NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Electrical and Electronic Engineering

TRAFFIC LIGHT CONTROL WITH PLC

Graduation Project
EE 400

Student: Mehmet Kinsiz (950288)

Supervisor: Mr. Özgür C. Özerdem
T.R.N.C. - 2000

CONTENTS

ACKNOWLEDGEMENT i
ABSTRACT ii
INTRODUCTION 1
CHAPTER I 3
1.1. THE TYPES OF PLC. 3
a) PLC Size And Practise 4
b) I/O Unit. 4
c) Different I/O Units. 6
d) Analog Input/Output Unit. 11
e) CPU 11
f) Processor Memory Module 12
1.2. MEMORY DESIGN 12
a) I. Group Memories. 13
b) II. Group Memories 13
1)PROM
2)EPROM3)EAROM
4)EEPROM
1.3. PROGRAMMING DEVICES 14
CHAPTER II 16
2.1. PLC PROGRAMMING SOFTWARE 16
2.2. CREATE OF LADDER DIAGRAM 16
a) Start Command 16
b) AND and OR Exercising. 18
c) Output Stored Exercises. 18
2.3. SPECIFICATION OF EXAMINED PLC 19
a) Mitsubishi F1 20 MR 19
b) Siemens Simatic S5-90U. 20
c) AEG Teachware Modicon A020. 20
d) FESTO (FPC 202C) 21
2.4. CREATING COMMAND LINE FOR LOGIC PROCESS. 22
a) Loading Of Close And Open Contact 22
b) AND Exercise 24
c) AND NOT Exercise. 24
d) OR Exercise. 25
e) OR NOT Exercise. 25
2.5. GET COMMUNICATE OF COMMAND BLOCK TOGETHER. 26
a) Serial Contact. 26
b) Parallel Contact 26
2.6. SET AND RESET INSTRUCTION 27
2.7. SINGLE OUTPUT INSTRUCTIONS 29
2.8. JUMP INSTRUCTION 29
2.9. TIMERS 30
2.10. COUNTERS 33
2.11. SHIFT REGISTER 40
2.12. COMPUTING FUNCTION 42
CAPTER III 44
3.1. BASIC INSTRUCTION WORD 44
a) Basic Instructions 44
b) FUN (Function) Instructions 44
c) Input 45
d) Output 45
e) Internal Relay 45
f) Special Internal Relay 46
g) Timer 46
h) Counter 46
i) Reversible Counter 46
j) Shift Register 47
k) Single Output 47

1) Data Register 47
3.2. FA1J SERIES ALLOCATION NUMBERS OF SPECIAL RELAYS 47
3.3. BASIC INSTRUCTION 48
a) LOD Instructions 48
b) Input, Output, Internal and Special Relays 48
c) Timer 49
d) Counter 49
e) Shift Register 49
f) AND Instruction 49
g) OR Instruction 50
h) NOT Instructions 50
i) AND LOD Instruction 51
j) OR LOD Instruction 51
3.4. REAL TIME APPLICATIONS 51
a) Real Time PLC Fundamentals 51
b) Real Time PLC OperatingSystem. 52
c) Real Time PLC Compability 52
d) Real Time PLC I/O's 52
CHAPTER IV 53
4.1 TRAFFIC LIGHT CONTROL WITH PLC. 53
CONCLUSION 87
REFERENCES 88

ACKNOWLEDGEMENTS

I must first acknowledge some depts from my more distance past. To my parents for their support to an upwardly mobile son. To my friend Recep Kürkçü, Gökhan Ömer Evran, Bora Enis Tuğlu,Bahattin Şanlı and Ali İhsan Taşdemir for his helps.

I want to thanks separately to my teachers that during my education they support me, the Dean of Engineering Faculty Prof. Dr. Halil ISMAILOV, Head of Electrical \& Electronic Department Prof. Dr. Fakhreddin MAMEDOV and also Mr. Özgür ÖZERDEM, Mr. Kaan UYAR, Assis. Prof. Dr. Kadri BÜRÜNCÜK and Assis. Prof. Dr. Kamil DİMILLILER

And finally, I want to thanks everybody who helped and supported me to come to todays and graduated from a university.

Abstract

PLC (Programmable Logic Controllers) is a thing that programmable with computer support to take more efficiency from time and workers. It is divided into two parts. Hardware and software.

The hardware are the parts of machine those are CPU, I/O device and Programming device. CPU is basic microprocessor system and it carries out as control sensor, counter, timer function. CPU carries out stored user program in memory will input informations from various sensor circuits and can sending suitable output to commands and control circuits. I/O Module receives 120 VAC signal in device or processing device and transforms 5 VDC signal form.

There are many specialisation such as timer, counter, master control set, which works data and controls program, master control reset, JMP. There are command which are mathematics process that are comparator processes. These are the main function and feature of software part of PLC.

INTRODUCTION

In the late 1960's PLCs were first introduced. The primary reason for designing such a device was eliminating the large cost involved in replacing the complicated relay based machine control systems. Bedford Associates (Bedford, MA) proposed something called a Modular Digital Controller (MODICON) to a major US car manufacturer. Other companies at the time proposed computer based schemes, one of which was based upon the PDP-8. The MODICON 084 brought the world's first PLC into commercial production.

When production requirements changed so did the control system. This becomes very expensive when the change is frequent. Since relays are mechanical devices they also have a limited lifetime which required strict adhesion to maintenance schedules. Troubleshooting was also quite tedious when so many relays are involved. Now picture a machine control panel that included many, possibly hundreds or thousands, of individual relays. The size could be mind boggling. How about the complicated initial wiring of so many individual devices! These relays would be individually wired together in a manner that would yield the desired outcome.

These "new controllers" also had to be easily programmed by maintenance and plant engineers. The lifetime had to be long and programming changes easily performed. They also had to survive the harsh industrial environment. That's a lot to ask! The answers were to use a programming technique most people were already familiar with and replace mechanical parts with solid-state ones.

In the mid70's the dominant PLC technologies were sequencer state-machines and the bit-slice based CPU. The AMD 2901 and 2903 were quite popular in Modicon and A-B PLCs. Conventional microprocessors lacked the power to quickly solve PLC logic in all but the smallest PLCs. As conventional microprocessors evolved, larger and larger PLCs were being based upon them. However, even today some are still based upon the 2903. Modicon has yet to build a faster PLC than there $984 \mathrm{~A} / \mathrm{B} / \mathrm{X}$, which was based upon the 2901.

Communications abilities began to appear in approximately 1973. The first such system was Modicon's Modbus. The PLC could now talk to other PLCs and they could be far away from the actual machine they were controlling. They could also now be used to send and receive varying voltages to allow them to enter the analogue world. Unfortunately, the lack of standardisation coupled with continually changing technology has made PLC communications a nightmare of incompatible protocols and physical networks.

The 80's saw an attempt to standardise communications with General Motor's manufacturing automation protocol (MAP). It was also a time for reducing the size of the PLC and making them software programmable through symbolic programming on personal computers instead of dedicated programming terminals or handheld programmers.

The 90's have seen a gradual reduction in the introduction of new protocols, and the modernisation of the physical layers of some of the more popular protocols that survived the 1980 's. The latest standard (IEC 1131-3) has tried to merge plcprogramming languages under one international standard. We now have PLCs that are programmable in function block diagrams, instruction lists, C and structured text all at the same time! PC's are also being used to replace PLCs in some applications. The original company who commissioned the MODICON 084 has actually switched to a PC based control system.

CHAPTER I

1.1.THE TYPES OF PLC

In general, PLC divides to three sections;
*Central Processing unit(CPU)
*The input/output section
*The programming device

Figure.1.1.1. PLC sections
(CPU), PLC system and there are various logic circuit gates. CPU is basic microprocessor system and it carries out as control relay, counter, timer functions. CPU carries out user programs stored in memory and read input data from various sensor circuits and can send suitable outputs to commands and to control circuits.

Direct current power supply must be used for the low level voltage that these are using in processor and I/O models. This power supply is a part of CPU. PLC system is independent in its structure and also it can be dependent to its system.

I/O system forms can be connected to controller by other devices. The aim of interface is to send various signals and to take situations to external devices. The output devices for example, motor starters, solenoid valves, indicator lights connected to terminals on the output module.

The desired program loads to processor's memory by programming device or terminal. This program can enter to relay during using ladder logic. Program can be obtained till the main control or machines by sequential processes.

a) PLC size and practice:

There are 3 different categories of PLC; as small, medium and large.
*In small group category, PLC has bigger than input/output of 128 I/O and bigger than memory of 2 KB .
*In medium group category, PLCs have bigger than memory of 32 KB and 2048 I/O. Special I/O module provide easily adaptation in process control practice, analog functions like temperature, press, current, weight and position.
*In large category, PLCs have bigger than 750 KB memory and bigger than input/output of $8192 \mathrm{I} / \mathrm{O}$. This group is for unlimited practice to give force

Nowadays, PLCs are used in all area of industry along in chemistry, automotive industry production of steel and paper factory.

b) I/O unit:

I/O unit forms is the input/output rack of PLC. I/O unit receives 120 Vac signal in device or processing devices and transforms 5 Vdc signal form. In output units controller signals $(5 \mathrm{Vdc})$ are used to devices or processor control as 120 Vac. These output signals provide low current control that used in power electronic elements or optic isolators. Input/output unit in PLC can be put in the same structure or different structure with CPU. This standard input/output unit is in the following shape.

Figure. 1.1.2. In the same structure CPU with PLC I/O unit

Between processor and I/O rack communication different connection cables are permitted. This condition is as the following figure 1.1.3.

Figure.1.1.3 Between Processing I/O Racks communication

I/O units each input/output has a special address. These addresses are known by the processor. To connect output/input an element with I/O or separating is very easy and quick. Furthermore to change with an another module is very easy. ON/OFF condition of I/O circuit each module shows with light. Many output modules have rubbish fuse indicator.

c) Different I/O units:

Many output I/O units are from this type and most useful is interface module. This type interface provides to link of inputs as selector switches push buttons and limits switches. However, output control lights small motor solenoids sensor and motor starters limit it. Which have ON/OFF contacting control. Each different I/O module takes its power from common voltage sources. These voltages can be different size and type. These are showed in the following table.

Figure. 1.1.4 AC input interface block diagram

Shows that entries block diagram for an alternative current to input module. Input circuit compose of to main section as power and logic section.

Figure.1.1.5. Simplified Circuit For a AC Module

Figure. 1.1.6. Linking To PLC Input Unit of 220 V Input

Figure 1.1.4 and 1.1.5 shows figural diagram of Ac input module for input, also figure 1.1.6 shows connect terminal.

When push button shuts down, bridge type treatment exercise 220 V AC voltage from R_{1} and R_{2} resistance's.

Zener diode (ZD) voltage limit regulates according to low level voltage.
When light come to processor from led with phototransistor that means low level voltage ($\mathrm{SV}^{\prime} \mathrm{dc}$) is transmitted.

