NEAR EAST UNIVERSITY

GRADUATE SCHOOL OF APPLIED SCIENCES
Wavelet Neural Network
for TIME SERIES FORECASTING OF
WATER CONSUMPTION AND
AIRLINE PASSENGERS 
ANIŞ ÖZTEKİN

MASTER THESIS

DEPARTMENT OF COMPUTER ENGINEERING
Nicosia 2010
ACKNOWLEDGEMENTS
“First, I would like to thank Prof. Dr. Rahib Abiyev for his consistent support and encouragement in the past six years. His initial ideas, insightful suggestions, and wise management have made the completion of this work possible. I have learned a lot from working with him, his active attitude towards research,and  his earnest, his precision.

Second, I thank my family for their contant encouragement and support during my educational life.

Finally, I would like to thank all my teachers for their support.”

DECLARATION
I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Last name: Anış ÖZTEKİN

Signature:

Date:
ABSTRACT

Forecasting plays major roles of our activities and in all we do concerning the future. Forecasted visions of possible futures open our freedom of choice over which future to encourage or discourage. The present work gives consideration of the forecasting of  time series models. A time series is a set of observations (i.e., sales) measured at regular intervals (i.e., daily, weekly, monthly) over a period of time (i.e., three months, one year, five years). Time series modelling methods assume that “history repeats itself,” so that by studying the past, you can make better decisions, or forecasts, for the future. Analysis of time series  and the use of intelligent forecasting models in different industrial and non industrial areas are considered. 
In this thesis the integration of a Neural Networks and Wavelet Technologies is proposed for the predictions of water consumption and,  the number of airplane passengers in Turkish Republic of Northern Cyprus (TRNC). 
The structure of  Wavelet Neural Networks (WNN) is described. The WNN system is designed for modelling and prediction of complex time series. The gradient algorithm is used for learning the parameters of WNN. The developed WNN is applied for prediction of water consumption and the number of arriving to and departing passengers. The results of WNN forecasting models are compared with the Neural Networks (NN) based models used for forecasting of the same problems.

The effectiveness of the proposed system is evaluated with the results obtained from the simulation of WNN based prediction system and with the comparative simulation results of NN based model.  
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INTRODUCTION

Forecasting is a branch of the anticipatory sciences used for identifying and projecting alternative possible futures. It is a conduit leading to plans for the development of “better” futures. Forecasted visions of possible futures open our freedom of choice over which future to encourage or discourage. In our fast-paced, rapidly changing world, the futures that we will experience will tend to be vastly different from our present reality in a growing number of ways. Furthermore, because of constant development of new knowledge and advances in the scientific (and ensuing technological advances), sociological, political, economic, and business areas, our global society has an ever increasing ability to shape (for better or worse) the futures we will eventually achieve. The present work consider the forecasting of two problems- water consumption, and the number of airplane passengers in Turkish Republic of Northern Cyprus (TRNC).

Forecasting of water demand is a crucial component in the successful operation of water supply system. Accurately forecasted water demand either in short-term, or medium-term, or long-term time horizons can be very useful for capacity planning, scheduling of maintenance, future financial planning and rate adjustment, and optimization of the operations of a water system In addition, adequately forecasted demand will be a basis for the strategically decision making on future water sources selection, upgrading of the available water sources and designing for the future water demand management options, so that water resources are not exhausted, and competing users have adequate access to those resources [1]. 

Most of the previous studies on water demand forecasting are based on the three approaches: end-use forecasting, econometric forecasting, and time series forecasting. End use forecasting is an approach that bases the forecast of water demand on a forecast of uses for water, which requires tremendous amounts of data and assumptions. The econometric approach is based on statistically estimating historical relationships between different factors (independent variables) and water consumption (the dependent variable) assuming that those relationships will continue into the future. Time series approach forecasts water consumption directly, without having to forecast other factors on which water consumption depends [2].

The second problem considered in this thesis is prediction of number of airline passengers. Cyprus is an island located in the Eastern Mediterranean Sea. Turkish Republic of  Northern Cyprus (TRNC) occupies the Northern part of the island. Ercan Airport is the International airport in the TRNC. The easiest way of reaching Northern Cyprus is by air. 90 flights per week arrive the Ercan International Airport during summer months. There are over 20 flights from three airports Stanstead, Gatwick, and Heathrow in the UK, most of which arrive in the evening or early mornings, there are also many flights to and from the mainland Turkey. There are no direct flights to or from Ercan and all planes from Europe must first touch down to Turkey before coming to the TRNC.[3]

At present there are four airline companies offering flight services in the TRNC:  Cyprus Turkish Airlines, Atlasjet Airlines, Pegasus Airlines, and Turkish Airlines. Cyprus Turkish Airlines is the national airline company in the TRNC, established in 1974. Cyprus Turkish Airlines have a fleet of three Airbus A321-220s and three Boeing 737-800s flying from UK airports and Frankfurt to various airports in Turkey, then on to North Cyprus. Cyprus Turkish Airlines first flew to London in 1981 and have been bringing tourists to the TRNC ever since.

Like all airlines offering flights to Northern Cyprus, Cyprus Turkish Airlines stop over in Turkey (touches down) before flying to the Ercan Airport in the TRNC. The passengers do not have to leave the plane and they wait for about an hour before finally taking off to fly to Ercan.

Cyprus Turkish Airlines have really made great strides in their customer service recently, and one of the main successes has been the high standard of in-flight catering and services. The easiest and often the cheapest way to book tickets with the Cyprus Turkish Airlines is to use their web-based automated system. Passengers choose their flight dates and times and they can also make payments over the internet using their credit cards. This simplifies the overall booking process. 

Depend on the season the number of arriving and departing passengers change by time in North Cyprus. The prediction of number of passengers becomes important for effective planning the number of airplanes [4,5].

A number of studies have been developed for modelling of time-series using regression analysis and econometric models, These models need measuring the number of variables. Sometimes obtaining the values of these variables is very difficult over the prediction period, and this is not enough for accurate model development. The growth curve model, grey models, the time series analysis like autoregressive moving average (ARIMA) model [6,7,8] have find popularity in time series prediction. These models need a large number of historical data to obtain satisfactory prediction accuracy, and this accuracy depends on the order of nonlinearity of the considered problem. These time series models are linear models, and they do not provide enough satisfactory prediction accuracy for nonlinear processes.  

Many studies have been devoted to the development and improvement of time series forecasting models. Chaotic time series were modelled and predicted using softcomputing technologies, such as neural networks, fuzzy logic, genetic algorithms, and also combination of these technologies. The aim of this thesis is the application of softcomputing -neural networks and wavelet- technologies for forecasting of water consumption and number of airplane passengers in North Cyprus. 

Thesis consist of introduction, four chapters, conclusion, and appendix.

Chapter one gives the review of the usage of intelligent systems for forecasting time series models. Several methods used for time series modelling are described in this chapter, along with their strengths and weaknesses. 

Chapter two describes the integration of Neural Network structure and Wavelet technology for development of time-series forecasting model. The learning algorithm of Wavelet Neural Network for time series forecasting is presented. The use of WNNs takes more importance for this purpose. 

Chapter three describes water consumption prediction problem. WNN prediction model of water consumption prediction, integrated water resources planning and management of North Cyprus are described. The statistical data for the last 5 years are used for the development of WNN prediction models. For this purpose program, which was developed in MATLAB has been used. The figures, analysis, results and comparison of different forecasting methods were given.

Chapter four presents the forecasting of the number of airplane passengers in North Cyprus. WNN prediction model of airplane passengers in TRNC is developed. In this model the forecasting of the number of passengers arriving to and departing from the civil airport Ercan, and also the total number of passengers are considered. Model was developed using MATLAB package. 

In conclusion the important results obtained from the thesis are given.

Appendix 1 includes the tables with statistical data and appendix 2 includes the program source codes. 

CHAPTER 1

THE USAGE OF INTELLIGENT SYSTEMS FOR TIME SERIES FORECASTING

1.1 Overview

Time series analysis provides tools for selecting a model that can be used to forecast future events. Modelling the time series is a statistical problem. Forecasts are used in computational procedures to estimate the parameters of a model or to describe random processes such as those mentioned above.  Time series models assume that observations vary according to some probability distribution about an underlying function of time. Time series analysis is not the only way of obtaining forecasts. Expert judgment is often used to predict long-term changes in the structure of a system. For example, qualitative methods such as the MATLAB technique may be used to forecast major technological innovations and their effects. Causal regression models try to predict dependent variables as a function of other correlated observable independent variables.

