f;.(neti(t-1)) (2.30)

At each time step, therefore, activation propagates forward through one layer of

connections only. Once some level of activation is present in the network, it will continue to flow

around the units, even in the absence of any new input whatsoever. We can now present the

network with a time series of inputs, and require that it produce an output based on this series.

These networks can be used to model many new kinds of problems, however, these nets also

present us with many new difficult issues in training.

Before we address the new issues in training and operation of recurrent neural networks, let

us first look at some sample tasks which have been attempted (or solved) by such networks.

• Learning formal grammars

Given a set of strings S, each composed of a series of symbols, identify the

strings which belong to a language L. A simple example: L = {a11,b11} is the

language composed of strings of any number of a's, followed by the same

number of b's. Strings belonging to the language include aaabbb, ab,

aaaaaabbbbbb. Strings not belonging to the language include aabbb, abb,

etc. A common benchmark is the language defined by the reber grammar.

Strings which belong to a language Lare said to be grammatical and are

ungrammatical otherwise.

• Speech recognition

In some of the best speech recognition systems built so far, speech is first

presented as a series of spectral slices to a recurrent network. Each output

of the network represents the probability of a specific phone (speech

sound, e.g. Iii, ipi, etc), given both present and recent input. The

probabilities are then interpreted by a Hidden Markov Model which tries

to recognize the whole utterance.

45



• Music composition

A recurrent network can be trained by presenting it with the notes of a

musical score. It's task is to predict the next note. Obviously this is

impossible to do perfectly, but the network learns that some notes are

more likely to occur in one context than another. Training, for example, on

a lot of music by J. S. Bach, we can then seed the network with a musical

phrase, let it predict the next note. feed this back in as input, and repeat,

generating new music. Music generated in this fashion typically sounds

fairly convincing at a very local scale, i.e. within a short phrase. At a

larger scale, however, the compositions wander randomly from key to key,

and no global coherence arises. This is an interesting area for further work

2.13.2. The Simple Recurrent Network

One way to meet these requirements is illustrated below in a network known variously as an

Elman network (after Jeff Elman, the originator), or as a Simple Recurrent Network. At each

time step, a copy of the hidden layer units is made to a copy layer. Processing is done as follows:

1. Copy inputs for time t to the input units

2. Compute hidden unit activations using net input from input units and from copy layer

3. 1 Compute output unit activations as usual

4. Copy new hidden unit activations to copy layer

~)
+

~(~
~ f \ \, copy z

~\'~ ,.--3L-

Figure 2.17. Simple recurrent neural network
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In computing the activation, we have eliminated cycles, and so our requirement that the

activations of all posterior nodes be known is met. Likewise, in computing errors, all trainable

weights are feed forward only, so we can apply the standard backpropagation algorithm as

before. The weights from the copy layer to the hidden layer play a special role in error

computation. The error signal they receive comes from the hidden units, and so depends on the

error at the hidden units at time t. The activations in the hidden units, however, are just the

activation of the hidden units at time t-I. Thus, in training, we are considering a gradient of an

error function which is determined by the activations at the present and the previous time steps.

A generalization of this approach is to copy the input and hidden unit activations for a number of

previous timesteps. The more context (copy layers) we maintain, the more history we are

explicitly including in our gradient computation. This approach has become known as Back

Propagation Through Time. It can be seen as an approximation to the ideal of computing a

gradient which takes into consideration not just the most recent inputs, but all inputs seen so far

by the network. The figure below illustrates one version of the process:

inputs hidden units output

~,' ~

-~~
• ___ J ..••• - )

~,,---'. t
t=:3 

(_____;> I
// ~

j

c=:5ı ! .
t

t=2

c=fr-1
t=l

t=O

Figure 2.18. learning of recurrent neural networks

The inputs and hidden unit activations at the last three time steps are stored. The solid arrows

show how each set of activations is determined from the input and hidden unit activations on the

previous time step. A backward pass, illustrated by the dashed arrows, is performed to determine

separate values of delta (the error of a unit with respect to its net input) for each unit and each
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time step separately. Because each earlier layer is a copy of the layer one level up, we introduce

the new constraint that the weights at each level be identical. Then the partial derivative of the

negative error with respect to wi,.i is simply the sum of the partials calculated for the copy of wi,.i

between each two layers.

Elman networks and their generalization, Back Propagation Through Time, both seek to

approximate the computation of a gradient based on all past inputs, while retaining the standard

back prop algorithm. BPTT has been used in a number of applications (e.g. ecg modeling). The

main task is to to produce a particular output sequences in response to specific input sequences.

