
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

CAR SALES AUTOMATION

USING VISUAL BASIC

Graduation Project

COM-400

Student: Malil('M. Al-Mustafa (20020927)

•

Supervisor: Mr. Ümit SOYER

Nicosia - 2008

TABLE OF CONTENTS

TABLE OF CONTENTS 1

ACKNOWLEDGEMENT III

ABSTRACT IV

INTRODUCTION V

CHAPTER!

VISUAL BASIC 1

1.1. OVER VIEW 1

1 .2. CREATING A PROJECT IN VISUAL BASIC 2

1.2.1. DESIGNING THE TIC-TAC-TOE PROGRAM 2

1.2.2. THE PARTS OF A VISUAL BASIC PROJECT 3

1 .3. CODING IN VISUAL BASIC 6

1.3.1. PROGRAM DESIGN LANGUAGE 7

1 .4. CODING TO GET THE MOST FROM VISUAL BASIC 9

CHAPTER2

DATABASE ~ 13

2.1. OVER VIEW 13

2.2. RELATIONAL DATABASE 13

2.3. CHANGING DATA INTO INFORMATION 14
"

2.4. ACCESS DATABASE 14
"' 2.4.1. MAINTAINING ACCESS DATABASES 14

2.4.1.1. REPAIRING IN PLACE 14
• •• 2.4.2. THE ACCESS USER INTERFACE 16

2.4.2. 1. NA VI GATING THE DATABASE VIEW WINDOW 17

2.5. SQL DATABASE 19

CHAPTER3

VISUAL BASIC AND DATABASE 20

3.1. OVERVIEW 20

3.2. OPENING DATABASE 20

I

3.3. ADDING A RECORD TO A RECORD SET 23

3.4. EDITING A RECORD IN A RECORD SET 24

3.5. UPDATING A RECORD IN A RECORD SET 24

3.6. MOVING TO THE FIRST RECORD IN A RECORD SET 25

3.7. MOVING TO THE LAST RECORD IN A RECORD SET 26

3.8. DELETING A RECORD IN A RECORD SET 27

3.9. SEARCHING A RECORD SET 27

CHAPTER4

X-SELLING CARS 29

4.1. OVERVIEW 29

4.2. PROJECT DESCRIPTION 29

4.3. SECURITY 30

4.4. MAIN FORM 30

4.4. 1. FILE MENU 31

4.4.2. USER MENU 31

4.4.2. 1. ADD USER 31

4.4.2.2. SEARCH FOR USER 32

4.4.3. CARS MENU 34

4.4.3.1. ADD CARS 34
4.4.3.2. SEARCH FOR CAR 35

4.4.4. CUSTOMERS MENU 39

4.4.4.1. ADD CUSTOMERS 39

4.4.4.2. SEARCH FOR CUSTOMER 40

4.4.5. REPORT MENU .. ! 43

4.4.6. HELP MENU : 43
•

. CONCLUSION ~ 44

REFERANCE 45

APPINDEX 46

II

ACKNOWLEDGEMENT

First of all I would like to thank Allah for guiding me through my study.

More over I want to pay special regards to my parents who are enduring these all

expenses and supporting me in all events. I am nothing without their prayers. They also

encouraged me in crises. I shall never forget their sacrifices for my education so that I

can enjoy my successful life as they are expecting.

Also, !feel proud to pay my special regards to my project supervisor "Mr. Ümit

SO YER". He never disappointed me in any affair. He delivered me too much

information and did his best of efforts to make me able to complete my project. I am

really thankful to my teacher.

Also I have to give my best regards to the best teachers I ever had "Mr. Okan

DONANGIL ", "Assoc. Prof Dr. Adnan KHASHMAN", "Assist. Prof Dr. Kaan

UYAR", "Dr. Ümit ILHAN"

The best of acknowledge, I want to honor my best friends and my brothers, who have

supported me, suffer with me and shered my laughs, Eng. Mohammad M Al-Mustafa

and Eng. Bassem F. Al-Saudi. Thank you guys for every thing you did to me. Good luck

guys and wish you a happy and successful life brothers.

"'

III

ABSTRACT

This project shows the use of Visual Basic and Database applications and how to

create a connection between them so the user can easily use them in selling cars field

and store the information in the program's database and recall it in a single click of a

button. In this project we can add users and assign a user name and password,

authorization assigning, and deleting users. In cars field's, we can add cars, delete cars,

classify some details for the cars, and edit there details. Then we can sell them to

customers. In customers field's, we can also add information about the customers, edit

there information, and delete customers. Finally, we can view reports which describe

specific information which will be shown on chapter four.

IV

INTRODUCTION

This project is about selling cars by using the visual basic programming and

data base.

This project describes how the visual basic works, how I used it in my

program, how I create connection with the data base, and how users can use this

program.

This project includes 4 chapters:

The first chapter talks about the visual basic programming language with its

coding and variable scope (including object variables) and procedure scope, how it

works, how to create projects, and how to design projects.

The second chapter talks about the data base, how to create and activate it; also

how to insert, edit, search and delete information in it.

Chapter three describes the connection between the data base and the visual

basic and how they are working together in the same program.

Chapter four represents my program, diagrams and description to show how to

use all the option that I add to this program.

••

V

CHAPTER!

VISUAL BASIC

1.1 OVER VIEW

Visual Basic is a favorite programming environment for many programmers.

When Visual Basic first appeared, it created a revolution in Windows programming,

and that revolution continues till this day. Windows programming never been so easy,

in a few steps we can construct and run programs. Visual Basic introduced unheard-of

ease to Windows programming and changed programming from a chore to something

very suitable to users.

Well start with an overview about the Visual Basic program. In this chapter, we

will create the foundation well rely on later as we take a look at the basics of Visual

Basic, including how to create Visual Basic projects and seeing what is in such projects.

Well also get an overview of essential Visual Basic concepts like forms, controls,

events, properties, methods, and so on. And well examine the structure of a Visual

Basic program, taking a look at variables, variable scope, and modules. In other words,

were going to lay bare the anatomy of a Visual Basic program here.

Most Visual Basic programmers do not have formal programming training and

have to learn a lot of this material the hard way. As programming has matured,

programmers have learned more and more about what are called best practices the

programming techniques that make robust, easily debugged programs. Well take a look

at those practices in this chapter, because they are becoming more and more essential

for programmers in commercial environments these days, especially those programmers

that work in teams. And well look at those practices from the viewpoint of programmers
• w

who program for a living; frequently there's a gap between the way best practices are

taught by academics and how they are actually needed by programmers facing the

prospect of writing a 20,000-line program as part of a team of programmers.

1

1.2 CREATING A PROJECT IN VISUAL BASIC

There are three different editions of Visual Basic:

• The Leaming Edition, which is the most basic edition .This edition

allows you to write many different types of programs, but lacks a

number of tools that the other editions have.

• The Professional Edition, designed for professionals. This edition

contains all that the Leaming Edition contains and more, such as the

capability to write ActiveX controls and documents.

• The Enterprise Edition, which is the most complete Visual Basic

edition. This edition is targeted towards professional programmers who

may work in a team and includes additional tools such as Visual

SourceSafe, a version-control system that coordinates team

programming.

1.2.1 DESIGNING THE TIC-TAC-TOE PROGRAM

Using the Command Button tool in the Visual Basic toolbox, add a new

command button to the main form in our program now, in the Properties window,

change the Name property of this button from Command 1 to Command in preparation

for setting up a control array, and clear its Caption property so the button appears blank.

Next, add a second button to the form, and set its Name property to Command as

well. When you do, Visual Basic opens a dialog box that states: _You already have a

control named _Command_. Do you want to set up a control array?_ Click Yes to create

a control array, which means we will be able to _refer to our controls using an index

instead of simply by name.

Add a total of nine buttons to the main form in our program, arranged in a 3x3

grid similar to a standard tic-tac-toe game, give each of the buttons the name Command,

and clear their captions. That completes the preliminary design now were ready to write

some code.

2

1.2.2 THE PARTS OF A VISUAL BASIC PROJECT

Projects can become quite advanced in Visual Basic, even containing

subprojects of different types. From a programming point of view, however, standard

Visual Basic projects usually contain just three types of items: global items, forms, and

modules.

• Forms:

Forms are familiar to all Visual Basic programmers, of course

they are the templates you base windows on. Besides standard forms,

Visual Basic also supports Multiple Document Interface (MDI) forms, as

well as a whole number of predefined forms.

• Modules:

Modules are collections of code and data that function something

like objects in object-oriented programming (OOP), but without defining

OOP characteristics like inheritance, polymorphism, and so on. The

point behind modules is to enclose procedures and data in a way that

hides them from the rest of the program. We well discuss the importance

of doing this later in this chapter when we cover Visual Basic

programming techniques and style; breaking a large program into

smaller, self-contained modules can be invaluable for creating and

maintaining code.
"'

You can think of well-designed modules conceptually as

programming objects; for example, you might have a module that

handles screen display that includes a dozen internal (unseen by the rest

of the program) procedures and one or two procedures accessible to the

rest of the program. In this way, the rest of the program only has to deal

with one or two procedures, not a dozen.

3

• Global Items:

Global items are accessible to all modules and forms in a project, and

you declare them with the Public keyword. However, Microsoft

recommends that you keep the number of global items to an absolute

minimum and, in fact, suggests their use only when you need to

communicate between forms. One reason to avoid global variables is

their accessibility from anywhere in the program; while you are working

with a global variable in one part of a program, another part of the

program might be busy changing that variable, giving you unpredictable

results.

• Project Scope:

An objects scope indicates how much visibility it has throughout

the project in the procedure where ifs declared, throughout a form or

module, or global scope (which means ifs accessible everywhere). There

are two types of scope in Visual Basic projects:

o Variable scope (including object variables).

o Procedure scope.

We' 11 take a look at both of them here as we continue our

overview of Visual Basic projects and how the parts of those projects

interact.

• Variable Scope: ••

You declare variables in a number of ways. Most often, you use

the Dim statement to declare a variable. If you do not specify the variable

type when you use Dim, it creates a variant, which can operate as any

variable type. You can specify the variable type using the as keyword

like the following:

Dim IntegerValue as Integer

4

Besides Dim, you can also use ReDim to redimension space for

dynamic arrays, Private to restrict it to a module or form, Public to make

it global that is, accessible to all modules or forms or Static to make sure

its value does not change between procedure calls.

There are three levels of variable scope in Visual Basic: at the

procedure level, at the form or module level, and at the global level

schematically.

When you are designing your program, Microsoft suggests you

limit your variables to the minimum possible scope in order to make

things simpler and to avoid conflicts. Next, we'll takes a look at the other

type of scope.

• Procedure Scope:

As with variables, you can restrict the scope of procedures, and

you do that with the Private, Public, Friend, and Static keywords. The

Private and Public keywords are the main keywords here; using them,

you can specify if a subroutine or function is private to the module or

form in which it is declared or public (that is, global) to all forms and

modules. You use these keywords before the Sub or Function keywords

like the following:

Private~ Function Returns 7 ()

Dim Retval
••

Retval = 7

Returns?= Retval

End Function

You can also declare procedures as friend procedures with the

Friend keyword.

5

Friend procedures are usually used in class modules (they are not

available in standard modules, although you can declare them in forms)

to declare that the procedure is available outside the class, but not outside

the current project. This restricts those functions from being called if the

current project serves as an OLE automation server, for example.

Besides the earlier declarations, you can also declare procedures

as Static, which means that the variables in the procedure do not change

between procedure calls, and that can be very useful in cases like this,

where we support a counter variable that is incremented each time a

function is called:

Static Function Counter ()

Dim CounterValue as Integer

Coun terVal ue Coun terVal ue + 1

Counter Coun terVal ue

End Sub

1.3 CODING IN VISUAL BASIC

The full construction of a commercial program is usually a project that involves

many clear and definite steps. There have been whole volumes written on this topic, •..
which are usually only interesting if you are a software project manager (or write

computer books and have to know the details so you can write about t~em). Such books

get pretty involved, encompassing ideas like module coupling and cohesion, bottom-up

composition, incremental integration, and much more.

On the whole, however, one can break the software design process into steps

like these (note that the explanation of each step is very flexible; there is no one-size­

fits-all here):

6

• Requirements analysis Identify the problem for the software to tackle.

• Creating specifications Determine what exactly the software should do.

• Overall design Break the overall project into parts, modules ... etc.