In this chapter, the brief description of different models used for time-series modelling will be considered. Several methods are described in this chapter, along with their strengths and weaknesses. 

1.2 Time Series Models

Before considering the various modern methodologies used for time series analysis, let’s briefly consider the process of construction simple traditional time-series models. An example of a time series for 25 periods is plotted in Fig. 1.1 from the numerical data in the Table 1.1. The data might represent the weekly demand for some product. We use x to indicate an observation and the subscript t to represent the index of the time period. For the case of weekly demand the time period is measured in weeks. The observed demand for time t is specifically designated x
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. The lines connecting the observations on the figure are provided only to clarify the graph and otherwise have no meaning [2].

Table 1.1 Random Observations of Weekly Demand [2]
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Figure 1.1 A time series of weekly demand [2]

1.2.1 Mathematical Model

The goal is to determine a model that explains the observed data and allows extrapolation into the future to provide a forecast. The simplest model suggests that the time series in Fig. 1.1 is a constant value b with variations about b determined by a random variable 
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The upper case symbol X
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 represents the random variable that is the unknown demand at time t, while the lower case symbol x
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 is a value that has actually been observed. The random variation t about the mean value is called the noise, and is assumed to have a mean value of zero and a given variance. It is also common to assume that the noise variations in two different time periods are independent. 
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A more complex model includes a linear trend b1 for the data.
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Of course, Eqs. (1.1) and (1.2) are special cases of a polynomial model.

X
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A model for a seasonal variation might include transcendental functions.

The cycle of the model below is 4. The model might be used to represent data for the four seasons of the year.

X
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In every model considered here, the time series is a function only of time and the parameters of the models. We can write

X
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Because the value of f is a constant at any given time t and the expected value of 
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The model supposes that there are two components of variability for the time series; the mean value varies with time and the difference from the mean varies randomly.   Time is the only factor affecting the mean value, while all other factors are subsumed in the noise component. Of course, these assumptions may not in fact be true, but this chapter is devoted to cases that can be abstracted to this simple form with reasonable accuracy. One of the problems of time series analysis is to find the best form of the model for a particular situation. In this introductory discussion, we are primarily concerned about the simple constant or trend models. 

In the following subsections, we describe methods for fitting the model, forecasting from the model, measuring the accuracy of the forecast and forecasting ranges. We illustrate the discussion of this section with the moving average forecasting method. 

1.2.2 Fitting Parameters of the Model

Once a model is selected and data are collected, it is the job of the statistician to estimate its parameters; i.e., to find parameter values that best fit the historical data. We can only hope that the resulting model will provide good predictions of future observations.

Statisticians usually assume that all values in a given sample are equally valid. For time series, however, most methods recognize that recent data are more accurate than aged data. Influences governing the data are likely to change with time so a method should have the ability of deemphasizing old data while favoring new. A model estimate should be designed to reflect changing conditions. 

In the following, the time series model includes one or more parameters. We identify the estimated values of these parameters with hats on the parameters. For instance, 
[image: image23.wmf]n

b

b

b

ˆ

,...,

ˆ

,

ˆ

2

1

.

The procedures also provide estimates of the standard deviation of the noise, call it 
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 . We will see that there are several approaches available for estimating 
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To illustrate these concepts consider the data in Table 1.1 Say that the statistician has just observed the demand in period 20. 

The statistician thinks that the factors that influence demand are changing very slowly, if at all, and proposes the simple constant model for the demand given by Eq. (1.1)

With the assumed model, the values of demand are random variables drawn from a population with mean value b. The best estimator of b is the average of the observed data. Using all 20 points, the estimate is 
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This is the best estimate for the 20 data points; however, we note that x
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 is given the same weight as x
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If we think that the model is actually changing over time, perhaps it is better to use a method that gives less weight to old data and more weight to the new. 

One possibility is to include only recent data in the estimate. Using the last 10 observations and the last 5, we obtain 
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which are called moving averages.

Which is the better estimate for the application? We really can't tell at this point. The estimator that uses all data points will certainly be the best if the time series follows the assumed model; however, if the model is only approximate and the situation is actually changing, perhaps the estimator with only 5 data points is better.

In general, the moving average estimator is the average of the last m observations.
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where k = t – m + 1. The quantity m is the time range and is the parameter of the method.

1.2.3 Forecasting from the Model

The main purpose of modelling a time series is to make forecasts which are then used directly for making decisions, such as ordering replenishments for an inventory system or developing staff schedules for running a production facility. They might also be used as part of a mathematical model for a more complex decision analysis.

In the analysis, let the current time be T, and assume that the demand data for periods 1 through T are known. Say we are attempting to forecast the demand at time T
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Assuming the model is correct
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When we estimate the parameters from the data for times 1 through T, we have an estimate of the expected value for the random variable as a function of 
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Using a specific value of in this formula (1.11) provides the forecast for period T+
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 . When we look at the last T observations as only one of the possible time series that could have been obtained from the model, the forecast is a random variable. We should be able to describe the probability distribution of the random variable, including its mean and variance.

For the moving average example, the statistician adopts the model

X
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Assuming T is 20 and using the moving average with 10 periods, the estimated parameter is 
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Because this model has a constant expected value over time, the forecast is the same for all future periods 
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Assuming the model is correct, the forecast is the average of m observations all with the same mean and standard deviation
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1.2.4 Measuring the Accuracy of the Forecast

The error in a forecast is the difference between the realization and the forecast,
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Assuming the model is correct,
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We investigate the probability distribution of the error by computing its mean and variance. One desirable characteristic of the forecast 
[image: image50.wmf]t

+

T

x

ˆ
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For an unbiased estimate, the expected value of the forecast is the same as the expected value of the time series. Because 
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Moreover, the fact that the noise is independent from one period to the next means that the variance of the error is
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As we see, this term has two parts: (1.1) that due to the variance in the estimate of the mean 
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, and (1.2) that due to the variance of the noise 
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Due to the inherent inaccuracy of the statistical methods used to estimate the model parameters and the possibility that the model is not exactly correct, the variance in the estimate of the means is an increasing function of 
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For the moving average example,
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The variance of the error is a decreasing function of m. Obviously, the smallest error comes when m is as large as possible, if the model is correct. Unfortunately, we cannot be sure that the model is correct, and we set m to smaller values to reduce the error due to a poorly specified model.

Using the same forecasting method over a number of periods allows the analyst to compute measures of quality for the forecast for given values of 
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  . The forecast error, e
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, is the difference between the forecast and the observed value. For time t,
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Table 1.2 shows a series of forecasts for periods 11 through 20 using the data from Table 1.1. The forecasts are obtained with a moving average for m = 10 and = 1. We make a forecast at time t with the calculation
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Although in practice one might round the result to an integer, we keep fractions here to observe better statistical properties. The error of the forecast is the difference between the forecast and the observation.

One common measure of forecasting error is the mean absolute deviation, MAD.

MAD=
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Table 1.2 Forecast Error for a Moving Average [2]

[image: image64.png]Time, ¢

Data 11 12 13 14 15 16 17 18 19 20
Observation| 3 14 14 20 7 9 6 11 3 11
Forecast 117 11.6 114 11.6 11.1 105 102 104 107 10.1
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where n error observations are used to compute the mean.

The sample standard deviation of error is also a useful measure,

S
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where 
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 is the average error and p is the number of parameters estimated for the model. As n grows, the MAD provides a reasonable estimate of the sample standard deviation

Se
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From the example data we compute the MAD for the 10 observations.

MAD = (8.7 + 2.4 + . . . + 0.9)/10 = 4.11 

The sample error standard deviation is computed as follows.


[image: image68.wmf]e

=(–8.7 + 2.4 … 0.9)/10 = –1.13

S
[image: image69.wmf]2

e

=
[image: image70.wmf]02

.

27

9

)

13

.

1

(

10

)

9

.

0

,...,

4

.

2

7

.

8

(

2

2

2

2

=

-

-

+

-


Se = 5.198   [2]

We see that 1.25(MAD) = 5.138 is approximately equal to the sample standard deviation. Because it is easier to compute the MAD.

The value of s
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 for a given value of is an estimate of the error variance, 
[image: image72.wmf])

(

2

t

s

e

. It includes the combined effects of errors in the model and the noise. If one assumes that the random noise comes from a normal distribution, an interval estimate of the forecast can be computed using the Students t distribution.
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The parameter t
[image: image74.wmf]a

 /2 is found in a Students t distribution table with n – p degrees of freedom [2].

