
NEAR EAST UNIVERSITY

Faculty of Eng,ineering

Department Of Computer Engineering

-
Transmission Control Protocol and Internet Protocol

Graduation Project
COM-400

Student: Mu'ayyad Dmour

Supervisor: Assoc.prof DOGAN IBRAHIM

Nicosia~ 2004

\l!m11,~.'!I
NEU

ACKNQWLEDGEMENTS

I would like to thank my supervisor Assoc. Prof Dr. Dogan Ibrahim for his great

advice and recommendations to finish this work properly.

'hough. I faced many problem collections data but has guiding me the appropriate

references. (DR Dogan) thanks a lot for your invaluable and continual support.

nd. I would like to thank my family for their constant encouragement and support

ing the preparation of this work specially my brothers (Eyad and muhammad) .

· 'd. I thank all the staff of the faculty of engineering for giving me the facilities to

practice and solving any problem I was facing during working in this project.

onh I do not want to forget my best friends (Tarq mikki), (Waleed), (Adeeb) and all

friends for helping me to finish this work in short time by their invaluable

encouragement.

Finally thanks for all of my friends for their advices and support.

ABSTRACT
Transmission Control Protocol/Internet Protocol (TCP/IP) is, an industry-standard suit of

protocols designed for Wide Area Networks (WANs). The roots of the TCP/IP can be

traced back to the packet switching network experiments conducted by the US

Department of Defense Advanced Research Projects Agency (DARPA). IP is a

connectionless protocol primarily responsible for addressing and routing packets

between hosts, that is, a session is not established before exchanging data. IP is

unreliable in that delivery is not guaranteed. An acknowledgement is not required when

data is received. where as Transmission Control Protocol (TCP) is responsible for

controlling the transmission of data from one host to another host. The TCP/IP utilities

include File Transfer Protocol (FTP), Trivial File Transfer Protocol (TFTPJ, Remote

Copy Protocol (RCP), Telnet, Remote Shell (RSH), Remote Execution (RE-KEC), Line
'

Printer Remote (LPR), Line Printer Queue (LPQ), and Line Printer Daemon (LPD).

11

TABLE OF CONTENTS

ACKNOWLEDGEMENTS 1

~BS'TRA.C'T
11

TABLE OF CONTENTS

INTRODUCTION
lll

1

CHAPTER ONE: INTRODUCTION TO TCP/~P AND

INTERNET 2
1.1 An Overview of TCP/IP Components 3

1.1.1 Telnet
4

1.1.2 File Transfer Protocol
4

1.1.3 Simple Mail Transfer Protocol 4
1.1.4 Kerberos

4
1.1.5 Domain Name System

5
1.1.6 Simple Network Management Protocol 5
1.1.7 Network File System

5
1.1.8 Remote Procedure Call

5
1.1.9 Trivial File Transfer Protocol

6
1.1.1 OTransmission Control Protocol

6
1.1.11 User Dat~gram Protocol

6
l. l. l 2Intemet Protocol

6
1.1.13 Internet Control Message Protocol 6

1.2 TCP/IP History
6

1.3 Berkeley UNlX Implementations and TCP/IP 8
1.4 OSI and TCP/IP

9
1.5 TCP/IP and Ethernet

11
lll

1.6 The Internet 12

1.6.1 The Structure of The Internet 13

1.6.2 The lhternet Layers 15

1.6.3 Internetwork Problems. 18

1.7 Internet Addresses 19

1. 7 .1 Subnetwork Addressing 20

1.7.1.1 The Physical Address 20

1.7.1.2 The Data Link Address 22

, 1.7.1.3 Ethernet Frames 22

1.8 IP Addresses 23

1.9 Address Resolution Protocol 26

1.9.1 Mapping Types 27

1.9.2 The Hardware Type Field 29

1.9 .3 The Protocol Type Field 29

1.10 ARP and IP Addresses 30

1.11 The Domain Name System 31

CHA.l>TER TWO: THE INTERNET PROTOCOL 33

2 .1 Internet Protocol

2.1.1 The Internet Protocol Datagram Header

33

315

2.1.1.1

2.1.1.2

2.1.1.3

2.1.1.4

2.1.1.5

2.1.1.6

Version Number

Header Length

Type of Service

Datagram Length (or Packet Length)

Identification

Flags

36

36

36

37

38

38

lV

2.1.1.7

2.1.1.8

2.1.1.9

2.1.1.10

2.1.1.11

2.1.1.12

2.1.1.13

Fragment Offset

Time to Live (TTL)

Transport Protocol

Header Checksum

38

39

39

39

Sending Address and Destination Address 40

Options

Padding

40

41

41

43

41

48

50

51

52

53

53

54

54

54

55

55

56

57

57
57

58

2.1.2 A Datagram's- Life

22 Internet Control Message Protocol (ICMP)

2.3 IPng: IP Version 6

2.3.1 IPng Datagram

2.3.1.1

2.3.1.2

Priority Classification

Flow Labels

2.3.2 128-Bit IP Addresses

2 .3 .3 IP Extension Headers

2.3.3.1

2.3.3.2

2.3.J.3

2.3.3.4

Hop-by-Hop Headers

Routing Headers

Fragment Headers

Authentication Headers
·1

2.4 Internet Protocol Support in Different Environments

2.4.1 MS-DOS

2.4.2 Microsoft Windows

2.4.3 Windows NT

2.4.4 OS/2

2.4.5 Macintosh

2.4.6 DEC

2.4. 7 IBM's SNA 59

2.4.8 Local Area Networks 60
'

CHAPTER THREE: TCP AND UDP 61
3.1 What is TCP? 61

3.2 Following a Message 63

3.3 Ports and Sockets 65

3.4 TCP Communications with the Upper Layers 70

3.5 Passive and Active Ports 72

3.6 TCP Timers 72

3.6.1 The Retransmission Timer 72

3 .6.2 The Quiet Timer 73

3.6.3 The Persistence Timer 73

3.6.4 The Keep-Active Timer and the Idle Timer 73

3.7 Transmission Control Blocks and Flow Control 74

3.8 TCP Protocol Data Units 75

3.9 TCP and Connections 78

3.9.1 Establishing a Connection 78

3.9.2 Data Transfer 79

3.9.3 Closing Connections 81

3 .10 User Datagram Protocol (UDP) 83

CHAPTER FOUR: WINSOCK AND THE SOCKET

PROGRAMMING INTERFACE 85
4.1 Winsock

4.1.1 Trumpet Winsock

4.1.2 Installing Trumpet Winsock

85

85

86

VI

4~1.3 Configuring the TCP/IP Packet Driver 87

4.2 The Socket Programming Interface 88

4.2.1 Development of The Socket Programming Interface 88

4.2.2 Socket Services 89

4-.2.2.1 Transmission Control Block 90

4.2,2.2 Creating a Socket 90

4.2.2.3 Binding the Socket 91

4.2.2.4 Connecting to the Destination 92

4.2.2.5 The Open Command 93

4.2.2.6 Sending Data 95

4.2,1.7 Receiving Data 97

4.2.2.8 Server Listening 98

4.2.2.9 Getting Status Information 100

4.2.2.10 Closing a Connection 101

4.Q.2.11 Aborting a Connection 102

4.2.2.12 UNIX Forks 102

CONCLUSION

REFERENCES

103

104

vu

..

INTRODUCTION

In first chapter, we will see the relationship of OSI and T(:P/IP layered

architectures, a history of TCP/IP and the Internet, the structure of the Internet, Internet and

IP addresses, and the Address Resolution Protocol. Using these concepts, we will then

move on to look at the TCP/IP family of protocols in more detail.

The next chapter begins, with the Internet Protocol (IP), showing how it is used and

the format of its header information. The rest of the chapter covers gateway information

necessary to piece together the rest of the protocols. We wjll start an in-depth look at the

TCP/IP protocol family with the Internet Protocol. We will cover what IP is and how it

does its task of passing.datagrams between machines. The construction of the IP datagram

and the format of the IP header will be shown in detail. The construction of the IP header is

important to many TCP/IP family protocol members. We will also look at the Internet

Control Message Protocol (ICMP), an important aspect of the TCP/IP system.

The third chapter moves to the next-higher la>7er in the TCP/IP layered architecture

and looks at the Transmission Control Protocol (TCP). We will also look at the related User

Datagram Protocol (UDP). TCP and UDP form the basis for al1 TCP/IP protocols. Here we

will look at TCP in reasonable detail. Combined with the information in the last two

chapters, we will now have the theory and background necessary to better understand

TCP/IP utilities, such as Telnet and FTP, as well as other protocols that use or closely

resemble TCP/IP, such as SMTP and TFTP.

In fourth chapter, we will see the- basic functions performed by the socket API

during establishment of a TCP or UDP call. We will also see the functions that are

available to application programmers. Although the treatment has been at a high level, we

should be able to see that working with sockets is not a complex, confusing task. Indeed,

socket programming is surprisingly easy once we have. tried it. Not everyone wants to write

TCP or UDP applications, of course. However, understanding the basics of the socket API

helps in understanding the protocol and troubleshooting.

1

•
CHAPTER I

INTRODUCTION TO TCP/If AND THE INTERNET

Just what is TCP/IP? It is a software-based communications protocol used in
I

networking. Although the name TCP/IP implies that the entire scope of the product is a

combination of two protocols-transmission ControlProtocol and Internet Protocol-e­

the term TCP/IP refers not to a single entity combining two protocols, but a larger set of

software programs that provides network services such as remote logins, remote file

transfers, and electronic mail. TCP/IP provides a method for transferring information

from one machine to another, A communications protocol should handle errors in

transmission, manage the routing and delivery of data, and control the actual

transmission by the use pf predetermined status signals. TCP/IP accomplishes all of

this.

OSI Reference Model is composed of seven layfrs. TCP/IP was designed with

layers as well, although they do not correspond one-to-one with the OSI-RM layers.

You can overlay the TCB/IP programs on this model to give you a rough idea of where

all the TCP/IP layers reside. Figure 2.1 shows the basic elements of the TCP/I,P family

of protocols. We can see that TCP/IP is not involved in the bottom two layers of the
OSI model (data link and.physical) but begins in the network layer, where the Internet

Protocol (IP) resides. In the transport layer, the Transmission Control Protocol (TCP)

and User Datagram Protocol (UDP) ate involved. Above this, the utilities and protocols

that make up the rest of the TCP/IP suite are built using the ~CP or UDP and IP layers

for their com,munications system.

Figure 2.1 shows that some of the upper-layer protocols depend on TCP (such as Telnet

and FTP), whereas some depend on UOP (such as TFTP and RPC). Most upper-layer

TC~/IP protocols use orlly one of the two transport protocols (T~P or UDP), although a

few, 'including DNS (Domain Name System) can use both. A note of caution about

TCP/IP: Despite the fact that TCP/IP is an open protocol, many companies have

modified it for their own networking system. There can be incompatibilities because of

these- modifications, which, even though they might adhere to the official standards,

might have other aspects that cause problems.Luckily, these types of changes are not

2

i;~frmffpt, ~~t you sho~ld Q~ careful f hen choosing a TCP If P prn4m:t tp f nsure its
compatibility with existing software and hardware, ·

Telnet- Remote Login
FTP - File Transfer Protocol
SMrP - Simple Mail Transfer Protocol
X - X Windows System
Kezberos - Security
DNS - Domain Name System
ASN - Abstract Syntax Notation
SNMP - Simple Network Management Protocol

NFS - Network File Server
RPC -Remote Procedure Calls
TFTP - Trivial File Transfer Protocol
TCP - Transmission Control Protocol
User Datagram Protocol
IP - Internet Protocol
ICMP - Internet Control Message Protocol

l:l Upper
~ Layers
d
,-l - Ul
0

Transport
-

Network

-- - ! ., SNMP .s
a -:;; - c, ., p... -~ l! ~ !@ >< ~ Ul o t:] ., Ii. ~ I- Ii. Ul ::.:: z I- -<

DNS ASN,
~

'
TCP I UDP

IP ICMP
I

Figure 2.1. TCP/IP suite and OSI layers.

TCP/IP is dependent on the concept of clients and servers. This has nothing to

do with a file server being accessed by a diskless workstation or PC. The term

client/server has a simple meaning in TCP/IP: any device that initiates communications

is the client, and the device that answers is the server. The server is responding to

(serving) the client's requests.

1.1 An Overview of TCP/IP Components
To understand the roles of the many components of the TCP/IP protocol family,

it is useful to know what you can do over a TCP /IP network. Then, once the

applications are understood, the protocols that make it possible are a little easier to

comprehend. The following list is not exhaustive but mentions the primary user

applications that TCP/IP provides.

3

1.1.1 Telnet

The Telnet program provides a remote login capability. This lets a user on one

machine log.onto another machine and act as though he or she were directly in front of

the second machine. The connection can b~ anywhere on the local network or on

another network anywhere in the world, as long as the user has permission to log onto

the remote system.

We can use Telnet when we need to perform actions on a machine across the

country. This isn't often done except in a LAN or WAN context, but a few systems

accessible through the Internet allow Telnet-sessions while users play around with a new

applic~tion or operating system

1.1.2 File Transfer Protocol

File Transfer Protocol (FTP) enables a file on one system to be copied to another
I

system. The user doesn't actually log in as a full user to the machine he or she wants to

access, as with Telnet, but instead uses the FTP program to enable access. Again, the

correct permissions are necessary to provide access to the files.

Once the connection to a remote machine has been established, FTP enables us

to copy one or more files to your machine. (The term transfer 'implies that the file is

moved from one system to another but the original is not affected. Files are copied.)

FTP is a widely used service on the Internet, as wellas on many large LANs and

WANs.

1.1.3 Simple Mail Transfer Protocol

Simple Mail Transfer Protocol (SMTP) is used for transferring electronic mail,

SMTP is completely transparent to the user. Behind the scenes, SMTP connects to

remote machines and transfers mail messages much like FTP transfers files. Users are

almost never aware of SMTP working, and few system administrators have to bother

with it. SMTP is a mostly trouble-free protocol and is in very wide use.

1.1.4 Kerberos

Kerberos is a widely supported security protocol. Kerberos uses 4 special
application called an authentication server to validate passwords and' eseryption

schemes. Kerberos is one of the more secure encryption systems used in

4

communications and is quite common in UNIX.

1.1.5 Domain Name System

Domain Name srstem (DNS) enables, a computer with a common name to be

converted to a special network address. For example, a PC called Darkstar cannot.be

accessed by another machine on the same network{or any other connected network)

unless some method of checking the local machine name and replacing the name with

the machine's hardware address is available. DNS provides a conversion from the

common local name to the. unique physical address of the device's network connection.

1.1.6 Simple Network Management Protocol

Simple Network Management Protocol (SNMP) provides status messages and

problem reports across a network to an administrator. SNMP uses User Datagram

Protocol (UDP) as a transport mechanism. SNMP employs slightly different terms from

TCP/IP, working with managers and agents instead of clients and servers (although they

mean essentially the same thing). An agent provides information about a device,

whereas a manager communicates across a network with agents.

1.1.1 Network File System

Network File System (NfS) is a set of protocols developed by Sun

Microsystems to enable multiple machines to access each other's directories

transparently. They accomplish this by using a distributed file system scheme. NFS

systems are common in large, corporate environments, especially those that use UNIX

workstations.

1.1. 8 Remote Procedure-Call

The Remote Procedure Call (RPC) protocol is a set of functions that enable an

application to communicate with another machine (the .server). It provides for

programming functions, return codes, and predefined variables to support distributed

computing.

5

1.1.9 Trivial File Transfer Protocol

Trivial File Transfer Protocol (TFTP) is a very simple, unsophisticated file

transfer protocol that lacks security. It uses UDP as a transport. TFTP performs the

same task as FTP, but uses a different transport protocol.

1.1.10 Transmission Control Protocol

Transmission Control Protocol (the TCP ~art of TCP/IP) is a communications

protocol that provides reliable transfer of data. It is responsible for assembling data

passed from higher-layer applications into standard packets and ensuring that the data is

transferred correctly.

1.1. ! 1 User Datagram Protocol

User Datagram Protocol (UDP) is a connectionless-oriented protocol, meaning

that it does not provide for the retransmission of datagrams (unlike TCP, which is

connection-oriented). UDP is not very reliable, but it does have specialized purposes. If
the applications that use UDP have reliability checking built into them, the

shortcomings of UDP are overcome.

1.1.12 Internet Protocol
\

Internet Protocol (IP) is responsible for moving the packets of data assembled by

either TCP or UDP,across networks. It uses a set of unique addresses for every device

on the network to determine routing and destinations.

1.1.13 Internet Control Message Protocol

Internet Control Message Protocol (ICMP) is responsible for checking and

generating messages on the status of devices on a network. It can be used to inform

other devices of a failure in one particular machine. lCMP and IP usually work together.

1.2 TCP/IP History
The, architecture of TCP/IP is often called the Internet architecture becaus€

TCP/IP and the, Internet as so closely interwoven. We have seen how the Internet

standards were developed by the Defense Advanced Research Projects Agency

(DARPA) and eventually passed on to the, Internet Society.

6

The Internet was originally proposed by the precursor of DARPA, called the

Advanced Research Projects Agency (ARP A), as a method of testing the viability of

packet-switching networks. (When ARP A's focus became military in nature, the name

was changed.) During its tenure with the project, ARPA foresaw a network of1eased

lines connected by switching nodes. The network was called ARPANET, and the

switching nodes were called Internet Message Processors, or IMPs. The ARP ANET was

initially to be comprised of four !MPs located. at the University of California at Los

Angeles, the University of California at Santa Barbara, the Stanford Research Institute,

and the University of Utah. The original !MPs were to be Honeywell 316

minicomputers.

The contract for the installation of the network was won by Bolt, Beranek, and

Newman (BBN), a company that had a strong influence on the development of the

network in the following years. The contract was awarded in late 1968, followed by

testing and refinement over the next five years. In 1971, ARP ANET entered into regular

service. Machines used the ARPANET by connecting to an IMP using the "1822"

protocol-so called because that was the number of the technical paper describing the

system. During the early years, the purpose and utility of the network was widely (and

sometimes heatedly) discussed, leading to refinements and modifications as users

requested more functionality from the system.

A commonly recognized need was the capability to transfer files from one

machine to another, as well as the capability to support remote logins. Remote logins

would enable a user in Santa Barbara to connect to a machine in Los Angeles over the

network and function as though he or she were in front of the UCLA machine. The

protocol then in use on the network wasn't capable of handling these new functionality

requests, so new protocols were continually developed, refined, and tested.

Remote login and remote file transfer were finally implemented in a protocol

called the Network Control Program (NCP). Later, electronic mail was added through

File Transfer Protocol (FTP). Together with NCP's remote logins and file transfer, this

formed the basic services for ARP ANET. By 1973, it was clear that NCP was unable to

handle the volume of traffic and proposed new functionality. A project was begun to

develop a new protocol. The TCP/IP and gateway architectures were first proposed in

1974. The published article by Cerf and Kahn desc;il-,ed a system that provided a

standardized application protocol that also used end-to-end acknowledgments.

7

Neither of these concepts were really novel at the time, but more importantly

(and with considerable vision), Cerf and Kahn suggested that the new protocol be

independent of the underlying network and computer hardware. Also, they proposed

universal connectivity throughout the network. These two ideas were radical in a world

of proprietary hardware and software, because they would enable any kind of platform

to participate in the network. The protocol was developed and became known as

ffCP/IP.

A series of RF Cs (Requests for Comment, part of the process for adopting new

Internet Standards) was issued in 1981, standardizing TCP/IP version 4 for the

ARPANET. In 1982, TCP/IP supplanted NCP as the dominant protocol of the growing

network, which was now connecting machines across the continent, It is estimated that a

new computer was connected to ARP ANET every 20 days during its first decade. (That

might pot seem like much compared to the current estimate of the Internet's size

doubling-every year, but in the early 1980s it was a phenomenal growth rate.)

During the development of ARP ANET, it became obvious that nonmilitary
'

researchers could use the O:etwork to their advantage, enabling faster communication of

ideas as well as faster physical data transfer. A proposal to the National Science

Foundation lead to funding for the Computer Science Network in 1981, joining the

military with educational and research institutes to refine the network. This led to the

splitting ofthr network into two different networks in 1984. MILNET was dedicated to

unclassified military traffic, whereas ARP ANET was left for research and other

nonmilitary p,urposes. ARPANET's growth and subsequent demise came with the

approval for the Office of Advanced Scientific Computing to develop wide access to

supercomputers. They created NSFNET to connect six supercomputers spread across

the country through T-1 lines (which operated at 1.544 Mbps). The Department of

Defense finally declared ARP ANET obsolete in 1990, when it was officially

dismantled.

1.3 Berkeley UNIX Implementations and TCP/IP
TCP /lP became important when the Department of Defense started includin~ the

protocols as military standards, which were required for many contracts. TCP/IP

became popular primarily because of the work done at UCB (Berkeley). UCB had been

a center of UNIX development for years, but in 1983 they released a new version that

8.

incorporated TCP/IP as an integral element. That version-4.JBSD (Berkeley System

Distributionj+-was made available to the world as public domain software.

The popularity of 4.2BSD spurred the popularity of TCP/IP, especially as more

sit~s comiected to the growing ARP ANET. Berkeley released ah enhanced version

(which included the so-called Berkeley Utilities) in 1986 as 4.3BSD. An optimized TCP

implementation followed in 1988 (4.3BSD/Tahoe). Practically every version of TCP/IP

available today has its roots (and much of its code) in the Berkeley versions.

1.4 OSI and TCP/IP

The adoption of TCP/IP didn't conflict with the OSI standards because the two

developed concurrently. In some ways, TCP/IP contributed to OSI, and vice-versa.

Several important differences do exist, though, which arise from the basic requirements

of TCP/JP which are:

• A common set of applications

• Dynamic routing

• Connectionless protocols at the networking level

• Universal 'connectivity

• Packet-switching

The differences between the OSI architecture and that of TCP/IP relate to the layers

above the transport level and those at the network level. OSI has both the session layer

and the presentation layer, whereas TCP/IP combines both into an application layer. The

requirement for a connectionless protocol also required TCP/IP to combine OSI's

physical layer and data-link layer into a network level. TCP/IP also includes the session

and presentation layers of the OSI model into TCP/IP's application layer. A schematic

view of TCP/IP's layered structure cdmpared with OSI's seven-layer model is shown in

Figure 2.2. TCP/IP calls the different network level elements subnetworks.

