
NEAR EAST UNIVERSITY 

Faculty of Engineering 

Department of Computer Engineering 

E_COMMERCE WEB SITE USING ASP.NET 

Graduation Project 
COM400 

Student: K1van~ Meram (20010618) 

Supervisor: Mr. Kaan Uyar 

Nicosia-2005 



ACKNOWLEDGEMENTS 

It is my pleasure to take this opportunity to express my greatest gratitude to man 

individuals who have given me a lot of supports during my four-year Undergraduation 

program in the Near East University. Without them, my Graduation Project would not 

have been successfully completed on time. 

First of all, I would like to express my thanks to my supervisor Mr. Kaan Uyar for 

supervising my project. Under the guidance of him I successfully overcome many 

difficulties and I learned a lot about web designing. He always helped me a lot and I felt 

remarkable progress during his supervisior. Also I thank for, giving his time during the my 

study and my advisering. 

Third.I also want to thank alt my friends and specially Osman Yiiksel, Caner Cakir, 

Ergin Ozgen, Aykut Yaprcikardesler, Mustafa Sikicr, Bugra Demiricioglu.H. Irmak 

and Emrah Erdumlu, Elif Gokcen, Deniz Akaltun, Cem Muzaffer Hancer, who 

supported and helped me all the time. 

Finally, special thanks for my family, especially my parents for being patientfull during my 

undergraduate degree study. I could never have completed my study without their 

encouragement and endless support. 



ABSTRACT 

Commerce Web sites were once considered the great frontier of untapped profit and 

potential. Build one and you could get rich. The site didn't work properly or bring in 

paying customers. People soon realized the fallacy of this belief, and the pendulum swung 

in the opposite direction. Commerce sites came to be through of as a guaranteed money­ 

losing proposition, a sink hole into which you could pour money and never see a return. 

With the exception of the eternal optimists who still believe that commerce sites will 

always succeed and pessimists who still believe they will always fail, most people now 

understand the reality: commerce sites are an integral part of doing business today. There is 

no guarantee, but a well-built commerce site that follows a solid business plan has a good 

chance of contributing to an organization's success. 

ii 



TABLE OF CONTENTS 

ACKNOWLEDGMENT i 

ABSTRACT ti 

TABLE OF CONTENTS iii 

INTRODUCTION vii 

CHAPTER ONE: .NET FRAMEWORK 1 

1.1. Overview of The .Net Framework 1 

1.2. Introduction to Microsoft Intermediate Language 3 

CHAPTER TWO: THE .NET FRAMEWORK OBJECTS 4 

AND LANGUAGES 

2.1. Overview of The Framework Objects 

2.2. The .Net Solutions to Type Compatibilty 

2.2.1. Value Types 

4 

7 

7 

CHAPTER THREE: VISUAL BASIC.NET 9 

3.1. Overview of The Visual Basic .Net 

3.2. Out with The Old! 

3.3. The Set Statement Goes Away 

3.4. Default Parameter Calling Conventions 

3.5. In with The New ! 

3.6. Inheritance and Polymorphism 

3.7. A word About Multiple Inheritance 

3.8. Structured Exception Handling 

3. 9. Function Overloading 

9 

9 

10 

11 

12 

12 

14 

15 

17 

iii 



3.10. Stronger Typing of Variables 17 

3 .11. Short-Circuit Evaluation 18 

3 .12. Miscellaneous Changes 19 

CHAPTER FOUR: OVERVIEW OF ASP.NET 20 

4.1. Internet Standarts 20 

4.2. The Evoluation of ASP 21 

4.3. The Benefits of ASP.NET 23 

4.4. Creating an ASP.NET Application 25 

4.5. In This Syntax... 27 
4.6. Creating a Visual Basic Web Application 27 

4.7 Deploying an ASP.NET Web Application 29 

CHAPTER FIVE: DATABASE FOR ASP.NET 32 

5.1. What is a Database? 32 

5.2. The Microsoft SQL Server 2000 Desktop Engine 32 

5.3. Microsoft SQL Server 2000 Define 32 

5.4. Creating a Database 34 

5.5. Creating SQL Server Tables 35 

5.6. The ADO.NET Object Model 36 

5.6.1. Data Providers 3 7 

5.6.2. Data Sets 38 

5.6.3. Binding Data to a Simple Window Form 39 
5.6.3.1. Adding a Connection and Data Adapter to a Form 40 

Roadmap 
5.6.3.1.1. Adding a Connection to a Windows Form 40 

5.6.3.2. Creating Data Set Roadmap 45 

5.6.3.2.1. Creat a Data set 45 

5.6.4. Simple Binding Controls to a Data Set 46 

5.6.4.1. Binding The Text Property of a Control to a Data 47 

Set 

lV 



5.6.5. Loading Data into The Data Set 48 

5.6.5.1. Visual Basic .Net 48 

CHAPTER SIX: INTERNET INFORMATION SERVER 49 

6.1. What is IIS ? 49 

6.2. Installing ASP.NET (IIS 6.0) 50 

CHAPTER SEVEN: ASP.NET SECURITY 51 

7.1. The .Net Security Model 51 

7 .2. Web Application Security 51 

7.3 .• Net Framework Security Mechanism Role-Based Security 52 

7.4. Evidence-Based Security 53 

7.5. Overview of ASP.NET Security IIS 6.0 54 

CHAPTER EIGHT: ELECTRONIC COMMERCE 56 

8.1. Introduction 56 

8.2. What is e-commerce? 56 

CHAPTER NINE: E-COMMERCE WEB SITE USING 57 

ASP.NET 
9.1. What is an e-commerce web site? 57 

9.2. Application Architecture 58 

9.3. Application Code 58 

9.3.1. AlsoBouht.ascx 58 

9.3.2. Header.ascx 60 

9.3.3. Menu.ascx 61 

9.3.4. Popularltem.ascx 62 

9.3.5. ReviewList.ascx 63 

9.3.6. AddCart.ascx 64 

9.3.7. ChechOut.aspx 64 

9.3.8. CreditCardForm.aspx 67 

9.3.9. Defult.aspx 70 

9.3.10. Error.aspx 72 

V 



9.3.11. Login.aspx 73 

9.3.12. OrderDetail.aspx 76 

9.3.13. OrderList.aspx 78 

9 .3.14. ProductDetail.aspx 80 

9.3.15. ProductList.aspx 83 

9.3.16. Register.aspx 86 

9 .3.17. Review Add.aspx 89 

9.3.18. SearchResult.aspx 92 

9.3.19. ShoppingCart.aspx 94 

9.3.20.Global.asax 99 

9.3.21. Web.Config 100 

9.3.22. InstantOrder.asmx 102 

CONCLUSION 104 

REFERENCES 105 

vi 



INTRODUCTION 

Now a days the computer science both hardware and software is being developed over the 

previous years, programming is always providing the scientific by a systematic 

development. 

Electronic commerce is electronic trading, in which a supplier provides goods or services to 

a customer in return for payment. A special case of electronic trading is electronic retailing, 

where the customer is an ordinary consumer rather than another company. Howevwer, 

while these special cases are of considerable economic importance, they are just particular 

examples of the more general case of any form of business operation or transaction 

conducted via electronic media. Other equally valid examples includes internal transactions 

within a single company or provision of information to an external organisation without 

charge. 

Simply we can say that the electronic commerce is modem way to make you shopping 

throug the internet.This project, I'm trade to apply of web-based commerce method. I made 

to write on online e-commerce site. On those pages, The customer can be ordered books. 

For the implementation of the project, I used a windows based operation system, Windows 

XP, Internet Information Server (IIS V5.1). The program language I was used Active 

Server Pages.NET (ASP.NET) with Visual Basic.NET. As tools for implementation and 

debugging I used ASP.NET Web Matrix, Microsoft Visual Studio.NET 2003 and Microsoft 

.NET Framework SDK vl.1, for animations Swish Max, for storing database tables 

Microsoft SQL Server 2000 Personal Edition. 

vii 



CHAPTER ONE 

.NET FRAMEWORK 

1.1. Overview of The .Net Framework 

The .NET Framework is designed from the ground up to allow developers of both Web 

and traditional applications to build their applications more efficiently and enable them 

to work more flexibly. One of the most significant features of the .NET Framework is 

that it enables code written in multiple languages to work together seamlessly. Figure 

1.1 shows the structure of the .NET Framework at a very high level. 

Figurel.1 The .NET Framework architecture 

Underlying the entire framework are system services. In the current implementation, 

this base is the Win32 API and COM+ services, although the abstraction would allow 

any operating system to provide the services, in theory if not in practice. Traditionally, 

applications have called the operating system's API directly. In the Win32 

programming world, this model is difficult for Visual Basic programmers because some 

APis require using data structures that are convenient for CIC++ programmers but much 

less convenient for Visual Basic programmers. 

Layered on top of the system services is the common language runtime. The runtime 

loads and runs code written in any language that targets the runtime. Code targeted to 

the runtime is called managed code. 

1 



The runtime also provides integrated, pervasive security. Previous Win32 environments 

provided security only for file systems and network resources, if at all. For example, file 

security on Microsoft Windows NT and Microsoft Windows 2000 is available only 

for volumes formatted using NTFS. The runtime provides code access security 

that allows developers to specify the permissions required to run the code. At 

load time and as methods are called, the runtime can determine whether the 

code can be granted the access required. Developers can also explicitly specify 

limited permissions, meaning that code designed to do something simple and 

not very dangerous can seek the minimal permissions. Compare this situation 

to today's VBScript -enabled mail readers, such as Microsoft Outlook, that 

have been targeted by virus developers. Even on a secure system, if a user 

with Administrator rights opens a VBScript virus, the script can do whatever 

the administrator can do. 

The role-based security that the runtime provides allows permissions to be set 

based on the user on whose behalf the code is running. Relying on the runtime 

are the .NET Framework classes. The .NET Framework classes provide classes 

that can be called from any .NET-enabled programming language. The classes 

follow a coherent set of naming and design guidelines in mind, making it 

easier for developers to learn the classes quickly.On the top of the .NET 

Framework class library is ADO.NET and XML data. ADO.NET is a set of 

classes that provide data access support for the .NET Framework. ADO.NET 

is based on ADO but is designed to work with XML and to work in a 

disconnected environment. 

On top of ADO.NET and XML lies specific support for two different types of 

applications. One is the traditional client application that uses Windows 

Forms, a combination of what Visual Basic and the Microsoft Foundation 

Class Library (MFC) had to offer. The other type of application available is 

ASP.NET, including Web Forms, and XML Web services.On top of ASP.NET 

and the Windows Forms is the common language specification (CLS) and the 

languages that follow the CLS. The CLS is a set of rules that a CLS - 

compliant language needs to follow, ensuring that each language has a 

common set of features. 

2 



1.2. Introduction to Microsoft Intermediate Language 

Although this description of the workings of ASP.NET and the .NET Framework 

might sound a lot like a description of the way a Java Virtual Machine (JVM) works, 

ASP.NET and JVM are different. A Java compiler creates byte code, and that byte 

code is passed through the JVM at runtime. This approach. is slightly different than 

using an intermediate language to generate native code at runtime, but that slight 

difference has enormous implications with respect to performance. Java's use of byte 

code is really nothing new. Long ago, other environments used this same structure 

and generally failed, partly because the hardware wasn't up to the task and partly just 

because the Internet didn't exist. What the.NET Framework offers that is genuinely 

different is code that isn't interpreted at runtime but rather becomes native code that 

is executed directly. One of Java's strengths (and also something that can drive 

developers crazy at times) is the tight security the Java/JVM model provides. The 

.NET Framework provides the same level of security, along with the ability to run 

native code, provided the user has the proper security clearance.One significant 

advantage that the .NET Framework offers over Java and the JVM is the choice of 

programming language. If you target the JVM, you must use Java. Java is a perfectly 

fine programming language, but it's just one language. Developers comfortable with 

Visual Basic or C++ would have to spend time learning how to use the Java/JVM 

model. The .NET Framework allows developers to work in whatever language 

they're most comfortable with, from Visual Basic and C# to Eiffel and COBOL. In 

theory, as with Java, MSIL can be compiled and run in any environment that 

supports the runtime. As of this writing, this environment includes only the Intel 

architecture running Microsoft Windows, but it's safe to assume that the runtime will 

become available in other environments as well. What makes the potential for 

multiple platforms possible is the just-in-timetjit) compiler. Figure 2.1 shows the 

compilation and execution process. 
Compil·,u1ott 
l 
! 

Figure 1.2 The compilation and execution of managed code 

3 



When you think about it, compiling an application from assembly code such as MSIL 

should impose some burden on the performance of the application. In practice, the 

overhead seems to be a difference small enough that in most cases no one will 

notice. Part of the reason for this low cost is certainly cleverness on the part of the 

developers of the JIT compiler, but just as much of the credit goes to the way 

programs are commonly used. Generally, not every single line of code within a 

program is used each time the program is run. For example, code related to error 

conditions might virtually never be executed. To take advantage of this fact, rather 

than compile the entire MSIL code into a native executable file at the start, the JIT 

compiler compiles code only as it is needed,and it then caches the compiled native 

code for reuse. The mechanics of the JIT compilation are fairly straightforward. As a 

class is loaded, the loader attaches a stub to each method of the class. The first time 

the method is called, the stub code passes control to the JIT compiler, which 

compiles the MSIL into native code. The stub is then modified to point to the native 

code just created, so subsequent calls go directly to the native code. 

CHAPTER TWO 

The .NET Framework Objects and Languages 

2.1. Overview of .NET Framework Objects 

When developing real-world systems today, you'll encounter two significant 

problems: one is the problem of making software work on multiple platforms, and the 

other is the problem of enabling the various pieces of an application written in 

different languages to communicate. As you'll see in this chapter, the .NET 

Framework offers elegant solutions to both these problems. But first, let's review a 

little history. 
One attempt to solve the problem of creating software that will work on multiple 

platforms has been to use Sun Microsystems' Java programming language. To run 

Java, a computer must have a Java Virtual Machine (JVM), which will interpret the 

Java byte code at runtime. Because JVMs are available in browsers for multiple 

platforms, it would appear that Java has solved part of the problem. In reality, 

however, there can be incompatibility in the execution of the same Java byte code 

4 



even on the same platform. For example, in a recent Java project, I needed to use 

radio buttons but without any text associated with them. I accomplished this by 

setting the radio button text to an empty string. 

This approach worked, but in Microsoft Internet Explorer, when the radio button with 

no text was selected, a small dotted-line box appeared next to the radio button where 

the text would have been. The solution seemed simple: instead of not setting the text 

of the radio button or setting the text of the radio button to an empty string, I 

explicitly set the text of the radio button to null. This remedy worked for a time. 

Unfortunately, when a new version of Netscape Navigator came out, setting the text 

of the radio button to null not only didn't work, but also actually caused the browser 

to end hard, displaying an error message referencing some C++ source code. So 

much for Java's cross- platform compatibility. 

In the beginning of the PC revolution, cross-platform compatibility was a much 

bigger requirement. With so many slightly different variants of PCs, as well as other 

platforms, having a single development environment was very important. Several 

circumstances have minimized this issue. First, Intel x86 assembly code has become 

close to a universal assembly language. Virtually any application of any significance 

these days is available for an Intel-based machine. Even other hardware platforms, 

notably the Apple Macintosh, provide emulation environments that allow Intel-based 

applications to run. 

The second important change that has affected the issue of cross-platform 

compatibility has been the explosion of the Internet. The Internet provides a single 

platform that allows applications from a variety of platforms to work on virtually any 

other platform, including even the newer ones, such as wireless devices. For many 

applications, HTML, along with client-side JavaScript, provides a rich enough 

environment. Of course, in some places, the Internet boom has increased the 

requirement for cross-platform execution-- notably in creating richer user interfaces 

on the client side-and here's where Java has found a place. 

As I mentioned at the beginning of the chapter, another difficulty for software 

developers today is enabling the various pieces of an application written in different 

languages to communicate. Currently, a number of languages and technologies are 

used on the dominant platform (Microsoft Windows running on an Intel processor). 

Common languages include Microsoft Visual Basic, CIC++, and Borland Delphi. 

Less common, but still used, are languages such as COBOL, Fortran, and PERL. 

5 



From the first days of Windows development, it has been possible to call into 

dynamic- link libraries (DLLs) from virtually any significant program development 

environment, but that doesn't mean it's always been easy. For example, something 

as simple as passing a string as a parameter that will accept some information can 

cause great problems. In most programming languages, you must ensure that before 

the string is passed in, it has sufficient allocated space. This task isn't something that 

many programmers in some programming environments are used to doing. For 

instance, in Visual Basic, strings are managed, and if you pass a string into another 

function by reference, the string can have information added to it without worrying 

about who allocated the space. User-defined data types are much worse, and on at 

least one occasion not so long ago, the way that Visual Basic padded members of 

user-defined types wreaked havoc on many a program that had relied on structures 

being packaged just so.In recent years, COM has been the glue that holds 

components from the various languages together. COM provides a least common 

denominator approach to things like data types and does nothing to address issues 

involved with using the Win32 APL Using the Win32 API from Visual Basic 

requires some very un-Visual-Basic-like data structures, and the Win32 API can 

often be difficult to use from other languages as well. The string type supported by 

COM is BSTR, a not entirely friendly type for CIC++ programmers. 

The .NET Framework offers solutions to all these problems. First it provides a 

system of data types that can be marshaled between multiple .NET languages without 

any loss of fidelity. Developers using the .NET Framework will no longer have to 

worry about what language might be consuming the class or component they're 

writing. They can spend more time solving the problem at hand and less time 

worrying about how the C++ client for the server program is going to interpret a 

string or a currency type. 

Next the .NET Framework provides a virtual execution environment that addresses 

the need for portability without forsaking performance. Applications built on the 

.NET platform run as native applications on whatever platform they're running on. 

I'll explain the technological magic that allows this to occur in the following 

sections. 

6 



2.2. The .NET Solution to Type Compatibility 

One of the traits that distinguishes any great programming environment is a well 

thought out object model. It's difficult to work with a patchwork of poorly designed 

objects and continue to create world-class software. Given a good object model, you 

can easily extend it with your own code. 

The underlying support for the object model of the .NET Framework is the type 

system the framework offers. 
Let me clarify a few terms here. When I talk about the type of a variable, I'm talking 

about what the variable is designed to hold. For example, if a variable is an integer 

type, you wouldn't expect that setting it equal to "dog" or "Fred" would work. 

Likewise, if the type were a date type, 7/24/1956 would be a reasonable value, but 7 

wouldn't be. Classic Active Server Pages (ASP) programmers are used to a 

development language that doesn't use variables with types. More accurately, every 

variable is a single type: Variant. Thus, a variable can hold 7 in one line and "Fred" 

in the next. 
Many beginning programmers find having a single data type convenient, but more 

experienced programmers realize the mess that this limitation can cause. Although 

forcing you to explicitly change variables from one type to another can be more 

work, it does ensure that you're converting a variable in a way you intended. 

Figure 2.1 shows the relationship between the various types the .NET Framework 

supports. 

Figure 2-1 : The .NET Framework type system 

2.2.1. Value Types 
Value types refer to generally small types that are represented as a series of bits. For 

example, native CIC++ and Visual Basic 6.0 both have int and long types used to 

7 



represent numbers. These types are commonly used for much of the processing 

within any program. 

Class Name CLS Description 

Compliant 

System.Byte Yes Unsigned 8-bit integer 

System.Sbyte No Signed 8-bit integer 

System.Intl 6 Yes Signed 16-bit integer 

System.Int32 Yes Signed 32-bit integer 

System.Int64 Yes Signed 64-bit integer 

System. Uintl 6 No Unsigned 16-bit integer 

System. Uint32 No Unsigned 32-bit integer 

System. Uint64 No Unsigned 64-bit integer 

System.Single Yes 32-bit Floating point 

number 

System.Double Yes 64-bit Floating point 

number 

System.Boolean Yes , True or False value 

System. Char Yes Unicode 16- bit character 

System. Decimal Yes 96-bit decimal number 

System.IntPtr Yes Singed integer that is 

platform dependent 

System. UintPtr No Unsinged integer that is 

platform dependent 

System. Object Yes Root Object 

System.String Yes Fixed length string of 

Unicode Chacters 

Table 2-2: Various Value Types in the .NET Framework 

8 



CHAPTER THREE 

Visual Basic.Net 

3.1. Overview of Visual Basic .NET 
Seldom has a company the size of Microsoft taken such a chance with one of its 

flagship products as Microsoft has done with Visual Basic .NET. Visual Basic .NET 

maintains much of the ease of use that has made Visual Basic famous, but it does so 

while breaking virtually all existing programs. Furthermore, ASP programmers 

accustomed to Visual Basic Scripting Edition (VBScript) face a learning curve to be 

able to take full advantage of what Visual Basic .NET has to offer. 

That said, the changes to Visual Basic should also silence the critics who often berate 

Visual Basic as a toy language. Among the major complaints of programmers who 

are not fans of Visual Basic is the error handling-sometimes called "On Error Goto 

Hell" error handling. In fact, the Visual Basic error handling can be made to work 

correctly, but in practice, it's difficult to get right, and it's often handled badly. 

VBScript's error 

handling was even more limited, making the error handling available in Visual Basic 

look good, which was bad news for ASP programmers. The changes to Visual 

Basie's error handling are just one of several areas in Visual Basic that have 

improved dramatically in Visual Basic .NET, albeit at the cost of compatibility with 

all existing code. 

3.2 Out with the Old! 
In many respects, Visual Basic is a victim of its own success. There's a joke about 

the universe being created in seven days: God was able to do it because there was no 

installed base. I expect the Visual Basic team can appreciate this punch line all too 

well. Making changes in the primary development platform for many Windows 

developers is a tricky business. Each new version has brought along new features but 

for the most part has allowed older code to continue to function. Visual Basic .NET 

marks a break with that tradition. 

Such drastic changes are required for a lot of reasons. The most significant is that the 

underlying platform Visual Basic .NET is written for is no longer Win32 but rather 

the.NET Framework. This in and of itself requires many changes. For example, 

although it's possible to use the exception handling offered by the .NET Framework 

while continuing with the earlier "On Error Goto" model, doing so would have been 

9 



at the price of fully exploiting the new framework. Before we get into all the new 

features offered, it's worthwhile to take a moment to look at the two biggest 

compatibility issues between Visual Basic 6.0 and Visual Basic .NET, which involve 

the Set statement and the default calling convention. 

3.3 The Set Statement Goes Away 

One of the many areas in which Visual Basic could be confusing to newcomers was 

in its use of the Set keyword. For example, if you wanted to create an instance of an 

ActiveX control with the ProgID Foo.Bar, you would use code such as the following: 

Dim foo As Foo.Bar 

Set foo = New Foo.Bar 

Creating an object requires using the Set keyword. Unfortunately, many developers 

don't have a good understanding of what exactly is and is not an "object" from the 

Visual Basic point of view; I've seen more than a few programmers who play with 

using or not using the Set keyword in a vain attempt to get their programs going. 

Sometimes the result is a working program, because the presence or absence of the 

Set keyword was the problem, but as often as not the real problem remains hidden 

until you look at the code more closely. 
Why was the Set keyword ever used? In Visual Basic 6.0 and earlier, objects had 

default properties that didn't require a parameter. So if an object Joo had a 

parameterless default property called bar, without using Set there was the chance for 

ambiguity, as in the following example: 

Dim fas foo 

Dim o as Object foo =o 

In this case, it's unclear whether Joo. bar should be set to o or whether Joo should be 

set too. Visual Basic .NET eliminates the need for using Set by eliminating 

parameterless default properties. More than eliminating the need for Set, in Visual 

Basic .NET, the Set keyword is no longer allowe 

10 



3.4. Default Parameter Calling Conventions 

The second area that will require significant source code changes in the move to 

Visual Basic .NET involves changes to the way parameters are passed to functions 

and subroutines. In earlier versions of Visual Basic, by default, all parameters were 

passed in by reference. A parameter passed in by reference means that instead of 

getting a copy of the parameter, the parameter is really a pointer to the parameter 

being passed. 
Consider the following code that could be used in Visual Basic 6.0: 

Private Sub Commandl_Click() 

Dim 1 As Long 

Dim OldL As Long 

Dim t As Long 

1 = CLng(Timer()) OldL = 1 

t = CallingByReference(l) 

MsgBox "l was " & CStr(OldL) & " but is now " & 1 

End Sub 
Function CallingByReference(Ref As Long) As Integer 

Ref= Ref Mod 60 

CallingByReference = Ref 

End Function 
Running this code any time (after 12:01 a.m.) will result in two different values, as 

Figure 3-1 : Message box displayed after calling CallingByReference 

The ability to modify parameters is often useful, but it can sometimes confuse 

beginners. For example, a beginning programmer glancing at this code won't see the 

relationship between the variable land the variable Ref in CallingByReference 

Of course, in Visual Basic 6.0 and earlier, you could always declare the parameter 

explicitly to be passed by value. Here's a Visual Basic 6.0 function that uses call by 

value: 

11 



Function CallingByValue(ByVal Ref As Long) As Integer 

Ref= Ref Mod 60 

CallingByValue = Ref 

End Function 

By using the CallingByValue function rather than CallingByReference, the l value 

isn't modified. Figure 3-3 shows a sample message box after using CallingByValue 

instead. 
It's good form to explicitly declare the calling convention to avoid any confusion, 

and that will be the standard for the Visual Basic .NET programs that follow. 

3.5. In with the New! 
Although for some, the break with compatibility will be the big news about Visual 

Basic.NET, the far more important news is about the improvements to the language. 

The pain of the compatibility breaks will be temporary, but the gain from the new 

features will be long lasting. For developers familiar with working under the 

constraints of VBScript in ASP, the improvements are nothing short of earth 

shattering. 

3.6. Inheritance and Polymorphism 
In recent versions, Visual Basic has tried to become a more object-oriented language, 

with some success. To be considered object oriented, a language must meet three 

primary requirements. The language must be polymorphic, meaning that you can call 

a method of an object and, depending on the exact type of the object, different 

underlying methods are called. A second requirement for a language to be considered 

object oriented is encapsulation. Encapsulation means that there is a separation 

between what the object exposes and the internal workings of the object. 

For example, if an object exposes a collection of strings, it shouldn't expose details of 

implementation, such as whether the collection of strings is stored in an array, a 

linked list, or a stack. Perhaps the most important requirement is inheritance. 

Inheritance is the ability to derive one type from another. For example, given a simple 

class: 

12 



Public Class Base 

Public Function foo 

System.Console.Writeline("Base Foo") 

End Function 

End Class 

we could create another class: 

Public Class Derived 

Inherits Base 

Public Function bar 

System.Console.Writeline("Derived Bar") End Function 

End Class 

If we created an instance of class Derived and called Joo, "Base Foo" would be 

displayed on the console. 