1.3 Analysis of the Constant Model

In this section, we investigate two procedures for estimating and forecasting based on a constant model. The next section considers a model involving a linear trend. For all cases we assume the data from previous periods: x
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, x
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, … , x
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, is available and will be used to provide the forecast.

To illustrate the methods, we propose a data set that incorporates changes in the underlying mean of the time series. Figure 1.2 shows the time series used for illustration

together with the mean demand from which the series was generated. The mean begins as a constant at 10. Starting at time 21, it increases by one unit in each period until it reaches the value of 20 at time 30. Then it becomes constant again. The data is simulated by adding to the mean, a random noise from a normal distribution with 0 mean and standard deviation 3. Table 1.3 shows the simulated observations. When we use the data in the table, we must remember that at any given time, only the past data are known [2].
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Figure 1.2. Simulated data for model with a linear trend [2]

Table 1.3 Simulated Observations [2]
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1.3.1 Moving Average

This method assumes that the time series follows a constant model, i.e., Eq. (1.1) given by X
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. We estimate the single parameter of the model as average of the last m observations.
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where k = t – m + 1. The forecast is the same as the estimate.
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The moving average forecasts should not begin until m periods of data are available. To illustrate the calculations, we find the estimate of the parameter at t = 20 using m = 10.
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The estimates of the model parameter, 
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, for three different values of m are shown together with the mean of the time series in Fig. 1.3. The figure shows the moving average estimate of the mean at each time and not the forecast. The forecasts would shift the moving average curves to the right by 
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Figure 1.3. Moving average response to changes [2]

One conclusion is immediately apparent from Fig. 1.3. For all three estimates the moving average lags behind the linear trend, with the lag increasing with m. Because of the lag, the moving average underestimates the observations as the mean is increasing. The lag in time and the bias introduced in the estimate are

lag = (m – 1)/2, bias = –a(m – 1)/2




(1.26)

The moving average forecast of 
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periods into the future increases these effects.

lag = 
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(1.27)

We should not be surprised at this result. The moving average estimator is based on the assumption of a constant mean, and the example has a linear trend in the mean. Because real time series will rarely obey the assumptions of any model exactly, we should be prepared for such results. 

1.3.2 Exponential Smoothing for the Constant Model

Again, this method assumes that the time series follows a constant model,          X 
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. The parameter value b is estimated as the weighted average of the last observation and the last estimate.
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Where 
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 is a parameter in the interval [0, 1]. Rearranging, obtains an alternative form.
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The new estimate is the old estimate plus a proportion of the observed error. 

Because we are supposing a constant model, the forecast is the same as the estimate.
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We illustrate the method using the parameter value  
[image: image94.wmf]a

= 0.2. The average of the first 10 periods was used as initialize the estimate at time 0.

The first 10 observations were then used to warm up the procedure. Subsequent observations and estimates are shown in Table 1.4.

Table 1.4 Results of the Exponential Moving Forecast [2]
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At time 21 we observe the value 10, so the estimate of the mean at time 21 is
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Only two data elements are required to compute the new estimate, the observed data and the old estimate. This contrasts with the moving average which requires m old observations to be retained for the computation.

Replacing 
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Continuing in this fashion, we find that the estimate is really a weighted sum of all past data.
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Because is a fraction, recent data has a greater weight than more distant data. The larger values of provide relatively greater weight to more recent data than smaller values of Figure 1.4 shows the parameter estimates obtained for different values of together with the mean of the time series.
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Figure 1.4. Exponential smoothing for the example time Series [2]

A lag characteristic, similar to the one associated with the moving average estimate, can also be seen in Fig. 1.4. In fact, one can show comparable results 
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For larger value of 
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 we obtain a greater lag in response to the trend. To investigate the error associated with exponential smoothing we again note that the error is
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Assuming the model is correct, we have the following.
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As the T goes to infinity, the series in the brackets goes to 1/ 
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, and we find that 
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. Because the estimate at any time is independent of the noise at a future time, the variance of the error is
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The variance of the error has two parts, the first due to the variance in the estimate of the mean 
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Thus assuming the model is correct, the error of the estimate increases as 
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 increases. This result shows an interesting correspondence to the moving average estimator. Setting the estimating error for the moving average and the exponential smoothing equal, we obtain [2].
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Solving for 
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 in terms of m, we obtain the relative values of the parameters that give the same error


[image: image118.wmf]1

2

+

=

m

a









(1.41)

Thus the parameters used in the moving average illustrations of Fig. 1.3 (m = 5, 10, 20) and roughly comparable to the parameters used for exponential smoothing in Fig. 1.4 ( = 0.4, 0.2, 0.1). Using this same relation between the parameters of the two methods, we find that the biased introduced by the trend will also be the same.

1.4 Analysis of the Linear Trend Model

One way to overcome the problem of responding to trends in the time series is to use a model that explicitly includes a trend component, [2]
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which is Eq. (1.2). In the following, we use a linear model of the form


[image: image120.wmf]t

T

T

T

T

t

b

a

X

e

+

-

+

=

)

(







(1.43)

Now, we must estimate two parameters 
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 from the observations previous to time T. Forecasts will be made by projecting the estimated model into the future.
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1.4.1 Regression Analysis

One obvious way to estimate the parameters is to fit the last m observations with a straight line. This is similar to the moving average idea, except that in addition to a constant term we also estimate the slope.

The formulas for determining the parameter estimates to minimize the least squares differences between the line and the observations are well known. The results are repeated here. The last m observations are used for the estimate:    
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The estimates of the parameters are determined by operations on these sums.
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The expressions for the sums are awkward for spreadsheet computation. Nevertheless, the computations can be carried out easily in a sequential fashion by noting
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As with the moving average estimate, the regression method requires that the last m observations to be saved for computation.

To illustrate the computations, we derive estimates for T = 20. The relevant quantities are shown in Table 1.5.
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Forecasts from time 20 are then computed from
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Table 1.5 Illustration of Linear Model [2]
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Figure 1.5 shows the regression estimates of 
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 for three different values of m. Although there is a lag in response when the ramp begins, the estimate gradually grows to meet the ramp when m = 5 and m = 10. When m = 20, there is insufficient time for the computations to match the slope before the mean value becomes constant again. 

We observe considerably more variability for the same values of m when compared to the moving average estimates in Fig. 1.3. By allowing the flexibility of responding to a trend, we have increased the variability of the estimates when the time series is constant.
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Figure 1.5. The linear regression estimate for the time series [2]
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Figure 1.6 Linear regression with zero noise variance [2]

The ability of the regression estimate to respond to a trend is more clearly illustrated when we remove the noise from the time series (the noise variance is set to 0). The result is shown in Fig. 1.6 where the estimate adjusts to the changing mean. Because of a lag effect, there are periods of over- and under-correction after the points in time when the slope changes.

1.4.2 Exponential Smoothing Adjusted for Trend

There is also a variation of the exponential smoothing method that explicitly accounts for a trend component. Again we assume the linear model
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The new method simultaneously estimates the constant and trend component using two parameters 
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 and 
[image: image140.wmf]b

.


[image: image141.wmf])

ˆ

ˆ

)(

1

(

ˆ

1

1

-

-

+

-

+

=

T

T

T

T

b

a

x

a

a

a






(1.52)


[image: image142.wmf]1

1

ˆ

)

1

(

)

ˆ

ˆ

(

ˆ

-

-

-

+

-

=

T

T

T

T

b

a

a

b

b

b






(1.53)

Forecasts are made with the expression
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At any time T, only three pieces of information are necessary to compute the estimates 
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. The exponential smoothing method is much simpler to implement than the regression method [2].

There is justification for expressing both smoothing factors in terms of a single parameter. Here 
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We use these formulas in the following computations. The values of 
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 and the associated smoothing parameters are shown in Table 1.6.

Table 1.6 Data for Exponential Smoothing Example [2]
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For purposes of illustration, we used a regression model with m = 10 to find initial estimates of the constant and trend components. Starting at time 10 we then applied the exponential smoothing equations. The first 10 estimates are meaningless and constitute a warm up period for the method.