Optic isolator separates high AC voltage from logic circuits also protects to processor from damages, which comes from temporary line voltage change.

Furthermore, optic isolator protects to processor from effect of electrical noise.
Kuplaj and isolation can be created with using a pulse transformation.

Figure. 1.1.7 typical a block diagram of output interface module.

Figure. 1.1.7 shows typical a block diagram of output interface module. Also output module, as input module, composes of two departments such as power and logic.

Device in output is controlled by the 5 V comes from logic unit. In this unit, processor sets output conditions.

When processor, led, in optic isolator, distributing light exercises an output voltage ($5 \mathrm{~V}^{\prime}$ dc), however, phototransistor is switching and conducting. This means that to detect and conduct of triac, and lamp, that uses as output element, turn on ON condition.

When led in logic unit turn off, logic become 0 condition and phototransistor cannot conduct. If a DC device in output will be controlled, it is carried with circuit.

PLC device will not be damaged from optic isolation that will be from power department.

If many high fast ON-OFF is necessary, in right current transistor and also alternative current triac circuits are used. Current cannot pull on PLC from output modules. Maximum current capacity of each device exists in their catalogs of that model.

In high currents instead of triac or other effect elements, standard relay must use as table 6. There are output/input unit as analog/digital translator (ADC) and digital/analog translator (DAC) that it is necessary for feedback control exercises in PLC devices.

Figure. 1.1.8 Simplified circuit of an AC output module.

Figure. 1.1.9 Internal wire connection typical an output module

Figure. 1.1.10 Sensor connection points

Figure. 1.1.11 Symbols of output control circuit

d) Analog input/output unit (I/O modules):

First produced PLCs only had been limited with separate I/O interfaces which had been allow to link to ON/OFF device. Because of this limitation many of processing exercises could be as part controlling by PLC. Also in days PLCs included analog interface and separate (I/O) input/output interface, which carries out practically many of control process. An analog input module takes analog current and voltage that is taken off analog input and it changed to digital data form by an Analog Digital Converter (ADC). In this condition turning levels are shown as 12 -bit binary or 3 digit BCD that is rates with analog signal. Analog sensor elements are transducers as heat, light, velocity, pressure, and wet sensors. All these sensors can be linked to analog input

Analog output interface module takes digital data from processor, charges rate with voltage and current and controls a device as analog. As a whole digital data passes from Digital/Analog output device are small motors, valves and analog measure devices.

e) CPU (Central Processing Unit):

Central Processing Unit provides to communicate between power supply and processor memory modules. In figure 1.2 .12 b it can find covered both of two units.

CPU statement is often used as mean of processor statement. Processormemory creates a big unit of CPU, which is programmable brain of controller. In this unit, there are microprocessor, memory chips, information reading and request data from memory, programming device and communication circuits, which is necessary for processor.

Development of PLC is parallel with increasing especially of CPU. In our day PLC systems carry out logic processing furthermore they have some especially such timer, counter, data storing, main addition-subtraction, multiplication-division processes, compare processes, code converter processes.

Figure. 1.1.12 CPU; the elements of central processing unit (a) the structure of simplified CPU (b) power supply unit different from CPU.

f) Processor-Memory Module:

CPU is the brain of programmable of controller and a big part of CPU family forms from processor memory unit. This module cover microprocessor, memory chips programming device and necessarily communication circuits for processor interface.

Furthermore processor carries out other functions. For example, it carries out timer, counter, compare, keeper and addition, subtraction, multiplication and division functions, which are four main functions of mathematics.

1.2. MEMORY DESIGN

Memory is used to store data. This stored information is related with which output sign will be store as, which shows input, and the structure of program necessary amount of memory. It stores special information parts, which is named as memory bit. 1 byte $=8$ bit, 1024byte $=1$ kbyte and the number of memory capacity is stated these units.

The memory types are divided into two groups;

The first group: the energy of power supply is cut that supplied memory, it means that memory had been erased. Also second group: hide information cannot lose if the energy is cut. But to change of includes of those types of memories, there is a necessary a special system,

a) I. Group Memories:

First group memories are Random Access Memory (RAM) and Read/Write (RIW). In these types memories if the energy is cut, the information is lost. If RAM is supplied program can be stored by battery that battery is in PLC device. When battery energy finishes, program will be erased.
b) II. Group Memories:

It is Read Only Memory (ROM). The type memory can be erased and programmable. It is divided four into groups;

1) PROM (Programmable Read-Only Memory): it is a special type of ROM. PROM memory allows to writing of information in chip, these information are provided or there were at the beginning. The information can be written into ROM only one time.

The main disadvantage of PROM is no erasable and no Programmable. In PROM programming is doing as dissolve and pluck logic, for this reason, the erasing of erasable connections is process that there is no to turn back. For this reason, firstly all mistake control process must be finished.
2) EPROM (Erasable Programmable Read-Only Memory): this type is the memory type that is used in PLC devices. Written programmable firstly, is store in EPROM memory and is sent central processing unit.
3) EAROM (Electrically Alterable Read-Only Memory): It is like EPROM memory, but to erase and ultraviolet light supply is not necessary. EAROM chip to clean by erasing, an eraser voltage is exercised to suitable pin. When chip erases one time, it can be programmed again.
4) EEPROM (Electrically Erasable Programmable Read-Only Memory): In EEPROM memory type, when energy is cut, information cannot lose as EPROM. Special device is not necessary in writing and erasing processing. EEPROM or EPROM memories that are mounted to PLC make runs as stored program into records.

Data table stores information's, that are necessary to carry to the program, which includes information's such as output and input conditions, timers, and counter results and data records. Includes of table is divided two groups as conditions data and numbers (or codes) 0 and 1 conditions are ON/OFF conditions of information that records the place of bit. Data table is divided 3 sections. Input view table stores the condition of digital input that relations input interface circuits. As ON/OFF condition, in this unit results of input are stored as zero (0) or one (1).

Output view memory is order of bits that control the digital condition of devices which links interface of output. The logic conditions of output units are stored in this memory and it is taken from this logic level memory and transfers to output unit.

1.3. PROGRAMMING DEVICES

The most important one of features of programmable controller is to have programming elements, which are useful. Programming device provides transformation between operator and circuit of controller. (Fig. 1.3.1)

Figure. 1.3.1. Transformation of PLC Circuits

Programming terminal relation between PLC memory and monitor. User sends programming device and PLC control program to device.

Generally, industrial CRT terminals in many devices are used for programmable controllers. These terminals include indicator units, keyboards and CPU and they provide to communicate necessary order.

The advantage of CRT is to check program is easily on monitor.

In small PLCs programming is used cheap, moveable, small and mini programmable devices. The monitor of this type of programming monitor is liquid crystal screen instead of CRT tube, which name LCD. On mini program there are LCD monitor program coding keys and special functions keys. FA2 of programming device IDEC FA1 Junior module is shown at table 1.3.2.

Figure. 1.3.2. Programming Device of IDEC FA-1 PLC.

CHAPTER II

2.1. PLC PROGRAMMING SOFTWARE

In this section, PLC programming fundamental is prepared, student's capacity, which met PLC programming, is considered first time.

AND

OR
NOT
NAND
NOR
SET
RESET

Furthermore there are many specialisations such as TIMER, COUNTER, and MASTER CONTROL SET (MCS), which works data and controls PROGRAM, MASTER CONTROL RESET (MCR), JMP. There command which are mathematics process that are comparator processes $(=,<,>)$.

In all PLC systems, to create logic process is programmed as the same are carried out some function. However, the main logic is the same that TIMER, COUNTER and SHIFT REGISTER functions are to get command and programmed but there can be some differences.

2.2. CREATE OF LEADER DIAGRAM

a) Start Commands:

These commands are first element of program. There are two type contact conditions as at table 2.2.1. First normally is open also second close.

Normally, starting with open contact this program command is to get command as LD IN, LD, LOD A, on PLC device. And also close contact is stated as LDI, LD NOT, LOD NOT, AN.

LADDERSYMBOL	COMMAND LINE					
	IDEC	FESTO	AEG	Mitsubishi	Siemens	OMRON
	LOD F	LD FLAGF LD IN F	UF	LD F	AF	LD F
	$\begin{aligned} & \text { LOD } \\ & \text { NOT F } \end{aligned}$	LD NOT FAGF LD NOT IN F	UN F	LDI F	AN F	$\begin{aligned} & \text { LD NOT } \\ & \mathrm{F} \end{aligned}$

Table 2.2.1. Load Exercising

Note: in table F value is constant and input/output interval relay, special relay, timer, counter can be SFR number.

According to this table at MITSUBISHI and HITACHI model normally open contact is shown with LD, also close contact is shown with LDI.

Also at AEG PLC, U (UND) command is used for open contact and (UN) UND-NICHT command is used for closed contact.

Also at SIEMENS PLC, A (AND) command is used to open contact and AN (AND-NOT) is used for closed contact.

At OMRON PLC, open contact is shown LD, also close contact is shown with LD NOT.

Also at FESTO PLC, open contact LD FLAG is used for flag load other conditions LD IN command is used to contact load. In normally, also close contact is programmed for flag exercising as LD NOT FLAG... For other contacts are programmed as LD NOT IN...

b) AND and OR Exercising:

Table 2.2.2: Symbol and command line AND and OR exercises.

c) Output Stored Exercises:

At a PLC system relay, it is used as output function, can be divided into two groups. First group output which charge can be linked to it according to program as (solenoid valves, neon lamb, conductor, led, etc.) are real output. Also second group outputs are internal and image relays. Physical connection cannot link to these relays but outputs of these sensors are transferred to real output and output can be taken.

If commands will be observed, there are similarities between PLC devices that output program commands are different. At both output and input functions, X1, X2, are used as addresses.

Figure.2.2.3.

