
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

DISTRIBUTED MULTl AGENT SYSTEMS

GRADUATION PROJECT
COM-400

Student: BARIŞ ERSİN
••

Supervisor: ASST.PROF.DR.RAHİB ABİYEV
'

NICOSIA - 2001

ANKNOWLEDGEMENT

"First, I would like to thank my supervisor Asst. Prof Dr. Rahib Abiyev for 'his
invaluable advice and belief in my work and myself over the course of this Graduation
Project.

Second, I would like to express my Gratitude to Near East University for the
scholarship that made the work possible.

Third, I thank my family for their constant encouragement and support during
the preparation of this project.

Finally,I would also like to thank all my friends for their advice and support."

1

ABSTRACT

The graduating project is devoted one of the actual problem of information
technology Distributed Multi - Agent systems. For this reason the approaches for
creating distributed system is clarified, the main characteristic of Distributed System,
advantages and disadvantages are described. Distributed system is a combination of
Network technologies and the systems, such as Database System, intelligent system. In
the project as an example the development of Distributed Database System is
considered. The structures of different Distributed Systems are described. The design of
Distributed Database System is given. The two approaches for Distributed Database
System design have been identified and their characteristics are given. The main stages
in design is fragmentation of systems, that is the dividing and analyzing the parts of the
systems (decomposition of system). The fragmentation increases the level of
concurrency and therefore the system throughput. In the project the various
fragmentation strategies and algorithms are given, the Query processing problem is
described.

The Distributed Multi Database System structure, its integration processes,
Query Processing problems and transaction execution are described. Also the
architecture and operating principles of Distributed Expert System are considered. At
the end the modeling of Distributed Database System is considered. The procedure of
sending and receiving of information between agents are developed. The system is
developed in VisualBasic 6.0.

j

11

INTRODUCTION

Distributed database system (DDBS) technology is one of the major recent
developments in the database systems area. There are claims that in the next ten years
centralized database managers will be an "antique curiosity" and most organizations
will move toward distributed database managers. The intense interest in this ·subject in
both the research community and the commercial marketplace certainly supports this
claim. The extensive research activity in the last decade has generated results that now
enable the introduction of commercial products into the marketplace.

Distributed database system (DDBS) technology is the union of what appear to
be two diametrically opposed approaches to data processing: database system and
computer network technologies. Database systems have taken us from a paradigm of
data processing, in which each application denned and maintained its own data, to one
in which the data is denned and administered centrally. This new orientation results in
data independence, whereby the application programs are immune to changes in the
logical or physicalorganization of the data, and vice versa.

One of the major motivations behind the use of database systems is the desire to
integrate the operational data of an enterprise and to provide centralized, thus controlled
access to that data. The technology of computer networks, on the other hand, promotes a
mode of work that goes against all centralization efforts. At first glance it might be
difficult to understand how these two contrasting approaches can possibly be
synthesized to produce a technology that is more powerful and more promising than
either one alone. The key to this understanding is the realization that the most important
objective of the database technology is integration, not centralization. It is important to
realize that either one of these terms does not necessarily imply the other. It is possible
to achieve integration without centralization, and that is exactly what the distributed
database technology attempts to achieve.

1

TABLE OF -C-ON'f-ENTS

ANKNOWLEDGEMENT I

ABSTR,\C'f 'n

INTRODUCTION 1

1- DISTRIBUTED DATA-PR-OCESSING 2

1. 1 Distributed Database System
2.1 Advantages and Disadvantages of DDBSs

3
6

2- DISTRIBUTED SYSTEMS AND DİSTRİBUTED SOFTWARE 10

2. 1 Characteristic of distributed systems
2.2 Parallel or Concurrent Programs
2 .3 Networked Computing
2.4 Communication Software Systems
2.5 Combination of Network Computing and

Cooperative Computing

10
10
12
16
23

3- ARCHITECTURE OF DBMS 24

3. 1 Transparencies in a Distributed DBMS
3 .2 DBMS Standardization
3 .3 Ansi I Spare Architecture
3 .4 Architectural models for Distributed DBMSs
3.5 Global directory issues

24
28
29

34
43

4- DISTRIBUTED DATABASE DESIGN 46

4. 1 Alternative design strategies
4.2 Distribution design issues
4.3 Fragmentation
4.4 Allocation

48
50
56
63

5- QUERY PROCESSING 64

5. 1 Query Processing problem
5 .2 Objectives of Query Processing
5 .3 Characterization of Query Processors

64
65
66

6- DISTRIBUTED MULTI DATABASE SYSTEMS

6. 1 Database Integration
6.2 Query Processing
6.3 Transaction Management

7- DISTRIBUTED INTELLIGENT SYSTEM

8- MODELING OF DISTRIBUTED SYSTEMS

8. 1 Structure of system

CONCLUSION

RE FERENC-ES

70

7-0
83
-87

91

100

100

106

107

2

CHAPTER I

DISTRIBUTED DATA PROCESSING

The term distributed processing (or distributed computing) has been used to refer
to such diverse systems as multiprocessor systems, distributed data processing, and
computer networks. Here are some of the other terms that have been used
synonymously with distributed processing: distributed function, distributed computers
or computing, networks, multiprocessors/multicomputers, satellite processing/satellite
computers, backend processing, dedicated/special-purpose computers, time-shared
systems, and functionallymodular systems.

Some degree of distributed processing goes on in any computer system, even on
single-processor computers. Starting with the second generation computers, the central
processing unit (CPU) and input/output (1/0) functions have been separated and
overlapped. This separation and overlap can be considered as one form of distributed
processing. However, it should be quite clear that what we would like to refer to as
distributed processing, or distributed computing, has nothing to do with this form of
distribution of functions in a single-processor computer system.

Distributed computing system states is a number of autonomous processing
elements (not necessarily homogeneous) that are interconnected by a computer network
and that cooperate in performing their assigned tasks. The "processing element" referred
to in this definition is a computing device that can execute a program on its own.

One fundamental question that needs to be asked is: What is being distributed?
One of the things that might be distributed is the processing logic. In fact, the definition
of a distributed computing system given above implicitly assumes that the processing
logic or processing elements are distributed. Another possible distribution is according
to function. Various functions of a computer system could. be delegated to various
pieces of hardware or software. A third possible mode of distribution is according to
data. Data used by a number of applications may be distributed to a number of
processing sites. Finally, control can be distributed. The control of the execution of
various tasks might be distributed instead of being.performed by one computer system.
From the viewpoint of distributed database systems, these modes of distribution are all
necessary and important. In the following sections we talk about these in more detail.

Distributed computing systems can be classified with respect -to a number of
criteria. Some of these criteria are listed by Bochmann as follows: degree of coupling,
interconnection structure, interdependence of components, and synchronizationbetween
components [Bochmann, 1983]. Degree of coupling refers to a measure that determines
how closely the processing elements are connected together. This can be measured as
the ratio of the amount of data exchanged to the amount of local processing performed
in executing a task. If the communication is done over a computer network, there exists
weak coupling among the processing elements. However, if components are shared, we
talk about strong coupling. Shared components can be both primary memory or
secondary storage devices. As for the interconnection structure, one can talk about those
cases that have a point-to-point interconnection between processing elements, as
opposed to those which use a common interconnection channel. We discuss various
interconnection structures. The processing elements might depend on each other quite

3

strongly in the execution of a task, or this interdependence might be as minimal as
passing messages at the beginning of execution and reporting results at the end.
Synchronization between processing elements might be maintained by synchronous or
by asynchronous means. Note that some of these criteria are not entirely independent.
For example, if the synchronization between processing elements is synchronous, one
would expect the processing elements to be strongly interdependent, and possibly to
work in a strongly coupled fashion.

The distributed processing better corresponds to the organizational structure of
today's widely distributed enterprises, and that such a system is more reliable and more
responsive. Data can be entered and stored where it is generated, without any need for
physical (manual) movement. Furthermore, building a distributed system might make
economic sense since the costs of memory and processing elements are decreasing
continuously

The fundamental reason behind distributed processing is to be better able to
solve the big and complicated problems, by using a variation of the well-known divide
and-conquer rule. If the necessary software support for distributed processing can be
developed, it might be possible to solve these complicated problems simply by dividing
them into smaller pieces and assigning them to different software groups, which work
on different computers and produce a system that runs on multiple processing elements
but can work efficiently toward the execution of a common task.

This approach has two fundamental advantages from an economics standpoint.
First, we are fast approaching the limits of computation speed for a single processing
element. The only available route to more computing power, therefore, is to employ
multiple processing elements optimally. This requires research in distributed processing
as denned earlier, as well as in parallel processing, which is outside the scope. The
second economic reason is that by attacking these problems in smaller groups working
more or less autonomously, it might be possible to discipline the cost of software
development. Indeed, it is well known that the cost of software has been increasing in
opposition to the cost trends of hardware.

Distributed database systems should also be viewed within this framework and
treated as tools that could make distributed processing easier and more efficient. It is
reasonable to draw an analogy between what distributed databases might offer to the
data processing world and what the database technology has already provided. There is
no doubt that the development of general-purpose, adaptable, efficient distributed
database systems will aid greatly in the task of developing distributed software.

1.1 DISTRIBUTED DATABASE SYSTEM

We can define a distributed database as a collection of multiple, logically
interrelated databases distributed over a computer network. A distributed database
management system (distributed DBMS) is then defined as the software system that
permits the management of the DDBS and makes the distribution transparent to the
users. The two important terms in these definitions are "logically interrelated" and
"distributed over a computer network." They help eliminate certain cases that have
sometimesbeen accepted to represent a DD.BS.

4

First, a DDBS is not a "collection of files" that can be individuallystored at each
node of a computer network. To form a DDBS, files should not only be logically
related, but there should be structure among the files, and access should be via a
common interface. It has sometimes been assumed that the physical distribution of data
is not the most significant issue. The proponents of this view would therefore feel
comfortable in labeling as a distributed database two (related) databases that reside in
the same computer system. However, the physical distribution of data is very important.
It creates problems that are not encountered when the databases reside in the same
computer. Note that physical distribution does not necessarily imply that the computer
systems be geographically far apart; they could actually be in the same room. It simply
impliesthat the communication between them is done over a network instead of through
shared memory, with the network as the only shared resource.

The definition above also rules out multiprocessor systems as DDBSs. A
multiprocessor system is generally considered to be a system where two or more
processors share some form of memory, either primary memory, in which case the
multiprocessor is called tightly coupled, or secondary memory, when it is called loosely
coupled. Sharing memory enables the processors to communicate without exchanging
messages. With the improvements in microprocessor and VLSI technologies, other
forms of multiprocessors have emerged with a number of microprocessors connected by
a switch.

Figure 1.1 Tightly-Coupled Multiprocessor

Another distinction that is commonly made in this context is between shared
everything and shared-nothing architectures. The former architectural model permits

5

Computer System ' Computer System

CPU

t Co.mputer Sys,tem

CPU
11

,ı Memory Mem,ory

-Shared
Secondary

Storage

Figure 1.2 Loosely-Coupled Multiprocessor

Computer Syştem

CPU

Switotı

Co·mputer System 11 Computer S·ystem

CPU CPU

Memory il Me.mory I

Figure 1.3 Switch-Based Multiprocessor System

each processor to access everything (primary and secondary memories, and peripherals)
in the system and covers the three models that we described above. The shared nothing
architecture is one where each processor has its own primary and secondary memories
as well as peripherals, and communicates with other processors over a very high speed
bus. In this sense the shared-nothing multiprocessors are quite similar to the distributed
environment that we consider in this book. However, there are differences between the
interactions in multiprocessor architectures and the rather loose interaction that is
common in distributed computing environments. The fundamental difference is the

\

mode of operation. A multiprocessor system design is rather symmetrical consisting of a
number of identical processor and memory components, controlled by one or more
copies of the same operating system, which is responsible for a strict control of the task

6

assignment to each processor. This is not true in distributed computing systems, where
heterogeneity of the operating system as well as the hardware is quite common.

hı addition, a DDBS is not a system where, despite the existence of a network,
the database resides at only one node of the network. In this case, the problems of
database management are no different from the problems encountered in a centralized
database environment. The database is centrally managed by one computer system and
all the requests are routed to that site. The only additional consideration has to do with
transmission delays. It is obvious that the existence of a computer network or a
collection of "files"is not sufficientto form a distributed database system.

Sites

Communıca:,on
Network

Figure 1.4 Central Database on a Network

At this point it might be helpful to look at an example of distributed database
application that we can also use to clarifyour subsequent discussions.

1.2 ADVANTAGES AND DISADVANTAGES OF DDBSs

The distribution of data and applications has promising potential advantages.
Note that these are potential advantages which the individualDDBSs aim to achieve. As
such, they may also be considered as the objectives ofDDBSs.

1.2.1 Advantages:
Local Autonomy. Since data is distributed, a group of users that commonly

share such data can have it placed at the site where they work, and thus have local
control. This permits setting and enforcing local policies regarding the use of the data.
There are studies [D'Oliviera, 1977] indicating that the ability to partition the author ity
and responsibility of information management is the major reason many business
organizations consider distributed information systems. This is probably the most
important sociological development that we have witnessed in recent years with respect
to the use of computers.

Of course, the local autonomy issue is more important in those organizations that
are inherently decentralized. For such organizations, implementing the information
system in a decentralized manner might also be more suitable. On the other hand, for

7

those organizations with quite a centralized structure and management style,
decentralization might not be an overwhelming social or managerial issue.

In distributed system, the validity of local autonomy is obvious. It would be
quite absurd to have an environment where all the record keeping is done locally, as it
would be if information were shared among different sites in a manual fashion (either
by exchanging hard copies of reports, or by exchanging magnetic tapes, disks, floppies,
etc.).

Improved Performance. Again, because the regularly used data is proximate to
the users, and given the parallelisminherent in distributed systems, it may be possible to
improve the performance of database accesses. On the one hand, since each site handles
only a portion of the database, contention for CPU and I/O services is not as severe as
for centralized databases. On the other hand, data retrieved by a transaction may be
stored at a number of sites, making it possible to execute the transaction in parallel.

Let us assume that in our example the record keeping is done centrally at the
world headquarters, with remote access provided to the other sites. This would require
the transmission to New York of each request generated in Phoenix inquiring about the
inventory level of an item. It would probably be impossible to withstand the low
performance of such an operation.

Improved Reliability/Availability. If data is replicated so that it exists at more
than one site, a crash of one of the sites, or the failure of a communication link making
some of these sites inaccessible, does not necessarilymake the data impossible to reach.
Furthermore, system crashes or link failures do not cause total system inoperability.
Even though some of the data may be inaccessible, the DDBS can still provide limited
servıce.

Obviously, if the inventory information at both warehouses is replicated at both
sites, the failure at one of the sites would not make the information inaccessible to the
rest of the organization. If proper facilities are set up, it might even be possible to give
users at the failed site access to the remote information.

Economics. It is possible to view this from two perspectives. The first is in
terms of communication costs." If databases are geographically dispersed and the
applications running against them exhibit strong interaction of dispersed data, it may be
much more economical to partition the application and do the processing locally at each
site. Here the trade-off is between telecommunication costs and data communication
costs. The second viewpoint is that it normally costs much less to put together a system
of smaller computers with the equivalent power of a single big machine. In the 1960s
and early l970s, it was commonly believed that it would be possible to purchase a
fourfold powerful computer if one spent twice as much. This was known as Grosh's law.
With the advent of minicomputers, and especially microcomputers, this law is
considered invalid.

The case about lower communication costs can easily be demonstrated in the
example we have been considering. It is no doubt much cheaper in the long run to
maintain a computer system at a site and keep data locally stored instead of having to
incur heavy telecommunication costs for each request. The level of use when this

8

becomes true can obviously change depending on the traffic patterns among sites, but it
is quite reasonable to expect this to occur.

Expandability. In a distributed environment, it is much easier to accommodate
increasing database sizes. Major system overhauls are seldom necessary; expansion can
usually be handled by adding processing and storage power to the network. Obviously,
it may not be possible to obtain a linear increase in "power," since this also depends on
the overhead of distribution. However, significantimprovementsare still possible.

Share ability. Organizations that have geographically distributed operations
normally store data in a distributed fashion as well. However, if the information system
is not distributed, it is usually impossible to share these data and resources. A
distributed database system therefore makes this sharing feasible.

1.2.2 Disadvantages
However, these advantages are offset by several problems arısıng from the

distribution of the database.

Lack of Experience. General-purpose distributed database systems are not yet
commonly used. What we have are either prototype systems or systems that are tailored
to one application (e.g., airline reservations). This has serious consequences because the
solutions that have been proposed for various problems have not been tested in actual
operating environments.

Complexity. DDBS problems are inherently more complex than centralized
database management ones, as they include not only the problems found in a centralized
environment, but also a new set of unresolved problems. We discuss these new issues
shortly.

Cost. Distributed systems require additional hardware (communication
mechanisms, etc.), thus have increased hardware costs. However, the trend toward
decreasing hardware costs does not make this a significant factor. A more important
fraction of the cost lies in the fact that additional and more complex software and
communication may be necessary to solve some of the technical problems. The
development of software engineering techniques (distributed debuggers and the like)
should help in this respect. "

Distribution of Control. This point was stated previously as an advantage of
DbBSs. Unfortunately, distribution creates problems of synchronization and
coordination (the reasons for this added complexity are studied in the next section).
Distributed control can therefore easily become a liability if care is not taken to adopt
adequate policies to deal with these issues.

Security. One of the major benefits of centralized databases has been the
control it provides over the access to data. Security can easily be controlled in one
central location, with the DBMS enforcing the rules. However, in a distributed database
system, a network is involved which is a medium that has its own security requirements.
It is well known that there are serious problems in maintaining adequate security over
computer networks. Thus the security problems in distributed database systems are by
nature more complicated than in centralized ones.

9

Difficulty of Change. Most businesses have already invested heavily in their
database systems, which are not distributed. Currently, no tools or methodologies exist
to help these users convert their centralized databases into a DDBS. Research in
heterogeneous databases and database integration is expected to overcome these
difficulties.

10

CHAPTER2

DISTRIBUTED SYSTEMS AND DISTRIBUTED SOFTWARE

2.1 CHARACTERISTIC OF DISTRIBUTED SYSTEMS
Distributed computer environments are based on distributed computer systems

which consist of a set of processing components connected by a communication
network. The software systems running on the various processing components exchange
data through the communication network. This type of system is also called loosely
coupled distributed system.

Processing nodes can be composed of several processors which share memory.
This shared memory is used to exchange information by the software executed on such
a node. This type of system is called a tightly coupled distributed system. Some
advantages of distributed systems are below shown:

• Increased Performance
Performance is generally defined in terms of average response time and through put. If
processing capability can be located where it is required the response time can be highly
reduced. Data can be processed locally before it is sent to other nodes for further
processing. This increases throughput.

• Increased reliability
Normally nodes in a distributed system can take over the tasks of other nodes which are
currently out of order. This means that a distributed system continues its work with
reduced performance but with little or no reduction of functionality

• Increased flexibility
Additional functionality can be added to a distributed system or the number of users can
be permanently increased. A distributed system allows this system growth by simply
adding more processing nodes.

2.2 PARALLEL OR CONCURRENT PROGRAMS
Parallel or concurrent .programs are characterized by a set of statements

interrelated by multiple control threads. Each sequence of statements executed by one or
more control threads is called a process object (The term 'process' shall be used instead
of'process object' when it is clear from the context that we mean a process object).

The relationship between processes or threads and process objects is shown in
the following figure.

11

proı:lffl&ıtıS or tlıreaıl! ex;ıeu:ıins ıbe
mıtemcauı of lhe pfQÇC!t$ obj¢.çt

SMJoeruıe of
proını.~.
ııt.&t~m~B11
des,;ribing a
proees
object

- -

-

-·

, , , , , ,
Figure 2.1: Process/Threads and Process Objects

The statements (operations) of the individual processes are executed overlapped
or interleaved or both. If a single processor is multiplexed among several concurrent
processes, the machine instructions of these processes can only be interleaved in time.
For a certain time slice, the processor is assigned to a process in order to execute the
statements of a process object. Assigning a processor to another process is called
context switching. This type of concurrency is also called multitasking. The following
figure shows an example of how a processor is shared between several processes.

processeıı: or threads execut.inJ ·the
~taıffltenl'.i of the process ob,jec:t

process
obj.ects

Figure 2.2: Multitasking

Machine instructions of processes running on different processors can be
overlapped at each node at which a processor is available. These are distributed
programs.

12

Concurrent or parallel programs are either interleaved, distributed, or both. For a
programmer it is not necessary to know whether multitasking or a distributed system is
used to run his program.

Normally the processes of a concurrent program share the resources such as
processor, memory, disk, and databases, and if they cooperate in order to reach a
common goal they exchange information and synchronize their activities.

Their are two reasons to structure a program in parallel executable process
objects:

1. Fine grain parallelism is mainly used to accelerate large numerical computations.
This type of parallism is often achieved by using vector processors and the pipelining of
operations. It is mainly implemented by hardware.

2. Structural parallelism is used if the structure of the task to be performed is
fundamentally parallel. The process objects are a very important concept for structuring
programs in certain application areas, e.g. operating systems, real time systems, and
communication systems. Especially in real time systems which must react to external
events, processes (objects) are used to achieve separation of the tasks /FAPA88/. Each
process handles a related set of events and cooperates with other processes to achieve a
common purpose. In order to cooperate, processes exchange information either via
shared data or via messages.

