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ABSTRACT 

 

The main function of channel equalisation is to compensate distortion in a 

communication channel between a transmitter and a receiver. Designing an equaliser for 

a communication channel greatly improves the quality of signal transmission that leads 

to more efficient communication. In signal transmission, the presence of noise, 

intersymbol interference (ISI), and the time-varying characteristics of the channel 

requires the use of adaptive equalisers. Adaptive equalisers based on digital filtering, 

multilayer perceptron (MLP), radial basis functions (RBF), and fuzzy technology are 

widely used. However, MLP equalisers require long training time and are sensitive to 

the initial network parameters. The RBF equalisers are simple and require less time for 

training, but usually require a large number of nodes which increase the complexity of 

computation.  In this thesis, the integration of neural networks and fuzzy technology is 

proposed, where a neuro-fuzzy system is considered for the equalisation of channel 

distortion. The construction of a fuzzy knowledge-based equaliser is a difficult problem 

in the design of an equaliser and time consuming. An effective way for the development 

of an equaliser’s knowledge-base is the use of neural networks. The structure and 

design algorithms of the neuro-fuzzy equalisation system are presented. The use of 

neuro-fuzzy equaliser in digital signal transmission allows decreasing the training time 

of equaliser’s parameters and decreasing the complexity of the network. According to 

the simulation results, the proposed Nonlinear Neuro-Fuzzy Network (NNFN) system 

provides more convergence rate and up to 10% improvement in the BER performance, 

in severely noisy channel conditions, compared to Adaptive Neuro-Fuzzy Inference 

System (ANFIS) and Feedforward Neural Network (FFNN) based systems. 
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INTRODUCTION 

 

Signals transmitted through a channel suffer from linear and nonlinear distortions. To 

eliminate these distortions, channel equalisation is needed. Channel equalisation is the 

process of compensating for the physical channel (amplitude and delay correction) 

between a transmitter and a receiver. It is an important area in communications as it can 

greatly improve the quality of transmission, which in turn leads to more efficient 

communication.  

 

Whatever the physical medium used for transmission of information is, the transmitted 

signal is corrupted in a random manner by a variety of possible mechanisms, such as 

additive thermal noise generated by electronic devices, man–made noise and 

atmospheric noise. Interference from other users of the channel is another form of 

additive noise that often arises in both wireless and wire line communication systems. 

This interference is modelled as a random, additive white Gaussian noise (AWGN) at 

the output of the noise–free channel. The transmitted signal is subject to distortion due 

to these interferences and noise. Various equalisers have been applied to equalise these 

distortions and recover the original transmitted signal [1, 2]. 

 

In wireless communication channels, one of the main forms of signal degradation is the 

multipath propagation. Such signal distortion is characterised as a non-additive signal 

disturbance, which appears as time variation in the signal amplitude, usually called 

fading. 

 

Signal distortions are usually characterised as random phenomena and are described in 

statistical terms. The effect of these signal distortions must be taken into account in the 

design of a communication system.  

 

Another essential characteristic of the transmission of information through a channel is 

that the bandwidth allocated for the channel is often limited, resulting in a dispersion of 

power between neighbour symbols in the transmitted sequence. When digital signals are 



  
 

 

transmitted through a communication channel one of the main problems that arises is 

due to multipath distortion is called the intersymbol interference (ISI). 

The equalisation of channel distortion includes equalisation of channel noise and other 

interferences, such as ISI and co-channel interference. In other words, equalisation is 

the process of reversing the effect of multipath propagation, which has been considered 

as the most heavily, exploited area for adaptive filtering in digital communication 

systems [3]. 

 

Conventional methods for compensating channel distortion are based on introducing a 

linear equaliser to the output of the channel. Linear equalisers cannot reconstruct the 

transmitted signal when channels are nonlinear. When channel characteristics are 

stochastic and time-varying, adaptive equalisation based on digital filtering, multilayer 

perceptron (MLP), and radial basis functions (RBF) are used. MLP equalisers require 

long training time and are sensitive to the initial network parameters. The RBF 

equalisers are simple and require less training time, however, on the other hand usually 

require a large number of nodes which increase the complexity of computation. The 

performance of linear equalisers is limited due to their linear decision boundary, 

whereas, nonlinear equalisers provide good performance compared to linear equalisers 

due to their ability to form nonlinear decision boundaries. The performance of these 

equalisers is determined by the Bayesian equaliser, and decision feedback equaliser 

(DFE).  

 

Nowadays neural networks and fuzzy technology are widely used for equalisation of 

channel distortions. Nonlinear adaptive filters based on neural network models have 

been used successfully for system identification and noise-cancellation in a wide class 

of applications [3]. There are number of research works, publications, which are 

devoted to fuzzy logic, genetic algorithms, neural computing etc. This allows the 

researchers to focus their investigations on artificial intelligence systems that make a 

shift nearer to soft computing [4]. 

 

The construction of equalisers on the basis of neural networks needs a certain time for 

learning parameters of the equaliser, while fuzzy technology is used to develop adaptive 

equalisers for nonlinear channels. In these equalisers human experts determine the fuzzy 



  
 

 

rules using input-output data pairs of the channel. These rules are used to construct the 

filter for nonlinear channels. The learning algorithms are applied to change parameters 

of the membership functions of the rules and develop equalisers. The use of such 

approach improves the adaptation speed.  

 

In this thesis, neural networks and fuzzy technology are used for the development of a 

neuro-fuzzy equaliser for channel distortion.  

 

The thesis consists of an introduction, four chapters, a conclusion, references and an 

appendix. 

 

In chapter one, different methods of channel equalisation are reviewed. The state of 

application problem of neural and fuzzy technologies for channel equalisation is 

presented. The statement of research problem is given. 

 

In the second chapter the structure of data transmission system, the functions of its main 

blocks are explained. The source of channel noise and interferences are given.  The 

structure of adaptive neuro-fuzzy equalisation system for channel distortion is 

presented.  

 

In chapter three the mathematical background of the construction of a neuro-fuzzy 

equaliser for channel distortion is presented. The structure of the neuro-fuzzy equaliser 

and its learning algorithm are described.  

 

In chapter four the development of neuro-fuzzy equaliser for channel distortion is 

carried out. The simulation results of the neuro-fuzzy equaliser and the results of 

different types of adaptive equalisers are compared. 

 

In the conclusion, the advantages of using neuro-fuzzy equalisation system are 

discussed. The results show that the use of the neuro-fuzzy equaliser ensures improved 

learning and BER performance conditions. 

 

 



  
 

 

CHAPTER I 

REVIEW ON CHANNEL EQUALISATION 

 

1.1 Overview 

 

Equalisation of channel distortions provides an accurate transmission of the input 

transmitted signals to a receiver. This is acquired by using efficient equalisation 

algorithms in signal transmission. In this chapter, understanding of the used 

methodologies in channel equalisation is considered. The application of different 

equalisation algorithms in digital signal transmission is analysed. The usage of neural 

networks, fuzzy and neuro-fuzzy technologies in adaptive channel equalisation is 

discussed. 

 

1.2  The State of Application of Channel Equalisation  

 

Channel equalisation includes the equalisation of linear and nonlinear distortions. These 

are ISI, co-channel interference, and noise. On one hand, linear equalisers are 

commonly used in receivers to compensate for linear channel distortion. On the other 

hand, nonlinear equalisers have the potential to compensate for both linear and 

nonlinear channel distortions. Different types of equalisers are applied for equalisation 

of channel distortions in order to recover transmitted signals at the receiver.  

 

Equalisation can be divided into two types: sequence estimation, and symbol detection 

[2, 5]. The first one needs channel estimation, and it is computationally complex. In this 

thesis adaptive channel equalisation that realises symbol detection technique is 

considered. This is a classification problem in which the input baseband signal is 

mapped onto a feature space determined by the direct interpretation of a known training 

sequence. Here the aim is the separation of symbols in the output signal space whose 

optimal decision region boundaries are nonlinear. Recently, a nearest neighbour rule [6] 

is used to classify the distorted signal. In [7] a systematic feature space partitioning 

method is proposed to divide the entire feature space into two decision regions using a 

set of hyper-planes. 

 



  
 

 

In general, all types of Digital Communication Systems (DCS’s) are affected by ISI. For 

example, digital transmission over analogue telephone lines experiences ISI due to the 

limited bandwidth of the medium. Mobile radio channels are also affected by ISI 

resulting from multipath fading due to the relative motion between the transmitter and 

the receiver [8].  

 
The ISI may cause errors when attempting to recover the data sequence. To make things 

worse, the channel characteristics that cause the distortion may vary considerably in 

time. Therefore, it is appropriate to assume that the channel, which is modelled as a 

linear system, is not known during the design of the receiver. In such a case the problem 

is to design a corrective system which, when cascaded with the front end of the receiver 

produces an output that, in some sense, corrects for the distortion caused by the channel 

and thus yields a replica of the transmitted signal. Since the distorting system is usually 

unknown, it is necessary for the corrective system to identify and continuously adapt to 

the, often, time–varying channel. Such a system is called an adaptive equaliser. The 

equalisation problem has received great attention in the literature and different solutions 

to this problem may be found [2].  

 

In general the family of adaptive equalisers can be divided into supervised equalisers 

and unsupervised equalisers. For the identification of the unknown channel, it is often 

necessary, when possible to periodically excite the system with a known training or 

pilot signal interrupting the transmission of useful information. A replica of this pilot 

signal is available at the receiver and the receiver compares the response of the system 

with its input in order to update its parameters in some manner. Such equalisers are 

known as supervised equalisers. However, the constraints associated with some 

communication systems, such as digital television or digital radios do not provide the 

scope for the use of a training signal. In this situation the equaliser needs some form of 

unsupervised or self recovery method to update its parameters. These equalisers are 

called blind equalisers. After training, the equaliser is switched to decision directed 

mode, where the equaliser can update its parameters based on the actual detected data.  

 

The process of supervised equalisation can be achieved broadly in two ways. These are 

sequence estimation and symbol-by-symbol estimation or symbol detection. The 



  
 

 

sequence estimator uses the sequence of received samples to recover the entire 

transmitted sequence of data symbols. The optimum sequence estimator is the 

maximum likelihood sequence estimator (MLSE) [9] and can be efficiently 

implemented based on a Viterbi trellis–the maximum likelihood Viterbi algorithm 

(MLVA) [10]. It is well known that the MLVA algorithm provides the best attainable 

equalisation performance. Since the MLSE requires that the entire data sequence has 

been received before the detection has been made, its theoretical performance can not be 

achieved in real–time systems where an arbitrary big decision lag cannot be tolerated.  

 
The class of symbol–by–symbol equalisers, on the other hand, detect each transmitted 

symbol separately. In most cases, the decision of a symbol–by–symbol equaliser can be 

regarded as a function of a vector containing past received samples. This decision 

function is often restricted to be linear and the resulting equaliser is referred to as a 

linear equaliser. If there are no restrictions for the decision function, the equaliser is 

called a nonlinear equaliser. The optimum decision function is in general nonlinear and 

is given by the maximum a-posterior probabilities (MAP) criterion derived by Bayes’s 

theory [11]. Hence, the optimum MAP symbol–by–symbol detector (MAPSD) is also 

called the Bayesian equaliser [12]. It has been shown in [13, 14] that the MAPSD 

provides a lower bit–error rate (BER) for a given lag than the MLSE. At high signal to 

noise ratios (SNR’s), their performance is virtually indistinguishable. On the other hand, 

at low SNR the MLSE is inferior to the MAPSD.  

 
Recent advances in signal processing techniques have provided a wide variety of 

nonlinear equalisers. These include Volterra series based equalisers [15], Mahalanobis 

distance equalisers [16], artificial neural networks, multilayer perceptrons (MLP), radial 

basis functions (RBF) network, fuzzy filters and fuzzy basis functions [17, 18, 19, 20]. 

The nonlinear equalisers, in general, treat equalisation as a pattern classification 

problem.  

 

Another type of adaptive equalisers is based on linear system theory, such as decision 

feedback that improves the performance of the equaliser. The design of decision 

feedback equalisers (DFEs) that is based on the minimum mean square error (MMSE) 

principle is given in [3], where it uses least mean square algorithm for simple and 



  
 

 

effective adaptive implementation. It is well-known, however, that in certain situations 

the MMSE solution can be distinctly inferior to the optimal minimum symbol error rate 

(MSER) solution. In [3] the MSER design for multilevel pulse-amplitude modulation is 

considered. Block-data adaptive implementation of the theoretical MSER DFE solution 

is developed based on the classical Parzen window estimate of probability density 

function. Furthermore, a sample by sample adaptive MSER algorithm, called the least 

symbol error rate (LSER), is derived for adaptive equalisation application. The 

proposed LSER algorithm has a complexity that increases linearly with the equaliser 

length. Computer simulation is employed to evaluate the proposed alternative MSER 

design for equalisation application with multi-level signalling schemes. 

 

A linear approach for the decision function of the symbol–by–symbol equaliser 

provides a computationally less complex linear equaliser, but at the expense of inferior 

performance. In order to design such linear equalisers, different optimisation criteria 

may be employed, such as minimum mean squared error (MMSE) or minimum 

amplitude distortion. The optimum, in the MMSE sense, linear equaliser is given by the 

Wiener equations [21], which require exact knowledge of the channel characteristics. In 

practice, however, the linear equaliser is a linear filter [22] trained with an adaptive 

algorithm like the least mean squares (LMS) or recursive least squares (RLS). These 

linear equalisers treat equalisation as inverse filtering and during the process of training 

they optimise a certain optimisation criterion such as MMSE.  

 
A special category of equalisers is the class of decision feedback equalisers (DFE’s). 

The DFE uses its past decisions in order to remove part of the distorting intersymbol 

interference from the received signal. The transfer function of a DFE is, in general, a 

non–linear function of the received signal, whatever its structure, due to the feedback 

operation. However, the operation of the DFE can be viewed as a function computed on 

the samples from the received signal and past detected symbols [18]. According to the 

nature of this function, the DFE may be classified as either linear or non–linear. In this 

thesis the term nonlinear equalisers is used exclusively for those equalisers that provide 

a nonlinear decision function based on received samples or the received samples along 

with previously detected samples.  

 
Different approaches have been proposed for channel equalisation. Within the 



  
 

 

communications signal processing area adaptive filters are in common use as equalisers 

and echo cancellers tend to be of a simple finite impulse response (FIR) variety. 

Although infinite impulse response (IIR) filter types would be attractive from the view 

point of complexity, they are not generally used due to problems with speed of 

adaptation and stability [23]. These processors are generally adapted using least squares 

objective functions implemented by recursive least squares (RLS) or stochastic gradient 

algorithms such as Normalized Least Mean Squares (NLMS). Non-linear adaptive 

processors have been deployed in the application areas of both echo cancellation and 

equalisation. In the case of equalisation this has been done because it is often possible to 

deploy non-linear structures which use fewer observation samples than linear equalisers, 

thus introducing less noise [22].  

Much work on non-linear equalisers has concentrated on linear in the parameter (LITP) 

models because they are easy to adapt using conventional algorithms. However, when 

substantial intersymbol interference is present then the complexity of these processors 

becomes excessive.  

One of the conventional methods for compensation of channel distortion is based on 

introducing the linear equaliser (linear inverse filter to the channel frequency response) 

to the output of the channel. This design methodology is appropriate when the channel 

model is precisely known and characteristics of the channel are not time-varying. When 

a channel has time-varying characteristics adaptive equalisers are used. Classical 

approaches for adaptive equalisers design are based on the knowledge of the parametric 

channel model [24]. These are implemented by identifying the channel dynamic and 

then constructing an equaliser using the identified channel model. These processes 

require certain time to gathering statistical data about the channel and time consuming. 

One type of equalisers is based on increasing the number of equaliser taps and choosing 

the coefficients from different ranges of values according to the amplitude of distorted 

signals [25]. In this approach a large number of coefficients and switching thresholds 

are required.  

 

The basic problem in channel equalisation is decreasing the bit error rate (BER) (or the 

probability of error) of the equaliser, which determines its performance. Channel 

distortions are mostly nonlinear; in this case, we need to use nonlinear channel 



  
 

 

equalisers in order to attain a lower BER, lower the mean squared error (MSE), and 

higher convergence rate than that of linear equalisers. 