2.3. SPECIFICATION OF EXAMINED PLC

a) Mitsubishi F1 20 MR

ELEMENT	Symbol	F1 20MR
(Tnfuul.e)	X	12 Unit $400-413$
(Sutputs)	Y	(3) Unit $430 \quad 43$ \%
(Timers 0.15	T	24 Unit $50-57.450-4 \overline{5} \frac{1}{4}$
('limeri0.01s	\uparrow	3 Unit 6.50-657
(Counters)	c	30 Unit 60-47, 460-46?
(Bis speed counter)	0	2 Uxit 6K0-661
(Internal Relay)	M	54 Uxit 10-157
(Special Interninl kelay:	M	$\begin{aligned} & 16 \text { Unit } \\ & 70-77: 470 \cdot 473: 570-575 \end{aligned}$
Battery of Feeding Sensor	M	64 Unut 306- 3 37
(Wumpa)	M	164 Unit $700-777$

Table 2.3.1: table of element and element numbers

F1		10FR
X	4 Unit	$414-417$
Y	6 thit	$440-44 \overline{1}$

Table 2.3.2. Increasing unit

F1 20 MR PLC as 12 inputs 8 outputs, which we use. If more input and output are necessary, input/output-increasing units are plugged to PLC. These units have various numbers output and input. At table 2.3.1, there are 4 inputs 6 outputs for F1 10 ER model.
b) Siemens Simatic $\mathbf{S 5 - 9 0 U}$

Element Name	ELEMENT ADRESS
(Input)	10.0-1127.7
(Outpue)	Q00.Q127.7
¢Flag!	iretentive) FO.0.. F 6 (th. 7
(Flag)	
Accunulator	ACCUM1 ACCLEME
Timer	T0-T31
(Counter)	$\begin{aligned} & \text { (retentive) } \mathrm{CO}-\mathrm{CT} \\ & \text { (nonrentrentive) } \mathrm{CR}-\mathrm{CO} \end{aligned}$
K13	(Cumatanl) 1 byte $0-255$
KC	(Constant count) 0-499
K ${ }^{\text {P }}$	(Tammaylart - 32768 132767
KF	(Heksedesimal; 0 - HFFF'
KI	(2 byte) 0.255 (her hit)
KT	(Timer) 0.0-900.3
fir	(Function blocki 0 63
DB	(Data block) 2 - 6 bi [9, 10]

Table 2.3.3: Specifications of S5-90U model Siemens Simatic.

c) AEG Teachware modicon A020

Operand Type	Operand	Unit
(inpuls)	E1-E24	24
(oatpula)	A1-A16	16
Analug Input	EWH 1- EWA 4	4 analog
Anslog Output	AWA 1	1 analog
Memory	M1-M128	128 Unit
Timer	TE-T16	16 timer
Counter	ZI-216	16 Counter

Table 2.3.4. Specifications of AEG Teachware A020
d) FESTO (FPC 202C)

TOTAL UNIT	PARAMLETERS	STMBOL	EXPLLANATION
16	Internal inpuks	[0.X tand]] ${ }^{\text {d }}$	$\begin{aligned} & \text { innput } 0.0 .0 .7 \\ & 1.0-1.7 \end{aligned}$
2	Internal haif-wuris	TW0 and IW1	2 Unit
16	Internal outputs	6 O.X and O $1 . X$	Output 0.0.0.7 $1.0-1.7$
2	Intermal ualput hall-wuril:	OWO and OWY	2 Uthit
266	Filage	F0.Y to FIE.Y	$\begin{aligned} & \text { Fags: } 0.0 \quad 0.15)(1.0-1.15) \\ & (2.0-2.15) \ldots \ldots(15.0)-15.15) \end{aligned}$
16	Flers worde	FW0 ts WN15	1 18 Unit Present
1	Taitiglization Flas	FI	1
24	Sprecial function unity	FUu to FuJ2\%	24 -
16	Fiold bus thag words	FU32 to PLi47	16
32	Timera	Tota TSt	$32-$
32	Timer wards	TW0 to TW31	$32 \sim$
32	Counters	CH Lo CS1	32
32	Cocuntuers words	CWO to C:HPAL	32 -
32	Countera presel	CWO to CW31	$32-$
64	Rexiatars	0 ta R68	64 -
R	programa	P ¢ to P 7	8 -
R	progfuneriom ravalus	B0 U 4 B7	H
1	Errors	E	$1-$
1	Errur word	EW	1
48	External inputs	I 2X to I $7 . X$	input (2.0-2.7) (9.0-3.7) $\ldots .(7.0 . . .7,7)=$ Tup. 48
\ldots	External input wordis	1W'2 to IH\%	6
46	Fxtarual output	O2.X to 0'\%.	$\begin{aligned} & \text { Qutput (2.0...2.7)... } \\ & (8.0, \ldots . .7) \ldots \text { (7.0...7.7) } \end{aligned}$
6	External sutput words	OW2 tn CuF	6

Table 2.4.8 Specification of FESTO (FPC 202C) Module PLC

In this table, $x=(0,1,2,3,4,5,6,7)$ and $y=(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)$
are.

2.4. CREATING COMMAND LINE FOR LOGIC PROCESS

Each process in PLC programming is stated by a command and these commands provides connections of relay and contacts together, designations of outputs, counter, programming of timers and making of arithmetic comparison processes.

In our days, to experience PLC device of all firms are very hard. We will experience five brands. These brands are enough for us.

BRAND

1) IDEC
2)FESTO
3)MITSUBISHI
2) SIEMENS-SIMATIC
3) AEG TEACHWARE

MODEL

FA1-JUNIOR (FA1J)
202-C
F120 R
S5-90U
MODICON A020
a) Loading of Open and CloseContact:

Normally open contact

LOD (LOAD)-IDEC
LD IN (LOAD)-FESTO
LD (LOAD)- MITSUBISHI
A (AND)- SIEMENS-SIMATIC
U (UND)-AEG

Normally close contact

LOD NOT (LOAD NOT)-IDEC
LD NOT IN (LOAD NOT)-FESTO
LDI (LOAD INVERSE)- MITSUBISHI
AN (AND NOT)- SIEMENS-SIMATIC
UN (UND NICHT)-AEG

MITSUBISHI

In here, commands for giving different brand and module normally. Explain to designation of contact and contact numbers are written after command.

In AEG and Siemens PLC, a load command is not used in Siemens Module, open contact command normally is load written A (AND), load process is relazing with AN (AND NOT) command.

In AEG module U (UND) and UN (UND NOT) commands are used for load process. As we know that these commands are used to serial AND and AND NOT exercises.

b) AND exercise:

Serial contact linking commands

AND	-(IDEC)
AND IN	-(FESTO)
AND	-(MITSUBISHI)
A(AND)	-(SIEMENS-SIMATIC)
U (UND)	-(AEG)

c) AND NOT exercise:

Serial contact linking commands

AND NOT	-(IDEC)
AND NOT IN	-(FESTO)
AND	$-($ MITSUBISHI)
A(AND)	-(SIEMENS-SIMATIC)
U (UND)	$-($ AEG $)$

SIEMENS SIMATIC

d) OR exercise:

Parallel contact linking commands

OR	$-($ IDEC $)$
OR	$-($ FESTO $)$
OR	$-($ MITSUBISHI $)$
O(OR)	$-($ SIEMENS-SIMATIC $)$
O(ODER)	$-($ AEG $)$

e) OR NOT exercise:

Parallel contact linking commands

OR NOT	-(IDEC)
OR NOT	-(FESTO)
ORI(OR INVERSE)	-(MITSUBISHI)
ON(OR NOT)	$-($ SIEMENS-SIMATIC)
ON(ODER NICHT)	-(AEG)

2.5. GET COMMUNICATE OF COMMAND BLOCK

TOGETHER

a) Serial Contact:

Serial contact

AND LOD	-(IDEC)
AND LD	-(FESTO)
ANB (AND BLOCK)	-(MITSUBISHI)

A(..............	-(SIEMENS)

U(.............. -(AEG)
b) Parallel Contact:

OR LOD -(IDEC)

OR LD -(FESTO)
ORB (OR BLOCK) -(MITSUBISHI)

2.6 SET AND RESET INSTRUCTION

If any of the OFF position relay (eg. Input, output register and internal relay) pass the ON position that is from logic 0 to logic 1. Pass instruction called SET command. RESET command is opposite of SET command that is ON position to OFF position, from logic 1 to logic 0 .

Another peculiarity of SET and RESET instructions for working instructions input must be control with relay. It does not require any continuos signal or stroke. That means SET relay always logic 1 position with input relay. If input relay done OFF position does not effect setted relay while that RESET command come.

IDEC

0	LOD	1
1	SET	210
2	LOD	400
3	RST	210
4	END	

SIEMENS

$\begin{array}{ccc}\mathrm{A} & \mathrm{I} & 127.0 \\ \mathrm{~S} & \mathrm{Q} & 127.7 \\ \mathrm{~A} & \mathrm{I} & 127.1 \\ \mathrm{R} & \mathrm{Q} & 127.7\end{array}$
BE

11270

1127.1

Q127.7

2.7.SINGLE OUTPUT INSTRUCTIONS

Our aim is make ON position, on scan time length. With these aim we use two different relays. First one is which makes control, other one is where we take output. The important point is; while controlling relay passing OFF position to ON, where output relay is 1 scan time length mould pass ON position to OFF. It is unimportant that controlling relay is protecting ON position. When the OFF position relay pass to ON position, we take 1 scan time length from output relay.

2.8. JUMP INSTRUCTION

Source peculiarity with JUMP instruction; determined program line or lines makes possive position that jumped by some condition, or conditions. Provided jumped relay is time of the ON position of JUMP command.

MITSUBISHI

CJP (Conditional Jump)
EJP (End of Jump)

Note: JUMP instructions are between 700-777

Above program is between the 1. and 2. Programs because of using JUMP instruction, 400-numbered input relay when passed logic 1 position, JUMP instruction come to active condition and 2. program jumped 3. program, and 3. program started to work. Because after the EJP, JUMP ending operation instruction.

With 401 numbered input came logic 1 (ON) jumping operation starts and from CJP 700 until EJP 700 line program line jumps.

Jumping operation goes when X401 OFF. When X401 OFF done program return to work normally and scan operation works line by line.

While X401 OFF position, JMP function does not work. The important point is; before CJP instruction, EJP used must go to last EJP operation. Others will be invalid.

2.9 TIMERS

Let's now see how a timer works. Its exactly what the word says... it is an instruction that waits a set amount of time before doing something. Sounds simple doesn't it.

When we look at the different kinds of timers available the fun begins. As always, different types of timers are available with different manufacturers. Here are most of them:

On-Delay timer-This type of timer simply "delays turning on". In other words, after our sensor (input) turns on we wait x -seconds before activating a solenoid valve (output). This is the most common timer. It is often called TON (timer on-delay), TIM (timer) or TMR (timer).

Off-Delay timer- This type of timer is the opposite of the on-delay timer listed above. This timer simply "delays turning off". After our sensor (input) sees a target we turn on a solenoid (output). When the sensor no longer sees the target we hold the solenoid on for x -seconds before turning it off. It is called a TOF (timer off-delay) and is less common than the on-delay type listed above. (i.e. few manufacturers include this type of timer)

Retentive or Accumulating timer- This type of timer needs 2 inputs. One input starts the timing event (i.e. the clock starts ticking) and the other resets it. The on/off delay timers above would be reset if the input sensor wasn't on/off for the complete timer duration. This timer however holds or retains the current elapsed time when the sensor turns off in mid-stream. For example, we want to know how long a sensor is on for during a 1 hour period. If we use one of the above timers they will keep resetting when the sensor turns off/on. This timer however, will give us a total or accumulated time. It is often called an RTO (retentive timer) or TMRA (accumulating timer).

Let's now see how to use them. We typically need to know 2 things:
What will enable the timer. Typically this is one of the inputs. (a sensor connected to input 0000 for example)

How long we want to delay before we react. Let's wait 5 seconds before we turn on a solenoid, for example.