Inheritance is a convenient way to reuse code, well beyond the cutting and pasting 

that has often been the standard technique for code reuse in the past. For example, 

imagine a set of classes representing shapes. All shapes have some characteristics in 

common-for instance, they might have a position as well as a length and a width. 

You might also have some common actions that the shapes would take-for 

example, Draw or Move. Using inheritance, a hierarchy of shapes could be created, 

all originally descended from the class Shape, which might look like this (in abbrevi 

ated form): 

Mustlnherit Class Shape 

Private myX as Integer 

Private myY as Integer Public Sub New() 

myX=O 

myY=O 

End Sub 

Public Property X Get 

X=myX 

End Get 

Set 

myX= Value 

Draw() End Set 

End Property 

13 



Public Property Y 

GetY = myY End Get Set 

myY =Value 

Draw() 

End Set 

End Property 

MustOverride Function Draw() 

End Class 

Class Square 

Inherits Shape 

Overrides Function Draw() 

' A Square-Specific Implementation 

End Function 

End Class 

In this simple example, if you create an instance of class Square named s, setting the 

property s.X will call the Set property as defined in Shape and call the Draw method 

that is part of the Square class. Furthermore, if the Square objects is passed to a 

method that takes a Shape object, when Draw is called on the object in that method, 

the Draw associated with the Square object is called. 

Classes can have behaviors with the same name. The ability of the language to 

determine, based on the type of object, what behavior is used when requested is 

called polymorphism. 

3.7. A Word About Multiple Inheritance 

Visual Basic .NET doesn't support multiple inheritance-there can be only one 

Inherits keyword per class. In some object models (notably C++ ),multiple 

inheritance is used as a way to allow, for example, a Dog object to derive from both 

Animal and Pet. Single inheritance isn't a terrible limitation, and it eliminates the 

possibility of method ambiguity. For example, if Dog is derived from both Animal 

and Pet, and if both hierarchies have a method MakeNoise, there could be ambiguity 

over exactly which method should be called. 

14 



You can get around this single inheritance restriction in many ways. In this case, 

Animal could be used as the base class, Pet could be derived from Animal, and Dog 

could be derived from Pet. This is not multiple inheritance because there is only a 

single Inherits at each level. (This solution would eliminate the PetRock class 

because a Pet Rock might be considered a pet, but it isn't an animal.) 

An alternative solution is to create Animal, from that derive a Dog class, and then 

also have the Dog class implement the Pet interface. An interface is like a class 

except that it contains only methods, and the methods aren't implemented at the 

interface level. A class can implement an interface simply by declaring that it does 

implement the interface by using the Implements keyword and by providing methods 

that match each of the methods in the interface. Methods can implement any number 

of interfaces. 

3.8. Structured Exception Handling 

There are two general models for handling errors. The first model makes reporting 

errors the responsibility of any given function, with any code that calls the function 

responsible for taking action based on the report of an error. This approach is typified 

by code such as the following: 

Ret = SomeFunc(SomeParam) If Ret = 0 then 

' An error occurred, so do something about it.' End If 

Continue processing. 
This kind of error handling has several problems. Using it often requires error 

processing to be mixed up with returned results. For example, in C, the fopen 

function returns a file pointer that can be used for other functions that require a file 

pointer, such as fgets and thelike. If the file can't be opened, however, fopen returns 

not a file pointer but NULL, indicating that an error occurred opening the file. Thus, 

the return value from the function is either a file handle or something entirely 

different, a signal that an error occurred. 

Many developers can live with the lack of purity of the returned value, but most 

developers don't always remember to check the return result for the exceptional value 

indicating an error. In practice, most C programmers do check for the return code 

from calls to fopen because it has a fairly large chance of failure. However, many C 

programmers do not check for errors in functions like fputs because that function, 

15 



using a valid file pointer, fails relatively rarely. Thus, many file writes will fail 

because the disk is full or, for other reasons, go unnoticed. 

The second model for error handling is exception handling. In this sort of system, an 

error throws an exception and that exception bubbles up the stack until an appropriate 

handler is found. Although Visual Basic offers a sort of exception handling using the 

On Error statement, the form in which it was exposed wasn't the most convenient. 

For VBScript programmers in ASP, the options were even more limited because the 

system didn't allow all the control over exception handling Visual Basic or Visual 

Basic for Applications (VBA) allowed. 

The preferred sort of exception handling is structured exception handling. Although 

structured exception handling is more a feature of the .NET Framework than of 

Visual Basic .NET per se, it is a critical change that will allow developers to create 

far more robust and reliable applications. The general form of structured exception 

handling is shown here: 

Try 

' Some code that might throw an exception 

Catch e As Exception 

'Handle the error. Finally 

'Used to do things that should always be done, 

' whether or not an exception occurs 

End Try 

Any code that might throw an exception should be placed within a Try block. It's 

possible that some or all exceptions might not be appropriately handled at this level. 

If that's the case, the exception can be rethrown (using the Throw keyword) and the 

Finally block will still be executed. For example, if within the Try block you're 

opening a database connection, the Finally block should be where the database 

connection will be closed because that block of code will always be executed. Within 

the Finally block, you might need to ensure that the database connection is in fact 

open because the exception could've been thrown before the database connection 

was successfully opened. You can have multiple Catch blocks so that you can catch 

specific exceptions. The Finally block allows all cleanup for the code in the Try 

block to appear in only a single place, rather than existing once for when the code 

executed normally and once in each of the Catch blocks. 

16 



3.9. Function Overloading 
Function overloading allows the existence of multiple functions with the same name, 

differing only in the parameters. For example, if you were creating a method to send 

a string to a browser, you might declare several functions, each named Write. One 

version would accept a string as a parameter; another, an integer; and yet another, a 

DateTime object. 
If you're a VBScript programmer, you might wonder what the big deal is. In the old 

ASP object model under VBScript, you could, for example, call the Response. Write 

method with a string-or an integer, or a date-and it would seem to work as you 

would expect. There's a subtle difference, however. In VBScript, all variables are the 

Variant type, a sort of chameleon variable that becomes whatever is poured into it. 

The Response. Write method simply takes whatever is passed and writes the resulting 

string to the HTML stream. Function overloading is different in that the specific 

Write methods provided will be called based on the type of argument. If the Write 

method is called with an argument that can't be converted implicitly to one of the 

types that one of the overloaded Write functions expects, a compile time error is 

generated. 
Overloading can also be used to cleanly extend existing systems without breaking 

existing code. For example, if a Write method exists that accepts a string, and if there 

were an option to write with a color, a Write method that accepts a string and a color 

could be created. The code inside the existing Write method that takes a string could 

then be replaced cleanly with a call to the new Write method that accepts a string and 

a color, with the color being passed in the default color. Existing consumers of the 

Write method would be none the wiser, and the natural extension to the Write 

method could be used in new code. 

3.10. Stronger Typing of Variables 
One of the big changes for ASP programmers moving from VB Script to Visual Basic 

.NET is the introduction of stronger typing of variables. Although it was possible to 

require declaration of variables in VBScript, it wasn't possible to declare specific 

types. Statements such as the following were possible: 

DimX 

X="Hello There" X=7 

17 



Response. Write(X) 

In this example, the variable X is set to a string, and in the next line, it's set to an 

integer. The result of the Response. Write method is a string containing the number 7. 

This is possible because all variables in VBScript are the Variant type. To help catch 

potential data conversion errors, Visual Basic .NET has a new statement named 

Option Strict that is stricter than Option Explicit. Using Option Strict will cause 

Visual Basic .NET to generate an error if a data type .conversion results in data loss, if 

a variable is undeclared, or if a variable is late bound .. This isn't news to most non-­ 

Visual Basic programmers, but for Visual Basic .NET programmers trying to create 

professional, reliable applications, it's a huge step forward. 

3.11. Short-Circuit Evaluation 
Another problem that CIC++ programmers coming to Visual Basic face is the way in 

which logical expressions are evaluated. For example, imagine that you have the 

following code in an ASP page: 

While rs.EOF=False And rs("Grouping")=thisGroup 

'Do something for all members of "thisGroup". 

Wend 
Programmers used to C and C++ will presume that if rs.EOF is True, the evaluation 

of the expression will end. In VB Script and Visual Basic 6.0, this isn't the case. In 

this example, even if rs. EO F is True, rst " Grouping") will be evaluated, causing an 

error to be raised. Of course, once rs.EOF is True, we really don't care about the 

other part of the expression because by definition it has no meaning. 

Visual Basic .NET includes two new logical operators (AndAlso and OrElse) that are 

used for short-circuit evaluation of expressions. In the preceding example, you could 

replace the And operator with AndAlso: 

While rs.EOF=False AndAlso rs("Grouping")=thisGroup 

'Do something for all members of "thisGroup". 

Wend 
Once rs.EOF evaluates to True, the pr9gram can just stop the expression evaluation 

because it's guaranteed that the expression in total can never evaluate to True. We 

can use this evaluation order to our advantage by ordering the parts of a logical 

expression from least expensive to evaluate to most expensive. However, you need to 

18 



remember that short-circuit evaluation means that parts of an expression might not 

always run, which can cause side effects. And and Or continue to operate as they did 

in Visual Basic6.0 and earlier, forcing evaluation of all parts of a predicate. 

3.12. Miscellaneous Changes 
Here's a list of some of the other changes in Visual Basic .NET. All arrays use zero­ 

based indexing. There are ways around this, using classes from the .NET Framework, 

but within the language itself, all arrays are zero-based. One interesting change 

designed to help port existing code is what happens when you declare an array. Cons 

ider the following declaration: 

Dim a(5) as Integer 
The result will be a six element array, from a(O) through a(5). This allows developers 

to continue using arrays as they have in the past.Developers who are creating cross­ 

language components need to be aware of this behavior and explicitly document how 

the component will base the array.The Option Base statement isn't supported. 

Arrays don't have a fixed size. Arrays can be declared with a size; declared without a 

size and sized by calling New; or declared, initialized, and sized in a single 

statement, like this: 

Dim Month() As Integer= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} 

In Visual Basic .NET, you can resize arrays with the ReDim statement. In Visual 

Basic 6.0, you couldn't resize arrays with a specified size.String lengths can't be 

explicitly declared. 

ReDim can't be used as a declaration. The variable must be declared using Dim 

first. 
The Currency data type is no longer supported. The Decimal data type can be 

substituted. 
The Type statement is no longer supported. Use the Structure ... End Structure 

construction instead. Each Structure member must have an access modifier: Public, 

Protected, Friend, Protected Friend, or Private. Dim can be used-in which case, the 

access to the member is Public. 

Multiple variable declarations on a single line without the type repeated result in all 

variables on the line being declared as the same type, as in the following example: 

Dim I, J as Integer 

19 



In Visual Basic 6.0, this line will result in I being a Variant and J being an integer, 

but in Visual Basic .NET, both I and J are integers.Variables declared within a block 

of code have block-level scope rather than procedure-level scope. Thus, if a variable I 

is declared within a While block, it's visible only within the block. Note that the 

lifetime of the variable is the same as that of the procedure, so if a block that declares 

a variable will be entered more than once, the variable should be initialized on each 

entry to the block.Parentheses are always required when you're calling procedures 

with nonempty parameter lists. 

Rather than While and Wend, Visual Basic .NET uses While and End While. Wend 

isn't supported. 

IsNull is replaced by IsDBNull, and IsObject is replaced by IsReference. 

CHAPTER FOUR 

Overview of ASP.NET 

4.1. Internet Standards 

Before, we dive into the evolution of ASP, we should review some basic Web client/server 

fundamentals. At the highest level, communication in a Web-based environment occurs 

between two entities: (1) a Web client (most commonly a Web browser such as Internet 

Explorer or Netscape Navigator), which is an application that requests files from a Web server, 

and (2) a Web server, which is a software application, usually residing on a server, that 

handles client requests. 

It's easy to deduce that a server is a computer that serves something. In a Web environment, a 

server "serves" HTTP responses. A server generally has more processing power than a personal 

computer (PC) in order to handle a large number of simultaneous client requests. A Web server 

is a server that is capable of handling Web, or HTTP, requests. In the Microsoft world, this 

Web server is one part of Internet Information Services (IIS). 

Web browsers and servers communicate using a protocol called Transmission Control 

Protocol/Internet Protocol (TCP/IP). A protocol is simply a set of rules and procedures that 

define how two entities communicate. TCP/IP is actually composed of two parts, TCP and IP. 

TCP, often referred to as a transport protocol, wraps data in a digital envelope, called a 

packet, and ensures that the data is received in the same state in which it was sent. IP, a 

network protocol, is responsible for routing packets over a network, like the Internet. 

20 



In addition to TCP/IP, Web clients and servers use a higher-level protocol, called HyperText 

Transfer Protocol (HTTP). To clarify, let us use the analogy of sending a letter through the 

mail. The letter is analogous to HTTP. When writing a letter, you'll probably write it in a 

language that the receiver understands, right? So, if you were a Web browser or server 

you would write your letter in HTTP rather than English. The envelope, which contains 

a mail-to and return address, is analogous to TCP and your friendly mail carrier is analogous 

to IP. The mail carrier ensures that your letter is delivered to the correct street address, in 

the correct city, in the correct state. Likewise, IP ensures that your TCP packet is delivered 

to the correct IP address. 

HTTP is a request-response type protocol that specifies that a client will open a connection to a 

server and then send a request using a very specific format. The server will then respond and 

close the connection. HTTP has the ability to transfer Web pages, graphics, and any other type of 

media that is used by a Web application. Effectively HTTP is a set of messages that 

a Web browser and server send back and forth in order to exchange information. The simplest 

HTTP message is GET, to which a server replies by sending the requested document. In addition 

to GET requests, clients can also send POST requests. POST requests are used most commonly with 

HTML forms and other operations that require the client to transmit a block of data to the 

server. 

4.2. The Evolution of ASP 
Although it may seem as though Microsoft's Active Server Pages (ASP) technology has been 

around forever, it is actually a relatively new technology, introduced in 1996. Prior to ASP, 

developers were able to create active Web sites on a Microsoft platform using the Common 

Gateway Interface (CGI) and Internet Server Application Programming Interface (ISAPI), 

each of which played a part in the evolution of ASP.CG! was the first widely accepted 

technique of delivering dynamic Web content. CGI is effectively a method of extending the 

functionality of a Web server to enable it to dynamically generate HTTP responses using a 

program typically written in C or a scripting language such as Perl. This allowed page content 

to be personalized for the user and con- structed from information stored in a database. 

Although powerful, CGI did have several shortcomings. For each HTTP request that a CGI 

application receives, a new process is created. After the request has been handled, the process 

is killed. Repeatedly creating and killing processes proved be a tremendous burden for even the 

most capable of Web servers. 
Along came Microsoft's Active Server platform, which addressed the technical limitations of 

CGI programming. The Active Server platform was, and really still is, a set of tools that 

21 



developers can utilize to write Web applications. Microsoft's Active Server platform didn't 

however originally include Active Server Pages, ASP. Developers were forced to write ISAPI 

extensions or filters. 

ISAPI extensions and CGI are very similar with one major exception. Unlike CGI applications 

that are generally implemented as executables (EXE) on the Windows platform, ISAPI extensions 

are implemented as Dynamic Link Libraries (DLLs), which means they are loaded into memory 

only once, on first demand, and then stay resident in the same process as IIS. 

Therefore, ISAPI extensions do not suffer the same performance problems as CGI applications. 

Additionally, ISAPI extensions are multithreaded, which means that they can manage concur­ 

rent requests without degrading system performance. 

Like ISAPI extensions, ISAPI filters are multithreaded, implemented as DLLs, and run in the 

same memory space as IIS. However, ISAPI filters are not invoked by client requests. Instead, 

ISAPI filters do exactly as their name implies-they filter or intercept and optionally process 

HTTP requests. ISAPI filters are actually quite useful in many situations, particularly web server 

logging and security. However, because ISAPI filters act on every HTTP request, they should be 

used sparingly to avoid severe performance problems. 

As useful and powerful as ISAPI extensions and filters are, they can be difficult for novice 

programmers to develop. ISAPI DLLs must written in C++; and, even though Visual C++ does 

provide a wizard to assist with the task, this proved to be quite a barrier. Recognizing this 

issue, Microsoft released several short-lived Active Platform development products that were 

actually based on ISAPI. These included db Web and Internet Database Connector (IDC), which 

evolved into ASP. 

In 1996, Microsoft released Active Server Pages and as they say "the rest is history." ASP allows 

developers to execute code inline within a Web page. Although, ASP technology is still a 

relatively new way to create dynamic Web sites, during its short life span, it has evolved to 

become one of the foremost dynamic Web site development products. This is probably due to 

the ease with which complex pages and applications can be created, com- bined with the 

ability to use custom components and existing Microsoft and third party commercial 

components through the Component Object Model (COM/COM+) architecture. 

Since 1996, there have been several versions of ASP. In 1998, Microsoft introduced ASP 2.0 as part 

of the Windows NT 4.0 Option Pack. With ASP 2.0 and IIS 4.0, an ASP application and its 

associated components could be created in a memory space separate from the Web servers space to 

improve fault tolerance. In 2000, with the much anticipated release of Windows 2000 ( and IIS 

22 



5.0), Microsoft unveiled ASP 3.0. To us, differences between the capabilities of ASP 2.0 and 3.0 

appeared to be quite limited. However, running on Windows 2000, ASP's performance was greatly 

improved.While ASP is powerful and incredibly simple to use, it does have the following 

drawbacks: 

ASP code can get complicated very quickly. ASP code tends to be unstructured and gets really 

messy. Tons of server-side code intermixes with client-side script code and HTML. After 

awhile it becomes difficult to figure out what is going on. If you have a few free hours to 

blow, try reading someone else's ASP code and you'll see what we mean. It can be a truly 

painful experience. 

To do anything in ASP you have to write code. ASP has no actual component model. 

Developers tend to start at the top of a page and zip right down to the bottom, executing 

database queries, running business logic, and generating HTML along the way. 

Code is mixed with presentation. This causes problems when developers and designers work 

together. Supporting internationalization and multiple client types is difficult. 

The combination of ASP and IIS isn't always the most reliable of platforms. Sorry, Mr. 

Gates! However, in Microsoft's defense, this instability isn't necessarily- or even probably 

- a platform issue. Microsoft, by making the Active Platform so open, gave developers the 

ability to create applications that could quite easily bring IIS to its knees. Developing an ASP 

application is one thing, developing a good, effi- cient, reliable ASP application is another. 

Anyway, ASP fault tolerance could have been a little better. 

Deploying an ASP application that utilizes COM can be difficult. COM objects must be 

registered and are locked by the operating system when being used. As a result, managing a 

production application, especially in a Web farm, or a Web application that utilizes more than 

one Web server, proved to be quite challenging. 

4.3. The Benefits of ASP.NET 

Microsoft, realizing that ASP does possess some significant shortcomings, developed ASP.NET. 

ASP.NET is a set of components that provide developers with a framework with which to 

implement complex functionality. Two of the major improvements of ASP.NET over traditional 

ASP are scalability and availability. ASP.NET is scalable in that it provides state services that 

can be utilized to manage session variables across multiple Web servers in a server farm. 

Additionally, ASP.NET possesses a high performance process model that can detect application 

failures and recover from them. 

23 



Along with improved availability and scalability, ASP.NET provides the following addi­ 

tionalbenefits: 

• Simplified development: ASP.NET offers a very rich object model that developers can 

use to reduce the amount of code they need to write. 

• Language independence: ASP pages must be written with scripting. In other 

words, ASP pages must be written in a language that is interpreted rather than com- piled. 

ASP.NET allows compiled languages to be used, providing better performance and cross-language 

compatibility. 
• Simplified deployment: With .NET components, deployment is as easy as copying a 

component assembly to its desired location. 

• Cross-client capability: One of the foremost problems facing developers today is 

writing code that can be rendered correctly on multiple client types. For example, 

writing one script that will render correctly in Internet Explorer 5.5 and Netscape 

Navigator 4.7, and on a PDA and a mobile phone is very difficult, if not impossible, 

and time consuming. ASP.NET provides rich server-side components that can auto­ 

matically produce output specifically targeted at each type of client. 

• Web services: ASP.NET provides features that allow ASP.NET developers to effortlessly 

create Web services that can be consumed by any client that understands HTTP and XML, 

the de facto language for inter-device communication. 

• Performance: ASP.NET pages are compiled whereas ASP pages are interpreted. When an 

ASP.NET page is first requested, it is compiled and cached, or saved in memory, by the 

.NET Common Language Runtime (CLR). This cached copy can then be re-used for each 

subsequent request for the page. Performance is thereby improved because after the first 

request, the code can run from a much faster compiled version. 

Probably one of the most intriguing features of ASP.NET is its integration with the .NET CLR. 

The CLR executes the code written for the .NET platform. The .NET compilers target the.NET 

runtime and generate intermediate language (IL) binary code (kind of like Java and byte code). 

The code generated by .NET compilers cannot be run directly on the processor because the 

generated code is not in machine language. During runtime, the .NET compilers convert this 

intermediate code to native machine code and that machine code is eventually run on the 

processor. Additionally, the .NET compilers also produce metadata that describes the code. The 

.NET runtime loads metadata information for performing different tasks like resolving method 

24 



calls, loading different dependent modules, marshaling data from one component to another, 

and so on. Since the .NET runtime produces binary code that is later compiled, effectively any 

language that is CLR compliant and can generate IL code can be used to write ASP.NET 

applications and components . 

. NET offers many programmatic improvements and features, one of which is a new version of 

ActiveX Data Objects (ADO) called, not surprisingly, ADO.NET. ADO.NET provides a suite of 

data handling and binding facilities. The Web is an inherently disconnected environment: a 

Web application connects to a datasource, manipulates the data, reconnects to the data- source, 

and updates the data. ADO.NET has been designed to work in a disconnected fashion, which 

increases data sharing. Additionally, ADO.NET treats data in a very loose, multidimensional, 

object-oriented way through a strongly typed object model. With ADO, all data is represented 

in two dimensions, rows and columns. With ADO.NET these n-dimensional data representations 

of data are called datasets. Iterating through, updating, and deleting related tables in a dataset 

is exceptionally simple. 

Figure 4.1. The .Net Framework 

4.4. Creating an ASP.NET Application 

After you've set up the development environment for ASP.NET, you can create your 

first ASP.NET Web application. You can create an ASP.NET Web application in one 

of the following ways: 
Use a text editor: In this method, you can write the code in a text editor, such as 

Notepad, and save the code as an ASPX file. You can save the ASPX file in the 

directory C: \inetpub\wwwroot. Then, to display the output of the Web page in 

25 



Internet Explorer, you simply need to type http://localhost/<filename>.aspx in the 

Address box. If the IIS server is installed on some other machine on the network, 

replace "localhost" with the name of the server. If you save the file in some other 

directory, you need to add the file to a virtual directory in the Default WebSite 

directory on the IIS server. You can also create your own virtual directory and add 

the file to it. 

Use the VS.NET IDE: In this method, you use the IDE of Visual Studio .NET to 

create a Web page in a WYSIWYG manner. Also, when you create a Web 

application, the application is automatically created on a Web server(IIS server). You 

do not need to create a separate virtual directory on the IIS server. 

From the preceding discussion, it is obvious that the development of ASP.NET Web 

applications is much more convenient and efficient in Visual Studio .NET. ASP.NET 

Web pages consist of HTML text and the code. The HTML text and the code can be 

separated in two different files. You can write the code in Visual Basic or C#. This 

separate file is called the code behind file. In this section, you'll create simple Web 

pages by using VB as well as C#. Before you start creating a Web page, you should 

be familiar with basic ASP.NET syntax. At the top of the page, you must specify an 

@ Page directive to define page- specific attributes, such as language. The syntax is 

given as follows: 

<%@ Page attribute = value %> 
To specify the language as VB for any code output to be rendered on the page, use 

the following line of code: 

<%@ Page Language = "VB" %> 
This line indicates that any code in the block, <%%>, on the page is compiled by 

using VB. 
To render the output on your page, you can use the Response.Write() method. For 

example, to display the text "hello" on a page, use the following code: 

<% Response.Write("Hello") %> 
You can use HTML tags in the argument passed to the Response.Write() method. 

For example, to display the text in bold, you use the following code: 

<% Response.Writet'<B> Hello <IB>") %> 
For dynamic processing of a page, such as the result of a user interaction, you need 

26 



to write the code within the <Script> tag. The syntax of the <Script> tag is given as 

follows: 

<Script runat=" server" [language=codelanguage ]> 

code here 

-c/Script> 

4.5. In this syntax ... 

runat="server" indicates that the code is executed at the server side. 

[language=codelanguage] indicates the language that is used. You can use VB, C#, 

or JScript .NET. The square brackets indicate that this attribute is optional. If you do 

not specify this attribute, the default language used is VB. 

After gaining an understanding of the basic ASP.NET page syntax, you can now 

create a simple ASP.NET Web application. In the following sections, you'll create a 

simple Web application by using VB and C#. To do so, you'll use the VS.NET IDE. 

4.6. Creating a Visual Basic Web Application 

You can create an ASP.NET application using Visual Basic by creating a Visual 

Basic Web Application project. To do so, complete the following steps: 

1. Select File > New > Project. The New Project dialog box appears. 

2. Select Visual Basic Projects from the Project Types pane. 

3.Select ASP.NET Web Application from the Templates pane. The Name box 

contains a default name of the application. The Location box contains the name of a 

Web server where the application will be created. However, you can change the 

default name and location. In this case, the name of the sample application is 

Sample VB. The New Project dialog box now appears as shown in Figure 4.2. 

Figure 4.2. The New Project dialog box 

27 



Figure 4.3. The VS.NET window with a new project 

The WebForml.aspx file is displayed in Design mode by default. To view the file in 

HTML mode, click HTML at the bottom of the WebForml.aspx file window. 

As you can see in HTML view, the language to be used on the page is VB. Any 

HTML text or code (in the<%%> block) within the -cBodyc-c/Body> block is 

rendered on the page when it is displayed in a Web browser. 

The default background color of a page is white. You can change the background 

color of a page by setting the bgcolor attribute of the <Body> element. When you set 

this attribute, you are prompted to pick the color, as shown in Figure 4.4. 

<body 

Figure 4.4. Setting the bgcolor attribute 

When you select a color from the color palette, the corresponding color code is set as 

the value of the bgcolor attribute. A sample of such code is given as follows: 

<Body bgc?lor="#ccccff"> 
Write the following code within the <Body> -c/Body> element to display the text 

"Hello World": 
<% Response.Write(" <Font Sizee l U> <Center> <B> Hello World <IB> -c/Center> 

</Font>") %> 
After you complete writing the code for your application, you need to build your 

28 



application so that you can execute it on a Web server. To build the project, choose 

Build. 