 

The performance of linear equalisers is limited due to their linear decision boundary, 

while nonlinear equalisers provide good performance compared to linear equalisers due 

to their ability to form nonlinear decision boundaries, where the performance of these 

equalisers is determined by the Bayesian equaliser. Decision feedback equaliser (DFE) 

adaptive filtering is now an integral part of most of the modern communication systems 

where it is involved with both channel equalisation and estimation techniques. In these 

systems, filters are generally fed with a short training sequence to which they have to 

adapt prior to receiving data. This training sequence is often multiplexed with the data, 

reducing the amount of data transmitted in each frame. 

 

To maximise the efficiency of a system, training sequences need to be as short as 

possible requiring that adaptation occurs in as few iterations as possible. Also as the 

data rates of communication systems increase, the time available to complete a single 

iteration decreases. All of these factors place increasing demands on implemented 

algorithms, requiring fast digital signal processors with highly efficient optimised 

software. 

 

In [26], an equaliser algorithm is presented which is suitable for the use with a 

differential detector operating in a time dispersive channel. The algorithm, derived from 

previous Bayesian coherent methods, is able to provide reliable performance even after 

differential detection. Results for the differential equaliser operating in a typical indoor 

wireless channel are presented and are shown to compare favourably with those of a 

coherent receiver, using decision feedback equalisation, in the presence of a frequency 

offset. 

 

An importance sampling (IS) simulation method is presented for evaluating the lower-

bound symbol error rate (SER) of the Bayesian DFE with M-PAM symbols, under the 

assumption of correct decision feedback [27]. By exploiting an asymptotic property of 

the Bayesian DFE, a design procedure is developed, which chooses appropriate bias 



  
 

 

vectors for the simulation density to ensure asymptotic efficiency (AE) of the IS 

simulation 

 

In [27], the optimisation techniques for real-time adaptive algorithms based on Wiener 

and Kalman filter theory were developed. Two algorithms in particular were 

implemented on the TMS320C6201 evaluation module, these being the Least Mean 

Squares (LMS) and Recursive Least Squares (RLS). Benchmarking of the algorithms 

was performed allowing the evaluation of the maximum bit rate that can be supported in 

various situations. The two algorithms were also compared in other areas such as code 

size, ease of implementation, stability, reliability and data memory required for 

implementation. 

 

An adaptive beam-forming technique is proposed based on directly minimizing the bit-

error rate (BER) in [28, 29]. It is demonstrated that this minimum BER (MBER) 

approach utilises the antenna array elements more intelligently than the standard 

minimum mean square error (MMSE) approach. Consequently, MBER beam-forming is 

capable of providing significant performance gains in terms of a reduced BER over 

MMSE beam-forming.  

 

Furthermore, a symbol-by-symbol adaptive implementation is considered, and a 

stochastic gradient algorithm, referred to as the least bit error rate, is derived. The 

proposed adaptive MBER beam-forming technique provides an extension to the existing 

work for adaptive MBER equalisation and multi-user detection. 

 

An important application of signal processing is that of equalisation, which functions to 

compensate for the distortion undergone by a signal in its path between a transmitter 

and a receiver. In the past years there have been important advances in the field of 

equalisation that have brought, for instance, the wide development of mobile telephony. 

However, many equalisation systems are relatively basic. By improving the equalisation 

techniques mobile telephony operators could gain an increased capacity (number of 

telephones per cell) and call quality. In [30] the developing of algorithms for a class of 

nonlinear communication channels is considered. This is a difficult problem, since the 

field of nonlinear signal processing is relatively new. Our focus involves the use of 



  
 

 

genetic programming and associated optimisation techniques, an area in which shall be 

concentrated in the future, trying to improve the speed of these methods so that they can 

operate in real time. 

 

Other equaliser type is based on increasing the number of the equaliser taps and 

choosing the coefficients from different ranges of values according to the amplitude of 

distorted signals. In this approach a large number of coefficients and switching 

thresholds are required.  

 

Most of the described equalisers are based on linear system theory and they are 

efficiently used for equalisation of linear channels. The application of these equalisers 

to nonlinear channel does not provide the required BER characteristics; nowadays, 

neural networks and fuzzy technology are widely used for equalisation of nonlinear 

channel distortions. 

 

1.3 State of Application of Neural Networks and Fuzzy Technologies for Channel 

Equalisation 

 

1.3.1 Design of Neural Network Based Equalisers  

 

Nonlinear equalisers have the potential to compensate for all nonlinear, linear, and 

additive channel distortion. Nonlinear adaptive filters based on neural network models 

have been used successfully for system identification and noise-cancellation in a wide 

class of applications. Different neural network structures such as Multilayer Perception 

(MLP), Radial-Basis Function Networks (RBF), and Recurrent Neural Networks (RNN) 

have been implemented to achieve these ideas. The construction of equalisers on the 

basis of neural network needs some time interval for learning the parameters of the 

equaliser.  

 

Filtering is composed of two distinct estimation (computation) procedures. One is the 

estimation of the mapping (transformation) from the available samples, the other is the 

estimation of the output of the filter from the input by the realisation of this mapping. 

For a linear filter, it is not difficult to realise the mapping once the mapping is available. 
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For a nonlinear filter, the realisation of the mapping is not as easy as that for the linear 

filters. How to estimate and to realise effectively the mapping of nonlinear filters is the 

current research focus in this field [31]. 

 

The nonlinear mapping capability and the corresponding learning algorithm of the MLP 

network provide us with a new approach to attack the above problems of nonlinear 

filters. A general nonlinear filter is shown in Figure 1.1. 

 

MLP networks comprise a large class of feedforward neural networks with one or more 

layers of neurons, called hidden neurons, between the input and output neurons. The 

key function of MLP networks is the implementation of a nonlinear input-output 

mapping of a general nature [31]. 
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Figure 1.1 A general nonlinear filter. [31] 

 

Here )(nxi  are the input signals, )(ˆ nd is the filter output, )(nd is the desired signal, and 

)(nε is the error. 

 

The minimum error entropy criterion was suggested in adaptive system training as an 

alternative to the mean-square-error (MSE) criterion, and it proved to produce better 

results in many tasks. A MLP scheme trained with this information theoretic criterion is 

applied to the problem of nonlinear channel equalisation [30]. In [30] a realistic 
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nonlinear channel model, which is encountered when practical power amplifiers are 

used in the transmitter, where the bandwidth efficient 16-QAM scheme, which uses a 

dispersed constellation, is assumed. The nonlinearity of the MLP is dependent upon the 

discontinuity of the perceptron activation functions [32]. More nonlinearity exists for 

more discontinuous activation [33]. Ideally, a threshold function would be used to 

optimise the MLP structure. The Backpropagation algorithm, however, would not 

operate on such a structure so a sigmoid activation function with a small gradient is 

used. This activation function limits the nonlinearity and an optimal performance is not 

achieved. 

 

An alternative network to the MLP for many applications of signal processing is the 

RBF network. Since MLP networks are sometimes plagued by long training time and 

may be trapped at bad local minima, RBF networks often provide a faster and more 

robust solution to the equalisation problem [3]. 

 

An RBF is a multidimensional function that depends on the distance between the input 

vector and a centre vector. RBF’s provide a powerful tool for multidimensional 

approximation or fitting that essentially does not suffer from the problem of 

proliferation of the adjustable parameters as the dimensionality of the problem increases 

[34]. 

 

RBF network includes basis function that is viewed as the activation function in the 

hidden layer [35]. The most common basis function chosen is the Gaussian function. 

The RBF network and its complex equivalent (CRBF) have been found to be attractive.  

 

In [36], comparison of the performances of MLP vs. RBF equalisers in terms of symbol 

error rate vs. SNR is given. It was shown that the combination of MLP-RBF equaliser 

outperforms MLP equalisers and RBF equalisers. 

 

Most of the commonly used blind equalisation algorithms are based on the minimisation 

of a non-convex and nonlinear cost function and a neural network gives smaller residual 

error as compared to a linear structure. The efficiency of complex valued feed-forward 

neural networks for blind equalisation of linear and nonlinear communication channels 



  
 

 

has been confirmed by many studies. Two neural network models for blind equalisation 

of time-varying channels, for M-ary QAM and PSK signals are presented in [37]. The 

complex valued activation functions, suitable for these signal constellations in time-

varying environment, are introduced and the learning algorithms based on the CMA 

cost function are derived. The improved performance of the proposed models is 

confirmed through computer simulation. 

 

Constructing adaptive minimum bit error rate (MBER) neural network equalisers for 

binary signalling are considered in [31]. Motivated from a keruel density estimation of 

the BER, as a smooth function of training data, a stochastic gradient algorithm called 

the least bit error rate (LBER) is developed for adaptive nonlinear equalisers. This 

LBER algorithm is applied to adaptive training of a radial basis function (RBF) 

equaliser in a channel intersymbol interference (ISI) plus co-channel interference 

setting. A simulation study shows that the proposed algorithm has good convergence 

speed, and a small-size RBF equaliser trained by the LBER can closely approximate the 

performance of the optimal Bayesian equaliser. The results also demonstrate that the 

standard adaptive algorithm, the LMS, performs poorly for neural network equalisers 

because the MMSE is clearly suboptimal in the equalisation setting. The results also 

demonstrate that the standard adaptive algorithm, the LMS, performs poorly for neural 

network equalisers because the MMSE is clearly suboptimal in the equalisation    

setting [5].  

 

The effectiveness of using an Evolutionary Algorithm (EA) for the equalisation of a 

non-minimum phase channel using a feedforward multilayer perceptron is given in [38]. 

The initialisation of the MLP decision regions, using a predefined shape that suits the 

equalisation problem, has been shown to considerably speed up the convergence of the 

algorithm, as well as improve the performance by increasing the likely hood of an 

“optimal” convergence result. 

 

Conventional techniques utilising first and second order approximations of the error 

surface have been demonstrated to be ineffective in achieving an optimal solution in 

continuous simulations and have proved incapable of dealing with the more difficult 



  
 

 

non-minimum phase problems. Using an EA, a consistent near optimal solution is 

achieved. 

 

In [39] DFEs based on two weighted neural networks are presented. It is shown that the 

choice of an innovative cost functional based on the Discriminative Learning (DL) 

technique, coupled with a fast training paradigm, can provide neural equalisers that 

outperform standard DFEs at a practical signal to the noise ratio (SNR). In particular, 

the novel Neural Sequence Detector (NSD) is introduced, which allows extending of the 

concepts of Viterbi-like sequence estimation to neural architectures. Resulted 

architectures are competitive with the Viterbi solution from cost-performance aspects, 

as demonstrated in experimental tests. 

 

Recurrent neural networks (RNN) have feedback, small size (number of neurons), and 

high Bit Error Rate (BER) performance that make them attractive for high-speed 

adaptive equalisation of nonlinear channels with deep spectral nulls. RNN, in which 

each unit is connected to all other units, are the most general case of neural networks. 

RNN are highly non-linear dynamical systems that exhibit a rich and complex 

dynamical behaviour. 

 

It is important to note that RNNs with the same structures can exhibit different dynamic 

behaviour as a result of using distinct training algorithms. Consequently, an RRN 

network is defined only when both its architecture and training algorithm are given. 

Several algorithms exist for the training of RNNs, the most widely known algorithm is 

Real Time Recurrent Learning (RTRL) algorithm. The RTRL algorithm is based on the 

minimisation of the MSE by a gradient descent procedure and is used to update the 

weights of the RNN during the training period. The small size of RNN equalisers makes 

them attractive for high speed channel equalisation when compared with the complexity 

associated with other neural equaliser structures [40, 79]. 

 

The structure of RNN based equaliser is given [79]. The RNN structure and its training 

algorithm are used to design equalisers for the equalisation of noise. The inputs of 

neural equaliser are the channel output signals. The output of the neural network is the 

recovered transmitted sequence of signals [1]. 



  
 

 

In [41] adaptive RNN based equaliser whose small size and high performance makes it 

suitable for high-speed channel equalisation is considered. The RNN based structure is 

proposed for both trained adaptation and blind equalisation. The performance of 

equaliser is evaluated via extensive simulations for variety of signal modulations and 

communication channel models. It is shown that the RNN equalisers have comparable 

performance with traditional linear filter based equalisers when the channel 

interferences are relatively mild, and that they outperform them by several orders of 

magnitude when either the channel’s transfer function has spectral nulls or severe 

nonlinear distortion. In addition, the small size RNN equalisers, being generalized IIR 

filters and outperform multilayer perceptron equalisers of larger computational 

complexity in linear and non-linear channel equalisation cases. 

 

In some communication systems the transmitted signal is contaminated by impulsive 

noise with a non-Gaussian distribution. Non-Gaussian noise causes significant 

performance degradation to communication receivers. In [41] a recurrent neural 

equaliser is applied to impulsive noise channels, for which the performance of neural 

network equalisers has never been evaluated. This application is motivated from the fact 

that the unscented Kalman filter (UKF), which is suited for training of the recurrent 

neural equaliser, provides a higher accuracy than the extended Kalman filter (EKF) in 

capturing the statistical characteristics for non-Gaussian random variables. The 

performance of the recurrent neural equaliser is evaluated for impulsive noise channels 

through Monte Carlo simulations. The results support the superiority of the UKF to the 

EKF in compensating the effect of non-Gaussian impulsive noise. 

 

An adaptive decision feedback recurrent neural equaliser (DFRNE), which models a 

kind of an IIR structure, is proposed in [42]. Its performance is compared with the 

traditional linear and nonlinear equalisers with FIR structures for various 

communication channels. The small size and high performance of the DFRNE makes it 

suitable for high-speed channel equalisation. 

 

An important problem in high density digital magnetic recording system is the removal 

of distortions introduced by linear or nonlinear message corrupting mechanisms in the 

reconstruction of the original symbols. Severe nonlinear distortions in high density 



  
 

 

digital magnetic recording systems can make it difficult for conventional equalisers to 

reconstruct the originally recorded symbols. In [43] a Decision Feedback Recurrent 

Neural Equaliser (DFRNE) with a simple structure, which can recover the original 

symbols correctly under severe nonlinear distortion, is described. By evaluating its 

performance through computer simulations for various channels, the DFRNE has 

comparable performance with traditional equalisers when the channel interferences are 

mild. And it outperforms them when the channel’s transfer function has spectral nulls or 

when severe nonlinear distortion is present. In addition, the DFRNE, being essentially 

an IIR filter, is shown to outperform multilayer perceptron equalisers in linear and non-

linear channel equalisation cases. 

 

Recurrent neural networks (RNNs) have been successfully applied to communications 

channel equalisation because of their modelling capability for nonlinear dynamic 

systems [79]. Major problems of gradient-descent learning techniques commonly 

employed to train RNNs are slow convergence rates and long training sequences 

required for satisfactory performance. Decision-feedback equaliser using an RNN 

trained with Kalman filtering algorithms is presented in [44]. The main features of the 

proposed recurrent neural equalisers, using the extended Kalman filter (EKF) and 

unscented Kalman filter (UKF), are fast convergence and good performance using 

relatively short training symbols. Experimental results for various time-varying 

channels are presented to evaluate the performance of the proposed approaches over a 

conventional recurrent neural equaliser [44]. 

 

1.3.2. Channel Equalisation by Using Fuzzy Logic 

 

One of the effective ways for the development of adaptive equalisers for nonlinear 

channels is the use of fuzzy technology in their development. These equalisers are 

nonlinear filters that are used for equalisation of variety of communication systems. In 

these equalisers, the fuzzy rules using input-output data pairs of the channel are 

determined. This type of adaptive equalisers can process numerical data and linguistic 

information in natural form. Fuzzy equaliser that includes fuzzy IF-THEN rules was 

proposed for nonlinear channel equalisation [45]. Human experts determine the fuzzy 

rules using input-output data pairs of the channel. These rules are used to construct the 



  
 

 

filter for nonlinear channel. The recursive least squares and least mean squares 

algorithms are applied to change parameters of the membership functions of rules and 

develop equalisers. The incorporation of linguistic and numerical information improves 

the adaptation speed and its bit error rate (BER).  