The downside of BPTT is that it requires a large amount of storage, computation, and training

examples in order to work well. In the next section we will see how we can compute the true

temporal gradient using a method known as Real Time Recurrent Leaming.

2.13.3. Real Time Recurrent Learning

In deriving a gradient-based update rule for recurrent networks, we now make network

connectivity very very unconstrained. We simply suppose that we have a set of input units, I=

{xk(ı), O<k<nı}, and a set of other units, U = {yk(ı), O<k<n}, which can be hidden or output

units. To index an arbitrary unit in the network we can use

z k (t ) = { X k (t ) if k E I
Y k (t) if k E U (2.31)

Let W be the weight matrix with n rows and n+m columns, where W;J is the weight to

unit i (which is in U) from unit} (which is in I or U). Units compute their activations in the now

familiar way, by first computing the weighted sum of their inputs:

net(t) = 2)t1ıc1zı{t)
Id.Ju/

where the only new element in the formula is the introduction of the temporal index t.

(2.32)

Units then compute some non-linear function of their net input

yk(t+ I)= jlc(netk(t)) (2.33)

Usually, both hidden and output units will have non-linear activation functions. Note that

external input at time t does not influence the output of any unit until time t+ 1. The network is

thus a discrete dynamical system.
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Some of the units in Uare output units, for which a target is defined. A target may not be

defined for every single input however. For example, ifwe are presenting a string to the network

to be classified as either grammatical or ungrammatical, we may provide a target only for the last

symbol in the string. In defining an error over the outputs, therefore, we need to make the error

time dependent too, so that it can be undefined (or O) for an output unit for which no target exists

at present. Let T(t) be the set of indices k in U for which there exists a target value dk(t) at time t.

We are forced to use the notation d1c instead oft here, ast now refers to time. Let the error at the

output units be

ek(t)= {dJt )- yk(t )if k E T(t)
O otherwise

(2.34)

and define our error function for a single time step as

(2.35)

The error function we wish to minimize is the sum ofthis error over all past steps of the network

(2.36)
r=to+ı

Now, because the total error is the sum of all previous errors and the error at this time

step, so also, the gradient of the total error is the sum of the gradient for this time step and the

gradient for previous steps

VwEtotaıCta,t + 1) = VwEtotaıCta,t) + VwE(t + 1) (2.37)

As a time series is presented to the network, we can accumulate the values of the

gradient, or equivalently, of the weight changes. We thus keep track of the value

) oE(f) "Awij(t = -µ ow (2. .,8)
IJ

After the network has been presented with the whole series, we alter each weight wu by

rı

Ll\Wij(t)
r=to +l

(2.39)
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We therefore need an algorithm that computes

(2.40)

at each time step t. Since we know eıtt) at all times (the difference between our targets and

outputs), we only need to find a way to compute the second factor.

(2.41)

This is given here for completeness, for those who wish perhaps to implement RTRL.

0\ (t + ı) = J{(netk (t){ Lwk1 8zı (t) + Sikz /t )]
aw IeUvl awij

I]

(2.42)

where 811c is the Kronecker delta

if i = k
otherwise

(2.43)

Because input signals do not depend on the weights in the network,

az 1 (t) = O for 1 E I
ôw;

(2.44)

Equation becomes

8yk(t+l) _ rı( t 1ı){'°'w 011(t) +S_z(t)]
- J k ne k \: ~ kl aw ıh J

aw!j [EU 1)

(2.45)

This is a recursive equation. That is, ifwe know the value of the left hand side for time O,

we can compute the value for time 1, and use that value to compute the value at time 2, etc.

Because we assume that our starting state (t = O) is independent of the weights, we have

8y/t0) = O
awij

(2.46)

These equations hold for all

k E U, i E U and j E U u I (2.47)
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We therefore need to define the values

~;(t)= ayJı)aw ..
I)

(2.48)

for every time step t and all appropriate i, j and k. We start with the initial condition

p/(to) = O

and compute at each time step

(2.49)