Assuming 
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x
[image: image151.wmf]20

 = 10,  
[image: image152.wmf]19

ˆ

a

 = 8.23936,   
[image: image153.wmf]19

ˆ

b

 = –0.253


[image: image154.wmf]20

ˆ

a

 = 0.36x
[image: image155.wmf]20

 + (1 – 0.36)( 
[image: image156.wmf]19

ˆ

a

 + 
[image: image157.wmf]19

ˆ

b

 ) = 8.71


[image: image158.wmf]20

ˆ

b

 = 0.1111(
[image: image159.wmf]20

ˆ

a

 – 
[image: image160.wmf]19

ˆ

a

 ) + (1 – 0.1111) 
[image: image161.wmf]19

ˆ

b

 = –0.172

(1.56)

Forecasting: 
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Estimates of the time series using three values of the parameter are shown in Fig. 1.7. Again we see that for greater values of 
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 , the estimate begins to track the mean value after an initial overshoot when the trend begins. The lower values of 
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 have less variability during the constant portions of the time series, but react to the trend more slowly.
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Figure 1.7 Example with estimates using exponential smoothing with a trend [2]

Compared to the regression model, the exponential smoothing method never entirely forgets any part of its past. Thus it may take longer to recover in the event of a perturbation. This is illustrated in Fig. 1.8 where the variance of the noise is set to 0.
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Figure 1.8. Exponential smoothing with 0 noise variance [2]

1.5 Selecting a Forecasting Method

The selection of a forecasting method is a difficult task that must be base in part on knowledge concerning the quantity being forecast. However, some simple characteristics of the methods could be pointed out. With forecasting procedures, we are generally trying to recognize a change in the underlying process of a time series while remaining insensitive to variations caused by purely random effects. The goal of planning is to respond to fundamental changes, not to spurious effects.

With a method based purely on historical data, it is impossible to filter out all the noise. The problem is to set parameters that find an acceptable trade off between the fundamental process and the noise. If the process is changing very slowly, both the moving average and the regression approach should be used with a long stream of data. For the exponential smoothing method, the value of 
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 should be small to de-emphasize the most recent observations. Stochastic variations will be almost entirely filtered out.

If the process is changing rapidly with a linear trend, the moving average and the exponential smoothing methods are at a disadvantage because they are not designed to recognize trends. 

Because of the rapid changes, the time range of the moving average method must be set small and the 
[image: image168.wmf]a

 parameter of the exponential smoothing method must be set to a larger value so that the forecasts will respond to the change. Nevertheless, these two methods will always fall behind a linear trend. The forecasts will never converge to a trend line even if there is no random variation. Of course, with the adjustment of parameters to allow a response to a process change, the forecasts become more sensitive to random effects.

The exponential smoothing method with a trend adjustment and the regression method are both designed to respond to a linear trend and will eventually converge to a trend line. Thus in the absence of a change in trend, the time range of the regression data can be large, and the 
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 and 
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 values of the exponential smoothing method can be small, thus reducing the random effects.

If the process is changing rapidly with rapid changes in the linear trend, each of the methods described in the chapter will have trouble, because it is difficult to separate changes in the process from random changes. The time ranges must be set small for the moving average and regression methods, resulting in sensitivity to random effects. Similarly, the 
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 and 
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parameters for exponential smoothing must be set to larger values with a corresponding increase in sensitivity to randomness [2].

Both the moving average and regression methods have the disadvantage that they are most accurate with respect to forecasts in the middle of the time range. Unfortunately, all interesting forecasts are in the future, outside the range of the data. With all methods, though, the accuracy of the results decreases with the distance into the future one wishes to forecast.

1.6. The use of intelligent systems for time-series modelling

Time Series Analysis is used for many applications such as: Economic Forecasting, Sales Forecasting, Budgetary Analysis, Stock Market Analysis, Yield Projections, Process and Quality Control, Inventory Studies, Workload Projections, Utility Studies, Census Analysis and other fields. A number of studies have been developed about modelling of these time-series using regression analysis and econometric models that were described above [1]. These prediction models are based on technical analysis of time series, such as looking for trends, stationarity, seasonality, random noise variation, and moving average. 

These time series models are linear models, and they do not provide enough satisfactory prediction accuracy for nonlinear processes.  

Recently many studies have been devoted to the development and improvement of time series forecasting models. Chaotic time series were modelled and predicted using softcomputing methodologies such as neural networks, wavelets, fuzzy logics, and genetic algorithms. These models are nonlinear models and have shown clear advantages over the traditional statistical ones. 

In [9] traditional backpropagation neural networks is used for forecasting. The research shows how good the forecasts fit their target. In order to increase the forecast ability in terms of profit earning, [9] propose a profit based adjusted weight factor for backpropagation network training. Instead of using the traditional least squares error, a factor is added which contains the profit, direction, and time information to the error function. This article reports the analysis on the performance of several neural network training criteria. The results show that the new approach does improve the forecast ability of neural network models, for the financial application domain.

In [10] accurate modelling tools for Belgian National Transmission System Operator - TSO planners for the problems of peak load temperature adjustment, short-term forecasting, and customer identification are given. The results are derived from the analysis of intra-day (hourly) load records from local substations of the Belgian high-voltage grid, as provided by Elia. Using time series of hourly load values over a 5 years period, the short-term forecasting problem is addressed by a Periodic Autoregressive (PAR) model that leads to customer identification; the task of temperature adjustment is tackled by a multi-equation system with autocorrelated residuals. Satisfactory results are obtained for a large sample of substations in the Belgian high-voltage grid.

In [11] the system that use time series forecasting on a regular basis generally forecast many variables, such as demand for many products or services. Within the population of variables forecasted by an organization, one can expect that there will be groups of analogous time series that follow similar, time-based patterns. The co-variation of analogous time series is a largely untapped source of information that can improve forecast accuracy (and explain-ability). 

This work takes the Bayesian pooling approach to drawing information from analogous time series to model and forecast a given time series. Bayesian pooling uses data from analogous time series as multiple observations per time period in a group-level model.

 
It then combines estimated parameters of the group model with conventional time series model parameters, using “shrinkage” weights estimated empirically from the data. Major benefits of this approach are that it 1) minimizes the number of parameters to be estimated (many other pooling approaches suffer from too many parameters to estimate), 2) builds on conventional time series models already familiar to forecasters, and 3) combines time series and cross-sectional perspectives in flexible and effective ways. The paper presents basic principles for applying pooling methods and supporting empirical results. The prospect for automatic pooling methods is good, although the best pooled forecasts at the current state of art will depend on expert judgment and manual interventions for time series that have frequent pattern changes.

In [12] a new method called Natural Adaptive Exponential Smoothing (NAES) is proposed. It describes and forecasts, in real time, IEEE 802.11 WLAN networks channel behavior. The NAES method is a variation of the exponential smoothing technique to compute the channel quality indicators, namely the Received Signal Strength (RSS) and the link quality. A comparison with the results obtained by the Trigg and Leach (TL) method shows that NAES outperforms TL method.

In [13] Advanced Forecasting for Cellular Network Optimization is proposed. For a major European mobile telecommunications company, planning and managing their cellular network is key to their success. Good planning means analyzing the massive amounts of usage data generated by the thousands of cellular towers in the service provider’s network. To track usage on their German mobile network, the service provider already utilized sophisticated data analysis techniques, but needed another level of refinement in order to better understand traffic patterns. 

For a company owning thousands of cellular towers, all sending data to their Network Operations Center, traditional statistical analysis techniques were inadequate, labor intensive, expensive and cumbersome. The service provider turned to Visual Numerics Professional Services group. To identify the outliers and locate any seasonal trends in the data, Visual Numerics leveraged the ARIMA algorithm from the IMSL Numerical Library. 

Visual Numerics’ software engineers then automated the algorithm to tackle the customer’s faster processing requirement. The state-of-the-art, expert-system Auto_ARIMA algorithm allowed the service provider to produce more accurate forecasts faster than before, giving them a significant advantage in the market.

In [14] time series modelling of Bel 20 stock market index is described. The specificity of the method is to use as much information as possible as input to the model (many past values of the series, many exogenous variables), to compress this information (by a non-linear method) in order to obtain a state vector of limited size, facilitating the subsequent regression and the generalization ability of the forecasting algorithm and to fit a non-linear regressors (here a RBF neural network) on the reduced vectors. It was shown that this method is able to find non-linear relationships in artificial and real-world financial series. On a difficult task, which consists in forecasting the tendency of the Bel 20 stock market index, we show that this method improves the results compared both to linear models and to non-linear ones where the non-linear compression is not used.

In [15] electricity load forecasting is presented. Load forecasting is vitally important for the electric industry in the deregulated economy. It has many applications including energy purchasing and generation, load switching, contract evaluation, and infrastructure development. A large variety of mathematical methods have been developed for load forecasting. Accurate models for electric power load forecasting are essential to the operation and planning of a utility company. Load forecasting helps an electric utility to make important decisions including decisions on purchasing and generating electric power, load switching, and infrastructure development. Load forecasts are extremely important for energy suppliers, ISOs, financial institutions, and other participants in electric energy generation, transmission, distribution, and markets.