• Detailed design the actual data structures, procedures ... etc.

• Coding Go from PDL to code.

• Debugging Solve design-time, compilation, and obvious errors.

• Testing Try to break the software.

• Maintenance React to user feedback and keep testing.

Each of these steps may have many subparts, of course. (For example, the

maintenance part may take up as much time as the rest of the project takes together).

As the design process continues, a model of what the program does evolves.

You use this model to get a conceptual handle on the software (while keeping in mind

those models is usually flawed at some level).

Keeping the model in mind, then, many programmers use a program design

language to start the actual coding process.

1.3.1 PROGRAM DESIGN LANGUAGE

Everyone seems to think that programmers use flowcharts, but the reality is

usually different (flowcharts are nice to show to nonprogrammers, though). One tool

that commercial programmers do find useful is program design language (PDL).

Although there are formal specifications for PDL, many programmers simply regard

this step as writing out what a program does in English as a sort of pseudo-code .

•
For example, if we want to create a new function named dbl Sqrt() that returns a

numbers square root, we might write its PDL this way in English, where we break what

the function does into steps:

Function dblSqrt ()

Check if the input parameter is negative

If the input parameter is negative, return -1

7

If the input parameter is positive, return its

square root

End Function

When you actually write the code, the PDL can often become the comments in

that code; for example, here's the completed function:

' dbl Sqrt()

'Purpose: Returns the passed parameter's square root

'Inputs: dblParameter, the parameter whose square root

we need

' Returns: The input value's square root

Function dblSqrt(dblParameter As Double) As Double

'Check if the input parameter is negative

If dblParameter < O Then

'If the input parameter is negative, return

-1

dblSqrt;, = -1

Else •
'If the input parameter is positive, return

its square root

dbl Sqrt Sqr(dblParameter)

End If

End Function

8

In this ~ay, developing your program using PDL, where every line of PDL has

one (and only one) specific task, can be very useful.

1.4 CODING TO GET THE MOST FROM VISUAL BASIC

In this section, we' 11 discuss some best practices coding for Visual Basic. All of

these practices come from professional programmers.

A void magic numbers when you can. A magic number is a number (excluding O

or 1) that's hardwired right into your code as follows:

Function blnCheckSize (dblParameter As

Boolean

Double) As

If dblParameter > 1024 Then

blnCheckSize True

Else

blnCheckSize False

End If

End Function

Here, 1024 is a magic number. Ifs better to declare such numbers as constants,

especially if you have a number of them. When ifs time to change your code, you just

have to change the constant declaration in one place, not try to find' all the magic

numbers scattered around your code.

Be modular. Putting code and data together into modules hides it from the rest of

the program, makes it easier to debug, makes it easier to work with conceptually, and

even makes load-time of procedures in the same module quicker. Being modular also

called information-hiding (and encapsulation in true OOP) _is the backbone of working

with larger programs. Divide and conquer is the idea here.

9

Program defensively. An example of programming defensively would be to

check data passed to you in a procedure before using it. This can save a bug from

propagating throughout your program and help pinpoint its source. Make no

assumptions.

Visual Basic procedures should have only one purpose, ideally. This is also an

aid in larger programs when things start to get complex. Certainly if a procedure has

two distinct tasks, consider breaking it up.

A void deep nesting of conditionals or loops. Debugging deeply nested

conditionals visually is very, very inefficient. If you need to, place some of the inner

loops or conditionals in new procedures and call them. Three levels of nesting should be

about the maximum.

Use access procedures to protect sensitive data. (This is part of programming

defensively.) Access procedures are also called Get/Set procedures, and they are called

by the rest of the program when you want to work with sensitive data. If the rest of the

program must call a Set() procedure to set that data, you can test to make sure that the

new value is acceptable, providing a screen between that data and the rest of the

program.

Ideally, variables should always be defined with the smallest scope possible.

Global variables can create enormously complex conditions. (In fact, Microsoft

recommends that global variables should be used only when there is no other

convenient way to share data between forms).

Do not pass global variables to procedures. If you pass global variables to
••

. procedures, the procedure you pass that variable to might give it one name (as a passed

parameter) and also reference it as a global variable. This can lead to some serious bugs,

because now the procedure has two different names for the variable.

Use the operator when linking strings and the + operator when working with
numerical values. This is per Microsoft's recommendations.

10

When you create a long string, use the underscore line-continuation character to

create multiple lines of code. This is so you can read or debug the string easily. For

example:

Dim Msg As String

Msg = "Well r there is a problem "

&"with your program. I am not sure "

&"what the problem i s , but there is "

&"definitely something wrong."

A void using variants if you can. Although convenient, they waste not only

memory but time. You may be surprised by this. Remember, however, that Visual Basic

has to convert the data in a variant to the proper type when it learns what is required,

and that conversion actually takes a great deal of time.

Indent your code with four spaces per Microsoft is recommendations. Believe it

or not, there have been serious studies undertaken here, and 2 to 4 spaces were found to

be best. Be consistent.

Finally, watch out for one big Visual Basic pitfall: misspelled variables. Because

you do not have to declare a variable in Visual Basic to use it, you might end up

surprised when Visual Basic creates a new variable after you have misspelled a variable

is name. For example, here is some perfectly legal code modified from our tic-tac-toe

project that compiles and runs, but because of a misspelling xNowwefor xNow it does

not work at all:

Private Sub Command_Click(Index As Integer)

If xNow Then

Command (Index) . Caption - "x"

Else

11

Command (Index) . Caption = "o"

End If

xNoww Not xNow

End Sub

Because Visual Basic treats xNoww as a legal variable, this kind of bug is very
hard to find when debugging.

TIP: Because Visual Basic auto-declares variables, it's usually better to use

variable names that say something (like intf'urrentlndex) instead of ones that do not

(like intDD35A) to avoid declaring a variable through misspelling its name. A better

idea is to use Option Explicit to make sure all variables must be explicitly declared.

If you work in teams, use version control. There are several well-known utilities

that help programmers work in teams, such as Microsoft's Visual SourceSafe. This

utility, which is designed to work with programming environments like Visual Basic,

restricts access to code so that two programmers do not end up modifying independent
copies of the same file.

•

12

CHAPTER2

DATABASE

2.1 OVER VIEW

The purpose of a Database system such as Microsoft Access is to change data

into information. Many people use those two terms interchangeably, but there is a world

of difference between the two if you consider information as being the same as

knowledge. Data is a collection of facts. Information is that data organized or presented

in such a way as to be useful for decision making.

This shows actual voter registration data for a particular county shown in

Access. It includes voters' names, addresses, registration information such as political

party, and also the voting records for each person registered. It doesn't, of course, show

who voters voted for (that's unavailable as data), but it does show whether and how the

voters voted for each election cycle. A voter can vote by mail-in ballot, early voting, or

at the polls.

2.2 RELATIONAL DATABASE

A relational Database, simply defined, is a Database that is made up of tables

and columns that relate to one another. These relationships are based on a key value that

is contained in a column. For example, you could have a table called Orders that

contains all the information tlfat is required to process an order, such as the order

number, date the item was ordered, and the date the item was shipped. You could also

have a table called Customers that contains all the> data that pertains fo customers, such

as a name and address. These two tables could be related to each other.

The relational Database model was developed by E.F. Codd back in the early

1970s. He proposed that a Database should consist of data stored in columns and tables

that could be related to each other. This kind of thinking was very different from the

hierarchical file system that was used at the time. His thinking truly revolutionized the

way Databases are created and used.

13

A relational Database is very intuitive. It mimics the way people think. People

tend to group similar objects together and break down complex objects into simpler

ones. Relational Databases are true to this nature. Because they mimic the way you

think, they are easy to use and learn. In later days, you will discover how easy a

relational Database is to design and learn.

Most modern Databases use a relational model to accomplish their tasks. SQL is

no different. It truly conforms to the relational model. This further adds to the ease of

use of SQL.

2.3 CHANGING DATA INTO INFORMATION

Now let's take that data and organize it into information. Suppose that in the

1998 congressional race the Democratic candidate lost by 3,216 votes. Using the

Count() function built into Access, the Database user notes that Republican voters

mailed in 5,423 more ballots than the Democratic voters. This is information. Using it,

the Democrats can see that if their candidate had emphasized mail-in balloting more

(perhaps by mailing out applications for such ballots), he might have won.

2.4 ACCESS DAT ABASE

2.4.1 MAINTAINING ACCESS DATABASES

You've probably heard it before it's not if you'll lose data, but when. Computers

aren't infallible, power fails, and parts especially disk drives go bad. The only defense is
•

to back up your data. A full discussion of backup devices is beyond the intended scope

of this book. ••

The two fundamental methods are some sort of network backup--either through

your LAN or by subscription over the Internet-and backup to removable media such as

tape, removable hard disk, or writable CDs. Pick a method and use it.

2.4.1.1 REPAIRING IN PLACE

Access files are somewhat more susceptible to corruption due to power failure

than other non-Database programs, such as Word. Although you should be always able

14

(in all modes) Democrats by 7,987 voters. This is rather irrefutable information that the

Democrats fielded a candidate attractive to Republicans, or that the Republican

candidate wasn't what Republicans wanted in a congressman, or both.

2.4.2 THE ACCESS USER INTERFACE

Access 2007 has a new user interface designed to be not only easier for the

beginner to navigate through, but also to make the life of the Access expert simpler. The

concept of the user interface stems from two metaphors, the bar and tab interface

common to all Microsoft Office applications, plus the object collection concept from

object-oriented programming. The original object metaphor is purely abstract, whereas

the translation into Access user interface is concrete.

Like so many concepts in small computers, gaining familiarity with Access'

interface is best done by a hands-on approach, so let's get started. Launch Access by

choosing it from the Start, Programs menu entry. In some administrative (network)

installs, Access will be part of a group under Programs, in which case you'll need to

locate where Access is to launch it. For most people, Access will be an entry directly

under Start, Programs. Upon launching, Access will offer you several choices.

If this is the first time you've launched Access, you won't have any entries in

the list box at the bottom of the dialog box. From top to bottom the three post-launch

options are:

• Create a New Database Using a Blank Access Database. This will create

a new container (explained in the following text), ready for you to

populate with your Database objects. ••

• Create a New Database Using Access Database Wizards, Pages, and

Projects. This will also create a new Database, but by use of a wizard or

two to give you a quick start.

• Open an Existing File. This will allow you to choose from a list or

browse for an existing Database to open.

In addition, you can click the Cancel button to open Access with no Database

loaded. Because setup will register Microsoft Access 2000 with your operating system,

16

you can also launch Access with a Database loaded by double-clicking on the Database

(files with .mdb or .mde extensions) from the Explorer.

For this, a first tour of Access, locate the North wind sample Database supplied

with Office. Highlight it, and then click Open or double-click on its entry in the list box.

If you need to browse for it, highlight More Files and click OK. That action will open

up a standard File Open browsing dialog box.

2.4.2.1 NAVIGATING THE DATABASE VIEW WINDOW

After you've opened the North wind, this is called the Database view and you'll

become very familiar with its functions and features as you work with Access. This

window contains all the objects in your Database and tool bars for manipulation of these

objects, and provides starting points for working with a Database.

The new window on your screen is also an object in the Microsoft hierarchy of

objects, a fact that you'll want to remember when you start working with objects in

VBA or macro code. For now, though, we'll refer to this window as the Database View

window for the object Northwind: Database, which appears in the title bar. This window

is divided into three main parts:

• The toolbar with actions and view selections.

• The left pane, which lists the types, or classes, of available objects within

all Access Databases, such as tables and forms.

• The right pane, 'Xhich shows a listing of the individual objects within the

selected class on the left pane.

One new feature here is the Group class option on the left pane, which you'll

learn more about in the "Groups" section, later in this lesson. As you can see by

clicking through the various objects in the left pane, the North wind Database has

several objects as a part of its application.

The new object, the one that says North wind: Database in its title bar, is the

Database view or Database container, as it's sometimes called because it contains

various objects that make up a Database system. It displays all the items or objects

17

within your project collected by classification. The series of buttons on the left side of

the container allows you to choose from different types of objects, such as tables or

reports. Click on the Forms entry (or any entry other than the one currently selected)

and the right pane will reflect all the Database objects so as to show the one class

selected within the Database.

You'll see a set of icons telling you what actions on the toolbar you can perform

on the objects listed in the Database view panes. The first eight entries, from left to

right, allow you to do the following:

• Open: Launch an object in its native mode, such as for data entry.