9

•

OS I :r.Aode 1 TCP/IP '(Internet)

Application

Presentation

Session

Transport

Netii!ork

Data Link

Physical,

J\pplication

Transport

Internet
I

Net1NOrk.lnterface

Physical

Figure 2.2. The OSI .and TCP/IP layered structures.

Some fuss was made about the network level combination, although it soon

became obvious that the argument was academic, as most implementations of the OSI

model combined the physical and link levels on an intelligent controUer (such as-a

network card). The combination of the two layers into a single layer had one major

benefit: it enabled a subnetwork to be designed that was 'independent of any network
}

protocols, because TCP/IP was oblivious to the details. This enabled proprietary, self-

contained networks to implement the TC.P/IP protocols for connectivity outside their

closed .systems.

The layered approach gave rise to the name TCP/IP: The transport layer uses the

Transmission Control Protocol (TCP) or one of several variants, such as the User

Datagram Protocol (UDP). (There are other protocols in use, but TCP-and UDP are the

most common.) There is, however, only one protocol for the network level-the Internet

Protocol (IP). This is what assures the system of universal connectivity, one of the

primary design goals.

There is a considerable amount pf pressure from the user community to abandon the

OSI model (and any future communications protocols deve1oped that conform to it) in

favor of TCP/IP. The argument hinges-on some obvious reasons:
(

• TCP/IP is up.and running and has a proven record.

• TCP /IP has an established, :fup.ctioning management body.

10

Ethernet and TCP/IP work well together, with Ethernet providing the physical

cabling (layers one and two) and TCP/IP the communications protocol (layers three and

four) that is broadcast over the cable. The two have their own processes for packaging

information: TCP/IP uses 32-pit addresses, whereas Ethernet uses a 48-bit scheme. The

two work together, however, because of one component of TCP/IP called the Address

Resolution Protocol (ARP), which converts between the two schemes. (I discuss ARP in

more detail later, in the section titled "Address Resolution Protocol.")

Ethernet relies on a protocol called Carrier Sense Multiple Access with

Collision Detect (CSMA/CD). To simplify the process, a device checks the network

cable to see if anything is currently being sent. If it is clear, the device sends its data. If

the cable is busy (carrier detect), the device waits for it td clear. If two devices transmit

at the same time (a collision), the devices know because of their constant comparison of

the cable traffic to the data in the sending buffer. If a collision occurs, the devices wait a

random amount of time before trying again.

1.6 The Internet

As ARP ANET grew out of a military-only network to add subnetworks in

universities, corporations, and user communities, it became known as the Internet. There

is no single network called the Internet, however. The term refers to the collective

network of subnetworks. The one' thing they all have in common is TCP/IP as a

communications pratocoL

As described in the first chapter, the organization of the Internet and adoption of

new standards is controlled by the Internet Advisory Board' (JAB). Among other things,

the JAB coordinates several task forces, including the Internet Engineering Task Force

(IETF) and Internet Research Task Force (IRTF). In a nutshell, the IRTF is concerned

with ongoing research, whereas the IETF handles the implem'.entation and engineering

aspects associated with the Internet.

A body that has some bearing on the JAB is the Federal Networking Council (FNC),

which serves as a11 intermediary between the IAB and the government. The FNC has an

advisory capacity to the IAB and its task forces, as well as the responsibility for

managing the government's use of the Internet and other networks. Because the

government was responsible for funding the development of the Internet, it retains a

considerable amount of control, as well as sponsoring some research and expansiorr of

the Internet.

12

•
• Thousands of applications currently use TCP/IP and its well-documented

application programming interfaces.

• TCP /IP is the basis for most UNIX systems, which are gaining the largest share

of the operating system market (other than desktop single-user machines such as

the PC and Macintosh).

• TCP/IP is vendor-independent.

Arguing rather strenuously against TCP/IP, surprisingly enough, is the lJS

government-the very body that sponsored it in the first place. Their primary argument

is rhat TCP/IP is not an internationally adopted standard, whereas OSI has that

recognition. The Department of Defense has even begun to move its systems away from

the TCP/IP protocol set. A compromise will probably result, with some aspects of OSI

adopted into the still-evolving TCP/IP protocol suite.

1.5 TCP/IP and Ethernet

For many people the terms TCP/IP and Ethernet go together almost

automatically, primarily for historical reasons, as well as the simple fact that there are

more Ethernet-based TCP/IP networks than any other type. Ethernet was originally

developed at Xerox's Palo Alto Research Center as a step toward an electronic office

communications system, and it has since grown in capability and popularity.

Ethernet is a hardware system providing for the data link and physical layers of

the OSI model. As part of the Ethernet standards, issues such as cable typ,e and

broadcast speeds are established. There are several different versions of Ethernet, each

with a different data transfer rate. The most common is Ethernet version 2, also called

10Base5, Thick Ethernet, and IEEE 8'02.3 (after the number of the standard that defines

the system adopted by the Institute of Electrical and Electronic Engineers). This system

has a 10 Mbps rate.

There are several commonly used variants of Ethernet, such as

Thin Ethernet (called 10Base2), which can operate over thinner cable

(such as the coaxial cable used in cable television systems), and Twisted­

Pair Ethernet (lOBaseT), which uses simple twisted-pair wires similar to

telephone cable. The latter variant is popular for small companies

because it is inexpensive, easy to wire, and has no strict requirements for

distance between machines.

11

1.6.1 The Structure of the Internet

As mentioned earlier, the Internet is not a single network but a collectioh of

networks that communicate with each other through gateways. For the purposes of this

chapter, a gateway (sometimes called a routeri is-defined as a system that performs

relay functions between networks, as shown in Figure 2.3. The different networks

connected to each other through gateways are often called subnetworks, because they

are a smaller part of the larger overall network. This does not imply that a subnetwork is

small or dependent on the larger network. Subnetworks are complete networks, but they

are connected through a gateway as a part of a larger internetwork, or in this case the

Inte:r'net.

Subnetwork A

SubnetV(Ork 1 Gale way

Subnetwork Al

Subnetwork 2 Gateway

Subnetwork B 1

Figure 2.3. Gateways act as relays between subnetworks.

With TCP/IP, all interconnections between physical networks are through

gateways. An important point to remember for use later is that gateways route

information packets based on their destination network name, not the destination

13

machine. Gateways are supposed to be completely transparent to the user, which

alleviates the gatew'ay from handling user applications (unless the machine that is acting

as a gateway is also someone's work machine or a local network server, as is often the

case with small networks). Put simply, the gateway's sole task is to receive a Protocol

Data Unit (PPU) from either the internetwork or the local network and either route it on

to the next gatewar or pass it into the local network for routing to the proper user.

Gateways work with any kind of hardware and operatingsystem, as long as

they are designed to communicate with the other gateways they are attached to (which

in this case means that it uses TCP/IP). Whether the gateway is leading to a Macintosh

network, a set of IijM PCs, or mainframes from a dozen different companies doesn't

matter to the gateway or the PDUs it handles.

lu. the Uu.ited States, the In.tern.et has the, NFSNET as its backbone, as shown in

Figure 2.4. Among the primary networks connected to the NFSNET are ~ASA's Space

Physics Analysis Network (SPAN), the Computer Science Network (CSNET), and

several other networks such as WESTNET and the Sij11 Diego Supercomputer "Network

(SDSCNET), not shown in Fjgwe 2. 4. There are also other smaller user-oriemed
networks such as the Because It's Time Network (BITNET) and UUNET, which

provide €Onnectivity through gateways for smaller sites that can't or don't want to
\

establish a direct gateway to the Internet.

The '1\JFSNET backbone is comprised of approximately 3,000 research sites,

connected by T-3 leased lines running at 44.736 Megabits per second. Tests are

currently under~ay to increase the operational speed of the backbone to enable more

throughput and accommodate the rapidly increasing number of users. Several

technologies are being field-tested, including Synchronous Optical Network (SO~ET),

Asynchronous Transfer Mode (ATM), and ANSI's proposed High-Performance Parallel

Interface (HPPI). These new systems can produce speeds approaching 1 Gigabit per

second.

14

BITNET

SPAN

NFSNET (Backbone)

CS NET

Gale ways

UUNlj'..T

WESTNET

Figure 2.4. The US Internet network.

1.6.2 The Internet Layers

Most internetworks, including the Internet, can be thought of as a layered

architecture (yes, even more layers!) to simplify understanding. The layer concept helps

in the task of developing applications for internetworks. The layering also- shows how

the different parts of TCP/IP work together. The more logical structure brought about by

using a layering process has already been seen in the first chapter for the OSI model, sp
' I

applying it to the Internet makes sense. Be careful to think of these layers as conceptual-

only; they are not really physical or software 'layers as such (unlike the OSI or TCP/IP
I

layers).

It is convenient to think of the Internet as having four layers. This layered

Internet architecture is shown in Figure 2.5. These layets should not be confused with

the architecture of each machine, as 'described in, the OSI seven-layer model. Instead,

they are a method of seeing how the internetwork, network, TCP/IP, and the individual

machines work together. Independent machines reside in the subnetwork layer at the

bottom of the.architecture, connected together in a local area network (LAN) and

referred to as the subnetwork, a term you saw i'n the last section.

15

On top of the subnetwork layer is the internetwork layer, which provides the

functionality for communications between networks through gateways. Each

subnetwork uses gateways to connect to the other subnetworks in the internetwork. The

internetwork layer is where data gets transferred from gateway to gateway until it

reaches its destination and then passes into the subnetwork layer. The internetwork layer

runs the Internet Protocol (IP),

\

Application Services

)

Service Provider Protocol - -

In t.ern. e r-cvo rl:ci.n g

Subnetworks

TCP

IP

Figure 2J5. The Internet arc~itecture.

1he service l)IOVider \)IOtocol laJeI is responsible for the overall end-to-end

communications-of the network. 'Ibis is tb.e \a-yet that runs tp.e 1tfil\~m1~~1cm Contrn\
Protocol (TCP) and other protocols. It handles the data traffic flow itself and ensures

\

reliability for the message transfer.

The top layer is the application services layer, which supports the interfaces to

the user applications. This layer interfaces to electronic mail, remote file transfers, and

remote access. Several protocols are used in this layer, many of which you will read

about later. To see how the Internet architecture model works, a .simple example is

useful. Assume that an application on one machine wants to transfer a datagram to an

application on another machine in a different subnetwork. Without all the signals

between layers, and simplifying the architecture a little, the process is shown in Figure

16

2.6. The layers in the sending anq receiving machines are the OSI layers, with the

equivalent Internet architecture layers indicated.

The data is sept down the layers of the sending machine, assembling the

datagram with the Protocol Control Information (PCI) as it goes. From the physical

layer, the datagram (which is sometimes called a frame after the data link layer has
added its header and trailing information) is sent out to the local area network. The LAN

routes the inf ormation to the gateway out to the internetwork. During this process, the

LAN has no concern about the message contained in the datagram. Some networks,

however, alter the header information to show, among other things, the machines it has

passed through.

Inte me !work

Subnetwork 1r,a:Yer

Sending Machine Receiving Machine

Appication
Services

Appli\;ali?n
Pre sen ta tio n

Session

Transport

Network

Data Link

Physical

Gateway

A pp lie atio n
Frese nta lion

Session

Transport

Network

Data Link

Physical

Network Network Service
Provider Data Link Data Link

Figure 2.6. Transfer of a datagram over an internetwork.

From the gateway, the frame passes from gateway to gateway along the

internetwork until it arrives at the destination subnetwork. At each step, the gateway

analyzes the datagram's header to determine if it is for the subnetwork the gateway leads

to. If not, it routes the datagram back out over the internetwork. This analysis is

performed in the physical layer, eliminating the need to pass the frame up and down

through different layers on each gateway. The header can be altered at each gateway to

reflect its routing path.

When the datagram is finally received at the destination subnetwork's gateway,

the gateway recognizes that the datagram is at its correct subnetwork and routes it into

17

..
the LAN and eventually to the target machine. The routing is accomplished by reading

the header information. When the datagram reaches the destination machine, it passes

up throl;1gh the layers, with each layer stripping off-its PCI header and then passing the

result on up. At long last, the application layer on the destination machine processes the

final header and passes the message to the correct application.

If the datagram was not data to be processed but a request for a service, such as a

remote file transfer, the correct layer on the destination machine would decode the

request and route the file back over the internetwork to the original machine. Quite a

process!

1.6.3 Internetwork Problems
Not everything ~oes smoothly when transferring data from one subnetwork to

another. All manner of problems can occur, despite the fact that the entire network is

using one protocol. A typical problem is a limitation on the size of the datagram. The

sending network might support datagrams of 1,024 bytes, but the receiving network

might use only 512-byte datagrams (because of a different hardware protocol, for

example). This is where the processes of segmentation, separation, reassembly, and

concatenation (explained in the last chapter) become important.

The actual addressing methods used by the different subnetworks can cause

conflicts when routing datagrams. Because communicating subnetworks might not have

the same network control software, the network-based header information might differ,

despite the fact that the communications methods are based on TCP!µ>. An associated

problem occurs when dealing with the-differences between physical and logical machine

names. In the same manner, a network that requires encryption instead of clear-text

datagrams cah affect the decoding of header information. Therefore, differences in the

security implemented on the subnetworks can affect datagram traffic. These differences

can all be resolved with software, but the problems associated with addressing methods

can become considerable.

Another common problem is the different networks' tolerance for timing

problems. Time-out and retry values might differ, so when two subnetworks are trying

to establish communication, one might have given up and moved on to another task

while the second is still waiting patiently for an acknowledgment signal. Also, if two

subnetworks are communicating properly and one gets busy and has to pause the

communications process for a short while, the amount of time before the other network

18

assumes a disconnection and gives up might be important. Coordinating the timing over

the internetwork can become-very complicated.

Routing methods and the speed of the machines on the network can also affect

the internetwork's performance. If a gateway is managed by a particularly slow

machine, the traffic coming through the gateway can back up, causing delays and

incomplete transmissions for the entire internetwork. Developing an internetwork

system that can dynamically adapt to loads and reroute datagrams when a bottleneck

occurs is very important.

There are other factors to consider, such as network management and

troubleshooting information, but you should begin to see that simply connecting

networks together without due thought does not work. The many different network

operating systems and hardware platforms require a logical, well-developed approach to

the internetwork. This is outside the scope of TCP/IP, which is simply concerned with

the transmission of the datagrams. The TCP/IP implementations on each platform,

however, must be able to handle the problems mentioned.

1. 7 Internet Addresses

Network addresses are analogous to mailing addresses in that tliey tell a system

where to deliver a datagram. Three terms com'monly used in the Internet relate to

addressing: name, address, and route.

A name is a srecific identification of a machine, a user, 01: an a:{'pliq1tion. It is usually

uniqu€ and provides an absolute target for the datagram. An address typically identifies

where the target is located, usually its physical or logical location in a network. A route

tells the system how to get a datagram to the address.

You use the recipient's name often, either specifying a user name or a machine.

name, and an application does the same thing transparently to you. From the name, a

network software package called the name server tries to resolve the address and the

route, making that aspect unimportant to you. When you send electronic mail, you

simply indicate the recipient's name, relying on the name server to figure out how to get

the mail message to them.

Using a name server has one other primary advantage besides making the

addressing and routing unimportant to the end user: It gives the system or network

administrator a lot of freedom to change the network as required, without having to tell

19

each user's machine about any changes. As long as an application can access the name

server, any routing changes can be ignored by the application and users.

Nfiming conventions differ depending on the platform, the network, and the

software release, but following is a typical Ethernet-based Internet subnetwork as an

example. There are several types of addressing you need to look at, including the LAN

system, as well as, the wider internetwork addressing conventions.

1. 7 .1 Subnetwork Addressing

On a single network, several pieces of information are necessary to ensure the ' ,
correct delivery of data. The primary components are the physical address and the data

link address.

1. 7 .1.1 The Physical Address

Each device on a network that communicates with others has a unique physical

address, sometimes called the hardware address. On any given network, there is only

one occurrence of each address; otherwise, the name server has no way of identifying

the target device unambiguously. For hardware, the addresses are usually encoded into a

network interface card, set either by switches or by software. With respect to the OSI

model, the address is located in the physical layer. In the physical layer, the analysis of

each incoming data~ram (or protocol data unit) is performed. If the recipient's address

matches the physical address of the device, the datagram cap be passed up the layers. If

the addresses don't match, the datagram is ignored. Keeping this analysis in the bottom

layer of the OSI model prevents unnecessary delays, because otherwise the datagram

would have to be passed up to other layers for analysis.

The length of the physical address varies depending on the networking system,
'

but Ethernet and several others use 48 bits in each address. For communication to occur,

two addresses are required: one each for the sending and receiving deyices. The IEEE is

now handling the task of assigning universal physical addresses for subnetworks (a task

previously performed by Xerox, as they developed Ethernet). For each subnetwork, the

IEEE assi$ns an organization unique identifier (OUI) that is 24 bits long, enabling the

organization to assign the other 24 .bits however it wants. (Actually, two of the 24 bits

assigned as an OUI are control bits, so only 22 bits identify the subnetwork. Because

20

'
this provides 222 combinations, it is possible to run out of OUis in the future if the

current rate of growth is sustained.)

The format of the OU~ is shown in Figure 2.7. The least significant bit of the

address (the lowest bit number) is the individual or group address bit. If the bit is set to

0, the address refers to an individual address; a setting of 1 means that the rest of the

address field identifies a group address that needs further resolution. If the entire OUI is

set to 1 s, the address has a special meaning which is that all stations on the network are

assumed to be the destination.

22 bits 24 bits

UIL I IEEE Assigned Subnetwork Address Locally Assigned Physical Address

~
0 = Individual O = Universal
1 == .Group i' = Loe al

Figure 2. 7. Layout of the organization unique identifier,

The second bit is the local or universal bit. If set to zero, it has been set by the

universal administration body. This is the setting for IEEE-assigned OUis. If it has a

value of 1, the OUI has been locally assigned and would cause addressing problems if

decoded as an IEEE-assigned address. The remaining 22 bits make up the physical

address of the subnetwork, -as assigned by the IEEE. The second set of 24 bits identifies

local network addresses and is administered locally. If an organization runs out of
'

physical addresses (there are about 16 million addresses possible from 24 bits), the

IEEE has the capacity to assign a second subnetwork address.

The combination of 24 bits from the OUI and 24 locally assigned bits is called a

media access control (MAC) address. When a packet of data is assembled for transfer

across an internetwork, there are two sets of MA Cs: one from the sending machine and

one for the receiving machine.

21

•
1. 7 .1.2 The Data Link Address

The IEEE Ethernet standards (and several other allied standards) use another

address called the link layer address (abbreviated as LSAP for link service access point).

The LSAP identifies the type of link protocol used in the data link layer. As with the

physical address, a datagram carries both sending and receiving LSAPs. The IEEE also

enables a code that identifies the EtherType assignment, which identifies the upper layer

protocol (ULP) running on the network (almost always a LAN).

1. 7 .1.3 Ethernet Frames

The layout of information in each transmitted packet of data differs depending

on the protocol, but it is helpful to examine one to see how the addresses and related

information are prepended to the data. This section uses the Ethernet system as an

example because of its wide use with TCP/IP. It is quite similar to other systems as

well.

A typical Ethernet frame (remember that a frame is the term for a network-ready

datagram) is shown in Figure 2.8. The preamble is a set of bits that are used primarily to

synchronize the communication process and account for any random noise in the first

few bits that are sent. At the end of the preamble is a sequence of bits that are the start

frame delimiter (SFD), which indicates that the frame follows immediately.

Preamble Recipient
Address CRC Sender

Address Type Data

64Bits 48 Bits J 16 Bits 32 Bits 48Bits Variable Length

Figure 2.8. The Ethernet frame.

The recipient and sender addresses follow in IEEE 48-bit format, followed by a

16-bit type indicator that is used to identify the protocol. The data follows the type

indicator. The Data field is between 46 and 1,500 bytes in length. If the data is less than

46 bytes, it is padded with Os until it is 46 bytes long, Any padding is not counted in the

calculations of the data field's total length, which is used in one part of the IP header.

The next chapter covers IP headers.

22

At the end of the frame is the cyclic redundancy check (CRC) count, which is

used to ensure that the frame's contents have not been modified during the transmission

process. Each gateway along the transmission route calculates a CRC value for the

frame and compares it to the value at the end of the frame. If the two match, the frame

can be sent farther along the network or into the subnetwork. If they differ, a

modification to the frame must have occurred, and the frame is discard\ed (to be later

retransmitted by the sending machine when a timer expires). In some protocols, such as

the IEEE 802.3, the overall layout of the-frame is the same.with slight variations in the

contents. With 802.3, the 16 bits used by Ethernet to identify the protocol type are

replaced with a 16-bit value for the length of the data block. Also, the data area itself is
prepended by a new field.

1.8 IP Addresses

TCP/IP uses a 32-bit address to identify a machine on a network and the network

to which it is attached. IP addresses identify a machine's connection to the network, not

the machine itself-an important distinction. Whenever a machine's location on the

network changes, the IP address must be changed, too. The IP address. is the set of

numbers many people see on their workstations or terminals, such as 127.40.8.72,

which uniquely identifies the device. IP (or Internet) addresses are assigned only by the

Network Information Center (NIC), although if a network is not connected to the
Internet, that network can determine its own numbering. For all Internet accesses, the IP

address must be registered with the NIC.

There are four formats for the IP address, with each used depending on the size

of the network. The four formats, called Class A through Class D, are shown in Figure

2.9. The class is identified by the first few bit sequerrces, shown in the figure as one bit

for Class A and up to four bits for Class D. The class can be determined from the first

three (high-order) bits. In fact, in most cases, the first two bits are enough, because there

are few Class D networks.

23

Class A j 'b j NetWQ,rk (7 bits) I 1 ~oc~l Address (24 bi~~) . I
(

ClassB I 10 Network (14 bits) Local Address (16 bits)'

ClassC I 110 Network (21 bits) Local Address (8 bits)

ClassDJ 1110 I MulticastAddress(28bits) j

Figure 2.9. The four IP address class structures.

Class A addresses are for large networks that have many machines. The 24 bits

for the local address (also frequently called the host address) are needed in these cases.

The network address is kept to 7 bits, which limits the number of networks that can be

identified. Class B addresses are for intermediate networks, with l 6-bit local or host
addresses and 14-bit network addresses. Class C networks have only 8 bits for the local
or host address, limiting the number of devices to 256. There are 21 bits for the network

address. Finally, Class D networks are used for multicasting purposes, when a general

broadcast to more than one device is required. The lengths of each section of the IP

address have been carefully chosen to provide maximum flexibility in assigning both

network and local addresses.