 

In [45] it was indicated that a linear transversal filter requires a much larger training set 

to achieve the same error rate as it was achieved by fuzzy logic equaliser. The fuzzy 

logic equalisers are also proposed for quadratic amplitude modulation (QAM) 

constellation channel equalisation [46], and for implementation a Bayesian equaliser to 

eliminate co-channel interference [47, 48]. 

  

In [49], a new method to solve the channel equalisation problem using fuzzy logic is 

given. The membership functions are derived from the training data set and do not have 

to be pre-defined. A method for combining the outcomes of different rules is also 

proposed. The performance of the new method is compared with the transversal filter 

based equaliser. It is shown, using simulation that the fuzzy equaliser performs better in 

the presence of channel non-linearity. 

 

The problem of channel equalisation in digital cellular radio (DCR) application is given 

in [39]. DCR systems are affected by co-channel interference (CCI), intersymbol 

interference (ISI) in presence of additive white Gaussian noise (AWGN). Here a fuzzy 

equaliser is proposed to equalise communication channels with such abnormalities. This 

equaliser performs close to the optimum Bayesian equaliser with a substantial reduction 

in computational complexity. The equaliser is trained with supervised and unsupervised 

scalar clustering techniques in sequence, and consists of a fuzzy equaliser with a pre-

processor for CCI compensation. Simulation studies have demonstrated the 

performance of the proposed technique. 

 

A fuzzy adaptive filter is constructed from a set of fuzzy IF-THEN rules which change 

adaptively to minimize some criterion function as new information becomes available 

[44]. A fuzzy adaptive filter uses a recursive least squares (RLS) adaptation algorithm.  

 

 



  
 

 

The RLS fuzzy adaptive filter is constructed through the following four steps:  

 

1) Define fuzzy sets in the filter input space U∈Rn whose membership functions cover                

U; 2) Construct a set of fuzzy IF-THEN rules which either come from human experts or 

are determined during the adaptation procedure by matching input-output, data pairs;   

3) Construct a filter based on the set of rules; and, 4) Update the free parameters of the 

filter using the RLS algorithm.  

 

The most important advantage of the fuzzy adaptive filter is that linguistic information 

(in the form of fuzzy IF-THEN rules) and numerical information (in the form of input-

output pairs) can be combined into the filter in a uniform fashion. Finally, this fuzzy 

adaptive filter is applied to nonlinear communication channel equalisation problems; the 

simulation results show that:  

 

1) Without using any linguistic information, the RLS fuzzy adaptive filter is a well-

performing nonlinear adaptive filter (similar to polynomial and neural-net adaptive 

filters); 2) By incorporating some linguistic description (in fuzzy terms) about the 

channel into the fuzzy adaptive filter, the adaptation speed is greatly improved; and,    

3) The bit error rate of the fuzzy equaliser is very close to that of the optimal equaliser. 

 

A new kind of adaptive filter called type-2 fuzzy adaptive filter (FAF) is proposed in 

[38]. This adaptive filter is realized by using an un-normalised type-2 Takagi–Sugeno–

Kang (TSK) fuzzy logic system (FLS). The filter is applied to the equalisation of a 

nonlinear time-varying channel and it was demonstrated that it can implement the 

Bayesian equaliser for such a channel. The developed equaliser has a simple structure, 

and provides fast inference. A clustering method is used to adaptively design the 

parameters of the FAF. Two structures are used for the equaliser: transversal equaliser 

(TE) and decision feedback equaliser (DFE). A new decision tree structure is used to 

implement the decision feedback equaliser, in which each leaf of the tree is a type-2 

FAF. This DFE vastly reduces computational complexity as compared to a TE. 

Simulation results show that equalisers based on type-2 FAFs perform much better than 

nearest neighbour classifiers (NNC) or equalisers based on type-1 FAFs [50]. 

 



  
 

 

In [50] type-2 fuzzy adaptive filter is used for overcoming time-varying co-channel 

interference (CCI). A clustering method is used to adaptively design the parameters of 

the FAF. The transversal equaliser and decision feedback equaliser structures are used 

to eliminate the CCI. Simulation results show that the equalisers based on type-2 FAFs 

perform better than the nearest neighbour classifiers or the equalisers based on type-1 

FAFs when the number of co-channels is much larger than 1. 

 

In [49] the channel equalisation using fuzzy logic is presented. Here membership 

functions are estimated from the training set and a method to estimate the delay of the 

communication channel is presented. The performance of the fuzzy equaliser is 

compared with the transversal filter equaliser. It is shown using simulations that the 

transversal filter requires a much larger training set to achieve the same error rate. 

Simulations results demonstrate that the performance of the fuzzy equaliser is better in 

the presence of channel nonlinearities. 

 

Recently, fuzzy technology is used for the development of adaptive equalisers for 

nonlinear communication channels. They are nonlinear filters that are used for 

equalisation of variety of communication systems. In these equalisers, the fuzzy rules 

using input-output data pairs of the channel are determined. These rules are used to 

construct the filter for nonlinear channel. The recursive least squares (RLS) and the 

least mean squares (LMS) algorithms are applied to change parameters of the 

membership functions of rules and to develop equalisers [50]. The use of such approach 

improves the adaptation speed. In some cases the construction of fuzzy rules for 

equalisers is very difficult, and then one of the effective technologies for construction of 

equaliser’s knowledge base is the use of neural networks. In this thesis integration of 

neural network and fuzzy technology is considered for equalisation of channel 

distortion. Neuro-fuzzy systems belong to a newly developed class of hybrid intelligent 

systems, which combine the main features of artificial neural networks with those of 

fuzzy logic [51]. Neither fuzzy reasoning systems nor neural networks are by 

themselves capable of solving problems involving at the same time both linguistic and 

numerical knowledge. 

 



  
 

 

The design of a self-constructing fuzzy neural network (SCFNN)-based digital channel 

equaliser is proposed in this thesis. It is demonstrated that the SCFNN-based digital 

channel equaliser possesses the ability to recover the channel distortion effectively. The 

performance of SCFNN is compared with that of the adaptive-based-network fuzzy 

inference system (ANFIS) and the optimal Bayesian solution. Simulations were carried 

out in both real-valued and complex-valued nonlinear channels to demonstrate the 

flexibility of the proposed equaliser. The experimental results show that the 

performance of SCFNN can be close to that of the Bayesian optimal solution and 

ANFIS, while the hardware requirement of the trained SCFNN-based equaliser is much 

lower [52]. 

 

In some cases the construction of proper fuzzy rules for equalisers is difficult. In this 

case one of the effective technologies for construction of equaliser’s knowledge base is 

the use of neural network. In this thesis, the adaptive channel equalisation by using 

recurrent neuro-fuzzy network is considered. The use of neuro-fuzzy technology allows 

using small number of parameters, fast and easy train equaliser. The equaliser based on 

neural networks doesn’t need appropriate knowledge about channel dynamics. These 

equalisers give better results in bit error rate (BER), at the cost of computational 

strength. 

 

1.4 The State of Research Problem 

 

The presence of noise and the time-varying nature of channel need the usage of soft-

computing elements, such as neuro-fuzzy technology, for the construction of an 

equaliser. In this thesis, adaptive equalisation, based on symbol detection on the output 

of the channel is considered. The equalisation considered is a geometric classification 

problem. The main objective is the separation of the received symbols in the output 

signal space. In this equalisation input base-band sequence of signals are mapped onto a 

feature space determined by the direct interpretation of a known training sequence, i.e. 

neuro-fuzzy rule is used to classify the distorted signal. The methodology used in 

equaliser’s development is based on neural network and fuzzy theory.  

 



  
 

 

Development of neuro-fuzzy system for equalisation of channel distortion includes the 

following steps: 

 

- First, the analysis of the methodologies used for the equalisation of channel distortions 

and state of application problems of neural and fuzzy technologies for the development 

of an equaliser is considered. 

 

- Second, the structure of data transmission and the operation structure of adaptive 

channel equalisation using neuro-fuzzy network is presented.  

 

- Third, the mathematical model of the neuro-fuzzy network for the development of 

equalisation system for channel distortion is presented. The learning algorithm of neuro-

fuzzy system is considered.  

 

- Fourth, the development of the neuro-fuzzy equaliser for channel distortion is 

presented. The simulation results of the equaliser and a table of comparison of different 

equalisation techniques are presented. 

 

1.5 Summary 

 

Analysis of technologies used for equalisation of channel distortions demonstrates that 

one of the effective methodologies for the improvement of the efficiency of data 

transmission is the combination of neural networks and fuzzy logic. Neural network has 

self-learning characteristic that increases the accuracy of the data transmission, 

Whereas, Fuzzy logic allows to reduce the complexity of the data and to deal with 

uncertainty. In this chapter the state of art understanding of the used methodologies in 

channel equalisation is considered. The application of different equalisation algorithms 

in digital signal transmission is analysed. It is proposed to use combination neural 

network and fuzzy technologies in adaptive channel equalisation. The distortion of the 

received signal due to intersymbol interference was also highlighted and the need for 

adaptive equalisation was underlined. Finally, we discussed the different techniques 

employed for the problem of equalisation, with our attention based on nonlinear 

equalisers. 



  
 

 

CHAPTER 2 

STRUCTURE OF CHANNEL EQUALISATION 

 

2.1. Overview 

 

A communication system consists basically of three parts: transmitter, channel and 

receiver (Figure 2.1). A transmitter converts the electrical signal into a form that is 

suitable for transmission through the physical channel or transmission medium. The 

function of the receiver is to recover the message signal contained in the received signal. 

The communications channel is the physical medium that is used to send the signal from 

the transmitter to the receiver. A transmitted signal is distorted in the channel before it 

reaches the receiver.  

 

 

 

Figure 2.1 Basic Components of a Transmission System. 

 

Digital communication differs from its analogue counterpart in that it can only transmit 

a finite number of waveforms. The information, transmitted as a stream of binary digits, 

is typically coded prior to transmission, i.e., redundant bits are added to the message to 

provide protection against transmission errors. In the same way, the information that 

leaves the receiver must be decoded before it can be used. A transmitted symbol is 

distorted by other transmitted symbols and also by noise that is defined as an unwanted 

signal. Noise itself is a signal that conveys information regarding the source of the 

noise. At the receiver the equalisation of channel is performed to neutralise the effect of 

distortion on the received signals. In this chapter the structure of data transmission 

system and the functions of its main components and equalisation of channel distortion 

will be discussed. 

 

2.2. Architecture of Data Transmission Systems 

 

A transmission channel is defined as the electrical medium between the source and the 

destination, the channel is characterised by its Loss/Attenuation, Bandwidth, 

Transmitter Channel Receiver 



  
 

 

Noise/Interference and Distortion. The receiver function is principally to reverse the 

modulation process of the transmitter in order to recover the message signal, attempting 

to compensate for any signal degradation introduced by the channel. This will normally 

involve amplification, filtering, demodulation and decoding, and in general is a more 

complex task than the transmitting process.  

  

Advancement in digital signal processing (DSP) technology has made digital 

modulation more cost effective than analogue transmission systems. Digital modulation 

systems have more advantages comparing with the analogue ones; they provide more 

noise immunity, robustness to channel impairments, easier multiplexing of various 

forms of information, and greater security. In digital wireless communication systems, 

the modulating signal may be represented as a time sequence of symbols or pulses, 

where each symbol has m finite states. Each symbol represents n bits of information, 

where n = log2 m bits/symbol [51]. 

 

Digital communication systems (DCSs) are designed to transmit the information 

generated by a source to one or more destinations in digital form. The architecture of a 

general DCS is presented in Figure 2.2. The data source constitutes the signal generation 

system that generates the information to be transmitted. Information sources may take a 

variety of different forms. They can be analogue, such as audio sources in radio 

broadcasting or video sources in TV broadcasting. In contrast, they can be digital such 

as binary data or ASCII characters generated by computers and storage devices (e.g. 

magnetic or optical disks). In modern digital communication systems all the information 

to be transmitted must be first converted into a sequence of digits. For non–digital 

sources, this is done through sampling and quantisation. Therefore, the information 

source can always be regarded as producing a stream of digits. 

 

The stream of digital data, or information sequence, is then passed to the encoder. The 

purpose of the encoder is to introduce, in a controlled manner, some redundancy in the 

digital information sequence that can be used at the receiver to overcome the effects of 

noise and interference encountered during the transmission of the signal through the 

channel. This added redundancy actually serves to provide means for error detection 

and/or correction at the receiver end. Some of the typical coding schemes used are Gray 
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codes, block codes (e.g., Hamming code and cyclic codes), convolution codes and turbo 

codes [1, 52]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Architecture of a digital communication system. [31] 

 

The information–bearing signals are usually transmitted by some type of carrier 

modulation. The channel over which the signal is transmitted is limited in bandwidth to 

an interval of frequencies centred about the carrier, as in double–sideband modulation, 

or adjacent to the carrier, as in single–sideband modulation. The bandwidth efficiency 

ηB describes the ability of a modulation scheme to accommodate data within a limited 

bandwidth (equation 2.1). There is a fundamental upper bound on achievable bandwidth 

efficiency. Shannon’s channel coding theorem states that for an arbitrary small 

probability of error, the maximum possible bandwidth efficiency ηBmax is limited by the 

noise in the channel, and is given by the channel capacity formula [53]. The Shannon’s 

bound applies for additive white Gaussian noise is given by  
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Where C is the channel capacity (in bps), B is the channel bandwidth, S is the average 

power of the transmitted signal, and N is the power spectral density of the white 
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Gaussian noise, S/N is also called the signal-to-noise ratio. Shannon [54] also showed 

that if the transmission rate is less than the channel capacity, then it is possible to 

achieve reliable communication, with as small an error probability as desired. The 

efficient use of this restricted bandwidth is achieved through the choice of the encoding 

scheme and the design of the transmitter filter, also called the modulating filter. 

 

The modulator, on the other hand, places the baseband signal over a high frequency 

carrier for transmission in the allocated spectrum using a modulation scheme. Some of 

the typical modulation schemes used in digital communication systems are amplitude 

shift keying (ASK), frequency shift keying (FSK), pulse amplitude modulation (PAM), 

phase shift keying (PSK), and quadrature phase shift keying (QAM) modulation. 

 

The communication channels may be of various types. In wireless transmission, the 

channel may be the atmosphere (free space). On the other hand, telephone channels 

usually utilise a variety of physical media, such as wire lines, optical fibre cables, and 

wireless microwave links. Whatever the physical medium used for transmission of the 

information, the transmitted signal is corrupted in a random manner by a variety of 

possible mechanisms, such as additive thermal noise generated by electronic devices, 

man–made noise (e.g. automobile ignition noise) and atmospheric noise (e.g. electrical 

lightning discharges during thunderstorms) [55]. This interference is modelled as 

random, additive white Gaussian noise (AWGN) at the output of a noise–free channel. 

Another essential characteristic of the transmission of information through a channel is 

that the bandwidth allocated for the channel is often limited, resulting in the dispersion 

of power between neighbour symbols in the transmitted sequence. This distortion of the 

channel is called intersymbol interference (ISI). 

 

At the receiver the signal is first demodulated to recover the transmitted signal in its 

baseband form. Then the demodulated signal that is processed by the receiver filter, also 

called receiver demodulating filter, should be ideally matched to the transmitter filter 

and channel impulse response. Normally the channel transfer function is not known to 

the receiver and may be non-stationary. For this reason the receiver is usually matched 

to the transmitter filter only. 

 



  
 

 

The output of the receiver filter is sampled at the symbol rate and the resulting discrete 

time signal is passed to the equaliser. The equaliser in the receiver removes the ISI 

distortion introduced due to the limited bandwidth of the channel. The decision device 

reconstructs the encoded transmitted binary sequence, based on the soft decisions made 

by the equaliser. Finally, the decoder performs the reverse operation of the encoder and 

reconstructs the sequence of transmitted information symbols. 

 

2.3 Channel Characteristics 

 

The transmitted signal is corrupted in a random manner by additive noise. Additive 

disturbances are thermal noise, man-made noise, and atmospheric noise. Interference 

from other users of the channel is another form of additive noise that often arises in both 

wireless and wire line communication systems. 