Access uses the term view for different object modes.

• Design: Launch an object in such a way as to allow you to edit its

structure rather than its data.

• New: Create a new object of the type highlighted within the Object list.

• Delete: Delete the highlighted object. This functions only for objects

created by a user or developer, not for the objects that appear in a new

Database.

• Large Icons: Display the Database objects in large icon view, analogous

to the same view in Windows Explorer or My Computer.

• Small Icons: Display the Database objects in small icon view, analogous

to the same view in Windows Explorer or My Computer.

• List: Display the Database objects in list view, analogous to the same

view in Windows. Explorer or My Computer.

• Details: Display the Database objects in Details view, analogous to the

same view in Windows Explorer or My Computer. •

Right-clicking is alive and well in Microsoft Access 2000. Right-click on any

true object (as opposed to an action within the Database view) and you'll see a context

(or shortcut) menu containing all the actions within the Database view as well as a few

more. True to its name, the context menu for each class of objects will vary.

18

2.5 SQL DATABASE

SQL is a full-featured relational Database management system. It is very stable

and has proven itself over time.SQL has been in production for over 1 O years.

SQL is a multithreaded server. Multithreaded means that every time someone

establishes a connection with the server, the server program creates a thread or process

to handle that client's requests. This makes for an extremely fast server. In effect, every

client who connects to a SQL server gets his or her own thread.

SQL is also fully ANSI SQL92-compliant. It adheres to all the standards set

forth by the American National Standards Institute. The developers at TeX take these

standards seriously and have carefully adhered to them.

Note that ANSI SQL92 is a set of standards for the Structured Query Language

that was agreed on in 1992 by the American National Standards Institute.

Another valuable feature of SQL is its online help system. All commands for

SQL are given at a command prompt. To see which arguments the commands take or

what the utility or command does, all you have to do is type the command and include

the -help or - ? Switch. This will display a slew of information about the command.

Yet another feature of SQL is its portability it has been ported to almost every

platform. This means that you don't have to change your main platform to take

advantage of SQL. And if you ç!o want to switch, there is probably a SQL port for your

new platform.

•
SQL also has many different application programming interfaces (APis). They

include APis for Perl, TCL, Python, CIC++, Java (JDBC), and ODBC. So no matter

what your company's expertise is, SQL has a way for you to access it.

SQL is also very cheap. For an unlicensed, full version of SQL, the cost is

nothing. To license your copy will currently cost you $200. This is an incredible deal,

considering what you are getting for your money. Database systems that provide half

the features that SQL has can cost tens of thousands of dollars. SQL can do what they

do better and for less.

19

CHAPTER3

VISUAL BASIC AND DATABASE

3.1 OVERVIEW

When Visual Basic first started working with Databases, it used the Microsoft

Jet Database engine, which is what Microsoft Access uses. Using the Jet engine

represented a considerable advance for Visual Basic, because now you could work with

all kinds of data formats in the fields of a Database: text, numbers, integers, longs,

singles, doubles, dates, binary values, OLE objects, currency values, Boolean values,

and even memo objects (up to 1 .2GB of text). The Jet engine also supports SQL, which

Database programmers found attractive.

To support the Jet Database engine, Microsoft added the data control to Visual

Basic, and you can use that control to open Jet Database (.mdb) files. Microsoft also

added a set of Data Access Objects (DAO) to Visual Basic:

• DB Engine: The Jet Database engine.

• Workspace: An area can hold one or more Databases.

• Database: A collection of tables.

• Table Def: The definition of a table.

• Query Def: The definition of a query.

• Record set: The set of records that make up the result of a query .
••

• Field: A column in a table. •.
• Index: An ordered list of records. •
• Relation: Stored information about the specific relationship between tables.

3.2 OPENING DATABASE

To open an existing DAO Database, you use the DAO OpenDatabase method,

passing it the name of the Database to open, and these arguments:

Set Database = workspace.OpenDatabase (dbname, [options [,

read-only [, connect))))

20

Here are the arguments for OpenDatabase:

• Dbname: The name of an existing Database file, or the data source name (DSN)

of an ODBC data source.

• Options: Setting options to True opens the DAO Database in exclusive mode;

setting it to False (the default) opens the Database in shared mode.

• Read-Only: True if you want to open the Database with read-only access, or

False (the default) if you want to open the Database with read/write access.

• Connect-Optional: A Variant (String subtype) that specifies various connection

information, including passwords.

Let's see an example to make this clearer. In our DAO code example, the

daocode project (see the first topic in this chapter), the user can click the Open Database

menu item to open a Database. In the program, we get the name of the Database the user

wants to open with a Common Dialog control, and open the Database like this:

Private Sub OpenDatabase_Click()

CommonDialogl.ShowO

If CommonDialogl. FileName <> "" Then

Set db=

DBEngine.Workspaces(O) .OpenDatabase(CommonDialogl

. FileName)

Next, if you know the name of the table you want to open in the Database, you

can open that table by name immediately with the OpenRecordset method. However,

because we let the user set the name of tables in the Databases we create in the daocode

project, we don't know the names of the tables in the Database we've opened. Instead,

we'll open the first user-defined table in this Database. When you open a DAO

Database, there are a number of system tables already in it, so to open the first user­

defined table; we find the index of that table in the TableDefs collection by first

skipping the system tables (which have the dbSystemObject flag set in their Attributes

properties):
Private Sub OpenDatabase_Click()

Dim tablelindex As Intege

CommonDialogl.ShowOpen

If CommonDialogl.FileName <>""Then

21

Set db=

DBEngine.Workspaces(O) .OpenDatabase(CommonDi

alogl. FileName)

tablelindex = O

While (db. TableDefs (tablelindex). Attributes

And dbSystemObject)

tablelindex = tablelindex + 1

Wend

We'll open the first table after the system tables. We open a new record

set for that table with the OpenRecordset method and fill the text boxes Textl

and Text2 in the program's main window with the fields of the first record in

that table (note that in this example program, we are assuming the table we're

opening has at least one record):

Private Sub OpenDatabase_Click ()

Dim tablelindex As Integer

CommonDialogl.ShowOpen

If CommonDialog_1. FileName <> "" Then

Set db

DBEngine.Workspaces(O) .OpenDatabase(Com

monDialogl.FileName)

tablelindex =·o

While (db. TableDefs (tablel:i.ndex) .Attribu

tes And dbSystemObject)

tablelindex tablelindex + 1

Wend

Set dbrecordset db.OpenRecordset_

22

(db.TableDefs(tablelindex) .Name,

dbOpenTable)

Set td = db.TableDefs(tablelindex)

Textl.Text = dbrecordset.fields(O)

Text2.Text dbrecordset.fields(l)

End If

End Sub

3.3 ADDING A RECORD TO A RECORD SET

To add a new record to a DAO record set, you use the AddNew method (this

method takes no parameters). After you've updated the fields of the current record, you

save that record to the Database with the Update method.

Here's an example using AddNew. When the user clicks the Add button in our

DAO code example, the daocode project (see the first topic in this chapter), we execute

the AddNew method on the program's record set and clear the two data field text boxes:

Private Sub Command] Click()

dbrecordset.AddNew

Text]. Text ,, "

Text2. Text ,, ,,

End Sub

Now users can enter data for the new record's fields and click the program's

Update button. When they click the Update Database button, the new data is written to

the Database.

23

3.4 EDITING A RECORD IN A RECORD SET

Besides adding new records to the record set, users might want to edit the

existing records. To do that, you use the Edit method like this in our DAO code

example, the daocode project (see the first topic in this chapter):

Private Sub Command2 Click()

dbrecordset.Edit

End Sub

After users edit the data in the record's fields (by entering new data in the text

fields in the daocode project's main window), they must update the Database with the

new data, and they do that in the daocode project by clicking the Update Database

button. That button executes the Update method, as we'll see in the next topic.

3.5 UPDATING A RECORD IN A RECORD SET

When the user changes the data in a record or adds a new record, we must

update the Database to record that change, and you use the record set Update method to

do that:

recordset.Update ([type [, force]]

Here are the arguments in this function:

• Type-Constant: indicating the type of update, as specified in Settings
••

(ODBCDirect workspaces only).

• Force-Boolean: value indicating whether or not to force the changes into

the Database, regardless of whether the data has been changed by another

user (ODBCDirect workspaces only).

When the user clicks the Update button in our DAO code example, the daocodev

project we will update the Database with the new data for the current record, then we

get the new data for the current record from the text boxes Textl and Text2, where the

24

user has entered that data, and load the data into the record set's fields using the field's

collection:

Private Sub Command3 Click ()

dbrecordset.fields(O) Textl. Text

dbrecordset.fields(l) Text2. Text

End Sub

After loading the data into the current record's fields, we save that record to the

Database using the Update method:

Private Sub Command3 Click()

dbrecordset.fields(O) Textl. Text

dbrecordset.fields(l) Text2. Text

dbrecordset.Update

End Sub

3.6 MOVING TO THE FIRST RECORD IN A RECORD SET

To make the first record in a record set the current record, you use the MoveFirst
• method. For example, here's how we move to the first record when the user clicks the

appropriate button in our DAO:

Private Sub Command4_ Click()

dbrecordset.MoveFirst

End Sub

25

After moving to the first record, we display that record's fields in the two text

boxes in the program, Textl and Text2:

Private Sub Command4 Click()

dbrecordset.MoveFirst

Textl. Text dbrecordset.fields(O)

Text2. Text dbrecordset.fields(l)

End Sub

3.7 MOVING TO THE LAST RECORD IN A RECORD SET

To make the last record in a record set the current record, you use the MoveLast

method. For example, here's how we move to the last record when the user clicks the

appropriate button in our DAO code example, the daocode project (see the first topic in

this chapter):

Private Sub Command7 Click()

dbrecordset.MoveLast

End Sub

After moving to the last record, we display that record's fields in the two text
•

boxes in the program, Textl and Text2:

Private Sub Command7 Click()

dbrecordset.MoveLast

Textl. Text dbrecordset.fields(O)

Text2. Text dbrecordset.fields(l)

26

End Sub

3.8 DELETING A RECORD IN A RECORD SET

To delete a record in a DAO record set, you use the Delete method, and then you

update the record set.

For example, when the user clicks the Delete button in our DAO code example,

the daocode project (see the first topic in this chapter), we clear the two text boxes,

Textl and Text2 that display the data for the current record and delete that record:

Private Sub Command8 Click()

Textl. Text = ""

Text2. Text ,, ,,

dbrecordset.Delete

End Sub

3.9 SEARCHING A RECORD SET

You can search a record set with an index; we just set its Index property to the

index we want to search and then set its Seek property to the string we want to search

for. Let's see an example. When the user selects the Search menu item in our DAO code
"' example, the daocode project (see the first topic in this chapter), we install the index

based on the first field in the record set and show the dialog box named Search:
•

Private Sub Search_Click()

Set dbindex = td.Indexes(O)

dbrecordset.Index dbindex.Name

Search Form. Show

End Sub

27

After the user dismisses the Search ... dialog box, we retrieve the text to search

for from that dialog box's text box and place that text in the record set's Seek property,

along with the command "=", which indicates we want to find exact matches to the

'2.ear.<:.h text.

Sub SearchTable ()

dbrecordset.Seek Search Form. Textl. Text ,,_,,
- ,

Besides =, you can also search using <, <=, >=, and >. When the search is

complete, we display the found record in the daocode project's main text boxes, Textl

and Text2:

Sub Search Table ()

dbrecordset. Seek "= ", Search Form. Textl. Text

Textl.Text = dbrecordset.fields(O)

Text2. Text dbrecordset.fields(l)

End Sub

•

28

CHAPTER4

X-SELLING CARS

4.1 OVERVIEW

This project is software which provides us some options such as adding,

updating, and selling cars.

4.2 PROJECT DESCRIPTION

The project flows as shown below:

r '
. File

Security r:

~ Users ~

,.
Main Form ~ Cars J ~

. Customers

•• Reports . .
"

••

Figure 4.1 Flow diagram of the project

29

4.3 SECURITY

It's the first form that appears after starting the program, which allows only the

registered users to access to the program.

Figure 4.2 User Login Form

4.4 MAIN FORM

This is the user main interface which contains several menus such as File, Users,

Cars, Customers, Report and Help. From this form we can access to any of these menus.