The [16] consider forecasting the latent rate profiles of a time series of inhomogeneous Poisson processes. The work is motivated by operations management of queueing systems, in particular, telephone call centers, where accurate forecasting of call arrival rates is a crucial primitive for efficient staffing of such centers. The described forecasting approach utilizes dimension reduction through a factor analysis of Poisson variables, followed by time series modeling of factor score series. Time series forecasts of factor scores are combined with factor loadings to yield forecasts of future Poisson rate profiles. 

Penalized Poisson regressions on factor loadings guided by time series forecasts of factor scores are used to generate dynamic within-process rate updating. Methods are also developed to obtain distributional forecasts. The empirical results demonstrate how forecasting and dynamic updating of call arrival rates can affect the accuracy of call centre staffing.

In [17], the daily water demand forecasting performance of double seasonal univariate time series models (Holt-Winters, ARIMA and GARCH) based on multi-step ahead forecast mean squared errors is examined. A within-week seasonal cycle and a within-year seasonal cycle are accommodated in the various model specifications to capture both seasonalities. It was examined that, combining forecasts from different methods for different origins and horizons could improve forecast accuracy. The analysis is made with daily data for water consumption in Granada, Spain.

In [18], water demand forecasting was developed. In order to ensure the adequate and sustainable water management for the city of the future, the impact of the global change pressures and sources of uncertainties should be analyzed appropriately. This work presents a model for forecasting the future water demand addressing the uncertainties associated to the climate change, population and economic growth. It uses the historic time series records of water consumption for forecasting the future water demand, and applies the Monte Carlo sampling, Latin hypercube sampling and bootstrap methods to describe the associated uncertainties. The model was applied in Birmingham, UK to analyze the water demand for year 2035. Results showed that future water demand in Birmingham will be governed by the socio-economic factors not by the climate change impact. There is a very high likely risk of not meeting the future water demand from the existing supply sources.

The research [19] is also investigate Water Demand Forecasting problem. Aiming at sustainable water resources management and use, the current water policy requires an essential analysis of water demand formulation and evolution. In this context, the paper considers the city of Athens in Greece, where domestic water use is analyzed, estimated and forecasted. The policy-relevant variables, mainly income and water prices, are systematically considered and their effects on water demand are appraised. The study concludes that a drastic increase in water demand induced by increasing income will occur, while the economic instruments have little potential to influence water use.

In [8] the development of a fuzzy wavelet neural network for the prediction of electricity consumption is presented. The fuzzy rules that contain wavelets are constructed. Based on these rules, the structure of FWNN-based system is described. The FWNN system is applied for modelling and prediction of complex time series. The gradient algorithm and genetic algorithm are used for learning of FWNN parameters. The developed FWNN is applied for prediction of electricity consumption. 

This process has high-order nonlinearity. The statistical data for the last 10 years are used for the development of FWNN prediction model. The effectiveness of the proposed system is evaluated with the results obtained from the simulation of FWNN-based prediction system and with the comparative simulation results of  previous related models.  

The combination of wavelet transform and neural networks allows us to develop a system that has fast training speed, and to describe nonlinear objects. Wavelet transform has the ability to analyze non-stationary signals to discover their local details. Neural network has a self-learning characteristic that increases the accuracy of the prediction.  In this paper, these methodologies are used to construct wavelet neural inference system to solve time series prediction problem.

1.7 Summary

The brief descriptions of design of different conventional models used for time-series modelling were considered. The given methods, along with their strengths and weaknesses are described in this chapter. Although most are simple in concept, the computations required to estimate parameters and perform the analysis are tedious enough that computer implementation is essential. The analysis of the forecasting models shows that one of basic criteria in time-series models is accuracy of the models.  In this thesis the integration of NN and wavelet technologies is used for improvement the accuracy of forecasting model. The application of proposed model will be considered for prediction of water consumption and number of airline passengers in TRNC.

CHAPTER 2

Integration of NEURAL NETWORK AND WAVELET TECHNOLOGIES FOR TIME SERIES FORECASTING

2.1 Overview

This chapter describes Wavelet Neural Network structure, and its learning algorithm. The structure and mathematical model of NN is described. The integration of NN and wavelets is presented. Wavelet analysis is becoming a common tool for analyzing localized variations of power within a time series. By decomposing a time series into time–frequency space, one is able to determine both the dominant modes of variability and how those modes vary in time. Finally the parameter update rules of WNN is derived using the Backpropagation learning algorithm. Backpropagation is supervised learning algorithm that train network parameters on the base of correct output for the current.

2.2 Neural Network Structure

An Artificial Neural Network (ANN) is an information-processing paradigm that is inspired by the way biological nervous systems, such as the brain, process information. The key element of this paradigm is the novel structure of the information processing system. It is composed of a large number of highly interconnected processing elements (neurons) working in unison to solve specific problems. ANN’s, like people, leak by example. An ANN is configured for a specific application, such as pattern recognition or data classification, through a learning process. [20]

A neural network is a computational model that shares some of the properties of the brain. It consists of many simple units working in parallel with no central control; the connections between units have numeric weights that can be modified by the learning element.

A new form of computing inspired by biological models, a mathematical model composed of a large number of processing elements organized into layers. Computing system made up of a number of simple, highly interconnected elements, which processes information by its dynamic state response to external inputs. [21]

Neuron is information processing element. The word node is also used for this simple building block, which is represented by circle in the figure "a single mode or processing element PE or Artificial Neuron”.


 




Figure 2.1 Artificial Neuron [22]

The PE handles several basic functions: Evaluates the input signals and determines the strength of each one, Calculates the total for the combined input signals and compare that total to some threshold level, and Determines what the output should be. The mathematical model of neuron is given in Fig.2.1.  The model includes input-output signals, weights, summation element, activation function.

There are many inputs (stimulation levels) to a neuron . All of them should come into PE simultaneously. In response a neuron either "fires" or "doesn't fire" depending on some threshold level. The PE will be allowed a single output signal just as is present in a biological neuron. There are many inputs and only one output. Each input of neuron will be given a relative weighting which will affect the impact of that input. This is something like the varying synaptic strengths of the biological neurons. Some inputs are more important than others in the way that they combine to produce an impulse. Set of neurons organizes neural networks [23].

Summation block compute sum of weighted inputs. Activation function change the form of output of summation block. There are some activation function. These are linear, hard limit, sigmoid activation function.

· Transfer Function: The transfer function may be a linear or a nonlinear function of n. A particular transfer function is chosen to satisfy some specification of the problem that the neuron is attempting to solve. Three of the most commonly used functions are discussed below. The hard limit transfer function, shown on the left side of Figure 2.2, sets the output of the neuron to 0 if the function argument is less than 0, or 1 if its argument is greater than or equal to 0. The use this function to create neurons that classify inputs into two distinct categories.
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Figure 2.2 Hard Limit Transfer Function [24]

The graph on the right side of Figure 2.2 illustrates the input/output characteristic of a single-input neuron that uses a hard limit transfer function. Here we can see the effect of the weight and the bias. The output of a linear transfer function is equal to its input:  [image: image174.png]a=n



. As illustrated in Figure 2.3, Neurons with this transfer function are used in the ADALINE networks,
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Figure 2.3 Linear Transfer Function [24]

The output (a) versus input (p) characteristic of a single-input linear neuron with a bias is shown on the right of Figure 2.3. 

The log-sigmoid transfer function is shown in Figure 2.4.

[image: image176.png]/]

a = logsig(n) a = logsig(wp+b)
Log-Sigmoid Transfer Function ~ Single-Input logsig Neuron




Figure 2.4 Log-Sigmoid Transfer Function [24]

This transfer function takes the input (which may have any value between plus and minus infinity) and squashes the output into the range 0 to 1, according to the expression:
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(2.1)

The log-sigmoid transfer function is commonly used in multilayer networks that are trained using the back propagation algorithm, in part because this function is differentiable.

Most of the used transfer function is summarized in Table 2.1.

In general the neuron output is calculated as
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(2.2)

Here w is weight, b is bias, x is input, y is output of neuron. The actual output depends on the particular transfer function that is chosen. The bias is much like a weight, except that it has a constant input of 1.