When you build a project, the Web Form class file is compiled to a Dynamic Link 

Library (DLL) file along with other executable files in the project. The ASPX file is 

copied to the Web server without any compilation. You can change the ASPX file 

(only the visual elements of the page) without recompiling, because the ASPX file is 

not compiled. Later, when you run the page, the DLL and ASPX files are compiled 

into a new class file and then run. 

The output of the page that you developed is displayed in Figure4.5 

Figure 4.5. A sample output of the Web page 

4.7. Deploying an ASP.NET Web Application 

After creating and testing your ASP.NET Web applications, the next step is 

deployment. Deployment is the process of distributing the finished applications 

(without the source code) to be installed on other computers. 

In Visual Studio .NET, the deployment mechanism is the same irrespective of the 

programming language and tools used to create applications. In this section, you'll 

deploy the "Hello World" Web application that you created. You can deploy any of 

the application that was created by using VB or C#. Here, you'll deploy the 

application created by using VB. To do so, follow these steps: 

1. Open the Web application project that you want to deploy. In this case, 

open the SampleVB project. 
2. Select File D Add Project D New Project to open the Add New Project 

dialog box. 
3. From the Project Types pane, select Setup and Deployment Projects. 

From the Templates pane, select Web Setup Project. 

29 



4. Change the default name of the project. In this case, change it to 

"SampleVBDeploy." 

5. Click OK to complete the process. The project is added in the Solution 

Explorer window. 

Also, a File System editor window appears to the left, as shown in Figure27. The 

editor window has two panes. The left pane displays different items. The right pane 

displays the content of the item selected in the left pane. 

Figure 4.6. The Deployment editor 

6. Select Web Application Folder in the left pane of the File System editor 

window. Then, from the Action menu, select Add > Project Output to open the Add 

Project Output Group dialog box, shown in Figure 4.7. 

Figure 4.7. The Add Project Output Group dialog box 

7. Verify that SampleVB is selected in the Project drop-down list. Then, 

select Primary Output and Content Files from the list. 

30 



8. Click OK. The output files and content files of the Sample VB project are 

added to the solution. 

9. Select Web Application Folder in the File System editor and select 

Properties Window from the View menu to open the Properties window. 

10.Set the Virtual Directory property to a folder, <folder name>, that would be 

the virtual directory on the target computer where you want to install the application. 

By default, this property is set to Sample VB Deploy, which is the name of the Web 

Setup project that you added. In this case, set the property to Deployed Application. 

11. In the same Properties window of the Web Application Folder, set the 

DefaultDocument property to WebForml.aspx. This property is used to set the 

default Web Forms page for the application. 

12. Build the solution by selecting Build Solution from the Build menu. 

13. After the solution is built successfully, a Sample VBDeploy . msi file is 

created in the Debug directory of the Web Setup project. The default path is 

\documents and settings \<login name> \My Documents\Visual Studio 

Projects\SampleVB\SampleVBDeploy\Debug\SampleVBDeploy.msi. 

14. Copy the Sample VBDeploy.msi file to the Web server computer 

(c:\inetpub\wwwroot) where you want to deploy the application. 

15. Double-click the Sample VBDeploy.msi file on the target computer to run 

the installer. 

After the installation is complete, you can run your application on the target computer. 

To do so, start Internet Explorer and enter http://<computername> 

/DeployedApplication in the address box. The "Hello World" page that you developed 

is displayed. 

31 



CHAPTER FIVE 

Database for ASP.NET 

5.1. What is a Database? 

A database is essentially an electronic means of storing data in an organized manner. 

Data can be anything that a business or individual needs to keep track of and that, prior 

to computers, could have only been tracked on one or more paper documents. Once 

stored, data in the database can be retrieved, processed, and displayed by programs as 

information to the reader. The actual structure that a database uses to store data can take 

one of many different forms, each which offers certain advantages when that 

information is to be retrieved or updated. In the next section, we will look at how 

storing the database in a flat file structure differs from a relational database structure, and 

the advantages and disadvantages that each of those presents. 

5.2. The Microsoft SQL Server 2000 Desktop Engine 

We use the Microsoft SQL Server Desktop Engine for database development throughout 

this book. Before wading too far into this topic, it is worthwhile to first understand what 

Microsoft SQL Server 

2000 is, what different editions of it are available, and how the Desktop Engine we will 

be using in this book compares with other editions of SQL Server 2000. 

5.3. Microsoft SQL Server 2000 Defined 

Microsoft SQL Server 2000 is a relational database management system that can be used 

by individuals or businesses for storing and managing data. It also offers powerful 

functionality for data analysis and reporting. There are actually seven versions of 

Microsoft SQL Server 2000 to choose from. Two of these, the Enterprise and Standard 

Editions, are for deployment on servers in production environments. The other five 

versions each have a special purpose and are not licensed for deployment on production 

servers. Each of the seven versions of SQL Server are briefly described below: 

• SQL Server 2000 Enterprise Edition - This is the most comprehensive 

version of SQL Server 2000 and supports the full set of SQL Server 2000 

features. This version is most appropriate for large organizations that need 

to manage immense amounts of data quickly and efficiently. 

32 



• SQL Server 2000 Standard Edition - This version of SQL Server 2000 

supports many of the available features, with the notable exception of those 

that enable the quick and efficient management of large amounts of data. 

Hence, this version is primarily aimed at small to medium sized 

organizations that do not have the complex database requirements of larger 

firms. SQL Server 2000 Standard Edition is nonetheless an extremely 

powerful version of SQL Server and supports Analysis Services (with a few 

exceptions), Replication, Full-Text Search, Data Transformation Services, 

English Query, and other advanced SQL Server features. 

• SQL Server 2000 Personal Edition - This version of SQL Server 2000 

supports basically the same features as the Standard Edition, with the 

exception of transactional replication. Additionally, Analysis Services 

and Full-Text Search are only available on certain operating systems with 

this edition. This version is most appropriate for users who spend some 

time disconnected from the network but access SQL Server data on their 

local machine while disconnected. A common example would be mobile 

users - say, a company's sales force who require access to data while out in 

the field. This version limits the number of concurrent database activities 

that can be running at any one time. This simply means that it isn't 

designed to handle a great many users or database activities. 

• SQL Server 2000 Windows CE Edition - This version of SQL Server 

2000 runs on mobile devices that run under Windows CE. It is a compact 

edition of SQL Server 2000 and allows relational databases to be stored 

and managed on a Windows CE device for later synchronization with the 

main database. It also allows users to manage a SQL Server database 

remotely over the Internet from their CE device. 

• SQL Server 2000 Developer Edition - This version of SQL Server 2000 

supports all available features just like the Enterprise Edition, with the 

proviso that it not be deployed on a production server. As the name 

indicates, this version is designed for developers, consultants, and solution 

providers while developing and testing SQL applications. 

33 



• SQL Server 2000 Evaluation Edition - This version is a fully 

functional version of SQL Server 2000 Enterprise Edition that stops 

working after 120 days. It allows organizations to evaluate the full product 

without charge. 

• SQL Server 2000 Desktop Engine -This is a redistributable version of 

the SQL Server database engine. This means that you can include it in your 

setup programs for applications that use SQL Server to store data. The 

Desktop Engine doesn't include any of the SQL Server 2000 graphical user 

interface tools, such as SQL Server Enterprise Manager, so other 

products(such as Visual Studio .NET Server Explorer, Access, or SQL 

Server 2000 APls) must be used to create and manage databases stored in 

this version of SQL Server. (Note: This is not the same version as the SQL 

Server 7 Desktop Edition. The SQL Server 7 Desktop Edition became the 

Personal Edition in SQL Server 2000. The SQL Server 2000 Desktop 

Engine was called the Microsoft Data Engine, or MSDE, in SQL Server 

7). 

5.4. Creating a Database 
The first step in building a database with SQL Server is to actually create the database. That's 

right. SQL Server is a piece of software that runs on a computer, or server. Once the SQL Server 

oftware is installed you can create a database (or databases) with the SQL Server software that is 

then managed by that SQL Server software. Many people refer to SQL Server as a database, which it 

is, sort of. SQL Server is actually an application, a Relational Database Management System 

(RDBMS), which can contain multiple databases. 

Creating the database using Enterprise Manager and perform the following steps: 

1. Expand the SQL Server Group item, if it isn't already expanded, in the Enterprise 

Manager tree. Once expanded you should see a list of SQL Servers that are regis- tered with 

Enterprise Manager. 

2. Right-click the SQL Server in which you want to create the Music database. 

3. Select New> Database. 

4. You see the Database Properties dialog box. On the General tab, enter Music in the 

Name field. The Database Properties dialog box allows you to control other features 

of your database such as file growth, maximum database size, transaction log files, 

and so on. For the sake of brevity, accept the defaults. 

34 



You have created a SQL Server database using Enterprise Manager. If you want to create a 

database with T-SQL, follow these steps: 

1. Select Start> Programs> Microsoft SQL Server> Query Analyzer to open 

SQL Server's Query Analyzer. 

2 You see the Connect to SQL Server dialog box. Select the SQL Server on which you 

would like to create the Music database from the SQL Server drop-down box. Select 

the Use SQL Server authentication radio button. Now enter the appropriate 

authentication information in the Login Name and Password fields. 

3. In the Query Analyzer window, enter the following T-SQL statement: 

E master 

GO 

CREATE DATABASE Music ON PRIMARY 
(NAME= MusicData,FILENAME = 'C:\MSSQL7\data\MusicData.mdf') 

In step 3, you essentially created a database named Music and specified that the data should be 

stored in the MusicData.mdf file located, in this example, in the C:\MSSQL7\data directory. 

The CREATE DATABASE statement accepts many other parameters, such as MAXSIZE, 

FILEGROWTH, SIZE, and so on. However, again, for the sake of brevity, you used the SQL 

Server defaults. 

S.S. Creating SQL Server Tables 
Now that you have a database, Music, you can add tables to it. If you recall from the previous 

session, the Music database contains several tables including t_bands, t_band_members, 

t_albums, and so on. Figure 4-3 shows the schema for the Music database. 

You are not going to create every table in the Music database, but hopefully, based on the 

tables you do create, you will be able to build the remaining tables. So, go create the 

t_bands table: 
1. In Enterprise Manager, right-click on the Music database node and select New> 

Table. 

2. You see the Choose Name dialog box as shown in Figure 4-4. Enter t_bands in the 

"Enter a name for the table:" textbox and click OK. The table design grid is 

now ready for you to enter column information. 

3. In the design grid, enter band_id in the Column Name field of the first row as 

shown in Figure 4-5. In the Datatype column, select int to signify that the 

35 



4. band_id field will contain integer type data. On the same row, deselect the 

Allow Nulls checkbox and select the Identity checkbox. Click the Set Primary 

Key button 

(it looks like a· key) on the SQL Server toolbar to make the band_id 

column the primary key for the t_bands table, 

5. Create the band_title, music_type_id, and record_company _id columns, using 

Figure 4-5 as a guide. 

6. Right-click the t_bands table design grid as shown in Figure 4-5. You see the 

Properties dialog box. 

7. Select the Indexes/Keys tab and click the New button to create a new index on the 

band_title column. 

8. Select band_title from the Column name drop-down box and enter IX_band_title 

in the Index name text box. 

9. Select the Create UNIQUE checkbox and the Index option button, and click the 

Close button (as shown in Figure 4-6). 

10. Save and close the t_bands design grid . 

5.6. The ADO.NET Object Model 
The figure below shows a simplified view of the primary objects in the ADO.NET 

object model. Of course, the reality of the class library is more complicated, but we'll 

deal with the intricacies later. For now, it's enough to understand what the primary 

objects are and how they typically interact. 

Figure 5.1. Ado.Net 

The ADO.NET classes are divided into two components: the Data Providers 

(sometimes called Managed Providers), which handle communication with a physical 

data store, and the DataSet, which represents the actual data. Either component can 

communicate with data consumers such as WebForms and WinForms. 

36 



5.6.1 Data Providers 

The Data Provider components are specific to a data source. The .NET Framework 

includes two Data Providers: a generic provider that can communicate with any 

OLE DB data source, and a SQL Server provider that has been optimized for 

Microsoft SQL Server versions 7 .0 and later. Data Providers for other databases 

such as Oracle and DB2 are expected to become available, or you can write your 

own. 
The two Data Providers included in the .NET Framework contain the same objects, 

although their names and some of their properties and methods are different. To 

illustrate, the SQL Server provider objects begin with SQL (for example, 

SQLConnection), while the OLE DB objects begin with OleDB (for example, 

OleDbConnection). 

The Connection object represents the physical connection to a data source. Its 

properties determine the data provider (in the case of the OLE DB Data Provider), 

the data source and database to which it will connect, and the string to be used 

during connecting. Its methods are fairly simple: You can open and close the 

connection, change the database, and manage transactions. 

The Command object represents a SQL statement or stored procedure to be executed 

at the data source. Command objects can be created and executed independently 

against a Connection object, and they are used by DataAdapter objects to handle 

communications from a DataSet back to a data source. 

Command objects can support SQL statements and stored procedures that return 

single values, one or more sets of rows, or no values at all. 

A DataReader is a fast, low-overhead object for obtaining a forward-only, read-only 

stream of data from a data source. They cannot be created directly in code; they are 

created only by calling the ExecuteReader method of a Command. 

The DataAdapter is functionally the most complex object in a Data Provider. It 

provides the bridge between a Connection and a DataSet. The DataAdapter contains 

four Command objects: the SelectCommand, UpdateCommand, InsertCommand, 

and DeleteCommand. The DataAdapter uses the SelectCommand to fill a DataSet 

and uses the remaining three commands to transmit changes back to the data source, 

as required. 

37 



Microsoft ActiveX Data 

Objects (ADO) 

In functional terms, the Connection and 

Command objects are roughly equivalent to their 

ADO counterparts (the major difference being the 

lack of support for server-side cursors), while the 

DataReader functions like a firehose cursor. The 

DataAdapter and DataSet have no real equivalent 

in ADO. 

5.6.2. DataSets 
The DataSet is a memory-resident representation of data. Its structure is shown in 

the figure below. The DataSet can be considered a somewhat simplified relational 

database, consisting of tables and their relations. It's important to understand, 

however, that the DataSet is always disconnected from the data source-it doesn't 

"know" where the data it contains came from, and in fact, it can contain data from 

multiple sources. 

Figure 5.2. DataSet 

The DataSet is composed of two primary objects: the DataTableCollection and the 

DataRelationCollection. The DataTableCollection contains zero or more DataTable 

objects, which are in turn made up of three collections: Columns, Rows, and 

Constraints. The DataRelationCollection contains zero or more DataRelations. 

The DataTable's Columns collection defines the columns that compose the 

DataTable. In addition to ColumnName and DataType properties, a DataColumn's 

properties allow you to define such things as whether or not it allows nulls 

(AllowDBNull), its maximum length (MaxLength), and even an expression that is 

used to calculate its value(Expression). 

The DataTable's Rows collection, which may be empty, contains the actual data as 

defined by the Columns collection. For each Row, the DataTable maintains its 

38 



original, current, and proposed values. As we'll see, this ability greatly simplifies 

certain kinds of programming tasks. 

ADO The ADO.NET DataTable provides essentially the 

same functionality as the ADO Recordset object, 

although it obviously plays a very different role in the 

object model. 

The DataTable's Constraints collection contains zero or more Constraints. Just as in 

a relational database, Constraints are used to maintain the integrity of the data. 

ADO.NET supports two types of constraints: ForeignKeyConstraints, which 

maintain relational integrity (that is, they ensure that a child row cannot be 

orphaned), and UniqueConstraints, which maintain data integrity (that is, they 

ensure that duplicate rows cannot be added to the table). In addition, the PrimaryKey 

property of the DataTable ensures entity integrity (that is, it enforces the uniqueness 

of each row). 

Finally, the DataSet's DataRelationCollection contains zero or more DataRelations. 

DataRelations provide a simple programmatic interface for navigating from a master 

row in one table to the related rows in another. For example, given an Order, a 

DataRelation allows you to easily extract the related OrderDetails rows. (Note, 

however, that the DataRelation itself doesn't enforce relational integrity. A Constraint 

is used for that.) 

5.6.3 Binding Data to a Simple Windows Form 
The process of connecting data to a form is called data binding. Data binding can be 

performed in code, but the Microsoft Visual Studio .NET designers make the 

process very simple. In this chapter, we'll use the designers and the wizards to 

quickly create a simple data bound Windows form. 

39 



Important If you have not yet installed this book's practice files, 

work through "Installing and Using the Practice Files" in 

the Introduction, and then return to this chapter. 

Adding a Connection and Data Adapter to a Form 

Roadmap 
The first step in binding data is to create the Data Provider objects. Visual Studio 

5.6.3.1 

provides a Data Adapter Configuration Wizard to make this process simple. Once the 

Data Adapter has been added, you can check that its configuration is correct by using 

the Data Adapter Preview window within Visual Studio. 

5.6.3.1.1. Add a Connection to a Windows Form 

1. Open the Employees Form project from the Visual Studio Start 

Page. 

2. Double-click Employees.vb (or Employees.cs if you're using C#) 

in the Solution Explorer to open the form. 

Visual Studio displays the form in the form designer. 

Figure 5.3. Visual Studio.Net 

3. Drag a SQLDataAdapter onto the form from the Data tab of the 

Toolbox. 

Visual Studio displays the first page of the DataAdapter Configuration Wizard. 

40 



Figure 5.4. Data Adapter Configuration Wizard 

4. Click Next. 

The DataAdapter Configuration Wizard displays a page asking you to 

choose a connection. 

Figure 5 .5. Data Adapter Configuration Wizard 

5. Click New Connection. 

The Data Link Properties dialog box opens. 

Figure 5.6. Data Link Properties Dialog Box 

6. Specify the name of your server, the appropriate logon information, 

select the Northwind database, and then click Test Connection. 

41 



The DataAdapter Configuration Wizard displays a message indicating that 

the connection was successful. 

Figure5.7. Message Box 

7. Click OK to close the message, click OK to close the Data Link 

Properties dialog box, and then click Next to display the next page of 

the DataAdapter Configuration Wizard. 

The DataAdapter Configuration Wizard displays a page requesting 

that you choose a query type. 

Figure 5.8.Choose A Query Type 

8. Verify that the Use SQL statements option is selected, and then click 

Next, 

The DataAdapter Configuration Wizard displays a page requesting the SQL 

statement(s) to be used. 

Figure5.9 

9. Click Query Builder. 

42 



The DataAdapter Configuration Wizard opens the Query Builder and 

displays the Add Table dialog box. 

Figure 5.10. Add Table 

10. Select the Employees table, click Add, and then click Close. 

The Add Table dialog box closes, and the Employees table is added to the Query 

Builder, 

Figure 5.11.Query Builder 

11. Add the following fields to the query by selecting the check 

box next to the field name in the top pane: EmployeeID, 

LastName, FirstName, Title, TitleOJCourtesy, HireDate, 

Notes. 

The Query Builder creates the SQL command. 

43 



Figure 5.12. 

12. Click OK to close the Query Builder, and then click Next. 

The DataAdapter Configuration Wizard displays a page showing 

the results of adding the Connection and DataAdapter objects to 

the form. 

Figure 5 .13 Data Adapter Configuration Wizard 

13. Click Finish to close the DataAdapter Configuration Wizard. The 

DataAdapter Configuration Wizard creates and configures a SQLDataAdapter 

and a SQLConnection, and then adds them to the Component Designer. 

44 



Figure 5.14.Visual Studio.Net 

5.6.3.2. Creating DataSets Roadmap 

The Connection and DataAdapter objects handle the physical communication with 

the data store, but you must also create a memory -resident representation of the actual 

data that will be bound to the form. You can bind a control to almost any structure 

that contains data, including arrays and collections, but you'll typically use a DataSet. 

As with the Data Provider objects, Visual Studio provides a mechanism for 

automating this process. In fact, it can be done with a simple menu choice, although 

because Visual Studio exposes the code it creates, you can further modify the basic 

DataSet functionality that Visual Studio provides. 

5.6.3.2.1. Create a DataSet 
1. On the Data menu, choose Generate Dataset. The Generate Dataset 

dialog box opens. 

Figure5.15.Generate Dataset 

45 



2. In the New text box, type dsEmployees 

Figures .16. 

3. Click OK. 

Visual Studio creates the DataSet class and adds an instance of 

it to the bottom pane of the forms designer. 

FigureS .17. 

5.6.4. Simple Binding Controls to a Data Set 

The .NET Framework supports two kinds of binding: simple and complex. Simple 

binding occurs when a single data element, such as a date, is bound to a control. 

Complex binding occurs when a control is bound to multiple data values, for 

example, binding alist box to a DataSet that contains a list of Order Numbers. 

46 



Roadmap We'll examine simple and complex data binding in 

s>: more detail in Chapters 10 and 11. 

Almost any property of a control can support simple binding, but only a subset of 

Windows and Web Forms controls (such as Data Grids and List Boxes) can support 

complex binding. 

5.6.4.1. Bind the Text Property of a Control to a Data Set 

1. Click the txt Title text box in the forms designer to select it. 

2. Click the plus sign next to Data Bindings to expand the Data 

Bindings properties. 
3. Click the drop-down arrow for the Text property. Visual Studio 

displays a list of available data sources. 

4. In the list of available data sources for the Text property, click the 

plus sign next to the DsEmployeesl data source, and then click the 

plus sign next to the Employees Data Table. 

Figure 5 .18.Properties 

5. Click the Title Of Courtesy column to select it. 

6. Repeat steps 1 through 5 to bind the Text property of the remaining 

controls to the columns of the Employees Data Table. 

47 



5.6.5. Loading Data into the Data Set 

We now have all the components in place for manipulating the data from our data 

source, but we have one task remaining: We must actually load the data into the 

DataSet. 

If you're used to working with data bound forms in environments such as Microsoft 

Access, it may come as a surprise that you need to do this manually. Remember, 

however, that the ADO.NET architecture has been designed to operate without a 

permanent connection to the database. In a disconnected environment, it's appropriate, 

and indeed necessary, that the management of the connection be under programmatic 

control. 

Visual Basic .NET 

1. Press F7 to view the code for the form. 

2. Expand the region labeled "Windows Form Designer generated code" 

and navigate to the New Sub. 

3. Add the following line of code just before the end of the procedure: 

SqlDataAdapterl .Fill(DsEmployees 1 ). 

5.6.5.1. 

4. Press F5 to build and run the program. 

Visual Studio displays the form with the first row displayed. 

5. Admire your data bound form for a few minutes and then close the 

form. 

Figure 5.19. 

48 



CHAPTER SIX 

Internet Information Server 

6.1. What is IIS? 

IIS (Microsoft Internet Information Services or Server) is a set of Internet based services for 

Windows machines. Originally supplied as part of the Option Pack for Windows NT, they 

were subsequently integrated with Windows 2000 and Windows Server 2003. The current 

(Windows 2003) version is IIS 6.0 and includes servers for FfP, SMTP, NNTP and 

HTTP/HTTPS. Earlier versions also included a Gopher server. 

The web server itself can not directly perform server side processing but can delegate the task 

to ISAPI applications on the server. Microsoft provides a number of these, including ones for 

Active Server Pages and ASP.NET. Third parties have provided support for PHP and Perl 

languages in the same way. 

Internet Information Services is designed to run on Windows server operating systems. A 

restricted version that supports one web site and a limited number of connections is also 

supplied with Windows XP Professional. 

US has been attributed with a number of security exploits, most of which were in fact issues 

within the lesser used ISAPI handlers. With Windows Server 2003 Microsoft finally elected 

to tum off all ISAPI handlers by default thereby giving the web server a much more secure 

"out of the box" configuration. 

Microsoft has also changed the server account that US runs on. In versions of IIS before 6.0, 

all the features were run on the System account, allowing exploits to run wild on the system. 

Under 6.0 many of the processes have been brought under a Network Services account which 

has fewer privileges. In particular this means that if there is an exploit on that feature, it 

wouldn't necessarily compromise the entire system. 

Apache is the dominant software in the web server market and IIS's main competitor. Solaris 

Operating Environment/J2EE also competes in the enterprise web services arena. 

49 



//.~;~:.~ 1.A s7))-.~ 
,, \,'• VA~ 

/,/~, ·y ~ 
,' .. ~~ ?-\\ 
' I . \\',')\ '·I/),, ;N 

·, ,~·--\,-1 "' en 

6.2. Installing ASP.NET (IIS 6.0) ·.;, ,, ,., ''">-J)J 
. .,~1;o~t-- / 

''""-~ 

ASP.NET is supported on the Windows Server™ 2003 family, Windows 2000 (Professional, 

Server, and Advanced Server), and Windows XP Professional for both client and server 

applications. 

A server running a member of the Microsoft Windows Server 2003 family can be configured 

as an application server, with ASP.NET as an option that you can enable while configuring 

the application server role. To deploy ASP.NET Web applications to a production server, you 

must be sure to enable the ASP.NET and IIS roles on the production server before you 

distribute the application. 

If you want to install ASP.NET on a domain controller, there are special steps you must take 

to make the installation work correctly 

ASP.NET, along with the .NET Framework version 1.1, is installed as a part of Windows 

Server 2003. You simply need to add it as a new program from Control Panel or enable it by 

using the Configure Your Server wizard. 

To install ASP.NET on a server running Windows Server 2003 using the Configure Your Server 

wizard 

1. From the Start menu, click Manage Your Server; in the Manage Your Server window, 

click Add or remove a role. 

2. In the Configure Your Server Wizard, click Next, and in the Server Role dialog box, 

check Application Server (IIS, ASP.NET) and then click Next. 

3. In the Application Server Options dialog box, select the Enable ASP.NET check box, 

click Next, and then click Next again. 

4. If necessary, insert your Windows Server 2003 installation CD in the CD-ROM drive 

and then click Next. 

5. When the installation is complete, click Finish. 

To install ASP.NET on a server running Windows Server 2003 using the Add or Remove 

Programs dialog box 

1. From the Start menu, point to Control Panel, and then click Add or Remove 

Programs. 

50 



2. In the Add or Remove Programs dialog box, click Add/Remove Windows 

Components. 

3. In the Add or Remove Programs dialog box, click Add/Remove Windows 

Components. 

4. When the Windows Components wizard has finished configuring Windows Server 

2003, click Finish 

To enable ASP.NET in IIS Manager on a server running Windows Server 2003 

1. From the Start menu, click Run. 

2. In the Open box in the Run dialog box, type inetmgr, and then click OK. 

3. In IIS Manager, expand the local computer and then click Web Service Extensions. 

In the details pane, right-click ASP.NET and then click Allow. The status of 

ASP.NET changes to Allowed. 