IP addresses are tour sets of 8 bits, for a total 32 bits. You often represent these

bits as separated by a period for convenience, so the IP address format can be thought of

as network.local.local.local for Class A or network.network.network.local for Class C.

The IP addresses are usually written out in their decimal equivalents, instead of the long

binary strings. This is the familiar hest address number that network users are used to

seeing, such as 147.10.13.28, which would indicate that the network address is 147.10

and the local or host address is 13.28. Of course, the actual address is a set of 1 s and Os.

The decimal notation used for IP addresses is properly called dotted quad notation-a

bit of trivia for your next dinner party.

24

The IP addresses- can be translated to common names and letters. This can pose a

problem, though, because there must be some method of unambiguously relating the

physical address, the network address, and a language-based name (such a tpci_ws~ 4 or

bobs_ machine). "The Domain Name System" looks at this aspect of address naming.

From the IP address, a network can determine if the data is to be sent out through a

gateway. .If the network address is the same as the current address (routing to a local

network device, called a direct host), the gateway is avoided, but all other network

addresses are routed to a gateway to leave the local network (indirect host). The

gateway receiving data to be transmitted to another network must then determine the

routing from the data's IP address and an internal table that provides routing

inf ormation,

As mentioned, if an address is set to all 1 s, the address applies to all addresses

on the network. (See the previous section titled "Physical Addresses.") The same rule

applies to IP addresses, so that an IP address of 32 1 s is considered a broadcast message

to all networks and all devices. It is possible to broadcast to all machines in a network

by altering the local or host address to all ls, so that the address 147.10.255.255 for a

Class B network (identified as. network 14 7 .10) would be received by all devices on that

network (255.255 being the local addresses composed of all ls), but the data would not

leave the network, There are two contradictory ways to indicate broadcasts. The later

versions of TCP/IP use ls, but earlier BSD systems use Os. This causes a lot of

confusion. All the devices on a network must know which broadcast convention is used;

otherwise, datagrams can be stuck on the network forever!

A slight twist is coding the network address as all Os, which means the

originating network or the local address being set to Os, which refers to the originating

device only (usually used only when a device is trying to determine its IP address). The

all-zero network address format is used when the network IP address is not known but

other devices on the network can still interpret the local address. If this were transmitted

to another network, it could cause confusion! By convention, no local device is given a

physical address of 0.

It is possible for a device to have more than one IP address if it is conneeted to

more than one network, as is the case with gateways. These devices are called

multihomed, because they have a unique address for each network theyare connected to.

In practice, it is best to have a dedicate machine for a multihomed gateway; otherwise,

the applications on that machine can get confused as to which address they should use

25

when building datagrams. Two networks can have the same network address if they are

connected by a gateway. This can cause problems for addressing, because the gateway

must be able to differentiate which network the physical address is on. This problem is

looked at again in the next section, showing how it can be solved.

1.9 Address Resolution Protocol
Determining addresses can be difficult because every machine on the network

might not have a list of all the addresses of the other machines or devices. Sending data

from-one machine to another if the recipient machine's physical address is not known

can cause a problem if there is no resolution system for determining the addresses.

Having to constantly update a table of addresses on each machine would be a network

administration nightmare. The problem is not restricted to machine addresses within a

small network, because if the remote destination network addresses are unknown,

routing and delivery problems will also occur.

- The Address Resolution Protocol (ARP) helps solve these problems. ARP's job

is to convert IP addresses to physical addresses (network and local) and in doing so,

eliminate the need for applications to know about the physical addresses. Essentially,

ARP is a table with a list of the IP addresses and their corresponding physical addresses,

The table is called an ARP cache. The layout of an ARP cache is shown in Figure 2.10.

Each row corresponds to one device, with four pieces of information for each device:

IF INDEX PHYSICAL IP .f,DDRESS TYPE
ADDRESS

Entry 1

Entry2

Entry3

Entryn

Figure 2.10. The ARP cache address translation table layout.

26

• IF Index: The physical port (interface)

• Physical Address: The physical address of the device

• IP Address: The W address corresponding to the physical address

• Type: The type of entry in the ARP cache

1.9.1 Mapping Types

The mapping type is one of four possible valµes indicating the status of the entry

in the ARP cache. A value of 2 means the entry is invalid; a value of 3 means the

mapping is dynamic (the entry can change); a value of 4 means static (the entry doesn't

change); and a value of 1 means none of the above. When the ARP receives a recipient

device's IP address, 'it searches the ARP cache for a match. If it finds one, it returns the

physical address. If the ARP cache doesn't find a match for an IP address, it sends a

message out on the network. The message, called an ARP request, is a broadcast that is

received by all devices on the local network. (You might remember that a broadcast has

all 1 s -in the address.) The ARP request contains the IP address of the intended recipient

device. If-a device recognizes the IP address as belonging to it, the device sends a reply

message containing its physical address back to the machine that generated the ARP

request, which places the information into its ARP cache for future use. In this manner,

the ARP cache can determine the physical address for any machine based on its IP

address.

Whenever an ARP request is received by an ARP cache, it uses the information

in the request to update its own table. Thus, the system can accommodate changing

physical addresses and new additions to the network dynamically without having to

generate an ARP request of its own. Without the use of an ARP cache, all the ARP

requests and replies would generate a lot of network traffic, which can .have a serious

impact on network performance. Some simpler network schemes abandon the cache and

simply use broadcast messages each time. This is feasible only when the- number of

devices is low enough to avoid network traffic problems.

The layout of the ARP request is shown in Figure 2.11. Wlien an ARP request is

sent, all fields in the layout are used except the Recipient Hardware Address (which the

request is trying to identify). In an ARP reply, all the fieldsare used.

27

Hardware Type (16 bits)
I

Protocol Type (16 bits)

Hardware Address I Protocol Address
Lenath Length,

Ope:ration C9de (16 bits)

Sender Hardware Address
I

Sender IP Address

Recipient Hardware Addre~s
I

Recipient IP Address

Figure 2.11. The ARP request and ARP reply layout.

This layout, which is combined with the network system's protocols into a

protocol data unit (PDU), has several fields. The fields and their purposes are as

follows:

• Hardware Type: The type of hardware interface

• Protocol Type: The type of protocol the sending device is using

• Hardware Address Length: The length of each hardware address in the

datagram, given in bytes

• Protocol Address Length: The length of the protocol address in the datagram,

given in bytes

• Operation Code (Opcode): The Opcode indicates whether the datagram is an

ARP request or an ARP reply. If the datagram is a request, the value is set to 1.

If it is a reply, the value is set to 2.

• Sender Hardware Address: The hardware address of the sending device

• Sender IP Address: The IP address of the sending device

• Recipient IP Address: The IP Address of the recipient

• Recipient Hardware Address: The hardware address of the recipient device

Some of these fields need a little more explanation to show their legal values

and field usage. The following sections describe these fields in more detail.

1.9.2 The Hardware Type Fie~d

Tne hardware type identifies the type bf hardware interface. Legal value's are as

follows:

I Type II Description I
DI Ethernet I
LJI Experimental Ethernet I
DIX.25 I
DI Proteon ProNET (Token Ring) I
DI Chaos I
EJI IEEE 80Z.X I
[JIARCnet I

l.9.3 The Protocol Type field
The protocol type identifies the type of protocol the sending device is using.

With TCP/IP, these protocols are usually an EtherType, for which the legal values are as

follows:

I Decimal II Description I
~IXEROXPUP I
EJI PUP Address Translation I
EJIXEROX NS IDP I
EJI Internet Protocol (IP) I
~IX.75 I
EJINBS I
~IECMA I

29

E] Chaosnet

EJI X.25 Level 3 I
~

Address Resolution Protocol (ARP)

EJIXNS I ~I Berkeley Trailer I
j 21000 \I BBN Simnet I
124577 JI DEC MOP Dump/Load I
124578 \I DEC MOP Remote Console I
124579 II DEC DECnet Phase IV I
124580 IIDEC LAT

I

124582 II DEC
I

124583 IIDEC
I

132773 II HP Probe I
132784 II Excelan I ~I Reverse ARP I
132824 II DEC LANBridge I
132823 IIAppleTalk

I

If the protocol is not Ether'Type, other values are allowed.

1.10 ARP and IP Addresses
Two (or more) networks connected by a gateway can have the same network

address. The gateway has to determine which network the physical address or IP

address corresponds with. The gateway can do this with a modified ARP, called the

Proxy ARP (sometimes called Promiscuous ARP). A proxy ARP creates an ARP cache

consisting of entries from both networks, with the gateway able to transfer datagrams

30

from one network to the other. The gateway has to manage the ARP requests and replies

that cross the two networks.

An obvious flaw with the ARP system is that if a device doesn't know its own IP

address, there is no way to generate requests and replies. This can happen when a new

device (typically a diskless workstation) is added to the network. The only address the

device is aware of is the physical address set either by switches on the network interface

or by software. A simple solution is the Reverse Address Resolution Protocol (RARP),

which works the reverse of ARP, sending out the physical address and expecting back

an IP address. The reply containing the IP address is sent by an RARP server, a machine

that can supply the information. Although the originating device sends the message as a
\ .

broadcast, RARP rules stipulate that only the RARP server can generate a reply. (Many

networks assign more than one R,ARP server, both to spread the processing load and to

act as a backup in case of problems.)

1.11 The Domain Name System
Instead of using the full 32-bit IP address, many systems adopt more meaningful

names for their devices and networks. Network names usually reflect the organization's

name (such as tpci.com and bobs_cement). Individual device names within a network

can range from descriptive names on small networks (such as tims jnachine and

laser T) to more complex naming conventions on larger networks (such as hpws_23 and

tpci704). Translating between these names and the IP addresses would be practically
impossible on an Internet-wide scale. To solve the problem of network names, the

Network Information Center (NIC) maintains a list of network names and the

corresponding network gateway addresses. This system grew from a simple flat-file list

(which was searched for matches) to a more complicated system called the Domain

Name System (DNS) when the networks became too numerous for the flat-file system

to function efficiently.

QNS uses a hierarchical architecture, much like the VNIX filesystem. The first

level of naming divides networks into the category of subnetworks, such as com for

commercial, mil for military, edu for education, and so on. Below each of these is

another division that identifies the individual subnetwork, usually one for each

organization. This is called the domain name and is unique. The organization's system

manager can further divide the company's subnetworks as desired, with each network

called a subdomain. For example, the system merlin.abc _ corp.com has the domain name

31

•
abc _ corp.com, whereas the network merlin.abc -"corp is a subdomain of

rnerlin.abccorp.com. A'network can be i,dentified with an absolute name (such as

merlin.abccorp.com) or a relative name (such as merlin) that uses part of the complete

domain name,

Seven first-level domain names have been established by the NIC so far. These

are as follows:

1,arpa II An ARP ANET-Internet identification I
, .com II Commercial company I
, .edu II Educational institution I
, .gov II Any governmental body I
, .mil II Military I
, .net I Networks used by Internet Service Providers

a Anything that doesn't fall into one of the other categories
The NIC also allows for a country designator to be appended. There are

designators for all countries in the world, such as .ca for Canada and .uk for the United

Kingdom. DNS uses two systems to establish and track domain names. A name resolver

on each network examines information in a domain name. If it can't find the full IP

address, it queries a name server, which has the full NIC information available. The

name resolver tries to complete the addressing information using its own database,

which it updates in much the same manner as the ARP system (discussed earlier) when

it must query a name server. If a queried name server cannot resolve the address, it can

query another name server, and so on, across the entire internetwork.

There is a considerable amount of information stored in the name resolver and

name server, as well as a whole set of protocols for querying between the two. The

details, luckily, are not important to an understanding of TCP/IP, although the overall

concept of the address resolution is important when understanding how the Internet

translates between domain names and, IP addresses.

32

CHAPTER2

THEINTERNETPROTOCOL(IP)
A good understanding of IP-is necessary to continue on to TCP and UDP,

because· the IP is the component that handles the movement of datagrams across a

network. Knowing how a datagram must be assembled and how it is moved through the

networks helps you understand how the higher-level layers work with IP. For almost all

protocols in the TCP/IP family, IP is the essential element that packages data and
-

ensures that it is sent to its destination. This chapter contains, unfortunately, even more

detail on headers, protocols, and messaging. This level of information is necessary in

order for us to deal with understanding the applications and their interaction with IP, as

well as troubleshooting the system. There is enough here that we can refer back to this

hapter whenever needed.

2.1 Internet Protocol

The Internet Protocol (IP) is a primary protocol of the OSI model, as well as an

integral part of TCP/IP (as the name suggests). Although the word "Internet" appears in

the protocol's name, it is not restricted to use with the Internet. It is true that all

machines on the Internet can use or understand IP, but IP can also be used on dedicated

networks that have no relation to the Internet at all. IP defines a protocol, not a

connection. Indeed, IP is a very good choice for any network that needs an efficient

protocol for machine-to-machine communications, although it faces some competition

from protocols like Novell NetWare's IPX on small to medium local area networks that

use Net Ware as a C server operating system.

What does IP do? Its main tasks are addressing of datagrams ofinformation

between computers and managing the fragmentation process of these datagrams. The

protocol has a formal definition of the layout of a datagram of information and the

formation ofa header composed of information about the datagram. IP is responsible
for the routing of a datagram, determining where it will be sept, and devising alternate

routes in case of problems. Another important aspect ofIP's purpose has to do with

unreliable delivery of a datagram. Unreliable in the IP sense means that the delivery of

the datagram is not guarapteed, because it can get delayed, misrouted, or m~ngled in the

33

breakdown and reassembly of message fragments. IP has nothing to do with flow

control or reliability: there is no inherent capability to verify that a sent message is

correctly received. IP does not have a checksum for the data contents of a datagram,

only for the header information. The verification and flow control tasks are left to other

components in the layer model. (For that matter, IP doesn't even properly handle the

forwarding of datagrams. IP can make a guess as to the best routing to move a datagram

to the next node along a path, but it does not inherently verify that the chosen path is the

fastest or most efficient route.) Part of the IP system defines how gateways manage

datagrams, how and when they should produce error messages, and how to recover from

problems that might arise.

We saw how data can be broken into smaller sections for transmission and then

reassembled at another location, a process called fragmentation and reassembly. IP

provides for a maximum packet size of 65,535 bytes, which is much larger than most

networks can handle, hence the need for fragmentation. IP has the capability to

automatically divide a datagram of information into smaller datagrams if necessary,

using the principles. When the first datagram of a larger message that has been divided

into fragments arrives at the destination, a reassembly timer is started by the receiving

machine's IP layer. If all the pieces of the entire datagram are not received when the

timer reaches a predetermined value, all the datagrams that have been received are

discarded. The receiving machine knows the order in which the pieces are to be

reassembled because of a field in the IP header. One consequence of this process is that

a fragmented message has a lower chance of arrival than an unfragmented message,

which is why most applications try to avoid fragmentation whenever possible.

IP is connectionless, meaning that it doesn't worry about which nodes a

datagram passes through along the path, or even at which machines the datagram starts

and ends. This information is in the header, but the process of analyzing and passing on

a datagram has nothing to do with IP analyzing the sending and receiving IP addresses.

IP handles the addressing of a datagram with the full 32-bit Internet address, even

though the transport protocol addresses use 8 bits. A new version of IP, called version 6

or IPng (IP Next Generation) can handle much larger headers, as you will see toward

the end of today's material in the section titled "IPng: IP Version 6."

34

•
2.1.1 The Internet Protocol Datagram Header

Lt is tempting to compare IP to a hardware network such as Ethernet because of

the basic similarities in packaging information. Yesterday you saw how Ethernet

assembles a frame by combining the application data with a header block containing

address information. IP does the same, except the contents of the header are specific to

IP. When Ethernet receives an IP-assembled datagram (which includes the IP header),

it adds its header to the front to create a frame-a process called encapsulation. One of

the primary differences between the IP and Ethernet headers is that Ethernet's header

contains the physical address of the destination machine, whereas the IP header

contains the IP address. You might recal1 from yesterday's discussion that the

translation between the two addresses is performed by the Address Resolution

Protocol.

The datagram is the transfer unit used by IP, sometimes more specifically called

an Internet datagram, or IP datagram. The specifications that define IP (as well as most

of the other protocols and services in the TCP/IP family of protocols) define headers
and tails in terms of words, where a word is 32 bits. Some operating systems use a

different word length, although 32 bits per word is the more-often encountered value

(some minicomputers and larger systems use 64 bits per word, for example). There are

eight bits to a byte, so a 32-bit word is the same as four bytes on most systems.

Vers Length Service Packet Length Type

Ide ntific a tion DF MF Fra~ Offset

TTL Transport Header Checksum

Sending Address

Destination Address

Options Padding

Figure 3.1. The IP header layout.

35

The IP header is six 32-bit words in len'gth (24 bytes total) when all the optional

fields are included in the header. The shortest header allowed by IP uses five words (20

bytes total). To understanq all the fields in the header, it is useful to remember that IP

has no hardware dependence but must account for all versions of IP software it can

encounter (providing full backward-compatibility with previous versions of If). The IP

header layout is shown schematically in Figure 3 .1. The different fields in the IP header

are examined in more detail in the following subsections.

2.1.1.1 Version Number

This is a 4-bit field that contains the IP version number the protocol software is

using. The version number is required so that receiving IP software knows how to

decode the rest of the header, which changes with each new release of the IP standards.

The most widely used version is 4, although several systems are now testing version 6

(called IPng). The Internet and most LANs do not support IP version 6 at present. Part

of the protocol definition stipulates that the receiving software must first check the

version number of incoming datagrams before proceeding to analyze the rest of the

header and encapsulated data. If the software cannot handle the version used to build the

datagram, the receiving machine's IP layer rejects the datagram and ignores the contents

completely.

2.1.1.2 Header Length

This 4-bit field reflects the total length of the IP header built by the sending

machine; it is specified in 32-bit words. The shortest header is five words (20 bytes), but

the use of optional' fields can increase the header size to its maximum of six words (24

bytes). To properly decode the header, IP must know when the header ends and the data

begins, which is why this field is included. (There isno start-of-data marker to show

where the data in the datagram begins. Instead, the header length is used to compute an

offset from the start of the IP header to give the start of the data block.)

2.1.1.3 Type of Service

The 8-bit (1 byte) Service Type field instructs IP how to process the datagram

properly. The field's 8 bits are read and assigned as shown in Figure 3.2, which shows

the layout of the Service Type field inside the larger IP header shown in Figure 3.1. The

36

first 3 bits indicate the datagram's precedence, with a value from O (normal) through 7

(network control). The higher the number, the more important the datagram and, in

theory at least, the faster the datagram should be routed to its destination. In practice,

though, most implementations of TCP/IP and practical-ly all hardware that uses TCP/IP

ignores this field, treating all datagrams with the same priority.

Precedenc,e (3 bi~s) I Dela~ I Th.tu I Rel Not Used

Figure 3.2. The 8-bit Service Type field layout.

The next three bits are 1-bit flags that control the delay, throughput, and

reliability of the datagram. If the bit is set to 0, the setting is normal. A bit set to 1

implies low delay, high throughput, and high reliability for the respective flags. The last

two bits of the field are not used. Most of these bits, are ignored by current IP

implementations, and all datagrams are treated with the same delay, throughput, and

reliability settings.

For most purposes, the values of all the bits in the Service Type field are set to 0

because differences in precedence, delay, throughput, and reliability between machines

are virtually nonexistent unless a special network has been established. Although these

flags would be useful in establishing the best routing method for a datagram, no

currently available UNIX-based IP system bothers to evaluate the bits in these fields.

(Although it is conceivable that the code could be modified for high security or high

reliability networks.)

2.1.1.4 Datagram Length (or Packet Length)
This field gives the total length of the datagram, including the header, in bytes.

The length of the data area itself can be computed by subtracting the header length from

this value. The size of the total datagram length field is 16 bits, hence the 65,535 bytes

maximum length of a datagram (including the header). This field is used to determine

the length value to be passed to the transport protocol to set the total frame length.

37

2.1.1.5 Identification

This field holds a number that is a unique identifier created by the sending node.

This number is required when reassembling fragmented messages, ensuring that the

fragments of one message are not intermixed with others. Each chunk of data received

by the IP layer from a higher protocol layer is assigned one of these identification

numbers when the data arrives. If a datagram is fragmented, each fragment has the same

identification number.

2.1.1.6 Flags

The Flags field is a 3-bit field, the first bit of which is left unused {it is ignored

by the protocol and usually has no value written to it). The remaining two bits are

dedicated to flags called DF (Don't Fragment) and MF (More Fragments), which control

the handling of the datagrams when fragmentation is desirable. If the DF flag is set to 1,

the datagram cannot be fragmented under any circumstances. If the current IP layer

software cannot send the datagram on to another machine without fragmenting it, and

this bit is set to 1, the datagram is discarded and an error message is sent back to the

sending device.

If the MF flag is set to 1, the current datagram is followed by more packets

(sometimes called subpackets), which must be reassembled to re-create the full

message. The last fragment that is sent as part of a larger message has its MF flag set to

0 (off) so that the receiving device knows when to stop waiting for datagrams. Because

the order of the fragments' arrival might not correspond to the order in which they were

sent, the MF flag is used in conjunction with the Fragment Offset field (the next field in

the IP header) to indicate to the receiving machine the full extent of the message.

2.1.1. 7 Fragment Offset

If the MF (More Fragments) flag bit is set to 1 (indicating fragmentation of a

larger datagram), the fragment offset contains the position in the complete message of

the submessage contained within the current datagram. This enables IP to reassemble

fragmented packets in the proper order. Offsets are always given relative to the

beginning of the message. This is a 13-bit field, so offsets are calculated in units of 8

bytes, corresponding to the maximum packet length of 65,535 bytes. Using the

identification number to indicate which message a receiving datagram belongs to, the IP

38

•
layer on a receiving machine can then use the fragment offset to reassemble the entire

message.

2. l. l. 8 Time to Live (TTL)

This field gives the amount of time in seconds that a datagram can remain on the

network before it is discarded. This is set by the sending node when the datagram is

assembled. Usually the TTL field is set to 1,5 or 30 seconds. The TCP/IP standards

stipulate that the TTL field must be decreased by at least one second for each node that

processes the packet, even if the processing time is less than one second. Also, when a

datagram is received by a gateway, the arrival time is tagged so that if the datagram

must wait to be processed, that time counts against its TTL. Hence, if a gateway is

particularly overloaded and can't get to the datagram in short order, the TTL timer can

expire while awaiting processing, and the datagram is abandoned.