File

Users

Main Form Cars

•
Customers

Reports

Help

Figure 4.3 Main Form Diagram

30

Figure 4.4 Main Form

4.4.1 :FILE MENU

The file menu contains two options, Lock Application and Exit. The lock

application option locks the program and it required a user name and password so the

program will be unlocked again. The exit option will terminate the program.

4.4.2 USER MENU ·~

• • The user menu also contains two options, Add User and Search for User.

4.4.2.1 ADD USER

Add user form allows us to add users who can use this application.

31

Figure 4.5 Add User Form

In add user form we got ID, User Name, Password, Confirm Password and User

Type. The ID field generates by it self to set a different ID to each user. The user name

and password fields are required so the user can use it to access the program. The

confirm password field is to make sure of the password that assigned in the password •
field. User type field is very important to identify the authority of the user as follows:

• Manager: can access all in all of the "program properties.

• Salesman: can only access the sell car part and nothing else.

• User: can only view the cars that are available.

4.4.2.2 SEARCH FOR USER

Search for user form allows us to search for users.

32

Figure 4.6 Search for User Form

In search for user form, we can Search, Edit, Add new and Delete users. If we

click the Search button the following form appears.

Figure 4.7 Search for User (Using User Name)

By entering the user name we can find the user that we are looking for. If we

click the Edit button the following form appears.

33

Figure 4.8 Edit User Form

In this form we can edit the user details and save them by pressing the Update

button.

4.4.3 CARS MENU

The cars menu also contains two options, Add car and Search for a Car.

4.4.3.1 ADD CARS

Add car form allows us to add cars which we have in our gallery.

34

Figure 4.9 Add A New Car Form

In add a new car form we got some details which are important to the customer

to see what kind of cars we have.

4.4.3.2 SEARCH FOR CAR

Search for car form allows us to search for cars.

35

ti .. Search Cars

Search Results

ID Engine Number Model

Figure 4.10 Search for Car Form

In search for car form, we can Sell, Edit and Unique search for a car. If we click

the Edit button the following form appears.

36

El. Edit-Gaı

lll!~r~

Figure 4.11 Edit Cars Form

In this form we can edit the car details and save them.

If we want to sell a car, from search for car form, if we click the sell car button

after selecting the desired car, the following form appears.

•

37

Figure 4.12 Sell Car Form

When this form appears, the car's details are already placed. By filling the

customer info section, the car is ready to be sold by pressing the Sell Car button.

If we want to make a unique search for a car, by clicking Search for a Unique

Car the following form appears.
•..ı

'"·•,

Ii

38

Figure 4.13 Unique Search Form

In this form, we can find any car we want by entering the favorable details that

the customer looks for in a car so we can find him the car with the details that he or she

looks for.

4.4.4 CUSTOMERS MENU

The customers menu also contains two options, Add customer and Search for

Customers.
"'

4.4.4.1 ADD CUSTOMERS

Add customer form allows us to add customers to our database so we can sell

them cars without filling there information each time we want to sell them cars. Add

customers has the following form.

39

Figure 4.14 Add A New Customer

In add a new customer form we got some details which are related to the

customers such as First Name, Last Name, Address, Telephone Number and Mobile

Number. After filling the customer information, we can save it in out database by

clicking Add Customer.

4.4.4.2 SEARCH FOR CUSTOMER

Search for customer form allows us to search for customers.

40

Et Search for Customer

ID Name Mobile Telephone Address
1
2
3

8ASSEM AL-SAUDI
FADI AQEEL
OMAR A212

05338779479
05338605306
05336777706

56679967
5660659
7504772750

AMMAN JORDAN
AJLOUNJORDAN
HAWLER

Figure 4.15 Search for Customer Form

In search for customer form, we can Search, Edit, Delete and Add new

customers. If we click the Edit button the following form appears.

••

41

Figure 4.16 Edit Customers Form

In this form we can edit the customer information and save them in the database.

If we click Search in the Search for Customer Form, the following form will appear.

Figure 4.17 Search for Customer Form (Using Customer Name)

42

When we write the customer name in the previous form we can find the

customer we wanted. Also in the Search for Customer form, we can delete customers

from our database, and add new customer by using the same form we described

previously in this chapter.

4.4.5 REPORT MENU

In this menu we can view several kinds ofreports:

• Customer report: shows who bought a car from us.

• Buyers report: shows the buyers between two dates we select.

• Cars report: shows the cars that came to our gallery.

• Sold car (invoice): shows the customers and what cars they bought.

• Sold car (report): shows the sold cars between two dates we select.

4.4.6 HELP MENU

This menu shows some of the programmer's information

Figure 4.18 ABOUT

43

CONCLUSION

Visual Basic is a favorite programming environment of many programmers.

When Visual Basic first appeared, it created a revolution in Windows programming,

and that revolution continues to this day. Never before Windows programming had been

so easy just build the program you want, and then run it. Visual Basic introduced

unheard-of ease to Windows programming and changed programming from a chore to

something very fun.

44

"'

REFERANCE

[1] Visual Basic 6 Black Book

[2] Sams Teach Yourself Microsoft Acee'

[3] Sam's Teach YourselfMySQL in 21 D0

[4] Visual Basic For Dummies 2005

[5] http://www.sqlcourse.com/table.html

, 3~ND,
[6] http://www.howstuffworks.com

[7] http//www.Computerhope.com
"

II &

f II &

n &
II &

&

n)

45

APPINDEX

Option Explicit

Private Sub cmdOk_Click()
Unload Me

End Sub

Option Explicit

Private Sub cmdAddCar_Click()
If CheckTexts = False Then Exit Sub

DB.Execute ("INSERT INTO CARS(ID, LCSPLT, MODEL, BRAND,
TYPE, COLOR, CLASS, MOTORSIZE, " & _

"MOTORNUM, POWERST, KMPASSED,
ABSBRAKE, ORIGINALPRICE, EXTRAS, SOLDPRICE) " &

"VALUES (" & txtCarDet (O) . Text & "
II &

"'" & txtCarDet (9) . Text & "' , " &
txtCarDet (1) . Text & ", " &
"'" & txtCarDet (10) .Text & "', " &

" ' " & txtCarDet(2) .Text & II I II & '
" ' " & txtCarDet(3) .Text & II I II & ,
comClass.Listindex & II II & '
txtCarDet(4) .Text & II II & '
" ' " & txtCarDet (5) . Text & " ' , " &
comSteering. List Index & ", " &
txtCarDet (6) . Text & ", " &
IIf(comBrakes.Listindex = O,

DB TRUE, DB_FALSE) & II' II & -
txtCarDet (7) . Text & ", " &

"'" & txtCarDet (8) . Text & "' , O) ")

If MsgBox ("Car Was Added Succe'ssfully ! " & vbNewLine &
"Add Another?",_

vbYesNo + vbinformation,
•••

"Add A New Car") - vbYes
Then

Call ClearTexts
Call MakeID

txtCarDet(O) .SetFocus
Else

Unload Me
End If

End Sub

46

Private Sub cmdCancel Click()
Unload Me

End Sub

Private Sub comBrakes_KeyDown(KeyCode As Integer, Shift As
Integer)

If KeyCode = vbKeyReturn Then txtCarDet(7) .SetFocus
End Sub

Private Sub comClass_KeyDown(KeyCode As Integer, Shift As
Integer)

If KeyCode = vbKeyReturn Then txtCarDet(4) .SetFocus
End Sub

Private Sub comSteering_KeyDown(KeyCode As Integer, Shift
As Integer)

If KeyCode = vbKeyReturn Then txtCarDet(6) .SetFocus
End Sub

Private Sub Form Load()
Call MakeID

End Sub

Private Sub txtCarDet_GotFocus(Index As Integer)
SendKeys "{home}+{end}"

End Sub

Private Sub txtCarDet_KeyDown(Index As Integer, KeyCode As
Integer, Shift As Integer)

If KeyCode = vbKeyReturn Then
If Index= O Then

txtCarDet (9) . Set Focus
Elseif Index= 3 Then

comClass.~etFocus
Elseif Index= 5 Then

comSteering.SetFocus
Elseif Index= 6 Then

comBrakes.SetFocus
Elseif Index= 8 And Shift

cmdAddCar.SetFocus
Elseif Index= 8 And Shift

O Then

1 Then

Elseif Index= 9 Then
txtCarDet(l) .SetFocus

Else
txtCarDet(Index + l) .SetFocus

End If
End If

End Sub

47

Private Sub txtCarDet KeyPress(Index As Integer, KeyAscii

As Integer)
If (Index= 1 Or Index= 4 Or Index= 6) Then KeyAscii

= Intinput(KeyAscii)
If (Index= 5 Or Index= 9) Then KeyAscii =

Strinput(KeyAscii)
If (Index= 7) Then KeyAscii = Curinput(KeyAscii)

End Sub

Private Function CheckTexts() As Boolean
Dimi As Integer

For i = 1 To 9
If txtCarDet (i) . Text = "" Then

MsgBox "Please Fill All Text Boxes!"
txtCarDet(i) .SetFocus

CheckTexts = False
Exit Function

End If
Next i

If comClass.Listindex < O Then
CheckTexts = False
MsgBox "Please Select A Class!"
comClass.SetFocus
Exit Function

Elseif comSteering.Listindex < O Then
CheckTexts = False
MsgBox "Please Select Steering Type!"
comClass.SetFocus
Exit Function

Elseif comBrakes.Listindex < O Then
CheckTexts = False •••
MsgBox "Please Select Brakes Type!"
comBrakes.SetFocus
Exit Function

End If

CheckTexts
End Function

True

Private Sub MakeID()
Set DB= OpenDatabase(App.Path & "\carsdb.mdb")
Set TB= DB.OpenRecordset("SELECT MAX(ID) FROM CARS")

48

If TB.Fields(O) > O Then
txtCarDet(O) .Text= TB.Fields(O) + 1

Else
txtCarDet(O) .Text= 1

End If
End Sub

Private Sub ClearTexts()
Dimi As Integer

For i = 1 To 10
txtCarDet(i) .Text

Next i
" "

comBrakes.Listindex = -1
comClass.Listindex = -1
comSteering.Listindex = -1

End Sub

Option Explicit

Private Sub MakeCustID()
Set DB= OpenDatabase(App.Path & "\carsdb.mdb")
Set TB= DB.OpenRecordset("SELECT MAX(ID) FROM

CUSTOMERS")

If TB.Fields(O) > O Then
txtCusID.Text = TB.Fields(O) + 1

Else
txtCusID.Text = 1

End If
End Sub

Private Sub cmdAddCust_Click()
If IsNumeric(txtCusMob.Text) = False Then

MsgBox "Please" enter a valid mobile number!",
vbCri ti cal, "Error"

txtCusMob.SetFocus
SendKeys "{home}+{end}"
Exit Sub

End If

If txtCusFName.Text =""Or txtCusLName.Text =""Or
txtCusMob.Text =""Then

MsgBox "Please enter all customer details!",
vbCri ti cal, "Error"

Else
Dim SQL As String

49

SQL = "INSERT INTO CUSTOMERS (ID, FNAME, LNAME,
ADDRESS, MOBILE, TEL) VALUES("

SQL = SQL & txtCusID.Text & ", '" &

txtCusFName. Text & "', '" & txtCusLName. Text & "',

SQL = SQL & txtCusAdd. Text & "' , '" &

txtCusMob. Text & "' , '" & txtCus tTel. Text & "') ; "

I II

DB.Execute SQL

MsgBox "Customer Was Added Successfully.",
vbinformation, "Successful"

If frmSellCar.Visible = True Then
frmSellCar.txtCustFName.Text
frmSellCar.txtCustLName.Text

End If

txtCusFName.Text
txtCusLName.Text

Unload Me
End If

End Sub

Private Sub cmdCancel_Click()
Unload Me

End Sub

Private Sub Form Load()
Call MakeCustID

End Sub

Private Sub txtCusAdd_KeyPress(KeyAscii As Integer)
KeyAscii = Strinput(KeyAscii)

End Sub

Private Sub txtCusFName_KeyPress(KeyAscii As Integer)
KeyAscii = Strinp~t(KeyAscii)

End Sub

Private Sub txtCusLName_KeyPress(K~yAscii As Integer)
KeyAscii = Strinput(KeyAscii)

End Sub

Private Sub txtCusMob_KeyPress(KeyAscii As Integer)
KeyAscii = TelNuminput(KeyAscii)