CHAPTER SEVEN 

SP.NET Security 

.1. The .NET Security Model 
The .NET Security model is a complex, multi-layered, and highly configurable system. Since 

part of the purpose of the .NET framework is to allow for "mobile code" to be distributed to 

ers on multiple platforms, security has become a major concern. Mobile code is an 

application or piece of software that is transmitted from a server to a local system ( or other 

vice) to be executed locally. This section provides an overview of several aspects of the 

~T security model. The focus for this section is on the configuration of .NET, specifically 

e configuration options for 

uring deployment of Web applications. Configurations of the framework itself, such as 

fining policies and code groups, as well as security features inherent in the CLR are 

dressed later in this paper. 

.2. Web Application Security 
There are several important features available for configuration for ASP.NET applications. 

Permissions for Web applications are regulated by the .NET Framework. Each Web 

plication is comprised of a number of assemblies, all of which may have different security 

51 



permissions granted to them by the CLR. The way these permissions are established is 

determined by the configuration of the .NET Framework on the server that is executing these 

applications.When building Web applications, configuration options may provide additional 

security beyond default settings. These options provide authentication mechanisms and 

authorization control to allow for granular support over who may use these applications and 

what features of the application are available to that user. System-wide policies may also be put 

in place to enforce rules that will apply to all installed Web applications. 

These options are configured by changing the configuration parameters in the Web 

applications' configuration file, which is located in the directory where the application is 

installed. This file, written in XML and named "web.config," defines a set of policies that will 

be applied to the application. The worker process will also recursively examine parent 

directories for the existence of web.config files. Lists of permissions will be built from policies 

supplied in each web.config file encountered in the order that they are read (from the root 

directory of the application up to the root directory of the Web server). 

Finally, a global configuration file, machine.config, located in the 

%SYSTEMROOT%\Microsoft.NET\(version)\CONFIG directory, defines policies that will be 

applied to all installed Web applications. Since this policy is read last, all previously read 

web.config files will install policies with a higher precedence than those contained in the 

global configuration file. 

7.3. .NET Framework Security Mechanisms Role-Based Security 

Role-Based security refers to the security context under which an assembly is run. 

Assemblies have associated privilege levels that define what resources may be accessed at 

execution time. The framework establishes the privileges granted to a particular assembly 

when authentication takes place. 

The application programmer defines rules related to roles in an XML configuration file, such 

specifing policies which govern privileges the application has when it is invoked, as well 

who is permitted to use it. This is achieved by specifying rules for both authentication and 

authorization. Once authenticated and authorized, an Identity is established and associated 

·ith the running assemblies principal. Identities associated with a principal may either be 

counts and roles on the system, or custom identities that are created by the application 

ogrammer. 

52 



7.4. Evidence-Based Security 
When an assembly is being prepared for execution, the .NET framework must decide what 

resources the application may access. This is accomplished by evaluating the evidence 

associated with the assembly and allocating rights based on this evidence. 

Evidence refers to the collection of information describing various aspects of the origin of the 

assembly. The purpose of this information is to establish the level of trust that should be 

granted to the assembly for execution on the local machine. The information present in 

assemblies depends on what is known about the assembly in question. Information supplied 

could include: 

Valid Digital Signatures - If an assembly is signed and the signature can be verified, digital 

signatures may be used to ensure that the code is trustworthy if it comes from a reputable 

source. 

Assembly Cache 
L q'~ Configured Assemblies 
~ Remoting Services 

S C, Runtime Security Policy 
$··~ Enterprise 
' :fH1' Code Groups 

\ L • AII_Code 
ifH~ Permission Sets 
L..~ Policy Assemblies 

l"i ·l§ Machine 
! $--~ Code Groups 

: H+~ AII_Code 
8»ffcy} Permission Sets 

FullTrust 
SkipVerificati 
Execution 
Nothing 

Manage tne Assembly Cache 
The assembly cache stores assemblies that are designed to be shared by several applications. Use tne 
assembly cache to view, add, and remove tne managed components that are installed on tnis computer. 

Manaqed Contlgured .l\ssemblies 
Configured assemblies are tne set of assemblies from tne assembly cache tnat have an associated set of 
rules. These rules can determine which version of the assembly gets loaded and tne location used to 
load the assembly. 

Configure Code .Access Security Policy 
The common language runtime uses code access security to control applications' access to protected 
resources. Each application's assemblies are evaluated and assigned permissions based on factors mat 
include tne assembly's origin and author. 

Adjust Remoting Services 
Use the Remoting Services Properties dialog box to adjust communication channels fur all applications 
on this computer. 

r,.,Janaqe Individual Applications 
Each application can have its own set of configured assemblies and remoting services. 

Locallntr a net 

. I 11 ~~~:;t~'.ng 
\ L".~ Policy Assemblies 
If f} User 
~ Applications 

Figure 7.1 .. NET Framework Configuration. 

URL or Site - The origin of assemblies may also help establish some level of trust if the 

source is reputable. 

Zone -The zone from where the assembly originated can be used to determine whether 

privileges should be granted to it. Untrusted zones, such as the Internet in a default setup, have 

low amount of privileges granted to it. 

53 



Path -The path where the assembly is physically located on disk is accessible. This may be 

useful to lower privileges of assemblies created by particular users or Web applications that 

will be serving anonymous requests. 

Evidence is used to categorize assemblies into code groups, which refer to the different sets 

ofevidence given and associated privileges. Each assembly that is going to be executed is 

categorized in a code group so that privileges may be determined and applied. After privileges 

for an assembly have been discovered, the framework checks what permissions the assembly 

requests to function. If assigned less privileges than the assembly requires, it is not run. 

Ehocse a condition type 
The members~p condition determines whether or not an assembly meets 
specific requirements to gel the permissions associated with a code group. 

Figure 7.2 Creating a Code Group 

The permissions refer to what objects may be accessed on the target system. There are a large 

number of objects that an assembly may require to perform its function. These objects include 

DataAccess, FileIO, DNS, EventLog, and Environment. By default, very low privilege sets are 

granted to assemblies originating from unknown authors on the Internet, so malicious 

applications cannot make use of the file system or tamper with the Registry . 

.5. Overview of ASP.NET Security (US 6.0) 

Most Web sites need to selectively restrict access to some portions of the site. You can think of 

Web site as somewhat analogous to an art gallery. The gallery is open for the public to come 

in and browse, but there are certain parts of the facility, such as the business offices, that are 

essible only to people with certain credentials, such as employees. When a Web site stores 

customers' credit card information in a database, for example, ASP.NET helps protect the 

tabase from public access. ASP.NET security addresses this and many other security issues. 

54 



Assign Individual Permissions to Permission Set 
Each permission set is a collection of many different permissions to various 
resources on the computer. Select the permissions that you would like to 
hav "· 

Directory Services 
Event Log 
Environment Variables 
File IO 
File Dialog 
Isolated Storage File 
Message Queue 
OLE DB 
Performance Counter 

Figure 7 .3. Creating a permission set by assigning individual permissions. 

Figure 7 .4. Permission levels for a specific permission set 

ASP.NET, in conjunction with Internet Information Services (IIS), can authenticate user 

dentials such as names and passwords using any of the following authentication methods: 

• Windows: Basic, digest, or Integrated Windows Authentication (NTLM or Kerberos). 

• Microsoft Passport authentication 

• Forms authentication 

• Client Certificate authentication 

55 



ASP.NET helps control access to site information by comparing authenticated credentials, or 

representations of them, to NTFS file system permissions or to an XML file that lists 

authorized users, authorized roles (groups), or authorized HTTP verbs. 

The topics in this section describe the specifics of ASP.NET security. 

CHAPTER EIGHT 

Electronic Commerce (E-Commerce) 

8.1 Introduction 

This paper provides a brief introduction to electronic commerce. It discuss the nature of 

electronic commerce, consider its scope and impact, and outlines several examples. It then 

identifies a number of open issues and the actors responsible for addressing those issues. 

Finally, it gives a brief overview of the G-7 Pilot Project "A Global Marketplace for SMEs". 

8.2 What is Electronic Commerce? 

One possible definition of electronic commerce would be: "any form of business transaction 

in which the parties interact electronically rather than by physical exchanges or direct 

physical contact". However, while accurate, such a definition hardly captures the spirit of 

electronic commerce, which in practice is far better viewed as one of those rare cases where 

changing needs and new technologies come together to revolutionise the way in which 

business is conducted. 

Modem business is charecterised by ever-increasing supply capabilities, ever-increasing 

global competition, and ever-increasing customer exeptions. In response, businesses 

throughout the world are changing both their organisations and their operations. They are 

flattening old hierarchical structures and eradicating the barriers between company divisions. 

They are lowering the barriers between the company and its customers and suppliers. 

Business processes are being re-designed so that they cross these old boundaries. We now see 

many examples of processes that span the entire company and even processes that are jointly 

owned and operated by the company and its customers or suppliers. 

Electronic Commerce is a means of enabling and supporting such change on a global scale. It 

enables companies to be more efficient and flexible in their internal operations, to work more 

56 



closely with their suppliers, and to be more responsive to the needs and exeptions of their 

customers. It allows companies to select the best suppliers regardless of their geographical 

location and to sell to a global market. 

One special case of electronic commerce is electronic trading, in which a supplier provides 

good or services to a customer in return for payment. A special case of electronic trading is 

electronic retailing, where the customer is an ordinary consumer rather than another 

company. However, while these special cases are of considerable economic importance, they 

are just particular examples of the more general case of any form of business operation or 

transaction conducted via electronic media. Other equally valid examples include internal 

transactions within a single company or provision of information to an external organisation 

without charge. 

Electronic Commerce is technology for change. Companies that choose to regard it only as an 

"add on" to their existing ways of doing business will gain only limited benefit. The major 

benefit will accrue to fully exploit the opportunities offered by electronic commerce. 

CHAPTER NINE 

E-COMMERCE WEB SITE USING ASP.NET 

9.1. What is an e-commerce web site? 

Web-based catalog sales site based on the ASP.NET Commerce Starter Kit. Users can 

browse the catalog, add items to their personal shopping cart, and when they've finished 

hopping, check out and finalize the sale. Casual browsers can view catalog items freely. A 

earch facility allows users to look for items using any word in the description. If they like, 

users can add product reviews to the description. 
To purchase items, users must be registered as authenticated users by providing account 

information: an email address and password. 
Authenticated users can also take advantage of two components accessible remotely over the 

Web: an "instant order" component that allows them to create orders remotely and a 

component that allows them to track orders remotely. These two features illustrate Web 

Services, the ASP.NET facility that allows you to publish components that are accessible 

using a Web protocol such as SOAP or HTTP. 

57 



9.2. Application Architecture 

The base UI of the Commerce Web Site is created using ASP.NET web pages (.aspx files). 

Reusable UI widgets, such as the navigation menus, are implemented as ASP.NET user 

controls (.ascx files). User controls are also used to create dynamic page content, such as the 

list of most popular items. 

The data for the Commerce Web Site is stored in a SQL Server database, and accessed via 

stored procedures. The ADO.NET database code to access these stored procedures is then 

encapsulated in a component layer. The remote-order and order tracking facilities are 

implemented as ASP.NET web services. 

9.3 Application Code 

9.3.1. alsobought_ascx 

<%@ Control Language="VB" %> 

<%@ import Namespace="System.Data.SqlClient" %> 

<script runat="server"> 

Public ProductID As Integer 

Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs) 

'Obtain list of products that people who "also bought" an item have purchased. Databind to 

list control 

Dim productCatalogue As ASPNET.StarterKit.Commerce.ProductsDB = New 

ASPNET.StarterKit.Commerce.ProductsDB() alsoBoughtList.DataSource = 

productCatalogue.GetProductsAlsoPurchased(ProductID) alsoBoughtList.DataBind() 

' Hide the list if no items are in it 

If alsoBoughtList.Items.Count = 0 Then 

alsoBoughtList.Visible = False 

End If 

End Sub 

<./script> 

<table width="95%" cellpadding="O" cellspacing="O" border="O"> 

<tr> 

<td><asp:Repeater ID="alsoBoughtList" runat="server"> 

-cHeader'Femplate> 

58 



<tr><td class="MostPopularHead">&nbsp;Customers who bought this also bought 

</td><ltr> 

-c/Header'Template> 

<Item Template> 

<tr> 

<td bgcolor="#d3d3d3 ">asp:HyperLink class="MostPopularltemText" Navigate Uri='<%# 

"ProductDetails.aspx?ProductID=" & DataBinder.Eval(Container.Dataltem, 

"ProductID")%>' Text='<%#DataBinder.Eval(Container.Dataltem, "Mode1Name")%>' 

runat="server" l><br> 

</td></tr> 

-c/Item Template> 

-cFooter'Iemplate> 

<tr> 

<td bgcolor="#d3d3d3"> 

<ltd> </tr> 

-c/Footer'Template> 

-c/asp-Repeatcr> 

<ltd> 

«hs» 

-otable> 

9.3.2. header_ascx 

<%@Control%> 

<table cellspacing="O" cellpadding="O" width="100%" border=?O"> 

<tr> 

<td colspan="2" background="images/grid_background.gif" nowrap> 

<table cellspacing="O" cellpadding="O" width="100%" border=l'O''> 

<tr> 

<td colspan=''?"> 

<img src=" images/most_secretive_place.gif"> 

<ltd> 

<td align="right" nowrap> 

<table cellpadding="O" cellspacing="O" border='fl"> 

<tr valign="top"> 

59 



<td align="center" width="65"> 

<a href="Login.aspx" class="SiteLinkBold"><img src="images/sign_in.gif" border="O"> 

Sign In-c/ac-c/td> 

<td align="center" width="75"> 

<a href="OrderList.aspx" class="SiteLinkBold"><img src="images/account.gif" border="O"> 

Account <I ac-c/td> 

-ctd align="center" width="55"> 

<a href="ShoppingCart.aspx" class="SiteLinkBold"><img src="images/cart.gif"border="O"> 

Cart-c/ac-c/td> 

<td align="center" width="65"> 

<a href="lnstantOrder.asmx" class="SiteLinkBold"><img src="images/services.gif" 

border='D'c-Services-c/ac-c/td> 

<tr> 

-otable» 

<ltd> 

<td width>" 10"> 

<ltd> 

<!tr> 

-otable» 

<ltd> 

«hi» 

<tr> 

<td colspan="2" nowrapc-cform method="post" action="SearchResults.aspx" id="frmSearch" 

name="frmSearch"> 

<table cellspacing="O" cellpadding="O" width="l00%" border='D"> 

<tr bgcolor="#9D0000"><td background="images/modemliving_bkgrd.gif"> 

-cimg align="left" src="images/modemliving.gif"> 

<ltd> 
<td width="94" align="right" bgcolor="#9D0000"><img src="images/search.gif"> 

-otde-ctd width='' 120" align="right" bgcolor="#9D0000"> 

<input type="text" name="txtSearch" lD="txtSearch" SIZE="20"> 

-otde-ctd align="left" bgcolor="#9D0000"> 

60 



&nbsp;<input type="image" src="images/arrowbutton.gif" border="O" id="imagel" 

name=" image 1 ">&nbs p; </td></tr></tab le> 

-oforrro-c/tdc-c/trc-c/tab le> 

9.3.3 Menu.ascx 

<%@ Control Language="VB" %> 

<%@ import Namespace="System.Data.SqlClient" %> 

<%@ outputcache duration="3600" varybyparam="selection" %> 

<script runat="server"> 

Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs) 

' Set the curent selection of list 

Dim selectionld As String= Request.Params("selection") 

If Not selectionld Is Nothing Then 

MyList.Selectedlndex = Clnt(selectionld) 

End If 

' Obtain list of menu categories and databind to list control 

Dim products As ASPNET.StarterKit.Commerce.ProductsDB = New 

ASP NET .StarterKit.Commerce.ProductsDB () 

MyList.DataSource = products.GetProductCategories() 

MyList.DataBind() 

End Sub 

-c/script» 

<table cellspacing="O" cellpadding="O" width="145" border='D"> 

<tr valign="top"><td colspan="2"> 

<a href="default.aspx"><img src="images/logo.gif" border="O"><la></td> 

-c/trc-ctr valign="top"><td colspan="2"> 

<asp:DataList id=Myl.ist" runat="server" cellpadding="3" cellspacing="O" width="145" 

SelectedltemStyle-B ackColor=" dimgray" Enable View State= "false"> 

<ItemTemplate><asp:HyperLink class="MenuUnselected" id="HyperLinkl" Text='<%# 

DataBinder.Eval(Container.Dataltem, "CategoryName") %>' NavigateUr1='<%# 

"productslist.aspx?CategoryID=" & DataBinder.Eval(Container.Dataltem, "CategoryID") & 

"&selection=" & Container.Itemlndex %>' nmat="server" I> <Zltem'Iemplate> 

61 



«Selectedltem'I'emplatec-casp.Il yper Link class= "MenuSelected" id= "Hyper Link:2" 

Text='<%# DataBinder.Eval(Container.Dataltem, "CategoryName") %>' NavigateUrl='<%# 

"productslist.aspx?CategoryID=" & DataBinder.Eval(Container.Dataitem, "CategoryID") & 

"&selection=" & Container.Itemlndex %>' runat="server" l></SelectedltemTemplate> 

-c/asp.Datal.istxc/tdc-c/trc-ctr> <td width='' 10"></td><td> 

<br><br><br><br><br><br> 

<a href="docs/docs.htm" target="_blank" class="SiteLink">Commerce Starter 

Kit <br> Documentation-c/ as-c/tdc-c/trc-otablec- 

9.3.4 Popularltems.ascx 

<%@ Control Language="VB" %> 

<%@ import Namespace="System.Data.SqlClient" %> 

<%@ outputcache duration="3600" varybyparam="None" %> 

<%@ import Namespace="ASPNET.StarterKit.Commerce" %> 

<script runat="server"> 

Public ProductID As Integer 

Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs) 

' Obtain list of favorite items 

Dim products As ProductsDB = New ProductsDB() 

' Databind and display the list of favorite product items productList.DataSource = 

products.GetMostPopularProductsOfWeek() 

productList.DataBind() 

' Hide the list if no items are in it 

If productList.Items.Count = 0 Then 

productList.Visible = False 

End If 

End Sub 

-c/script» 

<table width="95%" cellpadding="O" cellspacing="O" border="O"> 

<asp:Repeater ID="productList" runat="server"> 

-cHeader'I'emplatec-ctrc-ctd class="MostPopularHead">&nbsp;Our most popular items this 

week-c/td> </tr> 

-c/Header'I'emplare> 

62 



<Item'I'emplateo-ctr> 

<td bgcolor="#d3d3d3 ">&nbsp;<asp:HyperLink: class="MostPopularltemText" 

NavigateUrl='<%# "ProductDetails.aspx?ProductlD=" & 

DataBinder.Eval(Container.Dataltem, "ProductID")%>' 

Text='<%#DataBinder.Eval(Container.Dataltem, "Mode1Name")%>' runat="server" 

/><br></td><ltr> 

</ItemTemplate><FooterTemplate><tr> <td bgcolor="#d3d3d3"> 

</td></tr><IFooterTemplate></asp:Repeater></table> 

9.3.5. ReviewList.ascx 

<%@ Control Language="VB" %> 

<%@ import Namespace="System.Data.SqlClient" %> 

<script runat="server"> 

Public ProductlD As Integer 

Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs) 

' Obtain and databind a list of all reviews of a product 

Dim productReviews As ASPNET.StarterKit.Commerce.ReviewsDB = New 

ASP NET .Starter Kit.Commerce.ReviewsDB () 

My Lis t.DataSource = productReviews. GetReviews(ProductID) 

MyList.DataBind() 

' Update navigation link for users to add a new review 

AddReview.NavigateUrl = "ReviewAdd.aspx?productlD=" + ProductlD.ToString() 

End Sub 

-c/script» 

-cbr> 

<hr> 

<table cellspacing="O" cellpadding="O" width="100%" border="O"> <tr> 

<td class>" SubContentHead">&nbsp;Reviews 

<brc-c/tde-c/tr> 

<tr><td></td></tr><tr><td><asp: H yperlink: id=" AddReview" runat=" server"> 

<img align=" abs bottom" src=" images/review _this_product. gif" border>" 0 "> 

-c/asp.Hyperlinkcbr» 

<hr> 

</td></tr><tr><td> 

63 



<asp:DataList lD="MyList" runat="server" width="500" cellpadding="O" 

cellspacing="O"><ltemTemplate> 

<asp:Label class="NormalBold" Text='<%#DataBinder.Eval(Container.Dataltem, 

"CustomerName")%>' runates''server'' I> 

<span class=Normal'c-says ... 

</span><imgsrc='images/ReviewRating<%#DataBinder.Eval(Container.Dataitem, 

"Rating")%>.gif> 

<hr> 

-casp.Label class="Normal" Text='<%#DataBinder.Eval(Container.Dataltem, 

"Comments")%>' runat="server" l></ltemTemplate><SeparatorTemplate> 

<br></SeparatorTemplate></asp:DataList><ltd></tr></table> 

9.3.6 AddCard.ascx 

<%@ Page Language="VB" %> 

<script runat="server"> 

Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs) 

If Not Request.Params("ProductlD") Is Nothing Then 

Dim cart As ASPNET.StarterKit.Commerce.ShoppingCartDB = New 

ASPNET.StarterKit.Commerce.ShoppingCartDB() 

' Obtain current user's shopping cart ID 

Dim cartid As String = cart.GetShoppingCartid() 

' Add Product Item to Cart 

cart.Addltem( cartid, Cint(Request.Params( "ProductlD ") ), 1) 

End If 

Response.Redirect(" ShoppingCart.aspx ") 

End Sub 

</script> 

9.3.7. CheckOut.aspx 

<%@ Page Language="VB" %> 

<%@ Register TagPrefix="ASPNETCommerce" TagName="Header" Src="_Header.ascx" 

%><%@ Register TagPrefix="ASPNETCommerce" TagName="Menu" Src="_Menu.ascx" 

%> 

<%@ import Namespace="System.Data.SqlClient" %> 

64 



<script runat="server"> 

Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs) 

If Page.IsPostBack = False Then 

' Calculate end-user's shopping cart ID 

dim cart as ASPNET.StarterKit.Commerce.ShoppingCartDB = New 

ASPNET.StarterKit.Commerce.ShoppingCartDB() 

Dim cartid As String = cart.GetShoppingCartid() 

' Populate datagrid with shopping cart data 

MyDataGrid.DataSource = cart.Getltems( cartid) 

MyDataGrid.DataB ind() 

'Update total price label 

TotalLbl.Text = String.Format(" { O:c} ", cart.GetTotal(cartid)) 

End If 

End Sub 

Sub SubmitBtn_Click(ByVal sender As Object, ByVal e As ImageClitkEventArgs) 

Dim cart As ASPNET.StarterKit.Commerce.ShoppingCartDB = New 

ASPNET .StarterKit.Commerce.ShoppingCartDB() 

'Calculate end-user's shopping cart ID 

Dim cartid As String = cart.GetShoppingCartld() 

'Calculate end-user's customerID 

Dim customerld As String= User.Identity.Name 

If (Not cartid Is Nothing) And (Not customerld Is Nothing) Then 

' Place the order 

Dim ordersDatabase As ASPNET.StarterKit.Commerce.OrdersDB = New 

ASPNET.StarterKit.Commerce.OrdersDB() 

Dim orderld As Integer= ordersDatabase.PlaceOrder(customerld, cartid) 

'Update labels to reflect the fact that the order has taken place 

Header.Text= "Check Out Complete!" 