2.3 NETWORKED COMPUTING

2.3.1. Network Structure and the Remote Procedure Call Concept
Network computing is characterized by several sequences of jobs which arrive

independently at various nodes. The jobs are designed and implemented more or less
independently of each other and are only loosely coupled. The distributed system serves
primarilyas a resource sharingnetwork.

A very common example of resource sharing is the file server. All files are
located on a dedicated node in a distributed system. Software components running on
other nodes send their file access requests to the file server software. The file server
executes these requests and returns the results (to the clients).

In addition to file servers many other kinds of servers such as print servers,
compute servers, data base servers, and mail servers have been implemented As with
the file server, clients send their requests to the appropriate server and receive the
results for further processing. Servers process the requests from the various clients more
or less independently of each other. The programs running on the clients can be viewed
as being designed and developed independentlyof each other.

The following figure shows the concept of client/server systems.

13

eıteM,
re~u,at

Figure 2.3: The Concept of Client/Server System

In client server systems, the clients represent the users of a distributed system
and servers represent different operating system functions or a commonly used
application.

The following figure shows a simpleexample of a client server system.

network

Work
,ttaıti<>ın

File Se:n,er Print Server

Wor,k
ıUation,,-~,

Figure 2.4: A Small Client/Server System

This system has a print server, a file server, and the clients (users) which run on
workstations (WS) and personal computers (PC). The server software and the client
software can run on the same type of computer. The different nodes are connected by a
local area network.

From a user's point of view a client/server system can hardly be distinguished
from a central system, e.g. a user cannot see whether a file is located on his local system
or on a remote file server node. For the user the client/server system appears to be a
very convenient and flexible central computing system. Mostly the user does not know
whether a file is stored on his PC or on a file server. To the user, the storage capacity of
the server appears to be a part of the PC storage capacity. Client/server systems are also
very flexible.For a new application a specialized new server can be added e.g. data base

·:~'::.:

14

systems run on specialized data base servers, which have short access times. Database
applications are primarily controlled by the local client; all the data is stored at the data
base server and special computations are executed by a compute server. The application
program running on the client, calls the required functions provided by the servers. This
is done mainly by way of remote procedure calls (RPC). An RPC resembles a procedure
call except that it is used in distributed systems. The following is a description of how
the RPC works. The program running on the client looks like a normal sequential
program. The services of a particular server are invoked via a remote procedure call.
The caller of a remote procedure is stopped until the invoked remote procedure is
finished and the server has provided the results to the calling client in the same way that
parameters are returned by a procedure. The servers are used in the same way that
library procedures are used. This means that remote procedure calls hide the distribution
of the functions of the system even at the program level. The programmer does not need
to concern himself with the system distribution.

The figure below shows the basic structure of a client/server system.

A·p-plk:adoıı •••••

Net wort

,,

Figure 2.5: Remote Procedure Call Concept
il

2.3.2.Distributed Computing Environment (DCE)
The Distributed Computing Environment is a comprehensive integrated set of

tools which supports network computing in a heterogenous computing environment.
This set of technologies has been selected by the Open Systems Foundation (OSF) to
support the development of distributed applications for heterogenous computer
networks. The following figure shows the OSF DCE architecture.

15

Figure 2.6: Architecture of OSFDCE

In the DCE client and server programs are executed by threads i.e. processes.
Threads use an RPC in order to communicate with each other and binary semaphores
and conditional variables for synchronization. In the DCE remote procedure calls are
supported by directory services (DCE Call Directory Service) and security service;,
(DCE Security Service). Directory services map logical names to physical addresses. If
a client calls a particular service provided by a server, the directory service is used to
find the appropriate server. The DCE security service provides features for secure
communication and controlled access to resources. Distribute Time Service provides
precise clock synchronization in a distributed system. This is required for event logging,
error recovery, etc. The distributed file service allows the sharing of files across the
whole system. Finally the diskless support service allows workstations to use
background disk fileson file servers as if they were local disks /SCHILL93/, /OSF92/.

2.3.3.Cooperative Computing
In cooperative computing a set ofprocesses runs on several processing nodes.

These processes cooperate to reach a common goal and together they form a distributed
program. This is different from the client/server systemsdescribed above. In
cooperative systems the processes which comprise the distributed program are coupled
very closely. This means that the closely coupled processes are executed on a loosely
coupled system,

In cooperative systems, the distribution of computing capability is not hidden
behind programming concepts. The different program sections running on different
computers comprise a single program; but it can be seen at the programming level that
the program sections are executed concurrently. These different program sections are
also processes. Processes form a very important concept for central systems, client
server systems and cooperative systems. If processes have to work together to perform
their task, they must exchange data and synchronize their execution. Programming
systems for concurrent systems contain communication and synchronization concepts.
Cooperative programming resembles a human organization which works together to
achieve a common goal. Its members must communicate with each other and must
synchronize their activities. The following figure shows the basic structure of
cooperative systems.

16

L I ~~~~~~~ ••~:~:~~~~~~on Sysı,ıım

• • • • •

Figure 2.7: Structure of Cooperative Systems

Cooperative systems are mainly used for the automation of technical processes
and the implementation of communication software, etc. Technical processes in the
mostly part consist of several parallel activities, (or example checking the level of a tank
has to be done in parallel with controlling the rate of flow of a pump. Therefore the
structure of technical process control software is very similar to the structure of the
technical process to be controlled. For the automation of technical processes such as
manufacturing control systems, the environment of the program, the technical process,
is considered as a set of processes which interact with software processes. This means
that several processes which can be implemented in different ways work together to
perform their task.

2.4 COMMUNICATION SOFTWARE SYSTEMS
A communication system consists of a communication network and the

communication software which runs on the various processing nodes (refered to as host
systems). The communication software provides a more or less convenient
communication service for the application software. The application software on each
node uses the communication service to exchange messages with the application
software running on other nodes. The communication service is based on the underlying
network (A network is usually made up of lines and several switching nodes although
most local area networks do not contain switching nodes).

H'HI Syıt•ın
f -,

Aı,pl!ı;ı;ıllcm
soııwırnı

11
Applieatıorı I. _ I App nc,aıı oııı
S,ofl:w.aıt>& I ••• Sofıwaro

CommunJcatton Sy,teım

Figure 2.8: Structure of Communication Systems

17

In order to provide a convenient communication service the communication
software systems also exchange messages. This message exchange is based on the
simpler communication mechanism provided directly by the network. For example the
network provides a communication service which only allows the transfer of a single
byte. The communication service provided by the communication software allows byte
strings of a fixed or even an unlimited length to be sent or received. This can be
implemented in the following way:

The application software of a host system A wants to send a sequence of bytes to
the application software of a host system B. The sequence of bytes is given to the
communication system by the application system. The communication system on host
system A sends a byte with the length of the byte string (the number of bytes) to the
communication system on host system B. The communication system on host system B
sends back an acknowledgement. This is a byte with a certain value. After the
communication software on host system A has received the acknowledgement it starts
to transfer the bytes of the byte string. When system B has received the number of bytes
indicated in the first byte it again sends an acknowledgement. After sending the
acknowledgement, the communication software on host system B gives the received
byte string to the application software.

This communication sequence which implements the transfer of a byte string is
just a simplistic illustration of what communication software can do.

As the example above shows, the communication between the communication
software systems follows well defined rules. These rules are called protocols. The need
to provide convenient communication services for the application software leads to
software communication protocols which can be extremely complex and must be
organized in layers. Each layer offers an improved communication service to the layer
above. The widely used reference model for Open Systems Interconnection (OSI)
defined by the International Standard Organization (ISO) proposes seven protocol
layers /IS07498/. Each layer provides a certain service to the layer above. The service
provided by a layer is implemented by the protocol specific to its layer and by the
services of the layer below. In a host system the services specific to the layer are
realized by protocol entities. The layer protocol is defined between protocol entities of
the same layer. These exchange information by using the service of the layer below. In
each host system there must be' at least one entity per layer. The set of entities of
different layers in a host system is called a protocol stack. The implementation of these
protocol stacks is called communication software. Communication software has the
following execution properties /DROB86/:

• interleaved execution of several entities on the same system

• distributed execution of entities of the same layer on different systems.

Interleaved and distributed computations are usually modeled as systems of
parallel processes. Processes executing in parallel normally have to exchange
information if they are to cooperate in solving a common task. Entities are modeled by
one or more processes. Using or providing a service means exchanging information
with processes representing entities of the layer below or above. The figure above
shows

18

Host _iy:at,em Mo.ı·t System
IC
o

·- lit,ııv G)(;.) >
""" ıı,:a .Jı
Q.
4_
•
ı::o
·~ ıı.-
aJ (I),c :>o
Q) ICIJ,
0 ..ı
Q)•..a.

enmy

.•..•..
~"';."~~-~l ~·:.·:.·.,_..ProtocofEntity EıntUy•....•...

"" •.•... ı-•·tii-•ıf!!ıi!
...- ••• ,.,!!!'

·...oo.
(İ)e
qı..

il-·

Entity

rServic_~,.~ '
A, '~- Entity

. .,
)',ııpı

Service ·
..

•'Seırvice .Service t

Lıiııes·~-----~-------~~--- ...•·~/\:~···:~~;iİn'.;:~ h ~·ı.(.,))t' ·~ •-i :~;~t

"

Network

Figure 2.9: Structure of Communication Software

the structure of communication software systems based on the ISO/OSI reference
model. Protocol stacks in the different host systems are implemented independently of
each other and are embedded in the communication systems. This means that the
implementation of a communication system to support communication in a distributed
program is itself a distributed program.

2.4 .2 Technical Process Control Software Systems
Another important example of cooperative computing is a distributed technical

process control system.

19

The basic structure of technical systems controlled by computer systems ıs
shown in the following figure /NEHM84/.

Use,r

Standard UO :oev'lce,.

Proceıı 110 Dev,lceı,

tecıtmıcıt process

Figure 2.10: Structure of Process Control Systems

The communication between computer systems and technical systems must meet
hard real time requirements, whereas the communication with the user is more or less
dialogue-oriented with less emphasis on time conditions (except in the case emergency
signals such as fire alarms). For the sake of simplicity,we will focus on the relationship
between technical systems and real-time computer systems.

A technical system consists of several mutually independent functional units
which communicate via appropriate interfaces with the computer system. Therefore the
real time program must react to several simultanous inputs. This implies the structuring
of a process control software system that takes into account a number of processes.
Each process handles a certain grçup of signals.

The basic requirement for a process control software system is the capability to
follow the changes of the technical system as fast as possible. The information in the
process control software must be as close as possible to the state of the technical
system. The easiest way to achieve this is to design a process for each interface element.
This leads to the software system structure shown in the followingfigure /NEHM84/.

20

t:::r::ı
ö ıı ' I "' _!_// '!!;,,
a ~••••
i

• -• a•• - ...•
0o
I•I
U)

'"<·•,S
a

Figure 2.11: Structure of Process Control Software

Software system processes can run on a single centralized system or can be
distributed over several computer systems. In the latter case it is possible to locate the
computers close to the device ar the plant being controlled. The main advantages of
distributed solutions are:

• reduction ofwiring costs

• faster response
)

• easier development and maintenance

• a higher degree of fault tolerance

2.4 .3 Electronic Data Interchange (EDI)
Electronic Data Interchange (EDI) is the computer-to-computer exchange of

inter and intra company technical and business data, based on the use of standards
/DIGIT90/ (see figure below of the EDI businessmodel).

21

Other
Division,

Customers

ı
'fradi;ng
Partners

Figure 2.12: EDI Business Model

These data can be structured or unstructured. Exchanging unstructured data
follows specific communication standards although the data content is not in a
structured format. More important is the exchange of structured data. Examples of
structured data exchange are:

- Trade Data Interchange
This type of EDI document exchange is mainly used to automate business
processes. Examples of trade data interchanges include a request for quotation
(RfQ), purchase orders, purchase order acknowledgements, etc. Each company
and industry has its own requirements for the structure and contents of these
documents. A number of specific industry and national bodies have been formed
with the intention of standardizing the format and content of messages. For the
chemical industry CEFIÇ is the EDI standard and for the auto industry the
related EDI standard is called ODETTE. The standard defined by CCITT is
called EDIFACT. In order to exchange EDIFACT documents very often the
CCITT E-Mail standard X.400 is recommended /HILL90/.

- Electronic Funds Transfer
Payment against invoices, electronic point of sale (EPOS) and clearing systems
are examples of electronic funds transfer.

- Technical Data Interchange
/ Improvement in technical communication can play a key role in determining the

success of a project. There is a growing demand from traders for communication
between their CAD (computer aided design) workstation and the workstations of
important vendors.

22

The following example shows how the different types of EDI interactions are
used to handle a business process.

Bıuyer

P,urchasing

M.anofaccıuring
R.eqoir,eme:ı:m

A,ccoımts
Payable

Ineoming
I ınsp ee ti o D

-'Receiviın,g

Sell,n

Oiid(?r

Processiın,g

~tanvfııctı.u:iııg
ehedule

Aecounts
Receivable

,ıı • Quality

1 ıııı, Shipping

Figure 2.13: EDI in a Business Process

2.4.4 Groupware
In organizations people work together to reach a common goal. The formal

interaction between members of an organization is described by structures and
procedures. Additionally there exist informal interactions which are very important.
Both types of interactions can and should be supported by computers. Computer
Supported Cooperative Work (CSCW) deals with the study and development of
computer systems called groupware, which purpose it is to facilitate these formal and
informal interactions . CSCW projects can be classifiedinto four types namely:

)
1. Groups which are not geographically distributed and require common access in real
time Examples: presentation software, group decision systems

2. Groups which are geographicallydistributed and require common access in
real time Examples: video conferencing, screen sharing

3. Asynchronous collaboration among people who are geographically distributed.
Examples: notes conferences, joint editing

23

4. Asynchronous collaboration among people who are not geographically distributed
Examples: project management, personal time schedule management

Groupware requires computers connected by a network. Thus groupware
systems are distributed systems. Members of a group share data and exchange
messages. Therefore groupware software systems are combinations of network and
cooperative computing.

2.5 COMBINATION OF NETWORK COMPUTING AND COOPERATIVE
COMPUTING

Cooperative computing can be combined with client server systems. Processes in
a distributed system can have access to servers. From the standpoint of a client server
system the processes of a cooperative system can be considered as client processes. In a
technical process control software system a process can collect data from the technical
process. This data is stored in a file located on a file server node. The following figure
shows an example of a combination of a cooperative and a client/server system. Process
A, Process B and Process C form a cooperative software system. Process B and Process
C use the file server. This means that process B and process C are clients of the file
server.

Figure 2.14: Combination of Cooperative and Client Server System

24

CHAPTER3

ARCHITECTURE OF DBMS

3.1 TRANSPARENCIES IN A DISTRIBUTED DBMS
Transparency in a distributed DBMS refers to separation of the higher-level

semantics of a system from lower-level implementation issues. In other words, a
transparent system "hides" the implementation details from users. The advantage of a
fully transparent DBM,S is the high level of support that it provides for the development
of complex applications. It is obvious that we would like to make all DBMSs
(centralized or distributed) fully transparent. In fact, we have alluded to this under the
topic of data independence, which is one form of transparency. In the remainder of this
section we consider the various forms of transparency that a designer aims to provide
within centralized or distributed DBMS.

3.1.1 Data Independence
Data independence is a fundamental form of transparency that we look for

within a DBMS. It is also the only type that is important within the context of a
centralized DBMS. To reiterate the definition given data independence refers to the
immunityof user applications to changes in the definition and organization of data, and
vıce versa.

As we will see in Section 4.2, data definition can occur at two levels. At one
level the logical structure of the data is specified, and at the other level the physical
structure of the data is defined. The former is commonly known as the schema
definition, whereas the latter is referred to as the physical data description. We can
therefore talk about two types of data independence: logical data independence and
physical data independence. Logical data independence refers to the immunity of user
applications to changes in the logical structure of the database. In general, if a user
application operates on a subset of the attributes of a relation, it should not be affected
later when new attributes are added to the same relation. For example, let us consider
the engineer relation discussed. If a user application deals with only the address fields of
this relation (it might be a simple mailingprogram), the later additions to the relation of
say, skill, would not and should not affect the mailingapplication.

ı.
Physical data independence deals with hiding the details of the storage structure

from user applications. When a user application is written, it should not be concerned
with the details of physical data organization. The data might be organized on different
disk types, parts of it might be organized differently (e.g., random versus indexed
sequential access) or might even be distributed across different storage hierarchies (e.g.,
disk storage and tape storage). The application should not be involved with these issues
since, conceptually, there is no difference in the operations carried out against the data.
Therefore, the user application should not need to be modified when data I
organizational changes occur with respect to these issues. Nevertheless, it is common
knowledge that these changes may be necessary for performance considerations.

)
Of course, data independence is more of a goal than a standard feature

commonly provided by most of today's DBMSs. Some commercial products provide
better data independence than others. Specifically,"most of the microcomputer DBMSs
do not provide high levels of data independence. Adding a new attribute to a relation

25

(i.e., logical data independence) very often requires unloading the database, changing
the relation definition, and then reloading the database.

3.1.2 Network Transparency
In centralized database systems, the only available resource that needs to be

shielded from the user is the data (i.e., the storage system). In a distributed database
management environment, however, there is a second resource that needs to be
managed in much the same manner: the network. Preferably, the user should be
protected from the operational details of the network. Furthermore, it is desirable to hide
even the existence of the network, if possible. Then there would be no difference
between database applications that would run on a centralized database and those that
would run on a distributed database. This type of transparency is referred to as network
transparency or distribution transparency.

One can consider network transparency from the viewpoint of either the services
provided or the data. From the former perspective, it is desirable to have uniform means
by which services are accessed. Tb give ari example, let us talk for the moment not at
the database level but at the operating system level in a network environment. If we
want to copy a file, the command needed should be the same whether the file is being
copied within one machine or across two machines connected by the network.
Unfortunately, however, most commercially available operating systems that run on
networks do not provide this transparency. For example, the UNIXl command for
copying in one machine is

cp <source file><target file>

whereas the same command, if the source and the target files are on different machines,
takes the form

rep <machine_ name: source file> <machine_ name :target file>

Note how it is now necessary to name the machine on which the file resides and
to use a different operating system command to perform the copy function. If the same
discussion is carried over to the database level, we would see that different user
interfaces (i.e., query languages and data manipulation languages) need to be designed
for both centralized and distributed database environments. Clearly, this is not very
desirable.

The example above demonstrates two things: location transparency and naming
transparency (or the lack of these). Location transparency refers to 'the fact that the
command used is independent of both the location of the data and the system on which
an operation is carried out. Naming transparency means that a unique name is provided
for each object in the database. It is obvious that in a system such as the one described
above, the task of providing unique names for different objects falls on the user rather
than the system. The way the system handles naming transparency is by requiring the
user to embed the location name (or an identifier) as part of the object name.

It is unfortunate that some distributed database systems do indeed embed the
location names within the name of each database object. Furthermore, they require the
user to specify the full name for access to the object. Obviously, it is possible to set up
aliases for these long names if the operating system provides such a facility. However,)

26

user-defined aliases are not real solutions to the problem in as much as they are attempts
to avoid addressing them within the distributed DBMS. The system, not the user, should
be responsible for assigning unique names to objects and for translating user-known
names to these unique internal object names.

Besides these semantic considerations, there is also a very pragmatic problem
associated with embedding location names within object names. Such an approach
makes it very difficult to move objects across machines for performance optimization or
other purposes. Every such move will require users to change their access names for the
affected objects, which is clearlyundesirable.

3.1.3 Replication Transparency
The issue of replicating data within a distributed database is discussed in quite

some detail in. At this point, let us just mention that for performance, reliability, and
availability reasons, it is usually desirable to be able to distribute data in a replicated
fashion across the machines on a network. Such replication helps performance since
diverse and conflicting user requirements can be more easily accommodated. For
example, data that is commonly accessed by one user can be placed on that user's local
machine as well as on the machine of another user with the same access requirements.
This increases the locality of reference. Furthermore, if one of the machines fail, a copy
of the data is still availableon another machine on the network. Of course, this is a very
simplemindeddescription of the situation. In fact, the decision as to whether to replicate
or not, and how many copies of any database object to have, depends to a considerable
degree on user applications. Note that replication causes problems in updating
databases. Therefore, if the user applications are predominantly update oriented, it may
not be a good idea to have too many copies of the data. As this discussion is the subject
matter, we will not dwell further here on the pros and cons ofreplication.

Assuming that data is replicated, the issue related to transparency that needs to
be addressed is whether the users should be aware of the existence of copies or whether
the system should handle the management of copies and the user should act as if there is
a single copy of the data (note that we are not referring to the placement of copies, only
their existence). From a user's perspective the answer is obvious. It is preferable not to
be involved with handling copies and having to specify the fact that a certain action can
and/or should be taken on multiple copies. From a systems point of view, however, the
answer is not that simple. ••

3.1.4 Fragmentation Transparency
The final form of transparency that needs to be addressed within the context of a

distributed database system is that of fragmentation transparency. We discuss and
Justify the fact that it is commonly desirable to divide each database relation into
smaller fragments and treat each fragment as a separate database object (i.e., another
relation). This is commonly done for reasons of performance, availability, and
reliability. Furthermore, fragmentation can reduce the negative effects of replication.
Each replica is not the full relation but only a subset of it; thus less space is required and
fewer data items need be managed.