Table 2.1 Transfer Functions [25]

	Name
	Input/Output Relation
	Icon
	MATLAB  Function

	Hard Limit
	a = 0, n < 0

a = 1, n ≥ 0
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	Hardlim

	Symmetrical Hard Limit
	a = -1, n < 0

a = +1, n ≥ 0
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	Hardlims

	Linear
	a = n
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	Purelin

	Saturating Linear
	a = -1, n < -1

a = n , 0 ≤ n ≤ 1

a = 1, n> 1
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	Satlin

	Symmetric Saturating Linear
	a = -1, n < -1

a = n , -1 ≤ n ≤ 1

a = 1, n> 1
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	Satlins

	Log-Sigmoid
	a =
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	Hyperbolic Tangent Sigmoid
	a =
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	Tansig

	Positive Linear
	a = 0, n < 0

a = n, n ≥ 0
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	Poslin

	Competitive
	a = 1, neuron with max n

a = 0, all other neurons
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However, if we do not want to have a bias in a particular neuron, it can be omitted. Note that w and are both adjustable scalar parameters of the neuron. Typically the transfer function is chosen by the designer and then the parameters w and b will be adjusted by some learning rule so that the neuron input/output relationship meets some specific goal. Typically, a neuron has more than one input. A neuron with R inputs is shown in Figure 2.5. The individual inputs are p1,p2,...,pR each weighted by corresponding w1,1, w1,2, ... ,w1,R elements of the weight matrix W.
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Figure 2.5 Multiple-Input Neuron [26]

The neuron has a bias, which is summed with the weighted inputs to form the net input:
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(2.3)

Where the matrix W for the single neuron case has only one row, now the neuron output can be written as
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(2.4) 

We would like to draw networks with several neurons, each having several inputs. Further, we would like to have more than one layer of neurons. A multiple-input neuron using this notation is shown in Figure 2.5.

2.2.1 Network Architectures

A single-layer network of S neurons is shown in Figure 2.6. Note that each of the R inputs is connected to each of the neurons and that the weight matrix now has R rows.
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Figure 2.6 Layers of S Neurons [27]

Each element of the input vector p is connected to each neuron through the weight matrix W. Each neuron has a bias bi, a summer, a transfer function f and an output ai. Taken together, the outputs form the output vector a, the input vector elements enter the network through the weight matrix W:
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Now consider a network with several layers. Each layer has its own weight matrix W, its own bias vector b, a net input vector n and an output vector a, the weight of the first layer is written as W1, and the weight matrix of then second layer is written as W2, this notation is used in the three-layer network shown in Figure 2.7.
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Figure 2.7 Three-Layer Network [28]

2.3 Wavelet analysis

This section describes the method of wavelet analysis, includes a discussion of different wavelet functions, and gives details for the analysis of the wavelet power spectrum. Results in this section are adapted to discrete notation from the continuous formulas given in [30]. Practical details in applying wavelet analysis are taken from [31], [32], and [33].
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Figure 2.8 Four different wavelet bases, from Table 2.2  [29]

The plots on the left give the real part (solid) and imaginary part (dashed) for the wavelets in the time domain. The plots on the right give the corresponding wavelets in the frequency domain. For plotting purposes, the scale was chosen to be s = 10δt. 

(a) Morlet, (b) Paul(m = 4), (c) Mexican hat (DOG m = 2), and (d) DOG (m = 6).

a. Windowed Fourier transform

The WFT represents one analysis tool for extracting local-frequency information from a signal. The Fourier transform is performed on a sliding segment of length T from a time series of time step δt and total length Nδt, thus returning frequencies from T
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 at each time step. The segments can be windowed with an arbitrary function such as a boxcar (no smoothing) or a Gaussian window. [29]

The WFT represents an inaccurate and inefficient method of time–frequency localization, as it imposes a scale or “response interval” T into the analysis. The inaccuracy arises from the aliasing of high- and low-frequency components that do not fall within the frequency range of the window. The inefficiency comes from the T/(2δt) frequencies, which must be analyzed at each time step, regardless of the window size or the dominant frequencies present. In addition, several window lengths must usually be analyzed to determine the most appropriate choice. For analyses where a predetermined scaling may not be appropriate because of a wide range of dominant frequencies, a method of time–frequency localization that is scale independent, such as wavelet analysis, should be employed.

b. Wavelet transform

The wavelet transform can be used to analyze time series that contain nonstationary power at many different frequencies [35]. Assume that one has a time series, xn, with equal time spacing δt and n = 0 … N −1. Also assume that one has a wavelet function, ψo(η), that depends on a nondimensional “time” parameter η. To be “admissible” as a wavelet, this function must have zero mean and be localized in both time and frequency space [36]. An example is the Morlet wavelet, consisting of a plane wave modulated by a Gaussian: [29]
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   (2.5)

where ωo is the nondimensional frequency, here taken to be 6 to satisfy the admissibility condition. This wavelet is shown in Fig. 2.8a.

The term “wavelet function” is used generically to refer to either orthogonal or nonorthogonal wavelets.  The term “wavelet basis” refers only to an orthogonal set of functions. The use of an orthogonal basis implies the use of the discrete wavelet transform, while a nonorthogonal wavelet function can be used with either the discrete or the continuous wavelet transform [29].

The continuous transform is used, although all of the results for significance testing, smoothing in time and scale, and cross wavelets are applicable to the discrete wavelet transform. The continuous wavelet transform of a discrete sequence xn is defined as the convolution of xn with a scaled and translated version of ψo(η):

W
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where the (*) indicates the complex conjugate. By varying the wavelet scale s and translating along the localized time index n, one can construct a picture showing both the amplitude of any features versus the scale and how this amplitude varies with time. The subscript 0 on ψ has been dropped to indicate that this ψ has also been normalized. Although it is possible to calculate the wavelet transform using (2.6), it is considerably faster to do the calculations in Fourier space.

To approximate the continuous wavelet transform, the convolution (2.6) should be done N times for each scale, where N is the number of points in the time series. (The choice of doing all N convolutions is arbitrary, and one could choose a smaller number, say by skipping every other point in n.) By choosing N points, the convolution theorem allows us do all N convolutions simultaneously in Fourier space using a discrete Fourier transform (DFT). The DFT of x
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 is where k = 0 … N 1 is the frequency index.
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In the continuous limit, the Fourier transform of a function ψ(t/s) is given by 
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 (sω). By the convolution theorem, the wavelet transform is the inverse Fourier transform of the product:

W
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(2.8)

where the angular frequency is defined as
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Using (2.8) and a standard Fourier transform routine, one can calculate the continuous wavelet transform (for a given s) at all n simultaneously and efficiently.

c. Normalization

To ensure that the wavelet transforms (2.8) at each scale s are directly comparable to each other and to the transforms of other time series, the wavelet function at each scale s is normalized to have unit energy: [29]
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(2.10)

Examples of different wavelet functions are given in Table 2.2 and illustrated in Fig. 2.8. Each of the unscaled 
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that is, they have been normalized to have unit energy.

Using these normalizations, at each scale s one has
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(2.11)

where N is the number of points. Thus, the wavelet transform is weighted only by the amplitude of the Fourier coefficients 
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 and not by the wavelet function. If one is using the convolution formula (2.36), the normalization is
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(2.12)

where ψ
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(η) is normalized to have unit energy. d. Wavelet power spectrum Because the wavelet function ψ(η) is in general complex, the wavelet transform W
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(s) is also complex. The transform can then be divided into the real part,

Table 2.2 Three wavelet basis functions and their properties. Constant factors for ψ
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 and 
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 ensure a total energy of unity [29]
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ℜ{Wn(s)}, and imaginary part, ℑ{Wn(s)}, or amplitude, |Wn(s)|, and phase, tan−1[ℑ{Wn(s)}/ℜ{Wn(s)}]. Finally, one can define the wavelet power spectrum as |Wn(s)|2. For real-valued wavelet functions such as the DOGs (derivatives of a Gaussian) the imaginary part is zero and the phase is undefined. To make it easier to compare different wavelet power spectra, it is desirable to find a common normalization

for the wavelet spectrum. Using the normalization in (2.10), and referring to (2.8), the expectation value for |Wn(s)|2 is equal to N times the expectation value for |
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k|2. For a white-noise time series, this expectation value is σ2/N, where σ2 is the variance. 
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Figure 2.9 Fourier power spectrum, normalized by N/(2σ2). The lower dashed line is the mean rednoise spectrum from (16) assuming a lag-1 of α = 0.72. The upper dashed line is the 95% confidence spectrum. [29]

e. Wavelet functions

One criticism of wavelet analysis is the arbitrary choice of the wavelet function, ψo(η). (It should be noted that the same arbitrary choice is made in using one of the more traditional transforms such as the Fourier, Bessel, Legendre, etc.) In choosing the wavelet function, there are several factors which should be considered. [36]

1) Orthogonal or nonorthogonal. In orthogonal wavelet analysis, the number of convolutions at each scale is proportional to the width of the wavelet basis at that scale. This produces a wavelet spectrum that contains discrete “blocks” of wavelet power and is useful for signal processing as it gives the most compact representation of the signal. Unfortunately for time series analysis, an aperiodic shift in the time series produces a different wavelet spectrum. 