Message.Text= "<be-Your Order Number Is: <lb>" & orderld 

SubmitBtn.Visible = False 

End If 

End Sub 

-c/script> 

«htmb-chead> 

65 



<link href="ASPNETCommerce.css" type='text/css" rel="stylesheet" /><!head> 

<body bottommargin="O" leftmargin="O" background="images/sitebkgrd.gif" topmargin="O" 

rightmargin="O" marginwidth="O" marginheight="O"><table cellspacing="O" 

cellpadding="O" width="100%" border="O"><tbody> 

<tr><td colspan="2"> 

<ASPNETCommerce:Header id=Header l " runat="server"><I ASPNETCommerce:Header> 

</td><ltr><tr> 

<td valign="top"> 

<ASPNETCommerce: Menu id="Menul" runat=" server"></ ASPNETCommerce:Menu> 

-cimg height='' 1" src="images/lxl.gif" width="145" I> <ltd> 

<td valign="top" nowrap="nowrap" align="left" width="100%"> 

<table height="100%" cellspacing="O" cellpadding="O" width="100%" align="left" 

border="O"><tbody><tr valign="top"><td nowrap="nowrap"> 

<br /><form runat="server"> 

<img src="images/lxl.gif" width="24" align="left" I> 

<table cellspacing="O" cellpadding="O" width="100%" border="O"><tbody><tr> 

<td class="ContentHead"><img height="32" src="images/lxl.gif" width="60" align="left" 

l><asp:Label id=Header" nmat="server">Review and Submit Your Order-c/asp.Label» 

-cbr l></td></tr></tbody></table> 

<img height="l" src="images/lxl.gif" width="92" align="left" I> 

<table height="100%" cellspacing="O" cellpadding="O" width="550" border="O"> 

<tbody><tr valign="top"><td class=Normal" width="100%"><br I> 

<asp:Label id=Message" nmat="server">Please check all the information below to be sure 

it's correct.c/asp.Labeb-cbr I> 

-cbr I> 

<asp:DataGrid id= "M yDataGrid" runat=" server" AutoGenerateColumns="false" 

AltematingltemStyle-CssClass="CartListltemAlt" ItemStyle-CssClass="CartListltem" 

FooterStyle-CssClass="cartlistfooter" HeaderStyle-CssClass="CartListHead" 

ShowFooter="true" Font-Size="8pt" Font-Name=Verdana" cellspacing="O" 

cellpadding="4" Gridl.ines=Vertical" BorderColor="black" width="90%"> 

<Columns><asp:BoundColumn HeaderText="Product Name" DataField="ModelName" I> 

<asp:BoundColumn HeaderText="Model Number" DataField="ModelNumber" I> 

<asp:BoundColumn HeaderText="Quantity" DataField="Quantity" I> 

66 



<asp:BoundColumn HeaderText="Price" DataField="UnitCost" DataFormatString=" { O:c}" 

I> 

<asp:BoundColumn HeaderText="Subtotal" DataField="ExtendedAmount" 

DataFormatString=" { O:c}" !></Columns> 

-c/asp.Datarfridc-cbr I> 

-cbr l><b>Total: -c/bc-casp.Label id='Totall.bl" runat="server"></asp:Label><p> 

<asp:lmageButton id="SubmitBtn" onclick="SubmitBtn_Click" runat="server" 

ImageURL="images/submit.gif"></asp:ImageButton><lp> 

<ltd> </tr></tbody> -c/tablec-oforrrc- 

</td><ltr></tbod ye-c/tab le></td></tr></tbody></table><lbod yc-c/html> 

9.3.8.CreditCartForm.aspx 

<%@Page%> 

<script runat="server"> 

Sub Button_Click( s As Object, e As EventArgs) 

If Is Valid Then 

Response.Redirect( "CheckOut.aspx") 

End If 

End Sub 

Sub ValidateCCNumber( s As Object, e As ServerValidateEventArgs ) 

Dim intCounter As Integer 

Dim strCCNumber As String 

Dim blnlsEven As Boolean= False 

, Dim strDigits As String = "" 

Dim intCheckSum As Integer = 0 

' Strip away everything except numerals 

For intCounter = 1 To Len( e.Value) 

If IsNumeric( MID( e.Value, intCounter, 1)) THEN 

trCCNumber = strCCNumber & MID( e.Value, intCounter, 1) 

End If 

Next 

· If nothing left, then fail 

If Len( strCCNumber ) = 0 Then 

e.ls Valid = False 

67 



Else 

' Double every other digit 

for intCounter = Len( strCCNumber ) To 1 Step -1 

if blnisEven Then 

strDigits = strDigits & cINT( MID( strCCNumber, intCounter, 1 ) ) * 2 
ELSE 
strDigits = strDigits & cINT( MID( strCCNumber, intCounter, 1)) 

END IF 

blnisEven = ( NOT blnisEven ) 

Next 

' Calculate CheckSum 

For intCounter = 1 To Len( strDigits ) 
intCheckSum = intCheckSum + cINT( MID( strDigits, intCounter, 1 ) ) 

Next 

'Assign results 

e.IsValid = (( intCheckSum Mod 10) = 0) 

End If 

End Sub 
Sub DropDownListl_SelectedlndexChanged(sender As Object, e As EventArgs) 

End Sub 

-c/script> 

<html> 

<head> 
-ctitlec-Custom ValidatorLuhn.aspx -otitle> 

-c/head» 

<body> 

<form runat="Server"> 

<p align="center"> 
-cstrongc-cfont style="BACKGROUND-COLOR: blue'c-Credit Card Query 

Pormofonc-c/strong> <Ip> 

<p> 
Name Sumame.casp.Textfiox id="TextBoxl" runat="server"></asp:TextBox> 

<Ip> 

<p> 

68 



Valid Date:&nbsp; 

<asp:DropDownList id="DropDownListl" runat="server" 

OnSelectedlndexChanged="DropDownListl_SelectedlndexChanged" Data Valuef'ield=" 1 "> 

<asp:Listltem Value=" 1 "> 1 <lasp:Listltem> 

-casp.Listltem Value="2">2<lasp:Listltem> 

<asp:Listltem Value="3 ">3<lasp:Listltem> 

<asp:Listltem Value="4 ">4<lasp:Listltem> 

<asp:Listltem Value=" 5 ">5<lasp:Listltem> 

<asp:Listltem Value="6">6<lasp:Listltem> 

-casp.Listltem Value="?"> 7<lasp:Listltem> 

<asp:Listltem Value=" 8 ">8<lasp:Listltem> 

<asp:Listltem Value="9">9<lasp:Listltem> 

<asp:Listltem Value=" 10"> lO<lasp:Listltem> 

<asp:Listltem Value=" 11 "> 11 <lasp:Listltem> 

<asp:Listltem Value="12">12<lasp:Listltem> 

<asp:Listltem><lasp:Listltem> 

<lasp:DropDownList> 

l<asp:DropDownList id="DropDownList2" runat="server" Width="68px"> 

<asp:Listltem Value="05">05<lasp:Listltem> 

<asp:Listltem Value="06">06<lasp:Listltem> 

-casp.Listltem Value="07">07<lasp:Listltem> 

<asp:Listltem Value="08 ">08<lasp:Listltem> 

<asp:Listltem Value="09">09<lasp:Listltem> 

<asp:Listltem Value=" 10"> 1 Oc/asp.Listltem» 

-casp.Listltem Value=" 11 "> 11 <lasp:Listltem> 

-casp.Listltem Value=" 12 "> 12<lasp:Listltem> 

-casp.Listltem Value=" 13 "> 13<lasp:Listltem> 

«asp.Listltem Value=" 14"> 14<lasp:Listltem> 

<asp:Listltem Value=" 15"> 15<lasp:Listltem> 

<lasp:DropDownList> 

<Ip> 

<p> 

CVC:<asp:TextBox id="TextBox4" runat="server" Width="60px"><lasp:TextBox> 

<Ip> 

69 



Enter your credit card number: 

<asp:TextBox id="txtCCNumber" Runat="Server" MaxLength="20" 

Columns=''20"></asp:TextBox> 

<asp:CustomValidator id="CustomValidatorl" Runat="Server" Text="lnvalid Credit 

Card Number!" Display="Dynamic" OnServerValidate="ValidateCCNumber" 

Control To Validate="txtCCNumber"></asp:Custom Validator> 

<br/> 

<Ip> 

<p> 

<asp:Button id=Button l " onclick="Button_Click" Runat="Server" 

Text=" Submit! "c-c/asp.Button> 

<Ip> 

-c/form» 

<!body> 

-c/html 

9.3.9. Default.aspx 

<%@ Page Language="VB" %> 

<%@ Register TagPrefix="ASPNETCommerce" TagName="Popularltems" 

Src="_Popularltems.ascx" %> 

<%@ Register TagPrefix="ASPNETCommerce" TagName="Menu" Src="_Menu.ascx" %> 

<%@ Register TagPrefix="ASPNETCommerce" TagName="Header" Src="_Header.ascx" 

%> 

<script runat="server"> 

Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs) 

'Customize welcome message if personalization cookie is present 

If Not Request.Cookies("ASPNETCommerce_FullName") Is Nothing Then 

WelcomeMsg.Text ="Welcome" & 

Request. Cookies(" ASPNETCommerce_FullN ame "). Value 

End If 

End Sub 

-c/script> 

<html> 

<head> 

70 



<link href="ASPNETCommerce.css" type="text/css" rel="stylesheet" I> 

-c/headc-cbody bottommargin="O" leftmargin="O" background="images/sitebkgrdnogray.gif" 

topmargin='D" rightmargin="O" marginwidth=O'' marginheight="O"><table cellspacing="O" 

cellpadding="O" width=" 100%" border="O"><tbody><tr> 

-ctd colspan="?"> 

<ASPNETCommerce:Header id="Header 1" runat=" server"></ ASPNETCommerce:Header> 

-c/trb-c/trc-ctre-ctd valign="top" width=" 145"><ASPNETCommerce:Menu id="Menul" 

runat=" server''c-c/ ASPNETCommerce: Menue-cimg height=" 1" src=" images/ 1 x 1. gif" 

width="145" I> -c/tdc-ctd valign="top" nowrap="nowrap" align="left" width="> 

<table height="100%" cellspacing="O" cellpadding="O" width="100%" align="left" 

border="O"><tbody><tr valign="top"><td nowrap="nowrap"> <br /> 

<img src="images/lxl.gif" width="24" align="left" I> <table cellspacing="O" 

cellpadding="O" width="100%"><tbody> <tr> -ctd» 

<table cellspacing="O" cellpadding="O" width="100%"> <tbody> <tr> 

<td class="HomeHead"> 

-casp.Label id="WelcomeMsg" runat="server">Welcome to the ASP.NET e-Commerce Web 

Site-c/ asp: Labeb-c/td> 

<ltr> -otbody> 
-otablec-ctable cellspacing='D" cellpadding="2" width="600" border="O"> <tbody> 

<tr valign="top"><td><table width="300"> -ctbody> 

<tr valign="top"><td> 

<span class="NormalDouble">The Commerce Web Site demonstrates how extraordinarily 

simple it is to create powerful, scalable applications and services for the .NET platform. 

"click and mortar" retailer whose online presence is based on the ASP.NET Commerce 

Web site. -cbr I> -c/sparr-c/td> <ltr></tbody></table></td><td align="left"> 

-cimg src="Productlmages/sw7.gif" width="309" border="O" I> 

<br I> 

span class="NormalDouble"><i>Blast off in a <a 

href="ProductDetails.aspx?productID=373"><b>Asp.Net 

Programming with C# <lb> -c/as-c/ic-c/sparc-c/td> 

-ctd» -c/tde-c/tr> <tr valign="top"><td> 

<ASPNETCommerce:Popularltems 

id="Popularltems 1 "runat=" server''c-c/ ASPNETCommerce:Popular Itemsc-c/td> 

71 



-ctd» 

-cbr I> 
<span class="NormalDouble">To give the Commerce&nbsp;Web site &nbsp;a test spin, 

simply starting browsing and add any items you want to your shopping cart. -c/spane-c/td> 

<td></td><ltr></tbody><ltable></td><ltr><ltbody> 

<ltable></td></tr></tbody> 

<ltable></td><ltr><ltbody><ltable><lbody><lhtml> 

9.3.10. Error.aspx 

<%@Page%> 

<%@ Register TagPrefix="ASPNETCommerce" TagName="Header" Src="_Header.ascx" 

%> 
<%@ Register TagPrefix="ASPNETCommerce" TagName="Menu" Src="_Menu.ascx" %> 

<html> <head> 

<link rel="stylesheet" type="text/css" href="ASPNETCommerce.css"> 

<lhead><body background="images/sitebkgrdnogray.gif" leftmargin="O" topmargin="O" 

rightmargin="O" bottommargin="O" marginheight="O" marginwidth=?O"> 

<table cellspacing="O" cellpadding="O" width="100%" border='D"> 

<tr> -ctd colspan="2"> 
<ASPNETCommerce:Header ID="Headerl" runat="server" /><ltd> 

</tr><tr><td valign="top"> 

<ASPNETCommerce:Menu id="Menul" runat="server" I> 

-cimg height="l" src="images/lxl.gif" width="145"> 

-c/tdc-ctd align="left" valign="top" width="100%" nowrap> 

<table height="100%" align='Teft" cellspacing="O" cellpadding="O" width="100%" 

border='D"> <tr valign="top"><td nowrap> 

-cbre-cimg align="left" width="32" src="images/lxl.gif"> 

<table cellspacing="O" cellpadding="O" width="100%"><tr> 

-ctde-ctable cellspacing="O" cellpadding="O" width=" 100%"> 

-ctrc-ctd class="HomeHead"> <h3> 

We are sorry, but an error occured during the 

<br>processing of your last request. 

-cbr> 

72 



-cbr> 

This could be a result of either illegal input 

<br>values, or a bug in our code. Sorry for the inconvenience. 

<lh3 ><ltd> </tr><ltab lec-c/tdc-otrc-c/table> 

-c/tdc-c/trc-c/table> -c/tdxc/trc-otable> 

-c/body» 

<!html> 

9.3.11 Login.aspx 

<%@ Page Language="VB" %> 

<%@ Register TagPrefix="ASPNETCornmerce" TagName="Menu" Src="_Menu.ascx" %> 

<%@ Register TagPrefix="ASPNETCornmerce" TagName="Header" Src="_Header.ascx" 

%> 

<script runat="server"> 

Sub LoginBtn_Click(ByVal sender As Object, ByVal a As ImageClickEventArgs) 

'Only attempt a login if all form fields on the page are valid 

If Page.Is Valid = True Then 

' Save old ShoppingCartID 

Dim shoppingCart As ASPNET.StarterKit.Cornmerce.ShoppingCartDB = New 

ASPNET.StarterKit.Commerce.ShoppingCartDB() 

Dim tempCartID As String = shoppingCart.GetShoppingCartid() 

'Attempt to Validate User Credentials using CustomersDB 

Dim accountSystem As ASPNET.StarterKit.Cornmerce.CustomersDB = New 

ASPNET.StarterKit.Cornmerce.CustomersDB() 

Dim customerld As String= accountSystem.Login(email.Text, 

ASPNET.StarterKit.Cornmerce.Security.Encrypt(password.Text)) 

If customerld <>""Then 

' Migrate any existing shopping cart items into the permanent shopping cart 

shoppingCart. MigrateCart( tempCartID, customer Id) 

' Lookup the customer's full account details 

Dim customerDetails As ASPNET.StarterKit.Cornmerce.customerDetails = 

accounts ys tern. GetCustomerDetails( customer Id) 

'Store the user's fullname in a cookie for personalization purposes 

73 



Response.Cookies("ASPNETCommerce_FullName"). Value = customerDetails.FullN ame 

'Make the cookie persistent only if the user selects "persistent" login checkbox 

If RememberLogin.Checked = True Then 

Response.Cookies(" ASPNETCommerce_FullN ame ").Expires = 

DateTime.N ow .AddMonths( 1) 

End If 

' Redirect browser back to originating page 

FormsAuthentication.RedirectFromLoginPage( customer Id, Remember Login.Checked) 

Else 

Message.Text= "Login Failed!" 

End If 

End If 

End Sub 

-c/script> 

<html> 

<head> 

<link rel="stylesheet" type="text/css" href="ASPNETCommerce.css"> 

-c/head» 
<body background="images/sitebkgrd.gif" leftmargin='D'' topmargin="O" rightmargin=O" 

bottommargin="O" marginheight="O" marginwidth='D''> 

<table cellspacing="O" cellpadding='D" width="100%" border="O"><tr> 

<td colspan="2"><ASPNETCommerce:Header ID="Headerl" runat="server" l></td> 

</tr><tr><td valign="top"> 

<ASPNETCommerce:Menu id="Menul" runat="server" I> 

<img height="l" src="images/lxl.gif" width="l45"></td> 

<td align="left" valign="top" width="100%" nowrap> 

<table height="100%" align="left" cellspacing="O" cellpadding="O" width="100%" 

border="O"><tr valign="top"><td nowrap> 

-cbre-cform runat="server"> 

-cimg align="left" width="24" height="l" src="images/lxl.gif"> 

<table cellspacing="O" cellpadding="O" width="100%" border="O"><tr> 

-ctd class="ContentHead"> 

74 



-cimg align="left" height="32" width="60" src="images/lxl.gif">Sign Into Your 

Account 

-cbr» 

<ltd></tr><ltable> 

-cimg align="left" height=" 1" width="92" src="images/lxl.gif"> 

<table height="l00%" cellspacing="O" cellpadding="O" border="O"> 

<tr valign="top"><td width="550"> 

<asp:Label id="Message" class="ErrorText" runat="server" I> 

-cbrc-cbr» 

&nbsp;<span class="NormalBold">Email</span> 

<br>&nbsp;<asp:TextBox size="25" id="email" runat="server" l>&nbsp; 

<asp:RequiredFieldValidator id="emailRequired" ControlToValidate="email" 

Display='tdynamic" Font-Name='verdana'' Font-Size="9pt" ErrorMessage="'Name' must not 

be left blank." runat="server" I> 
<asp:RegularExpression Validator id="emailValid" ControlTo Validate="email" 

ValidationExpression="[\w\.-]+(\+[\w-] *)?@([\w- ]+\.)+[\w-]+" Display="Dynamic" 

ErrorMessage="Must use a valid email address." runat="server" I> 

&nbsp;<span class="NormalBold">Password</span><br> 

&nbsp;<asp:TextBox id="password" textmode="password" size="25" runat="server" 

l>&nbsp 

<asp :RequiredField Validator id=" pass wordRequired" Control To Validate=" pass word" 

Display="Static" Font-Name="verdana" Font-Size="9pt" ErrorMessage='"Password' must 

not be left blank." runat="server" l><br> 

<br> 

-casp.checkbox id="RememberLogin" runat="server" I> 

<span class="NormalBold">Remember My Sign-In Across Browser Restarts-c/span> 

-cbr> 

-cbr> 

-cbr> 

<asp:ImageButton id="LoginBtn" ImageURL="images/sign_in_now.gif" 

OnClick="LoginBtn_Click" runat="server" I> 

-cbr> 

<br> 

75 



<span class="Normal">&nbsp;If you are a new user and you don't have an account with the 

Commerce Starter Kit, then register for one now.c/span> 

«br» 

<br> 

<a href="register.aspx"><img border="O" src="images/register.gif"><la> 

</td><ltr><ltable><lform><ltd><ltr><ltable></td></tr></table> 

-c/body» 

-c/html> 

9.3.12 OrderDetails.aspx 

<%@ Page Language="VB" %> 
<%@ Register TagPrefix="ASPNETCommerce" TagName="Header" Src="_Header.ascx" 

%> 
<%@ Register TagPrefix="ASPNETCommerce" TagName="Menu" Src="_Menu.ascx" %> 

<script runat="server"> 

Sub Page_Load(ByVal sender As Object, ByVal eAs EventArgs) 

' Obtain Order ID from QueryString 

Dim OrderID As Integer= Cint(Request.Params("OrderID")) 

' Get the customer ID too 

Dim Customerld As String= User.Identity.Name 

' Obtain Order Details from Database 
Dim orderHistory As ASPNET.StarterKit.Commerce.OrdersDB = New 

ASPNET.StarterKit.Commerce.OrdersDB() 

Dim myOrderDetails As ASPNET.StarterKit.Commerce.OrderDetails = 

orderHistory.GetOrderDetails(OrderID, Customerld) 

' if order was found, display it 

If Not (myOrderDetails Is Nothing) Then 

'Bind Items to GridControl 

GridControl 1.DataSource = myOrderDetails.Orderltems 

GridControl 1.DataB ind() 

'Update labels with summary details 

lblTotal.Text = String.Format(" { O:c} ", myOrderDetails.OrderTotal) 

lblOrderNumber.Text = OrderID.ToString() 

lblOrderDate.Text = myOrderDetails.OrderDate.ToShortDateString() 

76 



lblShipDate. Text = myOrderDetails.ShipDate. ToShortDateString() 

Else 

' otherwise display an error message 

MyError.Text = "Order not found!" 

detailsTable.Visible = False 

End If 

End Sub 

-c/script> 

<html> 

<head> 

<link rel="stylesheet" type="text/css" href="ASPNETCommerce.css"> 

-c/head> 

<body background="images/sitebkgrd.gif" leftmargin="O" topmargin="O" rightmargin="O" 

bottommargin="O" marginheight="O" marginwidth='D''> 

<table cellspacing="O" cellpadding="O" width='' 100%" border="O"><tr> 

-ctd colspan="2"><ASPNETCommerce:Header ID="Headerl" runat="server" I> 

</td><ltr><tr><td valign="top"><ASPNETCommerce:Menu id="Menul" runat="server" I> 

-cimg height="l" src="images/lxl.gif" width="145"></td> 

<td align="left" valign="top" width="100%" nowrap> 

<table height="l00%" align="left" cellspacing="O" cellpadding="O" width="100%" 

border="O"><tr valign="top"><td nowrap> 

-cbr» 

-cimg align="left" width="24" src="images/lxl.gif"> 

<table cellspacing="O" cellpadding="O" width="l00%" border="O"><tr> 

<td class="ContentHead"><img align="left" height="32" width="60" 

src=" images/ 1 x 1. gif''c-Order Details 

<br><ltd><ltr></table> 

<img align="left" height="15" width="86" src="images/lxl.gif" border="O"> 

<asp:Label id="MyError" CssClass="ErrorText" EnableViewState="false" runat="Server" I> 

<table id="detailsTable" height="100%" cellspacing="O" cellpadding="O" width="550" 

border="O" EnableViewState="false" runat="server"> 

<tr valign="top"> 

<td width="100%" class="Normal"><br> 

77 



-cb» Your Order Number Is: <lb> 

-casp.Label ID="lblOrderNumber" EnableViewState="false" runat="server" I> 

-cbr» 

-cbc-Order Date: <lb> 

-casp.Label ID="lblOrderDate" EnableViewState="false" runat="server" I> 

-cbrc-cbe-Ship Date: <lb> 

<asp:Label ID="lblShipDate" EnableViewState="false" runat="server" I> 

<br> 

-cbr» 

<asp:DataGrid id="GridControll" width="90%" BorderColor="black" GridLines="Vertical" 

cellpadding="4" cellspacing="O" Font-Name="Verdana" Font-Size="8pt" 

ShowFooter="true" HeaderStyle-CssClass="CartListHead" FooterStyle­ 

CssClass=''cartlistfooter" ItemStyle-CssClass=''CartListltem" AltematingltemStyle­ 

CssClass=" CartLis tltemAlt" AutoGenerateColumns= "false" runat=" server"> 

<Columns> 

<asp:BoundColumn HeaderText="Product Name" DataField="ModelName" I> 

<asp:BoundColumn HeaderText="Model Number" DataField="ModelNumber" I> 

<asp:BoundColumn HeaderText="Quantity" DataField="Quantity" I> 

<asp:BoundColumn HeaderText="Price" DataField="UnitCost" DataFormatString=" { O:c}" 

I> 

<asp:BoundColumn HeaderText= "Subtotal" DataField="ExtendedAmount" 

DataFormatString=" { O:c}" !></Columns> 

</asp:DataGrid> -cbro-cbc-Total: <lb> 

<asp:Label ID="lblTotal" EnableViewState="false" runat="server" I> 

<ltd> </tr></tab le> -c/tdc-c/rrc-c/tab lec-c/tde-c/trc-c/tab le> 

-c/body» 

</html> 

9.3.13 OrderList.aspx 

<%@ Page Language="VB" %> 

<%@ Register TagPrefix="ASPNETCommerce" TagName="Header" Src="_Header.ascx" 

%> 

<%@ Register TagPrefix="ASPNETCommerce" TagName="Menu" Src="_Menu.ascx" %> 

<%@ import Namespace="System.Data.SqlClient" %> 

78 



<script runat="server"> 

Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs) 

Dim customerID As String= User.Identity.Name 

' Obtain and bind a list of all orders ever placed by visiting customer 

Dim orderHistory As ASPNET.StarterKit.Commerce.OrdersDB = New 

ASPNET.StarterKit.Commerce.OrdersDB() 

MyList.DataSource = orderHistory.GetCustomerOrders( customer ID) 

MyList.DataBind() 

' Hide the list and display a message if no orders have ever been made 

If MyList.Items.Count = 0 Then 

MyError.Text = "You have no orders to display." 

MyList.Visible = False 

End If 

End Sub 

-c/script» 

<html> 

<head> 

<link rel="stylesheet" type='ttext/css'' href="ASPNETCommerce.css"> 

</head> 

<body background="images/sitebkgrd.gif" leftmargin="O" topmargin="O" rightmargin="O" 

bottommargin="O" marginheight="O" marginwidth="O"> 

<table cellspacing="O" cellpadding="O" width="l00%" border="O"><tr> 

<td colspan="2"><ASPNETCommerce:Header ID="Headerl" runat="server" I> 

</td><ltr><tr><td valign="top"> 

<ASPNETCommerce:Menu id="Menul" runat="server" I> 

<img height="l" src="images/lxl.gif" width="145"></td><td align="left" valign="top" 

width="100%" nowrap><table height="100%" align="left" cellspacing="O" cellpadding="O" 

width="100%" border="O"><tr valign="top"> 

<td nowrapc-cbre-cform runat="server"> 

-cimg align="left" width="24" src="images/lxl.gif"> 

<table cellspacing="O" cellpadding="O" width="100%" border="O"> 

<tr> <td class="ContentHead"> 

<img align="left" height="32" width="60" src="images/lxl.gif">Account History 

79 



<br></td><ltr></tab le> 

-cimg align="left" height="4" width="llO" src="images/lxl.gif"> <font color="red"> 

-casp.Label id="MyError" class="ErrorText" runat="Server" I> 

-ofont> 

<br> 
-cimg align="left" height="15" width="84" src="images/lxl.gif" border='D''> 

<table height="100%" cellspacing="O" cellpadding="O" width="550" border=?O"> 

<tr valign="top"><td width="100%"> 
<asp:DataGrid id="MyList" width="90%" BorderColor="black" GridLines="Vertical" 

cellpadding="4" cellspacing="O" Font-Name="Verdana" Font-Size="8pt" 

Show Footer= "true" HeaderSty le-CssClass=" CartListHead" FooterStyle- 

CssClass= '' cartlistfooter" ItemStyle-CssClass="CartListltem" AltematingltemStyle­ 

CssClass="CartListltemAlt" AutoGenerateColumns="false" runat="server"> 

<Columns> 
<asp:BoundColumn HeaderText="Order ID" DataField="OrderID" I> 

<asp:BoundColumn HeaderText="Order Date" DataField="OrderDate" 

DataFormatString=" { O:d}" I> 
<asp:BoundColumn HeaderText="Order Total" DataField="OrderTotal" 

DataFormatString=" { O:c}" I> 

<asp:BoundColumn HeaderText="Ship Date" DataField="ShipDate" 

DataFormatString=" { 0:d}" I> 
<asp:HyperLinkColumn HeaderText="Show Details" Text="Show Details" 

DataNavigateUrlField="OrderID" 

DataNavigateUrlFormatString="orderdetails.aspx?OrderID={O}" I> 

-c/Columnsc-c/asp.Datatlrid> 

</td></tr></table><lform></td></tr></table></td></tr><ltable> 

-c/body> 

-c/html> 

9.3.14. Product Detail.aspx 

<%@ Page Language="VB" EnableViewState="false" %> 

<%@ Register TagPrefix="ASPNETCommerce" TagName="ReviewList" 

Src="_ReviewList.ascx" %> 

80 



<%@ Register TagPrefix="ASPNETCommerce" TagName="AlsoBought" 
Src="_AlsoBought.ascx" %> 

<%@ Register TagPrefix="ASPNETCommerce" TagName="Menu" Src="_Menu.ascx" %> 

<%@ Register TagPrefix="ASPNETCommerce" TagName="Header" Src="_Header.ascx" 
%> 

<%@ outputcache duration="60" varybyparam="ProductID" %> 
<script runat="server"> 

Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs) 

'Obtain ProductID from QueryString 

Dim ProductID As Integer= Cint(Request.Params("ProductID")) 
' Obtain Product Details 

Dim products As ASPNET.StarterKit.Commerce.ProductsDB = New 

ASPNET.StarterKit.Commerce.ProductsDB() 

Dim myProductDetails As ASPNET.StarterKit.Commerce.ProductDetails = 

products.GetProductDetails(ProductID) 

'Update Controls with Product Detailsdesc.Text = myProductDetails.Description 

UnitCost. Text = String.Format(" { O:c} ", myProductDetails. UnitCost) 

ModelName.Text = myProductDetails.ModelName 

ModelNumber. Text = my ProductDetails .Mode IN umber. ToString() 