End Sub

Private Sub txtCustTel_KeyPress(KeyAscii As Integer)
KeyAscii = TelNuminput(KeyAscii)

End Sub

Option Explicit

50

Private Sub cmdCancel_Click()
Unload Me

End Sub

Private Sub cmdOk Click()
On Error Resume Next
If txtUsr.Text =""Then

MsgBox "No Username Entered!", vbCritical, "Error"
txtUsr.SetFocus
Exit Sub

Elseif txtPwd.Text =""Then
MsgBox "No Password Entered!", vbCritical, "Error"
txtPwd.SetFocus
Exit Sub

Elseif txtCnfm.Text =""Then
MsgBox "Please Confirm Your Password!", vbCritical,

"Error"
txtCnfm.SetFocus
Exit Sub

Elseif combType.Listindex = -1 Then
MsgBox "Please Select The User Type!", vbCritical,

"Error"
combType.SetFocus
Exit Sub

Elseif txtPwd.Text <> txtCnfm.Text Then
MsgBox ''Password And Confirmed Password Does Not

Match!", vbCri tical, "Error"
txtCnfm.SetFocus
Exit Sub

End If ~

DB. Execute "INSERT INTO USERS' VALUES (" & txtID. Text &

", '" & txtUsr. Text & "', '" & txtPwd. Text & "', • '" &
combType.List(combType.Listindex) & "');"

If MsgBox("User Was Added Successfully, Add Another?",
vbQuestion + vbYesNo, "Add User") = vbYes Then

Call Form Load
txtUsr.Text = ""
txtPwd.Text = ""

txtCnfm.Text = ""
combType.Listindex = -1

Else
Unload Me

End If

51

End Sub

Private Sub Form_Load()
Dim NewID As Long
Set TB= DB.OpenRecordset("SELECT MAX(ID) FROM USERS;")

If TB.EOF Then
NewID = 1

Else
NewID = TB.Fields(O) + 1

End If

txtID.Text = NewID
End Sub

Option Explicit

Private Sub cmdCancel_Click()
Unload Me

End Sub

Private Sub cmdOk_Click()
On Error Resume Next
If txtUsr.Text =""Then

MsgBox "No Username Entered!", vbCritical, "Error"
txtUsr.SetFocus
Exit Sub

Elseif txtPwd.Text - "" Then
MsgBox "No Password Entered!", vbCritical, "Error"
txtPwd.SetFocus
Exit Sub

Elseif txtCnfm.Text =""Then
MsgBox "P'l e a s a Confirm Your Password!", vbCri ti cal,

"Error"
txtCnfm.SetFocus
Exit Sub

Elseif combType.Listindex -1 Then
MsgBox "Please Select The User Type!", vbCritical,

"Error"
combType.SetFocus
Exit Sub

Elseif txtPwd.Text <> txtCnfm.Text Then
MsgBox "Password And Confirmed Password Does Not

Match!", vbCritical, "Error"
txtCnfm.SetFocus
Exit Sub

52

End If

DB.Execute "INSERT INTO USERS VALUES(" & txtID.Text &
", '" & txtUsr. Text & "', '" & txtPwd. Text & "', '" &
combType.List(combType.Listindex) & "') ;"

If MsgBox("User Was Added Successfully, Add Another?",
vbQuestion + vbYesNo, "Add User") = vbYes Then

Call Form Load
txtUsr.Text = ""
txtPwd.Text = ""
txtCnfm.Text = ""
combType.Listindex - -1

Else
Unload Me

End If
End Sub

Private Sub Form Load()
Dim NewID As Long
Set TB= DB.OpenRecordset("SELECT MAX(ID) FROM USERS;")

If TB.EOF Then
NewID = 1

Else
NewID = TB.Fields(O) + 1

End If

txtID.Text = NewID
End Sub

Option Explicit

Private Sub cmdCancel_Click()
Unload Me ~

End Sub

Private Sub cmdUpdateCust_Click()
If IsNumeric(txtCusMob.Text) = False Then

MsgBox "invalid mobile number!", vbCritical,

•

"Error"
txtCusMob.SetFocus
SendKeys "{home}+{end}"
Exit Sub

End If

If txtCusFName.Text =""Or txtCusLName.Text =""Or
txtCusMob.Text =""Or txtCusTel.Text =""Then

MsgBox "Please fill all customer details!",
vbCri ti cal, "Error"

53

Else
Dim SQL As String

SQL = "UPDATE CUSTOMERS SET FNAME='" &
txtCusFName.Text & "', LNAME='" & txtCusLName.Text & "',
ADDRESS='" & txtCusAdd.Text & "', MOBILE='" &
txtCusMob.Text & "', TEL='" & txtCusTel.Text & "' WHERE
ID=" & txtCusID.Text

DB.Execute SQL

MsgBox "Customer Information Was Updated
Success fully.", vbinforma tion, "Successful"

Unload Me
End If

End Sub

Private Sub txtCusFName_KeyPress(KeyAscii As Integer)
KeyAscii = Strinput(KeyAscii)

End Sub

Private Sub txtCusLName_KeyPress(KeyAscii As Integer)
KeyAscii = Strinput(KeyAscii)

End Sub

Private Sub txtCusMob_KeyPress(KeyAscii As Integer)
KeyAscii = Intlnput(KeyAscii)

End Sub

Private Sub txtCusTel_KeyPress(KeyAscii As Integer)
KeyAscii = Intinput(KeyAscii)

End Sub

Option Explicit

Private Sub cmdCancel_Click()
Unload Me

End Sub

Private Sub cmdOk Click()
On Error Resume Next
If txtUsr.Text =""Then

MsgBox "No Username Entered!", vbCri tical, "Error"
txtUsr.SetFocus
Exit Sub

Elseif txtPwd.Text - "" Then
MsgBox "No Password Entered!", vbCri ti cal, "Error"

54

txtPwd.SetFocus
Exit Sub

Elseif txtCnfm.Text =""Then
MsgBox "Please Confirm Your Password!", vbCritical,

"Error"
txtCnfm.SetFocus
Exit Sub

Elseif combType.Listindex = -1 Then
MsgBox "Please Select The User Type!", vbCritical,

"Error"
combType.SetFocus
Exit Sub

Elseif txtPwd.Text <> txtCnfm.Text Then
MsgBox "Password And Confirmed Password Does Not

Match!", vbCritical, "Error"
combType.SetFocus
Exit Sub

End If

DB.Execute "UPDATE USERS SET USERNAME='" & txtUsr.Text
& "', PASSWORD='" & txtPwd.Text &
combType.List(combType.Listindex)
txtID.Text & ";"

"' ' REST=' II &
& "' WHERE ID=" &

MsgBox "User Was Updated Successfully?", vbinformation,
"Edit User"

Unload Me

End Sub

Option Explicit ~

Private Sub cmdExit_Click()
End

End Sub

Private Sub cmdLogin_Click()
Set DB= OpenDatabase(App.Path & "\carsdb.mdb")
Set TB= DB.OpenRecordset("SELECT * FROM USERS WHERE

USERNAME='" & txtUser.Text & "'")

If TB.EOF = False Then
If TB("PASSWORD") = txtPass.Text Then

myUserID = TB.Fields("ID")

55

UserRestType = Ilf(IsNull(TB.Fields("REST"))
't-x:ue, "", 1'.B.t'ielcis\"RES't"\ \

If UserRestType = "Manager" Then
If frmMain.Visible = False Then

frmMain.Show
Else

MsgBox "Access To The Main Program Is
Forbidden!", vbCri ti cal, "Sales Manager"

If frmMain.Visible Then Unload Me: Unload
frmMain

frmSrchForCar.Show
frmSrchForCar.cmdEditCar.Enabled

End If
Unload Me

False

Else
MsgBox "Wrong Password!", vbCri ti cal, "Error"

End If
Else

MsgBox "User Not Found!", vbCri ti cal, "Error"
End If

End Sub

Private Sub Form_Load()
ChDir App.Path

End Sub

Private Sub Form_QueryUnload(Cancel As Integer, UnloadMode
As Integer)

If Not UnloadMode = vbFormCode Then Cancel= Not
cmdExit.Enabled
End Sub

Private Sub txtPass_KeyDown(KeyCode As Integer, Shift As
Integer)

If KeyCode = vbKey~eturn Then Call cmdLogin Click
End Sub

Private Sub txtUser_KeyDown(KeyCode As Integer, •shift As
Integer)

If KeyCode = vbKeyReturn Then txtPass.SetFocus
End Sub

Option Explicit

Private Sub Form_QueryUnload(Cancel As Integer, UnloadMode
As Integer)

If Not UnloadMode = vbFormCode Then
Cancel= True
Call mnuExit Click

56

End If
End Sub

Private Sub mnuAbout Click()
frmAbout.Show vbModal

End Sub

Private Sub mnuAddCus_Click()
frmAddCustomer.Show vbModal

End Sub

Private Sub mnuAddNew_Click()
frmAddCar.Show vbModal

End Sub

Private Sub mnuAddUser Click()
frmAddUser.Show vbModal

End Sub

Private Sub mnuBuyRep_Click()
frmReportCust.Show vbModal

End Sub

Private Sub mnuCarRev_Click()
frmReport.Show vbModal

End Sub

Private Sub mnuCarRprt_Click()
rprtCars.Show vbModal

End Sub

Private Sub mnuCusRep_Click()
rprtCust.Show vbModal

End Sub

Private Sub mnuExit Click()
If MsgBox("Are you sure you want to exit?", vbYesNo +

vbQuestion, "Exit") = vb Yes Then End "
End Sub

Private Sub mnuinvoices_Click()
rprtinvoice.Show vbModal

End Sub

Private Sub mnuLockApp Click()
Load frmLogin
frmLogin.cmdExit.Enabled = False
frmLogin.Show vbModal

End Sub

57

Private Sub mnuSrch_Click()
frmSrchForCar.Show vbModal

End Sub

Private Sub mnuSrchCus_Click()
frmSrchForCust.Show vbModal

End Sub

Private Sub mnuSrchUsr_Click()
frmUsers.Show vbModal

End Sub

Option Explicit

Private Sub Form_QueryUnload(Cancel As Integer, UnloadMode

As Integer)
If Not UnloadMode = vbFormCode Then

Cancel= True
Call mnuExit Click

End If
End Sub

Private Sub mnuAbout_Click()
frmAbout.Show vbModal

End Sub

Private Sub mnuAddCus_Click()
frmAddCustomer.Show vbModal

End Sub

Private Sub mnuAddNew Click()
frmAddCar.Show vbModal

End Sub

Private Sub mnuAddUser Click()
- @t

frmAddUser.Show vbModal
End Sub

Private Sub mnuBuyRep_Click()
frmReportCust.Show vbModal

End Sub

Private Sub mnuCarRev_Click()
frmReport.Show vbModal

End Sub

Private Sub mnuCarRprt_Click()
rprtCars.Show vbModal

End Sub

58

Private Sub mnuCusRep_Click()
rprtCust.Show vbModal

End Sub

Private Sub mnuExit_Click()
If MsgBox("Are you sure you want to exit?", vbYesNo +

vbQuestion, "Exit") = vbYes Then End
End Sub

Private Sub mnuinvoices Click()
rprtinvoice.Show vbModal

End Sub

Private Sub mnuLockApp Click()
Load frmLogin
frmLogin.cmdExit.Enabled = False
frmLogin.Show vbModal

End Sub

Private Sub mnuSrch Click()
frmSrchForCar.Show vbModal

End Sub

Private Sub mnuSrchCus_Click()
frmSrchForCust.Show vbModal

End Sub

Private Sub mnuSrchUsr_Click()
frmüsers.Show vbModal

End Sub

••

59

Option Explicit

Private Sub Form_QueryUnload(Cancel As Integer, UnloadMode

As Integer)
If Not UnloadMode = vbFormCode Then

Cancel= True
Call mnuExit Click

End If
End Sub

Private Sub mnuAbout Click()
frmAbout.Show vbModal

End Sub

Private Sub mnuAddCus_Click()
frmAddCustomer.Show vbModal

End Sub

Private Sub mnuAddNew Click()
frmAddCar.Show vbModal

End Sub

Private Sub mnuAddUser_Click()
frmAddUser.Show vbModal

End Sub

Private Sub mnuBuyRep_Click()
frmReportCust.Show vbModal

End Sub

Private Sub mnuCarRev_Click()
frmReport.Show vbModal

End Sub

Private Sub mnuCarRprt_~lick()
rprtCars.Show vbModal

End Sub
•\.