 

In some radio communication channels, such as the ionospheric channel that is used for 

long-range, short-wave radio transmission, another form of signal degradation is 

multipath propagation. Such signal distortion is characterised as a non-additive signal 

disturbance, which manifests itself as time variations in the signal amplitude, usually 

called fading [56].  

 

Both additive and non-additive signal distortions are usually characterised as random 

phenomena and described in statistical terms. The effect of these signal distortions must 

be taken into account in the design of the communication system. 

 

A communications channel may be described in terms of its characteristic properties. 

These channel characteristics include bandwidth (how much information can a channel 

accommodate), quality (how reliably can the information be correctly conveyed across 

the channel), and whether the channel is dedicated (to a single source) or shared (by 

multiple sources).  

 

Obviously a higher bandwidth in a channel allows more information to be conveyed per 

unit of time. High bandwidths mean that more users can share the channel, depending 



  
 

 

on their means of accessing it. High bandwidths also allow more demanding 

applications (such as graphics) to be supported for each user of the channel.  

 

Reliability of communication is obviously important. A low quality channel is prone to 

distorting the messages it conveys; a high quality channel preserves the integrity of the 

messages it conveys. Depending on the quality of the channel in use between 

communicating entities, the probability of the destination correctly receiving the 

message from the source might be either very high or very low. If the message is 

received incorrectly it needs to be retransmitted.  

 

If the probability of receiving a message correctly across a channel is too low, the 

system (source, channel, message, and destination) must include mechanisms which 

overcome the errors introduced by the low quality channel. Otherwise no useful 

communication is possible over that channel. These mechanisms are embodied in the 

communication protocols employed by the corresponding entities.  

 

The effective bandwidth describes what an application experiences and depends on the 

quality of service (QOS) provided by the channel. For example, modems scale back 

their transmission speed based largely on their perception of channel quality in order to 

optimally use the transmission medium.  

 

In general, shared and reliable channels are more resource efficient than those which 

enjoy neither of these characteristics. Shared channels enjoy greater efficiency than 

dedicated ones because most data communication is burst in nature, with long idle 

periods punctuated by brief message transmissions. Reliable channels are more efficient 

than unreliable ones because retransmissions are not required as often (because there are 

fewer transmission-induced errors). 

 

2.4 Channel Distortions 

 

On propagating through a channel, signals are shaped and distorted by the frequency 

response and the attenuating channel characteristics. There are two main manifestations 

of channel distortions: magnitude distortion and phase distortion. In addition, in radio 



  
 

 

communication, we have the multipath effect, in which the transmitted signal may take 

several different routes to the receiver, with the effect that multiple versions of the 

signal with different delay and attenuation arrive at the receiver. 

 

The common types of channel distortion are: 

 

• Frequency-dependent phase shifts, giving rise to differential group delay 

• Gain variations with frequency caused by the channel filtering effect 

• Gain variations with time as experienced in a radio/infra red channel 

• Frequency offsets between transmitter and receiver due to Doppler Shift or  

local oscillator errors. 

 

Distortion can be introduced within the transmitter, the receiver and the channel. In 

some cases it can be corrected using channel equalisers, and gain and frequency control 

systems. Unlike noise and interference, distortion disappears when the signal is turned 

off. 

 

2.4.1 Multipath Propagation  

 

A transmitted signal is probably subject to reflections from buildings, mountains or 

other reflectors. This leads to the received signal becoming distorted or even 

temporarily suppressed. This is called multipath channel. Associated with each path are 

a propagation delay and an attenuation factor. Both the propagation delays and the 

attenuation factors vary slowly with time as a result of changes in the channel 

environment.  

 
The amplitude attenuation factor varies slowly and must change sufficiently to cause a 

significant change in the received signal. Since the carrier frequency is quite high, small 

delay differences give rise to large phase changes. Multipath propagation channel that is 

embodied in the received signal results in signal fading. The frequency selective, fast 

fading phenomenon is primarily a result of the time variations in the phases. That is, the 

randomly time-variant phases associated with the vectors result on occasion in the 

vectors adding destructively.  



  
 

 

When this occurs, the resulting received signal is very small, or practically zero. At 

other times, the vectors add constructively, making the received signal large. Thus, the 

amplitude variations in the received signal, so-called signal fading, are due to the time-

varying multipath characteristics of the channel.  

 

If the transmitter, receiver, or reflectors are moving within a multipath environment, the 

path lengths will vary with time and so the relative phases between signals will also 

vary with the position of the users. The result is that the receiver experiences a 

combined signal with fluctuating amplitude and phase as a function of time [57]. 

 

In mobile radio propagation, fading is used to describe the rapid fluctuations of the 

amplitudes, phases, or multipath delays of a radio signal over a short period of time or 

travel distance, so that large-scale path loss effect may be ignored. Fading is caused by 

interference between two or more versions of the transmitted signal which arrive at the 

receiver at slightly different times. These waves, called multipath waves, combine at the 

receiver antenna to give a resultant signal which can vary widely in amplitude and 

phase, depending on the distribution of the intensity and relative propagation time of the 

waves and the bandwidth of the transmitted signal [51]. 

 

Multipath in the radio channel creates small-scale fading effects. The three most 

important effects are: 

 

- Rapid changes in signal strength over a small travel distance or time interval 

- Random frequency modulation due to varying Doppler shifts on different 

multipath signals 

- Time dispersion (echoes) caused by multipath propagation delays. 

 

In wireless channels, the high data rates inevitably give rise to severe frequency 

selectivity and multipath interference. Multipath channels pose many challenging signal 

processing problems for designers of high-performance receivers. To overcome channel 

selectivity transmission techniques, such as code-division multiple access (CDMA) and 

orthogonal frequency-division multiplexing (OFDM), are used. At the same time, 

however, the scattering-rich environment engendered by the presence of multiple 



  
 

 

propagation paths leads to tremendous potential diversity gains that can be exploited 

through the use of suitable transmission/reception strategies such as multiple-input 

multiple-output (MIMO) techniques [58].  

 

2.4.2 Intersymbol Interference  

 

The basic problem is that of digital transmission through a dispersive medium (such as a 

mobile radio channel which) introduces distortion due to multipath effects. This means 

that data symbols interfere with each other.  

 

Let us consider what happens when pulsed information is transmitted over an analog 

channel such as a phone line or airwaves. Even though the original signal is a discrete 

time sequence (or a reasonable approximation), the received signal is a continuous time 

signal. Heuristically, one can consider that the channel acts as an analog low-pass filter, 

thereby spreading or smearing the shape of the impulse train into a continuous signal 

whose peaks relate to the amplitudes of the original pulses. Mathematically, the 

operation can be described as a convolution of the pulse sequence by a continuous time 

channel response. The operation starts with the convolution integral: 
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where x(k) is the received signal, h(k) is the channel impulse response, and s(k) is the 

input signal. The second half of the equation above is a result of the fact that 

convolution is a commutative operation.  

 

Component s(k) is the input pulse train, which consists of periodically transmitted 

impulses of varying amplitudes. Therefore, 
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where T represents the symbol period. This means that the only significant values of the 

variable of integration in the above integral are those for which k = nT. Any other value 

of k amounts to multiplication by 0. Therefore x(k) can be written as 
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This representation of x(k) more closely resembles the convolution sum, however, that it 

still describes a continuous time system. It shows that the received signal consists of the 

sum of many scaled and shifted continuous time system impulse responses. The impulse 

responses are scaled by the amplitudes of the transmitted pulses of x(k).  

 

In equation 2.4, the first term is the component of x(k) due to the Nth symbol. It is 

multiplied by the centre tap of the channel-impulse response. The other product terms in 

the summation are ISI terms. The input pulses in the neighbourhood of the Nth symbol 

are scaled by the appropriate samples in the tails of the channel-impulse response.  

 

2.4.3 Noise 

 

The Gaussian process has been always the dominant noise model in communications 

and signal processing literature, mainly because of the central limit theorem. In 

addition, the Gaussian assumption often leads to analytically tractable solutions [1].  

 

Unfortunately, in many communication channels, the observation noise exhibits 

Gaussian, as well as impulsive characteristics. The sources of impulsive noise may be 

either natural, or man made. It may include atmospheric noise or ambient acoustic 

noise. It might come from relay contacts, electromagnetic devices, electronic apparatus, 

or transportation systems, switching transients, and accidental hits in telephone        

lines [2]. 

 

Most of the systems are optimised under the Gaussian assumption and their 

performance is significantly degraded by the occurrence of impulsive noise [4, 5]. That 

is, more realistic statistical models must be used. Impulsive noise is more likely to 



  
 

 

exhibit sharp spikes or occasional bursts of outlying observations than one would expect 

from normally distributed signals. 

 

Noise may be defined as any unwanted signal that interferes with the communication, 

measurement or processing of an information-bearing signal. Noise is characterised as 

random, unpredictable electrical signals from natural sources. Noise is present in various 

degrees in almost all environments. For example, in a digital cellular mobile telephone 

system, there may be several variety of noise that could degrade the quality of 

communication, such as acoustic background noise, thermal noise, electromagnetic 

radio-frequency noise, co-channel interference, radio-channel distortion, echo and 

processing noise. Noise can cause transmission errors and may even disrupt a 

communication process; hence noise processing is an important part of modern 

telecommunication and signal processing systems. The success of a noise processing 

method depends on its ability to characterise and model the noise process, and to use the 

noise characteristics advantageously to differentiate the signal from the noise.  

 

Depending on its source, a noise can be classified into a number of categories, 

indicating the broad physical nature of the noise, as follows: 

 

a. Acoustic noise: emanates from moving, vibrating, or colliding sources and is 

the most familiar type of noise present in various degrees in everyday 

environments. Acoustic noise is generated by such sources as moving cars, air-

conditioners, computer fans, traffic, people talking in the background, wind, rain, 

etc. 

 

b. Electromagnetic noise: present at all frequencies and in particular at the radio 

frequencies. All electric devices, such as radio and television transmitters and 

receivers, generate electromagnetic noise. 

 

c. Electrostatic noise: generated by the presence of a voltage with or without 

current flow. Fluorescent lighting is one of the most common sources of 

electrostatic noise. 

 



  
 

 

d. Channel distortions, echo, and fading: due to non-ideal characteristics of 

communication channels. Radio channels, such as those at microwave 

frequencies used by cellular mobile phone operators, are particularly sensitive to 

the propagation characteristics of the channel environment. 

 

e. Processing noise: the noise that results from the digital/analog processing of 

signals, e.g. quantisation noise in digital coding of speech or image signals, or 

lost data packets in digital data communication systems. 

 

Depending on its frequency or time characteristics, a noise process can be classified into 

one of several categories as follows: 

 

a. Narrowband noise: a noise process with a narrow bandwidth such as a      

50/60 Hz from the electricity supply. 

 

b. White noise: purely random noise that has a flat power spectrum. White noise 

theoretically contains all frequencies in equal intensity. 

 

c. Band-limited white noise: a noise with a flat spectrum and a limited bandwidth 

that usually covers the limited spectrum of the device or the signal of interest. 

 

d. Coloured noise: non-white noise or any wideband noise whose spectrum has a 

non-flat shape; examples are pink noise, brown noise and autoregressive noise. 

 

e. Impulsive noise: consists of short-duration pulses of random amplitude and 

random duration. 

 

f. Transient noise pulses: consists of relatively long duration noise pulses. 

 

For convenience, most research works assume noise to fall predominantly into the class 

of Additive White Gaussian Noise (AWGN) which does indeed form an adequate 

classification for most cases. However, this is a general simplification of the whole 

noise issue. 



  
 

 

x(k) = s(k) + n(k) 

In order to use in the design of communication systems, it is convenient to construct 

mathematical models that reflect the most important characteristics of the transmission 

channels. Then, the mathematical model for the channel is used in the design of the 

channel encoder and modulator at the transmitter and the demodulator and channel 

decoder at the receiver. A brief description of channel models that are frequently used to 

characterise many of the physical channels that are encountered in practice is given 

below: 

 

2.4.3.1 The Additive Noise Channel 

 

The simplest mathematical model for a communication channel is the additive noise 

channel, illustrated in Figure 2.3. In this model, the transmitted signal x(k) is corrupted 

by an additive random noise process n(k). Physically, the additive noise process may 

arise from electronic components and amplifiers at the receiver of the communication 

system, or from interference encountered in transmission as in the case of radio signal 

transmission. 

 

If the noise is introduced primarily by electronic components and amplifiers at the 

receiver, it may be characterised as thermal noise. This type of noise is characterised 

statistically as a Gaussian noise process. Hence, the resulting mathematical model 

applies to a broad class of physical communication channels, and because of its 

mathematical tractability this is the predominant channel model used in the channel is 

usually called the additive Gaussian noise channel.  

 

 

 

 

 

 

Figure 2.3 The additive Gaussian noise channel [59] 
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x(k) = s(k) * h(k) + n(k) 
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2.4.3.2 The Linear Filter Channel 

 

In some physical channels such as wire line telephone channels, filters are used to 

ensure that the transmitted signals do not exceed specified bandwidth limitations and 

thus do not interfere with one another. Such channels are generally characterised 

mathematically as linear filter Channels with additive noise, Figure 2.4. Hence, if the 

channel input is the signal s(k) the channel output is the signal 
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where h(τ) is the impulse response of the linear filter and * denotes convolution. 

 

 

 

 

 

 

 

 

Figure 2.4 The linear filter channel with additive noise [59] 

When the signal undergoes attenuation in transmission through the channel, the received 

signal is 

                                     x(k) = α s(k) + n(k)                                                ……(2.6) 

 

where α represents the attenuation factor. 

 

2.4.3.3 The Linear Time-Variant Filter Channel  

 

Physical channels such as underwater acoustic channels and ionospheric radio channels 

which result in time-variant multipath propagation of the transmitted signal may be 

characterised mathematically as time-variant linear filters. Such linear filters are 

Linear 
filter h(k) 
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characterised by a time-variant channel impulse response h(τ ;k), where h(τ ;k) is the 

response of the channel at time k due to an impulse applied at time k-τ. Thus, τ 

represents the elapsed-time variable. The linear time-variant filter channel with additive 

noise is illustrated Figure 2.5. For an input signal s(k), the channel output signal is 
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Figure 2.5 Linear time-variant filter channel with additive noise [61] 

A good model for multipath signal propagation through physical channels, such as the 

ionosphere and mobile cellular radio channels, is a special case of (2.7) in which the 

time-variant impulse response has the form 
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where the {an(k)} represents the possibly time-variant attenuation factors for the L 

multipath propagation paths. If (2.8) is substituted into (2.7), the received signal has the 

form 
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Hence, the received signal consists of L multipath components, where each component 

is attenuated by {an(k)} and delayed by {τn}. 
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The three mathematical models described above adequately characterise a large majority 

of physical channels encountered in practice. These three channel models are used for 

the analysis and design of communication systems [59]. 

 

2.5. Structure of Channel Equalisation System 

 

As shown above, in digital communications, channels are affected by various linear, 

nonlinear, and additive distortions. Various equalisers have been applied to equalize 

these distortions and recover the original transmitted signal. Linear equalisers could not 

reconstruct the transmitted signal when channels have significant non-linear distortion. 

Since non-linear distortion is often encountered on time-variant channels, linear 

equalisers do not perform well in such kind of channels. When a channel has time-

varying characteristics and the channel model is not precisely known, adaptive 

equalisation is applied. Neural networks are widely used for the equalisation of 

nonlinear channel distortion [60, 61, 62, 63, 65, 67]. One class of adaptive equalisers is 

based on multilayer perceptron (MLP) and radial basis functions (RBF) [60-66]. The 

MLP equalisers require long time for training and are sensitive to the initial choice of 

network parameters [60, 64, 65]. The RBF equalisers are simple and require less time 

for training, but usually require a large number of centers, which increase the 

complexity of computation [61, 62, 66]. Another effective way for the development of 

adaptive equalisers for nonlinear channels is the use of fuzzy technology. This type of 

adaptive equalisers can process numerical data and linguistic information in natural 

form [37, 45, 46, 49, 50]. Human experts determine fuzzy IF-THEN rules using input-

output data pairs of the channel. These rules are used to construct the filter for the 

nonlinear channel. In these systems the incorporation of linguistic and numerical 

information improves the adaptation speed and the bit error rate (BER)        

performance [45].  