Productlmage.ImageUrl = "Productlmages/" & myProductDetails.Productimage 

addToCart.NavigateUrl = "AddToCart.aspx?ProductID=" & ProductID 
ReviewList.ProductID = ProductID 

AlsoBoughtList.ProductID = ProductID 

End Sub 

<zscript» 

<html> 

<head> 

<link href="ASPNETCommerce.css" type=l'text/css'' rel="stylesheet"> 
<zhead» 

<body bottomMargin="O" leftMargin="O" background="images/sitebkgrd.gif" 

topMargin="O" rightMargin="O" marginwidth="O" marginheight="O"> 

<table cellSpacing="O" cellPadding="O" width="100%" border="O"> 
<trc-ctd co1Span="2"> 

81 



<ASPNETCommerce:Header id="Headerl" runat="server" l><ltd><ltr> 
<tro-ctd vAlign="top" width=145> 

<ASPNETCommerce:Menu id="Menul" runat="server" I> 

<img height=" 1 " src= "images/ 1 x 1. gif" widthe" 145 "e-c/td» 

<td vAlign="top" align="left"> 

<table height=" 100%" cellSpacing="O" cellPadding="O" width="620" align="left" 
border="O"> 

<tr v Align= "top "><td><br> 

<img src="images/lxl.gif" width="24" align="left"> 

<table cellSpacing="O" cellPadding="O" width="l00%" border="O"><tr> 
<td class= "ContentHead "> 

<img height="32" src="images/lxl.gif" width="60" align="left"><asp:label 
id="ModelName" runat="server" I> 

<br» 

<ltd><ltr><ltab le> 

<table cellSpacing="O" cellPadding="O" width="l00%" border="O" valign="top"> 
<tr vAlign="top"><td rowspan="2"> 

<img height=" l" width="24" src="images/lxl .gif"> 

<ztdo-ctri width="309"><img height="l5" src="images/lxl.gif"> 
<br> 

<asp.image id="Productlmage" runat="server" height="185" width="309" border="O" I> 
<br> 

<br> 

<img height="20" src="images/lxl.gif" width="72"><span class="UnitCost"><b> Your 

Price:<lb>&nbsp;<asp:label id="UnitCost" runat="server" /></span> 
<br> 

<img height="20" src="images/lxl.gif" width="72"><span 

class="ModelNumber"><b>Model Number:</b>&nbsp;<asp:label id="ModelNumber" 
runat="server" /></span> <br> 

<img height="30" src="images/lxl.gif" width="72"><asp:hyperlink id="addToCart" 

runat="server" ImageUrl="images/add_to_cart.gif" I> 

<ltd> <tdc-ctable width="300" border="O"> 

82 



-ctrc-ctd vAlign="top"> 

<asp:label class="NormalDouble" id="desc" runat="server"></asp:label> 

< bre-c/tdc-c/trc-c/tab le> 

<img height="30" src="images/lxl.gif"> 

<ASPNETCommerce:AlsoBought id="AlsoBoughtList" runat="server" I> 

-c/tdc-c/trc-ctro-c/trc-c/tablc> 

<table border="O"> -ctrc-ctd» 

-cimg src="images/lxl.gif" width="89" height="20"></td> 

-ctd width="100%"><ASPNETCommerce:ReviewList id="ReviewList" runat="server" I> 

<ltd> -c/trc-c/tab lec-c/tde-c/trc-c/tab lec-c/tdc-otrc-c/tab le> 

<!body> 

</HTML> 

9.3.15. ProductList.aspx 

<%@ Page Language="VB" EnableViewState="false" %> 

<%@ Register TagPrefix="ASPNETCommerce" TagName="ReviewList" 

Src="_ReviewList.ascx" %> 

<%@ Register TagPrefix="ASPNETCommerce" TagName="AlsoBought" 

Src="_AlsoBought.ascx" %> 

<%@ Register TagPrefix="ASPNETCommerce" TagName="Menu" Src="_Menu.ascx" %> 

<%@ Register TagPrefix="ASPNETCommerce" TagName="Header" Src="_Header.ascx" 

%> 

<%@ outputcache duration="60" varybyparam="ProductID" %> 

<script runat="server"> 

Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs) 

'Obtain ProductID from QueryString 

Dim ProductID As Integer= Cint(Request.Params("ProductID")) 

' Obtain Product Details 

Dim products As ASPNET.StarterKit.Commerce.ProductsDB = New 

ASP NET .Starter Kit. Commerce.ProductsDB() 

Dim myProductDetails As ASPNET.StarterKit.Commerce.ProductDetails = 

products. GetProductDetails(ProductID) 

83 



' Update Controls with Product Details 

desc.Text = myProductDetails.Description 

UnitCost.Text = String.Format(" { O:c} ", myProductDetails.UnitCost) 

ModelName.Text = myProductDetails.ModelName 

ModelNumber.Text = myProductDetails.ModelNumber.ToString() 

Productlmage.ImageUrl = "Productlmages/" & myProductDetails.Productlmage 

addToCart.NavigateUrl = "AddToCart.aspx?ProductlD=" & ProductlD 

ReviewList.ProductlD = ProductlD 

AlsoBoughtList.ProductlD = ProductlD 

End Sub 

-c/script» 

<html> 

<head> 

<link href="ASPNETCommerce.css" type="text/css" rel="stylesheet"> 

<!head> 

<body bottomMargin="O" leftMargin="O" background="images/sitebkgrd.gif" 

topMargin="O" rightMargin="O" marginwidth='D" marginheight="O"> 

<table cellSpacing="O" cellPadding="O" width="100%" border='D"> 

<tr><td co1Span="2"> 

<ASPNETCommerce:Header id="Headerl" runat="server" I> 

-c/tdc-c/trc-ctr> 

<td vAlign="top" width=I-l.S> 

<ASPNETCommerce:Menu ideMenul" runat="server" I> 

-cimg height="l" src="images/lxl.gif" width="145"></td> 

<td vAlign="top" align="left"> 

<table height='' 100%" cellSpacing="O" cellPadding="O" width="620" align="left" 

border=D''> 

<tr vAlign="top"><td> 

-cbrc-cimg src="images/lxl.gif" width="24" align="left"> 

<table cellSpacing="O" cellPadding="O" width=" 100%" border="O"> 

<tr><td class= "ContentHead "> 

84 



<img height="32" src="images/lxl.gif" width="60" align="left"><asp:label 

id="ModelName" runat="server" I> 

-cbrc-c/tdc-c/trc-c/tab le> 

<table cellSpacing="O" cellPadding="O" width="100%" border="O" valign="top"> 

<tr vAlign="top"> 

<td rowspan="2"> 

<img height="l" width="24" src="images/lxl.gif"> 

</td><td width="309"> 

-cimg height="15" src="images/lxl.gif"> 

-cbrc-casp.image id="Productlmage" runat="server" height="185" width="309" border="O" I> 

<br> 

-cbr» 

<img height="20" src="images/lxl.gif" width="72"><span class="UnitCost"><b> Your 

Price.c/bc-ecnbsp.casp.label id="UnitCost" runat="server" !></span> 

<hr> 

-cimg height="20" src="images/lxl.gif" width="72"><span 

classe'Modellvumber'c-cbc-Model Number.c/bc-eznbsp.casp.label id="ModelNumber" 

runat="server" /></span> 

<hr> 

<img height="30" src="images/lxl.gif" width="72"><asp:hyperlink id="addToCart" 

runat="server" ImageUrl="images/add_to_cart.gif" I> 

</td><td><table width="300" border="O"> 

<tr> <td vAlign="top"> 

-casp.Iabel class="NormalDouble" id="desc" runat="server"></asp:label><br> 

<ltd></tr><ltable><img height="30" src="images/lxl.gif"> 

<ASPNETCommerce:AlsoBought id="AlsoBoughtList" runat="server" /><ltd> 

-c/trc-ctrc-c/tr> -c/table» 

<table border="O"> 

<tr><td><img src="images/lxl.gif" width="89" height="20"> <ltd> 

<td width="100%"><ASPNETCommerce:ReviewList id="ReviewList" runat="server" I> 

<ltd> </tr></table></td></tr></tab Iec-c/tdc-c/trc-c/tab le> 

-c/body» 

</HTML> 

85 



9.3.16. Register.aspx 

<%@ Page Language="VB" %> 

<%@ Register TagPrefix="ASPNETCommerce" TagName="Header" Src="_Header.ascx" 

%> 

<%@ Register TagPrefix="ASPNETCommerce" TagName="Menu" Src="_Menu.ascx" %> 

<script runat="server"> 

Sub RegisterBtn_Click(ByVal sender As Object, ByVal e As ImageClickEventArgs) 

'Only attempt a login if all form fields on the page are valid 

If Page.Is Valid = True Then 

' Store off old temporary shopping cart ID 

Dim shoppingCart As ASPNET.StarterKit.Commerce.ShoppingCartDB = New 

ASPNET.StarterKit.Commerce.ShoppingCartDB() 

Dim tempCartld As String = shoppingCart.GetShoppingCartld() 

'Add New Customer to CustomerDB database 

Dim accountSystem As ASPNET.StarterKit.Commerce.CustomersDB = New 

ASPNET .Starter Kit. Commerce.CustomersDB () 

Dim customerld as String= accountSystem.AddCustomer(Server.HtmlEncode(Name.Text), 

Email.Text, ASPNET.StarterKit.Commerce.Security.Encrypt(Password.Text)) 

If customerld <> "" Then 

' Set the user's authentication name to the customerld 

FormsAuthentication.SetAuthCookie( customerld, False) 

' Migrate any existing shopping cart items into the permanent shopping cart 

shoppingCart.MigrateC art( tempCartld, customer Id) 

' Store the user's fullname in a cookie for personalization purposes 

Response.Cookies("ASPNETCommerce_FullN ame"). Value = 

Server.HtmlEncode(Name.Text) 

' Redirect browser back to shopping cart page 

Response.Redirect(" ShoppingCart.aspx ") 

Else 

MyError.Text = "Registration failed:&nbsp; That email address is already 

registered.cbrc-cimg align=left height=l width=92 srceimagcs/Ix l.gifc-" 

End If 

End If 

86 



End Sub 

-c/script» 

<html> 

<head> 

<link rel="stylesheet" type="text/css" href="ASPNETCommerce.css"> 

<!head> 

<body background="images/sitebkgrd.gif" leftmargin="O" topmargin="O" rightmargin="O" 

bottommargin="O" marginheight="O" marginwidth="O"> 

<table cellspacing="O" cellpadding="O" width="100%" border="O"> 

<tr><td colspan="2"><ASPNETCommerce:Header ID="Headerl" runat="server" I> 

-c/tde-c/trc-ctrc-ctd valign= "top"> 

<ASPNETCommerce:Menu id="Menul" nmat="server" I> 

<img height=" 1" src="images/lxl.gif" width='' 145"> 

-c/tdc-ctd align="left" valign="top" width="100%" nowrap> 

<table height="100%" align='Teft" cellspacing="O" cellpadding="O" width="100%" 

border="O"><tr valign="top"><td nowrapc-cbrc-cform runat="server"> 

<img align="left" width="24" height=" 1" src="images/lxl.gif"> 

<table cellspacing="O" cellpadding='D" width="100%" border="O"> 

-ctrs-ctd class="ContentHead"> 

<img align="left" height="32" width="60" src="images/lxl.gif">Create a New Account 

-cbrc-c/tdc-c/trc-c/table> 

<img align="left" height=" 1" width="92" src="images/lxl.gif"> 

-casp.Label id="MyError" CssClass="ErrorText" EnableViewState="false" runat="Server" I> 

<table height="100%" cellspacing="O" cellpadding="O" width="500" border='fl"> 

<tr valign="top"> 

<td width="550"> 

<br> 

-cbre-cspan class="NormalBold">Full Name-c/span> 

<br><asp:TextBox size="25" id="Name" runat="server" I> 

<asp:RequiredFieldValidator Control To Validate="Name" Display="dynamic" Font­ 

Name='verdana'' Font-Size="9pt" ErrorMessage="'Name' must not be left blank." 

runat=" server''c-c/ asp :RequiredFieldV alidator> 

<br> 

87 



<brc-cspan class="NormalBold">Email</span> 

<br><asp:TextBox size="25" id='Email" runat="server" I> 

<asp:RegularExpression Validator ControlTo Validate='Email" ValidationExpression="[\w\.­ 

]+(\+[\w- ]*)?@([\w-]+\.)+[\w- ]+" Display="Dynamic" Font-Name="verdana" Font­ 

Size="9pt" ErrorMessage="Must use a valid email address." 

runat="server"></asp:RegularExpression Validator> 

<asp:RequiredFieldValidator Control To Validate="Email" Display='tdynamic'' Font­ 

Name="verdana" Font-Size="9pt" ErrorMessage="'Email' must not be left blank." 

runat=" server'c-c/ asp :RequiredFieldV alidator» 

-cbr» 

<br> 

<span class="NormalBold">Password</span> 

<brc-casp.Textlsox size="25" id='Password" TextMode="Password" runat="server" I> 

<asp:RequiredFieldValidator ControlTo Validate= "Password" Display=" dynamic" Font­ 

Name=verdana" Font-Size="9pt" ErrorMessage="'Password' must not be left blank." 

runat=" server''c-c/ asp: RequiredField Validator> 

<br> 

<bre-cspan class="NormalBold">Confirm Password-c/span> 

<br><asp:TextBox size="25" id="ConfirmPassword" TextMode="Password" runat="server" 

l><asp:RequiredFieldValidator ControlToValidate="ConfirmPassword" Display="dynamic" 

Font-Name='tverdana'' Font-Size="9pt" ErrorMessage="'Confirm' must not be left blank." 

runat="server"></asp:RequiredFieldValidator> 

<asp: Compare Validator Control To Validate='' ConfirmPassword" 

ControlToCompare="Password" Display="Dynamic" Font-Name="verdana" Font­ 

Size="9pt" ErrorMessage="Password fields do not match." 

runat="server"><lasp:CompareValidator> 

<br> 

<br><asp:ImageButton id="RegisterB tn" On Click= "RegisterB tn_ Click" 

ImageUrl="images/submit.gif" runat="server" I> 

<brc-c/tdc-c/trc-c/tab lec-c/forrrc-c/tdc-c/trc-c/tab lec-c/tdc-c/tr» 

</table> 

-c/body» 

</html> 

88 



9.3.17.1. ReviewAdd.aspx 

<%@ Page Language="VB" %> 

<%@ Register TagPrefix="ASPNETCommerce" TagName="Header" Src="_Header.ascx" 

%> 

<%@ Register TagPrefix="ASPNETCommerce" TagName="Menu" Src="_Menu.ascx" %> 

<script runat="server"> 

Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs) 

If Page.IsPostBack <> True Then 

' Obtain ProductlD of Product to Review 

Dim productID As Integer= Cint(Request("productlD")) 

' Populate Product Name on Page 

Dim products As ASPNET.StarterKit.Commerce.ProductsDB = New 

ASPNET .StarterKit.Commerce.ProductsDB () 

ModelN ame. Text = products. GetProductDetails(productlD) .ModelN ame 

'Store ProductlD in Page State to use on PostBack 

ViewState("productlD") = productID 

End If 

End Sub 

Sub ReviewAddBtn_Click(ByVal sender As Object, ByVal e As ImageClickEventArgs) 

'Only add the review if all fields on the page are valid 

If Page.Is Valid = True Then 

' Obtain ProductlD from Page State 

Dim productlD As Integer= Cint(ViewState("productID")) 

'Obtain Rating number of RadioButtonList 

Dim _rating As Integer = Cint(rating.Selectedltem. Value) 

'Add Review to ReviewsDB. HtmlEncode before entry 

Dim review As ASPNET.StarterKit.Commerce.ReviewsDB = New 

ASPNET .StarterKit.Commerce.ReviewsDB() 

review .AddReview(productlD, Server.HtmlEncode(N ame. Text), 

Server.HtmlEncode(Email. Text), _rating, Server.HtmlEncode(Comment. Text)) 

' Redirect client back to the originating product details page 

Response.Redirect( "ProductDetails .as px ?ProductID=" & productID) 

End If 

89 



<br> 

This could be a result of either illegal input 

-cbrc-values, or a bug in our code. Sorry for the inconvenience. 

<lh3 ><ltd> -otre-c/tab lec-c/tdc-c/trc-c/tab le> 

</td></tr><ltable> -c/tdc-c/trc-c/table> 

-c/body> 

-c/htmb- 

9.3.11 Login.aspx 

<%@ Page Language="VB" %> 

<%@ Register TagPrefix="ASPNETCommerce" TagName="Menu" Src="_Menu.ascx" %> 

<%@ Register TagPrefix="ASPNETCommerce" TagName="Header" Src="_Header.ascx" 

%> 

<script runat="server"> 

Sub LoginBtn_Click(ByVal sender As Object, ByVal a As ImageClickEventArgs) 

'Only attempt a login if all form fields on the page are valid 

If Page.ls Valid = True Then 

' Save old ShoppingCartID 

Dim shoppingCart As ASPNET.StarterKit.Commerce.ShoppingCartDB = New 

ASPNET.StarterKit.Commerce.ShoppingCartDB() 

Dim tempCartID As String = shoppingCart.GetShoppingCartid() 

'Attempt to Validate User Credentials using CustomersDB 

Dim accountSystem As ASPNET.StarterKit.Commerce.CustomersDB = New 

ASPNET.StarterKit.Commerce.CustomersDB() 

Dim customerid As String= accountSystem.Login(email.Text, 

ASPNET.StarterKit.Commerce.Security.Encrypt(password.Text)) 

If customerld <>""Then 

' Migrate any existing shopping cart items into the permanent shopping cart 

shoppingCart. MigrateCart( tempCartID, customer Id) 

' Lookup the customer's full account details 

Dim customerDetails As ASPNET.StarterKit.Commerce.customerDetails = 

accounts ys tern. GetCustomerDetails( customer Id) 

' Store the user's fullname in a cookie for personalization purposes 

73 



Response.Cookies(" ASPNETCommerce_FullN ame "). Value = customerDetails.FullN ame 

' Make the cookie persistent only if the user selects "persistent" login checkbox 

If Remember Login.Checked = True Then 

Response.Cookies(" ASPNETCommerce_FullN ame ").Expires = 

DateTime.Now .AddMonths( 1) 

End If 

' Redirect browser back to originating page 

FormsAuthentication.RedirectFromLo ginPage( customer Id, Remember Lo gin. Checked) 

Else 

Message.Text= "Login Failed!" 

End If 

End If 

End Sub 

-c/script> 

<html> 

<head> 

<link rel="stylesheet" type="text/css" href="ASPNETCommerce.css"> 

-c/head> 

<body background="images/sitebkgrd.gif" leftmargin=O" topmargin="O" rightmargin="O" 

bottommargin="O" marginheight="O" marginwidth="O"> 

<table cellspacing="O" cellpadding="O" width="100%" border="O"><tr> 

-ctd colspan="2"><ASPNETCommerce:Header ID="Headerl" runat="server" !><ltd> 

</tr><tr><td valign="top"> 

<ASPNETCommerce:Menu id="Menul" runat="server" I> 

-cimg height="L" src="images/lxl.gif" width="145"></td> 

<td align="left" valign="top" width="100%" nowrap> 

<table height=" 100%" align="left" cellspacing="O" cellpadding="O" width>" 100%" 

border="O"><tr valign="top"><td nowrap> 

-cbrc-cform runat="server"> 

-cimg align="left" width="24" height="l" src="images/lxl.gif"> 

<table cellspacing="O" cellpadding='D" width="100%" border="O"><tr> 

<td class="ContentHead"> 

74 



"1 

-cimg align=Teft'' height="32" width="60" src="images/lxl.gif">Sign Into Your 

Account 

«br» 

</td><ltr></table> 

-cimg align="left" height="L'' width="92" src="images/lxl.gif"> 

<table height="100%" cellspacing="O" cellpadding="O" border=?O''> 

<tr valign="top"><td width="550"> 

<asp:Label id="Message" class="ErrorText" runat="server" I> 

-cbrc-cbr> 

&nbsp;<span class="NormalBold">Emaik/span> 

<br>&nbsp;<asp:TextBox size="25" id="email" runat="server" l>&nbsp; 

<asp:RequiredFieldValidator id=" emailRequired" Control To Validate=" email" 

Display="dynamic" Font-Name="verdana" Font-Size="9pt" ErrorMessage='"Name' must not 

be left blank." runat="server" I> 

<asp:RegularExpressionValidator id="emailValid" ControlToValidate="email" 

ValidationExpression="[\w\.-]+(\+[\w-]*)?@([\w- ]+\.)+[\w-]+" Display="Dynamic" 

ErrorMessage="Must use a valid email address." runat="server" I> 

&nbsp;<span class="NormalBold">Password</span><br> 

&nbsp;<asp:TextBox id="password" textmode="password" size="25" runat="server" 

l>&nbsp 

<asp: RequiredFieldV alidator id=" pass wordRequired" Control To Validate>" pass word" 

Display="Static" Font-Name='verdana" Font-Size="9pt" ErrorMessage="'Password' must 

not be left blank." runat="server" l><br> 

-cbr> 

-casp.checkbox id="RememberLogin" runat="server" I> 

<span class="NormalBold">Remember My Sign-In Across Browser Restarts-c/span> 

-cbr> 

-cbr> 

-cbr> 

<asp: ImageB utton id= "Lo ginB tn" Image URL=" images/sign_in_now. gif" 

OnClick="LoginBtn_Click" runat="server" I> 

<br> 

<br> 

75 



<span class="Normal">&nbsp;If you are a new user and you don't have an account with the 

Commerce Starter Kit, then register for one now.c/span» 

<br> 

-cbr» 

<a href="register.aspx"><img border="O" src="images/register.gif"><la> 

<ltd></tr></table></form></td></tr></tab le></td></tr></tab le> 
<zbody» 

<zhtml» 

9.3.12 OrderDetails.aspx 

<%@ Page Language="VB" %> 

<%@ Register TagPrefix="ASPNETCommerce" TagName="Header" Src="_Header.ascx" 
%> 

<%@ Register TagPrefix="ASPNETCommerce" TagName="Menu" Src="_Menu.ascx" %> 
<script runat="server"> 

Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs) 
' Obtain Order ID from QueryString 

Dim OrderID As Integer= Cint(Request.Params("OrderID")) 
'Get the customer ID too 

Dim Customerld As String= User.Identity.Name 
'Obtain Order Details from Database 

Dim orderHistory As ASPNET.StarterKit.Commerce.OrdersDB = New 
ASPNET.StarterKit.Commerce.OrdersDB() 

Dim myOrderDetails As ASPNET.StarterKit.Commerce.OrderDetails = 
orderHistory.GetOrderDetails(OrderID, Customerid) 
' if order was found, display it 

If Not (myOrderDetails Is Nothing) Then 

'Bind Items to GridControl 

GridControll.DataSource = myOrderDetails.Orderlte 
GridControl 1.DataB ind() 

'Update labels with summary detail 

lblTotal. Text = String.Format(" { O:c} ". myOrderDetails.OrderTotal) 

lblOrderNumber.Text = OrderID.ToString() 

lblOrderDate.Text = myOrderDerails.OrderDate.ToShortDateString() 



lblShipDate. Text = myOrderDetails.ShipDate. ToShortDateString() 

Else 

' otherwise display an error message 

MyError.Text = "Order not found!" 

detailsTable.Visible = False 

End If' 

End Sub 

</script> 

<html> 

<head> 

<link rel="stylesheet" type="text/css" href="ASPNETCommerce.css"> 

-c/head> 

<body background="images/sitebkgrd.gif" leftmargin="O" topmargin="O" rightmargin=O" 

bottommargin="O" marginheight="O" marginwidth='D''> 

<table cellspacing="O" cellpadding="O" width='' 100%" border="O"><tr> 

-ctd colspan="2"><ASPNETCommerce:Header ID="Headerl" runat="server" I> 

</td><ltr><tr><td valign="top"><ASPNETCommerce:Menu id="Menul" runat="server" I> 

-cimg height="l" src="images/lxl.gif" width="145"></td> 

<td align="left" valign="top" width="100%" nowrap> 

<table height="100%" align="left" cellspacing="O" cellpadding="O" width="100%" 

border="O"><tr valign="top"><td nowrap> 

-cbr» 

-cimg align="left" width="24" src="images/lxl.gif"> 

<table cellspacing="O" cellpadding="O" width=" 100%" border="O"><tr> 

<td class="ContentHead"><img align="left" height="32" width="60" 

src=" images/ 1 x 1. gif" »Order Details 

-cbrs-c/tdc-c/trc-c/tab le> 

<img align='Teft'' height="15" width="86" src="images/lxl.gif" border='D''> 

<asp:Label id="MyError" CssClass="ErrorText" EnableViewState="false" nmat="Server" I> 

<table id="detailsTable" height="100%" cellspacing="O" cellpadding="O" width="550" 

border='D'' EnableViewState="false" runat="server"> 

<tr valign=I'top"> 

<td width="l00%" class="Normal"><br> 

77 



-cb» Your Order Number Is: <lb> 

<asp:Label ID="lblOrderNumber" EnableViewState="false" runat="server" I> 

-cbr» 

-cbc-Order Date: <lb> 

-casp.Label ID="lblOrderDate" EnableViewState="false" runat="server" I> 

-cbre-cbc-Ship Date: <lb> 

<asp:Label ID="lblShipDate" EnableViewState="false" runat="server" I> 

-cbr> 

-cbr» 

<asp:DataGrid id="GridControll" width="90%" BorderColor="black" GridLines="Vertical" 

cellpadding="4" cellspacing="O" Font-Name="Verdana" Font-Size="8pt" 

ShowFooter="true" HeaderStyle-CssClass="CartListHead" FooterStyle­ 

CssClass="cartlistfooter" ItemStyle-CssClass="CartListltem" AltematingitemStyle­ 

CssClass=" CartLis tltemAlt" AutoGenerateCol umns= "false" runat=" server"> 

<Columns> 
<asp:BoundColumn HeaderText="Product Name" DataField="ModelName" I> 

<asp:BoundColumn HeaderText="Model Number" DataField="ModelNumber" I> 

<asp:BoundColumn HeaderText="Quantity" Dataf'ield=Quantiry" I> 

<asp:BoundColumn HeaderText="Price" DataField="UnitCost" DataFormatString=" { 0:c}" 

I> 

<asp:BoundColumn HeaderText="Subtotal" DataField="ExtendedAmount" 

DataFormatString=" { O:c}" !></Columns> 

</asp:DataGrid> <brc-cb> Total: <lb> 

<asp:Label ID="lblTotal" EnableViewState="false" runat="server" I> 

<ltd> <ltr><ltab le> </td><ltr></tab lec-c/tdc-c/tre-c/table> 

-c/body» 

-c/html» 

9.3.13 OrderList.aspx 

<%@ Page Language="VB" %> 

<%@ Register TagPrefix="ASPNETCornrnerce" TagName="Header" Src="_Header.ascx" 

%> 
<%@ Register TagPrefix="ASPNETCornrnerce" TagName="Menu" Src="_Menu.ascx" %> 

<%@ import Namespace="System.Data.SqlClient" %> 

78 



<script runat="server"> 

Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs) 

Dim customerID As String= User.Identity.Name 

' Obtain and bind a list of all orders ever placed by visiting customer 

Dim orderHistory As ASPNET.StarterKit.Commerce.OrdersDB = New 

ASPNET.StarterKit.Commerce.OrdersDB() 

My List.DataSource = order History. GetCus tomerOrders( cus tomerID) 

MyList.DataBind() 

' Hide the list and display a message if no orders have ever been made 

If MyList.Items.Count = 0 Then 

MyError.Text = "You have no orders to display." 