The algorithm then consists of computing, at each time step t, the quantities p/(t) using

the above equations and then using the differences between targets and actual outputs to oınpute

weight changes

~wu(t) = µ Z:ek(t )P;(t)
kEU

(2 50)

and the overall correction to be applied to wij is given by

tı

Awii = LAwu(t)
t=t0+1

(2.51)
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3. NEURAL LEARNING SYSTEMS FOR TECHNOLOGICAL I\
\\•. 5

":"ı. ö?,,
~~~~~~~~~~~~~~~~~~~~~~~~s~l 

PROCESSES CONTROL 

The complexity of a number of technological processes and the pressing regime of

their functioning require use of more qualitative control algorithms for regime

parameters that provide possibility of learning and adaptation to changes in the

environment. However the algorithms developing on the base of traditional approach

are complex and their implementation is difficult.

Taking into account the fuzziness and uncertainty of working environment of

modem technological processes, an effective method for development of control system

is using the artificial intelligence ideas. However, the traditional algorithms and

artificial intelligence methods do not always adequately describe some processes for

complex objects.

In this condition it is advisable to use neural technology for developing the control

systems. Using it allows to improve the quality of systems by paralleling computational

processes and the ability for learning and adaptation which improve flexibility of

systems.

In this chapter, identifications of control objects and development of direct and

inverse controllers based on neural network are considered.

3.1. Modelling of Neural Control System 

Assume that control object is described by the foliowing differential equation

n m 

Iıan-iY(i) (t) + cq>(y(t)) = Lbm_ju(j) (t) (3.1)
i=l j=l

where a, (i=l,n) and bj (j=l,m) are unknown parameters of control object, dis delay, c is

unknown nonlinear parameter, m<n.

The problem consists in constructing the controller for control of object (I), that

would provide the target characteristic of system.

At first the development of PD-, PI-, PID- neural controllers for control of regime

parameters of control object are considered. In figure 3.1 the structure of PID- neural

controller is shown.
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Figure 3.1. Structure ofNeural PID- controller.

The synthesis of neural controller includes the determination of the scale

coefficients and parameters of the neural network (NN). In the controller synthesis

processes the main problem is learning of the NN coefficients.

The architecture of the network is chosen to be feedforward consisting of three

layers: input, hidden and output layer. The problem of control system synthesis on the

base of NN is the following.

Assume there is a target behaviour for the constructed control system. It is

necessary to determine the values of parameters- weight matrix Wij and scale

coefficients using of which in control system for object (1) would allow to achieve time

response which provides target step response of the system.

The input signals error e, error derivative e' and integral value of error f e(t)dt

after scaling with coefficients ke, ke., k J e are entered to neural network. The

functioning of neural network is performed by using activation function U=Y/(A+/YI).

Here Y=XW.

For synthesis of neural controller the NN learning is performed by usıng

'backpropagatiorı' algorithm. The NN learning is performed in the closed control

system, i.e. for learning NN error between target characteristic of control system and

current output value of implemented system (output of control object) ~(y,t)=ke(g(t)­

y(t)) is used. That error is used for correction NN parameters for adjusting of controller.

Using learning algorithm of 'backpropagation' the values of weight coefficients of

NN is found.
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The computer simulation of the system by using neural PD-, PI-, PID controllers

for control of different object is performed. For the simulation the models of control

object are chosen by using following differential equations:

3.2. Simulation of neural control structure 

(3.2)

where ao= 0.072 min", a1=0.056 min, a2=1, b0=60 °C/(kgf/cm2);

here y(t)- regulation parameter of object, u(t)- neural controller's output.

(3.3)

where ao= 6.3 min", a1=11.2 min. a2=1, b0=5.1 °C/(kgf/cm2),d=2.5 min is delay;

(3.4)

where ao= 2.8 min", a1=3 min", a2=1 min, a3=1, b0=34 °C/(kgf/cm2);

The neural controllers development for given control objects are performed. In the

result of learning corresponding values of neural network coefficients are determined. In

fig.2(a,b,c)the time responses of PD-, PI-, PID- controllers for control object (2) are

shown.
Then the results of simulation of neural controllers for technological processes

control are compared with simulation results of the traditional PD-, PI-, PID­

controllers. When optimal value of tuning parameters of PD- controller amplifying

coefficient kp=0.08[(kgf/cm2)/°C] and differentiaton time Td=0.15 min., then transient

process in the control system oscillates with 18% of transient overshoot. Where settling

time t=l.3-1.5 min, static error E.1(00) ~ 0.15x(oo), and value of squared integral

control quality index J=276.4. Such value of static error is not satisfactory.
One can see from transient object operation mode of automatic control system

with neural PD-controller that static error (Est~) is almost absent, transient overshoot is

almost 8%, settling time t=l.3 min., J=126.1.
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Figure 3.2.(a) PD Controller