When database objects are fragmented, we have to deal with the problem of
handling user queries that were specified on entire relations but now have to be per
formed on sub relations. In other words, the issue is one of finding a query processing

27

strategy based on the fragments rather than the relations, even though the queries are
specified on the latter. Typically, this requires a translation from what is called a global
query to severe fragment queries. Since the fundamental issue of dealing with
fragmentation transparency is one of query processing, we defer the discussion of
techniques by which this translation can be performed.

3.1.5 Provide Transparency
It is possible to identify three distinct layers at which the services of

transparency can be provided. It is quite common to treat these as mutually exclusive
means of providing the service, although it is more appropriate to view them as
complementary.

We could leave the responsibility of providing transparent access to data
resources to the access layer. The transparency features can be built into the user
language, which then translates the requested services into required operations. In other
words, the compiler or the interpreter takes over the task and no transparent service is
provided to the implementerof the compiler or the interpreter.

The second layer at which transparency can be provided is the operating system
level. State-of-the-art operating systems provide some level of transparency to system
users. For example, the device drivers within the operating system handle the minute
details of getting each piece of peripheral equipment to do what is requested. The
typical computer user, or even an application programmer, does not normally write
device drivers to interact with individual peripheral equipment; that operation is
transparent to the user.

Providing transparent access to resources at the operating system level can
obviously be extended to the distributed environment, where the management of the
network resource is taken over by the distributed operating system. This is a good level
at which to provide network transparency if it can be accomplished. The unfortunate
aspect is that not all commercially available distributed operating systems provide a
reasonable level of transparency in network management.

The third layer at which transparency can be supported is within the DBMS. In
such a case one might talk about different modes of operation. In database machines, for
example, the DBMS generally- does not expect any transparent service from the
operating system; in fact, there is no identifiableoperating system other than a monitor
and some device drivers. The DBMS acts as the integrated operating and database
management system. A more typical environment is the development of a DBMS on a
general-purpose computer running some operating systems. In this type of environment,
the transparency and support for database functions provided to the DBMS designers is
minimal and typically limited to very fundamental operations for performing certain
tasks. It is the responsibility of the DBMS to make all the necessary translations from
the operating system to the higher-level user interface. This mode of operation is the
most common method today. There are, however, various problems associated with
leaving the task of providing full transparency to the DBMS. These have to do with the
interaction of the operating system with the distributed DBMS.

It is therefore quite important to realize that reasonable levels of transparency
depend on different components within the data management environment. Network
transparency can easily be handled by the distributed operating system as part of its

28

responsibilities for providing replication and fragmentation transparencies. The DBMS
should! be responsible for providing a high level of data independence together with
replication and fragmentation transparencies. Finally, the user interface can support a
higher level of transparency not only in terms of a uniform access method to the data
resources from within a language, but also in terms of structure constructs that permit
the user to deal with objects in his or her environment rather than focusing on the details
of database description. Specifically,it should be noted that the interface to a distributed
DBMS does not need to be a programming language but can be a graphical user
interface, a natural language interface, and even a voice system.

A hierarchy of these transparencies is shown in Figure 3. 1 . It is not always easy
to delineate clearly the levels of transparency, but such a figure serves an important
instructional purpose even if it is not fully correct. To complete the picture we have
added a "language transparency" layer, although it is not discussed in this chapter. With
this generic layer, users have high-level access to the data (e.g., fourth-generation
languages, graphical user interfaces, natural language access, etc.).

Figure 3.1 Layers of Transparency

3.2 DBMS STANDARDIZATION
In this section we discuss the standardization efforts related to DBMSs because

of the close relationship between the architecture of a system and the reference model of
that system, which is developed as a precursor to any standardization activity. For all
practical purposes, the reference-model can be thought of as an idealized architectural
model of the system. It is defined as "a conceptual framework whose purpose is to
divide standardization work into manageable pieces, and to show at a general level how
these pieces are related with each other". Even though there is some controversy as to
the desirability of standardization of DBMSs, it is a useful activity to the extent that it
can establish uniform interfaces to the users and to other higher-level software
developers. A reference model (and therefore a system architecture) can be described
according to three different approaches :

1. Based on components. The components of the system are defined together
with the interrelationships between components. Thus a DBMS consists of a number of
components, each of which provides some functionality. Their orderly and well-defined
interaction provides total system functionality. This is a desirable approach if the
ultimate objective is to design and implement the system under consideration. On the
other hand, it is difficult to determine the functionality of a system by examining its

29

components. The DBMS standard proposals prepared by the Computer Corporation of
America for the National Bureau of Standards ([CCA, 1980] and [CCA, 1982]) fall
within this category.

2. Based on functions. The different classes of users are identified and the
functions that the system will perform for each class are defined. The system
specifications within this category typically specify a hierarchical structure for user
classes. This results in a hierarchical system architecture with well-defined interfaces
between the functionalities of different layers. The advantage of the functional approach
is the clarity with which the objectives of the system are specified. However, it gives
very little insight into how these objectives will be attained or the level of complexity of
the system.

3. Based on data. The different types of data are identified, and an architectural
framework is specified which defines the functional units that will realize or use data
according to these different views. Since data is the central resource that a DBMS
manages, this approach is claimed to be the preferable choice for standardization
activities [DAFTG, 1986]. The advantage of the data approach is the central importance
it associates with the data resource. This is significant from the DBMS viewpoint since
the fundamental resource that a DBMS manages is data. On the other hand, it is
impossible to specify an architectural model fully unless the functional modules are also
described. The ANSI/SPARC discussed in the next section belongs in this category.

Even though three distinct approaches are identified, one should never lose sight
of the interplay among them. As indicated in a report of the Database Architecture
Framework "Task Group of ANSI [DAFTG, 1986], all three approaches need to be used
together to define an architectural model, with each point of view serving to focus our
attention on different aspects of an architectural model.

3.3 ANSI/SP ARC ARCHITECTURE
Two important events in the late 1960s and early 1970s influenced the

standardization activities in database management. The Database Task Group (DBTG)
of the Cof DASYL Systems Committee issued two reports, one providing a survey of
DBMSIB, and the second describing the features of a network DBMS. The second
event is the publication of Codd's initial papers on the relational data model. The
existence of two alternative data-models competing for dominance created considerable
discussion not only of the merits of each, but also of the features of the next generation
DBMSs.

In late 1972, the Computer and Information Processing Committee (X3) of the
American National Standards Institute (ANSI) established a Study Group on Database
Management Systems under the auspices of its Standards Planning and Requirements
Committee (SPARC). The mission of the study group was to study the feasibility of
setting up standards in this area, as well as determining which aspects should be
standardized if it was feasible. The study group issued its interim report in 1975, and its
final report in 1977. The architectural framework proposed in these reports came to be
known as the 'ANSI/SPARC architecture," its full title being 'ANSI/X3/SPARC DBMS
Framework." The study group proposed that the interfaces be standardized, and defined
an architectural framework that contained 43 interfaces, 14 of which would deal with

30

the physical storage subsystem of the computer and therefore not be considered
essential parts of the DBMS architecture.

One of alternative approaches to standardization, the ANSI/SP ARC architecture
is claimed, to be based on the data organization. It recognizes three views of data: the
external view, which is that of the user, who might be a programmer; the internal view,
that of the system or machine; and the conceptual view, that of the enterprise. For each
of these views, an appropriate schema definition is required. Figure 3 .2 depicts the
ANSI/SP ARC architecture from the data organization perspective.

At the lowest level of the architecture is the internal view, which deals with the
physical definition and organization of data. The location of data on different storage
devices and the access mechanisms used to reach and manipulate data are the issues
dealt with at this level. At the other extreme is the external view, which is concerned
with how users view the database. An individual user's view represents the portion of
the database that will be accessed by that user as well as the relationships that the user
would like to see among the data. A view can be shared among a number of users, with
the collection of user views making up the external schema. In between these two
extremes is the conceptual schema, which is an abstract definition of the database. It is
the "real world" view of the enterprise being modeled in the database. As such, it is
supposed to represent the data and the relationships among data without considering the
requirements of individual applications or the restrictions of the physical storage media.
In reality, however, it is not possible to ignore these requirements completely, due to
performance reasons. The transformation between

External

C<>.ııoe»n'1

:Sche.m•

ınıemıı
.S¢tıem view

Figure 3.2 The ANSI/SPARC Architecture

These three levels is accomplished by mappings that specify how a definition at
one can be obtained from a definitionat another level.

Example:

31

Let us consider the engineering database example we have been using and
indicate how it can be described using a fictitious DBMS that conforms to the
ANSI/SPARC architecture. Remember that we have four relations: E, S, J, and G. The
conceptual schema should describe each relation with respect to its attributes and its
key. The description might look like the following:2

RELATION EMPLOYEE [
KEY= {EMPLOYEE_NUMBER}
ATTRIBUTES= {

EMPLOYEE_NUMBER: CHARACTER(9)
EMPLOYEE_NAME : CHARACTER(lS)
TITLE : CHARACTER(lO)
}

]
RELATION TITLE.SALARY [

KEY = {TITLE}
ATTRIBUTES= {

TITLE
SALARY
}

: CHARACTER(lO)
: NUMERIC(6)

]
RELATION PROJECT [

KEY= {PROJECT.NUMBER}
ATTRIBUTES = {

PROJECT.NUMBER : CHARACTER(7)
PROJECT_NAME : CHARACTER(20)
BUDGET : NUMERIC(7)
}

RELATION ASSIGNMENT [
KEY= {EMPLOYEE_NUMBER,PROJECT_NUMBER}
ATTRIBUTES= {

EMPLOYEE_NUMBER : CHARACTER(9)
PROJECT.NUMBER : CHARACTER(7)
RESPONSIBILITY : CHARACTER(IO)
DURATION : NUMERIC(3)
}

We used more descriptive names for the relations and the attributes. This is not
the essential issue; a more important aspect is that these names can be different at all
three levels, as we demonstrate below.

At the internal level, the storage details of these relations are described. Let us
assume that the EMPLOYEE relation is stored in an indexed file, where the index is
defined on the key attribute (i.e., the EMPLOYEE-NUMBER) called EMINX.3 Let us
also assume that we associate a HEADER field, which might contain flags (delete,
update, etc.) and other control information. Then the internal schema definition of the
relation may be as follows:

32

INTERNAL_REL EMP [
INDEX ONE#CALL EMINX
FIELD = {

E# : BYTE(9)
E:NAME : BYTE(15)
TIT : BYTE(lO)
}

We have used similar syntaxes for both the conceptual and the internal
descriptions. This is done for convenience only and does not imply the true nature of
languages for these functions.

Finally, let us consider the external views, which we will describe using SQL
notation. We consider two applications: one that calculates the payroll payments for
engineers, and a second that produces a report on the budget of each project.4 Notice
that for the first· application, we need attributes from both the EMPLOYEE and the
TITLE-SALARY relations. In other words, the view consists of a join, which can be
defined as

CREATE VIEW PAYROLL (ENO, ENAME, SAL)
AS SELECT EMPLOYEE.EMPLOYEE_NUMBER,
EMPLOYEE. EMPLOYEE_NAME,
TITLE SALARY.SALARY
FROM EMPLOYEE, TITLE_SALARY
WHERE EMPLOYEE.TITLE=TITLE SALARY. TITLE

The second application is simply a projection of the PROJECT relation, which
can be specifiedas

CREATE VIEW BUDGET (PNAME, BUD)
AS SELECT PROJECT.NAME, BUDGET
FROM PROJECT

The investigation of the ANSI/SPARC architecture with respect to its functions
results in a considerably more complicated view, The square boxes represent processing
functions, whereas the hexagons are administrative roles. The arrows indicate data,
command, program, and description flow, whereas the "I" shaped bars on them
represent interfaces.

The major component that permits mapping between different data
organizational views is the data dictionary/directory (depicted as a triangle), which is a
meta database. It should at least contain schema and mapping definitions. It may also
contain usage statistics, access control information, and the like. It is clearly seen that
the data dictionary/directory serves as the central component in both processing
different schemas and in providing mappings among them.

In addition to these three classes of administrative user defined by the roles,
there are two more, the application programmer and the system programmer. Two more

33

user classes can be defined, namely casual users and novice end users. Casual users
occasionally access the database to retrieve and possibly to update information. Such
users are aided by the definition of external schemas and by an easy-to-use query
language. Novice users typically have no knowledge of databases and access
information by means of predefined menus and transactions (e.g., banking machines).

1£:rı'lerıprınse
Adm.lni,s1r.ator

'1 Concephııat
databaşe
schema

ptocesso
O.atılbase

ıdııırııınıs.trınor

.m

h1.tatrinaffl
data.base/

·OQRCe:ptuıat
transfoırmaı,ioın

--ı
I I I I
I
I Exc,emaı ı

.d1t3tıaşe I
I appHeation I
I pr,o g:r:aıın ilL. ,

Apı;,lleauon
Progrımmer

Figure 3.3 Partial Schematic of the ANSI/SPARC Architectural Model

34

3.4 ARCHITECTURAL MODELS FOR DISTRIBUTED DBMSs
The intuitive and logical nature of the ANSI/SPARC architecture has prompted

many researchers to investigate ways of extending it to the distributed environment. The
proposals range from simple extensions, such as that described by [Mohan and
Yeh,1978], to very complicated ones, such as Shreiber's model [Schreiber, 1977], and
anything in between. In this book we use a simple extension of the ANSI/SPARC
architecture.

Before discussing the specific architecture, however, we need to discuss the
possible ways in which multiple databases may be put together for sharing by multiple
DBMSs. We use a classificationthat organizes the systems as characterized with respect
to (1) the autonomy oflocal systems, (2) their distribution, and (3) their heterogeneity.

Oı s1 ri but;o n
Dıırtr!botea
nomogeneo!JiS
,CB.MS

ıoi,ır!ıbuıoıı.
tıııtı.ıro,gcrı~'u
DBM$

--ırıgıe elte
(t'Uif0£jflfl JK)US

l~<t'°ra1iHI 013MS

Hı:ti@rcıgı;ırıem.ıs
ill U ı·ucıatş,b1se
!!.'!,'Jtutl

Figure 3.4 DBMS Implementation Alternatives

Autonomy refers to the distribution of control, not of data. It indicates the degree
Ill

to which individual DBMSs can operate independently. Autonomy is a function of a
number of factors such as whether the component systems exchange information,
whether they can independently execute transactions, and whether one is allowed to
modify them. Requirements of an autonomous system have been specified in a variety
of ways. For example, lists these requirements as follows:

1. The local operations of the individual DBMSs are not affected by their
participation in the multi database system.

2. The manner in which the individual DBMSs process queries and optimize
them should not be affected by the execution of global queries that access multiple
databases.

3. System consistency or operation should not be compromised when individual
DBMSs join or leave the multidatabase confederation.

35

On the other hand, [Du and Elmagarmid, 1989] specifies the dimensions of
autonomy as:

1. Design autonomy: Individual DBMSs are free to use the data models and
transaction management techniques that they prefer.

2. Communication autonomy: Each of the individualDBMSs is free to make its
own decision as to what type of information it wants to provide to the other DBMSs or
to the software that controls their global execution.

3. Execution autonomy: Each DBMS can execute the transactions that are
submitted to it in any way that it wants to.

In the taxonomy that we consider in the book, we will use a classification that
covers the important aspects of these features. One alternative is tight integration where
a single-image of the entire database is available to any user who wants to share the
information, which may reside in multiple databases. From the users' perspective, the
data is logically centralized in one database. In these tightly integrated systems, the data
managers are implemented so that one of them is in control of the processing of each
user request even if that request is serviced by more than one data manager. The data
managers do not typically operate as independent DBMSs even though they usually
have the functionalityto do so. ·

Next we identify semiautonomous systems that consist of DBMSs that can (and
usually do) operate independently, but have decided to participate in a federation to
make their local data sharable. Each of these DBMSs determine what parts of their own
database they will make accessible to users of other DBMSs. They are not fully
autonomous systems because they need to be modified to enable them to exchange
informationwith one another.

The last alternative that we consider is total isolation where the individual
systems are stand-alone DBMSs, which know neither of the existence of other DBMSs
nor how to communicate with them. In such systems, the processing of user transactions
that access multiple databases is especially difficult since there is no global control over
the execution of individualDBMSs.

Whereas autonomy refers to the distribution of control, the distribution
dimension of the taxonomy deals with data. We consider two cases, namely, either the
data is physically distributed over multiple sites that communicate with each other over
some form of communicationmedium or it is stored at only one site.

Heterogeneity may occur in various forms in distributed systems, ranging from
hardware heterogeneity and differences in networking protocols to variations in data
managers. The important ones from the perspective of this book relate to data models,
query languages, and transaction management protocols. Representing data with
different modeling tools creates heterogeneity because of the inherent expressive
powers and limitations of individual data models. Heterogeneity in query languages not
only involves the use of completely different data access paradigms in different data
models (set-at-a-time access in relational systems versus record-at-a-time access in

36

network and hierarchical systems), but also covers differences in languages even when
the individual systems use the same data model. Different query languages that use the
same data model often select very different methods for expressing identical requests
(e.g., DB2 uses SQL, while INGRES uses QUEL).6

Let us consider the architectural alternatives starting at the origin in Figure 3.4
and moving, along the autonomy dimension. The first class of systems are those which
are logically integrated. Such systems can be given the generic name composite
systems. If there is no distribution or heterogeneity, the system is a set of multiple
DBMSs that are logically integrated. There are not many examples of such systems, but
they may be suitable for shared-everything multiprocessor systems. If heterogeneity is
introduced, one has multiple data managers that are heterogeneous but provide an
integrated view to the user. In the past, some work was done in this class where systems
were designed to provide integrated access to network, hierarchical, and relational
databases residing on a single machine. The more interesting case is where the database
is distributed even though an integrated view of the data is provided to users.

Next in the autonomy dimension are semiautonomous systems, which are
commonly termed federated DBMS. As specified before, the component systems in a
federated environment have significant autonomy in their execution, but their
participation in a federation indicate that they are willing to cooperate with others in
executing user requests that access multiple databases. Similar to logically integrated
systems discussed above, federated systems can be distributed or single-site,
homogeneous or heterogeneous.

If we move to full autonomy, we get what we call the class of multi database
system (MDBS) architectures. Without heterogeneity or distribution, an MDBS is an
interconnected collection of autonomous databases. A multi database management
system (multi-DBMS) is the software that provides for the management of this
collection of autonomous databases and transparent access to it. If the individual
databases that make up the MDBS are distributed over a number of sites, we have a
distributed MDBS. The organization of a distributed MDBS as well as its management
is quite different from that of a distributed DBMS. We discuss this issue in more detail
in the upcoming sections. At this point it suffices to point out that the fundamental
difference is one of the level of autonomy of the local data managers. Centralized or
distributed multi database systems can be homogeneous or heterogeneous.

I'

The fundamental point of the foregoing discussion is that the distribution of
databases, their possible heterogeneity, and their autonomy are orthogonal issues. Since
our concern in this book is on distributed systems, it is more important to note the
orthogonal between autonomy and heterogeneity. Thus it is possible to have
autonomous distributed databases that are not heterogeneous. In that sense, the more
important issue is the autonomy of the databases rather than their heterogeneity. In other
words, if the issues related to the design of a distributed multi database are resolved,
introducing heterogeneity may not involve significant additional difficulty. This, of
course, is true only from the perspective of database management; there may still be
significantheterogeneity problems from the perspective of the operating system and the
underlyinghardware.

It is fair to claim that the fundamental issues related to multi database systems
can be investigated without reference to their distribution. The additional considerations

37

that distribution brings, in this case, are no different from those of logically integrated
· · ibuted database systems. Therefore, in this chapter we consider architectural

models oflogically integrated distributed DBMSs and multi database systems.

3.4.1 Distributed DBMS Architecture
Let us start the description of the architecture by looking at the data

organizational view. We first note that the physical data organization on each machine
may be, and probably is, different. This means that there needs to be an individual
internal schema definition at each site, which we call the local internal schema (LIS).
The enterprise view of the data is described by the global conceptual schema (GCS),
which is global because it describes the logical structure of the data at all the sites.

This architecture model, depicted in Figure 3.5, provides the levels of
transparency discussed. Data independence is supported since the model is an extension
of ANSI/SPARC, which provides such independence naturally. Location and replication
transparencies are supported by the definition of the local and global conceptual
schemas and the mapping in between. Network transparency, on the other hand, is
supported by the definition of the global conceptual schema. The user queries data
irrespective of its location or of which local component of the distributed database
system will service it. As mentioned before, the distributed DBMS translates global
queries into a group of local queries, which are executed by distributed DBMS
components at different sites that communicate with one another.

us
1

Figure 3.5 Distributed Database Reference Architecture

One component handles the interaction with users, and another deals with the
storage. The first major component, which we call the user processor, consists of four
elements:

1. The user interface handler is responsible for interpreting user commands as
they come in, and formatting the result data as it is sent to the user.

2. The semantic data controller uses the integrity constraints and authorizations
that are defined as part of the global conceptual schema to check if the user query can
be processed.

38

3. The global query optimizer and decomposer determines an execution strategy
o minimize a cost function, and translates the global queries into local ones using the
obal and local conceptual schemas as well as the global directory/dictionary. The
obal query optimizer is responsible, among other things, for generating the best

strategy to execute distributed join operations.