 

Sometimes the construction of proper fuzzy rules for equalisers is difficult. One of the 

effective technologies for the construction of equaliser’s knowledge base is the use of 

neural networks. Much effort has been devoted to the development and improvement of 

fuzzy neural network models. The structures of most of neuro-fuzzy systems mainly 

implement the TSK-type or Mamdani-type fuzzy reasoning mechanisms. Adaptive 



  
 

 

neuro-fuzzy inference system (ANFIS) implements TSK-type fuzzy system [70], where 

the consequent parts include linear functions. This fuzzy system can describe the 

considered problem by means of combination of linear functions.  

 

In this thesis, the structure of the neuro-fuzzy network based equalisation system has 

been proposed. The neuro-fuzzy network is used for equalisation of nonlinear channel 

distortion. The neuro-fuzzy network allows short training time of the equaliser and 

gives better results in terms of bit error rate (BER), at the cost of computational 

strength. 

 

Neuro-fuzzy network based equalisers are nonlinear adaptive equalisers. They are called 

adaptive for the reason that they are capable of self adjustment, where these equalisers 

can change in accordance to their input signals, where they have the ability to update 

their coefficients. The adaptive equaliser requires two signals:  

 

- the input signal s(k)  

 

         - the reference (or desired) input sd(k) 

 

An adaptive equaliser is used to compensate for the distortion caused by the 

transmission medium, and its operation involves a training mode followed by a tracking 

mode. The equaliser is trained by transmitting a known test data sequence. A 

synchronised version of the test signal is generated in the receiver, meaning the adaptive 

equaliser is now supplied with a desired response. The equaliser output is subtracted 

from this desired response to give an estimation error. This estimation error is used to 

adaptively adjust the coefficients of the equaliser to their optimum values. When the 

training is completed, the adaptive equaliser tracks possible time variations in channel 

characteristics during transmission. It does this by using a receiver estimate of the 

transmitted sequence as a desired response. The receiver estimate is obtained by 

applying the equaliser output to a decision device. 

 

In Figure 2.6 the proposed structure of channel equalisation system is given. s(k) is 

binary input signals that are to be transmitted through the channel. Input signal are 
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distorted by noise n(k) in the channel. In particular case the noise is the additive 

Gaussian noise. The channel may be non-linear, but the input-output symbol sequence 

map is assumed to be unambiguous. In modern interference-limited cellular telephony 

systems, the main error source is the Intersymbol Interference (ISI), rather than the 

thermal noise. The ISI consists in the spreading of symbol information through 

subsequent signal samples, and is the main problem in the relatively high SNR, typical 

of most existing transmission systems. 

 

 

 

  

 

 

  

 

 

 

 

 
Figure 2.6 Structure of a neuro-fuzzy equalisation system 

 
At the receiver, the equaliser is applied in order to compensate for channel distortion. 

The purpose of the equaliser is to estimate s(k), minimizing the combined effects of ISI 

and noise. In particular, in this thesis the neuro-fuzzy equalisation system is proposed. It 

makes use of a set of delayed input samples as an input signal. Neuro-Fuzzy Networks 

(NFNs) can be successfully applied to the adaptive equalisation of digital nonlinear 

communication channels. NFNs are able to yield significant performance when little 

information is available about the channel model. This fact can be explained by the very 

general assumptions made on the mapping from the received signal to the output 

symbol space that recast the demodulation problem as a classification task. 
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2.6 Summary 

 

The discussion of data transmission system, its main components, their functions, 

channel characteristics has been considered in this chapter. Interferences, Noises and 

their types have been described. As a corollary, the effect of each type of noise and how 

they present on the system has been learned.  

 

Also in this chapter the equalisation problem of channel distortion is introduced. An 

adaptive equaliser is used to compensate for the distortion caused by the transmission 

medium, and its operation involves a training mode followed by a tracking mode. The 

equaliser is trained by transmitting a known test data sequence. A synchronised version 

of the test signal is generated in the receiver, meaning the adaptive equaliser is now 

supplied with a desired response. The equaliser output is subtracted from this desired 

response to give an estimation error. This estimation error is used to adaptively adjust 

the coefficients of the equaliser to their optimum values. When the training is 

completed, the adaptive equaliser tracks possible time variations in channel 

characteristics during transmission. It does this by using a receiver estimate of the 

transmitted sequence as a desired response. The receiver estimate is obtained by 

applying the equaliser output to a decision device. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  
 

 

CHAPTER 3 

MATHEMATICAL BACKGROUND OF A NEURO-FUZZY EQUALISER 

 

3.1 Overview 

 

Neural networks and fuzzy systems have established their reputation as alternative 

approaches to signal processing. Both have certain advantages over conventional 

methods, especially when vague data or prior knowledge is involved. However, their 

applicability suffered from several weaknesses of the individual models. Therefore, 

combinations of neural networks with fuzzy systems have been proposed, where both 

models complement each other. These neural fuzzy or neuro-fuzzy systems overcome 

some of the individual weaknesses and offer some appealing features.  

 

Since 1990s, there have been large research efforts aimed at synthesizing fuzzy logic 

with neural networks. This combination of neural networks and fuzzy logic seems 

natural because the two approaches generally attack the design of "intelligent" systems 

from different angles. Neural networks provide algorithms for learning, classification, 

and optimization, whereas fuzzy logic deals with reasoning on a higher (semantic or 

linguistic) level. Consequently, the two technologies complement each other. By 

integrating neural networks with fuzzy logic, it is possible to bring the low-level 

computational power and learning of neural networks into fuzzy logic systems. The 

synergism of integrating neural networks with fuzzy logic systems into a functional 

system with low-level learning, high-level thinking, and reasoning transforms the 

burden of the tedious design problems of the fuzzy logic decision systems to the 

training/learning of connectionist neural networks.  

 

In this chapter a brief description of neural networks and fuzzy logic will be given. The 

structure and operations algorithms of neuro-fuzzy system that is used for channel 

equalisation will be described.  

 

 

 



  
 

 

3.2. Neuro-Fuzzy System 

 

There are many ways to combine neural networks and fuzzy logic. Neural networks 

provide algorithms for numeric classification, optimization, and associative storage and 

recall. Working at the semantic level, fuzzy logic provides processing of inexact or 

approximate data. By incorporating fuzzy logic techniques into a neural network, we 

can obtain more flexibility. Fuzzy neural networks provide greater representation 

power, have higher processing speeds, and are more robust than conventional neural 

networks. Fuzzy neural networks are in fact "fuzzified" neural networks. The 

integration of neural networks and fuzzy logic allows decreasing the nodes of network 

and train the network in a shorter time.  

 

3.3 Fuzzy Inference Systems 

 

3.3.1. Architecture of Fuzzy Inference Systems 

 

Fuzzy inference systems are also known as fuzzy-rule-based systems. A fuzzy inference 

system is composed of the following functional blocks (see Figure.3.1);  

 

- A fuzzification inference which transform the crisp inputs into degrees to match 

with linguistic values; 

 

- A rule base containing a number of fuzzy if-then rules; 

 

- A database which defines the membership functions of the fuzzy sets used in the 

fuzzy rules; 

 

- A decision-making unit which performs the inference operations on the rules; 

 

- A defuzzification inference which transform the fuzzy results of the inference into 

crisp output. 

 

 



  
 

 

The following steps demonstrate the inference operations upon fuzzy if-then rules: 

 

1. Compare the input variable with the membership functions on the premise part 

to obtain the membership values (or compatibility measures) of each linguistic 

label. (This step is often called fuzzification). 

 

2. Combine (through a specific T-norm operator, usually multiplication or min.) 

the membership values on the premise part to get firing strength (weight) of each 

rule. 

 

3. Generate the qualified consequent (either fuzzy or crisp) of each rule depending 

on the firing strength. 

 

4. Aggregate the qualified consequent to produce a crisp output. (This step is called 

defuzzification.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Structure of fuzzy inference system 
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3.3.2. Rule Base Fuzzy IF-THEN Rules 

 

One of the basic blocks of a fuzzy system is the fuzzy knowledge base that includes a 

set of fuzzy If-THEN rules. Fuzzy if-then rules or fuzzy conditional statements are 

expressions of the form  

 

If u is A Then y is B                                  (3.1) 

 

Here u and y are input and output linguistic variables.  A and B are labels of the fuzzy 

sets characterised by appropriate membership functions. A is the premise and B is the 

consequent parts of the fuzzy rule.  

 

If-Then rules can be represented in many forms. Its simple form is Single Input Single 

Output (SISO) that is given by formula (3.1). Other forms are Multi-Input Single-

Output (MISO) and Multi-Input Multi-Output (MIMO), given by formulas (3.2) and 

(3.3) respectively. 

 

If  1u  is jA1  and  2u  is kA2 and ,….., and nu  is  l
nA  Then qy  is p

qB                          (3.2) 

If  1u  is jA1  and  2u  is kA2 and ,….., and nu  is  l
nA  Then 1y  is rB1  and  2y  is sB2       (3.3) 

 

Fuzzy values A and B are described by the membership functions. Depending on the 

problem, the forms of membership functions can be different. Figure 3.2 shows some of 

the mostly used typical shapes of membership functions. 

 
 
 
 
 
 
 
 
 
 

Figure 3.2 Examples of membership functions (a) bell, (b) triangular, (c) trapezoidal 

 



  
 

 

A common example of a function that produces a bell curve is based on the exponential   

function, 
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Here x is the independent variable on the universe, x0 is the position of the peak relative 

to the universe, and σ is the standard deviation.  

 

Triangle and trapezoidal membership functions are described by expressions (3.5) and 

(3.6), correspondingly 
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When the consequent part of the fuzzy rules are just a mathematical function of the 

input variables, then such type of rules are called Takagi and Sugeno fuzzy rules. The 

format of the method is: 

 

if A1(x 1 ), A2(x 2 ), … , An(x n ) then  Y= f (x 1 , x 2 , … , x n )                  (3.7) 

 

The antecedent (premise) part is fuzzy. The function f in the consequent part is usually a 

simple mathematical function, linear or quadratic: 

 

nn xaxaxaaf ×++×+×+= ...22110                           (3.8) 

 



  
 

 

Fuzzy if-then rules have been used extensively in modelling. Due to the qualifiers on 

the premise parts, each fuzzy if-then rule can be viewed as a local description of the 

system under consideration. Fuzzy if-then rules form a core part of the fuzzy inference 

system. 

 

Fuzzification: Fuzzy sets are used to quantify the information in the rule-base, and the 

inference mechanism operates on fuzzy systems to produce fuzzy sets. The fuzzy 

system converts its numeric inputs ii Uu ∈  into fuzzy sets (the process is called  

“fuzzification”) so that they can be used by the fuzzy system. 

 

Let *
iU  denotes the set of all possible fuzzy sets that can be defined on Ui. Given 

ii Uu ∈ , fuzzification transforms iu  to a fuzzy set denoted by fuzz
iA , defined on the 

universe of discourse Ui. This transformation is produced by the fuzzification operator F 

defined by 

F: Ui  => Ui* 

where 

    F( iu ) = fuzz
iA , 

Quite often “singleton fuzzification” is used, which produces a fuzzy set fuzz
iA ∈Ui

* with 

a membership function defined by 
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Any fuzzy set with this form for its membership function is called a “singleton.” 

Basically, the singleton fuzzy set is a different representation for the number ui. 

Singleton fuzzification is generally used in implementations since, without the presence 

of noise, we are absolutely certain that ui takes on its measured value (and no other 

value), and since it provides certain savings in the computations needed to implement a 

fuzzy system. For example, “Gaussian fuzzification,” which involves forming bell-

shaped membership functions about input points, or triangular fuzzification, which uses 

triangles [68]. 

 



  
 

 

Generally the fuzzification process is the act of obtaining a value of an input variable 

(e.g., e(t)) and finding the numeric values of the membership function(s) that are 

defined for that variable.  

 

3.3.4 Inference Mechanism 
 

The inference mechanism has two basic tasks: 
 

I. Determining the extent to which each rule is relevant to the current situation as 

characterised by the inputs iu , i = 1, 2, ..., n (this task called "matching");  

 

II. Drawing conclusions using the current inputs iu  and the information in the rule-

base (we call this task an “inference step”).  

 

Let A1
j x A2

k x . . . x An
l be the fuzzy set representing the premise of the ith rule.  There 

are then two basic steps to matching. 

 

Step 1: Combine Inputs with Rule Premises: The first step in matching involves finding 

fuzzy sets jA1 , kA2 , . . . , l
nA , with membership functions 
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(for all j, k, . . . , l) that combine the fuzzy sets from fuzzification with the fuzzy sets 

used in each of the terms in the premises of the rules. If singleton fuzzification is used, 

then each of these fuzzy sets is a singleton that is scaled by the premise membership 

function  
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That is, with singleton fuzzification we have  1)( =iA
ufuz

n
μ , for all i = l, 2, ..., n for the 

given ui inputs so that 
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Step 2: Determine Which Rules Are On:  In the second step, we form membership 

values iμ ( 1u , 2u , … , nu ) for the ith  rule's premise that represent the certainty that each 

rule premise holds for the given inputs. Define 

 

iμ ( 1u , 2u , … , nu ) = )()...()( 21
21

nAAA
uuu l

n
kj μμμ  

 

which is simply a function of the inputs iu , iμ ( 1u , 2u , … , nu ) represents the certainty 

that the premise of rule i matches the input information when singleton fuzzification is 

used. This iμ ( 1u , 2u , … , nu )  is simply a multidimensional certainty surface. It 

represents the certainty of a premise of a rule and thereby represents the degree to which 

a particular rule holds for a given set of inputs. The inference step determines the 

implied fuzzy set. Next, the inference step is taken by computing, for the thi  rule, the 

“implied fuzzy set” Bq with membership function 
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The implied fuzzy set ı
qB   specifies the certainty level that the output should be a 

specific crisp output yq within the universe of discourse qy , taking into consideration 

only rule I.  

 

 

 



  
 

 

After the inference step the defuzzification is applied to aggregate the conclusions of all 

the rules that are represented by the implied fuzzy sets. 

 

Defuzzification Methods: There are many defuzzification methods that can be used in 

fuzzy inference system [69]. In the Centre of Gravity (COG) method the crisp output 

value u is the abscissa under the centre of gravity of the fuzzy set,                        
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Here xi is a running point in a discrete universe, and μ(xi) is its membership value in the 

membership function. The expression can be interpreted as the weighted average of the 

elements in the support set.  

 

The Centre of gravity method for singletons has the following form 
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Here si is the position of singleton i in the universe, and μ (si) is equal to the firing 

strength α i of rule i. This method has a relatively good computational complexity and u 

is differentiable with respect to the singletons si, which is useful in neuro-fuzzy systems. 

 

Another more used method is the Center of Average (COA). A crisp output Crisp
qy  is 

chosen using the centers of each of the output membership functions and the maximum 

certainty of each of the conclusions represented with the implied fuzzy sets, and is given 

by 
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where “sup” denotes the “supermum” (i.e., the least upper bound which can often be 

thought of as maximum value). Hence, )}({supx xμ can be simply thought of as the 

highest value of )(xμ . 

 

The inference mechanisms on different type of fuzzy system [70, 71] are graphically 

given in Figure 3.3. Depending on the types of fuzzy reasoning and fuzzy if-then rules 

employed, most fuzzy inference systems can be classified into three types.  

 

In Type 1 fuzzy systems the overall output is the weighted average of each rule’s crisp 

output introduced by rule’s firing strength and the output membership functions.  

 

In Type 2 systems the overall fuzzy output is derived by applying ‘max’ operation to the 

qualified fuzzy outputs (each of which is equal to the minimum of firing strength and 

the output membership function of each rule).  

 

The above mentioned defuzzification algorithm (for example, centroid of an area) can 

be used to choose the final crisp output based on the overall fuzzy output.  