If the TTL field reaches 0, the datagram must be discarded by the current node,

but a message is sent back to the sending machine when the packet is dropped. The

sending machine can then resend the datagram. The rules governing the TTL field are

designed to prevent IP packets from endlessly circulating through networks.

2.1.1.9 Transport Protocol

This field holds the identification number of the transport protocol to which the

packet has been handed. The numbers are defined by the Network Information Center

(NIC), which governs the Internet. There are currently about 50 protocols defined and

assigned a transport protocol number. The two most important protocols are ICMP

(detailed in the section titled "Internet Control Message Protocol (ICMP)" later today),

which is number 1, and TCP, which is number 6. The full list of numbers is not

necessary here because most of the protocols are never encountered by users. Hf you

really want this information, it's in several RFCs mentioned in the apendixes.)

2 .1.1.10 Header Checksum

The number in this field of the IP header is a checksum for the protocol header

field (but not the data fields) to enable faster processing. Because the Time to Live

(TTL) field is decremented at each node, the checksum also changes with every

39

machine the datagram passes through, The checksum algorithm takes the ones­

complement of the 16-bit sum of all 16-bit words.

This is ii fast, efficient algorithm, but it misses some unusual corruption

circumstances such as the loss of an entire 16-bit word that contains only Os. However,

because the data checksums used by both: TCP and UDP cover the entire packet, these

types of errors usually can be caught as the frame is assembled for the network

transport.

2.1.1.11 Sending Address and Destination Address
These fields contain the 32-bit IP addresses of the sending and destination

devices. These fields are established when the datagram is created and are not altered

during the routing.

2.1.1.12 Options
The Options field is optional, composed of several codes of variable length. If

more than one option is used in the datagram, the options appear consecutively in the IP

header. All the options are controlled by a byte that is usually divided into three fields: a

l-bit copy flag, a 2-bit option class, and a 5-bit option number. The 9opy flag is used to

stipulate how the option is handled when fragmentation is necessary in a gateway.

When the bit is set to 0, the option should be copied to the first datagram but not

subsequent ones. If the bit is set to 1, the option is copied to' all the datagrams.

The option class and option number indicate the type of option and its particular

value. At present, there are only two option classes set. (With only 2 bits to work with in

the field, a maximum of four options could be set.) When the value is 0, the option

applies to datagram or network control. A value of 2 means the option is for debugging

or administration purposes. Values of 1 and :3 are unused. Currently supported values
for the option class and number are given in Table 3.1.

40

Table 3.1. Valid option class and' numbers for IP headers.

Option ClassllOption NumberllDescr,ption I
0 110 II Marks the end of the options list I
0 111 II No option (used for padding) I
0

112
I Security options (military purposes only)'

0
113

Loose source routing I
0

111
II Activates routing record (adds fields)

0
119

II Strict source routing I
2

114
IITimestamping active (adds fields)

I

Of most interest to us are options that enable the routing and timestamps to be

recorded. These are used to provide a record of a datagram's passage across the

internetwork, which can be useful for diagnostic purposes. Both these options add

information to ti list contained within the datagram. (The timestamp has an interesting

format: it is expressed in milliseconds since midnight, Universal Time. Unfortunately,

because most systems have widely differing time settings-even when corrected to

Universal Time-the timestamps should be treated with more than a little suspicion.)

There are two kinds of routing indicated within the Options field: loose and

strict. Loose routing provides a series of IP addresses that the machine must pass

through, but it enables any route to be used to get to each of these addresses (usually

gateways). Strict routing enables no deviations from the specified route. If the route
can't be followed, the datagram is abandoned. Strict routing is frequently used for

testing routes but rarely for transmission of user datagrams because of the higher

chances of the datagram being lost or abandoned.

2.1.1.13 Padding

The content of the padding area depends on the options selected. The padding is

usually used to ensure that the datagram header is a round number of bytes.

41

•

2.1.2 A Datagram's Life

To understand how IP and other TCP/IP layers work to package and send a

datagram from one machine to another, I take a simplified look at a typical datagram's

passage. When an application must send a datagram out on the network, it performs a

few simple steps. First, it constructs the IP datagram within the legal lengths stipulated

by the local IP implementation. The checksum is calculated for the data, and then the IP

header is constructed. Next, the first hop (machine) of the route to the destination must

be determined to route the datagram to the destination machine directly over the local

network, or to a gateway if the internetwork is used. If routing is important, this

information is added to the header using an option. Finally, the datagram is passed to

the network for its manipulation of the datagram.

As a datagram passes along the internetwork, each gateway performs a series of

tests. After the network layer has stripped off its own header, the gateway IP layer

calculates the checksum and verifies the integrity of the datagram. If the checksums

don't match, the datagram is discarded and an error message is returned to the sending

device. Next, the TTL field is decremented and checked. If the datagram has expired, it

is discarded and an error message is sent back to the sending machine. After

determining the next hop of the route, either by analysis of the target address or from a

specified routing instruction within the Options field of the IP header, the datagram is

rebuilt with the new TTL value and new checksum.

If fragmentation is necessary because of an increase.in the datagram's length or a

limitation in the software, the datagram is divided, and new datagrams with the correct

header information are assembled. If a routing or timestamp is required, it is added as

well. Finally, the datagram is passed back to the network layer. When the datagram is

finally received at the destination device, the system performs a checksum calculation

and-assuming the two sums match=-checks to see if there are other fragments. If more

datagrams are required to reassemble the entire message, the system waits, meanwhile

running a timer to ensure that the datagrams arrive within a reasonable time. If all the

parts of the larger message have arrived but the device can't reassemble them before the

timer reaches 0, the datagram is discarded and an error message is returned to the

sender. Finally, the IP header is stripped off, the original message is reconstructed if it

was fragmented, and the message is passed up the layers to the upper layer application.

If a reply was required, it is then generated and sent back to the sending device.

42

•
When extra information is added to the datagram for routing or timestamp

recording, the length of the datagram can increase. Handling all these conditions is part

of !P's forte, for which practically every problem has a resolution system.

2.2 Internet Control Message Protocol (ICMP)
Many problems can occur in routin~ a message from sender to receiver. The

TTL timer might expire; fragmented datagrams might not arrive with all segments

intact; a gateway might misroute a datagram, and so on. Lettin~ the sending device

know of a problem with a datagram is important, as is correctly handling error

conditions within, the network routing itself. The Internet Control Message Protocol

(ICMP) was developed for this task.

ICMP is an error-reporting system. It is an integral part of IP and must be

included in every IP implementation. This provides for consistent, understandable error

messages and signals across the different versions of IP and different operating systems.

It is useful to think of ICMP as one IP package designed specifically to talk to another

IP package across the network: in other words, ICMP is the IP layer's communications

system. Messages generated by ICMP are treated by the rest of the network as any other

datagram, but they are interpreted differently by the IP layer software. ICMP messages

have a header built in the same manner as any IP datagram, and ICMP datagrams are

not differentiated at any point from normal data-carrying datagrams until a receiving

machine's IP layer processes the datagram properly.

In almost all cases, error messages sent by ICMP are routed back to the original

d ' ,.J!" -i.. .. T-i... . -i.. . 111 -i.. d I' d1 d . . d . I atagram s senomg maemne, 1 iiis]S oecause only foe sen er s an . estmation evice s

IP addresses are included in the header. Because the error doesn't mean anything to the

destination device, the sender is the logical reciipieID!t of th,e error message. The sen per

can then determine from the ICMP message the type of error that occurred and establish

how to best resend! the failed datagram.

ICMP messages go through two encapsulations, as do all IP messaies:

incnrporetion into a regufar- IP' datag.rnm and! then into the network frame. This is shown

in Figure 3.3. ICMP headers have a different format than IP headers, though, and the

fomiat dliffeTs: s:Jiigh1!ly dep.e;]i:dling, on the type of message. However,, an ICMP headers

start with the same three fields: a message type, a code field, and a checksum for the

ICMP' messege, F'iigme 3.4! shows: the fayout oHhe]CMIP' message.

43

ICMP
Header IC MP Nie ssage

IP
Header ICI\o1P Datagram

Network
Header

IP, Da tagram

Figure 3.3. Two-step encapsulation of an ICMP message.

Type (8 bits) I Code (8 bits) I Checksum (16 bits)

Parame ter.;

Date ...

Figure 3.4. The layout of an ICMP message.

Usually, any ICMP message that is reporting a problem with delivery also

includes the header and first 64 bits of the data field from the datagram for which the

problem occurred. Including the 64 bits of the original datagram accomplishes two

things. First, it enables the sending device to match the datagram fragment to the

original datagram by comparison. Also, because most of the protocols involved are

defined at the start of the datagram, the inclusion of the original datagram fragment

allows for some diagnostics to be performed by the machine receiving the ICMP

message.

The 8-bit Message Type field in the ICMP header (shown in Figure 3.4) can

have one of the values shown in Table ~.2.

44

Table 3.2. Valid values for the ICMP Message Type field.

I Valuejj»escription I
DIEchoReply I DI Destination Not Reachable I DI Source Quench I DI Redirection Required I
DI Echo Request I
~I Time to Live Exceeded I
EJI Parameter Problem I
LJI Timestamp Request I
~ITimestamp Reply I E]I Information Request (now obsolete)

~I Information Reply (now obsolete) I E:JI Address Mask Request I
EJI Address Mask Reply I

The Code field expands on the message type, providing a little more information

for the receiving machine. The checksum in the ICMP header is calculated in the same

manner as the normal IP header checksum. The layout of the ICMP message is slightly

different for each type of message. Figure 3.5 shows the layouts of each type of ICMP

message header. the Destination Unreachable and Time Exceeded messages are self­

explanatory, although they are used in other circumstances, too, such as when a

datagram must be fragmented but the DoJ1't Fragment flag is set. This results in a

Destination Unreachable message being returned to the sending machine.

45

•

Type Code Checksum
Identifier Sequence No.
Ori~na t,ing Time stamp

Type I Code I Checksum
Unused

, Original IP header+ 64 bits

Destination unreachable, Source Quench, Time Exceeded Time stamp Request

Type I Code I Checksum
Identifier I Sequence No.
Originating Time stamp
Receiving Time stamp

Transmitting Time stamp

Type Code Checksum
Ptr Unused

Original IP header+64 bits
Parameter Problem

TimestampReply
Type I Code I Checksum

Gatewat IP Address Type Code Checksum
Identifier Sequence No.

Information Request and Reply, Address Mask Re que sf
Original IP header+64 bits

Redirect

Type Code Checksum
Identifier Sequence No.

Address .lviask

Type Code Checksum
Identifier Sequence No.

Original IP header+ 64 bits

Echo Request and Echo Reply Address Mask Reply

Figure 3.5. ICMP message header lay-OUts.

The Source Quench ICMP message is used to control the rate at which

datagrams are transmitted, although this is a very rudimentary form of flow control.

When a device receives a Source Quench message, it should reduce the transmittal rate

over the network until the Source Quench messages cease. The messages are typically

generated by a gateway or host that either has a full receiving buffer or has slowed

processing of incoming datagrams because of other factors. If the buffer is full, the

device is supposed to issue a Source Quench message for each datagram that is

discarded. Some implementations issue Source Quench messages when the buffer

exceeds a certain percentage to slow down reception of new datagrams and enable the

device to clear the buffer.

Redirection messages are sent to a gateway in the path when a better route is

available. For example, if a gateway has just received a datagram from another gateway

but on checking its datafiles finds a better route, it sends the Redirection message back

to that gateway with the IP address pf the better route. When a Redirection message is

sent, an integer is placed in the code field of the header to indicate the conditions for

which the-rerouting-applies. A value of O means that datagrams for any device on the

46

destination network should be redirected. A value of 1 indicates that only datagrams for

the specific device should be rerouted. A value of 2 implies that only datagrams for the

network with the same type of service (read from one of the IP header fields) should be

rerouted. Finally, a value of 3 reroutes only for the same host with the same type of

service. The Parameter Problem message is used whenever a semantic or syntactic error

has been encountered in the IP header. This can happen when options are used with

incorrect arguments. When a Parameter Problem message is sent back to the sending

device, the Parameter field in the ICMP error message contains a pointer to the byte in

the IP header that caused the problem. (See Figure 3.5.)

Echo request or reply messages are commonly used for debugging purposes.

When a request is sent, a device or gateway down the path sends a reply back to the

specified device. These request/reply pairs are useful for identifying routing problems,

failed gateways, or network cabling problems. The simple act of processing an ICMP

message also acts as a check of the network, because each gateway or device along the

path must correctly decode the headers and then pass the datagram along. Any failure

along, the way could be with the implementation of the IP software. A commonly used

request/reply system is the ping command. The ping command sends a series of requests

and wa:iits for rep1lies:. Tiimestamp requests and replies enable the timing, of message

passing along the network to be monitored. When combined with strict routing, this can

be useful :iilil! id'.enti:fyi}j)!g boM]enec:ks,., Ad!dlreSS, mask requests and replies are used for

testing within a specific network or subnetwork.

2.3 lP'ng::]p· Version 6
When IP version 4 (the current release) was developed, the use of a 32-bit IP

address seemed more thalil! enoug)rn to Jhia1JITd!]e: the pmjecJed/ use of the Intemet, With the

incredible growth rate of the Internet over the last few years, however, the 32-bit IP

address miig)rnt beeoene a p,mbfom. 'Joi cooote, tllmis, liimiit,,]P Next Geaerasicn, us,l!la]]y

called IP version 6 (IPv6), is under development. Several proposals for IPng

implementation are currently bemg studied,, ilie most popular of wmch arre 'JUB>A (TCP

and UDP with Bigger Addresses), CATNIP (Common Architecture for the Internet),

and SIPP (Simple Internet Protocol Plus). None of ilie three meet all the p1io,posed

changes for version 6. but a compromise or modification based on one of these

proposals is likely. What does IPng have to offer? The list of changes tells you the main

features of IPng in a nutshell:

47

• 128-bit network address instead of 32-bit

• More efficient IP header with extensions for applications and options

• No header checksum

• A flow label for quality-of-service requirements

• Prevention of intermediate fragmentation of datagrams

• Buslt-in security for euthentication and encryption

Next we look at IPng in a little more detail to show the changes that affect most

users, as, weU as. net.work p;Iiogramme;rs. and\ network administrators:. I start wiith a look at

the IPng header. Remember that at present IPng is still under development and is not

wiiddy dep,foyed except on test net.w01rks.

2.3.1 IPng Datagram

As, mentioned! emEier,, the: h~mfe:r for lPng, datagrams has: been modified over the

earlier version 4 header. The changes are mostly to provide support for the new, longer
128-bit .IP addresses: and to remove oibs:olet.e aindi mmeededl fields, The basic: fayol!lt of

the IPng header is shown in Figure 3.6. As you can see, there are quite a few changes

from the JP header used in W version 4! {see F'igme: 3\.]).

Version I
Number Priority Flow Label

Payload Length Next
Header Hop Limit

... ·-·······S-endi-ng .. IP··tromew··:············· .

.. o;e:stinalion:IP::A:eltm:s:L .

Figure 3.6. The IPng header layout.

The version number in the IP datagram header is four bits long and holds the

release number (which is 6 with IPng). The Priority field is four bits long and holds a

value indicating the datagram's priority. The priority is used to define the transmission

48

order. The priority is set :first with a "broad classification, then a narrower identifier

within each class. I look at the priority classification in a little more detail in a moment.

The Flow Label field is 24 bits long and i's still in the development stage. It is likely to

be used in combination with the source machine IP address to provide flow

identification for the network. For example, if you are using fl UNIX workstation on the

network, the fl.ow is diifforent from another machine such as a Windows 95 PC. This

field can be used to identify flow characteristics and provide some adjustment

capab:iJ]itiies .. The: fie]dl catIDI also be: used to fudp ideJJ:tiify targe! machines, for large

transfers, in which case a cache system becomes more efficient at routing between

sousee and destination. FJlow fabds, me ilisc111ssedl m more deta~]]Ji)\ the s:ec;tiio;J:] t:iitted

"Flow Labels".

The: Pay foadl L.engtfui :lfieldl ii.s, a] 6:-bi:t fiddl used to s:p:edfy the tota~ leID1gtfui of the

IP datagram, given in bytes. The total length is exclusive of the IP header itself. The use

of a 16-bit :field limits the maximmn value: m iliiis fidd to 65~535~ lb,l!lrti tlh:e:re is: ai
provision to send large datagrams using an extension header (see the section titled "IP

Extension Headers" later today). The Next Header :field is used to indicaite: which header

follows the IP header when other applications want to piggy-back on the H' header.

Several values have been defined for the Next Header field, as shown in Table 3.3.

I Value"Description I DI Hop-by-hop options I
DIIP I
DITCP I
EJIUDP I
~]Routing I
~IFragnient

I
. ~I Interdomain Routine I
~I Resource Reservation I

49

50 II Encapsulating Security

~, Authentication I
EJIICMP I
EJINo Next Header I
~I Destination Options I

The Hop Limit field determines the number of hops the datagram can travel.

With each forwarding, the number is decremented by 1. When the Hop Limit field

reaches 0, the datagram is discarded, just as with IP version 4.

Finally, the Sending and Destination IP Addresses in 128-bit format are placed in the

header. I look at the new IP address format in more detail in the section titled "128-Bit

IP Addresses" later in this chapter.

2.3 .1.1 Priority Classification

The Priority Classification field in the IPng header first divides the datagram

into one of two categories: congestion controlled er noncongestion controlled.

Noncongestion controlled datagrams are always routed as a priority over congestion

controlled datagrams. There are subclassifications of noncongestion controlled datagram

priorities available for use, but none of the categories have been accepted as standard

yet. If the datagram is congestion controlled, it is sensitive to congestion problems on

the network, If congestion occurs, the datagram can be slowed down and held

temporarily in caches until the problem is alleviated. Beneath the broad congestion

controlled category ase several subclasses that fillther refine the priority of the

datagram. The subcategories of congestion controlled priorities are given in Table 3.4.

NoncoDgestion controEkdl traffic: has: p:riiorities, 8 tmough] 5 available, lbut as. mentioned

earlier, they are not defined

50

Table 3.4. Priorities for congestion controlled datagrams.

I Value II Meaning I
DINo priority specified I DI Background traffic I
D Unattended data transfer DI Unassigned I
D Attended bulk transfer DI Unassigned I
D Interactive traffic DI Control traffic I

Examples of each of the primary subcategories might help us see how the

datagrams are prioritized. Routing and network management traffic that is considered

highest priority is assigned category 7. Interactive applications such as Telnet and

remote X sessions are assigned as interactive traffic (category 6). Transfers that are not

time-critical (such as Telnet sessions) but are still controlled by an interactive

application such as FTP are assigned as category 4. E-mail is usually assigned as

category 2, whereas low-priority material such as news is set to category 1.

2.3 .. 1.2 Flow Labels
As mentioned earlier, the Flow Label field new to the IPng header can be used to

help identify the sender and destination of many IP datagrams. By employing caches to

handle flows, the datagrams can be routed more efficiently. Not all applications can

handle flow labels, in which case the field is set to a value of 0.

A simple example might help show the usefulness of the flow label field.

Suppose: a PC n.umiing Windows 95 is connected to a UNIX server on another network

and is sending a large number of datagrams. By setting a specific value of the flow label

for· aEE the: dlatagrams: in the transmissfo,11~ the routers afong, the way to the server can

51

assemble entries in their routing caches that indicate which way to route each datagram

with the same flow label. When subsequent datagrams with the same flow label arrive,

the router doesn't have to recalculate the route; it can simply check the cache and extract

the saved information from that. This speeds up the passage of the datagrams through

each router. To prevent caches from growing too large or holding stale information,

IPng stipulates that the cache maintained in, a routing device cannot be kept for more

than six seconds. If a new datagram with the same flow label is not received within six

seconds, the cache entry is removed. To prevent repeated values from the sending

machine, the sender must wait six seconds before using the same flow label value for

another destination.

IPng allows flow labels to be used to reserve a route for time-critical

applications. For example, a real-time application that has to send several datagrams

along the same route and needs as rapid a transmission as possible.Isuch as is needed for

video or audio, for example) can establish the route by sending datagrams ahead of

time, being careful not to exceed the six second time-out on the interim routers.

?J.? 1 ?8-Rlt TP AddrP~~es
Probably the most important aspect ofIPng is its capability to provide for longer

IP addresses. IPng increases the IP address from 32 bits to 128 bits. This enables an

incredible number of addresses to be assembled, probably more than can ever be used,

The new IP addresses support three kinds of addresses: unicast, multicast, and anycast.

• Unicast addresses are meant to identify a particular machine's interface. This lets

a PC, for example, have several different protocols in use, each with its own

address. Thus, you could send messages specifically to a machine's IP interface

address and not the NetBEUI interface address.

• A multicast address identifies a group of interfaces, enabling all machines 'in a

group to receive the same packet. This is much like broadcasts in IP version 4,

although with more flexibility for defining groups. Your machine's interfaces

could belong to several multicast groups.

• An anycast address identifies a group of interfaces on a single multicast address.

In other words, more than one interface cart receive the datagram on the same

machine.

52

The handling of fragmentation and reassembly is also changed with IPng to

rovide more capabilities for IP. Also proposed for IPng is an authentication scheme

aat can ensure that the data has not been corrupted between sender and receiver, as well

s ensuring that the sending and receiving machines are who they claim they are.

'..3.3 IP Extension Headers
IPng has the provision to enable additional headers to be tacked onto the IP

reader. This might be necessary when a simple routing to the destination is not possible,

>r when special services such as authentication are required for the datagram. The

idditional information required is packaged into an extension header and appended to

he IP header. IPng defines several types of extension headers identified bv a number

ilaced in the Next Header field of the IP header. The currently accepted values and their

neanings were shown in Table 3 .3. Several extensions can be appended onto one IP

ieader, with each extension's Next Header field indicating the next extension. Normally,

he extension headers are appended in ascending numerical order. This makes it easier

for routers to analyze the extensions, stopping the examination when it gets past router-

specific extensions.