G-~
Dlfll>tst

lı.4i'Nlnlf.lr't'IOr

Figure 3.6 Functional Schematic of an Integrated Distributed DBMS

39

System
re~s.es

Uşe;r
reqoeşts

·USE!A
PROCESSOR ıextemal

Schema

OAtA.
PROCESSOR

loea1
Coooeprual

.,.. .._, System
I log

I',

Figure 3.7 Components of a Distributed DBMS

4. The distributed execution monitor coordinates the distributed execution of the
user request. The execution monitor is also called the distributed transaction manager.
In executing queries in a distributed fashion, the execution monitors at various sites
may, and usually do, communicate with one another.

The second major component of a distributed DBMS is the data processor and
consists of three elements:

1 . The local query optimizer, which actually acts as the access path selector, is
responsible for choosing the best access path? to access any data item.

2. The local recovery manager is responsible for making sure that the local
database remains consistent even when failures occur.

40

3. The run-time support processor physically accesses the database according to
the physical commands in the schedule generated by the query optimizer. The run-time
support processor is the interface to the operating system and contains the database
buffer (or cache) manager, which is responsible for maintaining the main memory
buffers and managing the data accesses.

3.4.2 MOBS Architecture
The 'differences in the level of autonomy between the distributed multi DBMSs

and distributed DBMSs are also reflected in their architectural models. The fundamental
difference relates to the definition of the global conceptual schema. In the case of
logically integrated distributed DBMSs, the global conceptual schema defines the
conceptual view of the entire database, while in the case of distributed multi-DBMSs, it
represents only the collection of some of the local databases that each local DBMS
wants to share. Thus the definition of a global database is different in MDBSs than in
distributed DBMSs. In the latter, the global database is equal to the union of local
databases, whereas in the former it is only a subset of the same union. There are even
arguments as to whether the global conceptual schema should even exist in multi
database systems. This question forms the basis of our architectural discussions in this
section.

Models using a global conceptual schema. In a MDBS, the GCS is defined by
integrating either the external schemas of local autonomous databases or parts of their
local conceptual schemas. Furthermore, users of a local DBMS define their own views
on the local database and do not need to change their applications if they do not want to
access data from another database. This is again an issue of autonomy.

Designing the global conceptual schema in multi database systems involves the
integration of either the local global conceptual schemas or the local external schemas.
A major difference between the design of the GCS in multi-DBMSs and in logically
integrated distributed DBMSs is that in the former the mapping is from local conceptual
schemas to a global schema. In the latter, however, mapping is in the reverse

,GES. I II GES 1: I GES

LES LES LES LES LES J ILıESGCS

LIS1 us n

Figure 3.8 MOBS Architecture with a GCS

41

tion. This is because the design in the former is usually a bottom-up process,
ıfıereas in the latter it is usually a top-down procedure. Further more, if heterogeneity

· · s in the multi database system, a canonical data model has to be found to define the
GCS.

Once the GCS has been designed, views over the global schema can be defined
r users who require global access. It is not necessary for the GES and GCS to be
fined using the same data model and language; whether they do or not determines

,fıether the system is homogeneous or heterogeneous.

If heterogeneity exists in the system, then two implementation alternatives exist:
mıilingual and multilingual. A unilingual multi-DBMS requires the users to utilize
possibly different data models and languages when both a local database and the global
database are accessed. The identifying characteristic of unilingual systems is that any
application that accesses data from multiple databases must do so by means of an
external view that is defined on the global conceptual schema. This means that the user
of the global database is effectively a different user than those who access only a local
database, utilizing a different data model and a different data language. Thus, one
application may have a local external schema (LES) defined on the local conceptual
schema as well as a global external schema (GES) defined on the global conceptual
schema. The different external view definitions may require the use of different access
languages. Figure 3.8 actually depicts the data logical model of a unilingual database
system that integrates the local conceptual schemas (or parts of them) into a global
conceptual schema. Examples of such an architecture are the MUL TIBASE system
([Landers and Rosenberg, 1982] and [Smith et al., 1981]) Mermaid [Templeton et al.,
1987] and DOTS.

An alternative is multilingual architecture, where the basic philosophy is to
permit each user to access the global database (i.e., data from other databases) by means
of an external schema, defined using the language of the user's local DBMS. The GCS
definition is quite similar in the multilingual architecture and the unilingual approach,
the major difference being the definition of the external schemas, which are described in
the language of the external schemas of the local database. Assuming that the definition
is purely local, a query issued according to a particular schema is handled exactly as any
query in the centralized DBMSs. Queries against the global database are made using the
language of the local DBMS, but they generally require some processing to be mapped
to the global conceptual schema.

The multilingual approach obviously makes, querying the databases easier from
the user's perspective. However, it is more complicated because we must deal
translation of queries at run time. The multilingual approach is used in Sirius-Delta and
in the HD-DBMS project.

Models without a global conceptual schema. The existence of a global
conceptual schema in a multi database system is a controversial issue. There are re-B
searchers who even define a multi database management system as one that manages
Several databases without a global schema. It is argued that the absence of a GCS is a
significant advantage of multi database systems over distributed database systems. One
prototype system that has used this architectural model is the MRDSM project.
Identifies two layers: the local system layer and the multi database layer on top of it.

42

local system layer consists of a number of DBMSs, which present to the multi
M:abıse layer the part of their local database they are willing to share with users of

databases. This shared data is presented either as the actual local conceptual
s:herna or as a local external schema definition. If heterogeneity is involved, each of

schemas, LCSi, may use a different data model.

liS1 ISSın

MuflidatabıN
laye.r

us2 US3

Figure 3.9 MDBS Architecture Without a GCS

Above this layer, external views are constructed where each view may be
defined on one local conceptual schema or on multiple conceptual schemas. Thus the
responsibility of providing access to multiple (and maybe heterogeneous) databases is
delegated to the mapping between the external schemas and the local conceptual
schemas. This is fundamentally different from architectural models that use a global
conceptual schema, where this responsibility is taken over by the mapping between the
global conceptual schema and the local ones. This shift in responsibility has a practical
consequence. Access to multiple databases is provided by means of a powerful language
in which user applications are written.

Federated database architectures, which we discussed briefly, do not use a global
conceptual schema either. In the specific system described in, each local DBMS defines
an export schema, which describes the data it is willing to share with others. In the
terminology that we have been using, the global database is the union of all the export
schemas.

The component-based architectural model. of a multi-DBMS is significantly
different from a distributed DBMS. The fundamental difference is the existence of full
fledged DBMSs, each of which manages a different database. The MDBS provides a
layer of software that runs on top of these individual DBMSs and provides users with
the facilities of accessing various databases. Depending on the existence (or lack) of the
global conceptual schema or the existence of heterogeneity (or lack of it), the contents
of this layer of software would change significantly.Note that Figure 3. 10 represents a
non distributed multi-DBMS. If the system is distributed, we would need to replicate the
multi database layer to each site where there is a local DBMS that participates in the
system. Also note that as far as the individual DBMSs are concerned, the MDBS layer
is simplyanother application that submits requests and receives answers.

43

3.5 GLOBAL DIRECTORY ISSUES
The discussion of the global directory issues is relevant only if one talks about a

distributed DBMS or a multi-DBMS that uses a global conceptual schema. Otherwise,
there is no concept of a global directory. If it exists, the global directory is an extension
of the dictionary as described in the ANSI/SPARC report. It includes information about
the location of the fragments as well as the makeup of the fragments.

As stated earlier, the directory is itself a database that contains meta-data about
the actual data stored in the database. Therefore, the techniques with respect to
distributed database design also apply to directory management. Briefly, a directory
may be either global to the entire database or local to each site. In other words, there
might be a single directory containing information about all the data in the database, or
a number of directories, each containing the information stored at one site. In the latter
case, we might either build hierarchies of directories to facilitate searches, or implement
a distributed search strategy that involves considerable communication among the sites
holding the directories.

The second issue has to do with location. The directory may be maintained
centrally at one site, or in a distributed fashionby distributing it over a number of sites.

Keeping the directory at one site might increase the load at that site, thereby
causing a bottleneck as well as increasing message traffic around that site. Distributing
it over a number of sites, on the other hand, increases the complexity of managing
directories. In the case of multi-DBMSs, the choice is dependent on whether or not the
system is distributed. If it is, the directory is always distributed; otherwise of course, it
is maintained centrally.

The final issue is replication. There may be a single copy of the directory or
multiple copies. Multiple copies would provide more reliability, since the probability of
reaching one copy of the directory would be higher. Furthermore, the delays in
accessing the directory would be lower, due to less contention and the relative
proximity I of the directory copies. On the other hand, keeping the directory up to date
would be considerablymore difficult, since multiple copies would need to be updated.

Therefore, the choice should depend on the environment in which the system
operates and should be made by balancing such factors as the response-time
requirements, the size of the directory, the machine capacities at the sites, the reliability
requirements, and the volatility of the directory (i.e., the amount of change experienced
by the database, which would cause a change to the directory). Of course, these choices
are valid only in the case of a distributed DBMS. A non distributed multi-DBMS always
maintains a single copy of the directory, while a distributed one typically maintains
multiple copies, one at each site.

44

Syswm
ııespon&es

User
:mq~esı:s

Mum~O'BMS
Layer

DBMS

Trans;u:tion
iManager

f ,ansacliOR
Manager

Scheduler ••

Recovery
Manager

Aecove.ıy
Manager

Runtime SUppo,
ProeflşSOt

ilıl.

Figure 3.10 Components of an MDBS

These three dimensions are orthogonal to one another. Even though some
combinations may not be realistic, a large number of them are. In Figure 3.11 we have
designated the unrealistic combinations by a question mark. Note that the choice of an
appropriate directory management scheme should also depend on the query processing
and the transaction management techniques that will be used in subsequent chapters.
We will come back to this issue again.

Type

Load and dl51Jiıwıd
tıııdnonıııplicııled

Global aııd disuibuted
a,ıd tıoııtepliı::ated

m

Replication
Global ııınd c:isıribuı.;.d

and repl.,aısd

Figure 3.11 Alternative Directory Management Strategies

45

46

CHAPTER4

DISTRIBUTED DATABASE DESIGN

The design of a distributed computer system involves making decisions on the
placement of data and programs across the sites of a computer network, as well as
possibly designing the network itself In the case of distributed DBMSs, the distribution
of applications involves two things: the distribution of the distributed DBMS software
and the distribution of the application programs that run on it. The former is not a
significant problem, since we assume that a copy of the distributed DBMS software
exists at each site where data is stored. In this chapter we do not concern ourselves with
application program placement either. Furthermore, we assume that the network has
already been designed, or will be designed at a later stage, according to the decisions
related to the distributed database design. We concentrate on distribution of data.

It has been suggested that the organization of distributed systems can be
investigated along three orthogonal dimensions [Levinand Morgan, 1975]:

1. Level of sharing
2. Behavior of access patterns
3. Level of knowledge on access pattern behavior

Figure 4. 1 depicts the alternatives along these dimensions. In terms of the level
of sharing, there are three possibilities.First, there is no sharing: each application and

Access
patter:n

Partial
in formation

D Level of
knowledge

Sharing

Figure 4.1 Framework of Distribution

47

its data execute at one site, and there is no communication with any other program or
access to any data file at other sites. This characterizes the very early days of
networking and is probably not very common today. We then find the level of data
sharing; all the programs are replicated at all the sites, but data files are not.
Accordingly, user requests are handled at the site where they originate and the
necessary data files are moved around the network. Finally, in data-plus-program
sharing, both data and programs may be shared, meaning that a program at a given site
can request a service from another program at a second site, which, in tum, may have to
access a data file located at a third site.

Levin and Morgan draw a distinction between data sharing and data-plus
program sharing to illustrate the differences between homogeneous and heterogeneous
distributed computer systems. They indicate, correctly, that in a heterogeneous
environment it is usually very difficult, if not impossible, to execute a given program on
different hardware under a different operating system. It might, however, be possible to
move data around relativelyeasily.

Along the second dimension of access pattern behavior, it is possible to identify
two alternatives. The access patterns of user requests may be static, so that they do not
change over time, or dynamic. It is obviously considerably easier to plan for and
manage the static environments than would be the case for dynamic distributed systems.
Unfortunately, it is difficult to find many real-life distributed applications that would be
classified as static. The significant question, then, is not whether a system is static or
dynamic, but how dynamic it is. Incidentally, it is along this dimension that the
relationship between the distributed database design and query processing is
established.

The third dimension of classification is the level of knowledge about the access
pattern behavior. One possibility, of course, is that the designers do not have any
information about how users will access the database. This is a theoretical possibility,
but it is very difficult, if not impossible, to design a distributed DBMS that can
effectively cope with this situation. The more practical alternatives are that the
designers have complete information, where the access patterns can reasonably be
predicted and do not deviate significantly from these predictions, and partial
information,where there are deviations from the predictions.

"
The distributed database design problem should be considered within this

general framework. In all the cases discussed, except in the no-sharing alternative, new
problems are introduced in the distributed environment which are not relevant in a
centralized setting. In this chapter it is our objective to focus on these unique problems.
The outline of this chapter is as follows. In Section 4.1 we discuss briefly two
approaches to distributed database design: the top-down and the bottom-up design
strategies. The details of the top-down approach are given in Sections 4.3 and 4.4, while
the details of the bottom-up approach are postponed to another chapter. Prior to the
discussion of these alternatives, in Section 4.2 we present the issues in distribution
design.

48

4.1 ALTERNATIVE DESIGN STRATEGIES
Two major strategies that have been identified [Ceri et al., 1987] for designing

distributed databases are the top-down approach and the bottom-up approach. As the
names indicate, they constitute very different approaches to the design process. But as
any software designer knows, real applications are rarely simple enough to fit nicely in
either of these alternatives. It is therefore important to keep in mind that in most
database, designs, the two approaches may need to be applied to complement one
another.

4.1.1 Top-Down Design Process
A framework for this process is shown in Figure 4.2. The activity begins with a

requirements analysis that defines the environment of the system and "elicits both the
data and processing needs of all potential database users" [Yao et al., 1982a]. The
requirements study also specifies where the final system is expected to stand with
respect to the objectives of a distributed DBMS as identified in Section 1.3. Tb reiterate,
these objectives are defined with respect to performance, reliability and availability,
economics, and expandability(flexibility).

The requirements document is input to two parallel activities: view design and
conceptual design. The view design activity deals with defining the interfaces for end
users. The conceptual design, on the other hand, is the process by which the enterprise
is examined to determine entity types and relationships among these entities. One can
possibly divide this process into two related activity groups [Davenport, 1981]: entity
analysis and functional analysis. Entity analysis is concerned with determining the
entities, their attributes, and the relationships among them. Functional analysis, on the
other hand, is concerned with determining the fundamental functions with which the
modeled enterprise is involved. The results of these two steps need to be cross
referenced to get a better understanding ofwhich functions deal with which entities.

There is a relationship between the conceptual design and the view design. In
one sense, the conceptual design can be interpreted as being an integration of user
views. Even though this view integration activity is very important, the conceptual
model should support not only the existing applications, but also future applications.
View integration should be used to ensure that entity and relationship requirements for
all the views are covered in the conceptual schema.

49

Requ;r11merıte
Arıalyt;i$

User
Input

Co-nceptıı.ıaı
CeGigrı View Design

input

Global Conceptual
Schama

External
Sch$ma Definitions

L.ocal Concepıueı
Schenıaı;.

Physical
OE!o$ign

P'1ysical
Sctıemııı

I Fee-dcııcık I Obser,ıatio.ıı arıd 1-~------------_.ı
Monlıorırıg

Feedback

Figure 4.2 Top-Down Design process

In conceptual design and view design activities the user needs to specify the data
entities and must determine the applications that will run on the database as well as
statistical information about these applications. Statistical information includes the
specification of the frequency of user applications, the volume of various information,
and the like. Note that from the conceptual design step comes the definition of global
conceptual schema discussed in Section 4.3. We have not yet considered the
implications of the distributed environment; in fact, up to this point, the process is
identical to that in a centralized database design.

50

The global conceptual schema (GCS) and access pattern information collected as
a result of view design are inputs to the distribution design step. The objective at this
stage, which is the focus of this chapter, is to design the local conceptual schemas
(LCSs) by distributing the entities over the sites of the distributed system. It is possible,
of course, to treat each entity as a unit of distribution. Given that we use the relational
model as the basis of discussion in this book, the entities correspond to relations.

Rather than distributing relations, it is quite common to divide them into sub
relations, called fragments, which are then distributed. Thus the distribution design
activity consists of two steps: fragmentation and allocation. These are the major issues
that are treated in this chapter, so we delay discussingthem until later sections.

The last step in the design process is the physical design, which maps the local
conceptual schemas to the physical storage devices available at the corresponding sites.
The inputs to this process are the local conceptual schema and access pattern
informationabout the fragments in these.

It is well known that the design and development activity of any kind is an
ongoing process requiring constant monitoring and periodic adjustment and tuning. We
have therefore included observation and monitoring as a major activity in this process.
Note that one does not monitor only the behavior of the database implementation but
also the suitabilityof user views. The result is some form of feedback, which may result
in backing up to one of the earlier steps in the design.

4.1.2 Bottom-Up Design Process
Top-down design is a suitable approach when a database system is being

designed from scratch. Commonly, however, a number of databases already exist, and
the design task involves integrating them into one database. The bottom-up approach is
suitable for this type of environment. The starting point of bottom-up design is the
individual local conceptual schemas. The process consists of integrating local schemas
into the global conceptual schema.

4.2 DISTRIBUTION DESIGN ISSUES
In the preceding section we indicated that the relations in a database schema are

usually decomposed into smaller: fragments, but we did not offer any justification or
details for this process. The objective of this section is to fill in these details.

The following set of interrelated questions covers the entire issue. We will there
fore seek to answer them in the remainder of this section.

• Why fragment at all?
• How should we fragment?
• How much should we fragment?
• Is there any way to test the correctness of decomposition?
• How should we allocate?
• What is the necessary information for fragmentation and allocation?

51

4.2.1 Reasons for Fragmentation
From a data distribution viewpoint, there is really no reason to fragment data.

After all, in distributed file systems, the distribution is performed on the basis of entire
files. In fact, the earlier work dealt specifically with the allocation of files to nodes on a
computer network.

With respect to fragmentation, the important issue is the appropriate unit of
distribution. A relation is not a suitable unit, for a number of reasons. First, application
views are usually subsets of relations. Therefore, the locality of accesses of applications
is defined not on entire relations but on their subsets. Hence it is only natural to consider
subsets of relations as distribution units.

Second, if the applications that have views defined on a given relation reside at
different sites, two alternatives can be followed, with the entire relation being the unit of
distribution. Either the relation is not replicated and is stored at only one site, or it is
replicated at all or some of the sites where the applications reside. The former results in
an unnecessarily high volume of remote data accesses. The latter, on the other hand, has
unnecessary replication, which causes problems in executing updates (to be discussed
later) and may not be desirable if storage is limited.

Finally, the decomposition of a relation into fragments, each being treated as a
unit, permits a number of transactions to execute concurrently. In addition, the
fragmentation of relations typically results in the parallel execution of a single query by
dividing it into a set of sub queries that operate on fragments. Thus fragmentation
typically increases the level of concurrency and therefore the system throughput.

For the sake of completeness, we should also indicate the disadvantages of
fragmentation. If the applications have conflicting requirements which prevent
decomposition of the relation into mutually exclusive fragments, those applications
whose views are defined on more than one fragment may suffer performance
degradation. It might, for example, be necessary to retrieve data from two fragments
and then take either their union or their join, which is costly. Avoiding this is a
fundamental fragmentation issue.

The second problem is related to semantic data control, specifically to integrity
checking. As a result of fragmentation, attributes participating in a dependency may be
decomposed into different fragments which might be allocated to different sites. In this
case, even the simpler task of checking for dependencies would result in chasing after
data in a number of sites

4.2.2 Fragmentation Alternatives
Relation instances are essentially tables, so the issue is one of finding alternative

ways of dividing a table into smaller ones. There are clearly two alternatives for this:
dividing it horizontally or dividing it vertically.

Example 4.1
Figure 4.5 shows the J relation of Figure 4.3 partitioned vertically into two sub

relations, J ı and Jı. Jı contains only the information about project budgets, whereas 1ı
contains project names and locations. It is important to notice that the key to the relation
(JNO) is included in both fragments.

52

The fragmentation may, of course, be nested. If the nestings are of different
types, one gets hybrid fragmentation. Even though we do not treat hybrid fragmentation
as a primitive type of fragmentation strategies, it is quite obvious that many real-life
partitioning may be hybrid

E

ENO ENAME TtTlE

E1 J. D1Je Elad. Eng

.E2. M.Smilh syc.ı. Anal.

E3 A. Lee Mech. Eng..
E4 J. Mil« Programmer
E5 B. C&sey Syl!it. Aoal.

E6 L.Chu Elect. E'1g.
E7 R.Davt& Meeh.'Eng.
Ee J.. Jones Syst. Anal.