 

Type 3 is Takagi and Sugeno’s fuzzy if-then rules, where the output of each rule is a 

linear combination of input variables plus a constant term, and the output is the 

weighted average of each rule’s output.  

 

Fig.3.3 utilizes a two-rule two-input fuzzy inference system to show different types of 

fuzzy rules and fuzzy reasoning mentioned above.  



  
 

 

 
Figure 3.3 Types of fuzzy reasoning mechanisms 

 

 

3.4 The Artificial Neural Networks 

 

The basic unit of neural networks, the artificial neurons, simulates the four basic 

functions of natural neurons. Artificial neurons are much simpler than the biological 

neuron;      
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Figure 3.4 shows the basics of an artificial neuron.  

 

 

 

 

 

 

 

 

 

 

    

 

Figure 3.4 Artificial Neuron 

 

Note that various inputs to the network are represented by the mathematical symbol 

x(n). Each of these inputs are multiplied by a connection weight, these weights are 

represented by w(n). In the simplest case, these products are simply summed, fed 

through a transfer function to generate a result, and then output. 

 

The output of the artificial neuron shown in Figure 3.4 is calculated as 
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xi is the input, yj is the output of the neuron, wij is the weight coefficients, θi is the bias,  

f is the activation function.  

 

The activation function can be either linear or nonlinear [72]. A nonlinear sigmoid 

function is often used as the activation function (3.14). 
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Neural networks consist of a set of neurons in layer(s). The neurons are interconnected 

by weighted connections. Neurons in the network are called processing elements (PE’s) 

that simply multiplies an input by a set of weights, and nonlinearly transforms the result 

into an output value. The power of neural computation comes from the massive 

interconnection among the PE’s.  

 

Neural networks can be classified as non-recurrent (feedforward), recurrent and full 

2connected networks [72]. Feedforward neural network structures may be a single layer 

or a multilayer (Figure 3.5 (a), (b)). 

                                                            

 

 

 

 

 

                 (a)                                                                      (b) 

Figure 3.5 (a) a single layered, (b) a simple multilayer neural network 
 

3.4.1. Neural Networks Learning, Backpropagation Training Algorithm 

 

Neural networks are sometimes called machine learning algorithms, because changing 

of its connection weights (training) causes the network to learn the solution to a 

problem. The strength of connection between the neurons is stored as a weight-value for 

the specific connection. The system learns new knowledge by adjusting these 

connection weights. The learning ability of a neural network is determined by its 

architecture and by the algorithmic method chosen for training.  

 

The training algorithms used for neural networks can be classified into supervised, 

unsupervised and reinforcement learning [72]. The most frequently used fast training 

algorithm is supervised algorithm Backpropagation.  
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In supervised algorithms the information about errors is filtered back through the 

system and is used to adjust the connection weights between the layers, thus improving 

performance. The Backpropagation algorithm is the most widely used supervised 

training algorithm for multilayer feedforward networks (Figure 3.6).  

 

Multilayer feedforward networks normally consist of three, four or more layers. There 

is always one input layer and one output layer and usually one or more hidden layers 

although in some classification problems two hidden layers may be necessary. The input 

layer neurons are not sigmoid unit and they are used for distributing input signals. Once 

the neurons for the hidden layer are computed, their activations are then fed to the next 

layer, until all the activations finally reach the output layer, in which each output layer 

neuron is associated with a specific classification category.  

 

In a fully connected multilayer feedforward network, each neuron in one layer is 

connected by a weight to every neuron in the previous layer. A bias is also associated 

with each of these weighted sums. Thus in computing the value of each neuron in the 

hidden and output layers one must first take the sum of the weighted sums and the bias 

and then apply f(sum) (the sigmoid function) to calculate the neuron's activation.  

 

 

 

 

 

 

 

 

 

Figure 3.6 Multilayer feedforward network 
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Let us consider the training processes of three layer neural network. The feedforward 

phase in network can be described through three steps: input (I), hidden (H), and output 

layer (O). 

• Input layer (I): The output of the input layer is equal to the input of the hidden layer 

as shown in Figure 3.6. 

HI InputOutput =  

• Hidden Layer (H): The input of the hidden layer is equal to the sum of multiplying 

all the input layer outputs by the corresponding weights that connect the two layers as 

shown in Figure 3.6.  

I
i

IHiH outputwieghtInput *∑=  

The output of the hidden layer is the result of the sigmoid transfer function of the 

hidden layer input.  

HInputH e
Output −+

=
1
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•  Output layer (O): The input of the Output layer is equal to the sum of multiplying all 

the hidden layer outputs by the corresponding weights that connect the two layers as 

shown in Figure 3.6.  

H
j

HOjO outputwieghtInput *∑=  

The output of the output layer is the result of the sigmoid transfer function of the output 

layer input.  

OInputO e
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After the feedforward phase the output of the output layer (OutputO), is compared with 

the target value of the neural network (Target), the result is the network error (ErrorO). 

Erroro = Target-Outputo 

The purpose of the Backpropagation training is to minimise the error of all training 

patterns by adjusting the weight values, the new value of the hidden-output layer weight 

is updated according to the following equation. 

HOOOHOHO OuputOutputOutputerrorOwieghtNwieght *))1(**(* −+= η  

Where NwieghtHO denotes the new hidden-output layer weights, OwieghtHO denotes the 

old hidden-output layer weight, η is the learning rate. The new weight of the hidden-

input layer weight is also updated according to the following equation [72]. 

IHHHIHIH OuputOutputOutputerrorOwieghtNwieght *))1(**(* −+= η  

Where NwieghtIH denotes the new hidden-input layer weights, OwieghtIH denotes the 

old hidden-input layer weight.  

 

The following algorithm summarizes the Backpropagation training.   

1.  Perform the forward-propagation phase for an input pattern and calculate the output 

error. 

 

2. Change all weight values of each weight matrix using the formula.  

 
Weight (old)+learning rate*output error*output (neuron i)*(1-output (neuron i))*output (neuron i-1). 

 

3. Go to step 1. 

 

4. The algorithm ends, if all output patterns match their target pattern. 

 



  
 

 

Backpropagation doesn’t require large memory space, easy to implement, the error level 

is usually accepted and calculated quickly. 

 

3.5. Neuro-Fuzzy Network Models 

 

There are many ways to synthesis neuro-fuzzy network models. Neural networks pro-

vide algorithms for numeric classification, optimization, and associative storage and 

recall. Working at the semantic level, fuzzy logic provides the processing inexact or 

approximate data. By incorporating fuzzy logic techniques into a neural network, we 

can obtain more flexibility. Fuzzy neural networks provide greater representation 

power, have higher processing speeds, and are more robust than conventional neural 

networks. Fuzzy neural networks are in fact "fuzzified" neural networks.  

 

The integration of Fuzzy logic and neural network has different approaches [73]: Input-

Output Approach, Preprocess/postprocess Approach, and Hybrid System Approach. 

 

One of the ways to combine neural networks with fuzzy logic is to design a hybrid 

system wherein some processing stages are implemented with neural networks and 

some with a fuzzy inference system. An example of such a system would be a tree 

classifier in which classification at some node can be carried out with a fuzzy inference 

system and classification at some other node can be performed using a neural network. 

The main advantage of such a hybrid system is that when the classification is based on 

experts' rules we can use the fuzzy inference system, and when the classification is 

based on training samples we can use a neural network.  

 

Hybrid systems are defined in many different ways. In a simple way, hybrid systems are 

those composed by more than one intelligent system. Hybrid systems are expected to be 

more powerful due to the combining advantages of different intelligent techniques. The 

most popular hybrid systems are: Sequential hybrid systems and incorporated hybrid 

systems. Incorporated hybrid systems represent the greatest degree of integration. The 

first system contains the second one or vice-versa. An example is a Neuro-Fuzzy 



  
 

 

system, where a Fuzzy inference system is implemented using a Neural Network 

Structure. In this system neural networks are used to implement a fuzzy inference 

system.  

A fuzzy inference system consists of three components. First, a rule base contains a 

selection of fuzzy rules. Second, a database defines the membership functions used in 

the rules and, finally, a reasoning mechanism carries out the inference procedure on the 

rules and given facts.  

 

Jang and Sun [74] presented an adaptive network model for a fuzzy inference system 

called adaptive network-based fuzzy inference systems (ANFISs). The ANFIS model is 

a generic model, and neural networks and fuzzy inference systems can be considered as 

special instances of an adaptive network when proper node functions are assigned [75]. 

 

In this thesis the development of hybrid neuro-fuzzy system that implements fuzzy 

inference mechanism in neural network structure including nonlinear function for 

channel equalisation is considered. 

 

3.5.1 Nonlinear Neuro-Fuzzy Network  
 
3.5.1.1 Structure of Nonlinear Neuro-Fuzzy Network  
 

The kernel of a fuzzy inference system is the fuzzy knowledge base. In a fuzzy 

knowledge base, the information that consists of input-output data points of the system 

is interpreted into linguistic interpretable fuzzy rules. In [75] a training procedure with 

variable system structure approach for fuzzy inference system is presented. In [76] 

using α-level procedure the training of fuzzy neural network is carried out and the 

developed system is applied for control of technological processes. The structures of 

most of neuro-fuzzy systems mainly implement the TSK-type or Mamdani-type fuzzy 

reasoning mechanisms. Adaptive neuro-fuzzy inference system (ANFIS) implements 

TSK-type fuzzy system, in which the consequent parts of ANFIS include linear 

functions. This neuro-fuzzy system can describe the considered problem by means of 



  
 

 

combination of linear functions. Sometimes these fuzzy systems need more rules, 

during modelling complex nonlinear processes in order to obtain the desired accuracy. 

Increasing the number of the rules leads to increasing the number of neurons in the 

hidden layer of the network.   

 

To improve the computational power of the neuro-fuzzy system, we use nonlinear 

functions in the consequent part of each rule. Based on these rules, the structure of the 

nonlinear neuro-fuzzy network (NNFN) has been proposed. Because of these nonlinear 

functions, NNFN network has more computational power, and, it can describe nonlinear 

processes with the desired accuracy. In this thesis, the NNFN is used for equalisation of 

nonlinear channel distortion. The NNFN network allows in better convergence rate and 

gives better BER results, at the cost of computational strength [77]. 

 

In this thesis, the fuzzy rules that have IF-THEN form and constructed by using 

nonlinear quadratic functions are used. The use of a nonlinear function allows 

increasing the computational power of neuro-fuzzy system [78]. They have the 

following form. 

 

If x1 is Aj1 and x2 is Aj2 and…and xm is Ajm  Then 
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Here x1, x2, …,xm are input variables, yj (j=1,..,n) are output variables which are 

nonlinear quadratic functions, Aji is a membership function for i-th rule of the j-th input 

defined as a Gaussian membership function. w1ij , w2ij and bj (i=1,..m, j=1,…,n) are 

parameters of the network. 

 

The fuzzy model that is described by IF-THEN rules can be obtained by modifying 

parameters of the conclusion and premise parts of the rules. In this thesis, a gradient-

descent method is used to train the parameters of the rules in the neuro-fuzzy network 

structure. 

Using fuzzy rules in equation (3.15), the structure of the NNFN is proposed (Fig.3.7). 

The NNFN includes seven layers.  



  
 

 

       layer 1   layer 2                  layer 3             layer 4         layer 5     layer 6    layer 7       

 

In the first layer the number of nodes is equal to the number of input signals. These 

nodes are used for distributing input signals.  

 

In the second layer each node corresponds to one linguistic term. For each input signal 

entering to the system the membership degree to which the input value belongs to a 

fuzzy set is calculated. To describe linguistic terms the Gaussian membership function 

is used. 
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Here m is number of input signals, J the is number of linguistic terms assigned for 

external input signals xi, cij and σij are centre and width of the Gaussian membership 

functions of the j-th term of i-th input variable, respectively. μ1j(xi) is the membership 

function of i-th input variable for j-th term.  

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.7 The NNFN architecture 
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In the third layer, the number of nodes corresponds to the number of the rules (R1, 

R2,…,Rn). Each node represents one fuzzy rule. To calculate the values of output 

signals, the AND (min) operation is used. In formula (3.17), Π is the min operation 
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The fourth layer is the consequent layer. It includes n Nonlinear Functions (NF) that are 

denoted by NF1, NF2,…,NFn. The outputs of each nonlinear function in Fig.3.7 are 

calculated by using the following equation (3.15-3.17).  
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In the fifth layer, the output signals of third layer μl(x) are multiplied with the output 

signals of the nonlinear functions.   

 

In the sixth and the seventh layers, defuzzification is made to calculate the output of the 

entire network.  
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Here yl is the outputs of fourth layer that are nonlinear quadratic functions u is the 

output of whole network. After calculating the output signal of the NNFN, the training 

of the network starts.  

 
 
3.5.1.2 Learning of the Nonlinear Neuro-Fuzzy Network  

 

Training includes the adjustment of the parameter values of membership functions cij 

and σij (i=1,..,m,  j=1,..,n) in the second layer (premise part) and parameter values of the 

nonlinear quadratic functions w1ij, w2ij, bj (i=1,..,m, j=1,..,n) in the fourth layer 

(consequent part). At first step, on the output of network the value of error is calculated. 
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Here O is number of output signals of network (in the given case O=1), i
d
i uu  and  are the 

desired and current output values of the network, respectively. The parameters w1ij, 

w2ij, bj (i=1,..,m, j=1,..,n) and cij and σij (i=1,..,m,  j=1,..,n) are adjusted using  the 

following formulas. 
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Here γ is the learning rate, λ is the momentum, m is number of input signals of the 

network (input neurons) and n is the number of rules (hidden neurons), i=1,..,m, 

j=1,..,n. 

The values of derivatives in (3.21-3.22) are determined by the following formulas. 
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The derivatives in (3.24) are determined by the following formulas.  
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Taking into account the formulas (3.26) and (3.29) in (3.21)-(3.24) the learning of the 

parameters of the NNFN is carried out. 

 

3.6. Summary 

 

The Neural network and Fuzzy systems are complementary rather than competitive. 

Fuzzy logic offer a tool to process inaccurate and approximate information, as well as 

mechanism for implementing rules. Fuzzy systems mainly based on knowledge of 

experts, or generated form sample data points. This knowledge is often formulated 

through fuzzy rule-based to fuzzy sets. Fuzzy sets allow partial memberships. NN has 

learning, generation abilities. NN provide algorithms for classification and optimization, 

and they work at numerical level. Neural fuzzy systems combine both features, provide 

more flexibility, faster, and more robust than NN alone. There are number of ways to 

combine NF systems. In this chapter architecture, and the operation principle of fuzzy 

system, NN and integration of these technologies called neuro-fuzzy system have been 



  
 

 

considered. The learning algorithm neuro-fuzzy system that uses back-propagation 

algorithm is given. 

 
 
 
 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



  
 

 

CHAPTER 4 

DEVELOPMENT OF A NEURO-FUZZY EQUALISER FOR CHANNEL 

DISTORTION 

 

4.1. Overview 

 

In this chapter the development of a neuro-fuzzy equaliser for channel distortion is 

given. The structure of the neuro-fuzzy equaliser is presented. The neuro-fuzzy 

equaliser is applied for equalisation of linear and nonlinear channel distortion. Using 

MATLAB package program the computer simulation of the neuro-fuzzy system for 

channel distortions has been performed. The learning results of the neuro-fuzzy 

equalisation system are described. The BER versus SNR for different noise levels is 

constructed. The comparison results of the neuro-fuzzy equalisation system with the 

other adaptive equalisation techniques are presented. 

 

4.2. Development of a Neuro-Fuzzy Equaliser 

 

The structure of equalisation system is shown in Figure 4.1. The random binary input 

signals s(k) are transmitted through the communication channel. Channel medium 

includes the effects of the transmitter filter, transmission medium, receiver filter and 

other components. Input signals can be distorted by noise, and intersymbol interference. 

Intersymbol interference is mainly responsible for linear distortions, while nonlinear 

distortions are introduced through converters, propagation environment, etc. Channel 

output signals are filtered and entered to the equaliser, for equalisation of distortions.  