'*
Private Sub mnuCusRep_Click()

rprtCust.Show vbModal
End Sub

Private Sub mnuExit_Click()
If MsgBox("Are you sure you want to exit?", vbYesNo +

vbQuestion, "Exit") = vbYes Then End
End Sub

Private Sub mnuinvoices_Click()
rprtinvoice.Show vbModal

End Sub

60

Private Sub mnuLockApp Click()
Load frmLogin
frmLogin.cmdExit.Enabled = False
frmLogin.Show vbModal

End Sub

Private Sub mnuSrch Click()
frmSrchForCar.Show vbModal

End Sub

Private Sub mnuSrchCus_Click()
frmSrchForCust.Show vbModal

End Sub

Private Sub mnuSrchUsr_Click()
frmUsers.Show vbModal

End Sub

Option Explicit
Public OriginalPrice As Currency

Private Sub cmdAddCust_Click()
frmAddCustomer.Show vbModal

Call Form Load
End Sub

Private Sub cmdCancel Click()
Unload Me

End Sub

Private Sub cmdSellCar Click()
Dim SQL As String, curProfit As Currency

~
If Val(txtCarDet(5) .Text) <= O Then

MsgBox "Car Price Cannot Be Zero!", vbCritical,
"Error"

Elseif Combol.Listindex = -1 Then
MsgBox "No Customer Was Selected!", vbCritical,

"Error"

Else
curProfit = CCur(txtCarDet(5) .Text) - OriginalPrice

SQL = "UPDATE CARS SET SOLDPRICE=" &
txtCarDet(5) .Text &

", PROFIT=" & curProfi t &

61

II CUSTID=" &
Combol.ItemData(Combol.Listindex) &

", SELLDATE='" & Format$ (Now, "dd/mm/yyyy") &

II I ' STATUS= I SOLD" &

"' WHERE ID=" & txtCarDet (O) . Text

DB.Execute SQL

Set TB= DB.OpenRecordset("SELECT *,* FROM
CUSTOMERS, CARS WHERE CUSTOMERS.ID=" &
Combol. ItemData (Combol. Listindex) & "AND CARS. ID=" &
txtCarDet(O) .Text)

With rprtinv

. Sections ("Section4 ") . Controls ("lblinvNum") . Caption
CStr(TB.Fields("CUSTOMERS.ID")) +
CStr(TB.Fields("CARS.ID"))

. Sections ("Section4") . Controls ("lblinvDa te 11) • Caption
Format$ (Now, "DD/MM/YYYY11)

. Sections (11 Section2") . Controls (11 lblID") . Caption
TB.Fields("CARS.ID")

. Sections ("Section2") . Controls ("lblModel") . Caption
TB. Fields ("MODEL")

. Sections ("Section2") . Controls ("lbl Type") . Caption
TB. Fields ("BRAND") & " " & TB. Fields ("TYPE 11)

. Sections ("Section2") . Controls ("lblColor") . Caption
TB. Fields ("COLOR")

. Sections ("Section2") . Ctmtrols ("lblClass") . Caption
GetCarClass(TB.Fields("CLASS"))

. Sections ("Section2") . Controls ("lblMot") . Caption
TB. Fields ("MOTORS I ZE") & " cc"

. Sections ("Section2") . Controls ("lblPrice") . Caption
TB.Fields("SOLDPRICE")

. Sections ("Secti on2 "). Contro.l.s (".l.b.l. CusName "). Capt.ion
TB.Fields("FNAME") & "" & TB.Fields("LNAME")

. Sections ("Section2 ") . Controls ("lblCusMob") . Caption
TB.Fields("MOBILE")

62

. Sections ("Section2") . Controls ("lblCusAdd") . Caption
'l'B.Fields("ADDRESS")

. Sections ("Section2") . Controls ("lbl TotalArnnt") . Caption

TB.Fields("SOLDPRICE")

.Show vbModal
End With

MsgBox "Car Was Sold Successfully!", vbinformation,

"Sold"
Unload Me

End If
End Sub

Private Sub Combol Click()
Dim MyNm$
MyNm = Combol.List(Combol.Listindex)
MyNm = Right$(MyNm, Len(MyNm) - 4)
txtCustFName.Text = Left$(MyNm, InStr(MyNm, ""))
txtCustLName.Text = Right$(MyNm, Len(MyNm) -

Len(txtCustFName.Text))
End Sub

Private Sub comBrakes_Click()
txtABS.Text = comBrakes.List(comBrakes.Listindex)

End Sub

Private Sub comSteering_Click()
txtPS.Text = comSteering.List(comSteering.Listindex)

End Sub

Private Sub Form Load()
txtDate.Text = Format(Now, "DD/MM/YYYY")

"'Set TB= DB.OpenRecordset("SELECT ID, FNAME, LNAME FROM
CUSTOMERS")

Combol.Clear

While Not TB.EOF
Combol.Additem "[" & TB.Fields("ID") & "] " &

TB.Fields("FNAME") & "" & TB.Fields("LNAME")
Combol.ItemData(Combol.ListCount - 1) =

TB.Fields("ID")

DoEvents
TB.MoveNext

Wend
End Sub

63

Option Explicit

Private Sub cmdAccept_Click()
Dim sTemp As String
Dim F As Boolean

If Not txtModel.Text =""Then
F = True

sTemp = sTemp & "MODEL=" & txtModel.Text
End If

If Not txtType.Text =""Then
If F = True Then sTemp = sTemp
sTemp = sTemp & "TYPE LIKE" &

"* ' ": F = True
End If

& " AND"
& txtType.Text &" ' "

If Not txtPrice.Text =""Then
If F = True Then sTemp = sTemp & "AND"
sTemp = sTemp & "ORIGINALPRICE=" & t.xtPrice.Text: F

True
End If

If Not txtColor.Text =""Then
If F = True Then sTemp = sTemp & "AND"
sTemp = sTemp & "COLOR=" & "'" & txtColor.Text &

"'": F = True
End If

If Not txtMotorSize.Text =""Then
If F = True Then sTemp = sTemp & "AND"
sTemp = sTemp & "MOTORSIZE=" & txtMotorSize.Text: F

True
End If

If sTemp =""Then sTemp = "ID>O"
• frmSrchForCar.UniqueSQL = sTemp

•

Unload Me
End Sub

Private Sub cmdCancel_Click()
frmSrchForCar.UniqueSQL = "ID>O"
Unload Me

End Sub

Option Explicit

64

Private Sub cmdAccept_Click()
Dim sTemp As String
Dim F As Boolean

If Not txtModel.Text =""Then
F = True
sTemp = sTemp & "MODEL=" & txtModel.Text

End If

If Not txtType.Text =""Then
If F = True Then sTemp = sTemp
sTemp = sTemp & "TYPE LIKE" &

"* ' " : F = True
End If

& II AND II

& txtType.Text &" ' "

If Not txtPrice.Text =""Then
If F = True Then sTemp = sTemp & "AND"
sTemp = sTemp & "ORIGINALPRICE=" & txtPrice.Text: F

True
End If

If Not txtColor.Text =""Then
If F = True Then sTemp = sTemp & "AND"
sTemp = sTemp & "COLOR=" & "'" & txtColor.Text &

"' ": F = True
End If

If Not txtMotorSize.Text =""Then
If F = True Then sTemp = sTemp & "AND"
sTemp = sTemp & "MOTORSIZE=" & txtMotorSize.Text: F

True
End If

If sTemp =""Then sTemp = "ID>O"
frmSrchForCar.UniqueSQL = sTemp~

Unload Me ,
End Sub

Private Sub cmdCancel Click()
frmSrchForCar.UniqueSQL = "ID>O"
Unload Me

End Sub

Option Explicit

Private Sub cmdAccept_Click()
Dim sTemp As String
Dim F As Boolean

65

If Not txtModel.Text =""Then
F = True
sTemp

End If
sTemp & "MODEL=" & txtModel.Text

If Not txtType.Text =""Then
If F = True Then sTemp = sTemp
sTemp = sTemp & "TYPE LIKE" &

"* ' " : F = True
End If

" f "

AND II

& txtType.Text &

& II

If Not txtPrice.Text =""Then
If F = True Then sTemp = sTemp & "AND"
sTemp = sTemp & "ORIGINALPRICE=" & txtPrice.Text: F

True
End If

If Not txtColor.Text =""Then
If F = True Then sTemp = sTemp & "AND"
sTemp = sTemp & "COLOR=" & "'" & txtColor.Text &

" ' " : F = True
End If

If Not txtMotorSize.Text =""Then
If F = True Then sTemp = sTemp & "AND"
sTemp = sTemp & "MOTORSIZE=" & txtMotorSize.Text: F

True
End If

If sTemp =""Then sTemp = "ID>O"
frmSrchForCar.UniqueSQL = sTemp

Unload Me
End Sub

Private Sub cmdCancel crick()
frmSrchForCar.UniqueSQL = "ID>O"
Unload Me

End Sub •

Option Explicit

Dim CarOpt() As CAROPTIONS
Public UniqueSQL As String
Public IsChanged As Boolean
Private LastSQL As String

Private Sub cmdClose Click()
Unload Me

66

End Sub

Private Sub cmdEditCar_Click()
Dim iSel As Integer

If lstID.Listindex -1 Then
MsgBox "Please Select A Car!", vbinformation, "No

Selection"
Exit Sub

End If

iSel = lstID.List(lstID.Listindex)

Set TB
ID=" & iSel)

DB.OpenRecordset("SELECT * FROM CARS WHERE

Load frmEditCar

With frmEditCar
.txtCarDet(O) = TB.Fields("ID")
.txtCarDet(9) .Text=

I If (IsNull (TB. Fields ("LCSPLT")), "Empty",
TB. Fields ("LCSPLT"))

. txtCarDet (1) . Text = TB. Fields ("MODEL")

. txtCarDet (10) . Text = TB. Fields ("BRAND")

. txtCarDet (2) . Text = TB. Fields ("TYPE")

. txtCarDet (2) . Text = TB. Fields ("TYPE")

. txtCarDet (3) . Text = TB. Fields ("COLOR")

. comClass. Listindex = TB. Fields (''CLASS")

. txtCarDet (4) . Text = TB. Fields ("MOTORS I ZE")

. txtCarDet (5) . Text = TB. Fields ("MOTORNOM")
. comSteering. List Index ~-= TB. Fields ("POWERST")
. txtCarDet (6) . Text = TB. Fields ("KMPASSED")
.comBrakes.Listindex = Ilf(TB.Fields("ABSBRAKE")

DB TROE, O, 1)
. txtCarDet (7) . Text = TB. Fields ("ORIGINALPRICE")
. txtCarDet (8) . Text = TB. Fields ("EXTRAS")

• . Show vbModal
End With

If IsChanged = False Then Exit Sub

Set TB= DB.OpenRecordset("SELECT * FROM CARS;")

If TB.EOF = False Then
Call ClearLists
TB.MoveLast
TB.MoveFirst

67

Dimi As Long
ReDim CarOpt(l To TB.RecordCount) As CAROPTIONS

i = 1
Dim x As CAROPTIONS

While Not TB.EOF
If TB.Fields("SOLDPRICE") <= O Then

lstID.Additem TB.Fields("ID")
lstMotorNum.Additem TB.Fields("MOTORNUM")
lstModel .Additem TB. Fields ("MODEL")
1st Type. Additem TB. Fields ("BRAND") & " " &

TB.Fields("TYPE")
lstColor.Additem TB.Fields("COLOR")

lstClass.Additem
GetCarClass(TB.Fields("CLASS"))

lstMotor. Additem TB. Fields ("MOTORS I ZE") & "
cc"

CarOpt (i) . OP_ABS = TB. Fields ("ABSBRAKE")
CarOpt(i) .OP_KMPASSED =

TB.Fields("KMPASSED")
CarOpt (i) .OP_POWERST = TB.Fields ("POWERST")
CarOpt (i) . OP EXTRAS = TB. Fields ("EXTRAS")

End If

i = i + 1
TB.MoveNext
DoEvents

Wend
End If

End Sub

Private Sub cmdSearch_Click()
frmSrchDet.Show vbModal

"'
If UniqueSQL - "" Then

Exit Sub
Else

Call ClearLists

Set DB= OpenDatabase(App.Path & "\carsdb.mdb")
Set TB= DB.OpenRecordset("SELECT ID, MODEL, BRAND,