G

ENO JNO RESP DUR

E1 J1 Manager 12

E2 J1 Analysı 24

E2 J2 Analyst 6

E3 J3 Con9llltant 10
E3 J4 Engineer 48

E4 J2 Programmer 18
E5 J2 Manaııer 2-4
E6 J4 Manager 48
E1 J3 Engineer 38
E8 J3 Manager 40

JNO JNAME BUDGET LOC

J1 lnstrumentatian 150000 Monrr&ai
J2 Dcmıbase Oevekıp. "'135000 New York

J3 ·cAOICAM 250Q00 New.York

J4 Maintenance 310000 Peri~

s
Tffl.E' SAL

'Elect Eng. 40000

Syst. Anel. 340QO

Mech. Eng, 27000

PrDiJ'aınmer 24000

Figure 4.3 Modified Example Database

53

J.NO JNAME BUOQE,T LOC

. J1 lnstrumen-.lion 150000 Montreal

J2 Daıabaae· Davelop. 135000 New York

JNO JNAME .BUDGET LOC
"'

J3 CAD/CAM 255000 New York
J4 Maintenance 310000 Paris

' ~ ..•

Figure 4.4 Example of Horizontal Partitioning

JNO BUDGET

J1 150000
J2 135000
J3 250000

J4 310000

JNO· JNAME LOC

J1 Instrumentation Montnmı
J2 Database Develop. New York
J3 CAD/CAM New York
J4 Maintenance Pati&

Figure 4.5 Example of Vertical Partitioning

4.2.3 Degree of Fragmentation
The extent to which the database should be fragmented is an important decision

that affects the performance of query execution. In fact, the issues in Section 4.2.1
concerning the reasons for fragmentation constitute a subset of the answers to the
question we are addressing here. The degree of fragmentation goes from one extreme,
that is, not to fragment at all, to the other extreme, to fragment to the level of individual
tuples (in the case of horizontal fragmentation) or to the level of individual attributes (in
the case of vertical fragmentation).

We have already addressed the adverse effects of very large and very small units
of fragmentation. What we need, then, is to find a suitable level of fragmentation which
is a compromise between the two extremes. Such a level can only be defined with
respect to the applications that will run on the database. The issue is, how? In general,

54

the applications need to be characterized with respect to a number of parameters.
According to the values of these parameters, individual fragments can be identified.

4.2.4 Correctness Rules of Fragmentation
It is important to note the similarity between the fragmentation of data for

distribution (specifically, vertical fragmentation) and the normalization of relations.
Thus fragmentation rules similar to the normalization principles can be defined.

We will enforce the following three rules during fragmentation, which, together,
ensure that the database does not undergo semantic change during fragmentation.

1. Completeness. If a relation instance R is decomposed into fragments
Rj, R2, ... , Rn, each data item that can be found in R can also be found in
one or more of Rı's. This property, which is identical to the lossless
decomposition property of normalization, is also important in
fragmentation since it ensures that the data in a global relation is mapped
into fragments without any loss [Grant, 1984]. Note that in the case of
horizontal fragmentation, the "item" typically refers to a tuple, while in
the case of vertical fragmentation, it refers to an attribute.

2. Reconstruction. If a relation R is decomposed into fragments Rı, R2, ... ,
Rn, it should be possible to define a relational operator y such that

R = V Ri, 'v'Ri C FR

The operator V will be different for the different forms of fragmentation;
it is important, however, that it can be identified. The reconstructability
of the relation from its fragments ensures that constraints defined on the
data in the form of dependencies are preserved.

3. Disjointness. If a relation R is horizontally decomposed into fragments
Rı, Rı, ... , Rn and data item di is in Rj, it is not in any other fragment Rk
(k * j). This criterion ensures that the horizontal fragments are disjoint. If
relation R is vertically decomposed, its primary key attributes are
typically repeated in all its fragments. Therefore, in case of vertical
partitioning, disjointness is defined only on the nonprimary key attributes
of a relation. "

4.2.5 Allocation Alternatives
Assuming that the database is fragmented properly, one has to decide on the

allocation of the fragments to various sites on the network. When data is allocated, it
may either be replicated or maintained as a single copy. The reasons for replication are
reliability and efficiency of read-only queries. If there are multiple copies of a data item,
there is a good chance that some copy of the data will be accessible somewhere even
when system failures occur. Furthermore, read-only queries that access the same data
items can be executed in parallel since copies exist on multiple sites. On the other hand,
the execution of update queries cause trouble since the system has to ensure that all the
copies of the data are updated properly. Hence the decision regarding replication is a
trade-off which depends on the ratio of the read-only queries to the update queries. This
decision affects almost all of the distributed DBMS algorithms and control functions.

55

A nonreplicated database (commonly called a partitioned database) contains
fragments that are allocated to sites, and there is only one copy of any fragment on the
network. In case of replication, either the database exists in its entirety at each site (fully
replicated database), or fragments are distributed to the sites in such a way that copies
of a fragment may reside in multiple sites (partially replicated database). In the latter the
number of copies of a fragment may be an input to the allocation algorithm or a
decision variable whose value is determined by the algorithm. Figure 4.6 compares
these three replication alternativeswith respect to various distributed DBMS functions.

FuU replication Partial replication Partitioning

QUERY Same dlff teuı ty
Easy ~ .l •••

PROCESSING ~ ~

I

DIRECTORY Easy or Same difficulty- .
MANAGE.MENT n onaxiste rd . -

CONCURRENCY Moderate Dlffıcult EasyCONTROL

RELIABILITY Very high High Low

REALITY Possible application Realistle ~ossibleapplication

Figure 4.6 Comparison of Replication Alternatives

4.2.6 Information Requirements
One aspect of distribution design is that too many factors contribute to an

optimal design. The logical organization of the database, the location of the
applications, the access characteristics of the applications to the database, and the
properties of the computer systems at each site all have an influence on distribution
decisions. This makes it very complicated to formulate a distribution problem.

The information needed for distribution design can be divided into four
categories: database information, application information, communication network
information, and computer system information. The latter two categories are completely
quantitative in nature and are used in allocation models rather than in fragmentation
algorithms. We do not consider them in detail here. Instead, the detailed information
requirements of the fragmentation and allocation algorithms are discussed in their
respective sections.

56

4.3 FRAGMENTATION
In this section we present the various fragmentation strategies and algorithms.

As mentioned previously, there are two fundamental fragmentation strategies:
horizontal and vertical. Furthermore, there is a possibility of nesting fragments in a
hybrid fashion.

4.3.1 Horizontal Fragmentation
As we explained earlier, horizontal fragmentation partitions a relation along its

tuples. Thus each fragment has a subset of the tuples of the relation. There are two
versions of horizontal partitioning: primary and derived. Primary horizontal
fragmentation of a relation is performed using predicates that are defined on that
relation. Derived horizontal fragmentation, on the other hand, is the partitioning of a
relation that results from predicates being defined on another relation.

Later in this section we consider an algorithm for performing both of these
fragmentations. However, first we investigate the information needed to carry out
horizontal fragmentation activity.

Information requirements of horizontal fragmentation

Database Information. The database information concerns the global
conceptual schema. In this context it is important to note how the database relations are
connected to one another, especially with joins. In the relational model, these
relationships are also depicted as relations. However, in other data models, such as the
entity-relationship (E-R) model [Chen, 1976], these relationships between database
objects are depicted explicitly. In [Ceri et al., 1983] the relationship is also modeled
explicitly, within the relational framework, for purposes of the distribution design. In
the latter notation, directed links are drawn between relations that are related to each
other by an equijoin operation.

Example 4.2
The links between database objects (i.e., relations in our case) should be quite

familiar to those who have dealt with network models of data. In the relational model
they are introduced as join graphs, which we discuss in detail in subsequent chapters on
query processing. We introduce them here because they help to simplify the
presentation of the distribution medels we discuss later.

The relation at the tail of a link is called the owner of the link and the relation at
the head is called the member [Ceri et al., 1983]. More commonly used terms, within
the relational framework, are source relation for owner and target relation for member.
Let us define two functions: owner and member, both of which provide mappings from
the set of links to the set of relations. Therefore, given a link, they return the member or
owner relations of the link, respectively.

57

s
TITLE. SAL

E J

ENO, ENAME. TITLE---,- .JNO,JNAME, BUDGET, LOC

ENO, JNO, RESP, DUA·

Figure 4.7 Expression of Relationships Among Relations Using Links

Example 4.3
Given link L1 of Figure 4.7, the owner and member functions have the following

values:

owner(Lı) = S
member(Lı) = E

The quantitative information required about the database is the cardinality of
each relation R, denoted card{R).

Application Information. As indicated previously in relation to Figure 4.2,
both qualitative and quantitative information is required about applications. The
qualitative information guides the fragmentation activity, whereas the quantitative
information is incorporated primarily into the allocation models.

The fundamental qualitative information consists of the predicates used in user
queries. If it is not possible to analyze all of the user applications to determine these
predicates, one should at least investigate the most "important" ones. It has been
suggested that as a rule of thumb; the most active 20% of user queries account for 80%
of the total data accesses [Wiederhold, 1982]. This "80/20 rule" may be used as a
guideline in carrying out this analysis.

At this point we are interested in determining simple predicates. Given a relation
R(Aı,A2, ... , An), where A { is an attribute defined over domain Di, a simple predicate pj
defined on R has the form

Where 8 c {=, <, *, ~' >,~} and Value is chosen from the domain of Ai (Value e
Di). We use Pr, , to denote the set of all simple predicates defined on a relation Rı, The
members of Prı, are denoted by Pii·

58

Primary horizontal fragmentation. Before we present a formal algorithm for
horizontal fragmentation, we should intuitivelydiscuss the process for both primary and
derived horizontal fragmentation. A primary horizontal fragmentation is defined by a
selection operation on the owner relations of a database schema. Therefore, given
relation Rı, its horizontal fragments are given by

Where Fj is the selection formula used to obtain fragment R/ Note that ifFj is in
conjunctive normal form, it is a minterm predicate (mq). The algorithm we discuss will,
in fact, insist that Fj be a minterm predicate.

Derived horizontal fragmentation. A derived horizontal fragmentation is
defined on a member relation of a link according to a selection operation specified on its
owner. It is important to remember two points. First, the link between the owner and the
member relations is defined as an equi-join. Second, an equi-join can be implemented
by means of semijoins. This second point is especially important for our purposes, since
we want to partition a member relation according to the fragmentation of its owner, but
we also want the resulting fragment to be defined only on the attributes of the member
relation.

Accordingly, given a link L where owner(L)
derived horizontal fragments ofR are defined as

S and member(L) R, the

where w is the maximum number of fragments that will be defined on R, and Si
= crFi (S), where Fi is the formula according to which the primary horizontal

fragment Si is defined.

Example 4.4
Consider link Li in Figure 4.7, where owner(Li) =Sand me-mber(Li) = E. Then

we can group engineers into two groups according to their salary: those making less
than or equal to $30,000, and those making more than $30,000. The two fragments Ei
and E2 are defined as follows:

E, = E >< Sı

E2 = E >< S2

where

Sı = o SAL ~ Joooo(S)

S2 = o SAL > Joooo(S)

The result of this fragmentation is depicted in Figure 4.8

ENO ENAME TIRE

E3 A.lee Mech. Eng.
E4 J.Mitler Programmar
E7 R. Davis Mech. Eng.

~

ENO ENA ME

E1 J. Doe Elec:ı. Eng.
E2 M. Smidı Sy&t. Anı:ıl.
E5 B. Casey Sy&t. Anal.
E6 L.Chu Elect Eng.
E8 J.Jonea Syst. Anal.

Figure 4.8 Derived Horizontal Fragmentation of Relation E

To carry out a derived horizontal fragmentation, three inputs are needed: the set
of partitions of the owner relation, the member relation, and the set of semijoin
predicates between the owner and the member. The fragmentation algorithm, then, is
quite trivial, so we will not present it in any detail.

There is one potential complication that deserves some attention. In a database
schema, it is common that there are more than two links into a relation R. In this case
there is more than one possible derived horizontal fragmentation of R. The decision as
to which candidate fragmentation to choose is based on two criteria:

1. The fragmentation with better join characteristics

2. The fragmentation used in more applications

Let us discuss the second criterion first. This is quite straightforward if we take
into consideration the frequency with which applications access some data. If possible,
one should try to facilitate the accesses of the "heavy"users so that their total impact on
system performance is minimized.

Applying the first criterion, however, is not that straightforward. Consider, for
example, the fragmentation we discussed. The effect of this fragmentation is that the
join of the E and S relations to answer the
query is assisted (1) by performing it on smaller relations (i.e., fragments), and (2) by
potentiallyperformingjoins in a distributed fashion. ,

The first point is obvious. The fragments of E are smaller than E itself
Therefore, it will be faster to join any fragment of S with any fragment of E than to
work with the relations themselves. The second point, however, is more important and
is at the heart of distributed databases. If, besides executing a number of queries at
different sites, we can execute one query in parallel, the response time or throughput of
the system can be expected to improve. In the case of joins, this is possible under
certain circumstances. There is only one link coming in or going out of a fragment.
Such a join graph is called a simple graph. The advantage of a design where the join
relationship between fragments is simple is that the member and owner of a link can be
allocated to one site and the joins between different pairs of fragments can proceed
independentlyand in parallel.

60

•

Figure 4.9 Join Graph Between Fragments

Unfortunately, obtaining simple join graphs may not always be possible. In that
case, the next desirable alternative is to have a design that results in a partitioned join
graph. A partitioned graph consists of two or more sub graphs with no links between
them. Fragments so obtained may not be distributed for parallel execution as easily as
those obtained via simplejoin graphs, but the allocation is still possible.

4.3.2 Vertical Fragmentation
Remember that a vertical fragmentation of a relation R produces fragments R1

,Rı ... , Ru , each of which contains a subset of R's attributes as well as the primary key
of R. The objective of vertical fragmentation is to partition a relation into a set of
smaller relations so that many of the user applications will run on only one fragment. In
this context, an "optimal" fragmentation is one that produces a :fragmentationscheme
which minimizesthe execution time of user applications that run on these fragments.

Vertical fragmentation has been investigated within the context of centralized
database systems as well as distributed ones. Its motivation within the centralized
context is as a design tool, which allows the user queries to deal with smaller relations,
thus causing a smaller number of page. It has also been suggested that the most active
sub relations can be identified and placed in a faster memory subsystem in those cases
where memory hierarchies are supported.

Vertical partitioning is inherently more complicated than horizontal partitioning.
This is due to the total number of alternatives that are available. For example, in
horizontal partitioning, if the total number of simple predicates in Pr is n, there are 2°
possible minterm predicates that can be defined on it. In addition, we know that some of
these will contradict the existing implications, further reducing the candidate :fragments
that need to be considered. In the case of vertical partitioning, however, if a relation has
m non primary key attributes, the number of possible fragments is equal to B(m), which

· is the m'" Bell number. For large values of m, B(m) ~mm; for example, for m=lO, B(m)
~ 115,000, for m=15, B(m) ~ 109, for m=30, B(m) = 1023•

These values indicate that it is futile to attempt to obtain optimal solutions to the
vertical partitioning problem; one has to resort to heuristics. Two types of heuristic
approaches exist for the vertical fragmentation of global relations:

61

1. Grouping: starts by assigning each attribute to one fragment, and at each step,
joins some of the fragments until some criteria is satisfied. Grouping was first

'suggested in [Hammer and Niamir, 1979] for centralized databases, and was
used later in [Sacca and Wiederhold, 1985] for distributed databases.

2. Splitting: starts with a relation and decides on beneficial partitionings based
on the access behavior of applications to the attributes. The technique was first
discussed for centralized database design in [Hoffer and Severance, 1975]. It
was then extended to the distributed environment in [Navathe et al., 1984].

In what follows we discuss only the splitting technique, since it fits more
naturally within the top-down design methodology, and as stated in [Navathe et al.,
1984], since the "optimal" solution is probably closer to the full relation than to a set of
fragments each of which consists of a single attribute. Furthermore, splitting generates
non overlapping fragments whereas grouping typically results in overlapping fragments.
Within the context of distributed database systems, we are concerned with non
overlapping fragments, for obvious reasons. Of course, non overlapping refers only to
non primary key attributes.

There is a strong advantage to replicating the key attributes despite the obvious
problems it causes. If we now design the database so that the key attributes are part of
one fragment that is allocated to one site, and the implied attributes are part of another
fragment that is allocated to a second site, every update request that causes an integrity
check will necessitate communication among sites. Replication of the key attributes at
each fragment reduces the chances of this occurring but does not eliminate it
completely, since such communication may be necessary due to integrity constraints
that do not involve the primary key, as well as due to concurrency control.

One alternative to the replication of the key attributes is the use of tuple
identifiers (TIDs), which are system-assigned unique values to the tuples of a relation.
Since TIDs are maintained by the system, the fragments are disjoint as far as the user is
concerned.

Information requirements of vertical fragmentation. The major information
required for vertical fragmentatien is related to applications. The following discussion,
therefore, is exclusivelyon what needs to be determined about applications that will run
against the distributed database. Since vertical partitioning places in one fragment those
attributes usually accessed together, there is a need for some measure that would define
more precisely the notion of "togetherness." This measure is the affinity of attributes,
which indicates how closely related the attributes are. Unfortunately, it is not realistic to
expect the designer or the users to be able to easily specify these values. We now
present one way by which they can be obtained from more primitive data.

62

4.3.3 Hybrid Fragmentation
In most cases a simple horizontal or vertical fragmentation of a database schema

will not be sufficient to satisfy the requirements of user applications. In this case a
vertical fragmentation may be followed by a horizontal one, or vice versa, producing a
tree structured partitioning. Since the two types of partitioning strategies are applied one
after the other, this alternative is called hybrid fragmentation. It has also been named
mixed fragmentation or nested fragmentation.

R

RZl

Figure 4.10 Hybrid Fragmentation

A good example for the necessity of hybrid fragmentation is relation J, which we
I

have been working with. What we have, therefore, is a set of horizontal fragments, each
ofwhich is further partitioned into two vertical fragments.

The number of levels of nesting can be large, but it is certainly finite. In the case
of horizontal fragmentation, one has to stop when each fragment consists of only one
tuple, whereas the termination point for vertical fragmentation is one attribute per
fragment. These limits are quite academic, however, since the levels of nesting in most
practical applications do not exceed 2. This is due to the fact that normalized global
relations already have small degrees and one cannot perform too many vertical
fragmentations before the cost ofjoins becomes very high.

We will not discuss in detail the correctness rules and conditions for hybrid
fragmentation, since they follow naturally from those for vertical and horizontal
fragmentations. For example, to reconstruct the original global relation in case of hybrid
fragmentation, one starts at the leaves of the partitioning tree and moves upward by
performing joins and unions. The fragmentation is complete if the intermediate and leaf
fragments are complete. Similarly, disjointness is guaranteed if intermediate and leaf
fragments are disjoint.

63

4.4 ALLOCATION
The allocation of resources across the nodes of a computer network is a problem

that has been studied extensively. Most of this work, however, does not address the
problem of distributed database design, but rather that of placing individual files on a
computer network. We will examine the differences between the two shortly. We first
need to define the allocation problem more precisely.

V

R
22

Figure 4.11 Reconstruction of Hybrid Fragmentation

64

CHAPTERS

QUERY PROCESSING

The increasing success of relational database technology in data processing is
due, in part, to the availability of nonprocedural languages, which can significantly
improve application development and end-user productivity. By hiding the low-level
details about the physical organization of the data, relational database languages allow
the expression of complex queries in a concise and simple fashion. In particular, to
construct the answer to the query, the user does not precisely specify the procedure to
follow. This procedure is actually devised by a DBMS module, usually called a query
processor. This also relieves the user from query optimization, a time consuming task
that is best handled by the query processor, since it can exploit a large amount of useful
information about the data.

Because it is a critical performance issue, query processing has received
considerable attention in the context of both centralized and distributed DBMSs.
However, the query processing problem is much more difficult in distributed
environments than in centralized ones, because a larger number of parameters affect the
performance of distributed queries. In particular, the relations involved in a distributed
query may be fragmented and/or replicated, thereby inducing communication overhead
costs.

The context chosen is that of relational calculus and relational algebra, because
of their generality and wide use in distributed DBMSs, distributed relations are
implemented by fragments. Distributed database design is of major importance for
query processing since the definition of fragments is based on the objective of
increasing reference locality, and sometimes parallel execution for the most important
queries. The role of a distributed query processor is to map a high-level query (assumed
to be expressed in relational calculus) on a distributed database (i.e., a set of global
relations) into a sequence of database operations (of relational algebra) on relation
fragments. Several important functions characterize this mapping. First, the calculus
query must be decomposed into a sequence of relational operations called an algebraic
query. Second, the data accessed by the query must be localized so that the operations
on relations are translated to bear on local data (fragments). Finally, the algebraic query
on fragments must be extended with communication operations and optimized with
respect to a cost function to be minimized. This cost function typically refers to
computing resources such as disk I/Os, CPUs, and communicationnetworks.

5.1 QUERY PROCESSING PROBLEM
The main function of a relational query processor is to transform a high-level

query (typically, in relational calculus) into an equivalent lower-level query (typically,
in some variation of relational algebra). The low-level query actually implements the
execution strategy for the query. The transformation must achieve both correctness and
efficiency. It is correct if the low-level query has the same semantics as the original
query, that is, if both queries produce the same result. The well-defined mapping from
relational calculus to relational algebra makes the correctness issue easy. But producing
an efficient execution strategy is more involved. A relational calculus query may have
many equivalent and correct transformations into relational algebra. Since each
equivalent execution strategy can lead to very different consumptions of computer

65

resources, the main difficulty is to select the execution strategy that minimizes resource
onsumption.