 

During the equaliser design, the equaliser current output signals are compared with the 

input signals transmitted through the channel. In case of the presence of error the 

learning of the neuro-fuzzy equaliser starts. Learning includes the adjusting of the 

parameters values of the equaliser by using formulas (3.21), (3.22), (3.23) and (3.24) 

[79, 82, 83]. Learning is continued until, for all input-output pairs, the value of the error 

would be an acceptable minimum value. 
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During simulation the transmitted signals s(k) are known input samples with an equal 

probability of –1 and 1. These signals are corrupted by additive noise n(k). The 

corrupted signals are inputs for the equaliser. In channel equalisation, the problem is the 

classification of the coming input signals of the equaliser onto feature space which is 

divided into two decision regions. A correct decision of the equaliser occurs 

if )()( ksks = . Here s(k) is channel input, )(ks  is the decision output of the equaliser. 

Based on the values of the transmitted signal s(k) (i.e., ±1) the channel state can be 

partitioned into two classes R+ and R-. Here R+={x(k)⏐s(k)=1} and R- ={x(k)⏐s(k)= -1}. 

In [60] and [61] it was shown that the output of the optimal equaliser can be 

mathematically characterised as  
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where  X(k)={x(k), x(k-1), x(k-2),…,x(k-m)},  f : Rn→{-1,1}.  
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Figure 4.1 The structure of the equalisation system 

The NNFN structure and its training algorithm are used to design the equaliser. 

Simulations have been carried out for the equalisation of linear and nonlinear channels. 
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Figure 4.2 illustrates the structure of the neuro-fuzzy equaliser for channel distortion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 The structure of NNFN based equaliser 

 

Here the network input signals x(k) are the channel output signals applied to the 

network at time k, xi(k-i) (i=1..4), the number of neurons in the input layer is equal to 

27, the number of hidden neurons (rules) is equal to 27, and u is the output signal of the 

network.  

This neuro-fuzzy structure is used for equalisation of different channels. The operation 

algorithms of the neuro-fuzzy equaliser are given in chapter 3. 
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4.3 Flowchart Diagram of the Neuro-Fuzzy Equalisation System 

 

The block diagram of the neuro-fuzzy equalisation system is given in Figure 4.3. The 

block scheme of realisation of the neuro-fuzzy equalisation system includes the 

following steps. 

-    Enter the number of epochs, learning rate 

- Generate random digital input signal for channel with an independent 

sequence taking values from {-1, 1} with equal probability 

- Generate the parameters of the neuro-fuzzy equaliser. Enter the number of 

neurons in input, hidden, and output layers 

- Set epoch number to 1 

- Select input signal and send to the channel 

- Add additive noise to the channel and calculate the  output of the channel 

- Define the input signals for equaliser and send them to the equaliser 

- Calculate the equaliser output. 

- Calculate the error of the equaliser output 

- Test the value of error. If error is less than an acceptable small value then take 

the next value of binary input signals and send it to the channel 

- If error is more than an acceptable small value then using the learning 

algorithm, train the parameters of equaliser 

- Take the next value of binary input signals and send it to the channel input 

- Test the number of epochs. If it is more than the given number of epoch value 

stop the training process  

- If epoch number is less than given number of epoch value, increment the 

current epoch value and send first binary input signal to the channel. 



  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Send signals to the channel: 
x(k) =a0*x(k-1)+a1*x(k-2)+a2*x(k-3) 

Add noise to the   channel 
x(k)=x(k)+n(k) 

Define input signals for the equaliser 

Calculate output of neuro-fuzzy 
equaliser 

Set:    epoch=1 

Start 
 

Generate the random digital signal 
with an independent sequence taking 

values from {-1,1} with equal 
probability 

Input the number of epochs, learning 
rate 

Generate the parameters of neuro-
fuzzy equaliser 

A1 A2 A3 



  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Flowchart diagram of neuro-fuzzy equalisation system 
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equaliser    e(k)=u(k)-sd(k) 

Using learning algorithm train the 
parameters of neuro-fuzzy equaliser 

Test the value of 
error e(k)>min

Yes 

No 

Take next input signal and 
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4.4 Simulation of the Neuro-Fuzzy Equalisation System 

 

In this thesis the NNFN structure and its training algorithm are used to design the 

equaliser. Simulations have been carried out for the equalisation of linear and nonlinear 

channels. 

In the first simulation, we use the following non-minimum-phase channel model [11,43, 

50]. 

 

n(k))(k)s(k-a)(k)s(k-a(k)s(k)ax(k) +++= 21 321           (4.1) 

 
where 0.3482 and 0.8704  0.3482, 321 === (k)a(k)a(k)a , and n(k) is the additive noise. 

This type of channel is encountered in real communication systems. During the 

equaliser design, the sequence of transmitted signals is given to the channel input.  200 

symbols are used for training and 103 data signals for testing.  

 

Figure 4.4 demonstrates the transmitted binary signals over the linear channel. They are 

assumed to be an independent sequence taking values from {-1,1} with equal 

probability. On the output of the channel the additive Gaussian noise n(k) is added to 

the transmitted signal.   

 

Figure 4.5 shows the received signal, which is the input signal for the equaliser.  

 

Figure 4.6 demonstrates the state of noisy channel, where the noise variation is 0.5. In 

the output of the equalisation system, the deviation of the original transmitted signal 

from the current equaliser output is determined. This deviation or error e(k) is used to 

adjust the network parameters. Training is continued until the value of the error for all 

training sequence of signals is acceptably low. 

 

)()()( kskuke d−=  

where e(k) is the error, u(k) is the equaliser output signal and sd(k) is the desired signal. 



  
 

 

 
 

Figure 4.4 Transmitted binary signals  

 

 
Figure 4.5 Channel output with additive noise   
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Figure 4.6 Channel state with noise  

 

During simulation, the input signals for the equaliser are the outputs of the channel x(k),   

x(k-1), x(k-2), x(k-3). Using NNFN, ANFIS [75], and feedforward neural networks 

(FFNN) the computer simulation of the equalisation system has been performed. During 

simulation, we used 27 rules (hidden neurons) in the NNFN, 36 hidden neurons in the 

FFNN and 36 rules (hidden neurons) in the ANFIS based equaliser. The learning of 

equalisers has been carried out for 3000 iterations. Figure 4.7 demonstrates the curve 

that describes the learning progress of NNFN equalisation system. During learning the 

parameter values of NNFN equaliser have been determined. Figure 4.8 demonstrates the 

state of the channel after equalisation of channel distortion by using NNFN equaliser. 

 

Table 4.1 shows the BER performance of the non-minimum phase channel before and 

after equalisation. Here the results are obtained when the equaliser was trained without 

noise. 
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Figure 4.7 Convergence curve  

 
 

Figure 4.8 Channel state after equalisation  

 

 

 



  
 

 

4.5 BER Performance  

 

An equaliser’s performance is evaluated by its probability of error. This probability 

predicts the BER. To calculate the BER the equaliser is tested with a statistically 

independent random of 103 channel samples. An error value, ei(k) is generated for a 

range of noise variances 

 

The BER can be plotted against the channel noise to compare the equaliser 

performances. The BER is calculated as: 
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where )(kei is the error, and n (n=103) is the number of samples. 

 

The channel noise is measured as a signal-to-noise ratio (SNR): 
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where 2
sσ and 2

nσ are the signal and noise variances, respectively [11]. 

 

Table 4.1 BER performance of channel model (4.1) before and after equalisation 

 
SNR BER 

Before equalisation 
BER  

After equalisation 
20.041251 -1.045757 -2.120149 
10.470649 -0.463442 -1.832105 
6.967405 -0.414539 -1.658254 
5.225684 -0.390406 -1.556800 
4.324438 -0.387216 -1.458367 
3.366142 -0.368556 -1.165436 
2.292490 -0.358526 -1.143211 
1.191605 -0.342944 -1.098761 
0.799823 -0.340084 -0.515700 

 



  
 

 

Using the same initial conditions the computer simulation of equalisation systems by 

using ANFIS [77], and FFNN have been performed. During simulation, 36 hidden 

neurons in the FFNN and 36 rules (hidden neurons) in the ANFIS based equaliser. The 

learning of equalisers has been carried out for 3000 iterations. After simulation the 

performance characteristics (BER versus SNR) for all equalisers have been determined. 

Bit Error Rate (BER) versus Signal-Noise Ratio (SNR) characteristics have been 

obtained for different noise levels. Figure 4.9 shows the performance of equalisers 

based on NNFN, ANFIS, FFNN and DFE. In Fig. 4.9 the solid line is the performance 

of the NNFN based equaliser, the dashed line is the performance of the equaliser based 

on ANFIS and the dash-dotted line is the performance of FFNN based equaliser, the 

dashed line with squares is the performance of the DFE. As shown in Figure 4.9, at the 

area of low SNR (high level of noise) the performance of NNFN based equaliser is 

better than other equalisers.  
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Figure 4.9 BER performance of the NNFN (solid line with ‘+’), ANFIS (dashed line      

with ‘o’), FFNN based equalisers (dash-doted line with ‘*’) and DFE equaliser (dashed 

line with squares) 
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4.6 Simulation of the Neuro-Fuzzy Equalisation System for Time-Varying Channel 

 

In the second simulation, the neuro-fuzzy equalisation system for time-varying channel 

has been considered. During simulation, the following nonlinear channel model was 

used [11, 43, 50] 

 

n(k)))(k)s(k-a(k)s(k)(a.) -(k)s(k-a(k)s(k)ax(k) ++⋅+= 3
2121 1901                  (4.4) 

 

Where x(k) is the output of the channel, s(k-1) is the time delay introduced by the 

channel, and (k)a(k)a 21  and are time varying channel coefficients with initial values 

0.50 and 10 21 == )(a)(a . These channel coefficients are generated by using a second-

order Markov model with 3rd order nonlinearity in the presence of AWGN filtered by a 

second-order Butterworth low-pass filter with normalised cut-off frequency 0.1 [20, 76]. 

The coloured Gaussian sequences which were used as time- varying coefficients ai are 

generated with a standard deviation of 0.1. The curves representing the time variation of 

the channel coefficients are illustrated in Figure 4.10. The first 200 symbols are used for 

training, 103 data signals are used for testing. Table 4.1 illustrates the BER comparison 

of the channel after training with and without noise. 
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Figure 4.10 Time-varying channel coefficients 

 

 

 



  
 

 

The time-varying impulse response h(k) of the channel model (4.4) is given by 

∑ ∑
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where δ(k) is the unit impulse. 

 

The simulations are performed using NNFN, ANFIS and FFNN, 36 neurons are used in 

the hidden layer of each network. The transmitted signals were assumed to be an 

independent sequence taking values between {-1,1} with equal probability. On the 

output of the channel the additive Gaussian noise n(k) is added to the transmitted signal.  

Figure 4.11 shows the received signal. This signal is the input signal for the equaliser.  

 

The channel states are plotted in Figure 4.12 and 4.13. Figure 4.12 demonstrates the 

state of the noisy channel, while Figure 4.13 demonstrates the state of noise free 

channel. Noise variation is taken as 0.5. In the output of the equalisation system, the 

deviation of original transmitted signal from the current equaliser output is determined. 

This error e(k) is used to adjust network parameters. In Figure 4.14 the convergence 

curve of the NNFN equaliser for 3000 learning iterations is given. Figure 4.15 illustrates 

the BER performance of the equalisers for the channel (equation 4.4), averaged over 10 

independent trials. Tables 4.2 illustrate the BER performance of the NNFN equaliser of 

the time-varying channel before and after equalisation. Here the results are obtained 

when the equaliser was trained without noise.  

Table 4.2 BER performance of channel model (4.4) before and after equalisation 

 

 

 

 

 

 

 

 

SNR BER 
Before 

equalisation 

BER 
After 

equalisation 
19.810266 -1.346787 -2.949794 
11.117741 -0.515700 -2.230969 
6.344230 -0.478862 -1.310223 
5.176330 -0.437707 -0.967986 
4.666310 -0.444906 -0.665439 
2.644919 -0.414539 -0.621434 
2.528533 -0.399027 -0.571083 
1.520657 -0.401209 -0.550997 
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Figure 4.11 Received signal 
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Figure 4.12 Channel state with additive noise 
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Figure 4.13 Channel state without noise 

 

Figure 4.14 Convergence curve. a) FFNN, b) ANFIS, c) NNFN (channel model 4.4) 
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Figure 4.15 BER performance of the NNFN (solid line with ‘+’), ANFIS (dashed line      

with ‘o’), FFNN based equalisers (dash-doted line with ‘*’) and DFE equaliser (dashed 

line with squares). (channel model 4.4) 

 

Figure 4.15 illustrates that the BER performance of NNFN based equaliser is better 

than other equalisers. The obtained result satisfies the efficiency of application of 

NNFN technology in channel equalisation.  

 

In Table 4.3 the comparative analysis of the NNFN, ANFIS and FFNN based equalisers 

show that the NNFN based equalisation system provides better BER performance than 

the other two systems.  

Table 4.3 Comparison of BER performance for channel model (4.4) 

 

 

 

 

 

 

 

 

 

 

BER Performance  
SNR FFNN ANFIS NNFN 

19.99 -2.4097940 -2.121999 -2.230969 
14.085229 -1.307608 -1.161011 -1.310223 
11.058583 -0.880794 -0.820406 -0.967986 
8.192512 -0.550842 -0.595593 -0.665439 
6.586104 -0.380790 -0.574955 -0.621434 
4.944612 -0.364108 -0.537707 -0.571083 
4.171610 -0.361219 -0.513716 -0.550997 
2.313622 -0.298708 -0.510050 -0.549772 



  
 

 

4.7 Conclusion 

 

There are several techniques available to combat the multipath propagation effect. Some 

of these techniques are: frequency diversity and space diversity. These signal diversity 

techniques where used in analogue radio and have been adapted to digital systems that 

undergo highly selective interference. However, these techniques require a bandwidth 

overhead that is not available in most systems, and can provide sufficient equalisation 

for specific channels (minimum phase) [80]. 

 

Analysis of signal transmission systems demonstrates that, the presence of noise, 

intersymbol interference (ISI), and the time-varying characteristics of the channel 

require the use of adaptive equalisers for channel equalisation. Adaptive equalisers 

based on MLP networks are sometimes plagued by long training time and may be 

trapped at local minima, while RBF based equalisers have shortcomings related to long 

training time, a large number of hidden nodes, where the network structure size can 

increase exponentially as the problem difficulty increases [81, 82, 83, 84], in order to 

obtain a desired BER characteristic of equalisation system.  

 

Integrated adaptive neuro-fuzzy system with nonlinear fuzzy inference model for 

equalisation of channel distortion is proposed in this thesis. The architecture of the 

nonlinear neuro-fuzzy system (NNFN) for the nonlinear time-varying channel was 

developed. The effect of multipath propagation that causes intersymbol interferences the 

presence of AWGN has been analyzed. The architecture and design algorithms of the 

NNFN were presented.   

 

Based on gradient-descent learning algorithm the software was developed for the NNFN 

equalisation.  

 

Simulations were performed using MATLAB software package for NNFN, ANFIS and 

FFNN.  

 



  
 

 

Comparative analysis of the convergence rate demonstrated that the use of NNFN based 

equaliser allows decreasing training time of equaliser’s parameters and decreasing the 

complexity of the network.  