Conversely, a nonorthogonal analysis (such as used in this study) is highly redundant at large scales, where the wavelet spectrum at adjacent times is highly correlated. The nonorthogonal transform is useful for time series analysis, where smooth, continuous variations in wavelet amplitude are expected.

2) Complex or real. A complex wavelet function will return information about both amplitude and phase  and is better adapted for capturing oscillatory behavior. A real wavelet function returns only a single component and can be used to isolate peaks or discontinuities.

3) Width. For concreteness, the width of a wavelet function is defined here as the e-folding time of the wavelet amplitude. The resolution of a wavelet function is determined by the balance between the width in real space and the width in Fourier space. A narrow (in time) function will have good time resolution but poor frequency resolution, while a broad function will have poor time resolution, yet good frequency resolution.

4) Shape. The wavelet function should reflect the type of features present in the time series. For time series with sharp jumps or steps, one would choose a boxcar-like function such as the Harr, while for smoothly varying time series one would choose a smooth function such as a damped cosine. If one is primarily interested in wavelet power spectra, then the choice of wavelet function is not critical, and one function will give the same qualitative results as another. Four common nonorthogonal wavelet functions are given in Table 2.2. The Morlet and Paul wavelets are both complex, while the DOGs are real valued. Pictures of these wavelet in both the time and frequency domain are shown in Fig. 2.8. Many other types of wavelets exist, such as the Haar and Daubechies, most of which are used for orthogonal wavelet analysis.

For comparison, Fig. 2.8 1c shows the same analysis as in 1b but using the Mexican hat wavelet (DOG, m = 2) rather than the Morlet. The most noticeable difference is the fine scale structure using the Mexican hat. This is because the Mexican hat is real valued and captures both the positive and negative oscillations of the time series as separate peaks in wavelet power. 

The Morlet wavelet is both complex and contains more oscillations than the Mexican hat, and hence the wavelet power combines both positive and negative peaks into a single broad peak. A plot of the real or imaginary part of Wn(s) using the Morlet would produce a plot similar to Fig. 2.8 1c. Overall, the same features appear in both plots, approximately at the same locations, and with the same power. Comparing Figs. 2.8 2a and 2c, the Mexican hat is narrower in time-space, yet broader in spectral-space than the Morlet. Thus, in Fig. 2.8 1c, the peaks appear very sharp in the time direction, yet are more elongated in the scale direction. Finally, the relationship between wavelet scale and Fourier period is very different for the two functions.

f. Choice of scales

Once a wavelet function is chosen, it is necessary to choose a set of scales s to use in the wavelet transform (2.8). For an orthogonal wavelet, one is limited to a discrete set of scales as given by [36]. For nonorthogonal wavelet analysis, one can use an arbitrary set of scales to build up a more complete picture. It is convenient to write the scales as fractional powers of two: [29]
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where s
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 is the smallest resolvable scale and J determines the largest scale. The s
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 should be chosen so that the equivalent Fourier period is approximately 2δt. The choice of a sufficiently small δj depends on the width in spectral-space of the wavelet function. For the Morlet wavelet, a δj of about 0.5 is the largest value that still gives adequate sampling in scale, while for the other wavelet functions, a larger value can be used. Smaller values of δj give finer resolution. In Fig. 2.8 1b, N = 506, δt = 1/4 yr, s0 = 2δt, δj = 0.125, and J = 56, giving a total of 57 scales ranging from 0.5 yr up to 64 yr. This value of  δj appears adequate to provide a smooth picture of wavelet power.

g. Cone of influence

Because one is dealing with finite-length time series, errors will occur at the beginning and end of the wavelet power spectrum, as the Fourier transform in (2.8) assumes the data is cyclic. 

One solution is to pad the end of the time series with zeroes before doing the wavelet transform and then remove them afterward. In this study, the time series is padded with sufficient zeroes to bring the total length N up to the next-higher power of two, thus limiting the edge effects and speeding up the Fourier transform. Padding with zeroes introduces discontinuities at the endpoints and, as one goes to larger scales, decreases the amplitude near the edges as more zeroes enter the analysis. The cone of influence (COI) is the region of the wavelet spectrum in which edge effects become important and is defined here as the e-folding time for the autocorrelation of wavelet power at each scale (see Table 2.2).

Table 2.3 Empirically derived factors for four wavelet bases [29]
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This e-folding time is chosen so that the wavelet power for a discontinuity at the edge drops by a factor e−2 and ensures that the edge effects are negligible beyond this point. For cyclic series (such as a longitudinal strip at a fixed latitude), there is no need to pad with zeroes, and there is no COI. 

The size of the COI at each scale also gives a measure of the decorrelation time for a single spike in the time series. By comparing the width of a peak in the wavelet power spectrum with this decorrelation time, one can distinguish between a spike in the data (possibly due to random noise) and a harmonic component at the equivalent Fourier frequency.

The COI is indicated in Figs. 2.8 1b and 1c by the crosshatched regions. The peaks within these regions have presumably been reduced in magnitude due to the zero padding. 

Thus, it is unclear whether the decrease in 2–8-yr power after 1990 is a true decrease in variance or an artifact of the padding. Note that the much narrower Mexican hat wavelet in Fig. 2.8 1c has a much smaller COI and is thus less affected by edge effects.

h. Wavelet scale and Fourier frequency

An examination of the wavelets in Fig. 2.8 shows that the peak in 
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 (sω) does not necessarily occur at a frequency of s−1. Following the method of [38], the relationship between the equivalent Fourier period and the wavelet scale can be derived analytically for a particular wavelet function by substituting a cosine wave of a known frequency into (2.8) and computing the scale s at which the wavelet power spec- trum reaches its maximum. For the Morlet wavelet with ω0 = 6, this gives a value of λ = 1.03s, where λ is the Fourier period, indicating that for the Morlet wavelet the wavelet scale is almost equal to the Fourier period. Formulas for other wavelet functions are given in Table 2.2, while Fig. 2.8 gives a graphical representation. In Figs. 1b,c, the ratio of Fourier period to wavelet scale can be seen by a comparison of the left and right axes. For the Morlet, the two are nearly identical, while for the Mexican hat, the Fourier period is four times larger than the scale. This ratio has no special significance and is due solely to the functional form of each wavelet function. However, one should certainly convert from scale to Fourier period before plotting, as presumably one is interested in equating wavelet power at a certain time and scale with a (possibly shortlived) Fourier mode at the equivalent Fourier period. [29]

i. Reconstruction

Since the wavelet transform is a bandpass filter with a known response function (the wavelet function), it is possible to reconstruct the original time series using either deconvolution or the inverse filter. This is straightforward for the orthogonal wavelet transform (which has an orthogonal basis), but for the continuous wavelet transform it is complicated by the redundancy in time and scale. However, this redundancy also makes it possible to reconstruct the time series using a completely different wavelet function, the easiest of which is a delta (δ) function [36]. In this case, the reconstructed time series is just the sum of the real part of the wavelet transform over all scales:
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The factor ψ
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(0) removes the energy scaling, while the Sj
[image: image230.wmf]2

/

1

  converts the wavelet transform to an energy density. The factor Cδ comes from the reconstruction of a δ function from its wavelet transform using the function ψ
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(η). This Cδ is a constant for each wavelet function and is given in Table 2.2. Note that if the original time series were complex, then the sum of the complex Wn(s) would be used instead. To derive Cδ for a new wavelet function, first assume a time series with a δ function at time n = 0, given by xn = δno. This time series has a Fourier transform 
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 into (2.8), at time n = 0 (the peak), the wavelet transform becomes 
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The reconstruction (2.46) then gives

C
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The C
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 is scale independent and is a constant for each wavelet function.

The total energy is conserved under the wavelet transform, and the equivalent of Parseval’s theorem for wavelet analysis is 
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where σ
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 is the variance and a δ function has been assumed for reconstruction. Both (2.15) and (2.18) should be used to check wavelet routines for accuracy and to ensure that sufficiently small values of s
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 and δj have been chosen [29].