When the instructions before the timer symbol are true the timer starts "ticking". When the time elapses the timer will automatically close its contacts. When the program is running on the plc the program typically displays the elapsed or "accumulated" time for us so we can see the current value. Typically timers can tick from 0 to 9999 or 0 to 65535 times.

Why the weird numbers? Again its because most PLCs have 16 -bit timers. We'll get into what this means in a later chapter but for now suffice it to say that 0-9999 is 16 -bit BCD (binary coded decimal) and that 0 to 65535 is 16 -bit binary. Each tick of the clock is equal to x-seconds.

Typically each manufacturer offers several different ticks. Most manufacturers offer 10 and 100 ms increments (ticks of the clock). An "ms" is a mili-second or 1/1000th of a second. Several manufacturers also offer 1 ms as well as 1 second increments. These different increment timers work the same as above but sometimes they have different names to show their time-base. Some are TMH (high speed timer), TMS (super high speed timer) or TMRAF (accumulating fast timer).

Shown below is a typical timer instruction symbol we will encounter (depending on which manufacturer we choose) and how to use it. Remember that while they may look different they are all used basically the same way. If we can setup one we can setup any of them.

This timer is the on-delay type and is named Txxx. When the enable input is on the timer starts to tick. When it ticks yyyyy (the preset value) times, it will turn on its contacts that we will use later in the program. Remember that the duration of a tick (increment) varies with the vendor and the time-base used. (i.e. a tick might be 1 ms or 1 second or...)

In this diagram we wait for input 0001 to turn on. When it does, timer T000 (a 100 ms increment timer) starts ticking. It will tick 100 times. Each tick (increment) is 100 ms so the timer will be a 10000 ms (i.e. 10 second) timer. 100 ticks $\mathrm{X} 100 \mathrm{~ms}=$ $10,000 \mathrm{~ms}$. When 10 seconds have elapsed, the T000 contacts close and 500 turns on. When input 0001 turns off(false) the timer T000 will reset back to 0 causing its contacts to turn off(become false) thereby making output 500 turn back off.

This timer is named Txxx. When the enable input is on the timer starts to tick. When it ticks yyyyy (the preset value) times, it will turn on its contacts that we will use later in the program. Remember that the duration of a tick (increment) varies with the vendor and the time-base used. (i.e. a tick might be 1 ms or 1 second or...) If however, the enable input turns off before the timer has completed, the current value will be retained. When the input turns back on, the timer will continue from where it left off. The only way to force the timer back to its preset value to start again is to turn on the reset input.

In this diagram we wait for input 0002 to turn on. When it does timer T000 (a 10 ms increment timer) starts ticking. It will tick 100 times. Each tick (increment) is 10 ms so the timer will be a 1000 ms (i.e. 1 second) timer. 100 ticks $\mathrm{X} 10 \mathrm{~ms}=1,000 \mathrm{~ms}$. When 1 second has elapsed, the T000 contacts close and 500 turns on. If input 0002 turns back off the current elapsed time will be retained. When 0002 turns back on the timer will continue where it left off. When input 0001 turns on (true) the timer T000 will reset back to 0 causing its contacts to turn off (become false) thereby making output 500 turn back off.

2.10. COUNTERS

A counter is a simple device intended to do one simple thing - count. Using them, however, can sometimes be a challenge because every manufacturer (for whatever reason) seems to use them a different way. Rest assured that the following information will let you simply and easily program anybody's counters.

What kinds of counters are there? Well, there are up-counters (they only count up 1,2,3...). These are called CTU,(count up) CNT,C, or CTR. There are down counters (they only count down $9,8,7, \ldots$). These are typically called CTD (count down) when they are a separate instruction. There are also up-down counters (they count up and/or down $1,2,3,4,3,2,3,4,5, \ldots$) These are typically called UDC(up-down counter) when they are separate instructions.

Many manufacturers have only one or two types of counters but they can be used to count up, down or both. Confused yet? Can you say "no standardisation"? Don't worry, the theory is all the same regardless of what the manufacturers call them. A counter is a counter is a counter...

To further confuse the issue, most manufacturers also include a limited number of high-speed counters.

High-speed Counter :

Typically a high-speed counter is a "hardware" device. The normal counters listed above are typically "software" counters. In other words they don't physically exist in the plc but rather they are simulated in software. Hardware counters do exist in the plc and they are not dependent on scan time.

A good rule of thumb is simply to always use the normal (software) counters unless the pulses you are counting will arrive faster than 2 X the scan time. (i.e. if the scan time is 2 ms and pulses will be arriving for counting every 4 ms or longer then use a software counter. If they arrive faster than every 4 ms (3 ms for example) then use the hardware (high-speed) counters. ($2 \times$ scan time $=2 \times 2 \mathrm{~ms}=4 \mathrm{~ms}$)

To use them we must know 3 things:
Where the pulses that we want to count are coming from. Typically this is from one of the inputs.(a sensor connected to input 0000 for example)

How many pulses we want to count before we react. Let's count 5 widgets before we box them, for example.

When/how we will reset the counter so it can count again. After we count 5 widgets lets reset the counter, for example.

When the program is running on the plc the program typically displays the current or "accumulated" value for us so we can see the current count value.

Typically counters can count from 0 to $9999,-32,768$ to $+32,767$ or 0 to 65535 . Why the weird numbers? Because most PLCs have 16 -bit counters. We'll get into what this means in a later chapter but for now suffice it to say that $0-9999$ is 16 -bit BCD (binary coded decimal) and that $-32,768$ to 32767 and 0 to 65535 is 16-bit binary.

Here are some of the instruction symbols we will encounter (depending on which manufacturer we choose) and how to use them. Remember that while they may look different they are all used basically the same way. If we can setup one we can setup any of them.

In this counter we need 2 inputs.
One goes before the reset line. When this input turns on the current (accumulated) count value will return to zero.
The second input is the address where the pulses we are counting are coming from.
For example, if we are counting how many widgets pass in front of the sensor that is physically connected to input 0001 then we would put normally open contacts with the address 0001 in front of the pulse line.

Cxxx is the name of the counter. If we want to call it counter 000 then we would put "C000" here.
yyyyy is the number of pulses we want to count before doing something. If we want to count 5 widgets before turning on a physical output to box them we would put 5 here. If we wanted to count 100 widgets then we would put 100 here, etc. When the counter is finished (i.e we counted yyyyy widgets) it will turn on a separate set of contacts that we also label Cxxx.

Note that the counter accumulated value ONLY changes at the off to on transition of the pulse input.

Here's the symbol on a ladder showing how we set up a counter (we'll name it counter 000) to count 100 widgets from input 0001 before turning on output 500 . Sensor 0002 resets the counter.

Below is one symbol we may encounter for an up-down counter. We'll use the same abbreviation as we did for the example above.(i.e. UDCxxx and yyyyy)

In this up-down counter we need to assign 3 inputs. The reset input has the same function as above. However, instead of having only one input for the pulse counting we now have 2 . One is for counting up and the other is for counting down. In this example we will call the counter UDC000 and we will give it a preset value of 1000. (we'll count 1000 total pulses) For inputs we'll use a sensor which will turn on input 0001 when it sees a target and another sensor at input 0003 will also turn on when it sees a target. When input 0001 turns on we count up and when input 0003 turns on we count down. When we reach 1000 pulses we will turn on output 500. Again note that the counter accumulated value ONLY changes at the off to on transition of the pulse input. The ladder diagram is shown below.

Siemens Simatic : Pulse Timer (SP)

10.0 input sensor works T31 timer. When this sensor takes ON position, settled till $200 \mathrm{sec}, \mathrm{Q} 127.7$ out put done 1. Even time over, if input signal 10.0 logic 1, output will reset.

$:$	A	I	0.0
$:$	L	KT	200.2
$:$	SP	T	31
$:$	$=$	Q	127.7

: BE

Extended Pulse Timer

$\begin{array}{lll}\text { A } & \text { I } & 0.0\end{array}$

This kind of timer controls I100.0 input sensor 13 numbered TIMER. When I100.0 sensor was made 1, the sensor which was obliged Q127.0 numbered TIMER pass ON position. The important event is the pass of 1100.0 to ON position not the time o this sensors ON position. Even 1100.01 msec stays ON position TIMER protects Q127.0 sensor on ON position by the time of T period.

T must stay 8 sec . But mean while I 100.0 T time passed from logic 0 to 1 without second time charging. So TIMER output (Q127.0) protects its ON position again. But it returns beginning again to count from 0 , of the T time.

$:$	A	I	100.0
$:$	L	KT	80.1
$:$	SE	T	13
$:$	A	I	100.1
$:$	R	T	13
$:$	A	T	13
$:$	$=$	Q	127.0

AEG

In the Teachware A020-020 Plus model;

T1....................T8 (8 unit, $0.1 \mathrm{sec}=100 \mathrm{msec}$ rhythm timer)
T9...................T16 (8 unit, $0.025 \mathrm{sec}=25 \mathrm{msec}$ rhythm timer)
In order to 16 unit (T1.............T16) TIMER there are so programs be smallest and biggest time value is 25 msec which is 110 minutes.

1	U	El
2	SL	Al
3	U	T 8
4	RL	Al
5	U	A 1
6	$=$	T 8
7		50

$8 \quad$ PE

In this example A1 is stetted with E1 output. Reset position is the time of, when T8 pass ON position.

When E1 pass ON position Al output makes set. By the setting of A1,T8 timer (present value $50 \times 0.1 \mathrm{sec}=5 \mathrm{sec}$) count in its inside 5 sec and at the end of this time logic done 1. As to program; when T 8 is on, Al output makes resent and T 8 output goes OFF position because T8 output is armed reset sensor. The event to care on TIMER present value; chosen TIMER's rhythm times by its number, because of its changes, present value must count right.

The program on above; 413 numbered input sensor and M73 numbered private internal sensor are used to reset 467 numbered counter. Counting input is controlled by 412 numbered input sensor. Present value of counter is showed with K20-20. The input of counter pulse's every present pulse value is lowered 1 degree.

2.11. SHIFT REGISTER

IDEC

This model in PLC shift register unit has studied extensively.

MITSUBISHI

Internal relay \mathbf{M} is used shift register at the some time. So 16 sensor must be 1 group at the same time First helping sensor number, shift register address and following 16 sensor can not use another arm.