MyList.Visible = False 

End If 

End Sub 

-c/script> 

<html> 

<head> 

<link rel="stylesheet" type="text/css" href="ASPNETCommerce.css"> 

<!head> 

<body background="images/sitebkgrd.gif" leftmargin='D" topmargin="O" rightmargin="O" 

bottommargin="O" marginheight="O" marginwidth="O"> 

<table cellspacing="O" cellpadding="O" width="100%" border="O"><tr> 

<td colspan="2"><ASPNETCommerce:Header ID="Headerl" runat="server" I> 

</td></tr><tr><td valign= "top"> 

<ASPNETCommerce:Menu ideMenul " runat="server" I> 

-cimg height="l" src="images/lxl.gif" width=" 145"></td><td align='Teft" valign="top" 

width="100%" nowrap><table height="100%" align="left" cellspacing="O" cellpadding="O" 

width="100%" border="O"><tr valign="top"> 

<td nowrapc-cbrc-cform runat="server"> 

<img align="left" width="24" src="images/lxl.gif"> 

<table cellspacing="O" cellpadding="O" width="100%" border='D"> 

<tr> <td class="ContentHead"> 

-cimg align=Teft'' height="32" width="60" src="images/lxl.gif">Account History 

79 



<br></td><ltr><ltab le> 

<img align="left" height="4" widthe"l 10" src="images/lxl.gif"> <font color="red"> 

-casp.Label id="MyError" class="ErrorText" runat="Server" I> 

-ofont» 

<br> 

-cimg.alignv'Teft'' height="15" width="84" src="images/lxl.gif" border="O"> 

<table height="100%" cellspacing="O" cellpadding="O" width="550" border=:'O"> 

<tr valign="top"><td width="100%"> 

<asp:DataGrid id="MyList" width="90%" BorderColor="black" GridLines="Vertical" 

cellpadding="4" cellspacing="O" Font-Name="Verdana" Font-Size="8pt" 

Show Footer= "true" HeaderStyle-CssClass= "CartListHead" FooterSty le- 

CssClass= '' cartlistfooter" ItemStyle-CssClass="CartListltem" AltematingltemStyle­ 

CssClass="CartListltemAlt" AutoGenerateColumns="false" runat="server"> 

<Columns> 

<asp:BoundColumn HeaderText="Order ID" DataField="OrderID" I> 

<asp:BoundColumn HeaderText="Order Date" DataField="OrderDate" 

DataFormatString=" { O:d}" I> 

<asp:BoundColumn HeaderText="Order Total" DataField="OrderTotal" 

DataFormatString=" { O:c }" I> 

<asp:BoundColumn HeaderText="Ship Date" DataField="ShipDate" 

DataFormatString=" { O:d}" I> 

<asp:HyperLinkColumn HeaderText="Show Details" Text="Show Details" 

DataN avigate U rlf'ield=" Order ID" 

DataNavigateUrlFormatString="orderdetails.aspx?OrderID= { 0}" I> 

-c/Columnsc-c/asp.Datatlrid> 

</td><ltr></table><lform></td><ltr></table></td></tr></table> 

</body> 

-c/html» 

9.3.14. Product Detail.aspx 

<%@ Page Language="VB" EnableViewState="false" %> 

<%@ Register TagPrefix="ASPNETCommerce" TagName="ReviewList" 

Src="_ReviewList.ascx" %> 

80 



<%@ Register TagPrefix="ASPNETCornmerce" TagName="AlsoBought" 

Src="_AlsoBought.ascx" %> 

<%@ Register TagPrefix="ASPNETCornmerce" TagName="Menu" Src="_Menu.ascx" %> 

<%@ Register TagPrefix="ASPNETCornmerce" TagName="Header" Src="_Header.ascx" 

%> 

<%@ outputcache duration="60" varybyparam="ProductID" %> 

<script runat="server"> 

Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs) 

'Obtain ProductID from QueryString 

Dim ProductID As Integer= Cint(Request.Params("ProductID")) 

' Obtain Product Details 

Dim products As ASPNET.StarterKit.Cornmerce.ProductsDB = New 

ASPNET.StarterKit.Commerce.ProductsDB() 

Dim myProductDetails As ASPNET.StarterKit.Commerce.ProductDetails = 

products. GetProductDetails(ProductID) 

'Update Controls with Product Detailsdesc.Text = myProductDetails.Description 

UnitCost.Text = String.Format(" {O:c} ", myProductDetails.UnitCost) 

ModelName.Text = myProductDetails.ModelName 

ModelNumber. Text = myProductDetails.ModelNumber. ToString() 

Productlmage.ImageUrl = "Productlmages/" & myProductDetails.Productlmage 

addToCart.NavigateUrl = "AddToCart.aspx?ProductID=" & ProductID 

ReviewList.ProductID = ProductID 

AlsoBoughtList.ProductID = ProductID 

End Sub 

-c/script» 

<html> 

<head> 

<link href="ASPNETCommerce.css" type="text/css" rel='tstylesheet"> 

</head> 

<body bottomMargin="O" leftMargin="O" background="images/sitebkgrd.gif" 

topMargin="O" rightMargin="O" marginwidth='D" marginheight="O"> 

<table cellSpacing="O" cellPadding="O" width="100%" border="O"> 

<tr><td co1Span="2"> 

81 



<ASPNETCommerce:Header id="Headerl" runat="server" l><ltd><ltr> 

<tr><td vAlign="top" width=145> 

<ASPNETCommerce:Menu id="Menul" runat="server" I> 

<img height="l" src="images/lxl.gif" width="145"></td> 

<td vAlign="top" align='Teft"> 

<table height=" 100%" cellSpacing="O" cellPadding="O" width="620" align="left" 

border="O"> 

<tr vAlign="top"><td><br> 

-cimg src="images/lxl.gif" width="24" align='Teft"> 

<table cellSpacing="O" cellPadding="O" width="100%" border="O"><tr> 

<td class="ContentHead"> 

<img height="32" src="images/lxl.gif" width="60" align="left"><asp:label 

id="ModelName" runat="server" I> 

<br> 

</td></tr></tab le> 

<table cellSpacing="O" cellPadding="O" width="100%" border="O" valign="top"> 

<tr vAlign="top"><td rowspan="Z"> 

-cimg height="l" width="24" src="images/lxl.gif"> 

<ltd><td width="309"><img height=" 15" src="images/lxl.gif"> 

-cbr» 

-casp.image ide.'Productlmage'' runat="serv.er" height="185" width="309" border="O" I> 

<br> 

<br> 

-cimg height="20" src="images/lxl.gif" width="72"><span class="UnitCost"><b> Your 

Price.c/bc-eenbsp.casp.label id="UnitCost" runat="server" /></span> 

-cbr> 

-cimg height="20" src="images/lxl.gif" width="72"><span 

classeModelblumber'c-cbc-Model Number.c/bc-eznbsp.casp.label id="ModelNumber" 

runat="server" /></span> -cbr» 

<img height="30" src="images/lxl.gif" width="72"><asp:hyperlink id="addToCart" 

runat="server" ImageUrl="images/add_to_cart.gif" I> 

<ltd> <td><table width="300" border="O"> 

82 



<tr><td vAlign="top"> 

<asp:label class="NormalDouble" id="desc" runat="server"></asp:label> 

<br><ltd></tr></tab le> 

<img height="30" src="images/lxl.gif"> 

<ASPNETCommerce:AlsoBought id="AlsoBoughtList" runat="server" I> 

<ltd><ltr><tr><ltr></table> 

<table border="O"> <tre-ctd> 

<img src="images/lxl.gif" width="89" height="20"></td> 

<td width="100%"><ASPNETCommerce:ReviewList id=Reviewl.ist'' runat="server" I> 

<ltd> -c/trc-c/tab Iec-c/tdc-c/trc-c/tab lec-c/tdc-c/trc-c/tab le> 

<!body> 

</HTML> 

9.3.15. ProductList.aspx 

<%@ Page Language="VB" EnableViewState="false" %> 

<%@ Register TagPrefix="ASPNETCommerce" TagName="ReviewList" 

Src="_ReviewList.ascx" %> 

<%@ Register TagPrefix="ASPNETCommerce" TagName="AlsoBought" 

Src="_AlsoBought.ascx" %> 

<%@ Register TagPrefix="ASPNETCommerce" TagName="Menu" Src="_Menu.ascx" %> 

<%@ Register TagPrefix="ASPNETCommerce" TagName="Header" Src="_Header.ascx" 

%> 

<%@ outputcache duration="60" varybyparam="ProductID" %> 

<script runat="server"> 

Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs) 

'Obtain ProductID from QueryString 

Dim ProductID As Integer= Cint(Request.Params("ProductID")) 

' Obtain Product Details 

Dim products As ASPNET.StarterKit.Commerce.ProductsDB = New 

ASPNET.StarterKit.Commerce.ProductsDB() 

Dim myProductDetails As ASPNET .Starter Kit. Commerce.ProductDetails = 

products. GetProductDetails(ProductID) 

83 



'Update Controls with Product Details 

desc.Text = myProductDetails.Description 

UnitCost.Text = String.Forrnatt" {O:c} ", myProductDetails.UnitCost) 

ModelName.Text = myProductDetails.ModelName 

ModelNumber. Text = myProductDetails .ModelNumber. ToString() 

Productlmage.ImageUrl = "Productlmages/" & myProductDetails.Productlmage 

addToCart.NavigateUrl = "AddToCart.aspx?ProductlD=" & ProductlD 

ReviewList.ProductID = ProductlD 

AlsoBoughtList.ProductlD = ProductlD 

End Sub 

-c/script» 

<html> 

<head> 

<link href="ASPNETCommerce.css" type="text/css" rel="stylesheet"> 

</head> 

<body bottomMargin="O" leftMargin="O" background="images/sitebkgrd.gif" 

topMargin="O" rightMargin="O" marginwidth="O" marginheight="O"> 

<table cellSpacing="O" cellPadding="O" width="100%" border="O"> 

<tr><td co1Span="2"> 

<ASPNETCommerce:Header id="Headerl" runat="server" I> 

</td></tr><tr> 

<td vAlign="top" width=145> 

<ASPNETComrnerce:Menu id="Menul" runat="server" I> 

-cimg height="l" src="images/lxl.gif" width="145"></td> 

-ctd vAlign="top" align="left"> 

<table height="100%" cellSpacing="O" cellPadding="O" width="620" align="left" 

border="O"> 

<tr vAlign="top"><td> 

-cbo-cimg src="images/lxl.gif" width="24" align="left"> 

<table cellSpacing="O" cellPadding="O" width=" 100%" border="O"> 

<tr><td class="ContentHead"> 

84 



<img height="32" src="images/lxl.gif" width="60" align="left"><asp:label 

id="ModelName" runat="server" I> 

< brc-otdc-otrc-c/tab le> 

<table cellSpacing="O" cellPadding="O" width="100%" border="O" valign="top"> 

<tr vAlign="top"> 

<td rowspan="2"> 

<img height="l" width="24" src="images/lxl.gif"> 

-c/tdc-ctd width="309"> 

<img height="15" src="images/lxl.gif"> 

-cbrc-casp.image id="Productlmage" runat="server" height="185" width="309" border='D'' I> 

<br> 

<br> 

-cimg height="20" src="images/lxl.gif" width="72"><span class="UnitCost"><b> Your 

Price.c/bc-ecnbsp.casp.Iabel id="UnitCost" runat="server" /></span> 

<br> 

-cimg height="20" src="images/lxl.gif" width="72"><span 

class="ModelNumber"><b>Model Number.c/bc-eenbsp.casp.Iabel id="ModelNumber" 

runat="server" /></span> 

-cbr» 

<img height="30" src="images/lxl.gif" width="72"><asp:hyperlink id="addToCart" 

runat="server" ImageUrl="images/add_to_cart.gif" I> 

-c/tdc-ctdc-ctable width="300" border="O"> 

<tr> <td vAlign="top"> 

-casp.label class="NormalDouble" id='tdesc" runat="server"></asp:label><br> 

-c/tdc-c/trc-c/tablec-cimg height="30" src="images/lxl .gif"> 

<ASPNETCommerce:AlsoBought id="AlsoBoughtList" runatevserver" /><ltd> 

-c/trc-ctrc-c/tr» <ztable> 

<table border="O"> 

<tr><td><img src="images/lxl.gif" width="89" height="20"> <ltd> 

<td width="100%"><ASPNETCommerce:ReviewList id="ReviewList" runat="server" I> 

<ltd> -c/trc-c/tab Iec-c/tdc-c/trc-c/tab lec-c/tdc-c/tre-c/tab le> 

-c/body» 

</HTML> 

85 



9.3.16. Register.aspx 

<%@ Page Language="VB" %> 

<%@ Register TagPrefix="ASPNETCommerce" TagName="Header" Src="_Header.ascx" 

%> 

<%@ Register TagPrefix="ASPNETCommerce" TagName="Menu" Src="_Menu.ascx" %> 

<script runat="server"> 

Sub RegisterBtn_Click(ByVal sender As Object, ByVal e As ImageClickEventArgs) 

'Only attempt a login if all form fields on the page are valid 

If Page.Is Valid = True Then 

' Store off old temporary shopping cart ID 

Dim shoppingCart As ASPNET.StarterKit.Commerce.ShoppingCartDB = New 

ASPNET.StarterKit.Commerce.ShoppingCartDB() 

Dim tempCartld As String= shoppingCart.GetShoppingCartld() 

'Add New Customer to CustomerDB database 

Dim accountSystem As ASPNET.StarterKit.Commerce.CustomersDB = New 

ASPNET.StarterKit.Commerce.CustomersDB() 

Dim customerld as String= accountSystem.AddCustomer(Server.HtmlEncode(Name.Text), 

Email.Text, ASPNET.StarterKit.Commerce.Security.Encrypt(Password.Text)) 

If customerld <>""Then 

' Set the user's authentication name to the customerld 

FormsAuthentication.SetAuthCookie( customerld, False) 

' Migrate any existing shopping cart items into the permanent shopping cart 

shoppingCart.MigrateCart(tempCartld, customerld) 

' Store the user's fullname in a cookie for personalization purposes 

Response.Cookies(" ASPNETCommerce_FullN ame "). Value = 

Server.HtmlEncode(Name.Text) 

' Redirect browser back to shopping cart page 

Response.Redirect(" ShoppingCart.aspx ") 

Else 

MyError.Text = "Registration failed:&nbsp; That email address is already 

registered.cbrc-cimg align=left height=l width=92 srceimages/Ix l.gifc-" 

End If 

End If 

86 



End Sub 

-c/script» 

<html> 

<head> 

<link rel="stylesheet" type="text/css" href="ASPNETCommerce.css"> 

<!head> 

<body background="images/sitebkgrd.gif" leftmargin="O" topmargin="O" rightmargin="O" 

bottommargin= "0" marginheight= "O" margin width= "O "> 

<table cellspacing="O" cellpadding="O" width="100%" border=?O''> 

<tr><td colspan="2"><ASPNETCommerce:Header ID="Headerl" runat="server" I> 

</td><ltr><tr><td valign="top"> 

<ASPNETCommerce:Menu id="Menul" runat="server" I> 

-cimg height="l" src="images/lxl.gif" width="145"> 

-c/tds-ctd align="left" valign="top" width="l00%" nowrap> 

<table height="100%" align="left" cellspacing="O" cellpadding="O" width="100%" 

border="O"><tr valign="top"><td nowrapc-cbro-cform runat="server"> 

<img align="left" width="24" height="l" src="images/lxl.gif"> 

<table cellspacing="O" cellpadding="O" width="100%" border=O"> 

<tr><td class="ContentHead"> 

-cimg align="left" height="32" width="60" src="images/lxl.gif">Create a New Account 

-cbrc-c/tdc-c/trc-c/tab le> 

<img align="left" height=" 1" width="92" src="images/lxl .gif"> 

-casp.Label id="MyError" CssClass="ErrorText" EnableViewState="false" runat="Server" I> 

<table height="100%" cellspacing="O" cellpadding="O" width="500" border="O"> 

<tr valign="top"> 

-ctd width="550"> 

-cbr> 

-cbre-cspan class="NormalBold">Full Name-c/span> 

«brc-casp.Textlsox size="25" id="Name" runat="server" I> 

<asp:RequiredFieldValidator ControlToValidate="Name" Display="dynamic" Font­ 

Name="verdana" Font-Size="9pt" ErrorMessage='"Name' must not be left blank." 

runat="server"></asp:RequiredFieldValidator> 

-cbr> 

87 



-cbre-cspan class="NormalBold">Email</span> 

<br><asp:TextBox size="25" id="Email" runat="server" I> 

<asp:RegularExpression Validator Control To Validate="Email" ValidationExpression="[\w\.- 

]+(\+[\w- ]*)?@([\w-]+\.)+[\w-]+" Display="Dynamic" Font-Name="verdana" Font­ 

Size="9pt" ErrorMessage="Must use a valid email address." 

runat="server"></asp:RegularExpression Validator> 

<asp:RequiredFieldValidator ControlToValidate="Email" Display="dynamic" Font­ 

Name="verdana" Font-Size="9pt" ErrorMessage="'Email' must not be left blank." 

runat=" server'o-c/ asp :RequiredFieldV alidator> 

-cbr» 

-cbr» 
<span class="NormalBold">Password</span> 

<br><asp:TextBox size="25" id="Password" TextMode="Password" runat="server" /> 

<asp :RequiredFieldV alidator Control To Validate= "Pass word" Display=" dynamic" Font­ 

N ame= "verdana" Font-Size="9pt" ErrorMessage="'Password' must not be left blank." 

runat=" server'o-c/ asp:RequiredField Validator> 

-cbr> 
-cbre-cspan class="NormalBold">Confirm Password<lspan> 

<br><asp:TextBox size="25" id="ConfirrnPassword" TextMode="Password" runat="server" 

l><asp:RequiredFieldValidator Control To Validate="ConfirrnPassword" Display=" dynamic" 

Font-Name="verdana" Font-Size="9pt" ErrorMessage="'Confirm' must not be left blank." 

runat=" server"><lasp:RequiredFieldValidator> 

<asp: Compare Validator Control To Validate=" ConfirrnPass word" 

ControlToCompare="Password" Display="Dynamic" Font-Name="verdana" Font­ 

Size="9pt" ErrorMessage="Password fields do not match." 

runat=" server"></asp:Compare Validator> 

-cbr> 
<br><asp:ImageButton id="RegisterBtn" OnClick="RegisterBtn_Click" 

ImageUrl="images/submit.gif" runat="server" I> 

< br><ltd></tr></tab le><lform></td></tr></tab le><ltd></tr> 

-otable> 

-c/body> 

-c/html> 

88 



9.3.17.1. Review Add.aspx 

<%@ Page Language="VB" %> 

<%@ Register TagPrefix="ASPNETCommerce" TagName="Header" Src="_Header.ascx" 

%> 

<%@ Register TagPrefix="ASPNETCommerce" TagName="Menu" Src="_Menu.ascx" %> 

<script runat="server"> 

Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs) 

If Page.IsPostBack <> True Then 

' Obtain ProductlD of Product to Review 

Dim productID As Integer= Clnt(Request("productID")) 

' Populate Product Name on Page 

Dim products As ASPNET.StarterKit.Commerce.ProductsDB = New 

ASPNET.StarterKit.Commerce.ProductsDB() 

ModelN ame. Text = products.GetProductDetails(productID ).ModelN ame 

'Store ProductID in Page State to use on PostBack 

ViewState("productID") = productlD 

End If 

End Sub 

Sub ReviewAddBtn_Click(ByVal sender As Object, ByVal e As ImageClickEventArgs) 

'Only add the review if all fields on the page are valid 

If Page.Is Valid = True Then 

' Obtain ProductlD from Page State 

Dim productID As Integer= Cint(ViewState("productID")) 

'Obtain Rating number of RadioButtonList 

Dim _rating As Integer = Cint(rating.Selectedltem. Value) 

' Add Review to ReviewsDB. HtmlEncode before entry 

Dim review As ASPNET.StarterKit.Commerce.ReviewsDB = New 

ASPNET .Starter Kit.Commerce.ReviewsDB() 

review.AddReview(productID, Server.HtmlEncode(Name.Text), 

Server.HtmlEncode(Email.Text), _rating, Server.HtmlEncode(Comment.Text)) 

' Redirect client back to the originating product details page 

Response.Redirect("ProductDetails.aspx?ProductID=" & productlD) 

End If 

89 



End Sub 

-c/script» 

<html> 

<head> 

<link rel="stylesheet" type="text/css" href="ASPNETCommerce.css"> 

<!head> 

<body background="images/sitebkgrd.gif" leftmargin="O" topmargin="O" rightmargin="O" 

bottommargin="O" marginheight="O" marginwidth='D"> 

<table cellspacing="O" cellpadding="O" width="l00%11 border='D''> 

<tr><td colspane"?"> 

<ASPNETCommerce:Header lD=11Headerl II runate.'tserver" I> 

<ltd></tr><tr><td valignettop''> 

<ASPNETCommerce:Menu ideMenul II runateserver" I> 

<img height="] II src='timages/Ix Lgif" width=1114511></td> 

<td align='Teft" valign='ttop'' width=11l00%11 nowrap> 

<table height=11l00%11 align=Teft'' cellspacing='D" cellpadding='D'' width=11l00%11 

border='D'c-ctr valignetop''> 

<td nowrap> 

<br> 

<form runat='tserver"> 

<img align=Teft" width=112411 src=11images/lxl.gif11> 

<table cellspacing='D'' cellpadding='D" width="l00%11 border="O"> <tr> 

<td class="ContentHead"> 

-cimg align="left" height="32" width="60" src="images/lxl.gif">Add Review - 

<asp:label id="ModelName11 runat="server" I> 

<br> 

-c/tdc-c/trc-c/table» <br> 

-cimg align="left" width="92" src='Tmages/Lx Lgif"> 

<table width="500" bordere.'O'c-ctr valign="top"> 

-ctde-ctable border="O"><tr><td valignetop" width="55011> 

<span class="NormalBold">Name</span> <br> 

<asp:TextBox size=1120" id="Name" runat="server" I> 

90 



<asp:RequiredFieldValidator Control To Validate="N ame" Display='Dynamic'' Font­ 

Name="verdana" Font-Size="9pt" ErrorMessage="'Name' must not be left blank." 

runat="server"></asp:RequiredFieldValidator> 

<br> 

<br> 

<span class="NormalBold">Email</span> 

<br> 

<asp:TextBox id='Bmail" size="20" runat="server" I> 

<asp:RequiredFieldValidator Control To Validate='Email" Display='Dynamic'' Font­ 

Name='verdana" Font-Size="9pt" ErrorMessage='"Email' must not be left blank." 

runat="server"></asp:RequiredFieldValidator> 

<br» 

<br> 

<span class="NormalBold">Rating</span> 

<br> 

<br> 

<asp:RadioButtonList ID="Rating" runat="server"> 

<asp:Listltem text="Five" value="5" selected='True"> 

<img src= "Images/reviewrating5. gif''c-o' asp :Lis tltem> 

<asp:Listltem text="Four" value="4"> 

<img src="lmages/reviewrating4.gif"><lasp:Listltem> 

<asp:Listltem text="Three" value="3"> 

<img src= "Images/reviewrating3. gif"></asp:Listltem> 

<asp.Listltem text="Two" value="2"> 

<img src=" Images/reviewrating2. gif" ><I asp: Lis tltem> 

<asp.Listltem text="One" value="l "> 

-cimg src= "Images/reviewrating 1. gif" ><I asp :Lis tltem> 

</asp:RadioButtonList> 

<ltd><ltr> <ztable> 

<br> 

-cbr» 

<span class="NormalBold">Commenrs< s::i~ 

<br> 

91 



<asp:TextBox id="Comment" textmode="multiline" rows="7" columns="60" runat="server" 

I> 

<asp: RequiredField Validator Control To Validate>" Comment" Display= "Dynamic" Font­ 

N ame=" verdana" Font-Size="9pt" ErrorMessage="'Comment' must not be left blank." 

runat="server"></asp:RequiredFieldValidator> 

<br> 

<br> 

<asp: lmageB utton Image URL=" images/ submit. gif" On Click= "Review AddB tn_ Click" 

runat="server" I> 

-cbr» 

<br> 

</td><ltr></table></form></td></tr></table></td></tr></table> 

-c/body> 

</html> 

9.3.18. Search Result.aspx 

<%@ Page Language="VB" %> 

<%@ Register TagPrefix="ASPNETCommerce" TagName="Header" Src="_Header.ascx" 

%> 

<%@ Register TagPrefix="ASPNETCommerce" TagName="Menu" Src="_Menu.ascx" %> 

<%@ import Namespace="System.Data.SqlClient" %> 

<script runat="server"> 

Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs) 

'Search database using the supplied "txtSearch" parameter 

Dim productCatalogue As ASPNET.StarterKit.Commerce.ProductsDB = New 

ASPNET .Starter Kit.Commerce.ProductsDB () 

MyList.DataSource = 

productCatalogue.SearchProductDescriptions(Request.Params("txtSearch'')) 

M yList.DataB ind() 

' Display a message if no results are found 

If MyList.Items.Count = 0 Then 

ErrorMsg.Text = "No items matched your query." 