2.3.3.1 Hop-by-Hop Headers
Extension type O is hop-by-hop, which is used to provide IP options to every

machine the datagram passes through. The options included in the hop-by-hop extension

have a standard format of a Type value, a Length, and a Value (except for the Pad 1

option, which has a single value set to O and no length or value field). Both the Type

and Length fields are a single byte in length, whereas the Value field's length is variable

and indicated by the length byte. There are three types of hop-by-hop extensions defined

so far, called Pad 1, PadN, and Jumbo Payload. The Padl option is a single byte with a

value of 0, no length, and no value. It is used to alter the order and position of other

options in the header when necessary, dictated usually by an application. The PadN

option is similar except it has N zeros placed in the Value field and a calculated value

for the length.
The Jumbo Payload extension option is used to handle datagram sizes in excess

of 65,535 bytes. The Length field in the IP header is limited to 16 bits, hence the limit

of 65,535 for the datagram size. To handle larger datagram lengths, the IP header's

53

' ,.

•
Length field is set to 0, which redirects the routers to the extension to pick up a correct

length value. The Length field can be defined in the extension header using 32 bits·~~

which is in excess of 4 terabytes.

2.3.3.2 Routing Headers
A routing extension can be tacked onto the IP header when the sending machine

wants tt) control the routing of the datagram instead of leaving it to the routers along the

path. The routing extension can be used to give routes to the destination. The routing

extension includes fields for each IP address along the desired route.

2.3.3.3 Fragment Headers

The fragment header can be appended to an IP datagram to enable a machine to

fragment a large datagram into smaller parts. Part of the design of IPng was to prevent

subsequent fragmentation, but in some cases fragmentation must be enabled in order to

pass the datagram along the network.

2.3.3.4 Authentication Headers

The authentication header is used to ensure that no alteration was made to the

contents of the datagram and that the datagram originated at the machine shown in the

IP header. By default, IPng uses an authentication scheme called Message Digest 5

(MDS). Other authentication schemes can be used as long as both ends of the

connection agree on the same scheme.

The authentication header consists of a security parameters index (SPI) that,

when combined with the destination IP address, defines the authentication scheme. The

SPI is followed by authentication data, which with MDS is 16 bytes long. MD5 starts

with a key (padded to 128 bits if it is shorter), then appends the entire datagram. The

key is then tagged at the end, and the MD5 algorithm is run on the whole. To prevent

problems with hop counters and the authentication header itself altering the values, they

are zeroed for the purposes of calculating the authentication value. The MD5 algorithm

ge_nerates ~ 128-bit value that is placed in the-authentication header. The steps are

repeated in reverse at the receiving end. Both ends must have the same key value, of

course, for the scheme to work.

54

The datagram contents can be encrypted prior to generating authentication

values using the.default IPng encryption scheme, called Cipher Bldck Chaining (<;BC),

part of the Data Encryption Standard (DES).

2.4 Internet Protocol Support in Different Environments
The University of California at Berkeley was given a grant in the early 1980s to

modify their UNIX operating system to included support for IP. The BSD4.2 UNIX

release already offered support for TCP and IP, as well as the Simple Mail Transfer

Protocol (SMTP) and Address Resolution Protocol (ARP), but with DARPA's funds,

BSD4.3 was developed to provide more complete support. The BSD4.2 support for IP

was quite good prior to this grant, but it was limited to use in small local area networks

only. To increase the capabilities of BSD UNIX's IP support, BSD added retransmission

capabilities, Time to Live information, and redirection messages. Other features were

added, too, enabling BSD4.3 to work with larger networks, internetworks (connections

between different networks), and wide area networks connected by leased lines. This

process brought the BSD UNIX system (and its licensees, such as Sun's SunOS) in lirre

with the IP standards used on AT&T UNIX and other tJNIX-based platforms.

With the strong support for IP among the UNIX community, it was inevitable

that manufacturers of other software operating systems would start to produce software

that allowed their machines to interconnect to the UNIX IP system. Most of the drive to

produce IP versions for non-UNIX operating systems was not because of the Internet

(which hadn't started its phenomenal growth at the time) but the desire to integrate the

other operating systems into local area networks that used UNIX servers. This section pf

today's material examines several hardware and software systems, focusing on the most

widely used platforms, and shows the availability of IP (and entire TCP/IP suites) for

those machines. Much of this is of interest only if we have the particular platform

discussed (DEC VAX users tend not to care about interconnectivity to IBM SNA

platforms, for example), so we can be selective about the sections we read.

2.4.1 MS-DOS
PCs came onto the scene when TCP/IP was already in common use, so it was

not surprising to find interconnection software rapidly introduced. In many ways, the

PC was a perfect platform as a stand-alone machine with access through a

55

communications pack-age to other larger systems. The PC was perfect for a client/server

environment. There are many J>C-based versions of TCP/IP. The most widely used

packages come from FTP Software, The W ollongong Group, and Beame and Whiteside

Software Inc. All the packages feature interconnection capabilities to other machines

using TCP/IP, and most add other useful features such as FTP and mail routing.

FTP Software's PC/TCP is one of the most widely used. PC/TCP supports the

major network interfaces: Packet Driver, IBM's Adapter Support Interface (ASI),

Novell's Open Data Link Interface (ODI), and Microsoft/3Com's Network Driver

Interface Specification (NDIS). All four LAN interfaces are discussed in more detail in

the section titled "Local Area Networks" later today. The design of PC/TCP covers all

seven layers of the OSI model, developed in such a manner that components can be

configured as required to support different transport mechanisms and applications.

Typically, the Packet Driver, ASI, ODI, or]1\1:DIS module has a generic PC/TCP kernel

on top of it, with the PC/TCP application on top of that. PC/TCP enables the software to

run both TCP/IP and another protocol, such as DECnet, Novell NetWare, or LAN

Manager, simultaneously. This can be useful for enabling a PC to work within a small

LAN workgroup, as well as within a larger network, without switching software.

2.4.2 Microsoft Windows
There are several TCP/IP products appearing for Microsoft's Windows 3.x,

Windows for Workgroups, and Windows 95. Most of the early packages for Windows

3.x were. ports of DOS products. Although these tend to work well, a totally Windows­

designed product tends to have a slight edge in terms of integration with the Windows

environment. Windows for Workgroups 3.11 has no inherent TCP/IP drives, but several

products are available to add TCP/IP suites for this GUI, as well as Windows 3.1 and

Windows 3 .11. One Windows 3 .x-designed product is NetManage's Chameleon TCP/IP

for Windows. Chameleon offers a complete port of TCP/IP and additional software

utilities to enable a PC running Windows 3.x to integrate into a TCP/IP network.

Chameleon offers terminal emulation, Telnet, FTP, electronic mail, DNS directory

services, and NFS capabilities. There are several versions of Chameleon, depending on

whether NFS is required.

Windows 95 has TCP/IP drivers included with the distribution software, but they

are not loaded by default (NetWare's IPX/SPX is the default protocol for Windows 95).

You must install and configure the TCP/IP product as a separate step after installing

56

Windows 95 if you want to use IP on your network. You can see how this is done on

Day 10, "Setting Up a Sample TCP/IP Network: DOS and Windows Clients."

2 .4 .3 Windows NT

Windows NT is ideally suited for TCP/IP because it is designed to act as a

server and gateway. Although Windows NT is not inherently multiuser, it does work

well as a TCP/IP access device. Windows NT includes support for the TCP/IP protocols

as a network transport, although the implementation does not include all the utilities

usually associated with TCP/lP. TCP/IP can be chosen as the default protocol on a

Windows NT machine when the operating system is installed. Among the add-on

products available for Windows NT, NetManage's Chameleon32 is a popular package.

Similar to the Microsoft Windows version, Chameleon32 offers versions for NFS.

2.4.4 OS/2

IBM's OS/2 platform has a strong presence in corporations because of the IBM

reputation and OS/2's solid performance. Not surprisingly, TCP/IP products are popular

in these installations, as well. Although OS/2 differs from DOS in many ways, it is

possible to run DOS-based ports of TCP/IP software under OS/2. A better solution is to

run a native OS/2 application. Several TCP/IP OS/2-native implementations are

available, including a TCP/IP product from IBM itself

2. 4. 5 Macintosh

Except for versions of UNIX that run on the Macintosh, the Macintosh and

UNIX worlds have depended on several different versions of TCP/IP to keep them

connected. With many corporations now wanting their investment in Macintosh

computers to serve double duty as X terminals onto U1'UX workstation, TCP/IP for the

Mac has become even more important. Macintosh TCP products are available in several

forms, usually as an add-on application or device driver for the Macintosh operating

system. An alternative is Tenon Intersysterns' MachTen product line, which enables a

UNIX kernel and the Macintosh operating system to coexist on the same machine,

providing compatibility between UNIX and the Macintosh file system and Apple

events. TCP/IP is part of the MachTen product.

57

"
The Apple'I'alk networking system enables Macs and UNIX machines to

interconnect to a limited extent, although this requires installation of AppleTalk

software on the UNIX host-something many system administrators are reluctant to do.

Also, because AppleTalk is not as fast and versatile as Ethernet and other network

transports, this solution is seldom favored. A better solution is simply to install TCP/IP

on the Macintosh using one of several commercial packages available. Apple's own

MacTCP software product can perform the basic services but must be coupled with

software from other vendors for the higher layer applications. MacTCP also requires a

Datagram Delivery Protocol to Internet Protocol (DDP-to-IP) router to handle the

.sending and receiving ofDDP and IP datagrams.

Apple's MacTCP functions by providing the physical through transport layers of

the architecture. MacTCP allows for both LocalTalk and Ethernet hardware-and

supports both IP and TCP, as well as several other protocols. Running on top of

MacTCP is the third-party application, which uses MacTCP's function calls to provide

the final application for the user, Functions such as Telnet and FTP protocols are

supported with add-on software, too.

, 2.4.6 DEC
Digital Equipment Corporation's minicomputers were for many years a mainstay

in scientific and educational research, so an obvious development for DEC and third­

party software companies was to introduce IP software. Most DEC machines run either

VMS or Ultrix (DEC's licensed version of UNIX). Providing IP capabilities to Ultrix

was a matter of duplicating the code developed at Berkeley, but VMS was not designed

for IP-type communications, relying instead on DEC's proprietary network software.

DEC's networking software is the Digital Network Architecture (DECnet). The first

widely used version was DECnet Phase IV (introduced in 1982), which used industry­

standard protocols for the lower layers but was proprietary in the upper layers. The 1987

release ofbECnet Phase V provided a combined DECnet IV and OSI system that

allowed new OSI protocols to be used within the DECnet environment.