Shift Register Addresses

M100-M117	$=$	M100	M107,	M110	M
M120-M137	=	M120	. M127,	M13	$7=16$ unit
M140-M157	$=$	M	M147,	M150	M157 = 16 unit
M160-M177	=	M160	M167,	M170	M177 $=$
M200-M217	$=$	M	M207,	M	M217
M220-M237	$=$	M	M227,	M23	. $\mathrm{M} 237=$
M240-M257	$=$	M	M247,	M250	$\mathrm{M} 257=1$
M260-M277	$=$	M2	M267,	M270..	$\mathrm{M} 277=16$
M300-M317	$=$	M300.	. M307,	M310..	$\mathrm{M} 317=16$
M320-M337	$=$	M320	. M327,	M330	M337 $=16$ unit
M340-M357	$=$	M340.	.. M347,	M350..	M357 $=16$ unit
M360-M377	$=$	M360	M367,	M37	$\mathbf{M} 377=16$

1-Data input: Data signal which must be given to Register, is designed ON-OFF position to X411 sensor. Data, entered to register, firstly apply to M100 register. But every shift operation can make by shift pulse.
2-Shift pulse: It is shift input which is transferred to M100 by X411 entered data but while X 412 is passing from 0 to 1 . It can be used 72 numbered which produces 100 msec time pulse or 73 numbered which produces on msec time pulse generator instead of X412.
3-Reset input: X413 input sensor is used for reset of the above. So all the register sensor with X413's passing OFF position to ON position makes reset and pass of position (M100. M117).

(1100110000111100) data is applied with X411 data input on the above example. In here the important thing is decisive position of data m the shift pulse time. For example, 1 data's is in A point 1 data's is in B point 0 data's is in C point examples.

Decisive position in D point is 1 , because while shift pulse going from 0 to 1 ; data value stayed decisively periods 1 pulse time in ON position, so D point of data's the time of going from 1 to 0 , shift pulse which is still formed, can't catch and it can't be seen and examples the time of going from 1 to 0 of 14 pulse.

If you attend E area of data diagram; it can't be exampled by data which is between 8 and 9 pulse and it doesn't accept like this data. According to this, for to load of data's to registers is the time of passing the time of piece of referans shift pulse $(\mathrm{OFF} \rightarrow \mathrm{ON})$

2.12. COMPUTING FUNCTION

one of the most important peculiarity of PLC system is computing and data embroidery function. As a main structure, PLC has this peculiarity.

Some of these are:

1) Addition
2) Subtraction
3) Multiplication
4) Division
5) BCD Binary Converter
6) BINARY BCD Converter
7) 4 DIGIT Comparation
8) 16 Bit Data Loading
9) 8 Bit Data Loading
10) Data Saving-Decrease
11) 16 Bit Data Store
12) 8 Bit Data Store
13) Data Display
14) BCD Shifting Left
15) Data Shifting

SIEMENS (Simatic) Comparison Function

In comparison operations:
$!=\mathrm{F}$ (equal)
$\neq \mathrm{F}$ (not equal)
$>$ F (big)
$>=F$ (big equal)
$<$ F (small)
$<=\mathrm{F}$ (small equal)
Instructions are used for make desired comparison, and if YES decision is reached, Q output will give ON position $>\mathrm{F}$ control was done at the above. According this, IB0 value which is in ACCU2 will be compared with IB1 in ACCU1, if ACCU2>ACCU1, Q100 will remove ON position. If this condition is not provide, Q100 will stay OFF position.

Arithmetically +F instruction will provide addition of 2 complete number this instruction add ACCUM1 and ACCUM2, of for $-F$ instruction distinct the 2 number

From ACCU2's contents will distinct ACC1's contents.

CHAPTER III

DETAIL ANALYSIS OF PROGRAMMING

3.1 BASIC INSTRUCTION WORD

Instruction word list

a) Basic Instructions:

Symbol	Name
LOD	Load
AND	AN1)
OR	OR
OLT	Output
MCS	Master Control Spt
MCR	Master C'ont:ol Resent
SOT	Single Cutput
TIL 4	Timer
CNT	Counter
SFR	Shift Repister
EvD	End
3ET	Se:t
R ST	Rese:
JMP	Jump
JEND	Jump End
VOT	Nut
Fl'	Function

b) FUN (Function) Instructions:

We can divide the instructions into 2 parts. These are ;
One - address instruction
Two - address instruction

There are 2 kinds of address instruction. Generally first address is the instruction word. In LOD, AND, OR, OUT, SET, RST, SOT instructions; there is a instruction word and number and addressing is obstructed with this that single addressed instruction.

Two addressed instructions; SFR, SFR NOT, TIM, CNT, FUN 100-146, FUN 200-246, TIM FUN, CNT FUN, FUN 147 and FUN 300. In this instructions first addresses are give instruction word and instruction numbers (Except FUN 147, FUN 300). As for second addresses are present peculiarity according to instruction.

There are some deliver numbers that referenced by FAIJ at the below.
c) Input:
0..........7, 10 \qquad 17, 20 27, 30 37, 40 47, 50 57, $60 \ldots \ldots \ldots 67,70 \ldots \ldots \ldots . . .77$ are numbered like this. In here inputs are considered to OCTAL system which is between 0 -77. If you attend $8,9,18,19,28,29, \ldots \ldots \ldots . .78,79$, numbers are not used. In octal there are 64 unit input number between 0-77 (except 8 and 9).
 input there are 64 unit output numbers between 200-277 (except 8 and 9).

e) Internal Relay:

$400-407$	$500-507$	$600-607$
$410-417$	$510-517$	$610-617$
$420-427$	$520-527$	$620-627$
$430-437$	$530-537$	$630-637$
$440-447$	$540-547$	$640-647$
$450-457$	$550-557$	$650-657$
$460-467$	$560-567$	$660-667$
$470-477$	$570-577$	$670-677$
$480-487$	$580-587$	$680-687$
$490-497$	$590-597$	$690-697$

There are 240 units ($30 \times 8=240$) internal relays between 400 and 697 , we can appoint the TIMER, COUNTER or FUN outputs to the any of 240 sensor and then can use of this sensor for take new data or count value.

f) Special Internal Relay:

There are 16 units become 700-707 and 710-717. As an example of these, we can use the signal generator which produces 1 sec clock sign, that means we can use 1 Hz clock pulse sing ready.

We can use the signal generator which produces 0.1 sec clock sign that means 10 Hz clock pulse sign ready.

g) Timer:

There are totally 80 unit timers between 0 and 79. If you attent you can use 8 and 9. You can use any of TIMER that include 0 and 79. In there its enough to know for you that totally there are 80 unit TIMER that include 0-79.

h) Counter:

Totally there are 45 unit counter between 0 and 44 . If you attent you can use 8 and 9.

i)Reversible Counter:

It is counter which can be counted forward or review. While other counters can only count forward counters number 45-46 can count forward or review. Counter 45 has up and down pulse input edge yet counter 46 is connected to only one input of up/down situation and when this edge is 1 up and when it be comes 0 it counts down.

j) Shift Register:

There are 128 shift register between 0 and 27 including 8-9.

k) Single Output:

We can use 96 SOT functions between 0 and 95 including 8-9.

1) Data Register:

Between DRO and DR99 and between 800 and 899 , we have 100 data register.

3.2 FA1J SERIES ALLOCATION NUMBERS OF SPECIAL RELAYS

As known special relays are 700 and 717 relays except 708 and 704 from these numbers 700 and 705 are unused.

701 and 702 Start Control: When input number 0, which used to start the program is on or if number 500 has been appointed to automatic start process. It starts to turn the program on. Special relays 701 and 702 are off the process of the program is stopped.

703 All Output OFF: All outputs between 200 and 277 are off when special relay 703 turns into ON.

704 Initialize Pulse: Special flag (1 scan time) 704 becomes on as much as the time equalling 1 scan time. When program FA1J started being processed.

704 Numerical Value Error: Is there an error in computing instructions results. 706 becomes on for example; if the result of a subtraction process is lower than -10.000 , special relay 706 becomes on. They make sure that the program is correct from the point of view numerical process while they register the programs.

707 Curry and Borrow: It there is carry or borrow in the results at computing instructions. 707 is set for example; in a addition process the total of 2 numbers are higher than 9999,707 is on.

7131 sec . Timer Reset: When 713 is on special relay 714 is always reset mode.

7141 sec . Clock: It is possible to take signal generator producing clock sign for one second or clock pulse sign for 1 Hz from special relay 714 .

715 100-msec. Clock: We can remove our clock pulse that is for 10 speed by using special relay output of 715 with this sign.

716 Timer/Counter Preset Value Changed: Special relay 716 becomes on when timer counter preset value has been changed into unit of FA1J CPU. It is possible to delete 716 when pressed key of TR S, ENTR and ENTR. If a program is registered in memory.

717 In-operation Output: Relay 717 is always on while FAlf is operating of the program has ended this relay becomes off.

3.3. BASIC INSTRUCTION

Each program written in PLC are started in 2 ways. One at these that we can draw the program with its symbols in the location called Ladder Diagram and load it to the computer as this. The second one is that we can make direct attribution using the key team of PLC. Because of this it will be told example symbol and attribution us. Instructions later whole LOD instruction and the other instructions are being stated.

a) LOD Instructions:

This instructions is used at the beginning of logic diagram lines. It can be used once back by back or more than once to determine the situation at the beginning of the instructions such as AND LOD, OR LOD, SFR, CNT, TIM. As you see below an input relay is wanted to be loaded as a program. Symbol of it is declared as a show in ladder diagram. Program list from the statement.

This program is loaded as 0 LOD 1 and 0 which is seen an address must be given in each line of the end one by one starting from each line of the program. Value is appointed to each line orderly. We have mentioned before which numbers are separated for shift register, output, input, special relay, timer counter. Imaginary internal relay at the machine PLC.

We can divide our load process into 4 groups according to our functions.

b) Input, Output, Internal and Special Relays:

In the examples above example relay circuit of relay in ladder diagram and how the process of key and as a result of this the format seen in deplay was given.

- We can choose a value between 0 and 77 except 8 and 9 in the example of input.
- We can choose a value between 200 and 277 except 8 and 9 in the example of output.
- We can choose a value between 400 and 697 except 8 and 9 in the example of internal relay.

You can use special relay which you need are between 700-717 in the example of special relay for example I use pulse generator of clock for one speed with special relay 714 .
c) Timer:

I wanted to use T 8 timer from the 80 timers between $0-79$ including 8 and 9 here and you see how the load process had been done.

d) Counter:

You can use any counter between 0 and 46 including 8 and 9. Load process is the same as aside.

e) Shift Register:

You can use any register from 128 of them between 0 and 127 including 8 and 9. Shift register numbered 1 was loaded in the next side.

f) AND Instruction:

It is same as AND logic we studied in Logic lessons. Both keys that are connected each other rapidly are on, output is on and is the other situations it becomes OFF in logic. In a multiplying processes both inputs are 1 than output is 1 . And had it ended with 2 limit switches and 1 solenoid valve in order to understand the logic better. In diagrams, it is stated as relay ladder diagram and logic diagram. So we can tell that LS1 relay A and LS2 relay is B input and output is Y. In such equality it is that $Y=A . B$ according to the compulsion of Boolean. If both inputs are $1(\mathrm{ON}) \mathrm{Y}$ output will be ON . In other 3 probabilities, output Y will be 0 (OFF). You can see this in the table of truth.