92 



End If 

End Sub 

-c/scripc­ 

<html> 

<head> 

<link rel=l'stylesheet" type="text/css" href="ASPNETCommerce.css"> 

-c/nead» 

<body background="images/sitebkgrdnogray.gif" leftmargin="O" topmargin="O" 

rightmargin="O" bottommargin="O" marginheight="O" marginwidth="O"> 

<table cellspacing="O" cellpadding="O" width="100%" border="O"> 

<tr><td colspan="2"> 

<ASPNETComrnerce:Header ID="Headerl" runat="server" !><ltd> 

</tr><tr><td valign= "top"> 

<ASPNETCommerce:Menu id="Menul" runat="server" I> 

<img height="l" src="images/lxl.gif" width='' 145"></td> 

<td align="left" valign="top" width="100%" nowrap> 

<table height="100%" align='Teft" cellspacing="O" cellpadding="O" width="lOQC 

border="O"><tr valign="top"> 

<td nowrap> 

-cbr> 

<asp.Datal.ist id="MyList" RepeatColumns="2" runat="server"> 

<Item Template> 

<table border="O" width="300"> 

<tr> 

<td width="25"></td> 

<td widthe" 100" valign="middle" align="right"> 

<a href='ProductDetails.aspx?productlD=<%# DataBinder.Eval(Container.Da ...•.•..•.. -...._ 

"ProductID") %>'> 

-cimg src='Productlmages/thumbs/<%# DataBinder.Eval(Container.Dataltem. 

"Productlmage") %>' width="lOO" height="75" border="O"><la> 

-c/tdc-ctd width="200" valign="middle"> 

<a href='ProductDetails.aspx?productID=<%# DataBinder.Eval(Container.Datallei:i:i 

"ProductID")%>'> 

<span class="ProductListHead"> 

93 



<%# DataB inder .Eval(Container .Dataltem, "ModelN ame ")%> 

-c/span» 

<br> 

-c/ae-cspan class="ProductListltem"><b>Special Price: <lb> 

<%# DataBinder.Eval(Container.Dataltem, "UnitCost", " { O:c} ")%> 

-c/span» 

<br> 

<a href='AddToCart.aspx?productlD=<%# DataBinder.Eval(Container.Dataltem, 

"ProductID")%>'> 

<font color="#9D0000"><b>Add To Cartc/bc-c/fonc-c/a> 

-c/tds-c/trc-c/tab le> 

-c/Item Template> 

</asp:DataList> 

<img height="l" width="30" src="Images/lxl.gif"> 

-casp.Label id="ErrorMsg" class="ErrorText" runat="server" I> 

</td></tr></tab lec-c/tdc-c/trc-c/tab le> 

<zbody> 

<!html> 

9.3.19. ShoppingCart.aspx 

<%@ Page Language="VB" %> 

<%@ Register TagPrefix="ASPNETCommerce" TagName="Header" Src="_Header.ascx" 

%> 

<%@ Register TagPrefix="ASPNETCommerce" TagName="Menu" Src="_Menu.ascx" %> 

<%@ import Namespace="System.Data.SqlClient" %> 

<script runat="server"> 

Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)' Populate the shopping cart 

the first time the page is accessed. 

If Page.IsPostBack = False Then 

PopulateShoppingCartList() 

End If 

End Sub 

94 



Sub UpdateBtn_Click(ByVal sender As Object, ByVal e As ImageClickEventArgs) 

'Update the Shopping Cart and then Repopulate the List 

U pdateShoppingCartDatabase() 

PopulateShoppingCartList() 

End Sub 

Sub CheckoutBtn_Click(ByVal sender As Object, ByVal e As ImageClickEventArgs) 

'Update Shopping Cart 

UpdateShoppingCartDatabase() 

'If cart is not empty, proceed on to checkout page 

Dim cart As ASPNET.StarterKit.Commerce.ShoppingCartDB = New 

ASPNET.StarterKit.Commerce.ShoppingCartDB() 

' Calculate shopping cart ID 

Dim cartid As String= cart.GetShoppingCartid() 

'If the cart isn't empty, navigate to checkout page 

If cart.GetltemCount(cartid) <> 0 Then 

Response.Redirect("CreditCardForm.aspx") 

Else 

MyError.Text = "You can't proceed to the Check Out page with an empty cart." 

End If 

End Sub 

Sub PopulateShoppingCartList() 

Dim cart As ASPNET.StarterKit.Commerce.ShoppingCartDB = New 

ASPNET.StarterKit.Commerce.ShoppingCartDB() 

' Obtain current user's shopping cart ID 

Dim cartld As String= cart.GetShoppingCartid() 

' If no items, hide details and display message 

If cart.GetltemCount(cartid) = 0 Then 

DetailsPanel.Visible = False 

MyError.Text = "There are currently no items in your shopping cart." 

Else 

' Databind Gridcontrol with Shopping Cart Items 

MyList.DataSource = cart.Getltems(cartid) 

MyList.DataBind() 

95 



'Update Total Price Label 

lblTotal.Text = String.Format(" { O:c} 11, cart.GetTotal( cartld)) 

End If 

End Sub 

Sub UpdateShoppingCartDatabase() 

Dim cart As ASPNET.StarterKit.Commerce.ShoppingCartDB = New 

ASPNET.StarterKit.Commerce.ShoppingCartDB() 

' Obtain current user's shopping cart ID 

Dim cartld As String = cart.GetShoppingCartld() 

' Iterate through all rows within shopping cart list 

Dim i As Integer 

For i = 0 To MyList.Items.Count - 1 

' Obtain references to row's controls 

Dim quantityTxt As TextBox = CType(MyList.Items(i).FindControl(11Quantity11), TextBox) 

Dim remove As CheckBox = CType(MyList.Items(i).FindControl(11Remove11), CheckBox) 

'Wrap in try/catch block to catch errors in the event that someone types in 

' an invalid value for quantity 

Dim quantity as Integer 

Try 

quantity= Clnt(quantityTxt.Text) 

' If the quantity field is changed or delete is checked 

If quantity<> Clnt(MyList.DataKeys(i)) Or remove.Checked e True Then 

Dim lblProductlD As Label = Ctype(MyList.Items(i).FindControl(11ProductID11), Label) 

If quantity= 0 Or remove.Checked= true Then 

cart.Remove Item( cartld, Cint(lblProductlD. Text)) 

Else 

cart.Updateltem( cartld, Clnt(lblProductlD.Text), quantity) 

End If 

End If 

Catch 

My Error.Text= "There has been a problem with one or more of your inputs. 11 

End Try 

Next 

96 



End Sub 

<zscripc­ 

<html> 

<head> 

<link href="ASPNETCommerce.css" type="text/css" rel="stylesheet" I> 
<zhead» 

<body bottommargin="O" leftmargin= "O" background=" images/sitebkgrd.gif" top margin= "O" 
rightmargin="O" marginheight="O" marginwidth="O"> 

<table cellspacing="O" cellpadding="O" width="l00%" border="O"> 
<tbody» 

<tr> 

<td colspan="2"> 

<ASPNETCornrnerce:Header id=Tleader l" runat= "server"></ ASPNETCornrnerce:Header> 
<ltd><ltr><tr><td valign= "top"> 

<ASPNETCommerce:Menu id="Menul "runat="server"></ ASPNETCornrnerce:Menu> 
<img height="l" src="images/lxl.gif" width="145" I> 

<ztds-crd valign="top" nowrap="nowrap" align="left" width="l00%"> 

<table height="l00%" cellspacing="O" cellpadding="O" width="l00%" align="left" 
border="O"><tbody> 

<tr valign="top"> 

<td nowrap="nowrap"> 

<br I> 

<form runat="server"> 

<img src="images/lxl.gif" width="24" align="left" I> 

<table cellspacing="O" cellpadding="O" width="l00%" border="O"> 
<tbody><tr> 

<td class="ContentHead"> 

<img height="32" src="images/lxl.gif" width="60" align="left" />Shopping Cart 
<br I> 

<ltd><ltr><ltbody> 
<ztable» 

<img height="4" src="images/lxl.gif" width="llO" align="left" I> <font > 

9 



<asp:Label class="ErrorText" id="MyError" runat="Server" 

EnableViewState="false"></asp:Label> 

-ofont» 

<hr I> 

-cimg height="15" src="images/lxl.gif" width="24" align="left" border="O" I> 

<asp:panel id="DetailsPanel" runat="server"> 

<img height="l" src="images/lxl.gif" width="50" align="left" I> 

<table height="100%" cellspacing="O" cellpadding="O" width="550" border="O"> 

<tbody><tr valign="top"> 

-ctd width="550"> 

<asp:DataGrid id="MyList" runat="server" BorderColor="black" GridLines="Vertical" 

cellpadding="4" cellspacing="O" Font-Name="Verdana" Font-Size="8pt" 

ShowFooter="true" HeaderStyle-CssClass="CartListHead" FooterStyle­ 

CssClass="CartListFooter" ItemStyle-CssClass="CartListltem" AltematingltemStyle­ 

CssClass="CartListitemAlt" DataKeyField="Quantity" AutoGenerateColumns="false"> 
<Columns> 

<asp:TemplateColumn HeaderText="Product&nbsp;ID"> 

<Item Template> 

<asp.Label id="ProductlD" runat="server" Text='<%# DataBinder.Eval(Container.Dataltem, 
"ProductlD") %>' I> 

</Item Template> 

</asp:TemplateColumn> 

<asp:BoundColumn HeaderText="Product Name" DataField="ModelName" I> 

<asp:BoundColumn HeaderText="Model" DataField="ModelNumber" I> 

<asp:TemplateColumn HeaderText="Quantity"> 

<Item Template> 

<asp:TextBox id=I'Quantity'' runat="server" Columns="4" MaxLength="3" Text='<%# 

DataBinder.Eval(Container.Dataltem, "Quantity")%>' width="40px" I> 

-c/Item Template> 

<lasp:TemplateColumn> 

<asp:BoundColumn HeaderText="Price" DataField="UnitCost" DataFormatString=" {O:c}" 

I> 

98 



<asp:BoundColurnn HeaderText= "Subtotal" DataField= "ExtendedAmount" 

DataFormatString=" { O:c}" I> 

<asp:TemplateColurnn HeaderText="Remove"> 

<Item Template> 

<center> 

<asp:CheckBox id='Remove'' runat="server" I> 

<Zcenter> 

<Zltem Template> 

</asp:TemplateColurnn> 

</Columns> 

<lasp:DataGrid> 

-cimg height="l" src="Images/lxl.gif" width="350" I> <span class="NormalBold">Total: 

-c/span» 

<asp:Label class="NormalBold" id='Tbl'I'ctal" runat="server" 

EnableViewState="false"></asp:Label> 

-cbr c- 
<br/> 

<img height="l" src='Tmages/Ix l.gif" width="60" I> 

<asp: image button id=update" onclicke "U pdateB tn_ Click" runat=" server" 

ImageURL="images/update_cart.gif"></asp:imagebutton> 

-cimg height=" 1" src="Images/lxl.gif" width=" 15" I> 

<asp: imagebutton id=" checkout" cnclick= "CheckoutB tn_ Click" runat=" server" 

Image URL=" images/final_ checkout. gif" ><I asp: imagebutton> 

<br l><ltd><ltr><ltbody> 

<ztablec-c/asp.panel» 

<lform><ltd><ltr><ltbody><ltab lec-c/tdc-c/to-c/tbod ys-c/tab le> 

<zbody> 

</html> 

9.3.20. GLOBAL.ASAX 

<%@ Import Namespace="ASPNET.StarterKit.Commerce" %> 

<%@ import Namespace="System.Threading" %> 

99 



<%@ import Namespace="System.Globalization" %> 

<script language="VB" runat="server"> 

Sub Application_BeginRequest(sender As [Object], e As EventArgs) 

Try 

If Not (Request.UserLanguages Is Nothing) Then 

Thread.CurrentThread.CurrentCulture = 

Culture Info. CreateSpecificCulture(Request. User Languages( 0)) 

'Default to English if there are no user languages 

Else 

Thread.CurrentThread.CurrentCulture = New Culturelnfo("en-us") 

End If 

Thread. CurrentThread. Current UI Culture = Thread. CurrentThread. Current Culture 

Catch ex As Exception 

Thread. CurrentThread. CurrentCulture = New Cul turelnfo(" en-us") 

End Try 

End Sub 

-c/script» 

9.3.21. WEB.CONFIG 

<?xml versione" LO" encoding="utf-8" ?> 

<configuration> 

<!-- application specific settings--> 

<appSettings> 

<add key="ConnectionString" 

value=" server=PYHTON ;database=Commerce;uid=sa;pwd=;" I> 

<I appSettings> 

<!-- forms based authentication--> 

<system.web> 

<compilation debug="true" I> 

<pages validateRequest="true" I> 

<!-- enable Forms authentication--> 

<authentication mode= "Forms"> 

100 



<forms name="CommerceAuth" loginUrl="login.aspx" protection="All" path="/" I> 

</authentication> 

<!-- enable custom errors for the application--> 

<custornErrors mode="RemoteOnly" defaultRedirect="ErrorPage.aspx" I> 

<!-- disable session state for application--> 

<sessionState mode="Off" I> 

<globalization fileEncoding="utf-8" requestEncoding="utf-8" responseEncoding="utf- 

8"/> 

-c/system. web> 

<!-- set secure paths--> 

<location path="Checkout.aspx"> 

-csystem.web» 

<authorization> 

<deny users="?" I> 

-c/authorization» 

-c/system. web> 

-c/location» 

<location path="OrderList.aspx"> 

-csystem.webc- 

<authorization> 

<deny users>"?" I> 

<zauthorization> 

-c/system. web> 

-c/Iocation» 

<location path="OrderDetails.aspx "> 

-csystem.web» 

<authorization> 

<deny users="?" I> 

<zauthorization> 

<Zsystern. web> 

</location> 

</configuration> 

101 



9.3.22. InstantOrder .asmx 

<%@ WebService Language="VB" Class="lnstantOrder" %> 

Imports System 

Imports System.Web.Services 

Imports ASPNET.StarterKit.Commerce 

Public class InstantOrder: Inherits WebService 

<WebMethod(Description:="The Orderltem method enables a remote client to 

programmatically place an order using a WebService.", EnableSession:=false)> _ 

Public Function Orderltem(ByVal userName As String, ByVal password As String, ByVal 

productlD As Integer, ByVal quantity As Integer) As OrderDetails 

' Login client using provided username and password 

Dim accountSystem As ASPNET.StarterKit.Commerce.CustomersDB = New 

ASPNET.StarterKit.Commerce.CustomersDB() 

Dim customerld As String= accountSystem.Login(userName, 

ASPNET. Starter Kit. Commerce. Security .Encrypt(pass word)) 

If customerld Is Nothing Then 

Throw New Exception("Error: Invalid Login!") 

End If 

'Wrap in try/catch block to catch errors in the event that someone types in 

' an invalid value for quantity 

Dim qty As Integer= System.Math.Abs(quantity) 

If qty = quantity And qty < 1000 Then 

' Add Item to Shopping Cart 

Dim myShoppingCart As ASPNET.StarterKit.Commerce.ShoppingCartDB = New 

ASPNET.StarterKit.Commerce.ShoppingCartDB() 

myShoppingCart.Addltem(customerld, productlD, quantity) 

' Place Order 

Dim orderSystem As ASPNET.StarterKit.Commerce.OrdersDB = New 

ASPNET.StarterKit.Commerce.OrdersDB() 

Dim orderID As Integer= orderSystem.PlaceOrder(customerld, customerld) 

' Return OrderDetails 

Return orders ystem. GetOrderDetails( order ID, customer Id) 
Else 

' invalid input 

10_ 



--- 

Return Nothing 

End If 

End Function 

<WebMethod(Description:="The CheckStatus method enables a remote client to 

programmatically query the current status of an order in the ASPNETCommerce System.", 
EnableSession:=false)> _ 

Public Function CheckStatus(ByVal userName As String, ByVal password As String, ByVal 
orderID As Integer) As OrderDetails 

' Login client using provided username and password 

Dim accountSystem As ASPNET.StarterKit.Commerce.CustomersDB = New 
ASPNET.StarterKit.Commerce.CustomersDB() 

Dim customerld As String= accountSystem.Login(userName, 

ASPNET.StarterKit.Commerce.Security.Encrypt(password)) 
If customerld =""Then 

Throw New Exception("Error: Invalid Login!") 
End If 

'Return OrderDetails Status for Specified Order 

Dim orderSystem As ASPNET.StarterKit.Commerce.OrdersDB = New 
ASPNET.StarterKit.Commerce.OrdersDB() 

Return orders ystem.GetOrderDetails( orderID, customerld) 
End Function 

End Class 

103 



CONCLUSION 

At the beginning the microsoft .NET is explained and is examined. This project answers the 

what the .NET, Object orientented in .NET ,Visual Basic.Net ,History of ASP,Differences of 

ASP.NET and ASP, short view above SQL Server 2000 ,Security in web,Intemet 

Information Server and lastly e-commerce project are studied. 

Companies world-wide are establish a basic electronic presence on a global open network, 

learning from the experience, and gradually becoming more sophisticated in their use of the 

technologies. While the more advanced levels of electronic commerce present substantial 

challenges, the more basic levels are now well established and supported bv "off the shelf' 

solutions. The best way of gaining the mastery of electronic commerce that will be vital in 

tomorrow's markets is to try it today. 

Technology is improving,May be one day ,We will be slave of Technology,We are walking 

to make Human Life better. 

104 



RERERANCES 

http://www.microsoft.com 

http://www.microsoft.com/technet/prodtechnol/WindowsServer2 

http://www.microsoft.com/technet/prodtechnol/WindowsServer200"' ~ 

9005-4f91-9137-f63b73eefde8.mspx 

/lt74eac5- 

Yuksel lnan,Nihat Demirli, Visual Basic.NET 2003,istanbul,2004 

Yuksel lnan,Nihat Demirli,XML ve ASP.NET ,istanbul,2004 

Yuksel lnan,Nihat Demirli,SQL Server ADO.NET ,istanbul,2004 

Prof.Dr.Mithat UYSAL, Visual Basic.NET ile yezuun geli§tirme,i 

Douglas Reilly, Designing Microsoft ASP.NET Applications. Microsoft Press One 

Microsoft WayRedmond, WA 98052-6399 

Mesbah Ahmed, Chris Garrett, Jeremy Faircloth, Chris Payne, ASP.NET Web Developer· 

Guide, 800 Hingham Street Rockland, MA 02370, 2002 

Danny Ryan and Tommy Ryan,ASP.NET Your visual blueprint for creating Web applic. 

on the .NET Framework, Hungry Minds, Inc. 909 Third A venue NY 10022,2002 

Scott Mitchell, Bill Anders, Rob Howard, Doug Seven, Stephen Walther, Chris­ 

Don Wolthuis, Draft,SAMS, 201 West 103rd St., Indianapolis, Indiana, 46 _ _, 

Jeff Prosise, Programming Microsoft .NET, Microsoft Press, 2002 

Miridula Parihar,ASP.NET Bible,Hungary Minds,909 Third reve 

105 



Jason Butler,Tony Caudill,ASP.NET Database programming Weekend Crash Course, 

Hungary Minds,909 Third revenue NY ,2002 

106 


	Page 1
	Titles
	NEAR EAST UNIVERSITY 
	Faculty of Engineering 


	Page 2
	Titles
	ACKNOWLEDGEMENTS 


	Page 3
	Titles
	ABSTRACT 


	Page 4
	Titles
	TABLE OF CONTENTS 
	CHAPTER ONE: .NET FRAMEWORK 1 
	CHAPTER TWO: THE .NET FRAMEWORK OBJECTS 4 
	AND LANGUAGES 
	CHAPTER THREE: VISUAL BASIC.NET 


	Page 5
	Titles
	CHAPTER FOUR: OVERVIEW OF ASP.NET 20 
	CHAPTER FIVE: DATABASE FOR ASP.NET 32 


	Page 6
	Titles
	CHAPTER SIX: INTERNET INFORMATION SERVER 49 
	CHAPTER SEVEN: ASP.NET SECURITY 51 
	CHAPTER EIGHT: ELECTRONIC COMMERCE 56 
	CHAPTER NINE: E-COMMERCE WEB SITE USING 57 


	Page 7
	Tables
	Table 1


	Page 8
	Titles
	INTRODUCTION 


	Page 9
	Titles
	CHAPTER ONE 
	.NET FRAMEWORK 

	Images
	Image 1


	Page 10
	Page 11
	Images
	Image 1


	Page 12
	Titles
	CHAPTER TWO 
	The .NET Framework Objects and Languages 


	Page 13
	Page 14
	Page 15
	Images
	Image 1


	Page 16
	Tables
	Table 1


	Page 17
	Titles
	CHAPTER THREE 
	Visual Basic.Net 
	3.1. Overview of Visual Basic .NET 
	3.2 Out with the Old! 


	Page 18
	Images
	Image 1


	Page 19
	Images
	Image 1


	Page 20
	Page 21
	Page 22
	Images
	Image 1


	Page 23
	Page 24
	Page 25
	Images
	Image 1
	Image 2


	Page 26
	Page 27
	Images
	Image 1


	Page 28
	Titles
	CHAPTER FOUR 
	Overview of ASP.NET 
	4.1. Internet Standards 

	Images
	Image 1


	Page 29
	Images
	Image 1


	Page 30
	Images
	Image 1


	Page 31
	Images
	Image 1


	Page 32
	Images
	Image 1


	Page 33
	Images
	Image 1
	Image 2


	Page 34
	Images
	Image 1


	Page 35
	Titles
	4.5. In this syntax ... 
	4.6. Creating a Visual Basic Web Application 

	Images
	Image 1
	Image 2


	Page 36
	Images
	Image 1
	Image 2
	Image 3


	Page 37
	Images
	Image 1
	Image 2


	Page 38
	Images
	Image 1
	Image 2
	Image 3


	Page 39
	Images
	Image 1


	Page 40
	Titles
	CHAPTER FIVE 
	Database for ASP.NET 

	Images
	Image 1
	Image 2


	Page 41
	Images
	Image 1


	Page 42
	Titles
	5.4. Creating a Database 

	Images
	Image 1


	Page 43
	Images
	Image 1
	Image 2


	Page 44
	Titles
	5.6. The ADO.NET Object Model 

	Images
	Image 1
	Image 2


	Page 45
	Titles
	5.6.1 Data Providers 

	Images
	Image 1


	Page 46
	Images
	Image 1
	Image 2


	Page 47
	Titles
	5.6.3 Binding Data to a Simple Windows Form 

	Images
	Image 1


	Page 48
	Titles
	5.6.3.1 
	Adding a Connection and Data Adapter to a Form 

	Images
	Image 1
	Image 2


	Page 49
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 50
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 51
	Images
	Image 1
	Image 2
	Image 3


	Page 52
	Images
	Image 1
	Image 2
	Image 3


	Page 53
	Images
	Image 1
	Image 2
	Image 3


	Page 54
	Images
	Image 1
	Image 2
	Image 3


	Page 55
	Titles
	47 

	Images
	Image 1
	Image 2


	Page 56
	Images
	Image 1
	Image 2


	Page 57
	Titles
	CHAPTER SIX 
	Internet Information Server 

	Images
	Image 1


	Page 58
	Titles
	//.~;~:.~ 1.A s7))-.~ 
	6.2. Installing ASP.NET (IIS 6.0) ·.;, ,, ,., ''">-J)J 
	. .,~1;o~t-- / 

	Images
	Image 1


	Page 59
	Titles
	CHAPTER SEVEN 
	SP.NET Security 

	Images
	Image 1


	Page 60
	Titles
	7.3. .NET Framework Security Mechanisms Role-Based Security 

	Images
	Image 1


	Page 61
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 62
	Images
	Image 1
	Image 2


	Page 63
	Titles
	55 
	Figure 7 .4. Permission levels for a specific permission set 
	Figure 7 .3. Creating a permission set by assigning individual permissions. 
	� Client Certificate authentication 
	ASP.NET, in conjunction with Internet Information Services (IIS), can authenticate user 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 64
	Titles
	CHAPTER EIGHT 
	Electronic Commerce (E-Commerce) 

	Images
	Image 1


	Page 65
	Titles
	CHAPTER NINE 
	E-COMMERCE WEB SITE USING ASP.NET 
	57 

	Images
	Image 1


	Page 66
	Images
	Image 1


	Page 67
	Images
	Image 1


	Page 68
	Images
	Image 1


	Page 69
	Images
	Image 1


	Page 70
	Images
	Image 1


	Page 71
	Images
	Image 1


	Page 72
	Images
	Image 1


	Page 73
	Images
	Image 1


	Page 74
	Images
	Image 1


	Page 75
	Images
	Image 1


	Page 76
	Titles
	<Ip> 

	Images
	Image 1


	Page 77
	Titles
	<Ip> 

	Images
	Image 1


	Page 78
	Images
	Image 1


	Page 79
	Images
	Image 1


	Page 80
	Images
	Image 1


	Page 81
	Images
	Image 1


	Page 82
	Images
	Image 1


	Page 83
	Titles
	75 

	Images
	Image 1


	Page 84
	Images
	Image 1


	Page 85
	Images
	Image 1


	Page 86
	Images
	Image 1


	Page 87
	Images
	Image 1


	Page 88
	Images
	Image 1


	Page 89
	Images
	Image 1
	Image 2


	Page 90
	Images
	Image 1
	Image 2


	Page 91
	Images
	Image 1


	Page 92
	Images
	Image 1


	Page 93
	Images
	Image 1


	Page 94
	Images
	Image 1


	Page 95
	Images
	Image 1


	Page 96
	Images
	Image 1


	Page 97
	Images
	Image 1


	Page 98
	Images
	Image 1


	Page 99
	Images
	Image 1


	Page 100
	Images
	Image 1


	Page 101
	Images
	Image 1
	Image 2


	Page 102
	Images
	Image 1


	Page 103
	Images
	Image 1


	Page 104
	Images
	Image 1


	Page 105
	Images
	Image 1


	Page 106
	Images
	Image 1


	Page 107
	Images
	Image 1


	Page 108
	Images
	Image 1


	Page 109
	Images
	Image 1


	Page 110
	Images
	Image 1


	Page 111
	Images
	Image 1


	Page 112
	Images
	Image 1


	Page 113
	Images
	Image 1


	Page 114
	Images
	Image 1


	Page 115
	Images
	Image 1


	Page 116
	Titles
	<ltd><ltr> <ztable> 
	-cbr» 

	Images
	Image 1
	Image 2


	Page 117
	Images
	Image 1


	Page 118
	Images
	Image 1
	Image 2


	Page 119
	Images
	Image 1


	Page 120
	Images
	Image 1


	Page 121
	Images
	Image 1


	Page 122
	Titles
	> 

	Images
	Image 1
	Image 2
	Image 3


	Page 123
	Images
	Image 1


	Page 124
	Images
	Image 1


	Page 125
	Images
	Image 1
	Image 2


	Page 126
	Images
	Image 1


	Page 127
	Images
	Image 1


	Page 128
	Images
	Image 1


	Page 129
	Titles
	CONCLUSION 

	Images
	Image 1
	Image 2


	Page 130
	Titles
	RERERANCES 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9


	Page 131
	Images
	Image 1
	Image 2