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Figure 3.2.(a) PI Controller 
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Figure 3.2.(c) PID Controller

Figure 3.2. Time response characteristics of control systems with PD, PI, PID controllers



The simulation results of comparison of traditional and neural controllers show

that when optimal value of tuning parameters of PI- controller kp=0.054[(kgf/cm2)fC]

and Ti=I min., then transient process in the control system oscillate with 12% of

transient overshoot. Where settling time t=l.5 min, static error Est{co)=O, and value of

squared integral control quality index J=134.39. Transient object operation mode of

automatic control system with neural PI-controller shows that static error s,1=0, transient

overshoot is almost 7%, settling time t=l.5 min., J=I 14.2.

Also when optimal value of tuning parameters of PID- controller

kp=0.064[(kgf/cm2)fC], Ti=l min. and Td=0.15 min., then transient processes in the

control system oscillate with 10% of transient overshoot, settling time t=l.5 min, static

error Es1(co)=O, and value of squared integral control quality index J=104.75. Transient

object operation mode of automatic control system with neural Pill-controller show that

static error Est=O, transient overshoot is almost 7%, settling time t=l.2 min., J=102.21.

Results of experimental analysis of the automatic control system with neural

network shown their efficiency.

3.3. Identification and inverse control of dynamical systems 

It is necessary to note, that for control of technological processes, functioning in

the fuzzy environment, the development of fuzzy neural PD-, PI-, PID- controllers are

carried out. The learning of those controllers is carried out by using a- level and interval

arithmetic.

Also the direct and inverse identifications of control object (1) and development

of inverse controller are performed.

In fig. 3. the structure of direct identifier is shown. Here input signals of neural

network are control object output signals. Those signals enter to NN, are processed and

the derived signals on the output of network are compared with object output. In the

result of comparison the value of error E=Y(k)-YN(k) is calculated. This error corrects

the value of synaptic weights of NN to minimise error. In the result of learning on the

NN the plant model is derived. For learning ofNN the 'backpropagation' algorithms is

used. In the NN the following activation function is used.

Y~X/(A+IXI)

In the inverse identification (fig.4) the input signals of NN are object output

signals. Those signals enter to input of NN. After processing derived NN output signal

are compared with object input U(t) and the value of error E(k)=U(k)-UN(k) is
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calculated. Using above mentioned learning algorithm the correction of weight

coefficients is performed. Leaming processes is continued until the value of error attains

to minimum. In the result ofleaming the derived model on 1'.ı'N is taken as object model.

Figure 3.3 Structure of direct identification Figure 3.4. Structure of inverse
Identification

The program performing direct, inverse identification processes and controlling

object is developed. The system is implemented using Turbo_Pascal and a computer

IBM PC/AT.
The results of direct and inverse identification processes of the plant are shown in

figure 5(a,b). During the identification the sinusoidal signal is given to the input of the

system. In the figure the straight line shows the obect output (3.5a) and object input

(3.5b) and dotted line shows output of the neural identifiers. As shown in the figures the

input and output of the object coincided with neural identifiers. This confirmed the

adequacy of the derived models.
Results of inverse identification are used for development of a neural controller

for control of object. Fig. 6 shows the structure of the controller.
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Also in fig. 3.6 the time response of the system with inverse neural controller is

shown. Although the inverse identification of the object and use of their results in the

inverse neural controller require certain time.

The developed direct neural controller is used for creating a control system of

temperature ofrectifier K-2 column.

Yi 
, ı,.__r-u ~--~-

ıI I
object

o, n~

Figure 3.5. Structure of inverse controller Figure 3.6 Time response of control

system system

58



CONCLUSION 

The analyses of some technological processes show that they are characterized

by uncertainty of their work, non-linearity of their functioning principles. Use of

traditional technology is not enough describe those processes. For this reason the

construction of control system based of artificial intelligence methods such as neural

network technology is proposed.
The architecture of neural control system for technological process is

given. This architecture allows to improve accuracy of the control system due to

its learning ability and adaptability to the changing of environment.
Using "Error back propagation in time" learning algorithm, the synthesis of

neural control system is perfonned De, eloped control system allows to get high

dynamical accuracy of the system to changing environmental conditions, that show

considerable advantage of those system over traditional control systems.

The simulation of neural control system is performed in Turbo Pascal language.

Modeling and simulation of de, eloped control system show the efficiency of proposed

technology and programming tools in the thesis.
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