As known, the series of TTL is Logic entegrate containing 4 and gate with 2 inputs in 7408. As in the circuit $1 / 4$ has been made equal to ladder diagram by using 7408. In both of them the function of output and working are same.

g) OR Instruction:

Or instruction has the same functions as or gate logic we studied in logic lessons. In here, just only one of the keys are OFF or 1 is enough for output to be 1 as 2 keys are connected in the parallel way. As a result there is addition process and in this process one of the 2 parallel inputs is enough to be one. I gave 2 important information's with or instruction. One as them is out function that is symbolised with 200 in the circle. I will speak about out function 2 or 3 classes later. But now, I gave output of parallel circuit, output 200 for the first time it means that: I mentioned that special relay 704 is a clock pulse generator that has $\mathrm{f}=1 \mathrm{~Hz}$. You see signal of clock pulse in the diagram. We determined time of 1 and 0 in input relay of 36 by chance now so that nothing will be by chance in the following lessons. Let's accept that there is a time diagram for to learn or let's assume that input 36 is gained by making ON/OFF in the form. If we think that output 200 is connected to a lamb, the situations that lamb will be on are the times that output 200 is 1.

In this example, in order to understand or instructions better firstly, 2 limit switches were connected to each other rapidly and shown a ladder diagram and a solenoid valve control in output of it. And same circuit has been gained Logic equality by using only 1or gate of integrate of 7432. It is enough to make on only one of the inputs for the outputs to be ON in 3 equaliavence circuit to make output OFF. It is necessary to make both parallel inputs OFF. This position was shown in the truths table below.

h) NOT Instructions:

It has the same duty as NOT gate that you studied in the logic lessons. We take the opposite of the sign. If we have a look of the example above, they take the opposite of input relay 1 in PLC. If you carry out 1 logic level to input 1 from the outside, the sign is going to continue from B point as logic 0 , because of the instruction of LOD NOT 1.

As it can be seen in time diagram, LOD NOT 1 instructions got the opposite of input 1. It is symbolised

i) AND LOD Instruction:

It is one of the most important of the basic instructions. You have to understand it very well AND LOD instruction, as shown a side is used to connect the instructions to each other in two different blocks. There can be some instructions lines that were mode with or, and, not, input shown before you in the blocks staled before. Watch out that in the programming. Thinks as if you were opening a ladder wall or parentheses. When you are beginning a new block. In each block open the relays and each new block with LOD. If you have write the program and at lost connect the both blocks with AND LOD.

j) OR LOD Instruction:

If you got AND NOT instruction well. It is easy to comprehend OR LOD. As sign in the ladder diagram above, 2 different blocks were connected rapidly this time. PLC this operator in its own memory, it makes it like this in operation register and stock register. There are 1 operation register and maximum 8 stock register that we used to make temporary loading in PLC. Operation register is the register that procedure is mode stock register is assistant register. We have maximum 8 stock register. If we load the I. Block, these instructions are loaded to the register. While II. Block is being loaded. I. Block in operation register is slide to assistant register. Now II. Block was set to operation register and I. Block to stack register. II. Block are connected to each other in a parallel way with OR LOD instruction given later.

3.4.REAL TIME APPLICATIONS

Real Time PLC Fundamentals:

The Real Time PLC is a straightforward software solution that is executed in a Windows environment as an interpreter. The PLC program is executed in a non compiled form, just the same as it is executed in a hardware PLC. The advantage of executing a PLC program with an interpreter is that the PLC status can be displayed in real time without any recompile activities. Diagnosis and testing of a PLC program is much easier and the instruction to be executed can be monitored in real time.

Real Time PLC Operating Systems:

To meet the demands and requirements of our customers and provide flexibility,
 different hardware and software platforms are available to execute the Real Time PLC. The operating systems Windows $3.1 \mathrm{x} / 95$ or Windows NT $4 . \mathrm{x}$ can be used. The user also has the ability to install and activate the Real Time PLC on an additional processor board which can be plugged into the motherboard of the PC.

Real Time PLC Compatibility:

As a result of a variety of performance requirements and the need to transfer existing PLC programs, without any modifications into a modern PLC environment, two versions of the Real Time PLC's are available. The Real Time PLC version PLC43 is compatible to the Simatic PLC CPU943. The version PLC45 is compatible to the Simatic PLC CPU945.

Real Time PLC I/O's

Standard I/O boards may be accessed with the Real Time PLC as well as numerous intelligent hardware boards are available to control bus systems widely used by the industries (e.g. CAN-Bus, Inter Bus, Profi Bus, etc.). There is even a hardware board that will allow you to connect an original SIEMENS S5-115U extension rack, with all possible I/O boards, available. Drivers have been developed to connect bus system interface boards with the Real Time PLC. Drivers for additional boards are easily programmed with Function Blocks using the standard STEP ® 5 PLC programming language plus some additional special instructions supplied with the Real Time PLC. Very often only a handful of instructions are needed to realize such a driver.

Press F1 for help and example program

Network 1 Flasher

NETWORK COMMENTS

Network 2 Mainroad 1 is red

Network 3 Mainroad 1 is yellow

Network 4 Mainroad 1 is green

Network 5 Mainroad 2 is red

Network 6 Mainroad 2 is yellow

Network 7 Mainroad 2 is green

Network $8 \quad$ Crosswalk 1 is red

Network 9 Crosswalk 1 is yellow

Network 10 Crosswalk 1 is green

Network $11 \quad$ Crosswalk 2 is red

Network 12 Crosswalk 2 is green

Network 14 Crosswalk 3 is yellow

Network 15 Crosswalk 3 is green

Network 16 Crosswalk 4 is red

Network 17 Crosswalk 4 is green

Network 18 Crosswalk 5 is red

Network 19 Crosstalk 5 is yellow

Network 20 Crosswalk 5 is green

Network 21 Crosswalk 6 is red

Network 22 Crosswalk 6 is yellow

Network 23 Crosswalk 6 is green

Network 25 Secondary road 2 is red

Network 26 Secondary road 2 is yellow

Network 28 Secondary road 3 is red

Network 29 Secondary road 3 is yellow

Network 30
Secondary road 3 is red
+1

Network 32 Secondary road 5 is red

Network 33 Secondary road 5 is yellow

Network 34 Secondary road 5 is green

Network 35 Secondary road 6 is red

Network 36 Secondary road 6 is yellow

Network 37 Secondary road 6 is green

Network $38 \quad$ Secondary road 7 is red

Network 39 Secondary road 7 is green

Network 40

Network 41

Network 42

Network 43

Network 44

Network 45

Network 46

Network 47

Network 48
$\stackrel{T}{\mathrm{~T} 44} \stackrel{(\mathrm{R})}{1}$

Network 49

Network 50

Network 51

Network 52

Network 53

Network 54

Network 55
(END)

```
/1
//PROGRAM TITLE COMMENTS
//
//Press F1 for help and example program
//
NETWORK 1 //Elasher
//
//NETWORK COMMENTS
//
LD IO.0
A SMO.5
= Q5.5
NETWORK 2 //Mainroad 1 is red
LD IO.O
A T37
A T38
AN T39
AN T40
AN T41
AN T42
AN T43
AN TM4
A T37
T38
T39
T39
AN T40
AN T41
T42
T43
T44
OLD
LD IO.O
T37
T38
T39
T40
T41
T42
T43
T44
OLD
LD IO.O
A 
A T38
T39
T40
T41
T42
T43
T44
OLD
LD IO.O
T37
T38
T39
T40
T41
T42
T43
T44
OLD
LD IO.O
A T37
```



```
133 A T38
134 A T39
135 A T40
136 A T41
137 AN T42
138 AN T43
139 AN T44
140 OLD
141 LD IO.O
142 A T37
143 A T38
144 A T39
145 A T40
146 A T41
147 A T42
148 AN T43
149 AN T44
151 LD IO.O
152 A T37
153 A T38
154 A T39
155 A T40
156 A T41
157 A T42
158 A T43
159 AN T44
160 OLD
161 = Q0.3
162
163 NETWORK 6 //Mainroad 2 is yellow
164 LD IO.0
165 A T37
166 AN T38
167 AN T39
168 AN T40
169 AN T41
170 AN T42
171 AN T43
172 AN T44
173= Q0.4
174 
175 NETWORK 7 //Mainroad 2 is green
176 LD IO.O
177 AN T37
178 AN T38
179 AN T39
180 AN T40
181 A T41
182 AN T42
183 AN T43
184 AN T44
185 = Q0.5
186
187 NETWORK 8 //Crosswalk 1 is red
188 LD IO.0
189 A T37
190 AN T38
191 AN T39
192 AN T40
193 AN T41
194 AN T42
195 AN T43
196 AN T44
197 LD IO.O
198 A T37
```

```
199 A T38
200 AN T39
201 AN T40
202 AN T41
203 AN T42
204 AN T43
205 AN T44
206 OLD
207 LD IO.0
208 A T37
209 A T38
210 A T39
211 AN T40
212 AN T41
213 AN T42
214 AN T43
215 AN T44
216 OLD
217 LD IO.0
218 A T37
219 A T38
220 A T39
221 A T40
222 A T41
223 A T42
224 A T43
225 AN T44
226 OLD Q Q . %
228
229 NETWORK 9 //Crosswalk 1 is yellow
230 LD IO.O
231 A T37
232 A T38
233 A T39
234 A T40
235 AN T41
236 AN T42
237 AN T43
238 AN T44
239 LD IO.O
240 A T37
241 A T38
242 A T39
243 A T40
244 A T41
245 A T42
246 AN T43
247 AN T44
248 OLD O
250
251 NETWORK 10 //Crosswalk 1 is green
252 LD IO.0
253 AN T37
254 AN T38
255 AN T39
256 AN T40
257 AN T41
258 AN T42
259 AN T43
260 AN T44
261 LD IO.O
262 A T37
263 AN T38
264 AN T39
```

265	AN	T40	
266	AN	T41	
267	AN	T42	
268	AN	T43	
269	AN	T44	
270	OLD		
271	LD	10.0	
272	A	T37	
273	A	T38	
274	A	T39	
275	A	T40	
276	A	T41	
277	AN	T42	
278	AN	T43	
279	AN	T44	
280	OLD		
281	$=$	Q1.0	
282			
283	NETW	K 11	//Crosswalk 2 is red
284	LD	I0.0	
285	A	T37	
286	AN	T38	
287	AN	T39	
288	AN	T40	
289	AN	T41	
290	AN	T42	
291	AN	T43	
292	AN	T44	
293	LD	10.0	
294	A.	T37	
295	A	T38	
296	AN	T39	
297	AN	T40	
298	AN	T41	
299	AN	T42	
300	AN	T43	
301	AN	T44	
302	OLD		
303	LD	10.0	
304	A	T37	
305	A	T38	
306	A	T39	
307	AN	T40	
308	AN	T41	
309	AN	T42	
310	AN	T43	
311	AN	T44	
312	OLD		
313	LD	I0.0	
314	A	T37	
315	A	T38	
316	A	T39	
317	A	T40	
318	AN	T41	
319	AN	T42	
320	AN	T43	
321	AN	T44	
322	OLD		
323	LD	10.0	
324	A	T37	
325	A	T38	
326	A	T39	
327	A	T40	
328	A	T41	
329	AN	T42	
330	AN	T43	