DEC announced the ADVANTAGE-NETWORKS in 1991 as an enhancement

of DECnet Phase V, adding support for the Internet Protocols. With the ADVANTAGE-
\ . NETWORKS, users could choose between the older, DEC-specific DECnet, OSI, or IP

~~~~~~- ~~ ~\,._ h~~~\,._~~~~\.~\)~~~ 'o..\\.~~~\ \~ ~\..~~\.~~-\."\'..\~"'\.~~,\..~~\\.~ ~ 

58 



providing the DEC-exclusive DECnet system for LAN use, and the TCP/IP and OSI 

systems for W ANs and system interconnection between different hardware types, 

Users of VMS systems can connect to the UNIX environment in several ways. 

The easiest is to use a software gateway between the VMS machine and a UNIX 

machine. ])EC's TCP/IP Services for VMS performs this function, as do several third­ 

party software solutions, such as the Kermit protocol from Columbia University, 

Wollongong Group's WJN/TCP, and TGV's MultiNet. The advantage of the third-party 

communications protocol products such as Kermit is that they don't have to be 

connected to a UNIX machine, because any operating system that supports the 

communications protocol wilt work. ADVANTAGE-NETWORKS users have more 

options available, many from DEC. Because the protocol is already embedded in the 

network software, it makes the most sense simply to use it as it comes, if it fits into the 

existing system architecture. Because of internal conversion software, ADV ANT AGE­ 

NETWORKS can connect from a DECnet machine using either the DECnet or the OSI 

protocols. 

2.4.7 IBM's SNA 
IBM's Systems Network Architecture (SNA) is in widespread use for both 

mainframes and minicomputers. Essentially all IBM equipment provides full support for 

IP and TCP, as well as many bther popular protocols. Native IBM software is available 

for each machine, and several third-party products have appeared (usually at a lower 

cost than those offered by IBM). The IBM UNIX version, AIX (which few people know 

stands for Advanced Interactive Executive), has the TCP/IP software built in, enabling 

any machine that can run AIX (from workstations to large minicomputers) to 

interconnect through IP whh no additional software. The different versions of AIX have 

slightly different support, so users should check before blindly trying to connect AIX 

machines. 

For large systems such as mainframes, IBM has the 3 172 Interconnect 

Controller, which sits between the mainframe and a network. The 3172 is a hefty box 

that handles high •. speed traffic between a mainframe channel and the network, off­ 

loading the processing for the communications aspect from the mainframe processor. It 

can connect to Ethernet or token ring networks and through additional software to 

DEC's DECnet. IBM mainframes running either MVS or VM can run software 

appropriately called TCP/IP for MVS and TCP/IP for VM. These products provide 

59 



- 
access from other machines running TtP/IP to access the mainframe operating system 

remotely, usually over a LAN. The software enables the calling machine (the client in a 

client/server scheme) to act as a 3270-series terminal to MVS or VM. FTP is provided 

for file transfers with automatic conversion from EBCDIC to ASCII. An interface to 

PROFS is available. Both TCP/IP software products support SMTP for electronic mail. 

2.4.8 Local Area Networks 

LANs are an obvious target for TCP/IP, because TCP/IP helps solve many 

interconnection problems between different hardware and software platforms. To run 

TCP/IP over a network, the existing network and transport layer software must be 

replaced with TCP/IP, or the two must be merged together in some manner so that the 

LAN protocol can carry TCP/IP information within its existing protocol 

( encapsulation). Whichever solution is taken for the lower layer, a higher layer interface 

also must be developed, which resides in the equivalent of the data link layer, 

communicating between the higher layer applications and the hardware. This interface 

enables the higher layers to be independent of the hardware when using TCP/IP, which 

many popular LAN operating systems are not currently able to claim. 

Three interfaces (which have been mentioned earlier today) are currently in 

common use. The Packet Dtiver interface was the first interface developed to meet these 

needs. 3Com Corporation and Microsoft developed the Network Driver Interface 

Specification (NDIS) for OS/2 and 3Com's networking software. NDIS provides a 

driver to communicate with the networking hardware and a protocol driver that acts as 

the interface to the higher layers. Novell's Open Data Link Interface (ODI) is similar to 

NDIS. For single-vendor, PC-based networks, several dedicated TCP/IP packages are 

available, such as Novell's LAN Work:Place, designed to enable any NetWare system to 

connect to a LAN using an interface hardware card and a software driver. 

60 



CIIAPTER3 
I 

~·cp 1'-NP m>P 

• 

The Internet Protocol handles the lower-layer functionality. We will Iook at the 

transport layer, where the Transmission Control Protocol (TCP) and User Datagram 

Protocol (UDP) come into play. 

TCP is one of the most widely used transport layer protocols, expanding from 

its original implementation on the ARP ANET to connecting commercial sites all over 

the world. On Day 1, "Open Systems, Standards, and Protocols," you looked at the 

OSI seven-layer model, which bears a striking resemblance to TCP/IP's layered 

model, so it is not surprising that many of the features of the OSI transport layer were 

based on TCP. 

In theory, a transport layer protocol could be a very simple software routine,-but TCP 

cannot be called simple. Why t1;se a transport layer that is as complex as TCP? The most 

important reason depends on IP's unreliability. IP does not guarantee delivery of a 

datagram; it is a connectionless system with no reliability. IP simply handles the routing 

of datagrams, and if problems occur, IP discards the packet without a second thought 

(generating an ICMP error message back to the sender in the process). The task of 

ascertaining the status of the datagrams sent over a network and harldling the resending 

of information if parts have been discarded fills to TCP, which can be thought of as 

riding shotgun over IP. Most users think ofTCP''itdlP as a tightly knit pair, but TCP 

can be (and frequently is) used with other protocqls without IP. For example, TCP or 

parts ofit are used in the File Transfer Protocol (FTP) and the Simple Mail Transfer 

Protocol (SMTR), both of which do not use IP. 

3.1 What Is TCP? 

The Transmission Control Protocoi provides a considerable number of services to the 

IP layer and the upper layers. Most importantly, it provides a connection-oriented 

protocol to the upper layers that enable an application to be sure that a datagram sent 

out over the network was received in its entirety. In this role, TCP acts as a messa~e­ 

validation protocol providing reliable communications. If a datagram is corrupted or lost, 

TCP usually handles the retransmission, rather than the applications in the higher layers. 

61 



TCP manages the flow of datagrams from the higher layers to the IP layer, as 

well as incoming datagrams- from the IP layer up to the higher level protocols. TCP has 

to ensure that priorities and security are properly respected. TCP must be capable of 

handling the termination of an application above it that was expecting incoming 

datagrams, as well as failures in the lower layers. TCP also must maintain a state table 

of all data streams in and out of the TCP layer. The isolation of all these services in a 

separate layer enables applications to be designed without regard to flow control or 

message reliability. Without the TCP layer, each application would have to implement 

the services themselves, which is a waste of resources. TCP resides in thetransport 

layer, positioned above IP but below the upper layers and their applications, as shown in 

Figure 4.1. TCP resides only on devices that actually process datagrams, ensuring that 

the datagram has gone from the source to the target machine. It does not reside on a 

device that simply routes datagrams, so there is usually no TCP layer in a gateway. This 

makes sense, because on a gateway the datagram has no need to go higher in the layered 

model than the IP layer. 

Sending Machine Receiving Mee hine 

Gateway Gateway 

Application 

Presentation 

Session 

TCP 

IP 

Data Link 

Physical 

Application 

Presentation 

Session 

TCP 

IP 

Data Link 

Phvsical 
\ - 

TCP: End-to-End Communications 

IP IP 

Data Link •• Data Li.Ilk 

\ 
I Phy'Sical J 

;'.!I 
/ 

Physical 

Subnetwork 

Figure 4.1. TCP provides end-to-end communications. 

Because TCP is a connection-oriented protocol responsible for ensuring the 

transfer of a datagram from the source to destination machine ( end-to-end 

communications), TCP must receive communications messages from the destination 
-, 

machine to acknowledge receipt of the datagram. The term virtual circuit is usually 

62 



used to refer to the communications between the two end machines, most of which are 

simple acknowledgment messages (either confirmation of receipt or a failure code) and 

datagram sequence numbers. 

3.2 Following a Message 
To illustrate the role of TCP, it is instructive to follow a sample message 

between two machines. The processes are simplified at this stage, to be expanded on 

later today. The message originates from an application in an upper layer and is passed 

to TCP from the next higher layer in the architecture through some protocol (often 

referred to as an upper-layer protocol, or ULP, to indicate that it resides above TCB). 

The message is passed as a stream-a sequence of individual characters sent 

asynchronously. This is in contrast to most protocols, which use fixed blocks of data. 

This can pose some conversion problems with applications that handle only formally 

constructed blocks of data or insist on fixed-size messages. 

TCP receives the stream of bytes and assembles them into TCP segments, or 

packets. In the process of assembling the segment, header information is attached at the 

front of the data. Each segment has a checksum calculated and embedded within the 

header, as well as a sequence number if there is more than one segment in the entire 

message. The length of the segment is usually determined by TCP or by a system value 

set by the system administrator. (The length of TCP segments has nothing to-do with the 

IP datagram length, although there is sometimes a relationship between the two.) 

If two-way communications are required (such as with Telnet or FTP), a 

connection (virtual circuit) between the sending and receiving machines is established 

prior to passing the segment to IP for routing. This process starts with the sending TCP 

software issuing a request for a TCP conneetion with the receiving machine. In the 

message is a unique number (called a socket number) that identifies the sending 

machine's connection. The receiving TCP software assigns its own unique socket 

number and sends it back to the original machine. The two unique numbers then define 

the connection between the two machines until the virtual circuit is terminated. (I look 

at sockets in a little more detail in a moment.) After the virtual circuit is established, 

TCP sends the segment to the IP software, which then issues the message over the 

network as a datagram. IP can perform any of the changes to the segment that you saw 

in yesterday's material, such as fragmenting it and reassembling it at the destination 

machine. These steps are completely transparent to the TCP layers, however. After 

63 



winding its way over the network, the receiving machine's IP passes the received 

segment up to the recipient machine's TCP layer, where it is processed and passed up to 

the applications above it using an upper-layer protocol. 

If the message was more than one TCP segment long (not IP datagrams), the 

receiving TCP software reassembles the message using the sequence numbers contained 

in each segment's header. If a segment is. missing or corrupt (which can be determined 

from the checksum), TCP returns a message with the faulty sequence number in the 

body. The originating TCP software can then resend the bad segment. If only one 

segment is used for the entire message, after comparing the segment's checksum with a 

newly calculated value, the receiving TCP software can generate either a positive 

acknowledgment (ACK) or a request to resend the segment and route the request back 

to the sending layer. 

The receiving machine's TCP implementation can perform a simple flow 

control to prevent buffer overload. It does this by sending a buffer size called a window 

value to the sending machine, following which the sender can send only enough bytes 

to fill the window. After that, the sender must wait for another window value to be 

received. This provides a handshaking protocol between the two machines, although it 

slows down the transmission time and slightly increases network traffic. As with most 

connection-based protocols, timers are an important aspect of TCP. The use of a timer 

ensures that an undue wait is not involved while waiting for an ACK or an error 

message. If the timers expire, an incomplete transmission is assumed. Usually an 

expiring timer before the sending of an acknowledgment message causes a 

retransmission of the datagram from the originating machine. 

Timers can cause some problems with TCP. The specifications for TCP provide 

for the acknowledgment of only the highest datagram number that has been received 

without error, but this cannot properly handle fragmentary reception. If a message is 

composed of several datagrams that arrive out of order, the specification states that TCP 

cannot acknowledge the reception of the message until all the datagrams have been 

received. So even if all but one datagram in the middle of the sequence have been 

successfully received, a timer might expire and cause all the datagrams to be resent. 

With large messages, this can cause an increase in network traffic. 

If the receiving TCP software receives duplicate datagrams (as can occur with a 

retransmission after a timeout or due to a duplicate transmission from IP), the receiving 

version of TCP discards any duplicate datagrams, without bothering with an error 

64 



message. After all, the sending system cares only that the message was received-not 

how many copies were received. TCP does not have a negative acknowledgment (NAK) 

function; it relies on a timer to indicate lack of acknowledgment. If the timer has 

expired after sending the datagram without receiving an acknowledgment of receipt, the 

datagram is assumed to have been lost and is retransmitted. The sending TCP software 

keeps copies of all unacknowledged datagrams in a buffer until they have been properly 

acknowledged. When this happens, the retransmission timer is stopped, and the 

datagram is removed from the buffer. TCP supports a push function from the upper­ 

layer protocols. A push is used when an application wants to send data immediately and 

confirm that a message passed to TCP has been successfully transmitted. To do this, a 

push flag is set in the ULP connection, instructing TCP to forward any buffered 

information from the application to the destination as soon as possible ( as opposed to 

holding it in the-buffer until it is ready to transmit it). 

3.3 Ports and Sockets 
All upper-layer applications that use TCP ( or UDP) have a port number that 

identifies the application. In theory, port numbers can be assigned on individual 

machines, or however the administrator desires, but some conventions have been 

adopted to enable better communications between TCP implementations. This enables 

the port number to identify the type of service that one TCP system is requesting from 

another. Port numbers can be changed, although this can cause difficulties. Most 

systems maintain a file of port numbers and their corresponding service. 

Typically, port numbers above 255 are reserved for private use of the local 

machine, but numbers below 255 are used for frequently used processes. A list of 

frequently used port numbers is published by the Internet Assigned Numbers Authority 

and is available through an RFC or from many sites that offer Internet summary files for 

downloading. The commonly used port numbers on this list are shown in Table 4.1. The 

numbers O and 255 are reserved. 

Table 4.1. Frequently used TCP port numbers. 

65 



= NumberjjProcess Name !\Description J 

11 jj TCPMUX I TCP Port Service Multiplexer , 

J 5 jJRJE jJRemote Job Entry J 

j1 JI ECHO !I Echo j 

119 
IIDISCARD !!Discard J 

j 11 II USERS II Active Users j 

113 ![DAYTIME !!Daytime I 
117 II Quote II Quotation of the Day I 
j 19 II CHARGEN II Character g~erator _ I 
j20 llFTP-DATA j FileTransferProtocol•Data 

1 

I 

1j 
21 II FTP I File Transfer Protocol•Control 

1123 IITELNET - J~ : 
125 II SMTP I Simple Mail Transfer Protocol j 

'127 \\NSW-FE I\NSW User System Front End \ 

129 llMSG-ICP llMSG-ICP I 
1131 

IIMSG-AUTH IIMSG Authentication I 
l 33 Jj DSP I Display Support P~~-J 
135 J !!Private Print Servers I 
137 jJTIME l!Time I 
J 39 ,~p j Resource Location Protocol J 
l~ J[~~cs l[:raphics _J 
142 jlNAMESERV jjB:ost Name Server I 
:143 IINICNAME l!Who Is j 

149 jjLOGIN !!Login Host Proto~ol J 

q6 



153 IIDQMAIN II Domain Name Server I 
167 IIBOOTPS l[Bootstn,1p Protocol Server 

168 
' 

. IIBOOTPC II Bootstrap Protocol Client 

169 IITFTP II Trivial File T~ansfer Protocol : 

179 II FINGER !!Finger I 
1[101 JIHOSTNAME ~re Host Name Server 

I _J 
r.~~----··-.Jl 1S0-T5.~ JEo T_SAP I 

I 

J 103 llX400 IIX.400 I 
1104 IIX400SND IIX.400 SND I 
I 1Q5 l!CSNET-~S _JjcSNET Mailbox Name Serverj 

1109 _ _JlPOP2 1Est Office Protocol v2 I I 
1110 IIPOP3 ll Post Office Protocol v3 I 

I 
1111 JE Jl Sun_RPC Port~ap _____ J 

11137 IINETBIOS-NS_ IINETBIOS Name Service I 
1138 IINETBIOS-DG l!NEtBIOS Datagram Service I 
1139 llNETBIOS-SS IINETBIOS Session Service I 
1146 \\rsb-TPO \\rso TPO l 
\ 147 .Jl~O-I_P J[rso IP __J l ·- 
1150 llSQL-NET IISQLNET 

I 

I 
1153 !ISGMP IISGMP I 

I 
I }56 IISQLSRV 11 SQL Service I 

J 

1160 _JI SGMP-TRAP_:j~ TRAPS J 
1161 IISNMP IISNMP I 
1162 l!SNMPTAAP IISNMPTRAP I 

67 



•. 
1163 II CMIP-MANAGE JI-CMIP/TCP Manager I 
1164 II CMIP-AGENT I! CMIP/TCP Agent ! 
1165 II XNS-Courier = _J 
1179 11BGP II Border Gateway Protocol l 

Each communication circuit into and out of the TCP layer is uniquely 

identified by a combination of two numbers, which together are called a socket. The 

socket is composed of the IP address of the machine and the port number used by the 

TCP software. Both the sending and receiving machines have sockets. Because the IP 

address is unique across the internetwork, and the port numbers are unique to the 

individual machine, the socket numbers are also unique across the entire 

internetwork. This enables a process to talk to another process across the network, 

based entirely on the socket number. 

The last section examined the process of establishing a message. During the 

process, the sending TCP requests a connection with the receiving TCP, using the 

unique socket numbers. This process is shown in Figure 4.2. If the sending TCP wants 

to establish a Telnet session from its port number 350, the socket number would be 

composed of the source machine's IP address and the port number (350), and the 

message would have a destination fOrt number of 23 (Telnet's port number). The 

receiving TCP has a source port of 23 (Telnet) and a destination port of 350 (the 

sending machine's port). 

ReCJ.W-'St for Com,ection il;Clu,.i.i11g Source Socket Numbe r 

Ac knowle dge me nt with Receivi11g Socket Nmnber 

Sepding TCP Recei·ving TCP 

Figure 4.2. Setting up a virtual circuit with socket numbers. 

68 



The sending and receiving machines maintain a port table, wliich lists all active 

port numbers. The two machines involved have reversed entries for each session 

between the two. This is called binding and is shown in Figure 4.3. The source and 

destination numbers are simply reversed for each connection in the port table. Of 

course, the IP addresses, and hence the socket numbers, are different. 

Soui'ce=;350 De stination== 23 
Somce=351 Destination = 23 

S0u1ce=23 Destination = 350 

Som·ce=400 Destination = 23 
Somce=23 Destination= 351 
Somce=23 Destination= 400 

IvIACHINE A I\IIACHINE B 1vI.A.CHINE C 

t t tt tj 

Figure 4.3. Binding entries in port tables. 

If the sending machine is requesting more than one connection, the source port numbers 

are different, even though the destination port numbers might be the same. For example, 

if the sending machine were trying to establish three Telnet sessions simultaneously, the 

source machine port numbers might be 3 50, 3 51, and 3 52, and the destination port 

numbers would cJ.11 be 23. It is possible for more than one machine to share the same 

destination socket-a process called multiplexing. In Figure 4.4, three machines are 

establishing Telnet sessions with a destination. They all use destination port 23, which 

is port multiplexing. Because the datagrams emerging from the port have the full socket 

information ( with unique IP addresses), there is no confusion as to which machine a 

datagram is destined for. 

SoUJCe Port 350 Destination Port 23 

SoUJCe Port 400 Destination Port 23 

Source Port 354 Destination Port 23 

I ,,. Port 23 

MACHINE A l\,1ACHINE B M.".CHINE C TARGET 

Figure 4.4. Multiplexing one destination port. 

69 



When multiple sockets are established, it is conceivable that more than one 

machine might send a connection request with the same source and destination ports. 

However, the IP addresses for the-two machines are different, so the sockets are still 

uniquely identified despite identical source and destination port numbers. 

3 .4 TCP Communications with the Upper Layers 

TCP must communicate with applications in the upper layer and a network 

system in the layer below. Several messages 
1are defined for the upper-layer protocol to 

TCP communications, but there is no defined method for TCP to talk to lower layers 

(usually, but not necessarily, IP). TCP expects the layer beneath it to define the 

communication method. It is usually assumed that TCP and the transport layer 

communicate asynchronously. The TCP to upper-layer protocol (ULP) communication 

method is well-defined, consisting of a set of service request primitives. The primitives 

involved in ULP to TCP communications are shown in Table 4.2. 

Table 4.2. ULP-TCP service primitives. 

JI Comm_an~ II Parameters Expected I 

II ULP to TCP Service Request Primitives I 
!I ABORT II Local connection name I 
l1ACTIVE--OPEN IJLocatport, remote socket , ] 

11 I Optional: ULP timeout, timeout action, precedence, security, 

! J options 
! ~ . I ACTIVE-OPEN- I Source port, destination socket, data, data length, push flag, 
I WITH-DATA 

I 

i urgent flag 

I l[ Optional: ULP timeout, time.out ac~ion, precedence, security I I 

I ALLOCATE II Local connection name, data length I 
!CLOSE JI Local connection name I 11 

I FULL-PASSIVE- I 
I Local IDOrt, destination socket I 

I J !OPEN 
I 

70 



'I 
I Optional: ULP timeout, timeout action, precedence, security, 

options 

1IRECNVE 
I Local connection name, buffer address, byte count, push flag, 

i urgent flag · 

I I Local connection name, buffer address, data length, push flag, 
IISEND urgent flag 

[_ __________ Jl_~ptional: ULP timeout, timeout a~tion I 
I STATUS jj Local connection name I 
,,UNSPECIFIED- 

!!Local port 

I ; PASSIVE-OPEN 

I I Optional: ULP timeout, timeout action, precedence, security, 

I I options 
II TCP to ULP Service Request Primitives J 
II CLOSING II Local connection name 

I 

I I I Local connection name, buffer address, data length, urgent flag I DELIVER 
I ERROR j Local connection name, error description 

II OPEN-FAILURE II Local connection name I 
[OPEN-ID ___ J Local connection name, remote socket, destination address I 

I 
ii OPEN-SU(:CESS II Local connection name I 

I STATUS 

I Local connection name, source port, source address, remote 

! socket, connection state, receive window, send window, amount 

I RESPONSE I waiting ACK, amount waiting receipt, urgent mode, precedence, 

j security, timeout, timeout action 

II TERMINATE II Local connection name, description I 

71 



3.5 Passive and Active Ports 

TCP enables two methods to establish a connection: active and passive. An 

active connection establishment happens when TCP issues a request for the connection, 

based on an instruction from an upper-level protocol that provides the socket number. A 

passive approach takes place when the upper-level protocol instructs TCP to wait for the 

arrival of connection requests from a remote system (usually from an active open 

instruction). When TCP receives the request, it assigns a port number. This enables a 

connection to proceed rapidly, without waiting for the active process. 

There are two passive open primitives. A specified passive open creates a 

connection when the precedence level and security level are acceptable. An unspecified 

passive open opens the port to any request. The latter is used by servers that are waiting 

for clients of an unknown type to connect to them. TCP has strict rules about the use of 

passive and active connection processes. Usually a passive open is performed on one 

machine, while an active open is performed on the other, with specific information 

about the socket number, precedence (priority), and security levels. Although most TCP 

connections are established by an active request to a passive port, it is possible to op.en a 
connection without a passive port waiting. In this case, the TCP that sends a request for 

a connection includes both the local socket number and the remote socket number. If the 

receivin~ TCP is configured to enable the request (based on the precedence and security 

settings, as well as application-based criteria), the connection can be opened. this 

process is looked at again in the section titled "TCP and Connections." 

3.6 TCP Timers 

TCP uses several timers to ensure that excessive delays are not encountered 

during communications. Several of these timers are elegant, handling problems that are 

not immediately obvious at first analysis. The timers used by TCP are examined in the 

following sections, which reveal their roles in ensuring that data is properly sent from 

one connection to anoth.er. 

3.6.1 The Retransmission Timer 

The retransmission timer manages retransmission timeouts (RTOs), which occur 

when a preset interval between the sending of a datagram and the returning 

acknowledgment is exceeded. The 'value of the timeout tends to vary, depending on the 

72 



network type, to compensate for speed differences. If the timer expires, the datagram is 

retransmitted with an adjusted RTO, which is usually increased exponentially to a 

maximum preset limit. If the maximum limit is exceeded, connection failure is assumed, 

and error messages are passed back to the upper-layer application. 

Values for the timeout are determined by measuring the average time that data 

takes to be transmitted to another machine and the acknowledgment received back, 

which is called the round-trip time, or RTT. From experiments, these RTTs are 

averaged by a formula that develops an expected value, called the smoothed round-trip 

time, or SRTT. This value is then increased to account for unforeseen delays. 

3.6.2 The Quiet Timer 
After a TCP connection is closed, it is possible for datagrams that are still 

making their way through the network to attempt to access the closed port. The quiet 

timer is intended to prevent the just-closed port from reopening again quickly and 

receiving these last datagrams. The quiet timer is usually set to twice the maximum 

segment lifetime (the same value as the Time to Live field in an IP header), ensuring 

that all segments still heading for the port have been discarded. Typically, this can result 

in a port being unavailable for up to 30 seconds, prompting error messages when other 

applications attempt to access the port during this interval. 

3.6.3 The Persistence Timer 
The persistence timer handles a fairly rare occurrence. It is conceivable that a 

receive window might have a value of 0, causing the sending machine to pause 

transmission. The message to restart sending might be lost, causing an infinite delay. 

The persistence timer waits a preset time and then sends a one-byte segment at 

predetermined intervals to ensure that the receiving machine is still clogged. The 

receiving machine resends the zero window-size message after receiving one of these 

status segments, if it is still backlogged. If the window is open, a message giving the 

new value is returned, and communications are resumed. 

3.6.4 The Keep-Alive Timer and the Idle Timer· 
Both the keep-alive timer and the idle timer were added to the TCP 

specifications after their original definition. The keep-alive timer sends an empty packet 

73 



at regular intervals to ensure that the connection to the other machine is still active. If no 

response has been received after sending the message by the time, the idle timer has 

expired, the connection is assumed to be broken. The keep-alive timer value is usually 

set by an application, with values ranging from 5 to 45 seconds. The idle timer is 

usually set to 360 seconds. 

3. 7 Transmission Control Blocks and Flow Control 

TCP has to keep track of a lot of information about each connection. It does this 