Example 7.1
E(ENO, ENAME, TITLE)
G(ENO, JNO, RESP, DUR)

and the following simpleuser query:

"Find the names of employeeswho are managing a project"
The expression of the query in relational calculus using the SQL syntax is

SELECT ENAME
FROM E,G
WHERE E.ENO = G.ENO
AND RESP = "Manager"

Two equivalent relational algebra queries that are correct transformations of the
query above are

II ENAME(crRESP="Manager"AE.ENO=G.ENO (EX G))

and

II ENAME(E l><J ENO (crRESP= "Manager" (G)))

It is intuitively obvious that the second query, which avoids the Cartesian
product of E and G, consumes much less computing resource than the first and thus
should be retained.

In a centralized context, query execution strategies can be well expressed in an
extension of relational algebra. The main role of a centralized query processor is to
choose, for a given query, the best relational algebra query among all equivalent ones.
Since the problem is computationally intractable with a large number of relations
[Ibaraki and Kameda, 1984], it is generally reduced to choosing a solution close to the
optimum. "

In a distributed system, relational algebra is not enough to express execution
strategies. It must be supplemented with operations for exchanging data between sites.
Besides the choice of ordering relational algebra operations, the distributed query
processor must also select the best sites to process data, and possibly the way data
should be transformed. This increases the solution space from which to choose the
distributed execution strategy, making distributed query processing significantly more
difficult.

5.2 OBJECTIVES OF QUERY PROCESSING
As stated before, the objective of query processing in a distributed context is to

trans form a high-level query on a distributed database, which is seen as a single
database by the users, into an efficient execution strategy expressed in a low-level
language on local databases. We assume that the high-level language is relational

66

calculus, while the low-level language is an extension of relational algebra with
communication operations. The different layers involved in the query transformation are
detailed in Section 7.5. An important aspect of query processing is query optimization.
Because many execution strategies are correct transformations of the same high-level
query, the one that optimizes (minimizes)resource consumption should be retained.

A good measure of resource consumption is the total cost that will be incurred in
processing the query. Total cost is the sum of all times incurred in processing the
operations of the query at various sites and in inter site communication. Another good
measure is the response time of the query, which is the time elapsed for executing the
query. Since operations can be executed in parallel at different sites, the response time
of a query may be significantlyless than its total cost.

In a distributed database system, the total cost to be minimized includes CPU,
I/0, and communication costs. The CPU cost is incurred when performing operations
on data in main memory. The I/O cost is the time necessary for disk input/output
operations. This cost can be minimized by reducing the number of I/O operations
through fast access methods to the data and efficient use of main memory (buffer
management). The communication cost is the time needed for exchanging data between
sites participating in the execution of the query. This cost is incurred in processing the
messages (formatting/ de formatting), and in transmitting the data on the
communicationnetwork.

The first two cost components (I/O and CPU cost) are the only factors
considered by centralized DBMSs. The communication cost component is probably the
most important factor considered in distributed databases. Most of the early proposals
for distributed query optimization assume that the communication cost largely
dominates local processing cost (I/O and CPU cost), and thus ignore the latter. This
assumption is based on very slow communication networks (e.g., wide area networks
with a bandwidth of a few kilobytes per second) rather than on networks with disk
bandwidths. Therefore, the aim of distributed query optimization is simplified to the
problem of minimizing communication costs generally at the expense of local
processing. The advantage is that local optimization can be done independently using
the known methods for centralized systems. However, distributed processing
environments now exist where the communication network is much faster (e.g., local
area networks) and that can have a bandwidth comparable to that of disks. Therefore,
more recent research efforts consider a weighted combination of these three cost
components since they all contribute significantlyto the total cost of evaluating a query.
Nevertheless, in distributed environments with high bandwidths, the overhead cost
incurred for communication between sites (e.g., software protocols) makes
communication cost still an important factor as important as I/O cost. For completeness,
let us consider the methods that minimizeall cost components.

5.3 CHARACTERIZATION OF QUERY PROCESSORS
It is quite difficult to evaluate and compare query processors in the context of

both centralized systems and distributed systems because they may differ in many
aspects. In what follows, we list important characteristics of query processors that can
be used as a basis for comparison. The first four characteristics hold for both centralized
and distributed query processors, while the next four characteristics are particular to
distributed query processors.

67

5.3.1 Languages.
Initially, most work on query processing was done in the context of relational

databases because their high-level languages give the system many opportunities for
optimization. The input language to the query processor can be based on relational
calculus or relational algebra. The former requires an additional phase to decompose a
query expressed in relational calculus into relational algebra. In a distributed context,
the output language is generally some internal form of relational algebra augmented
with communicationprimitives.
The operations of the output language are implemented directly in the system. Query
processing must perform efficient mapping from the input language to the output
language.

5.3.2 Types of Optimization
Conceptually, query optimization aims at choosing the best point in the solution

space of all possible execution strategies. An immediate method for query optimization
is to search the solution space, exhaustivelypredict the cost of each strategy, and select
the strategy with minimum cost. Although this method is effective in selecting the best
strategy, it may incur a significant processing cost for the optimization itself The
problem is that the solution space
can be large; that is, there may be many equivalent strategies, even with a small number
of relations. The problem becomes worse as the number of relations increases. Having
high optimization cost is not necessarily bad, particularly if query optimization is done
once for many subsequent executions of the query. Therefore, the exhaustive search
approach is often used [Selingeret al., 1979].

One popular way of reducing the cost of exhaustive search is the use of
heuristics, whose effect is to restrict the solution space so that only a few strategies are
considered. In both centralized and distributed systems, a common heuristic is to
minimize the size of intermediate relations. This can be done by performing unary
operations first, and ordering the binary operations by the increasing sizes of their
intermediate relations. An important heuristic in distributed systems is to replace join
operations by combinationsof semijoinsto
minimizedata communication.

5.3.3 Optimization Timing 10

A query may be optimized at different times relative to the actual time of query
execution. Optimization can be done statically before executing the query or
dynamically as the query is executed. Static query optimization is done at query
compilation time. Thus the cost of optimization may be amortized over multiple query
executions.

Therefore, this timing is appropriate for use with the exhaustive search method.
Since the sizes of the intermediate relations of a strategy are not known until run time,
they must be estimated using database statistics. Errors in these estimates can lead to the
choice of sub optimal strategies.

Dynamic query optimization proceeds at query execution time. At any point of
execution, the choice of the best next operation can be based on accurate knowledge of
the results of the operations executed previously. Therefore, database statistics are not

68

needed to estimate the size of intermediate results. However, they may still be useful in
choosing the first operations. The main advantage over static query optimization is that
the actual sizes of intermediate relations are available to the query processor, thereby
minimizing the probability of a bad choice. The main shortcoming is that query
optimization, an expensive task, must be repeated for each execution of the query.

Hybrid query optimization attempts to provide the advantages of static query
optimization while avoiding the issues generated by inaccurate estimates. The approach
is basically static, but dynamic query optimization rriay take place at run time when a
high difference between predicted sizes and actual size of intermediate relations is
detected.

5.3.4 Statistics
The effectiveness of query optimization relies on statıstıcs on the database.

Dynamic query optimization requires statistics in order to choose which operations
should be done first. Static query optimization is even more demanding since the size of
intermediate relations must also be estimated based on statistical information. In a
distributed database, statistics for query optimization typically bear on fragments, and
include fragment cardinality and size as well as the size and number of distinct values of
each attribute. To minimize the probability of error, more detailed statistics such as
histograms of attribute values are sometimes used at the expense of higher management
cost. The accuracy of statistics is achieved by periodic updating. With static
optimization, significant changes in statistics used to optimize a query might result in
query re optimization.

5.3.5 Decision Sites
When static optimization is used, either a single site or several sites may

participate in the selection of the strategy to be applied for answering the query. Most
systems use the centralized decision approach, in which a single site generates the
strategy. However, the decision process could be distributed among various sites
participating in the elaboration of the best strategy. The centralized approach is simpler
but requires knowledge of the entire distributed database, while the distributed approach
requires only local information. Hybrid approaches where one site makes the major
decisions and other sites can make local decisions are also frequent. For example, R*
[Williamset al., 1982] uses a hybrid approach.

I'

5.3.6 Exploitation of the Network Topology
The network topology is generally exploited by the distributed query processor.

With wide area networks, the cost function to be minimizedcan be restricted to the data
communication cost, which is considered to be the dominant factor. This assumption
greatly simplifies distributed query optimization, which can be divided into two
separate problems: selection of the global execution strategy, based on inter site
communication, and selection of each local execution strategy, based on a centralized
query processing algorithm.

With local area networks, communication costs are comparable to 1/0 costs.
Therefore, it is reasonable for the distributed query processor to increase parallel
execution at the expense of communication cost. The broadcasting capability of some
local area networks can be exploited successfully to optimize the processing of join
operations ([Ozsoyoglu and Zhou, 1987] and [Wah and Lien, 1985]). Other algorithms

69

specialized to take advantage of the network topology are presented in [Kerschberg et
al., 1982] for star networks and in [LaChimia, 1984] for satellite networks.

5.3. 7 Exploitation of Replicated Fragments
Distributed queries expressed on global relations are mapped into queries on

physical fragments of relations by translating relations into fragments. We call this
process localization because its main function is to localize the data involved in the
query. For reliabilitypurposes it is useful to have fragments replicated at different sites.
Most optimization algorithms consider the localization process independently of
optimization. However, some algorithms exploit the existence of replicated fragments at
run time in order to minimize communication times. The optimization algorithm is then
more complex because there are a larger number of possible strategies.

5.3.8 Use of Semijoins
The semijoin operation has the important property of reducing the size of the

operand relation. When the main cost component considered by the query processor is·
communication, a semijoin is particularly useful for improving the processing of
distributed join operations as it reduces the size of data exchanged between sites.
However, using semijoins may result in an increase in the number of messages and in
the local processing time. The early distributed DBMSs, such as SDD-1 [Bernstein et
al., 1981], which were designed for slow wide area networks, make extensive use of
semijoins. Some recent systems, such as R* [Williams et al., 1982], assume faster
networks and do not employ semijoins. Rather, they perform joins directly since using
joins leads to lower local processing costs. Nevertheless, semijoins are still beneficial in
the context of fast networks when they induce a strong reduction of the join operand,
herefore, some recent query processing algorithms aim at selecting an optimal
combination ofjoins and semijoins.

70

CHAPTER6

DISTRIBUTED MULTI DATABASE SYSTEMS

6.1 DATABASE INTEGRATION
Database integration involves the process by which information from

participating databases can be conceptually integrated to form a single cohesive
definition of a multi database; in other words, it is the process of designing the global
conceptual schema.

The design process in multi database system is bottom up. In other words, the
individual databases actually exist, and designing the global conceptual schema
involves integrating these databases (which we will call local) in to a multi database.
Database integration can occur in two steps : schema translation (or simply translation)
and schema integration. In the first step, the participating local database schemas are
translated to a common intermediate (InS1. InS2,InSn) canonical representation.
Clearly, this translation is necessary only if the databases are heterogeneous and each
local schema may be defined using a different data model. The choice of a canonical
representation facilitates the translation process. It is quite time consuming to write
schema translators; estimates range from three to six months to write a translator
between two schemas. In addition, time is needed to fine-tune for real-life databases.
The use of a canonical representation reduces the number of translators that need to be
written.

.. .

...

Figure 6.1 Database Integration Process

In the second step, each intermediate schema is integrated into a global
conceptual schema. In some methodologies local external schemas are considered for
integration rather than local conceptual schemas, since it may not be desirable to
incorporate the entire local conceptual schema in the multi database.

71

Example
Consider three organizations, each with its own database definition. One of these

organizations is our engineering company, with its relational definition of its database ..
The attributes underscored are the keys of the associated relations. We have made one
modification in the relation by including attributes LOC and CNAME. LOC is the
location of the project whereas CNAME is the name of the client for whom the project
is carried out. The second organization has an employee database that is defined
according to the CODASYL network data model as given in following Figure. The third
organization is another engineering company which defines its database according to
the entity-relationship (E-R) data model.

E(ENO, ENAME, TITLE)
J(JNO, JNAME, BUDGET, LOC, CNAME)
G(ENO, JNO, RESP, DUR)
S(TITLE, SAL)

Figure 6.2 Relational Engineering Database Representation

o,SPARTMENl
11

OıEPl-NAME :, BUDGET
1-----

~

EMPLOYEE

NAMli AO DRESS rms I SALARY

Figure 6.3 CODASYL Network Definition of the Employee Database

We assume that the reader is familiar with the CODASYL network and the
entity-relation-ship data models. Therefore, we will not describe the formalisms.
However, the semantics of the last two models need some explanation. The employee
database of Figure 6.3 is a simple employee database that shows departments and the
employees that work in that department. The directed arc from the EMPLOYEE record
type to the DEPARTMENT record type represents what is called a DBTG set and
corresponds to a relationship between the two record types that it links. In this case the
DBTG set is named "Employs" and indicates a many-to-one relationship in the direction
of the arrow. In other words, a department may employ many employees, but a given
employee can belong to a singledepartment.

72

Figure 6.4 Entity-Relationship Database

6.1.1 Schema Translation
Schema translation is the task of mapping from one schema to another. This

requires the specification of a target data model for the global conceptual schema
definition. Schema translation may not be necessary in a heterogeneous database if it
can be accomplished during the integration stage. Combining the translation and
integration steps provides the integrator with all the information about the entire global
database, at one time. Obviously, the integrator can make trade offs between the
different local schemas to determine which representation should be given precedence
when conflicts arise. This requires that the integrator have knowledge of all the various
trade-offs that must be made among several different schemas and their semantics,
which may be different.

The two data models that have been studied most as candidate target formalisms
have been the relational and the entity-relationship data models. It is now commonly
accepted that a data model, which is expressively more powerful than the relational is
needed for this purpose. In that sense the E-R model is more popular and we
concentrate on translations to the E-R model to demonstrate the proces~.

CODASYL network to E-R translation is relatively straightforward. It is
accomplished essentially by mapping each record type in the CODASYL schema to an
entity and each DBTG set to a relationship.

Example
The employee database in following Figure can be translated to an E-R
equivalent by creating one entity for each record type and one relationship for
each link defined in the network schema. A straightforward translation creates
the entities EMPLOYEE and DEPARTMENT with the associated attributes and
the keys defined. The "Employs" DBTG set becomes a many-to-one relationship

73

from the EMPLOYEE entity to the DEPARTMENT entity. The final model is
depicted in following Figure.

Figure 6.5 E-R Equivalent of The Employee Database

The translation of Example is a relatively simple one because it contains only a
binary many-to-one relationship, which has a direct representation in both the network
and the E-R model. However, if the relationship is more complex (e.g., many-to-many),
the mapping is not that trivial. The CODASYL model uses dummy records in its
representation of many-to-many relationships that need to be recognized during
mappıng.

DEPARTMENT

(I:)

I ?EPARTMENT I N ~ " I EMPLOYEE I
. (c)

Figure 6.6 Mapping of a More Complicated CODASYL Schema to E-R Model

74

Translation of relational schemes to an E-R model requires consideration of each
relation's role. The first difficulty is the determination of relations that represent entities
versus those that represent relationships. In certain cases this information may be easy
to identify if there are specific relations that represent relationships as well as entities.
Otherwise, these relationships may be identified from the foreign keys defined for each
relation. Once this determination is made, the mapping is straightforward: relations that
represent entities are modeled as entities, and relations that represent relationships are
modeled as relationships.

A second difficultyrelates to the nature of the relationships. Identification of the
type of relationship (e.g., many-to-many) and relationship constraints requires that
semantic information be known about the relational implementation, since these are not
intrinsic to the relational model. This typicallyrequires consulting the system directory.

Example
The relational model of the engineering database consists of four relations, three
of which (E and J) clearly correspond to entities whereas one (G) corresponds

to a relationship. The ENO and JNO attributes of G are foreign keys,
which indicates that G is a relationship between E and J. The type of relationship
that G represents cannot be discerned from the relational schema definition.
From our knowledge of the semantics of the database, we know it to be many-to
many.

The handling of relation S is more difficult. It can be treated as an entity, in
which case it is necessary to establish a relationship between it and one of the
other entities, probably E. Even though no such relation exists in Figure 6.2, it is
possible to create a many-to-one relationship from S to E. The relationship needs
to be many-to-one since each employee can have one salary, but a salary can
belong to two employees who happen to have the same title. Another alternative
would be to treat salary as an attribute of an engineer entity. This provides a
cleaner E-R model but does not explicitly specify the relationship between the
employee titles and their salaries.

6.1.2 Schema Integration
Schema integration follows the translation process and generates the global

· conceptual schema by integrating the intermediate schemas. Schema integration is the
process of identifying the components of a database which are related to one another,
selecting the best representation for the global conceptual schema, and finally,
integrating the components of each intermediate, schema. Two components can be
related as equivalent, one contained in the other one, or disjoint.

Integration methodologies can be classified as binary and nary mechanisms.
Binary integration methodologies involve the manipulation of two schemas at a time.
These can occur in a stepwise (ladder) fashion where intermediate schemas are created
for integration with subsequent schemas, or in a purely binary fashion, where each
schema is integrated with one other, creating an intermediate schema for integration
with other intermediate schemas.

Nary integration mechanisms integrate more than two schemas at each iteration.
One-pass integration occurs when all schemas are integrated at once, producing the

75

global conceptual schema after one iteration. Benefits of this approach include the
availability of complete information about all databases at integration time. There is no
implied priority for the integration order of schemas, and the trade-offs, such as the best
representation for data items or the most understandable structure, can be made between
all schemas rather than between a few. Difficulties with this approach include increased
complexity and difficulty of automation.

E
N

J

s

OIUA

CNAM,E

(a)

RESP

M
J

..J

,, ONAME

(b)
Figure 6.7 E-R Equivalent of The Engineering Database

Iterative nary integration offers more flexibility (typically, more information is
available) and is more general (the number of schemas can be varied depending on the

76

integrator's preferences. Binary approaches are a special case of iterative nary but
decrease the potential integration complexity and lead toward automation techniques
since the number of schemas to be considered at each step

Integration Pıooess

one-;shot iıeraıive

Figure 6.8 Taxonomy of Integration methodologies

Figure 6.9 Binary Integration methods

(a) (b)

Figure 6.10 Nary Integration Methods

77

is more manageable. Integration by an nary process enables the integrator to perform
the operations on more than two views. For practical reasons, the majority of systems
utilize binary methodology, but a number of researchers prefer the one-shot approach
because complete information is available.

Schema integration occurs in a sequence of four steps: preintegration,
comparison, conformation, and merging and restructuring.

Preintegration: Preintegration is required to establish the "rules" of the
integration process before actual integration occurs. Initially, an integration method
must be selected and the schema integration order defined. The order of schema
integration implicitlydefinespriorities.

Candidate keys in each schema are identified to enable the integrator to
determine dependencies implied by the schemas. Potentially equivalent domains of
attributes [Larson et al., 1989] must be described in terms of mappings from one
representation to another. For example, degrees Celsius in one schema may be
represented in degrees Fahrenheit in another. Therefore, the mapping or transformation
rules should be described before integration begins.

Example
In the example that we are considering, integration will be performed on
intermediate schemas in E-R notation. The intermediate schemas are depicted in
Figures 6.4, 6.5, and 6.7b, which we will refer to as InSl, InS2, and InS3,
respectively.

The first decision that we will need to make is with respect to the integration
method. Without loss of generality, let us decide to use a ladder-type binary
integration method. Let us further fix the order of integration as follows: (1)
integrate InSl with InS3 first, then (2) integrate the schema generated in step (1)
with InS2

We next have to determine the identifiers (keys) of each entity in the
intermediate schemas In InS 1 these are

ENGINEER entity: Engineer No.
PROJECT entity: Project No.
CLIENT entity: Client name

for lnS2 they are
EMPLOYEE entity: E#
DEPARTMENT entity: Dept-name

and for InS3 they can be specified as
E entity: ENO
J entity: JNO

Comparison. During this phase both the naming and structural conflicts are
identified. The fundamental naming problem is that of Synonyms and homonyms, Two
identical entities that have different names are synonyms, and two different entities that
have identical names are homonyms. For example, ENGINEER in Figure 6.4 and E in
6.7b are synonyms;they both refer to an engineer entity. On the other hand, the Address
attribute in the EMPLOYEE entity in Figure 6.5 and the Address attribute of the

78

CLIENT entity in Figure 6.7 may be homonyms if one represents the full street address
and the other indicates the city. The detection and resolution of homonyms is the easier
of the two conflicts. A straightforward way of resolving them is to prefix the homonyms
by the schema or model name.

Example
The synonyms in the example intermediate databases exist only between InS1
and InS3. These are depicted in Figure 6.11, where the corresponding entries on
the same row are synonyms (e.g., Salary and SAL). The only homonym is the
title attribute that exists in all three intermediate schemas. In InSl and In S3, the
attribute refers to the title of engineers, so its domain is engineering titles,
whereas in InS2 it refers to the titles of all employees, and therefore has a larger
domain. Thus the title attributes in InS 1 and In S2 form a homonym since the
same attribute name is used to mean two different things. Similarly, the title
attributes in InS3 and InS2 also form homonyms.