TYPE, COLOR, CLASS, MOTORSIZE, ABSBRAKE, POWERST, EXTRAS,
MOTORNUM, KMPASSED, SOLDPRICE FROM CARS WHERE" & UniqueSQL
& "; ")

68

LastSQL = UniqueSQL

If TB.EOF = False Then
TB.MoveLast
TB.MoveFirst

Dimi As Long
i = 1

While Not TB.EOF
If TB.Fields("SOLDPRICE") <= O Then

lstID.Additem TB.Fields("ID")
lstMotorNum.Additem

TB.Fields("MOTORNUM")
lstModel.Additem TB.Fields("MODEL")
lstType.Additem

IIf(IsNull(TB.Fields("BRAND")) =True,"",
TB. Fields ("BRAND")) & " " & TB. Fields ("TYPE")

lstColor.Additem TB.Fields("COLOR")

lstClass.Additem
GetCarClass(TB.Fields("CLASS"))

lstMotor.Additem TB.Fields("MOTORSIZE")

& " cc"

End If

i = i + 1
TB.MoveNext
DoEvents

Wend
Else

MsgBox "Sorry, The Selected Car Was Not
Found!", vbinformation, "Not Found"

End If
End If
UniqueSQL

End Sub
" "

Private Sub cmdSellCar_Click()
Dim iSel As Integer

If lstID.Listindex -1 Then
MsgBox "Please Select A Car!", vbinformation, "No

Selection"
Exit Sub

End If

iSel = lstID.List(lstID.Listindex)

69

Load frmSellCar

Set TB= DB.OpenRecordset("SELECT * FROM CARS WHERE

ID=" & iSel)
With frmSellCar

.txtCarDet(O) = TB.Fields("ID")

. txtCarDet (1) . Text = TB. Fields ("MODEL")

.txtCarDet(7) .Text=
I If (I sNull (TB. Fields ("BRAND")) , "", TB. Fields ("BRAND"))

. txtCarDet (2) • Text = TB. Fields ("TYPE")

. txtCarDet (3) . Text = TB. Fields ("COLOR")

. txtCarDet (4) • Text = TB. Fields ("MOTORS I ZE")

.comSteering.Listindex = TB.FLelds("POWERST")

.comBrakes.Listindex = IIf(TB.Fields("ABSBRAKE")

DB TRUE, O, 1)
.OriginalPrice = TB.Fields("ORIGINALPRICE")
. txtCarDet (6) . Text = TB. Fields ("EXTRAS")
.Label6.Caption = TB.Fields("ORIGINALPRICE")
.Show vbModal

End With

Set TB= DB.OpenRecordset("SELECT ID, MODEL, TYPE,
COLOR, CLASS, MOTORSIZE, ABSBRAKE, POWERST, EXTRAS,
MOTORNUM, KMPASSED, SOLDPRICE FROM CARS;")

If TB.EOF = False Then
Call ClearLists
TB.MoveLast
TB.MoveFirst

Dimi As Long
ReDim CarOpt(l To TB.RecordCount) As CAROPTIONS

ı = 1
Dim x As CAROPTtONS

While Not TB.EOF
If TB. Fields ("SOLDPRICE "•) <= O Then •

lstID.Additem TB.Fields("ID")
lstMotorNum.Additem TB.Fields("MOTORNUM")
lstModel.Additem TB.Fields("MODEL")
lstType.Additem TB.Fields("TYPE")
lstColor.Additem TB.Fields("COLOR")

lstClass.Additem
GetCarClass(TB.Fields("CLASS"))

lstMotor. Add Item TB. Fields ("MOTORS I ZE") & "

cc"

70

CarOpt (i) . OP_ABS = TB. Fields ("ABSBRAKE")
CarOpt(i) .OP_KMPASSED =

TB.Fields("KMPASSED")
CarOpt (i) . OP_ POWER ST = TB. Fields ("POWERST")
CarOpt (i) . OP EXTRAS = TB. Fields ("EXTRAS")

End If

ı = i + 1
TB.MoveNext
DoEvents

Wend
End If

End Sub

Private Sub Form_Load()
Call ClearLists

Set DB= OpenDatabase(App.Path & "\carsdb.mdb")
Set TB= DB.OpenRecordset("SELECT ID, MODEL, BRAND,

TYPE, COLOR, CLASS, MOTORSIZE, ABSBRAKE, POWERST, EXTRAS,
MOTORNUM, KMPASSED, SOLDPRICE FROM CARS;")

If TB.EOF = False Then
TB.MoveLast
TB.MoveFirst

Dimi As Long
ReDim CarOpt(l To TB.RecordCount) As CAROPTIONS

i = 1
Dim x As CAROPTIONS

While Not TB.EOF
If TB.Fields("SOLDPRICE") <= O Then

lstID.Additem TB.Fields("ID")
lstMotorNum.Additem TB.Fields("MOTORNUM")
lstModel.Additem TB.Fields("MODEL")
lstType.Additem

IIf(IsNull(TB.Fields("BRAND")) = True, "",
TB. Fields ("BRAND")) & " " & TB. Fields ("TYPE")

lstColor.Additem TB.Fields("COLOR")

lstClass.Additem
GetCarClass(TB.Fields("CLASS"))

lstMotor .Additem TB. Fields ("MOTORSIZE") & "

cc"

71

CarOpt(i) .OP_ABS = TB.Fields("ABSBRAKE")
CarOpt(i) .OP KMPASSED =

TB. Fields ("KMPASSED")
CarOpt (i) .OP_POWERST = TB.Fields ("POWERST")
CarOpt (i) . OP EXTRAS = TB. Fields ("EXTRAS")

End If

i = i + 1
TB.MoveNext
DoEvents

Wend
Else

MsgBox "Database Is Empty!" & vbNewLine & "No Cars
To View.", vbinformation, "Empty Database"

End If

If UserRestType
False
End Sub

"User" Then cmdSellCar.Enabled

Private Sub lstClass Click()
Make Fixed

End Sub

Private Sub lstClass KeyDown(KeyCode As Integer, Shift As

Integer)
Make Fixed

End Sub

Private Sub lstClass KeyPress(KeyAscii As Integer)

Make Fixed
End Sub

Private Sub lstClass MouseDown(Button As Integer, Shift As
Integer, x As Single~ Y~As Single)

MakeFixed
End Sub •
Private Sub lstClass_MouseMove(Button As Integer, Shift As
Integer, x As Single, Y As Single)

Make Fixed
End Sub

Private Sub lstClass_MouseUp(Button As Integer, Shift As
Integer, x As Single, Y As Single)

Make Fixed
End Sub

Private Sub lstColor_Click()

72

Make Fixed
End Sub

Private Sub lstColor_MouseDown(Button As Integer, Shift As
Integer, x As Single, Y As Single)

MakeFixed
End Sub

Private Sub lstColor_MouseMove(Button As Integer, Shift As
Integer, x As Single, Y As Single)

Make Fixed
End Sub

Private Sub lstColor_MouseUp(Button As Integer, Shift As
Integer, x As Single, Y As Single)

Make Fixed
End Sub

Private Sub lstID_Click()
txtABS.Text =

IIf(CarOpt(lstID.List(lstID.Listindex)) .OP ABS
"Available", "Unavailable")

txtPOWERST.Text =
GetSteering(CarOpt(lstID.List(lstID.Listlndex)) .OP POWERST)

txtKMSPASSED.Text =
CarOpt(lstID.List(lstID.Listindex)) .OP_KMPASSED

txtEXTRAS.Text =
CarOpt(lstID.List(lstID.Listindex)) .OP EXTRAS
End Sub

False,

Private Sub MakeFixed()
lstClass.Listindex
lstColor.Listindex
lstModel.Listindex

lstID.Listindex
lstID.Listindex
lstID.Listindex

lstMotor.Listindex = lstID.Listindex
lstMotorNum.Listind~x = lstID.Listindex
lstType.Listindex = lstID.Listindex
lblCount.Caption = "Count: " & lstID.ListCount

End Sub

Private Sub lstID_KeyDown(KeyCode As Integer, Shift As

Integer)
Make Fixed

End Sub

Private Sub lstID_KeyPress(KeyAscii As Integer)
Make Fixed

End Sub

73

Private Sub lstID_KeyUp(KeyCode As Integer, Shift As

Integer)
Make?.:_xed

End Sub

Private Sub lstID_MouseDown(Button As Integer, Shift As
Integer, x As Single, Y As Single)

Make Fixed
End Sub

Private Sub lstID_MouseMove(Button As Integer, Shift As
Integer, x As Single, Y As Single)

Make Fixed
End Sub

Private Sub lstID_MouseUp(Button As Integer, Shift As
Integer, x As Single, Y As Single)

Make Fixed
End Sub

Private Sub lstModel_MouseDown(Button As Integer, Shift As
Integer, x As Single, Y As Single)

Make Fixed
End Sub

Private Sub lstModel_MouseMove(Button As Integer, Shift As
Integer, x As Single, Y As Single)

Make Fixed
End Sub

Private Sub lstModel_MouseUp(Button As Integer, Shift As
Integer, x As Single, Y As Single)

Make Fixed
End Sub

Private Sub lstMotor_MoôseDown(Button As Integer, Shift As
Integer, x As Single, Y As Single)

Make Fixed
End Sub •

Private Sub lstMotor_MouseMove(Button As Integer, Shift As
Integer, x As Single, Y As Single)

Make Fixed
End Sub

Private Sub lstMotor_MouseUp(Button As Integer, Shift As
Integer, x As Single, Y As Single)

Make Fixed
End Sub

74

Private Sub lstMotorNum_MouseDown(Button As Integer, Shift
As Integer, x As Single, Y As Single)

Make Fixed
End Sub

Private Sub lstMotorNum_MouseMove(Button As Integer, Shift
As Integer, x As Single, Y As Single)

Make Fixed
End Sub

Private Sub lstMotorNum_MouseUp(Button As Integer, Shift As
Integer, x As Single, Y As Single)

Make Fixed
End Sub

Private Sub lstType_MouseDown(Button As Integer, Shift As
Integer, x As Single, Y As Single)

Make Fixed
End Sub

Private Sub lstType_MouseMove(Button As Integer, Shift As
Integer, x As Single, Y As Single)

Make Fixed
End Sub

Private Sub lstType_MouseUp(Button As Integer, Shift As
Integer, x As Single, Y As Single)

Make Fixed
End Sub

Private Sub Timerl_Timer()
MakeFixed

End Sub

Private Sub ClearLists()
lstID.Clear ~
lstModel.Clear
lstClass.Clear
lstMotor.Clear
lstType.Clear
lstColor.Clear
lstMotorNum.Clear

End Sub

•

Option Explicit

Private Sub cmdAdd Click()
frmAddCustomer.Show vbModal
Call RefreshLists

End Sub

75

Private Sub cmdClose Click()
Unload Me

End Sub

Private Sub cmdDelete_Click()
If MsgBox("Are You Sure You Wish To Delete '" &

lstName.List(lstName.Listindex) & "' ?", vbYesNo +
vbQuestion, "Delete Customer") = vbYes Then

DB.Execute "DELETE* FROM CUSTOMERS WHERE ID=" &
lstID.List(lstID.Listindex)

MsgBox "Customer Deleted!", vbinformation, "Delete

Customer"
Call RefreshLists

End If
End Sub

Private Sub cmdEdit_Click()
If lstID.Listindex = -1 Then

MsgBox "No Customer Selected!", vbCri tical, "Edit

Customer"
Else

Dim iSel As Integer
iSel = lstID.Listindex

Load frmEditCustomer
Set TB= DB.OpenRecordset("SELECT * FROM CUSTOMERS

WHERE ID=" & lstID.List(iSel))

With frmEditCustomer
.txtCusID = TB.Fields("ID")
.txtCusFName.Text = TB.Fields("FNAME")
. txtCusLName. Text = TB. Fields ("LNP..ME"')
.txtCusMob.Text = TB.Fields("MOBILE")
.txtCusAdd.Text
.txtCusTel.ırext

TB . Fields ("ADDRESS '')
TB.Fields("TEL")

.Show vbModal
End With

End If
Call RefreshLists

End Sub

•• ••

Private Sub cmdSearch Click()
Dim x$
x = InputBox("Enter Customer Name:", "Search For