through a Transmission Control Block (TCB), which contains information about the 

local and remote socket numbers, the send and receive buffers, security and priority 

values, and the current segment in the queue. The TCB also manages send and receive 

sequence numbers. The TCB uses several variables to keep track of the send and receive 

status and to control the flow of information. These variables are shown in Table 4.3. 

Table 4.3. TCP send and receive variables. 

I Variable Name II Description I 
!Send Variables I 
!ISND.UNA II Send Unacknowledged I 
l1sND.NXT II Send Next I 
l1SNDWNP II Send Window J 
ISND.UP II Sequence number of last urgent set I 
1ISND.WLl II Sequence number for last window update 

IISNDWL2 II Acknowledgment number for last window update 

jsND.PUSH II Sequence number of last pushed __ set I L 
IISS II Initial send sequence number I 
11Receive Variables . I 
1E:CV.NXT _ll Sequence number of next received set I 
!IRCV.WND IINui;nber of sets that can be received J 

74 



•. 
]l Sequence number of last urgent data 

JI Initial receive sequence number 

Using these variables, TCP controls the flow of information between two 

sockets. A sample connection session helps illustrate the use of the variables. It begins 

with Machine A wanting to send five blocks of data to Machine B. If the window limit 

is seven blocks, a maximum of seven blocks can be sent without acknowledgment. The 

SND.UNA variable on Machine A indicates how many blocks have been sent but are 

unacknowledged (5), and the SND.NXT variable has the value of the next block in the 

sequence (6). The value of the SND.WND variable is 2 (seven blocks possible, minus 

five sent), so only two more blocks could be sent without overloading the window. 

Machine B returns a message with the nurnber of blocks received, and the window limit 

is adjusted accordingly. 

The passage of messages back and forth can become quite complex as the 

sending machine forwards blocks unacknowledged up to the window limit, waiting for 

acknowledgment of earlier blocks that have been removed from the incoming cue, and 

then sending more blocks to fill the window again. The tracking of the blocks becomes 

a matter of bookkeeping, but with large window limits and traffic across internetworks 

that sometimes cause blocks to go astray, the process is, in marty ways, remarkable. 

3.8 TCP Protocol Data Units 
As mentioned earlier, TCP must communicate with IP in the layer below (using 

an IP-defined method) and applications in the upper layer (using the TCP-ULP 

primitives). TCP also must communicate with other TCP implementations across 

networks. To do this, it uses Protocol Data Units (PDUs), which are called segments in 

TCP parlance. The layout of the TCP PDU (commonly called the header) is shown in 

Figure 4 .. 5. 

75 



Source Port (16 bits) Destination P01t (16 bits) 

Sequence Numbe r (32 bits) 

Ac knowle dgeme nt Numbe r (32 bits) 

bata 
Re se rve d £ !:.::! ::t: E-< z Offset u t,,; i:.,; ::::-. z Wind.ow (16 bits) 

(4 bits) (6 bits) :::, ~ 0... iz t,; ~ 

Checksum (16 bits) Urge ht Pomte r (16 bits) 

Options and Padding 
' 

Figure 4.5. The TCP Protocol Data Unit. 

The different fields are as follows: 

• Source port: A 16-bit field that identifies the local TCP user (usually an upper­ 

layer application program). 

• Destination port: A 16-bit field that identifies the remote machine's TCP user. 

• Sequence number: A number indicating the current block's position in the 

overall message. This number is also used between two TCP implementations to 

provide the initial send sequence (ISS) number. 

• Acknowledgment number: A number that indicates the next sequence number 

expected, In a backhanded manner, this also shows the sequence number of the 

last data received; it shows the last sequence number received plus 1. 

• Data offset: The number of 32-bit words that are in the TCP header. This field 

is used to identify the start of the data field. 

• Reserved: A 6-bit field reserved for future use. The six bits must be set to 0. 

• U rg flag: If on ( a value of 1 ), indicates that the urgent pointer field is 

significant. 

• Ack flag: If on, indicates that the Acknowledgment field is significant. 

• Psh flag: If on, indicates that the push function is to be performed. 

• Rst flag: If on, indicates that the connection is to be reset. 

76 



• Syn flag: If on, indicates that the sequence numbers are to be synchronized. This 

flag is used when a connection is being established 

• Fin flag: If on, indicates that the sender has no more data to send. This is the 

equivalent of an end-of-transmission marker. 

• Window: A number indicating how many blocks of data the receiving machine 

can accept. 
• Checksum: Calculated by taking the 16-bit one's complement of the one's 

complement sum of the 16-bit words in the header (including pseudo-header) 

and text together. (A rather lengthy process required to fit the checksum properly 

into the header.) 

• Urgent pointer: Used if the urg flag was set; it indicates the portion of the data 

message that is urgent by specifying the offset from the sequence number in the 

header. No specific action is taken by TCP with respect to urgent data; the action 

is determined by the application. 

• Options: Similar to the IP header option field, this is used for specifying TCP 

options. Each option consists of an option number ( one byte), the number of 

bytes in the option, and the option values. Only three options are currently 

defined for TCP: 

0 End of option list 

1 No operation 

2 Maximum segment size 

• Padding: Filled to ensure that the header is a 32-bit multiple. 

Following the PDU or header is the data. The Options field has one useful 

function: to specify the maximum buffer size a receiving TCP implementation can 

accommodate. Because TCP uses variable-length data areas, it is possible for a sending 

machine to create a segment that is longer than the receiving software can handle. The 

Checksum field calculates the checksum based on the entire segment size, including a 

96-bit pseudoheader that is prefixed to the TCP header during the calculation. The 

pseudoheader contains the source address, destination address, protocol identifier, and 

segment length. These are the parameters that are passed to IP when a send instruction 

is passed, and also the ones read by IP when delivery is attempted. 

77 



3.9 TCP and Connections 

TCP has many rules imposed on how it communicates. These rules and the 

processes that TCP follows to. establish a connection, transfer data, and terminate a 

connection are usually presented in state diagrams. (Because TCP is a state-driven 

protocol, its actions depend on the state of a flag or similar construct.) Avoiding overly 

complex state diagrams is difficult, so flow diagrams can be used as a useful method for 

understanding TCP. 

3. 9 .1 Establishing a Connection 

A connection can be established between two machines only if a connection 

between the two sockets does not exist, both machines agree to the connection, and both 

machines have adequate TCP resources to service the connection. If any of these 

conditions are not met, the connection cannot be made. The acceptance of connections 

can be triggered by an application or a system administration routine. 

When a connection is established, it is given certain properties that are valid 

until the connection is closed. typically, these are a precedence value and a security 

value. These settings are agreed upon by the two applications when the connection is in 
the process of being established. In most cases, a connection is expected by two 

applications, so they issue either active or passive open requests. Figure 4.6 shows a 

flow diagram for a TCP open. The process begins with Machine 'A's TCP receiving a 

request for a connection from its ULP, to which it sends an active open primitive to 

Machine B. (Refer back to Table 4.2 for the TCP primitives.) The segment that is 

constructed has the SYN flag set on (set to 1) and lias a sequence number assigned. The 

diagram shows this with the notation "SYN SEQ 50," indicating that the SYN flag is on 

and the sequence number (Initial Send Sequence number or ISS) is 50. (Any number 

could have been chosen.) The application on Machine B has issued a passive open 

instruction to its TCP. When the SYN SEQ 50 segment is received, Machine B's TCP 
I 

sends an acknowledgment back to Machine A with the sequence number of 51. Machine 

B also sets an ISS number of its own. the diagram shows this message as "ACK 51; 

SYN 200," indicating that the message is an acknowledgment with sequence number 51, 

it has the SYN flag set, and it has an ISS of 200. 

78 



Connection Connection 
") 

Active u:i:en Passive 
-.,·pen 

Open l Open 

r i SYN SEQ ,50 ~ 
- . 

Ivlachine A ACK 51; SYN 200 Machine B 
TCP - TCP 

ACK 201 
' ~ 

Figure 4.6. Establishing a connection. 

Upon receipt, Machine A sends back its own acknowledgment message with the 

sequence number set to 201. This is "ACK 20 I" in the diagram. Then, having opened 

and acknowledged the connection, Machine A and Machine B both send connection 

open messages through the ULP to the requesting applications. It is not necessary for 

the remote machine to have a passive open instruction, as mentioned earlier. In this­ 

case, the sending machine provides both the sending and receiving socket numbers, as 

well as precedence, security, and timeout values. It is common for two applications to 

request art active open at the same time. This is resolved quite easily, although it does 

involve a little more network traffic. 

3. 9 .2 Data Transfer 

Transferring information is straightforward, as shown in Figure 4.7. For each 

block of data received by Machine A's TCP from the ULP, TCP encapsulates it and 

sends it to Machine B with an increasing sequence number. After Machine B receives 

the message, it acknowledges it with a segment acknowledgment that increments the 

next sequence number ( and hence indicates that it has received everything up to that 

sequence number). Figure 4.7 shows the transfer of two segments of information-one 

each way. 

79 



Received 
D 

Received 
D Send l,Jata .1,Jata Send 

D::j.ta J l Data 

~ SYN SEQ 100 ~ - - ACKlOl ~ 
DATA SEQ 250 

Machine A - Machine B 
TCP ACK 251 - TCP 

Figure 4. 7. Data transfers. 

The TCP data transport service actually embodies six subservices: 

• Full duplex: Enables both ends of a connection to transmit at any time, even 

simultaneously, 

• Timeliness: The use of timers ensures that data is transmitted within a 

reasonable amount of time. 

• Ordered: Data sent from one application is received in the same order at the 

other end. This occurs despite the fact that the datagrams might be received out 

of order through IP, because TCP reassembles the message in the correct order 

before passing it up to the higher layers. 

• Labeled: All connections have an agreed-upon precedence and security value. 

• Controlled flow: TCP can regulate the flow of information through the use of 

buffers and window limits. 

• Error correction: Checksums ensure that data is free of errors (within the 

checksum algorithm's limits). 

80 



•. 
3.9.3 Closing Connections 

To close a connection, one of the TCPs receives a close primitive from the ULP 

and issues a message with the FIN flag set on. This is shown in Figure 4.8. In the figure, 

Machine A's TCP sends the request to close the connection to Machine B with the next 

sequence number. Machine B then sends back an acknowledgment of the request and its 

next sequence number. Following this, Machine B sends the close message through its 

ULP to the application and waits for the application to acknowledge the closure. This 

step is not strictly necessary; TCP can close the connection without the application's 

approval, but a well-behaved system would inform the application of the change in 

state. 

Connection Request Connection 
to Cl L;lOsea ,u v.ose Closed 

Close J Close J 

i FIN'SEQ 350 
J 

~ - SEQ 475; ACK 351 - 
_ FIN SEQ 475; ACK 351 

Machine A ~ I\•1a.c hine B 

TCP ACK 476 - TCP - 

Figure 4.8. Closing a connection e " 

After receiving approval to close the connection from the application ( or after 

the request has timed out), Machine B's TCP sends a segment back to Machine A with 

the FIN flag set. Finally, Machine A acknowledges the closure, and the connection is 

terminated. An abrupt termination of a connection can occur when one side shuts down 

the socket. This can be done without any notice to the other machine and without regard 

to any information in transit between the two. Aside from sudden shutdowns caused by 

malfunctions or power outages, abrupt termination can be initiated by a user, an 

application, or a system monitoring routine that judges the connection worthy of 

termination. The other end of the connection might not realize that an abrupt 

termination has occurred until it attempts to send a message and the timer expires. 

81 



To keep track of all the corlnections, TCP uses a connection table. Each existing 

connection has an entry in the table that shows information about the end-to-end 

connection. The layout of the TCP connection table is shown in Figure 4.9. 

STATE LOCAL LOCAL REivIOTE REI\o10TE 
ADDRESS PORT ADDRESS PORT 

Connection 1 

, 

Connection 2 

-, 

Connection 3 

Connection n 

Figure 4.9. The TCP connection table. 

The meaning of each column is as follows: 

• State: The state of the connection ( cldsed, closing, listening, waiting, and so 

on). 

• Local address: The IP address for the connection. When in a listening state, this 

is set to 0.0.0.0. 

.• Local port: The local port number. 

• Remote address: The remote machine's IP address. 

• Remote port: The port number of the remote connection. 

82 



3.10 User Datagram Protocol (UDP) 

TCP is a connection-based protocol. There are times when a connectionless 

protocol is required, so UDP is used. UDP is used with both the Trivial File Transfer 

Protocol (TFTP) and the Remote Call Procedure (RCP). Connectionless 

communications don't provide reliability, meaning there is no indication to the sending 

device that a message has been received correctly. Connectionless protocols also do 

not offer error-recovery capabilities=which must be either ignored or provided in the 

higher or lower layers. UDP is. much simpler than TCP. It interfaces with IP (or other 

protocols) without the bother of flow control or error-recovery mechanisms, acting 

simply as a sender and receiver of datagrams. 
The UDP message header is much simpler than TCP's. It is shown in Figure 

4.10. Padding can be added to the datagram to ensure that the message is a multiple of 

1~ bits. 

SoJJJce Port (16 bits) Destination Po11 ('16 bits) 

Length (16 bits) Checksum (16 bits) 

Data .... 

Figure 4.10. The UDP header. 

The fields are as follows: 
• Source port: An optional field with the port number. If a port number is not 

specified, the field is set to 0. 

• Destination port. The port on the destination machine. 

• Length: The length of the datagram, including header and data. 

• Checksum: A 16-bit one's complement of the one's complement sum of the 

datagram, including a pseudoheader similar to that of TCP. 

83 



The UDP checksum field is optional, but if it isn't used, no checksum i-s applied 

to the data segment because IP's checksum applies only to the IP header. If the 

checksum is not used, the field should be set to 0. 

84 



CHAPTER4 

WINSOCK AND THE SOCKET ltROGRAMMING 

INTERFACE 
4.1 Winsock 

For some Windows and Windows 95 users, Winsock is the easiest method to get 

into TCP/IP because it is available from many public domain, BBS, and online service 

sites. There are several versions of Winsock, some of which are public domain or 

shareware. We will look at two versions of Winsock, one for Windows 3.X and another 

for Windows 95. We have chosen the popular Trumpet Winsock implementations for 

both operating systems because they are shareware, readily available, and well 

supported. Winsock is short for Windows Sockets, originally developed by Microsoft. 

Released in 1993, Windows Sockets is an interface for network programming in the 

Windows environment. Microsoft has published the specifications for Windows 

Sockets, hence making it an open application programming interface (API). The 

Winsock API (called WSA) is a library of function calls, data structures, and 

programming procedures that provide this standardized interface for applications. The 

second release of Winsock, called Winsock version 2, was release~ in mid 1995. 

4.1.1 Trumpet Winsock 

Trumpet Winsock is a shareware implementation of Winsock produced by 

Trumpet Software International. Trumpet Winsock is available for Windows 3.X and 

Windows 95 systems. Registration of the Winsock package, developed in Australia, is 

$25 US. Trumpet Winsock lets you use several different protocols including PPP and 

SLIP for connection to the Internet or remote networks, direct connection using TCP/IP, 

and the BOOTP protocol. Trumpet Winsock allows dynamic IP addressing, which is 
I 

necessary with many Internet Service Providers. The Trumpet Winsock files are usually 

provided in an archive ZIP fi)e, and should be extracted into a new subdirectory on your 

system. The primary files in the Trumpet Winsock distribution are 

WINSOCK.DLL: The primary protocol stack for Winsock 

TCPMAN.EXE: Manages the communications between WINSOCK.DLL and the 

network 
85 



TRUMPWSK.INI: Contains Winsock variable settings 

HOSTS: A list of hosts that Winsock is aware of 

SERVICES: A list of services supported by Winsock 

PROTOCbL: A list of protocols supported by Winsock 
' There are a number of sample configuration files included in the archive, as well as 

utilities such as PING and HOP. Some of the files in the Winsock archive, such as 

HOSTS, PROTOCOL, and SERVICES, mirror UNIX files of the same name. 

4 .1.2 Installing Trumpet Winsock 

The installation process for Trumpet Winsock is the same whether you are using 

SLIP/PPP for connection or a packet driver for LAN-based operations. Begin the 

installation by adding the directory holding the Trumpet Winsock files to your PATH. 

The files should, of course, be extracted from the ZIP file they are usually supplied in. 

After the path has been modified, reboot your machine to effect the change. 

You can create a Windows program group for the Trumpet Winsock system by adding a 

new program group from the Program Manager menus. (Select File menu, the New 

menu item, and then Program Group.) Create a title, such as Trumpet Winsock. for the 

new program group. 

Next, create a Program Icon for the TCPMAN program (the primary Trumpet 

Winsock program) by either creating a new Program Item from the Program Manager or 

opening the File Manager and dragging the TCPMAN.EXE entry from its directory to 

the Trumpet Winsock program group. Windows will prompt you for any information it 

needs. The prograqi icon is read from the distribution files if the path is properly set. 

To test the installation of the path and the Windows icon, click the TCPMAN icon. If 

you receive error messages, either the PATH is not set properly or the program icon has 

not been properly defined. Because you are primarily interested in using Winsock on a 

TCP/IP network,·ignore configuring PPP and' SLIP and concentrate on the TCP/IP 

stack. 

86 



•. 
4.1.3 Configuring the TCP/IP Packet Driver 
Trumpet Winsock relies on a program called WINPKT to provide TCP/IP packet 

capabilities under Windows. After you create a program group for Winsock, you need to 

set up the packet driver information in the network files. 

You will need a packet driver for your system, which is pot included with most Trumpet 

Winsock distributions. In many cases, the network card vendor includes a disk with a 

packet driver on it. If not, one of the best sources for a packet driver is the Crynwr 

Packet Driver collection, a library of different packet drivers available from many 

online, B-BS, FTP, and WWW sites. The packet driver specifications are added to your 

network startup batch file, usually AUTOEXEC.B;:\T for DOS-based systems. 

The process for configuring Trumpet Winsock for LAN operation is quite simple. Set 

the IRQ and I/0 address of the packet driver and add the packet driver to your system. 

A typical entry in the network batch file looks like this: 

ne2000 Ox60 2 Ox3 00 

WINPKT Ox60 

This sets the network to use an NE2000 (Novell) type card, with 1/0 address of 

300H, IRQ of 2, and a vector of 60. Several configurations are usually provided with the 

Trumpet Winsock distribution, although it is easy to derive your own from the network 

interface card manufacturer's documentation. 

To set up Trumpet Winsock for a packet driver, use the Setup screen that 

appears when TCPMAN is first launched, or use the menus within TCPMAN to display 

the setup screen. Deselect both Internal SLIP and Internal PPP settings. If either of them 

are checked, the packet driver will not launch properly. Enter the IP address, netmask, 

name server IP address, and domain name information. You may also modify the entries 

for Demand Load Time-out, MTU, TCP R WIN, TCP MS.S, and TCP RTO MAX. See 

the section on SLIP/PPP configuration above for more details on any of these settings. 

The default values used for a packet driver are different than those for a SLIP/PPP 

setting. If you are using BOOTP or RARP to determine your machine IP address, enter 

the proper protocol name in the IP address field. 

The Packet Vector field should be set to the vector you used in the network card 

description, or you can leave it as 00 to let Trumpet Winsock search for the packet 

87 



driver. Aftet the configuration is saved, restart TCPMAN and the network will be 

available (if the configuration and packet drivers are properly set). A ping command or 

similar utility will verify the packet driver operation is correct. 

4.2 The Socket Programming Interface 
Because the original socket interface was developed for UNIX systems, today's text has 

a decidedly UNIX-based orientation. However, the same principles apply to most other 

operating systems that support TCP/IP. 

4.2.1 Development of the Socket Programming Interface 
TCP/IP is fortunate because it has a well-defined application programming 

interface (API), which dictates how an application uses TCP/IP. This solves a basic 

problem that has occurred on many other communications protocols, which have several 

approaches to the same problem, each incompatible with the other. The TCP/IP API is 

portable (it works across all operating systems and hardware that support TCP/IP), 

language-independent (it doesn't matter which language you use to write the 

application), and relatively uncomplicated. The Socket API was developed at the 

University of California at Berkeley as part of their BSD 4. lc UNIX version. Since then 

the API has been 'modified and enhanced but still retains its BSD flavor. Not-to be 

outdone, AT&T (BSD's rival in the UNIX market) introduced the Transport Layer 

Interface (TLI) for TCP and several other protocols. One of the strengths of the Socket 

· API and TLI is that they were not developed exclusively for TCP/IP but are intended for 

use with several communications protocols. The Socket interface remains the most 

widespread API in current use, although several newer interfaces are being developed. 

The basic structure of all socket programming commands lies with the unique 

structure of UNIX I/0. With UNIX, both input and output are treated as simple 

pipelines, where the input can be from anything and the output cart go anywhere. The 

UNIX I/0 system is sometimes referred to as the open-read-write-close system, because 

those are the steps that are performed for each I/0 operation, whether it involves a file, a 

device, or a communications port. Whenever a file is involved, the UNIX operating 

system gives the file a file descriptor, a small number that uniquely identifies the file. A 

program can use this file descriptor to identify the file at any time. (T4e same holds true 

for a device; the process is the same.) A file operation uses an open function to return 

88 



the file descriptor, which is used for the read (transfer data to the user's process) or write 

(transfer data from the user process to the file) functions, followed by a close function to 

terminate the file operation. The open function takes a filename as an argument. The 

read and write functions use the file descriptor number, the address of the buffer in 

which to read or write the information, and the number of bytes involved. The close 

function uses the file descriptor. The system is easy to use and simple to work with. 

TCP/IP uses the same idea, relying on numbers to uniquely identify an end point 

for communications (a socket). Whenever the socket number is used, the operating 

system can resolve the socket number to the physical connector. An essential difference 

between a file descriptor and a socket number is that the socket requires some functions 

to be performed prior to the establishment of the socket (such as initialization). In 

techno-speak, 11 a file descriptor binds to a specific file or device when the open function 

is called, but the socket can be created without binding them to a specific destination at 

all (necessary for UDP), or bind them later (for TCP when the remote address is 

provided). 11 The same open-read-write-close procedure is used with sockets. The process 

was actually used literally with the first versions of TCP/IP. A special file called 

/dev/tcp was used as the device driver. The complexity added by networking made this 

approach awkward, though, so a library of special functions (the API) was developed. 

The essential steps of open, read, write, and close are still followed in the protocol API. 

4.2.2 Socket Services 
There are three types of socket interfaces defined in the TCP/IP API. A socket 

can be used for TCP stream communications, in which a connection between two 

machines is created. It can be used for UDP datagram communications, a 

connectionless method of passing information between machines using packets of a 

predefined format. Or it can be used as a raw datagram process, in which the datagrams 

bypass the TCP/UDP layer and go straight to IP. The latter type arises from the fact that 

the socket API was not developed exclusively for TCP/IP. 

The presence of all three types of interfaces can lead to problems with some parameters 

that depend exclusively on the type of interface. You must always bear in mind whether 

TCP or UDP is used. There are six basic communications commands that the socket 

API addresses through the TCP layer: 

open: Establishes a socket 

89 



send: Sends data to the socket 

receive: Receives data from a socket 

status: Obtains status information about a socket 

close: Terminates a connection 

abort: Cancels an operation and terminates the connection 

All six operations are logical and used as you would expect. The details for each 

step can be quite involved, but the basic operation remains the same. Many of the 

functions have been seen in previous days when dealing with specific protocols in some 

detail. Some of the functions (such as open) comprise several other functions that are 

available if nec·essary ( such as establishing each end of the connection instead nf both 

ends at once). Despite the formal definition of the functions within the API 

specifications, no formal method is given for how to implement them. There are two 

logical choices: synchronous, or blocking, in which the application waits for the 

command to complete before continuing execution; and asynchronous, or nonblocking, 

in which the application continues executing while the API function is processed. In the 
I 

latter case, a function call further in the application's execution can check the API 

functions' success and return codes. The problem with the synchronous or blocking 

method is that the application must wait for the function call to complete. If timeouts are 

involved, this can cause a noticeable delay for the user. 

4.2.2.1 Transmission Control Block 
The Transmission Control Block (TCB) is a complex data structure that contains 

details about a connection. The full TCB has over fifty fields in it. The exact layout and 

contents of the TCB are not necessary for today's material, but the existence of the TCB 

and the nature of the information it holds are key to the behavior of the socket interface. 

4.2.2.2 Creating a Socket 
The API lets a user create a socket whenever necessary with a simple function 

call. The function requires the family of the protocol to be used with the socket (so the 

operating system knows which type of socket to assign and how to decode information), 

the type of communication required, and the specific protocol. Such a function call is 

written as follows: 

90 



socket(family, type, protocol) 

The family of the protocol actually specifies how the addresses are interpreted. 

Examples of families are TCP/IP ( coped as AF_ INET), Apple's Apple Talk 

(AF_ APPLET ALK), and UNIX filesystems (AF_ UNIX). The exact protocol within the 

family is specified as the protocol parameter. When used, it specifically indicates the 

type of service that is to be used. 

The type parameter indicates the type of communications used. It can be a 

connectionless datagram service ( coded as SOCK_ DGRAM), a stream delivery service 