EıNGINEER
ıı· En-,-~~, - sıın-!'IJ\il

Engineer Name
Salary

'1 WORKS,IN
Resı,on&ibility
Duratiorıı

PROJECTS
Ptqect No
Proi;oot Name
Location,

I!

G

@NO
'E!NAM'E
SAl

RESP
WR

JNO,
JNAME
l.OC

J

Figure 6.11 Synonyms in the Intermediate Schemas

The determination of synonyms and homonyms, as well as the identification of
structural conflicts, requires specification of the relationship between the intermediate
schemas. Two schemas can be related in four possible ways: they can be identical to
one another, one can be a subset ,,of the other, some components from one may occur in
the other while retaining some unique features, or they could be completely different
with no overlap. Determination of the type of relationship is essential in GCS design.
For example, equivalence of the schemas is important in determining,if two schemas
represent the same information, so that the most appropriate schema can be used for the
representation. Unfortunately, the identification of these relationships cannot be done
entirely syntactically;the semantics of each schema
have to be considered. Recall, for example, our discussion above with respect to the
address attribute in two intermediate schemas. Tb determine whether one attribute is
identical to the other requires knowledge about the "meaning" of the information
captured by that attribute. A further complication may be that an attribute in one schema
may represent the same information as an entity in another one. Discussion of formal
specification of these relationships is beyond our scope and we present the resolution of
such conflicts by means of an example.

79

Example:
Considering the three intermediate schemas, the following relationships can be
determined:

1. InS3 (Figure 6.7b) is a subset oflnSl (Figure 6.4).

2. Some parts of InS 1 and InS2 occur in InS2 (Figure 6.5). The part that is
common is that the ENGINEER (and E) entity instances occur as part of the
EMPLOYEE entity instances. However, the EMPLOYEE entity has many other
instances. In terms of the E-R relationships, we state that there is an IS-A
relationship between the ENGINEER (and E) entity and the EMPLOYEE entity
[i.e., ENGINEER (and E) IS-A EMPLOYEE]. Another way of thinking about
this relationship is to treat ENGINEER as a specialization or a subclass of the
EMPLOYEE entity. This means that instances of the ENGINEER entity type
comprise a subset of the EMPLOYEE entity type Therefore, ENGINEER
entities inherit the attributes of the EMPLOYE entity. Figure 6.12 depicts the
relationship. Notice that we use a circle to indicate the specialization and the
subset (c) sign to indicate which entity type is a subclass of the other. In
specialization relationships, the attributes of the EMPLOYEE entity type are
inherited by the ENGINEER entity (attribute inheritance).

Structural conflicts occur in four possible ways: as type conflicts, dependency conflicts,
key conflicts, or behavioral conflicts. Type conflicts occur when the same object is
represented by an attribute in one schema and by an entity in another schema.
Dependency conflicts occur when different relationship modes (e.g., one-to-one versus
many-to-many) are used to represent the same thing in different schemas. Key conflicts
occur when different candidate keys are available and different primary keys are
selected in different schemas. Behavioral conflicts are implied by the modeling
mechanism. For example, deleting the last item from one database may cause the
deletion of the containing entity (i.e., deletion of the last employee causes the
dissolution of the department).

Example:
We have two structural conflicts in the example we are considering. The first is a
type conflict involvingclients of projects. In the schema of Figure 6.4, the client
of a project is modeled as an entity. In the schema of Figure 6.7b, however, the
client is included as an attribute of the J entity.

The second structural conflict is a dependency conflict involving the WORKS
JN relationship in Figure 6.4 and the G relationship in Figure 6.7b. In the
former, the relationship is many-to-one from the ENGINEER to the PROJECT,
whereas in the latter, the relationship in many-to-many. The resolution of these
conflicts is the subject of the next section.

80

1

B~dget

Figure 6.12 Representation of the IS_A Relationship

Conformation. Conformation is the resolution of the conflicts that are determined at the
comparison phase. Naming conflicts are resolved simply by renaming conflicting ones.
In the case of homonyms, the simplest way of handling them is to prefix each attribute
by the name of the entity to which it belongs and to prefix each entity by the name of
the schema to which it belongs.

Example
The naming conformations in our example involve renaming of the entities,
attributes, and relationships in the schemas of Figures 6.4 and 6.7b. For
simplicity,we will rename the schema of Figure 6.7b to conform to the naming
of Figure 6.4. We will also rename the homonym title attribute in the manner
described above.

Transforming entities/attributes/relationships among one another is a tool for
handling structural conflicts. One can accomplish these transformations on an instance
by-instance basis. Figure 6.13 depicts the possible atomic transformation scenarios. The
dashed lines indicate that a given attribute is an identifier (key) of the associated entity.

81

e

(b)

••
(c)

Figure 6.13 Atomic Conformation Alternatives

A nonkey attribute can be transformed into an entity by creating an intermediate
relationship connecting the new entity and a new attribute to represent it. Figure 6.13a
depicts such a transformation of a nonkey attribute A of entity E to a separate entity that
is related to E by a many-to-many relationship and is uniquely identified by a new key
attribute, C. Figure 6. 13b illustrates a key attribute translation where a key attribute is
transformed into an entity that has an identifier C. C becomes the identifier of both the
new entity A and the entity E because the relationship between E and A is many-to-one.
Figure 6. 13c demonstrates the case where identifier A is only a part of the complete
identifier,which requires the nonstandard reference back to the originating entity.

Example:
In the example we are considering, there is one case where such a transformation
would be necessary. In Figure 6.7b the attribute CNAME is represented as an
attribute and needs to be converted to an entity using the technique demonstrated
in Figure 6.13a. The result is depicted in Figure 6.14.

Recall that there is a dependency conflict between the two schemas as well. In
this example we will resolve the conflict by choosing to accept the more general
many-to-many relationship between the ENGINEER and PROJECT entities.
Note that this is a design decision which reflects alternative semantics of
integration and results in the loss of the more restricting one-to-many constraint
between ENGINEER and PROJECT.

82

RESP

N

TITLE SAL DIUA

M

CNAME o

Figure 6.14 Attribute-to-Entity Transformation

Unfortunately, the conformation stage is virtually an art rather than a science.
Clearly, semantic knowledge about all intermediate schemas is required, which makes
automation of this process very difficult.No method has yet been shown to be complete
in the sense of being able to handle every possible conformation activity.

Merging and restructuring. If conformation is an art form, restructuring
is a black art Clearly, all schemasmust be merged into a single database schema
and then restructured to create the "best" integrated schema. Merging requires that the
informationcontained in the participating schemas be retained in the integrated schema.

Three dimensions of merging and restructuring can be defined: completeness
minimality, and understandability. Merging is complete if all the information from all
the schemas is integrated into the common schema. Tb accomplish a complete merging,
one may use sub setting a technique that describes one entity in terms of another. The
well-known concepts of generaJization and specialization are special cases of sub
setting. It is possible to devise special operators for this purpose.

A merging is non minimal when redundant relationship information is retained
in an integrated schema because of a failure to detect containment where part of one
intermediate schema may be included within another intermediate schema. Non
minimal schemas can also result from the translation process, due to the production of
an intermediate schema which itself is not minimal.

Understandability is the final dimension for determining the best schema. Once
all the elements are merged, the restructuring should facilitate an understandable
schema. Unfortunately, quantifying exactly what makes something easily understand
able is usually not possible since the concept itself is highly subjective. It may be
necessary to make trade-offs between minimality and understandability, provided that
the resulting merged and restructured schema is complete.

83

6.2 QUERY PROCESSING
Query processing techniques in multi database systems are not significantly

different from query processing in distributed database systems. This is a generalization
of the local query processing steps in centralized DBMSs, which include
decomposition, optimization, and execution. The nature ofmulti

Figure 6.15 Integrated global conceptual schema

database systems requires slightly different steps, but the fundamental techniques
remain the same.

The first thing to remember in this discussion is the nature of the multi-DBMS.
we indicated that the multi-DBMS is a layer of software that runs on top of individual
DBMSs. Each DBMS has its own query processors, which execute queries according to
the three steps listed above. In the case of distributed multi-DBMSs, there is a multi
DBMS layer at each site. Therefore, execution of distributed queries in a distributed
multi-DB volves cooperation among the various local multi-DBMSs.

84

$,st&ın -
responses

USER

System
responses:

User
cequests

Multi-DBMS La,yer Mu11i-OBMS Lay:er

r~
: OBMS DBMS DBMS DBMS

\ I v' . \ J_.., . -

Site 1 ,Siten

Figure 6.16 Structure of a Distributed Multi-DBMS

Query processing in a multi database system is more complex than in a
distributed DBMS, for the followingreasons:

1. The capability of individual DBMSs may be different, which prevents
uniform treatment of queries across multiple DBMSs and sites.

2. Similarly, the cost of processing queries may be different on different
DBMSs. This increases the complexityof the cost functions that need to be evaluated.

"
3. There may be difficulties in moving data between DBMSs since they may

differ in their abilityto read "moved" data.

4. The local optimization capability of each DBMS may be quite different. The
architecture depicted in Figure 6.16 points to an additional complexity in distributed
multi-DBMSs. In distributed DBMSs, query processors have to deal only with data
distribution across multiple sites. In a distributed multi-DBMS environment, on the
other hand, data is distributed not only across sites but also across multiple databases,
each managed by an autonomous DBMS. Thus while there are two parties that
cooperate in the processing of queries in a distributed DBMSs (the control site and local
sites), the number of parties increases to three in the case of a distributed multi-DBMS:
the multi-DBMS layer at the control site, which receives the global query; the multi
DBMS layers at the sites, which participate in processing the query; and the individual
DBMSs, which ultimatelyoptimize and execute the query.

85

6.2.1 Query Processing Layers in Distributed Multi-DBMSs
When a query is received at a site, the first thing that needs to be done is to

"split" it into sub queries based on data distribution across multiple sites. At this step it
is only necessary to worry about the placement of data across the sites, rather than its
storage across various databases. Therefore, the only information that is required is the
typical data allocation information that is stored in a global directory. The site that
receives the query and performs the splitting, called the control site, is ultimately
responsible for successful completion of the task.

Each sub query is then sent to the site where it is to be processed. The multi
DBMS layer at each site further "fragments" the query for each DBMS that it controls.
At -this stage the information within the directory is used. Each sub query is then
translated into the language of the respective DBMS. Extensive information about the
global query language and the individual languages used by the DBMSs needs to be
maintained to facilitate translation. Even though this information can be kept within the
directory, it is common to store it as an auxiliary database [Landers and Rosenberg,
19821.

The queries submitted to the individual DBMSs are processed following
decomposition, optimization, and execution steps. The decomposition step involves the
simplification of a user query that is specified in some relational calculus and its
translation to an equivalent relational algebra query over the conceptual schema. The
optimization step involves the reordering of relational algebra operations as well as
determination of the best access paths to data. The resulting schedule is then executed
by the runtime support processor.

6.2.2 Global Dictionary/Directory and Auxiliary Databases
As indicated above, specific translation information is stored in a separate

auxiliary database. There is no overriding principle that dictates separation of the global
directory from the auxiliarydatabase. In fact, there are prototype heterogeneous systems
(such as OMNIBASE [Rusinkiewicz et al., 1988], COSYS [Adiba and Portal, 1978],
ADDS [Breitbart and Paolini, 1985], and MRDSM [Wong and Bazek, 1985]) that
combine the two pieces of information into one database. We have separated them to
highlight their different functionalities and to facilitate the incremental definition of the
two databases. This separation serves to emphasize the distinction between distributed
databases and distributed multi database systems.

86

GLOBAL ,QUERY ON MULT11PLE
DATABASES AT MULTIPLE Sn'ES

oow{ ır
SPUT

SUBQUEFUES., EACH ON A SINGLE
DA.TABASEAr A SING·LE SliTE

I;

FRA.GMEN!f

MUI:.Tl,.QfBMS
;LAYE/A

AT EACH
SITE

SUSOUERIES ON: MULTIPLE DATA'BASES

TRANS.LATE AUXILılARY
ıDATABASE
""tr - - 777Pf7!

.A ,QUERY THAT CAN BE PROCESSED IBV
ONE DBMS,

DEOO.MPOSIT10N LOCAL
SCH IMA -

INOIVIDUA.
DBMSs .ALGEBRAIC 10UERY

•OPTtMlitA TION

OPTIM.ZED LOCAL QUERIES
~

Figure 6.17 Query Processing Steps in Multi database Systems

The auxiliary database contains information describing how mappings from/to
participating schemas and global schema can be performed. It enables conversions
between components of the database in different ways. For example, if the global
schema represents temperatures in Fahrenheit degrees but a participating database uses
Celsius degrees, the auxiliary database must contain a conversion formula to provide the
proper presentation to the global user and the local databases. If the conversion is across
types and simple formulas cannot perform the translation, complete mapping tables
could be located in the auxiliary database, as illustrated in the age category relations
above.

87

6.3 TRANSACTION MANAGEMENT
Transaction management is probably the major open question in multi database

systems. The challenge is to permit concurrent global updates to the underlying
databases without violating their autonomy. Most current prototypes either do not
permit updates to the local databases or execute updates off-lineand in batch mode.

In this context, transaction management can be viewed in two dimensions:
autonomy and heterogeneity. Autonomy requires that the global transaction
management functions be performed independent of the local transaction execution
functions. In other words, the individual DBMSs (more specifically, their transaction
managers) are not modified to accommodate global updates. Heterogeneity has the
additional implication that the transaction managers of each DBMS may employ
different concurrency control and commit protocols. Intuitively, heterogeneity adds
further difficulty since it becomes difficult to make uniform assumptions about the
functionality provided by individual DBMSs. However, if techniques can be found that
enable concurrent and recoverable access to local databases with minimal assumptions
about their functionality, these two dimensionsconverge into one.

6.3.1 Transaction and Computation Model
Let us first elaborate on the architectural aspects of multidatabase transaction

processing. The MDBS architecture involves a number of DBMSs, each with its own
transaction manager (called local transaction managers or LTMs) and a multi-DBMS
layer on top. The transaction manager of the multi-DBMS layer is called the global
transaction manager (GTM) since it manages the execution of global transactions.
Furthermore, in a distributed multi-DBMS, the architecture of Figure 4.10 exists at each
site. Thus our architectural model can be further abstracted as in Figure 6.18 for the
purposes of distributed transaction management.

In a multi database system, there are two types of transaction: local transactions,
which are submitted to each DBMS, and global transactions, which are submitted to the
multi-DBMS layer. Local transactions execute on a single database, whereas global
transactions access multiple databases. A global transaction is divided into a set of
global sub transactions, each ofwhich execute on one database.

GTM GJMI

ILThM

\- J 'v' \. .J
Siten

Figure 6.18 Distributed Multi-DBMS Transaction Management

88

Example:
Consider the three databases that we designed in Section 6. 1. In this example we
ignore distribution for simplicity and without loss of generality. Let us denote
the relational engineering database as 1, the CODASYL employee database as 2,
and the E-R engineering database as 3 and assume that all these databases reside
at 1 the same site. Assume that a global transaction updates the salary of "J.
Doe" by 15%. Let us denote this transaction as GTl. First note that GTl may be
specified on the global conceptual schema (if one is defined) which is specified
in Example 6. 11. This global transaction will be subdivided into three sub
transactions, each executing on one of the databases. Below we specify them
using a self-descriptivealgorithmicnotation.

GSTll: read(E.TITLE) into tempi where E.ENAME = "J.Doe"
if tempi is empty then

abort
else begin

read(S.SAL) into temp2 where S.TITLE = templ
S.SAL ~ temp2* 1.15
write(S.SAL)
commit

end
GST12: read(EMPLOYEE.SAL) into temp

where EMPLOYEE.ENAME = "J.Doe"
if temp is empty then

abort
else begin

EMPLOYEE.SAL ~ temp * 1.15
write(EMPLOYEE.SAL)
commit

end
GST13: read(ENGINEER.Salary) into temp

where ENGINEER.Name= "J.Doe"
if temp is empty then

abort
else begin •

ENGINEER.Salary~ temp* 1.15
write(ENGINEER.Salary)
commit

end

There could be other transactions that may have been submitted directly to the
individual DBMSs. For example, the following local transactions LT\ and LTs update,
respectively, the salaries of all electrical engineers in database 1 by 50% and update the
budgets ofmaintenanceprojects by $50,000 in database 3.
LTl: read(S.SAL) into temp where S.TITLE ="Elect.Eng."

if temp is empty then
abort

else begin
S.SAL ~temp* 1.5

89

write(S.SAL)
commit

end
LT2: read(PROJECT.Budget) into temp

where PROJECTName = "Maintenance"
if temp is empty then

abort
else begin

PROJECTBudget ~ temp + 50000
write(PROJECTBudget)
commit

J end
The execution of these transactions on the architectural model of Figure 6. 18 is depicted
in Figure 6. 19.

GT1

I

GT

ıLT1

LTM-1: LTM-2 LlM-3

Figure 6.19 Transaction Execution Model Example

The first condition for providing global concurrency control is to have the
individual database managers guarantee local synchronization atomicity. This means
that the local transaction managers are simply responsible for the correct execution of
the transactions on their respective databases. If serializability is the correctness
criterion used, each local transaction manager is .responsible for maintaining that its
schedule is serializable and recoverable. These schedules are made up of global sub
transactions as well as local ones. The fundamental point to watch out for here is that
the local DBMSs accept a transaction and execute it until its termination (either abort or
commit).

The second condition requires that each LTM maintain the relative execution
order of the sub transactions determined by the GTM. The global transaction manager,
then, is responsible for coordinating the submissionof the global sub transactions to the
local transaction managers and coordinating their execution. If serializability is the
correctness criterion used, the global transaction manager is responsible for the
serializability of the global transaction execution schedules. Furthermore, it is

90

responsible for dealing with global deadlocks that occur among global transactions.
Obviously, if the GTM awaits the result of one sub transaction before submitting the
next, this ordering can be maintained.

In a distributed multi-DBMS, the global transaction manager is also responsible
for the coordination of the distributed execution of global transactions. This involves a
different execution paradigm than the one used in distributed DBMSs. In the latter, the
transaction manager at the site where the transaction is submitted (called the
coordinating transaction manager) can communicate directly with schedulers at its site
and at other sites. In distributed multi-DBMSs, however, this is not possible, for two
reasons. First, individual DBMSs do not necessarily know how to communicate in a
distributed environment. The earlier discussion on the functionality of the local
transaction managers, indicates that each individual DBMS only knows how to
communicate with an application program that executes on the same machine as itself
Second, global transaction managers usually have difficulty in scheduling transactions
across multiple sites, so that it may not be feasible for them to get even more involved
with transaction scheduling across multiple DBMSs at one site. This would mean that a
global transaction manager would send a global sub transaction to another global
transaction manager at another site and expect it to coordinate the execution of the
global sub transaction. The global transaction manager at the other site may then further
decompose the transaction into global sub transactions, depending on the organization
o£ the local databases at its site. The condition that governs the execution of global
transactions states that a global transaction should have only one global sub transaction
executing at any one site.

91

CHAPTER7

DISTRIBUTED INTELLIGENT SYSTEM

The kernel of the modem industrial technology, particularly, such its
constituents as Computed Integrated Manufacturing (CEM) and Flexible Manufacturing
Systems (FMS) is Distributed Artificial Intelligence (DAI). In this chapter the concept,
construction principles, architecture, and interaction mechanisms of elements of
distributed intelligent systems for continuous industrial branches, particularly oil
refineryplants are considered.

The environment of such plants is characterized by uncertainty, imprecision,
missing and incomplete data and knowledge, and is supposed to be fuzzy and thus, the
Fuzzy Distributed Multi-Agent Intelligent System (FDIS) is considered. Its coordinating
intelligent agents are described, namely, fuzzy planning, fuzzy scheduling, dispatching,
and local on-line dynamicand other expert systems for technological processes (units).

Rules and conventions, protocols of interactions between intelligent agents, functional
models of transferring and processing distributed data and knowledge in FDIS for an oil
refinery plant are considered. Some of the experimental results of the working of the
FDIS on an oil refineryplant are given.

Modem industrial technology, particularly, its constituents such as FMS and
CEM, are based on the ideology and technique of Distributed Artificial Intelligence
(DAI). This is caused mainly by the fact that many application subjects, for instance,
industrial enterprises, particularly oil refining and petrochemical plants, are
geographically-distributed, their units and warehouses at locations remote from one
another. At the same time they must coordinate their efforts effectively.

It would not be effective to connect states of each unit globally, especially
because of real-time constraints that characterize continuous production operations.
Instead of using a centralized artificial intelligence with a single agent carrying the
global knowledge (which is usually implemented on computers with monolith
programs), it is preferable to us'e the DAI supplied multi-agent system with a proper
distribution of functions, knowledge, and resources of the "center" among intelligent
agents.

Another reason dictating the necessity of DAI follows. A number of local
intelligent systems for planning, manufacturing scheduling, technological processes
control, which at first realize the separate control functions, are created and designed.
These are "islesof intelligence"in the plant technology.

However, they lack coordination of goals, problems, and models and
compatibility and integrity of their software and hardware are absent. The above do not
allow achievementof expected system effect from making them intelligent.