331	AN	T44	
332	OLD		
333	LD	I0. 0	
334	A	T37	
335	A	T38	
336	A	T39	
337	A	T40	
338	A	T41	
339	A	T42	
340	AN	T43	
341	AN	T44	
342	OLD		
343	LD	I0.0	
344	A	T37	
345	A	T38	
346	A	T39	
347	A	T40	
348	A	T41	
349	A	T42	
350	A	T43	
351	AN	T44	
352	OLD		
353	$=$	Q1.1	
354			
355	NETW	K 12	//Crosswalk 2 is green
356	LD	IO. 0	
357	AN	T37	
358	AN	T38	
359	AN	T39	
360	AN	T40	
361	AN	T41	
362	AN	T42	
363	AN	T43	
364	AN	T44	
365	$=$	Q1.3	
366			
367	NETW	K 13	//Crosswalk 3 is red
368	LD	I0.0	
369	AN	T37	
370	AN	T38	
371	AN	T39	
372	AN	T40	
373	AN	T41	
374	AN	T42	
375	AN	T43	
376	AN	T44	
377	ID	I0.0	
378	A	T37	
379	AN	T38	
380	AN	T39	
381	AN	T40	
382	AN	T41	
383	AN	T42	
384	AN	T43	
385	AN	T44	
386	OLD		
387	$=$	21.4	
388			
389	NETW	K 14	//Crosswalk 3 is yellow
390	LD	I0.0	
391	A	T37	
392	A	T38	
393	AN	T39	
394	AN	T40	
395	AN	T41	
396	AN	T42	

397	AN	T43	
398	AN	T44	
399	$=$	Q1. 5	
400			
401	NETWORK 15		//Crosswalk 3 is green
402	LD	10.0	
403	A	T37	
404	A	T38	
405	A	T39	
406	AN	T40	
407	AN	T41	
408	AN	T42	
409	AN	T43	
410	AN	T44	
411	LD	IO. 0	
412	A	T37	
413	A	T38	
414	A	T39	
415	A	T40	
416	AN	T41	
417	AN	T42	
418	AN	T43	
419	AN	T44	
420	OLD		
421	LD	I0.0	
422	A	T37	
423	A	T38	
424	A	T39	
425	A	T40	
426	A	T41	
427	AN	T42	
428	AN	T43	
429	OLD 0		
430			
431	LD	I0.0	
432	A	T37	
433	A	T38	
434	A	T39	
435	A	T40	
436	A	T41	
437	A	T42	,
438	AN	T43	
439	AN	T44	
440	OLD		
441	LD	10.0	
442	A	T37	
443	A	T38	
444	A	T39	
445	A	T40	
446	A	T41	
447	A	T42	
448	A	T43	
449	AN	T44	
450	OLD		
451	$=$	21.6	
452			
453	NETWORK 16		//Crosswalk 4 is red
454	LD	10.0	
455	A	T37	
456	AN	T38	
457	AN	T39	
458	AN	T40	
459	AN	T41	
460	AN	T42	
461	AN	T43	
462	AN	T44	

463	LD	I0. 0	
464	A	T37	
465	A	T38	
466	AN	T39	
467	AN	T40	
468	AN	T41	
469	AN	T42	
470	AN	T43	
471	AN	T44	
472	OLD		
473	LD	IO. 0	
474	A	T37	
475	A	T38	
476	A	T39	
477	AN	T40	
478	AN	T41	
479	AN	T42	
480	AN	T43	
481	AN	T44	
482	OLD		
483	LD	IO. 0	
484	A	T37	
485	A	T38	
486	A	T39	
487	A	T40	
488	AN	T41	
489	AN	T42	
490	AN	T43	
491	AN	T44	
492	OLD		
493	LD	I0.0	
494	A	T37	
495	A	T38	
496	A	T39	
497	A	T40	
498			
499			
500	A	T41	
501	AN	T42	
502	AN	T43	
503	AN	T44	
504	OLD		
505	LD	I0.0	
506	A	T37	
507	A	T38	
508	A	T39	
509	A	T40	
510	A	T41	
511	A	T42	
512	AN	T43	
513	AN	T44	
514	OLD		
515	LD	I0.0	
516	A	T37	
517	A	T38	
518	A	T39	
519	A	T40	
520	A	T41	
521	A	T42	
522	A	T43	
523	AN	T44	
524	OLD		
525	$=$	Q1.7	
526			
527	NETW	K 17	//Crosswalk 4 is green
528	LD	I0.0	

```
529 AN T37
531 AN T39
532 AN T40
533 AN T41
534 AN T42
535 AN T43
536 AN T44
537 = Q2.1
538
539
540
541 AN I
5 4 2 ~ A N ~ T 3 8 ~
543 AN T39
544 AN T40
545 AN T41
546 AN T42
547 AN T43
548 AN T44
549 LD IO.0
550 A T37
551 AN T38
552 AN T39
553 AN T40
554 AN T41
555 AN T42
556 AN T43
557 AN T44
558 OLD Q Q2.2
560
561 NETWORK
562 LD IO.0
563 A T37
564 A T38
565 AN T39
566 AN T40
567 AN T41
568 AN T42
569 AN T43
570 AN T44
571 = Q2.3
5 7 2
573
574
575 A 
577 A T39
578 AN T40
579 AN T41
580 AN T42
581 AN T43
582 AN T44
583 LD IO.0
584 A T37
585 A T38
586 A T39
587 A T40
588 AN T41
589 AN T42
590 AN T43
591 AN T44
5 9 2 ~ O L D ~
593 LD IO.0
594 A T37
```

595	A	T38	
596	A	T39	
597	A	T40	
598	A	T41	
599	AN	T42	
600	AN	T43	
601	AN	T44	
602	OLD		
603	LD	I0.0	
604	A	T37	
605	A	T38	
606	A	T39	
607	A	T40	
608	A	T41	
609	A	T42	
610	AN	T43	
611	AN	T44	
612	OLD		
613	LD	I0.0	
614	A	T37	
615	A	T38	
616	A	T39	
617	A	T40	
618	A	T41	
619	A	T42	
620	A	T43	
621	AN	T44	
622	OLD		
623	$=$	Q2. 4	
624			
625	NETW	21	//Crosswalk 6 is red
626	LD	I0.0	
627	AN	T37	
628	AN	T38	
629	AN	T39	
630	AN	T40	
631	AN	T41	
632	AN	T42	
633	AN	T43	
634	AN	T44	
635	LD	10.0	
636	A	T37	
637	AN	T38	
638	AN	T39	
639	AN	T40	
640	AN	T 41	
641	AN	T42	
642	AN	T43	
643	AN	T44	
644	OLD		
645	LD	I0.0	
646	A	T37	
647	A	T38	
648	AN	T39	
649	AN	T40	
650	AN	T41	
651	AN	T42	
652	AN	T43	
653	AN	T44	
654	OLD		
655	LD	10.0	
656	A	T37	
657	A	T38	
658	A	T39	
659	AN	T40	
660	AN	T41	

661	AN	T42	
662	AN	T43	
663	AN	T44	
664	OLD		
665	LD	10.0	
666			
667	A	T37	
668	A	T38	
669	A	T39	
670	A	T40	
671	AN	T41	
672	AN	T42	
673	AN	T43	
674	AN	T44	
675	OLD		
676	LD	10.0	
677	A	T37	
678	A	T38	
679	A	T39	
680	A	T40	
681	A	T41	
682	AN	T42	
683	AN	T43	
684	AN	T44	
685	OLD		
686	$=$	Q2.5	
687			
688	NETW	K 22	//Crosswalk 6 is yellow
689	LD	10.0	
690	A	T37	
691	A	T38	
692	A	T39	
693	A	T40	
694	A	T41	
695	A	T42	
696	AN	T43	
697	AN	T44	
698	$=$	Q2.6	
699			
700	NETW	K 23	//Crosswalk 6 is green
701	LD	I0.0	
702	A	T37	
703	A	T38	
704	A	T39	
705	A	T40	
706	A	T41	
707	A	T42	
708	A	T43	
709	AN	T44	
710	$=$	Q2.7	
711			
712	NETW	K 24	//Secondary road 1 is red
713	LD	10.0	
714	AN	T37	
715	AN	T38	
716	AN	T39	
717	AN	T40	
718	AN	T41	
719	AN	T42	
720	AN	T43	
721	AN	T44	
722	LD	IO. 0	
723	A	T37	
724	AN	T38	
725	AN	T39	
726	AN	T40	

727	AN	T41
728	AN	T42
729	AN	T43
730	AN	T44
731	OLD	
732	LD	I0.0
733	A	T37
734	A	T38
735	AN	T39
736	AN	T40
737	AN	T41
738	AN	T42
739	AN	T43
740	AN	T44
741	OLD	
742	LD	I0. 0
743	A	T37
744	A	T38
745	A	T39
746	AN	T40
747	AN	T41
748	AN	T42
749	AN	T43
750	AN	T44
751	OLD	
752	LD	I0.0
753	A	T37
754	A	T38
755	A	T39
756	A	T40
757	AN	T41
758	AN	T42
759	AN	T43
760	AN	T44
761	OLD	
762	LD	I0.0
763	A	T37
764	A	T38
765	A	T39
766	A	T40
767	A	T41
768	AN	T42
769	AN	T43
770	AN	T44
771	OLD	
772	LD	I0. 0
773	A	T37
774	A	T38
775	A	T39
776	A	T40
777	A	T41
778	A	T42
779	AN	T43
780	AN	T44
781	OLD	
782	LD	I0. 0
783	A	T37
784	A	T38
785	A	T39
786	A	T40
787	A	T41
788	A	T42
789	A	T43
790	AN	T44
791	OLD	
792	$=$	Q3.0