(SOCK _STREAM), or a raw type (SOCK _RAW). The result from the function call is 

an integer that can be assigned to a variable for further checking. 

4.2.2.3 Binding the Socket 
Because a socket can be created without any binding to an address, there must be 

a function call to complete this process and establish the full connection. With the 

TCP/JP protocol, the socket function does not supply the local port number, the 

destination port, or the JP address of the destination. The bind function is called to 

establish the local port address for the conhection. Some applications ( especially on a 

server) want to use a specific port for a connection. Other applications are content to let 

the protocol software assign a port. A specific port can be requested in the bind 

function. If it is available, the software allocates it and returns the port information. If 

the port cannot be allocated (it might be in use), a return code indicates an error in port 

assignment. 

The bind function has the following format: 

bind(socket, local_ address, address _length) 

socket is the integer number of the socket to which the bind is completed; local_ address 

is the local address to which the bind isi performed; and address _length is an integer that 

gives the length of the address in bytes. The address is not returned as a simple number 

but has the structure shown 'in Figure 14 .1. 

91 



Address Family I Aclcl:ress (Bytes O and 1) 

Address (Bytes 2 ttirough 5) 

Address {Bytes 6 through 9) 

Address (Bytes 10 through 13) 

Figure 14.1. Address structure used by the socket API. 

The address data structure (which is called usually called sockaddr for socket 

address) has a 19-bit Address Family field that identifies the protocol family of the 

address. The entry in this field determines the format of the address in the following 

field (which might contain other information than the address, depending on how the 

protocol has defined the field). The Address field can be up to 14 bytes in length, 

although most protocols do not need this amount of space. 

TCP/IP has a family address of 2, following which the Address field contains 

both a protocol port number (16 bits) and the IP address (32 bits). The remaining eight 

bytes are unused. This is shown in Figure 14.2. Because the address family defines-bow 

the Address field is decoded, there should be no problem with TCP/IP applications 

understanding the two pieces of information in the Address field. 

Address Famil y (value = 2) I Protec ol Port (16 bi ts) 

IP Addre ss (32 bi ts) 

Unused 

Unused 

Figure 14.2. T1'e address structure for TCP!f P. 

4.2.2.4 Connecting to the Destination 
After a local socket address and port number have been assigned, the destination 

socket can be connected. A one-ended connection is referred to as being in an 

92 



unconnected state, whereas a two-ended (complete) connection is in a connected state. 

After a bind function, an unconnected state exists. To become connected, the destination 

socket must be added to complete the connection. 

To establish a connection to a remote socket, the connect function is used. The 

connect function's format is 

connect(socket, destination_ address, address _length) 

The socket is the integer number of the socket to which to connect; the 

destination address is the socket address data structure for the destination address 

(using the same format as shown in Figure 14.1); and the addresslength is the length of 

the destination address in bytes. 
The manner in which connect functions is protocol-dependent. For TCP, connect 

establishes the connection between the two endpoints and returns the information about 

the remote socket to the application. If a connection can't be established, an error 

message is generated. For a connectionless protocol such as UDP, the connect function 

is still necessary but stores only the destination address for the application. 

4.2.2.5 The open Command 

The open command prepares a communications port for communications. This 

is an alternative to the combination of the functions shown previously, used by 

applications for specific purposes. There are really three kinds of open commands, two 

of which set a server to receive incoming requests and the third used by a client to 

initiate a request. With every open command, a TCB is created for that connection. 

The three open commands are an unspecified passive open (which enables a server to 

wait for a connection request from any client), a fully specified passive open (which 

enables a server to wait for a connection request from a specific client), and an active 

open (which initiates a connection with a server). The input and output expected from 

each command are shown in Table 14.1. 

93 



Table 14.1. Open command parameters. 

'Type II Input II Output I I 

• 

I local 

Unspecified j local port connection 
I 

_Jname I 
local 

passive open 
Optional: timeout, precedence, security, maximum 

connection 

J I segment size 

I name- 
I 

! I local port, remote IP address, remote port Optional: local 
Fully specified I timeout, precedence, security, maximum segment connection 

1 

passive open I size __J name 

I local port, destination IP address, destination port loca1 I 
/ Active open Optional: timeout, precedence, security, maximum connection 

I . segment size name 
I __J 

When an open command is issued by ,an application, a set of functions within the 

socket interface is executed to set up the TCB, initiate the socket number, and establish 

preliminary values for the variables used in the TCB and the application. The passive 

open command is issued by a server to wait for incoming requests. With the TCP 

( connection-based) protocol, the passive open issues the following function calls: 

socket: Creates the sockets and identifies the type of communications. 

bind: Establishes the server socket for the connection. 

listen: Establishes a client qµeue. 

accept: Waits for incdming connection requests on the socket 

The active open command is issued by a client For TCP, it issues two functions: 

socket: Creates the socket and identifies the communications type. 

connect: Identifies the server's IP address and port; attempts to establish 

communications. 

If the exact port to use is specified as parl of the open command, a bind function call 

replaces the connect function. 

94 



4.2.2.6 Sending Data 

There are five functions within the Socket API for sending data through a 

socket. These are send, sendto, sendmsg, write, and writev. Not surprisingly, all these 

functions send data from the application to TCP. They do this through a buffer created 

by the application (for example, it might be a memory address or a character string), 

passing the entire buffer to TCP. The. send, write, and writev functions work only with a 

connected socket because they have no provision to specify a destination. address within 

their function call. The format of the send function is simple. It takes the local socket 

connection number, the buffer address for the message to be sent, the length of the 

message in bytes, a Push flag, and an Urgent flag as parameters. An optional timeout 

might be specified. Nothing is returned as output from the send function. The format is 

send(socket, buffer_ address, length, flags) 

The sendto and sendmsg functions are similar except they enable an application to send 

a message through an unconnected socket. They both require the destination address as 

part of their function call. The sendmsg function is simpler in format than the sendto 

function, primarily because another data structure is used to hold information. The 

sendmsg function is often used when the format of the sendto function would be 

awkward and inefficient in the application's code. Their formats are 

sendto(socket, buffer_ address, length,flags, destination, address _length)- 

sendmsgtsoczer, message _structure,flags) 

The last two parameters in the sendto function are the destination address and the length 

of the destination address. The address is specified using the format shown in Figure 

14 .1. The message_ structure of the sertdmsg function contains the information left out 

of the sendto function call. The format of the message structure is shown in Figure 14.3. 

95 



Pointer to Socket Address , 
S~ze of Socket Address (in bytes) 

Pointer to iove c tor List (Message) 

Length of'iovector list 

De stiha tion Address 

Length of Desination Address 

Figure 14.3. The message structure used by sendmsg. 

The fields in the sendmsg message structure give the socket address, size of the 

socket address, a pointer to the iovector, which contains information about the-message 

to be sent, the length of the iovector, the destination address, and the length of the 

destination address. The iovector is an address for an array that points to the message to 

be sent. The array is a set of pointers to the bytes that comprise the message. The format 

of the iovector is simple. For each 32-bit address to a memory location with a chunk of 

the message, a correspondin~ 32-bit field holds the length of the message in that 

memory location. This format is repeated until the entire message is specified. This is 

shown in Figure 14.4. The iovector format enables a noncontiguous message to be sent. 

In other words, the first part of the message can be in one location in memory, and the 

rest is 'separated by other information. This can be useful because it .saves the 

application from copying long messages into a contiguous location. 

Pointer to Message Block 1 (32b.its) 

Length of'Message in Block 1 (32 bits) 

Pointer to Message Block2 (32bits) 
' 

Length of'Message i1\Block2 (32bits) 
I 

Pointer to Message in Block n (32 bits) 

Length of Message in Block n (32 bits) 
l 

Figure 14.4. The iovector format. 

96 



The write function takes three arguments: the socket number, the buffer address of the 

message to be sent, and the length of the message to send. The format of the function 

call is 

write(socket, buffer _ address, length) 

The writev function is similar to write except it uses the iovector to hold the message. 

This lets it send a message without copying it into another memory address. The format 

ofwritev is 

writev(socket, iovector, length) 

where length is the number of entries in iovector. 

The type of function chosen to send data through a socket depends on the type of 

connection used and the level of complexity of the application. To a considerable 

degree, it is also a personal choice of the programmer. 

4.2.2.7 Receiving Data 
Not surprisingly, because there are five functions to send data through a socket, 

there are five corresponding functions to receive data: read, readv, recv, recvfrom, and 

recvmsg. They all accept incoming data from a socket into a reception buffer. The 

receive buffer can then be transferred from TCP to the application. 

The read function is the simplest and can be used only when a socket is connected. Its 

format is 

read(socket, buffer, length) 

The first parameter is the number of the socket or a file descriptor from which to read 

the data, followed by the memory address in which to store the incoming data, and the 

maximum number of bytes to be read. 

As with writev, the readv command enables incoming messages to be placed in 

noncontiguous memory locations through the use of an iovector. The format of readv is 

readv(socket, iovector, length) 

97 



' 
length is the number of entries in the iovector. The format of the iovector is the same as 

mentioned previously and shown in Figure 14.4. 

The recv function also can be used with connected sockets. It has the format 

recv(socket, buffer_ address, length,jlags) 

which corresponds to the send function's arguments. 

The recvfrom and recvmsg functions enable data to be read from an unconnected 

socket. Their formats include the sender's address: 

recvfrom(socket, buffer_ address, length,jlags, source_ address, address _length) 

recvmsg(socket, message _structure,jlags) 

The message structure in the recvmsg function corresponds to the structure in sendmsg. 

(See Figure 14.3.) 

4.2.2.8 Server Listening 
A server application that expects clients to call in to it has to create a socket. 

(using socket), bind it to a port (with bind), then wait for incoming requests for data. 

The listen function handles problems that could occur with this type of behavior by 

establishing a queue for incoming connection requests. The queue prevents bottlenecks 

and collisions, such as when a new request arrives before a previous one has been 

completely handled, or two requests arrive simultaneously. 

The listen function establishes a buffer to queue incoming requests, thereby avoiding 

losses. The function lets the socket accept incoming connection requests, which are all 

,sem· to the queue for future processing. The function's format is 

listen(socket, qu<:ue _length) 

where queue _length is the size of the incoming buffer. If the buffer has room, incoming 

requests for connections are added to the buffer and the application can deal with them 

in the order of reception. If the buffer is full, the connection request is rejected. 
::) 

98 



•. 
After the server has used listen to set up the incoming connection request queue, the 

accept function is used to actually wait for a connection. The format of the function is 

accept(socket, address, length) 

socket is the socket on which to accept requests; address is a pointer to a structure 
similar to Figure 14. 1; and length is a pointer to an integer showing the length of the 

address. 
When a connection request is received, the protocol places thy address of the 

client in the memory location indicated by the address parameter, and the length of that 

address in the length location. It then creates a new socket that has. the client and server 

connected together, sending back the socket description to the client. The socket on 

which the request was received remains open for other connection requests. This 

enables multiple requests for a connection to be processed, whereas if that socket was 

closed down with each connection request, only one client/server process could be 

handled at a time. 
Orte possible special occurrence must be handled on UNIX systems. It is 

possible for a single process to wait for a connection request on multiple sockets. This 

reduces the number of processes that monitor sockets, thereby lowering the amount of 

overhead the machine uses. To provide for this type of process, the select function is. 

used. The format of the function is 

select(num ~ desc, in_ desc, out_ desc, exeep _ desc, timeout) 

num _ desc is the number of sockets or descriptors that are monitored; in_ desc and 

out_ desc are pointers to a bit mask that indicates the sockets or file descriptors to 

monitor for input and output, respectively; excep _ desc is a pointer to a bit mask that 

specifies the sockets or file descriptors to check for exception conditions; and timeout is 

a pointer to an integer that indicates how long to wait (a value of O indicates forever). 

To use the select function; a server creates all the necessary sockets first, then calls 

select to determine which ones are for input, output, and exceptions. 

99 



4.22.9 Getting Status Information 

Several status functions are used to obtain information about a connection. They 

can be used at any time, although they ate typically used to establish the integrity of a 

connection in case of problems or to control the behavior of the socket. 

The status functions require the name of the local connection, and they return a set of 

information, which might include the local and remote socket names, local connection 

name, receive and send window states, number of buffers waiting for an 

acknowledgment, number of puffers waiting for data, and current values for the urgent 

state, precedence, security, and timeout variables. Most of this information is read from 

the Transmission Control Block (TCB). The format of the information and the exact 

contents vary slightly, depending on the implementation. 

The function getsockopt enables an application to query the socket for 

information. The function format is 

getsockopt(socket, level, option _id, option _result, length) 

socket is the number of the socket; level indicates whether the function refers to the 

socket itself or the protocol that uses it; option _id is a single integer that identifies the 

type of information requested; option _result is a pointer to a memory location where the 

function should place the result of the query; and length is the length of the result. 

The corresponding setsockopt function lets the application set a value for the socket. 

The function's format is the same as getsockopt except that option _result points to the 

value that is to be set, and length is the length of the value. 
Two functions provide infon;nation about the local address of a socket. The getpeername 

function returns the address of the remote end. The getsockname function returns the 

local address of a socket. They have the following formats: 

getpeername(socket, destination_ address, address _length) 

getsockname( socket, local_ address, address _length) 

The addresses in both functions are pointers to a structute of the format shown in Figure 

14 .1. Two host name functions for BSD UNIX are gethostname and sethostname, which 

100 



enable an application to obtain the name of the host and set the host name (if 

permissions allow). Their formats are as follows: 

sethostname(name, length) 

gethostname(name, length) 

The name, is the address of an array that holds the name, and the length is an integer that 

gives the name's length. 

A similar set of functions provides for domain names. The functions setdomainname 

and getdomainname enable an application to obtain or set the domain names. Their 

formats are 

setdomainname(name, length) 

getdomainname(name, length) 

1J.be parameters are the same as with the sethostname and gethostname functions, except 

for the format of the name (which reflects domain name format). 

4 .2 .2 .10 Closing a Connection 
The close function closes a connection. It requires only the local connection 

name to complete the process. It also takes care of the TCB and releases any variable 

created by the connection. No output is generated. 

The close function is initiated with the call 

close( socket) 

where the socket name is required. If an application terminates abnormally, the 

operating system closes all sockets that were open prior to the termination. 

101 



4.2.2.11 Aborting a Connection 
The abort function instructs TCP to discard all data that currently resides in send 

and receive buffers and close the connection. It takes the local connection name as 

input. No output is generated. This function can be used in case of emergency shutdown 

routines, or in case of a fatal failure of the connection or associated software. 

The abort function is usually implemented by the close() call, although some special 

instructions might be available with different implementations. 

4.2.2.12 UNIX Forks 
UNIX has two system calls that can affect sockets: fork and exec. Both are 

frequently used by UNIX developers because of their power. (In fact, forks are one of 

the most powerful tools UNIX offers, and one that most other operating systems lack.) 

For simplicity, I deal with the two functions as though they perform the same task. 

A fork call creates a copy of the existing application as a new process and starts 

executing it. The new process has all the original's file descriptors and socket 

information. This can cause a problem if the application programmer didn't take into 

account the fact that two ( or more) processes try to use the same socket ( or file) 

simultaneously. Therefore, applications that can fork have to take into account potential 

conflicts and code around them by checking the status of shared sockets. 

The operating system itself keeps a table of each socket and how many processes 

have access to it. An internal counter is incremented or decremented with each process's 

open or close function call for the socket. When the last process using a socket is 

terminated, the socket is permanently closed. This prevents one forked process from 

closing a socket when its original is still using it. 

102 



• 

CONCLUSION 

Internet Protocols are the standard, routable entrise networking protocols. All modern 

operating systems offer TCP/IP support and most large networks rely on TCP/IP for 

much of their network traffic. This is a technology for connecting dissimilar systems. 

Many standard connectivity utilities are available to access and transfer data between 

dissimilar systems, including File Transfer Protocol and Telnet. It provides a robust, 

scalable, cross-platform client/server framework. TCP/IP offers the socket interface, 

which is ideal for developing client/server applications that can run on Sockets­ 

compliant stacks from other venders. Sockets applications can also advantage of other 

networking protocols such as NWLink used in Novell Net Ware networks. Internet 

Protocols provide a method of gaining access to the Internet. The internet consists of 

thousands of network wordwide connecting research facilities, universities, liberaries, 

government agencies and private companies. 

103 



REFERENCES 

[1] James Chellis, c;harles Perkings, Matthew Strebe, "Networking Essentials", SYBEX 

Publishers 1999. 

[2] James Chellis, "Windows 2000 Network Infra Structure" SYBEX Publishers 2000 

[3] Charles W. "Understanding TCP/IP" BPB Publishers 1996 

http://www.us-epanorama.net 

http://www.microsoft.com 

http://WWw.commweb.com 

htt:p ://www.oreily.com 

104 


	Page 1
	Titles
	\l!m11,~.'!I 

	Images
	Image 1
	Image 2


	Page 2
	Titles
	ACKNQWLEDGEMENTS 

	Images
	Image 1
	Image 2
	Image 3


	Page 3
	Titles
	ABSTRACT 


	Page 4
	Titles
	TABLE OF CONTENTS 
	ACKNOWLEDGEMENTS 
	TABLE OF CONTENTS 

	Images
	Image 1

	Tables
	Table 1


	Page 5
	Titles
	CHA.l>TER TWO: THE INTERNET PROTOCOL 33 

	Images
	Image 1

	Tables
	Table 1


	Page 6
	Page 7
	Titles
	CHAPTER FOUR: WINSOCK AND THE SOCKET 
	PROGRAMMING INTERFACE 85 

	Tables
	Table 1


	Page 8
	Titles
	CONCLUSION 
	103 

	Images
	Image 1

	Tables
	Table 1


	Page 9
	Titles
	.. 
	INTRODUCTION 


	Page 10
	Titles
	CHAPTER I 
	INTRODUCTION TO TCP/If AND THE INTERNET 


	Page 11
	Titles
	1.1 An Overview of TCP/IP Components 

	Tables
	Table 1
	Table 2


	Page 12
	Titles
	1.1.1 Telnet 
	1.1.2 File Transfer Protocol 
	1.1.3 Simple Mail Transfer Protocol 
	1.1.4 Kerberos 

	Images
	Image 1


	Page 13
	Titles
	1.1.5 Domain Name System 
	1.1.6 Simple Network Management Protocol 
	1.1.1 Network File System 
	1.1. 8 Remote Procedure-Call 

	Images
	Image 1
	Image 2


	Page 14
	Titles
	1.1.9 Trivial File Transfer Protocol 
	1.1.10 Transmission Control Protocol 
	1.1. ! 1 User Datagram Protocol 
	1.1.12 Internet Protocol 
	1.1.13 Internet Control Message Protocol 
	1.2 TCP/IP History 


	Page 15
	Page 16
	Titles
	1.3 Berkeley UNIX Implementations and TCP/IP 
	8. 

	Images
	Image 1


	Page 17
	Titles
	1.4 OSI and TCP/IP 


	Page 18
	Images
	Image 1

	Tables
	Table 1
	Table 2


	Page 1
	Titles
	1.6 The Internet 

	Images
	Image 1
	Image 2


	Page 2
	Titles
	1.5 TCP/IP and Ethernet 

	Images
	Image 1


	Page 3
	Titles
	1.6.1 The Structure of the Internet 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 4
	Images
	Image 1
	Image 2


	Page 5
	Titles
	1.6.2 The Internet Layers 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6


	Page 6
	Images
	Image 1

	Tables
	Table 1


	Page 7
	Images
	Image 1
	Image 2

	Tables
	Table 1
	Table 2


	Page 8
	Titles
	.. 
	1.6.3 Internetwork Problems 

	Images
	Image 1


	Page 9
	Titles
	1. 7 Internet Addresses 

	Images
	Image 1


	Page 10
	Titles
	1. 7 .1 Subnetwork Addressing 
	' , 
	1. 7 .1.1 The Physical Address 

	Images
	Image 1


	Page 11
	Titles
	' 

	Images
	Image 1
	Image 2
	Image 3


	Page 12
	Titles
	1. 7 .1.2 The Data Link Address 
	1. 7 .1.3 Ethernet Frames 

	Images
	Image 1
	Image 2
	Image 3


	Page 13
	Titles
	1.8 IP Addresses 

	Images
	Image 1
	Image 2
	Image 3


	Page 14
	Titles
	Figure 2.9. The four IP address class structures. 

	Images
	Image 1


	Page 15
	Images
	Image 1


	Page 16
	Titles
	1.9 Address Resolution Protocol 

	Images
	Image 1

	Tables
	Table 1


	Page 17
	Images
	Image 1


	Page 18
	Images
	Image 1

	Tables
	Table 1


	Page 1
	Titles
	1.9.2 The Hardware Type Fie~d 
	l.9.3 The Protocol Type field 

	Images
	Image 1
	Image 2

	Tables
	Table 1
	Table 2


	Page 2
	Titles
	1.10 ARP and IP Addresses 

	Images
	Image 1

	Tables
	Table 1


	Page 3
	Titles
	1.11 The Domain Name System 

	Images
	Image 1


	Page 4
	Images
	Image 1

	Tables
	Table 1


	Page 1
	Titles
	CHAPTER2 
	2.1 Internet Protocol 

	Images
	Image 1


	Page 2
	Images
	Image 1


	Page 3
	Titles
	2.1.1 The Internet Protocol Datagram Header 

	Images
	Image 1

	Tables
	Table 1


	Page 4
	Titles
	2.1.1.1 Version Number 
	2.1.1.2 Header Length 
	2.1.1.3 Type of Service 

	Images
	Image 1


	Page 5
	Titles
	2.1.1.4 Datagram Length (or Packet Length) 

	Images
	Image 1


	Page 6
	Titles
	2.1.1.5 Identification 
	2.1.1.6 Flags 
	2.1.1. 7 Fragment Offset 

	Images
	Image 1


	Page 7
	Titles
	2. l. l. 8 Time to Live (TTL) 
	2.1.1.9 Transport Protocol 
	2 .1.1.10 Header Checksum 

	Images
	Image 1


	Page 8
	Titles
	2.1.1.11 Sending Address and Destination Address 
	2.1.1.12 Options 

	Images
	Image 1


	Page 9
	Titles
	2.1.1.13 Padding 

	Images
	Image 1
	Image 2

	Tables
	Table 1


	Page 10
	Titles
	2.1.2 A Datagram's Life 

	Images
	Image 1


	Page 11
	Titles
	2.2 Internet Control Message Protocol (ICMP) 

	Images
	Image 1


	Page 12
	Images
	Image 1

	Tables
	Table 1


	Page 13
	Images
	Image 1
	Image 2

	Tables
	Table 1


	Page 14
	Images
	Image 1
	Image 2


	Page 15
	Titles
	2.3 lP'ng:: ]p· Version 6 
	47 

	Images
	Image 1
	Image 2


	Page 16
	Titles
	.............................................. o;e:stinalion:IP::A:eltm:s:L . 
	2.3.1 IPng Datagram 

	Images
	Image 1


	Page 17
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Tables
	Table 1


	Page 18
	Titles
	2.3 .1.1 Priority Classification 

	Images
	Image 1

	Tables
	Table 1


	Page 19
	Titles
	2.3 .. 1.2 Flow Labels 
	51 

	Images
	Image 1
	Image 2

	Tables
	Table 1


	Page 20
	Images
	Image 1


	Page 21
	Titles
	'..3.3 IP Extension Headers 
	2.3.3.1 Hop-by-Hop Headers 

	Images
	Image 1


	Page 22
	Titles
	2.3.3.2 Routing Headers 
	2.3.3.3 Fragment Headers 
	2.3.3.4 Authentication Headers 

	Images
	Image 1
	Image 2


	Page 23
	Titles
	2.4 Internet Protocol Support in Different Environments 
	2.4.1 MS-DOS 

	Images
	Image 1


	Page 24
	Titles
	2.4.2 Microsoft Windows 

	Images
	Image 1


	Page 25
	Titles
	2 .4 .3 Windows NT 
	2.4.4 OS/2 
	2. 4. 5 Macintosh 

	Images
	Image 1


	Page 1
	Titles
	" 
	, 2.4.6 DEC 

	Images
	Image 1


	Page 2
	Titles
	2.4.7 IBM's SNA 


	Page 3
	Titles
	2.4.8 Local Area Networks 
	- 


	Page 4
	Titles
	CIIAPTER3 
	~·cp 1'-NP m>P 
	3.1 What Is TCP? 

	Images
	Image 1


	Page 5
	Titles
	ŁŁ 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Tables
	Table 1
	Table 2


	Page 6
	Titles
	3.2 Following a Message 


	Page 7
	Images
	Image 1


	Page 8
	Titles
	3.3 Ports and Sockets 


	Page 9
	Titles
	q6 

	Images
	Image 1


	Page 10
	Tables
	Table 1


	Page 11
	Titles
	Ł. 

	Tables
	Table 1


	Page 12
	Titles
	t t tt tj 

	Images
	Image 1

	Tables
	Table 1


	Page 13
	Titles
	3 .4 TCP Communications with the Upper Layers 

	Tables
	Table 1


	Page 14
	Tables
	Table 1


	Page 15
	Titles
	3.5 Passive and Active Ports 
	3.6 TCP Timers 
	3.6.1 The Retransmission Timer 


	Page 16
	Titles
	3.6.2 The Quiet Timer 
	3.6.3 The Persistence Timer 
	3.6.4 The Keep-Alive Timer and the Idle Timer· 


	Page 17
	Titles
	3. 7 Transmission Control Blocks and Flow Control 

	Tables
	Table 1


	Page 18
	Titles
	Ł. 
	3.8 TCP Protocol Data Units 

	Images
	Image 1


	Page 19
	Tables
	Table 1


	Page 20
	Page 21
	Titles
	3.9 TCP and Connections 
	3. 9 .1 Establishing a Connection 


	Page 22
	Titles
	3. 9 .2 Data Transfer 

	Images
	Image 1

	Tables
	Table 1


	Page 23
	Tables
	Table 1


	Page 24
	Titles
	Ł. 
	3.9.3 Closing Connections 

	Tables
	Table 1


	Page 25
	Tables
	Table 1


	Page 26
	Titles
	3.10 User Datagram Protocol (UDP) 


	Page 27
	Images
	Image 1


	Page 28
	Titles
	CHAPTER4 
	WINSOCK AND THE SOCKET ltROGRAMMING 
	4.1 Winsock 
	4.1.1 Trumpet Winsock 


	Page 29
	Titles
	4 .1.2 Installing Trumpet Winsock 


	Page 30
	Titles
	Ł. 
	4.1.3 Configuring the TCP/IP Packet Driver 

	Images
	Image 1


	Page 31
	Titles
	4.2 The Socket Programming Interface 
	4.2.1 Development of the Socket Programming Interface 


	Page 32
	Titles
	4.2.2 Socket Services 

	Images
	Image 1


	Page 33
	Titles
	4.2.2.1 Transmission Control Block 
	4.2.2.2 Creating a Socket 

	Images
	Image 1


	Page 34
	Titles
	4.2.2.3 Binding the Socket 


	Page 1
	Titles
	4.2.2.4 Connecting to the Destination 

	Tables
	Table 1
	Table 2


	Page 2
	Titles
	4.2.2.5 The open Command 


	Page 3
	Images
	Image 1
	Image 2

	Tables
	Table 1


	Page 4
	Titles
	4.2.2.6 Sending Data 

	Images
	Image 1


	Page 5
	Images
	Image 1

	Tables
	Table 1
	Table 2


	Page 6
	Titles
	4.2.2.7 Receiving Data 


	Page 7
	Titles
	' 
	4.2.2.8 Server Listening 


	Page 8
	Titles
	Ł. 

	Images
	Image 1


	Page 9
	Titles
	4.22.9 Getting Status Information 


	Page 10
	Titles
	4 .2 .2 .10 Closing a Connection 

	Images
	Image 1


	Page 11
	Titles
	4.2.2.11 Aborting a Connection 
	4.2.2.12 UNIX Forks 

	Images
	Image 1


	Page 12
	Titles
	CONCLUSION 


	Page 13
	Titles
	REFERENCES 

	Images
	Image 1