 

According to the simulation results, the proposed NNFN system provides higher 

convergence rate and improvement in the BER between -0.0334 dB to -0.0699 dB. This 

means that, on an average, the NNFN system provides 6-10% better BER performance 

in severely noisy channel conditions (SNR= 2-8 dB) compared to ANFIS and FFNN 

based systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  
 

 

4.8 Future work 

 

As shown in the thesis, the high level of noise significantly causes distortion in the 

transmitted signal when the channel has nonlinear and time-varying characteristics. To 

eliminate this distortion an adaptive neuro-fuzzy system with sufficient number of fuzzy 

rules is needed.  Type-1 fuzzy sets have limited capabilities to directly handle data 

uncertainties connected with the time-varying nature of the channel. These time-varying 

channel characteristics are interpreted as uncertainties in its coefficients. To handle 

these uncertainties and to improve the BER performance of the equaliser with possible 

less number of fuzzy rules the neuro-fuzzy system based on Type-2 fuzzy sets may be 

considered in the future. 
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Appendix 
 

MATLAB Files 
 
 
function [y,signal_var]=... 
    chanel_model(x,r1,fk) 
d=0;  chan_mod=1; 
for k=1:fk 
%   linear channels 
     if chan_mod==1 
         if k==1                  
             yc(k)=0.3482*x(k-d);               
         elseif k==2            
             yc(k)=0.3482*x(k-d)+0.8704*x(k-1-d);               
         end 
         if k>2 
             yc(k)=0.3482*x(k-d)+0.8704*x(k-1-d)+0.3482*x(k-2-d);  
         end; 
     end 
     if chan_mod==2 
         if k==1 
             yc(k)=0; 
         end 
         if k>1 
             yc(k)=0.5*x(k)+x(k-1); 
         end 
     end 
     if chan_mod==3 
         % nonlinear channels 
         yc(k)=0.3482*x(k-d)+0.8704*x(k-1-d)+0.3482*x(k-2-d)-
0.7*(0.3482*x(k-d)+0.8704*x(k-1-d)+0.3482*x(k-2-d))^3; 
         
     end 
    y(k)=yc(k)+r1(k); 
end  
mean_yc=sum(yc)/fk; 
signal_var=sum((yc-mean_yc).^2)/fk; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  
 

 

 
function [c,o,w1,w2,b,xin,y,r1]=... 
chanel_nl(N1,N2,M,c,o,w1,w2,b) 
N1=4; N2=27; M=1;  
fname=['fchanel' int2str(N2) '.dat'] 
maxl=2;   
global xin y r1 fk 
n=1000;     %test  all signals 
fk=200;     % training signals 
clc 
pause 
disp('0- Parameters Init  ') 
disp('1- Learning         ') 
disp('2- Reading          ') 
disp('3- Saving           ') 
disp('4- Without learning ') 
disp('5- Noise ') 
disp('6- Exit') 
num=input('Enter number:'); 
 
switch num 
     case 0, regim=0;  
           xin=2*round(rand(n,1))-1             
           replay=input('Generate new random noise  y/n :','s'); 
            noise_var=0.5; 
             if replay=='y' 
                 [r1,sigma]=noise(n,noise_var);   
             else 
                 r1(1:n)=0; 
             end 
            
%              aa1=0.3482;  aa2=0.8704;  aa3=0.3482;             
%              [y,signal_var]=chanel_model(xin,r1,n);        
%       yc=y'-r1; 
 
%      [a1,a2,a3]=chanel_coef(aa1,aa2,aa3,n); pause 
       aa1=1; aa2=0.5; aa3=0;fpt = fopen('fchan_coefl000.dat','r'); 
[a1]=fscanf(fpt,'%f \n',[n]); 
[a2]=fscanf(fpt,'%f\n',[n]);[a3]=fscanf(fpt,'%f \n',[n]); 
       a3=0;  fclose(fpt);   
[y,signal_var]=chanel_model_timevar(xin,r1,n,a1,a2,a3); 
 
              SNR = 10*log10(signal_var/noise_var); 
              sprintf('signal_var=%f  noise_var=%f  SNR=%f', 
signal_var,noise_var,SNR) 
             plot(xin) 
             title('Transmitted Signals'); 
             pause 
             plot(y) 
             title('Received Signals'); 
             pause 
             norm=minmax(y) 
             delta=(abs(norm(1))+abs(norm(2)))/(N2-1);  
             c(1:N1,1:N2)=0;  N22=ceil(N2/2);  
                ii=0; kc(1:N22)=0; 
                for j=1:N22 
                    kc(j)=delta*(j-1)/j; 
                    c(1:N1,j)=0-ii*kc(j); 
                    o(1:N1,j)=0.1+0.01*j; %kc(j) 
                    if(j>1) 



  
 

 

                        c(1:N1,N22+j-1)=ii*kc(j); 
                        o(1:N1,N22+j-1)=0.1+0.01*j; 
                    end 
                    ii=ii+1; 
                end 
                if(mod(N2,2)==0) 
                    c(1:N1,N2)=c(1:N1,N2-1)+delta; 
                    o(1:N1,N2)=0.2; 
                end 
 
            o(1:N1,N2)=0.2; o(1:N1,N22)=0.2; 
            w1=0.02*rand(N2,N1) 
            w2=0.02*rand(N2,N1) 
            b=0.02*rand(N2,1); 
            pause 
            [c,o,w1,w2,b,xin,y,r1]=chanel_nl(N1,N2,M,c,o,w1,w2,b); 
    case 1, regim=1;  
            
[c,o,w1,w2,b]=chaneld_nl(N1,N2,M,c,o,w1,w2,b,n,fk,xin,y,r1,regim) 
            pause 
             [c,o,w1,w2,b,xin,y,r1]=chanel_nl(N1,N2,M,c,o,w1,w2,b) 
    case 2, fpt = fopen(fname,'r'); 
          [c]=fscanf(fpt,'%f \n',[N1,N2]); 
          [o]=fscanf(fpt,'%f \n',[N1,N2]); 
          [w1]=fscanf(fpt,'%f \n',[N2,N1]); 
          [w2]=fscanf(fpt,'%f \n',[N2,N1]);     
          [b]=fscanf(fpt,'%f \n',[N2]); 
          pause 
        [c,o,w1,w2,b,xin,y,r1]=chanel_nl(N1, N2,M, c,o,w1,w2,b); 
    case 3, fpt = fopen(fname,'w');  
        fprintf(fpt,'%f %f %f \n',c,o,w1,w2,b)     
        fclose(fpt); 
        pause 
        [c,o,w1,w2,b,xin,y,r1]=chanel_nl(N1, N2,M, c,o,w1,w2,b); 
   
    case 4, regim=4;  
            chaneld_nl(N1, N2,M,c,o,w1,w2,b,n,fk,xin,y,r1,regim) 
             [c,o,w1,w2,b,xin,y,r1]=chanel_nl(N1,N2,M,c,o,w1,w2,b) 
    case 5, 
    case 6,  
    otherwise disp('unknown') 
end 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  
 

 

function 
[c,o,w1,w2,b]=chaneld_dfenl(N1,N2,M,c,o,w1,w2,b,n,fk,xin,y,r1,regim) 
global xin r1 fk  
nc=0.00;  
epoch=3000; 
ku=1; 
if regim==1     
    a=input('Enter new learning rate:');  
end 
for t=N1:fk  
    Data(t,:)=[y(t) y(t-1) y(t-2) y(t-3) xin(t)]; % y(t-4)  
    Data1(t,:)=[y(t) y(t-1) y(t-2) y(t-3) ]; % y(t-4) 
    if(t>N1) 
        z1(tN1)=y(t);     z2(tN1)=y(t-1);  
    end 
end 
Data 
ind1 = find(xin(:,1) > 0); 
ind2 = find(xin(:,1) < 0); 
for t=2:fk  
    zz1(t)=y(t);     zz2(t)=y(t-1);  
end 
%plot(zz1(ind1), zz2(ind1), 'x', zz1(ind2), zz2(ind2), 'o'); 
plot(z2,z1,'*');     
xlabel('x(k)'); ylabel('x(k-1)'); 
pause 
 
if regim==1 
    
[c,o,w1,w2,b,a]=nefuz_train2_nl(regim,N1,N2,M,Data,fk,epoch,a,c,o,w1,w
2,b); 
end 
 
%Test 
[row,col]=size(Data); 
for t=N1:n  
    Data2(t,:)=[y(t) y(t-1) y(t-2) y(t-3) xin(t)]; 
    for i=1:col-1 
            x(i)=Data2(t,i); 
        end 
    out(t)=Data2(t,col); 
    [ys,summin,minm,m,ym,net]=nefuz_nl(N1,N2,M,x,c,o,w1,w2,b); 
    tyst(t)=ys; 
    if(regim==4)||(regim==1)         
        if(ys>0)             
            tys(t)=1;  
            tys1(t)=1; 
        else             
            tys(t)=-1;    
            tys1(t)=0; 
        end     
    end 
    if(out(t)>0) 
        out1(t)=1; 
    else 
        out1(t)=0; 
    end 
end; 
plot(out) 
hold  



  
 

 

plot(tyst,'--r') 
pause 
sprintf('TEST before decision device') 
ert=out-tyst;  yc=y'-r1; 
[SNR,BER]=snr_ber(yc,r1,ert,n); 
r2(1:n)=0; 
[ytest]=chanel_model(tyst,r2,n); 
for t=N1:n   
   if(t>N1) 
       zz1(tN1)=ytest(t);     zz2(tN1)=ytest(t-1);  
   end 
end  
plot(zz1,zz2,'*')  
xlabel('x(k)'); ylabel('x(k-1)'); 
pause 
 
sprintf('TEST after decision dev. with (-1,1) and (0,1)') 
plot(out) 
hold  
plot(tys,'--r') 
er=out-tys;   
[SNR,BER]=snr_ber(yc,r1,er,n); 
er1=out1-tys1;  
[SNR,BER]=snr_ber(yc,r1,er1,n); 
if(regim==4)||(regim==1)  
     [num,berr]=biterr(out1,tys1); 
 end 
 sprintf('num=%f   BERnl()=%f    SNRnl()=%f',num,berr,SNR) 
pause 
 
plot(er) 
pause 
 
r2(1:n)=0; 
[ytest]=chanel_model(tys,r2,n); 
for t=N1:n    
   if(t>N1) 
       zz1(tN1)=ytest(t);     zz2(tN1)=ytest(t-1);  
   end 
end  
plot(zz1,zz2,'*')  
xlabel('x(k)'); ylabel('x(k-1)'); 
pause 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  
 

 

function  [ys,summin,minm,m,ym,net]=nefuz_nl(N1,N2,M,x,c,o,w1,w2,b); 
m(1:N1,1:N2)=0; minm(1:N2)=0; 
for i=1:N1 
    for j=1:N2 
        m(i,j)=exp(-(((x(i)-c(i,j))/o(i,j))^2)); 
    end 
end 
summin=0; 
for j=1:N2 
    minm(j)=10; 
    for i=1:N1 
        if m(i,j)<=0.02  
            m(i,j)=0; 
        end 
        if m(i,j)~=0 
            if minm(j)>m(i,j) 
                minm(j)=m(i,j); 
            end 
        end  
    end 
    if minm(j)>=10 
        minm(j)=0; 
    end 
end 
summin=sum(minm); 
% j is number of nl members   % ii is number of rules 
for j=1:N2 
    net(j)=0; 
    for i=1:N1 
        net(j)=net(j)+x(i)*x(i)*w1(j,i)+x(i)*w2(j,i); 
    end 
    net(j)=net(j)+b(j); 
end 
for i=1:M 
    ym(i)=0; 
    for j=1:N2 
        ym(i)=ym(i)+net(j)*minm(j); 
    end 
    if summin==0 
        ys(i)=0; 
    else 
        ys(i)=ym(i)/summin; 
    end 
end 
 
 
 
 
 
 
 
 
 
 
 
 
 



  
 

 

function 
[cfind,ofind,wfind1,wfind2,bfind,a]=nefuz_train2_dfenl(regim,N1,N2,M,D
ata,fk,epoch,a,c,o,w1,w2,b) 
nc=0.00;  pi=3.14; 
ku=1; 
w1o=w1; w2o=w2; bo=b; 
[row,col]=size(Data); 
epoc1=1;  t_err(epoc1)=0; 
time_begin = cputime;  
while epoc1<=epoch  
     
    t_er(epoc1)=0; 
    for t=N1:fk  
        for i=1:col-1 
            x(i)=Data(t,i); 
        end 
        out(t)=Data(t,col); 
        [ys,summin,minm,m,ym,net]=nefuz_nl(N1,N2,M,x,c,o,w1,w2,b); 
        er=out(t)-ys; 
        if((summin~=0)&&(abs(er)>0.0001)) 
            
[c,o,w1,w2,b,w1o,w2o,bo]=trainf_nl(N1,N2,M,x,er,minm,summin,m,ys,a,c,o
,w1,w2,b,ym,net,w1o,w2o,bo); 
        end 
        t_er(epoc1)=t_er(epoc1)+(er*er);         
    end 
    ser=t_er(epoc1); 
    if epoc1==1 
        ser0=ser;  
    end 
    decay=(ser0-ser)/ser0; 
    if(decay<=0) 
        decay0=-1; decay1=-1; 
    end 
     if((mod(epoc1,5)==0))  
         if(decay0>0)           
             a=a*1.01;  
         end 
         if(decay0<0)  
             a=a/1.011;   
         end 
         decay1=decay0; 
         decay0=1; 
     end 
    ser0=ser; 
   sprintf('%i   ser=%f  decay=%f   a=%f  summin=%f',epoc1, 
ser,decay,a,summin)    
    if epoc1==1 
        serfind=ser; 
    end 
    if ser<serfind 
        serfind=ser;   cfind=c;  ofind=o; wfind1=w1; wfind2=w2; 
bfind=b; 
    end 
    epoc1=epoc1+1; 
end 
time_end = cputime-time_begin 
t_er=t_er/sqrt(200); 
plot(t_er); 
xlabel('k'); ylabel('error'); 



  
 

 

pause 
 
fp=fopen('frmse.dat','w'); 
fprintf(fp,'%f \n',t_er); 
fclose(fp); 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  
 

 

function [y,signal_var]=... 
    chanel_model_timevar(x,r1,fk,a1,a2,a3) 
d=0; chan_mod=2; 
if chan_mod==1 
    for k=1:fk 
        %   linear channels 
        if k==1         
            yc(k)=a1(k)*x(k-d);          
        elseif k==2 
            yc(k)=a1(k)*x(k-d)+a2(k)*x(k-1-d);    
        end 
        if k>2     
            yc(k)=a1(k)*x(k-d)+a2(k)*x(k-1-d)+a3(k)*x(k-2-d); 
        end; 
%      y(k)=0.5*x(k)+x(k-1); 
       y(k)=yc(k)+r1(k);   
   end 
end 
if chan_mod==2 
    for k=2:fk 
        % nonlinear Time varrying channel channels 
        yc(k)=a1(k)*x(k-d)+a2(k)*x(k-1-d)-0.9*(a1(k)*x(k-d)+a2(k)*x(k-
1-d))^3;    
        y(k)=yc(k)+r1(k);   
    end 
end 
mean_yc=sum(yc)/fk; 
signal_var=sum((yc-mean_yc).^2)/fk; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  
 

 

 
function 
[c,o,w1,w2,b,w1o,w2o,bo]=trainf_nl(N1,N2,M,x,er,minm,summin,m,yy,a,c,o
,w1,w2,b,ym,net,w1o,w2o,bo); 
a2=0.0;   %a2=0.2500; 
w2o1=w2; 
w1o1=w1; 
bo1=b; 
for j=1:N2 
    for i=1:N1 
        w1(j,i)=w1(j,i)+a*er*x(i)*x(i)*minm(j)/summin+a2*(w1(j,i)-
w1o(j,i)); 
        w2(j,i)=w2(j,i)+a*er*x(i)*minm(j)/summin+a2*(w2(j,i)-
w2o(j,i)); 
    end 
end 
 
for j=1:N2     
    b(j)=b(j)+a*er*minm(j)/summin+a2*(b(j)-bo(j)); 
end 
sec=1; 
if sec==1 
 for j=1:N2 
    kw(j)=(net(j)-yy)/summin;    %using defuzification 
 end 
 
 for i=1:N1 
     for j=1:N2 
       c(i,j)=c(i,j)+a*er*kw(j)*m(i,j)*2*(x(i)-c(i,j))/(o(i,j)^2); 
 %       o(i,j)=o(i,j)+a*er*kw(j)*m(i,j)*2*((x(i)-
c(i,j))^2)/(o(i,j)^3); 
 end 
 end 
end 
  
 w2o=w2o1; 
 w1o=w1o1; 
 bo=bo1; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  
 

 

 
 
 
 
 
 
 
 

Neural Network Parameters 
Number of input 

neurons 
4 

Number of hidden 
neurons 

27 

Number of output 
neurons 

1 

Learning rate 0.025 
Momentum  0.2 

Error 0.0001 
Epochs  3000 
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