859	A	T41	
860	A	T42	
861	AN	T43	
862	AN	T44	
863	OLD		
864	$=$	23.3	
865			
866	NETW	K 26	//Secondary road 2 is yellow
867	LD	I0.0	
868	A	T37	
869	A	T38	
870	A	T39	
871	A	T40	
872	A	T41	
873	A	T42	
874	AN	T43	
875	AN	T44	;
876	$=$	Q3. 4	
877			
878	NETW	K 27	//Secondary road 2 is green
879	LD	I0.0	
880	A	T37	
881	A	T38	
882	A	T39	
883	A	T40	
884	A	T41	
885	A	T 42	
886	A	T43	
887	AN	T44	
888	$=$	Q3. 5	
889			
890	NE TW	K 28	//Secondary road 3 is red
891	LD	I0.0	
892	AN	T37	
893	AN	T38	
894	AN	T39	
895	AN	T40	
896	AN	T41	
897	AN	T42	
898	AN	T43	
899	AN	T44	
900	LD	IO. 0	
901	A	T37	
902	AN	T38	
903	AN	T39	
904	AN	T40	
905	AN	T41	
906	AN	T42	
907	AN	T43	
908	AN	T44	
909	OLD		
910	LD	I0.0	
911	A	T37	
912	A	T38	
913	A	T39	
914	A	T40	
915	A	T41	
916	AN	T42	
917	AN	T43	
918	AN	T44	
919	OLD		
920	LD	IO. 0	
921	A	T37	
922	A	T38	
923	A	T39	
924	A	T40	

991	AN	T41
992	AN	T42
993	AN	T43
994	AN	T44
995	OLD	
996	LD	IO. 0
997	A	T37
998	A	T38
999	AN	T39
1000	AN	T40
1001	AN	T41
1002	AN	T42
1003	AN	T43
1004	AN	T44
1005	OLD	
1006	LD	IO. 0
1007	A	T37
1008	A	T38
1009	A	T39
1010	AN	T40
1011	AN	T41
1012	AN	T42
1013	AN	T43
1014	AN	T44
1015	OLD	
1016	LD	IO. 0
1017	A	T37
1018	A	T38
1019	A	T39
1020	A	T40
1021	AN	T41
1022	AN	T42
1023	AN	T43
1024	AN	T44
1025	OLD	
1026	LD	IO. 0
1027	A	T37
1028	A	T38
1029	A	T39
1030	A	T40
1031	A	T41
1032	AN	T42
1033	AN	T43
1034	AN	T44
1035	OLD	
1036	LD	I0.0
1037	A	T37
1038	A	T38
1039	A	T39
1040	A	T40
1041	A	T41
1042	A	T42
1043	AN	T43
1044	AN	T44
1045	OLD	
1046	LD	IO. 0
1047	A	T37
1048	A	T38
1049	A	T39
1050	A	T40
1051	A	T41
1052	A	T42
1053	A	T43
1054	AN	T44
1055	OLD	
1056	$=$	Q4.1

```
1057
1058 NETWORK 32 //Secondary road 5 is red
1059 LD IO.O
1060 AN T37
1061 AN T38
1062 AN T39
1063 AN T40
1064 AN T41
1065 AN T42
1066 AN T43
1067 AN T44
1068 LD IO.0
1069 A T37
1070 AN T38
1071 AN T39
1072 AN T40
1073 AN T41
1074 AN T42
1075 AN T43
1076 AN T44
1077 OLD
1078 LD IO.O
1079 A T37
1080 A T38
1081 AN T39
1082 AN T40
1083 AN T4I
1084 AN T42
1085 AN T43
1086 AN T44
1087 OLD
1088 LD IO.O
1089 A T37
1090 A T38
1091 A T39
1092 AN T40
1093 T41
1094 AN T42
1095 AN T43
1096 AN T44
1097 OLD
1098 LD IO.0
1099 A T37
1100 A T38
1101 A T39
1102 A T40
1103 A T41
1104 A T42
1105 A T43
1106 AN T44
1107 OLD (1108 = Q4.4
1 1 0 9
1110 NETWORK 33 //Secondary road 5 is yellow
1111 LD IO.0
1112 A T37
1113 A T38
1114 A T39
1115 A T40
1116 AN T41
1117 AN T42
1118 AN T43
1119 AN T44
1120 LD IO.O
1121 A T37
1122 A T38
```

```
1123 A T39
1124 A T40
1125 A T41
1126 A T42
1127 AN T43
1128 AN T44
1129 OLD
1130=
Q4.5
1 1 3 1
1 1 3 2 ~ N E T W O R K ~ 3 4 ~ / / S e c o n d a r y ~ r o a d ~ 5 ~ i s ~ g r e e n
1133 LD IO.O
1134 A T37
1135 A T38
1136 A T39
1137 A T40
1138 A T41
1139 AN T42
1140 AN T43
1141 AN T44
1142 = Q4.6
1 1 4 3
1 1 4 4 ~ N E T W O R K ~ 3 5 ~ / / S e c o n d a r y ~ r o a d ~ 6 ~ i s ~ r e d
1145 LD IO.0
1146 A T37
1147 AN T38
1148 AN T39
1149 AN T40
1150 AN T4I
1 1 5 1 ~ A N ~ T 4 2
1152 AN T43
1153 AN T44
1154 LD IO.O
1155 A T37
1156 A T38
1157 A T39
1158 A T40
1159 A T41
1160 AN T42
1161 AN T43
1162 AN T44
1163 OLD
1164 LD IO.0
1165 A T37
1166 A T38
1167 A T39
1168 A T40
1169 A I185.2
1170 A T42
1171 AN T43
1 1 7 2 ~ A N ~ T 4 4
1173 OLD
1174 LD IO.0
1175 A T37
1176 A T38
1177 A T39
1178 A T40
1179 A T41
1180 A T42
1181 A T43
1182 AN T44
1183 OLD
1184= Q4.7
1 1 8 5
1186 NETWORK 36 //Secondary road 6 is yellow
1187 LD IO.0
1188 A T37
```

1189	A	T38	
1190	AN	T39	
1191	AN	T40	
1192	AN	T41	
1193	AN	T42	
1194	AN	T43	
1195	AN	T44	
1196	LD	10.0	
1197	A	T37	
1198	A	T38	
1199	A	T39	
1200	A	T40	
1201	AN	T41	
1202	AN	T42	
1203	AN	T43	
1204	AN	T44	
1205	OLD		3
1206	$=$	Q5.0	
1207			
1208	NETW	37	//Secondary road 6 is green
1209	LD	10.0	
1210	AN	T37	
1211	AN	T38	
1212	AN	T39	
1213	AN	T40	
1214	AN	T41	
1215	AN	T42	
1216	AN	T43	
1217	AN	T44	
1218	LD	I0.0	
1219	A	T37	
1220	A	T38	
1221	A	T39	
1222	AN	T40	
1223	AN	T41	
1224	AN	T 42	
1225	AN	T43	
1226	AN	T44	
1227	OLD		
1228	$=$	Q5.1	
1229			
1230	NETW	K 38	//Secondary road 7 is red
1231	LD	10.0	
1232	A	T37	
1233	A	T38	
1234	AN	T39	
1235	AN	T40	
1236	AN	T41	
1237	AN	T42	
1238	AN	T43	
1239	AN	T44	
1240	LD	10.0	
1241	A	T37	
1242	A	T38	
1243	A	T39	
1244	AN	T40	
1245	AN	T41	
1246	AN	T42	
1247	AN	T43	
1248	AN	T44	
1249	OLD		
1250	LD	I0.0	
1251	A	T37	
1252	A	T38	
1253	A	T39	
1254	A	T40	

```
1255 AN T41
1256 AN T42
1257 AN T43
1258 AN T'44
1259 OLD
1260 LD IO.O
1261 A T37
1262 A T38
1263 A T39
1264 A T40
1265 A T41
1266 AN T42
1267 AN T43
1268 AN T44
1269 OLD
1270 LD IO.0
1271 A T37
1272 A T38
1273 A T39
1274 A T40
1275 A T41
1276 A T42
1277 AN T43
1278 AN T44
1279 OLD
1280 LD IO.O
1282 A T38
1283 A T39
1284 A T40
1285 A T41
1286 A T42
1287 A T43
1288 AN T44
1289 OLD
1290= S.2
1 2 9 1
1292 NETWORK 39 //Secondary road 7 is green
1293 LD IO.0
1294 AN T37
1295 AN T38
1296 AN T39
1297 AN T40
1298 AN T4I
1299 AN T42
1300 AN T43
1301 AN T44
1302 = . Q5.4
1 3 0 3
1304 NETWORK 40
1305 LD IO.0
1306 TON T37, +350
1 3 0 7
1308 NETWORK 41
1309 LD IO.0
1310 A T37
1311 TON T38, +50
1 3 1 2
1313 NETWORK 42
1314 LD IO.0
1315 A T37
1316 A T38
1317 TON T39, +50
1318
1319 NETWORK 43
1320 LD IO.O
```

```
1321 A T37
1322 A T38
1323 A T39
1324 TON T40, +250
1 3 2 5
1326 NETWORK 44
1327 LD IO.0
1328 A T37
1329 A T38
1330 A T39
1331 A T40
1332 TON T41, +50
1 3 3 3
1 3 3 4 ~ N E T W O R K ~ 4 5 ~
1335 LD IO.0
1336 A T37
1337 A T38
1338 A T39
1339 A T40
1340 A T41
1341 TON T42, +100
1 3 4 2
1343 NETWORK 46
1344 LD IO.0
1345 A T37
1346 A T38
1347 A T39
1348 A T40
1349 A T41
1350 A T42
1351 TON T43, +50
1 3 5 2
1 3 5 3 ~ N E T W O R K ~ 4 7 ~
1354 LD IO.0
1355 A T37
1356 A T38
1357 A T39
1358 A T40
1359 A T41
1360 A T42
1361 A T43
1362 TON T44, +100
-1363
1364 NETWORK 48
1365 LD T44
1366 R T37, 1
1 3 6 7
1368 NETWORK 49.
1369 LD T44
1370 R T38, 1
1 3 7 1
1372 NETWORK 50
1373 LD T44
1374 R T39, 1
1 3 7 5
1376 NETWORK 51
1377 LD T44
1378 R T40, 1
1 3 7 9
1380 NETWORK 52
1381 LD T44
1382 R T41, 1
1383
1384 NETWORK 53
1 3 8 5
1386
LD
T44
T42, 1
```


CONCLUSION

When developing this project we see that PLC makes our life easier in everyday applications.

With the information observed from our lecturer and our researchers for this topic PLC, is a convenient tool with a wide rage of useful ways to be used. Such examples can be mentioned several machines can be used at the same time, easy adjustments from the PLC program can be meet within a few minutes by the keyboard, installed PLC programs can be controlled or checked before within the office and laboratory, even the PLC programs for firm can be meet at home. It is very protective and safe for the workers. Communication programs of PLCs within each other or during operation is possible. The developed languages have constructed the productivity, security, establishment security fast productivity, quality and we can see that PLC is a very cheap device that can be fundamentally used.

REFERENCES

Mustafa Yağımlı \& Feyzi Akar (1999). Programmable Logic Controllers.
Erdoğan Teközgen İstanbul, (1998). PLC ve Uygulamalan
HAKER Soğuk Döküm San. Tic. Lti. Ști. Tansel Sarıçam IZMİR
World Wide Web: www. siemens com
EGESIM Siemens Ana Bayii. 1204 Sok. No:41/1-1 Bulanalp 2 İs Merkezi Yenişehir IZMIR.