Customer")
If Not x =""Then

Dimi As Integer
For i = O To lstID.ListCount

76

If LCase$(Left$(lstName.List(i), Len(x))) =
LCase(x) Then

MsgBox "Selected Customer Was Found!",
vbinforma tion, "Found"

lstID.Listindex = i
Call lstID Click
Exit Sub

End If
DoEvents

Next i
Else

Exit Sub
End If
MsgBox "Selected Customer Was Not Found!",

vbinformation, "Not Found"
Call RefreshLists

End Sub

Private Sub Form Load()
Set DB= OpenDatabase(App.Path & "\carsdb.mdb")
Set TB= DB.OpenRecordset("SELECT * FROM CUSTOMERS")

RefreshLists
End Sub

Private Sub RefreshLists()
lstID.Clear
lstName.Clear
lstMobile.Clear
lstTel.Clear
lstAdd.Clear

Set TB= DB.OpenRecordset("SELECT * FROM CUSTOMERS")
TB.Fields.Refresh

If TB.EOF = False Then
While Not TB.EOF

lstID.Additem TB.Fields("ID")
lstName .Addltem TB. Fields ("FNAME") &'"" " &

TB.Fields("LNAME")
lstMobile.Additem TB.Fields("MOBILE")
lstTel.Additem TB.Fields("TEL")
lstAdd.Additem TB.Fields("ADDRESS")

TB.MoveNext
DoEvents

Wend
Else

MsgBox "No Customers Found In Database!",
vblnformation, "Database Empty"

77

End If
End Sub

Private Sub lstAdd_Click()
lstName.Listindex = lstID.Listindex
lstAdd.Listindex = lstID.Listindex
lstMobile.Listindex = lstID.Listindex
lstTel.Listindex = lstID.Listindex

End Sub

Private Sub lstAdd_KeyDown(KeyCode As Integer, Shift As
Integer)

lstName.Listindex = lstID.Listindex
lstAdd.Listindex = lstID.Listindex
lstMobile.Listindex = lstID.Listindex
lstTel.Listindex = lstID.Listindex

End Sub

Private Sub lstAdd_MouseDown(Button As Integer, Shift As
Integer, x As Single, Y As Single)

lstName.Listindex = lstID.Listindex
lstAdd.Listindex = lstID.Listindex
lstMobile.Listindex = lstID.Listindex
lstTel.Listindex = lstID.Listindex

End Sub

Private Sub lstAdd_MouseMove(Button As Integer, Shift As
Integer, x As Single, Y As Single)

lstName.Listindex = lstID.Listindex
lstAdd.Listindex = lstID.Listindex
lstMobile.Listindex = lstID.Listindex
lstTel.Listindex = lstID.Listindex

End Sub

Private Sub lstID Click()
lstName.Listindex = lstID.Listindex
lstAdd.Listindex = lstID.Listindex
lstMobile.Listindex = lstID.Listindex
lstTel.Listindex = lstID.Listindex

End Sub

Private Sub lstID_KeyDown(KeyCode As Integer, Shift As
Integer)

lstName.Listindex = lstID.Listindex
lstAdd.Listindex = lstID.Listindex
lstMobile.Listindex = lstID.Listindex
lstTel.Listindex = lstID.Listindex

End Sub

78

Private Sub lstID_MouseDown(Button As Integer, Shift As
Integer, x As Single, Y As Single)

lstName.Listindex = lstID.Listindex
lstAdd.Listindex = lstID.Listindex
lstMobile.Listindex = lstID.Listindex
lstTel.Listindex = lstID.Listindex

End Sub

Private Sub lstID_MouseMove(Button As Integer, Shift As
Integer, x As Single, Y As Single)

lstName.Listindex = lstID.Listindex
lstAdd.Listindex = lstID.Listindex
lstMobile.Listindex = lstID.Listindex
lstTel.Listindex = lstID.Listindex

End Sub

Private Sub lstMobile Click()
lstName.Listindex = lstID.Listindex
lstAdd.Listindex = lstID.Listindex
lstMobile.Listindex = lstID.Listindex
lstTel.Listindex = lstID.Listindex

End Sub

Private Sub lstMobile KeyDown(KeyCode As Integer, Shift As

Integer)
lstName.Listindex = lstID.Listindex
lstAdd.Listindex = lstID.Listindex
lstMobile.Listindex = lstID.Listindex
lstTel.Listindex = lstID.Listindex

End Sub

lstTel.Listindex
End Sub

lstID.Listindex

Private Sub lstMobile_MouseDown(Button As Integer, Shift As
Integer, x As Single, Y As Single)

lstName.Listindex = lstID.Listindex
lstAdd.Listindex = lstID.Listindex~
lstMobile.Listindex = lstID.Listindex

Private Sub lstMobile_MouseMove(Button As Integer, Shift As
Integer, x As Single, Y As Single)

lstName.Listindex = lstID.Listindex
lstAdd.Listindex = lstID.Listindex
lstMobile.Listindex = lstID.Listindex
lstTel.Listindex = lstID.Listindex

End Sub

Private Sub lstName Click()
lstName.Listindex = lstID.Listindex
lstAdd.Listindex = lstID.Listindex

79

lstMobile.Listindex = lstID.Listindex
lstTel.Listindex = lstID.Listindex

End Sub

Private Sub lstName_KeyDown(KeyCode As Integer, Shift As
Integer)

lstName.Listindex = lstID.Listindex
lstAdd.Listindex = lstID.Listindex
lstMobile.Listindex = lstID.Listindex
lstTel.Listindex = lstID.Listindex

End Sub

Private Sub lstName_MouseDown(Button As Integer, Shift As
Integer, x As Single, Y As Single)

lstName.Listindex = lstID.Listlndex
lstAdd.Listindex = lstID.Listindex
lstMobile.Listindex = lstID.Listindex
lstTel.Listindex = lstID.Listindex

End Sub

Private Sub lstName_MouseMove(Button As Integer, Shift As
Integer, x As Single, Y As Single)

lstName.Listindex = lstID.Listindex
lstAdd.Listindex = lstID.Listindex
lstMobile.Listindex = lstID.Listindex
lstTel.Listindex = lstID.Listindex

End Sub

Private Sub lstTel Click()
lstName.Listindex = lstID.Listindex
lstAdd.Listindex = lstID.Listindex
lstMobile.Listindex = lstID.Listindex
lstTel.Listindex = lstID.Listindex

End Sub

Private Sub lstTel_KeyDôwn(KeyCode As Integer, Shift As
Integer)

lstName.Listindex = lstID.Listindex
lstAdd.Listindex = lstID.Listindex
lstMobile.Listindex = lstID.Listindex
lstTel.Listindex = lstID.Listindex

End Sub

Private Sub lstTel_MouseDown(Button As Integer, Shift As
Integer, x As Single, Y As Single)

lstName.Listindex = lstID.Listindex
lstAdd.Listindex = lstID.Listindex
lstMobile.Listindex = lstID.Listindex
lstTel.Listindex = lstID.Listindex

End Sub

80

Private Sub lstTel_MouseMove(Button As Integer, Shift As
Integer, x As Single, Y As Single)

lstName.Listindex = lstID.Listindex
lstAdd.Listindex = lstID.Listindex
lstMobile.Listindex = lstID.Listindex
lstTel.Listindex = lstID.Listindex

End Sub

Option Explicit

Private Sub cmdAdd Click()
frmAddUser.Show vbModal
Call RefreshLists

End Sub

Private Sub cmdClose Click()
Unload Me

End Sub

Private Sub cmdDelete Click()
If MsgBox("Are You Sure You Wish To Delete '" r,

lstName.List (lstName.ListIndex) & "' ? ", vbYesNo +
vbQuestion, "Delete User") = vbYes Then

DB.Execute "DELETE* FROM USERS WHERE ID=" &
lstID.List(lstID.Listindex)

MsgBox "User Deleted!", vbinformation, "Delete
User"

Call RefreshLists
End If

End Sub

Private Sub cmdEdit Click()
If lstID.Listindex = -1 Then

MsgBox "No User' Selected!", vbCritical, "Edit User"
Else

Dim iSel As Integer
iSel = lstID.Listindex

Load frmEditUser
Set TB= DB.OpenRecordset("SELECT * FROM USERS

WHERE ID=" & lstID.List(iSel))

With frmEditUser
.txtID = TB.Fields("ID")
.txtUsr.Text = TB.Fields("USERNAME")
'.txtPwd.Text = TB.Fields("PASSWORD")
'. txtCnfm.Text = TB. Fields ("PASSWORD")

81

If TB. Fields ("REST")
.combType.Listindex = O

If TB.Fields("REST")
.combType.Listindex = 1

If TB.Fields("REST")
.combType.Listindex = 2

"Manager" Then

"Salesman" Then

"User" Then

.Show vbModal
End With

End If
Call RefreshLists

End Sub

Private Sub cmdSearch_Click()
Dim x$
x = InputBox ("Enter User Name:", "Search For User")
If Not X =""Then

Dimi As Integer
For i = O To lstID.ListCount

If LCase$(Left$(lstName.List(i), Len(x)))
LCase(x) Then

MsgBox "Selected User Was Found!",
vbinforma tion, "Found"

lstID.Listindex = i
Call lstID Click
Exit Sub

End If
DoEvents

Next i
Else

Exit Sub
End If
MsgBox "Selected User Was Not Found!", vbinformation,

"Not Found"
Call RefreshLists

End Sub

Private Sub Commandl Click()
•

End Sub

Private Sub Form Load()
Set DB= OpenDatabase(App.Path & "\carsdb.mdb")
Set TB= DB.OpenRecordset("SELECT * FROM USERS")

RefreshLists
End Sub

Private Sub RefreshLists()
lstID.Clear

82

lstName.Clear
lstRest.Clear

Set TB= DB.OpenRecordset("SELECT * FROM USERS")
TB.Fields.Refresh

If TB.EOF = False Then
While Not TB.EOF

lstID.Additem TB.Fields("ID")
lstName.Additem TB.Fields("USERNAME")
lstRest.Additem TB.Fields("REST")

TB.MoveNext
DoEvents

Wend
Else

MsgBox "No Users Found In Database!",
vbinformation, "Database Empty"

End If
End Sub

Private Sub lstID_Click()
lstName.Listindex = lstID.Listindex
lstRest.Listindex = lstID.Listindex

End Sub

Private Sub lstID_KeyDown(KeyCode As Integer, Shift As
Integer)

lstName.Listindex = lstID.Listindex
lstRest.Listindex = lstID.Listindex

End Sub

Private Sub lstID_MouseDown(Button As Integer, Shift As
Integer, x As Single, Y As Single)

lstName.Listindex = lstID.Listindex
lstRest.Listindex =•lstID.Listlndex

End Sub

Private Sub lstID_MouseMove(Button As Integer, Snift As
Integer, x As Single, Y As Single)

lstName.Listindex = lstID.Listindex
lstRest.Listindex

End Sub
lstID.Listindex

Private Sub lstRest_Click()
lstName.Listindex = lstID.Listindex
lstRest.Listindex = lstID.Listindex

End Sub

83

Private Sub lstRest_KeyDown(KeyCode As Integer, Shift As
Integer)

lstName.Listindex = lstID.Listlndex
lstRest.Listindex

End Sub
lstID.Listindex

Private Sub lstRest MouseDown(Button As Integer, Shift As
Integer, x As Single, Y As Single)

lstName.Listindex = lstID.Listindex
lstRest.Listindex = lstID.Listindex

End Sub

Private Sub lstRest_MouseMove(Button As Integer, Shift As
Integer, x As Single, Y As Single)

lstName.Listindex = lstID.Listindex
lstRest.Listindex

End Sub
lstID.Listindex

Private Sub lstName Click()
lstName.Listindex = lstID.Listindex
lstRest.Listindex = lstID.Listindex

End Sub

Private Sub lstName_KeyDown(KeyCode As Integer, Shift As
Integer)

lstName.Listindex
lstRest.Listindex

Encl Sub

lstID.Listindex
lstID.Listindex

Private Sub lstName MouseDown(Button As Integer, Shift As
Integer, x As Single, Y As Single)

lstName.Listindex = lstID.Listindex
lstRest.Listindex = lstID.Listindex

End Sub

Private Sub lstName_Mo~seMove(Button As Integer, Shift As
Integer, x As Single, Y As Single)

lstName.Listindex = lstID.Listindex
lstRest.Listindex

End Sub
lstID.Listindex •

84