One efficient method of solving the indicated problem is the creation of
distributed intelligent control system on the base of an Expert Systems (ESs) network,
which integrates in itself the autonomously functioning ESs and other systems oriented

92

to knowledge. The main task here is an efficient utilization of the global (''center") and
local (agents) knowledge, information, and computing resources and reasoning
technique to obtain an appropriate coordination in order to achieve the global goals. It
should be noted that intelligent agents often deal with incomplete, contradictory,
missing, and inaccurate data and knowledge. Furthermore, the agents have to make
decisions in uncertain situations, i. e., DAI functions in the real world with an
environment of uncertainty and imprecision. Obviously, an adequate approach to deal
with the real application subjects with such properties is fuzzy logic. In this chapter the
concepts, construction principles, architecture, elements (entity of agents) coordination
of elements (entities of agents), protocols of knowledge exchange and other immediate
problems of the Fuzzy Distributed Intelligent System (FDIS) are considered as they
related to an oil refineryplant.

In this chapter the idea of FDIS development on the basis of hierarchical
networks of fuzzy (or nonfazzy) processing nodes is suggested. In the hierarchical
structure, intelligent systems (nodes), which perform the functions of coordinator, and a
number of local systems (nodes), which implement control functions of the lower levels
of hierarchy, are defined.

The coordinator performs dual functions: on the one hand, it is an intelligent
element of a high level of control and solves functional problems on the level of
supervisor and main specialists; on the other hand, it provides interactions between local
systems. Regarding the end users of the local systems, the coordinator must provide
recognition of fuzzy queries, and perform re-addressing to the specific local system.

As a rule, the local system, which sends queries to the coordinator, has no
information about the locations and sources of needed knowledge and data.

During the knowledge communication process performed by the coordinator,
transformation of queries and responses must be provided. These are done in
accordance with accepted formalisms, used by individual intelligent systems. Thus, the
coordinator should support the functions of data and knowledge communication
protocols in the network.

Users of local intelligent systems should solve the specific problems, associated
with plant control and performance of individualcontrol functions.

The information compatibilityof different local systems must be provided by the
special unified interfaces and communication scheme. The created 'FDIS system is
characterized as a cooperative knowledge-based system, where node knowledge-based
elements are autonomous heterogeneous agents, and the rational interaction among
cooperating agents is supported.

To realize the suggested concept of fuzzy distributed intelligent system
development, the followingmain principles are defined.

1. Decomposition of intelligence. There is a need for reasonable decomposition of the
global intelligence into a set of particular intelligences during development of a
distributed control system on the basis of an intelligent systems network. Each of those

93

particular intelligences embraces a limited and specific area of problems and tasks. The
decomposition can be accomplished either by natural or artificial manner.

2. Capability of coordinating intelligences. The decomposition of intelligence,
distributed nature of knowledge control, and decision making processes require the
provision of necessary conditions for integrating particular intelligences during separate
problem solving processes. The capability of coordinating and integrating particular
intelligences allows successful decision making under conditions of information
insufficiency.

3. Non additive nature of the system's intelligence. The intelligence of the system is not
additive regarding its components' intelligences. Knowledge communication and new
knowledge generation cause the intelligent potential of the system to exceed the total
intelligence of its components.

4. Capability of information communication between nodes. In a hierarchical network
knowledge communication is performed both between the levels of hierarchy
(vertically) and between nodes of the same level (horizontally).

5. Adaptability. The network is subjected to difficult demands for the reliability and
vitality of system. It must preserve its functional capabilities. Also, the accordance s
between algorithms of control of current situations and objects' states must be provided.
AI systems, functioning in real time, forming and realizing control actions directly on
control objects, require high system reliability. In case of failure of some node,
restoration of functional capabilities of the system must be provided by
reconfiguration of structure. It is necessary to provide the mechanism of data-base and
knowledge-base updating. Double adaptation-structural and parametric-is the
necessary condition of distributed control system creating on the base of intelligent
subsystems.

6. Capability of working in multiple modes. Local systems, included in a distributed
control system, solve problems of different content and forms. Considering the entities
of problems and users' requirements, multimode working (batch processing, operative
access, real time) is necessary.

7. The open nature of FDIS. AS a rule, at the system's creation. the limited problem
area for control object is examined. During evolution of object, new problems occur,
which must be coordinated with the earlier considered problems solving, i.e. object's
development requires an adequate development of control system. Taking this into
account, the FDIS must be created as an open system with the modular structure
providing the capability of including new systems.

8. Intelligent nature of nodes. Existing nodes and nodes to be created must have their
own intelligences and be interconnected with other nodes through communication
network over their powers, competence and implemented functions.

9. Distributed nature of system. It is necessary to provide flexible distribution of
intelligent, information, and computation resources among the nodes. In order to
rationally use the computational resources of different levels of the hierarchy and
increase functional capabilities of system, it is necessary to effectively use the

94

capabilities of controllers and intelligent systems for information collecting and
processing, solving of problems, the diagnosis, and preparing information for experts on
the low level of the hierarchy. The center, using the information about free resources
and efficiency of their utilization, should solve the problem of distribution and
redistribution of intelligence and other resources.

The suggested conception and principles were used as the basis of building a
FDIS for the oil refinery plant. This fuel plant provides the complete cycle of oil
refining into the finished products: automobile petrol, diesel fuel, aviation kerosene, and
tar. The simplified technological scheme of the oil refinery plant is shown in Figure.
The primary oil refinery unit is the first section in the technological chain of the oil
refinery plant. In this unit as the result of refining the petrol fractions SB 85° C (SB
start of boiling), 85-180° C, aviation kerosene, diesel fuel, vacuum remainder, tar, etc.,
are produced. Unit ELOU-A VT is closely connected with other units of the plant.
Fraction SB 85° C is a component of petrol and fraction 85-180° C is the initial raw
material for catalytic reforming process. The vacuum remainder is utilized by the
catalytic cracking unit. Petrol fraction 85-180° C enters the

Cathalytic
~-----~ Reforming

Unit

Petrol
Fuc.85- l 80°C

Platforınal high
octane comp.

Flight fricting

Row

oil ----.

Primary oil
Rafi.nary Unit
ELOU-AUT-6

Petrol fac. 58-85°C Petrol
---------------.ı Compounding

Unit

~
Vacuum ~alytic I~ Petrol A-53
remainder Craching Flegma 1

Unit Flegma Z
I

••• Petrol A-72gas

Figure 7.1 The simplified technological scheme of the oil refinery piant.

catalytic reforming unit in order to produce from it the high-Octane component
of gasoline. The vacuum remainder of this unit enters the catalytic cracking unit.
outputs of this unit are stable, high-octane gasoline, gas, light and heavy flegma. The
efficiency of the catalytic cracking unit work essentially depends on raw material
quality. The process of gasoline mixing (compounding) is the final state of
manufacturing. For preparing different gasolines the following raw materials are used:

95

plat format from catalytic reforming unit stable high octane petrol from catalytic
cracking unit, technical isooctane (imported) petrol fraction SB 85° C from the primary
oil refineryunit.

The characteristic features of the object are close interconnections between units
where changing of the working mode of one unit influences the others modes that leads
to necessity ofmutual adjusting of working modes of interconnected units.

There are a large number of external and internal disturbances, which influence
the plant. The control decisions are made under conditions of a high degree of
uncertainty, generated by incompleteness and inaccuracy of initial information and
technological processes descriptions, fuzziness of formed goals, limitations, and
possible effects of decisions. All of the above limit an application of formal methods for
control decisions and requires the use ofFDIS.

Proceeding from the indicated specifics of oil refining, the architecture of PDIS
is defined in the form of a hierarchical network, the nodes of which are intelligent
agents (for example, fuzzy expert systems), and connections between them provide the
data and knowledge communication;~--

Cag'.

2Lag ı 2Lag ı

Lag:

Lag:

Lag:

PLANT

Figure 7.2 The architecture of FDIS.

Coordinating Agents (CAgs) coordinate the work of the bottom-level elements.
Intelligent agents of the first two levels are used for decision making and coordinating
of the plant s working modes.

Intelligent agents of the third and fourth levels are the intelligent systeıns of
information collecting and processing, diagnosing, and control of mode parameters of
dynamic objects. Agents of the given level have direct connections with executive
mechanisıns of local control objects, i.e., they perform direct control of the object's
parameters.

The third and fourth levels of this system function in real time. Decision making
on selecting rational modes and diagnosing technological processes (third level),

96

automatic control of technological processes in order to support exactly those modes
(fourth level) are dynamic problem areas; data and knowledge about them continuously
change.

Fuzzy second generation expert systems often are used as intelligent agents in
FDIS. Implementation of this architecture requires providing interconnections between
agents, i.e., implementingprocesses of communication between knowledge bases (KBs)
which use different knowledge representation; coordinating Ag working modes, i.e.,
managing knowledge flow and setting priorities of appealing to the certain agent;
removing contradictions in the knowledge of Ag network; offering to each component
of network the necessary computational resources of the system etc.

Main difficulties occur when different agents (ESs) are connected. To solve this
problem the method of complete solutions communication on the basis of unique inter
node language of information representation is suggested.

To support interrelations among agent? (ESs) the following modules have been
developed: Former (F), Adapter (A), Local Library of Processes (LLP), Global Library
ofProcesses (GLP), and Object Glossary.

The Former is intended for transforming information from the internal
representation form into representation form of inter node language.

The Adapter is intended for performing reverse functions to former ones.
r-------------------
1 COORDINATING
I
I Ag

i I f;J,P I
I •

! 111ıl GLP service ı-l _ __,.
Objects
glossary

Ag

I I
: J'--------------

program

Network
Protocols

of Ags
interacting

Figure 7.3 The scheme of queries processing.

Ag

Objects
glossary

97

The local library of processes contains meta-knowledge about knowledge of
other nodes of a given level.

The objects glossary gives the node correlations between objects of K.Bs of
network nodes, with which it communicates.

The agent which discovers lack of available knowledge for solving a given
problem (during inference) forms a query to another agent of the network. The query is
formed in the following way: Ag appeals to its LLP, which provides the required
knowledge and necessary list of objects (situations which are needed to solve the
problem are defined).

After this, Ag activates Former which forms objects list and purpose of
appealing to KB of another Ag and transforms query in accordance with (requirements
of) inter node language. Then network software (NS) is activated. By means of NS the
formed and transformed query is transferred along data communication network to Ag
receiver in accordance with developed protocols of intelligent systems interaction.

After transferring the query to node (Ag-receiver) Adapter ofthis node performs
reverse transformation of the derived query. This query in the form <objects list,
purpose> is transferred to Ag. Ag-receiver performs inference and transfers the solution
to its Former which transforms the solution into inter node language representation form
and passes it to Adapter of Ag-sender, which carries on its inference.

All nodes included into the functional structure of FDIS interact in accordance
with the described above interaction mechanism.

Each Ag (node-ES) has its functional purpose and implements some strategy of
information communication. Regarding to sender node this strategy determines when
the node must transfer information to other nodes what is type of information to be
transferred and which nodes are suitable receivers of this information. Regarding to
receiver node the strategy gives conditions of information receiving, types of received
information, suitable nodes senders and methods of local estimation of received
information.

The developed protocol öf the interaction of intelligent systems (Ags) in FDIS,
using generalized service given by levels of open systems interaction, provides
transparent communicationofknowledge between agents.

The protocol of intelligent systems interaction consists of three protocols:

• ARK agent-receiver of knowledge;
• ASK agent-sender of knowledge;

• protocol of coordination and determination of transferred knowledge semantics, which
allows intelligent systems to determine the order and rules of interaction in the cases of
used concepts and expressions in semantics coordination;

98

Protocol of distributed knowledge.

ARK ARK

ASK

ARK
processıng

Protocol of
knowledge

transferring

ASK
ASK

Figure 7.4 The protocol of the interaction of intelligent systems.

• protocol of distributed knowledge transference, which realizes the order and rules of
knowledge transference, re-reception, and delivery to user;

• protocol of distributed knowledge processing, which determines the order and rules of
agents interaction in various situations.

FDIS is implemented in the form of a local computer network (LCN) which is
an inter network. As one can see from the figure, the inter network consists of three
levels and includes two LCN s integrating hardware and software for solving the
following problems.

l.Ievel

~

~

-·-·-·-·-·---·-------·-·-·-·-·-·-·-----·-·-~---·-·-·---------·-·-------·-·-----------·-·-·-----·-·-----
2.level

dispatch.E6 LCN-1
D-NET

D-NET
scheduling

FS D-NET

3.lev..el. j Bridge I
1"'I -,..ı-eT ·-· ---------·-·--

Catalytic reform. ES
D-NET

LCN-2

D-NET D-NET
Primary oil rafinary ES Catalytic cracking. ES

Figure 7.5 Hardware implementation ofFDIS.

99

On the first level problems of planning for the whole plant are solved with the
help of the global planner.

The second level integrates computers intended for solving scheduling and
dispatching problems for workshops and with the help of ESs of scheduling and
dispatching control.

The third level of LCN integrates computers intended for solving technological
unit control problems with the help of compounding ES, catalytic cracking ES, catalytic
reforming ES and primary oil refineryES.

The LCN-1 and LCN-2 are networks with mono channel architecture in the form
of bus topology with marker methods of access to data communication media.
To LCN-1 and LCN-2 three or four IBM/PC computers are connected respectively
through network adapters of D-NET type. These networks also include terminators,
modules of access, and bridges implementedon IBM/PC computers.

100

. CHAPTERS

MODELLING OF DISTRIBUTED SYSTEM

8.1 Structure of system

Structure of system for transferring and receıvıng information between
distributed agents has shown in figure 8.1. This system performs the cargo operations
between clients. Every client has its own database and which is called agent. Agents
have connection through Internet. Using Internet every agent can know the list of
materials sending to him from different agents. Using this system the source agent
receives the list of cargos from other agents.

Let us consider transformation information between agents. Number of agents
may be more than 2 or 3. All agents have the same system. As an example let us take
two agents.

The System includes three working modes. First mode includes the list of
information (data) about clients in main database. Second regime includes the list of
coming information (list of cargos) from other agents. Third regime is designated to
connect agent to the other agents for receiving and sending information.

Figure 8.1

101

In figure s.;
(source) client. This

information including to the database of first
.ing regimes: add, delete, change or find record

102

from the database. By the clicking Report mode in figure 8.2(b) we can get the list of all
records and select a daily report for sending it to any another (second) agent.

Figure 8.3 (b)

103

Second agents using the same system in figure 8.3 (a) can get list of Database
information designated for him from first agent. By the clicking Report, in figure 8.3(b),
we can see all the records coming from first agent (other agents). It is performed by
clicking"Connection" menu in main menu. Then figure 8.4(a) appears on the screen.
Here IP address of first agents. By clicking "Connect" connection agents and
transformation of the information from first agent to second agent is performed.

Figure 8.4 (b)

When information formationis :finished figure 8.4(b) is appeared on the
screen.

104

Figure 8.5

At the same time on the "screen of first agent the information about result of
transformation is appeared (:fig.8.5).

105

The system also has additional regimes, such as chat protocols between agents
(fig.8.6). By using this regime agents can work in "Chat" mode (On line sending and
receiving messages) ..

(b)

(a)

(c)

Figure 8.6: A chat protocol for connecting to any Agent.

CONCLUSION

The increasing the variety and size of data in the industrial and nonindustrial
processes .needs the application of Distributed processing system, which allow to
increase the computational power of the system. The decentralized, partially
autonomous and redundant, nature such a system makes them less sensitive to certain
classes of faults or attacks.

In the project the main principle of Distributed system design is clarified. The
architecture. of Distributed database system, query-processing problems are considered.
The Distributed system design problem is carried out for database systems. The
structure of distributed system includes agents and coordinator (server). Server
organizes the operations of the distributed Agents (database system), information
transmission and receiving between them. The implementation of D .D.B. S. is carried
out on Visual Basic. The procedures of searching any receiving of data from agents,
information transmission between agents are developed. Developed approach allows us
to provide real time information processing and transmission between agents.

106

REFERENCES

I. [Mahmoud and Riordon, 1976] S. A. Mahmoud and J. S. Riordon, Optimal Allocation
of Resources in Distributed Information Networks. ACM Trans. Database Sysl.

....Aliev RA, Bonfıg K.W,, Aliev F.T., Aliev R.R. The Distributed Intelligent
Manufacturing System. Proc. of First European Congress on Fuzzy and Intelligent
Technologies,Part 11, Germany, Aachen, 1993,pp.229-235.

3. Aliev RA., Aliev F.T., Babaev M.D. Fuzzy Process Control and Knowledge
Engineering Petrochemical and Robotic Manufacturing. Verlag TUV Rheiland, Koln,
1991,148 p ..

4. Aliev RA., Mamedova G.A., Tserkovny A.E. Production Control Under Fuzzy
Information. Izdvo Energoatomizdat, M. 1991, 239 p.

5. [Maier and Stein, 1986] D. Maier and J. Stein. Indexing in an Object-Oriented DBMS.
InProc. S ını. Workshop on Object-Oriented Database Systems, Pacific Grove, Calif,
September 1986.

6. [Manola, 1989] F. Manola. Applications of Object-Oriented Database Technology in
Knowledge. Based Integrated Information Systems. In Notes for CRAI School on Recent
techniques fwj. Integrating Heterogeneous Databases, Venice: Venezia University, April
1989.

7. [Ozsu, 1989] M. T Ozsu. Architectural Models for Distributed Database Operating
Systems. In Computing and Information, R Janicki and W. W. Koczkodaj (eds.),
Amsterdam;North Holland, 1989.

8. [Rusinkiewicz etal-, 1988] M- Rusinkiewicz, REimasri,B. Czejdo, D. Georgakopulos,
G'Karabatis, A Jamoussi, K. Loa, Y. Li, J. Gilbert, and R- Musgrove. -QueryProcessing in
OMNI BASE-A Loosely Coupled Multi-Database System. Technical Report UH-CS-88-
05, Houston, Tex.: Department of Computer Science, University of Houston, February
1988.

9. [Ozsu, 1988] M. T Ozsu. Distributed Database Operating Systems. Technical Report
TR88-2, Edmonlon, Alberta, Canada: Department of Computing Science, University of
Alberta, February 1988.

10. [Ozsu et al., 1988] M. T Ozsu, C. Lau, Y. Li and M. F. Teo. The Architecture of
FLEX:A Distributed Database Operating System Testbed. Technical Report TR88-4,
Edmonton, Alberta, Canada: Department of Computing Science, University of Alberta,
April 1988.

11. [Rothnie and Goodman, 1977] J. B. Rothnie and N- Goodman. A Survey of Research
and Development in Distributed Database Management. In Proc. 3rd Int. Conf. on Very
Large Data Bases, Tokyo, Japan, 1977.

12. [Rusinkiewicz et al., 1989] M. Rusinkiewicz, R Elmasri, B. Czejdo, D.
Georgakopulos, G. Karabatis. A- Jamoussi, K. Loa, and Y. Li. Query Processing in a

107

Heterogeneous Multidatabase Environment. In Proc. First Annual Symp. Parallel and
Distributed Computing, Dallas, Ifex., 1989.

13. [Valduriez, 1982] P. Valduriez. Semi-Join Algorithms for Distributed Database
Machines. In Distributed Data Bases, J.-J. Schneider (ed.), Amsterdam: North-Holland,
1982.

14. [Valduriez and Boral, 1986] P. Valduriez and H. Boral. Evaluation of Recursive
Queries Using
Join Indices. In Proc. t"'irst Int. Conf. on Expert Database Systems, Charleston, SC., 1986.

16. [Valduriez and Danforth. 1989a] P. Valduriez and S. Danforth. Functional SQL
(FSQL), A SQL Upward Compatible Database Programming Language. Information

cience, An International Journal (to appear).

17. [Valduriez and Danforth, 1989b]P.VaiduriczandS.Danforlh. Query Optimization in
Database Programming Languages. In Proc. Int. Conf. on Deductive and Object-Oriented
Databases, Kyoto, Japan, December 1989.

18. [Valduriez and Gardarin, 1989] P. Valduriez and G. Gardarin. - Analysis and
Comparison of Relational Database Systems. Reading, Mass.: Addison-Wesley. 1989.

19. [Valduriez and Gardarin, 1984] P. Vatduriez and G. Gardarin. Join and Semi-join
Algorithms for a Multi Processor Database Machine. ACM Trans. Database Syst.

20. [Valduriez and Khoshafian, 1988a] P. Valduriez and S. Khoshafian. Transitive Closure
of Transitively Closed Relations. In Proc. 2ndlnt. Conf. on Expert Database Systems, L.
Kerschberg), Menio Park, Calif., BcnJamin-Cummings, 1988.

21. [Valduriez and Khoshafian, 1988b] P. Valduriez and S. Khoshafıan. Parallel
Evaluation of the transitive Closure of a Database Relation. Int. J. Parallel Prog. (February
1988), 12(1): 1942.

22. [Valduriez et al., 1986] P. Valduriez, S. Khoshafian. and G. Copeland. Implementation
Techniques 9f Complex Objects. In Proc. 11th Int. Conf on Very Large Databases, Kyoto,
Japan, August 1986. ""

23. [Verhofstadt, 1978] J. S. Verhofstadt. Recovery Techniques for Database Systems.
ACM Cornput. Surv. (June 1978),

24. [Wah and Lien, 1985] B. W. Wan and Y. N- Lien. Design of Distributed Databases on
Local Computer Systems. lEEETrans, Software Eng. (July 1985).

25. [Weihl, 1989] W. Weihi. Local Atomicity Properties: Modular Concurrency Control
for Abstract Data Types. A CM Trans. Prog. Long. Sysl. (April 1989).

108