2.4 Wavelet Neural Network

Neural network based systems use sigmoid activation function. One of type of activation function that can be used in neural networks is wavelets. A wavelet networks are nonlinear regression structure that represents input-output mappings. The network based on wavelet has simple structure and good learning speed. It can converge faster and more adaptive to new data. Wavelet neural networks (WNN) uses basis functions in hidden layer. They can approximate complex functions to some precision very compactly and can be easily designed and trained than other networks, such as multilayer perceptrons and radial networks [34,35].

In terms of wavelet transformation theory, wavelets are expressed in the following form: 

Ψ = {Ψi = |ai|¯½ψ
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) : ai, bi ∑ Rn, i ∑ Z}, where x = (x1, x2, . . . , xn), ai = (ai1, ai2, . . . ,a in), bi = (bi1, bi2, . . . , bin) are a family of functions generated from one single function ψ(x) by the operation of dilation and translation. ψ(x), which is localized in both the time space and the frequency space, is called a mother wavelet and the parameters ai and bi are named the scale and translation parameters and x represents the inputs to the WNN model.

In the standard form of wavelet neural network, the output of a WNN is given by
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where ψi is the wavelet activation function of ith unit of the hidden layer and ωi is the weight connecting the ith unit of the hidden layer to the output layer unit. Note that for the n-dimensional input space, the multivariate wavelet basis function can be calculated by the tensor product of n single wavelet basis functions as ψ(x) = 
[image: image243.wmf]C
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=1 ψ(xi). Wavelet networks use three layer structure and wavelet activation function. 

They are three layer neural network that can be modeled by the following formula [36,37].
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here 
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 is activation wavelet functions, w, are network parameters (weight coefficients between hidden and output layers).


A good initialization of wavelet neural networks allows to abtain fast convergence. Number of methods is implemented for initializing wavelets, such as orthogonal least square procedure, clustering method. The optimal dilation of the wavelet increase training speed and obtain fast convergence. [37,38]

Wavelet function is a waveform that has limited duration and average value of zero. There are number of wavelet functions. In this work the Mexican Hat wavelet is used for neural network (Fig 2.10).
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Here 
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. The outputs of hidden neurons of network are computed by equation (2.21).
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Figure 2.10 The Mexican Hat

The structure of wavelet network is given in figure 2.11. Here x
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Figure 2.11 Architecture of WNN
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here a and b are coefficients.


After using expression (2.21) the output signals of hidden layer are determined. These signal are input for the last-third layer. The output signal of network is calculated as [34]
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w
[image: image258.wmf]i

 are weight coefficients between hidden and output layers, i=1,2,...k.


After calculation output signal of the network the training of WNN start. There are efficient algorithms for training parameters of wavelet networks,such as backpropagation algorithm, gradient algorithm that are used for training the network. During learning the dilation, translation and weights are optimized.

2.4.1 Structure of the WNN forecasting system

In fig. 2.12 the structure of WNN forecasting system is given. At first step, using statistical data the training patterns is organized. These training patterns are entered to the WNN input. The parameters of WNN are initialized randomly. Input signals are processed in WNN block and output of WNN is determined. This output signal is compared with desired signal and the value of error is determined. If the value of this error is more than some acceptable small value then the backpropagation algorithm is applied for training of WNN parameters.  The training is continued for all patterns. 


Figure 2.12 Structure of the WNN forecasting model

WNN models are data intensive, where they learn the underlying physics of the system of interest from the training samples which are basically the cause-effect samples. Therefore, the number of training samples significantly influences a network’s predictive performance. Increasing the number of training samples provides more information about the shape of the solution surface and thus increases the potential level of accuracy that can be achieved by the network. Having too few data samples will lead to poor generalization by the network [38].

An optimal data set for training would be the one that dully represents the modeling domain and has the minimum number of repetitive samples in training.

Training and testing samples are typically required for building the WNN predictor. The training sample is used for WNN model development and the test sample is adopted for evaluating the predicting ability of the model. Sometimes a third one called the validation sample is also utilized to avoid the over fitting problem. It is common to use one test set for both validation and testing purposes particularly with small data sets.

There is no general rule to the problem of division of the data into training and data sets, several factors such as the problem structure, the data type and the size of the available data should also be considered in making the decision. It is critical to have both the training and testing sets represent the population or underlying mechanism. Inappropriate separation of the training and testing sets will affect the selection of optimal WNN structure and the evaluation of WNN predicting performance.

2.4.2 Learning of  WNN

In the prediction context, WNN training consists of providing input/output examples to the network, and minimizing the objective function (i.e. error function) using either a first order or a second order optimization method. Similarly, training can be formulated as a minimization for the error function, the sum of the non-linear least squares between the observed and the predicted outputs defined by: [38]
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Where O is the number of output signals of the network (in a given case O=1), yd and y  represent thedesired and current  outputs of the network.

In the back propagation training, minimization of error function E (Eq. 2.24) is attempted using the steepest descent method and computing the gradient of the error function by applying the chain rule on the hidden layers of the feed forward neural network. At the beginning, the parameters of WNN are generated randomly. 

To generate a proper WNN model, training of the parameters has been carried out. The parameters 
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 (i=1,...,m, j=1,... n) of WNN adjusted using the following formulas [37,38].
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(2.25)

Here, 
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 is the learning rate , m is the number of input signals of the network (input neurons), and n is the number of wavelet rules (hidden neurons).

The values of derivatives in Eq. (2.25) are computed using the following formulas. [38,38]
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here
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i=1,...m, j=1,...n.

- Testing of Back propagation neural network and wavelet neural network

An experimental data set is divided into the training set and the testing set. The error on the testing set is monitored during the training process. The testing error is decreasing during the training. When the testing error increases to specified number of iterations, the training will stop. The weights when getting the minimum value of the testing error are returned.

2.5. Summary

The brief descriptions of neural network and wavelet network architectures were considered.  The design and learning algorithms of NN are described. The wavelet analysis, a discussion of different wavelet functions, details of WNN design are described. The detailed descriptions of wavelet neural network, and parameter update rule is developed. 

CHAPTER 3

WAVELET NEURAL NETWORK SYSTEM FOR PREDICTION OF WATER CONSUMPTION

3.1 Overview

In section 3.2 the Integrated Water Resources Planning and Management of North Cyprus on supply and demand quantities, will be introduced in order to clarify the present situation of the country. The study considers all the contributing units to the water budget as an input or exit including the drought condition experiences in the country and its consequences. The analysis is performed through three main regions. The flexibility is considered to evaluate the effect of evaporation, rainfall, domestic use, irrigation use, effluent water reuse, water for animals, small industry and tourism sectors. Furthermore, the water withdrawals from the resources; groundwater, dams, springs, etc. are all studied to identify the deficiency in the groundwater resources. Irrigation need is evaluated considering the monthly and annual extractions for the whole sub-regions. In addition, irrigation techniques and their efficiencies and water losses in the pipeline systems are also accounted and presented.

In section 3.3 the development of a Neural Network and Wavelet Neural Network for the prediction of water consumption is presented. The statistical data for the last 5 years are used for the development of NN and WNN prediction models. The effectiveness of the proposed system is evaluated with the results obtained from the simulation of NN and WNN based prediction systems. For this purpose program which was written in MATLAB, is applied. 

3.2  Water Resources Planning and Management of North Cyprus

Water is vital for human being in order to survive. However, increase in population, contamination of the water resources, salinization of coastal aquifers and over-extraction of the water from the ground water resources due to poor management, reduced the quantity of water on the supply side and increased the water need at demand side. North Cyprus is one of the European countries suffering from limited water resources owing to depletion, salinization and contamination of available groundwater resources. 

The water scarcity started in 1960s and increased to the alarming level in 2000s and it is still increasing due to lack of any serious measurements. In 1980s, several dams have been constructed with the help of the government of Turkey for the purpose of agricultural irrigation and aquifer recharge. Inasmuch, the alternative water resources to reduce the scarce in the country are under investigation nowadays, like; transferring water from Turkey to North Cyprus through Medusa bags and by tankers from nearby land Turkey. 

Recently, more determinate solutions like; construction of flexible pipes under the sea between two countries and searching the possible deeper aquifers in the island, are under investigation. In spite of this catastrophic situation, no reliable research is available identifying the water balance in the country.

Water scarcity in Cyprus started in 1960s. Soon after, several studies and researches were performed to identify the level of water deficiency in the whole island. The backbone of the economy of the country is the agriculture and small farming. Citrus fruit plantation occupies the majority of the export of Turkish Republic of Northern Cyprus. Uncontrolled irrigation of the fields, late adoption of old irrigation techniques and poor conveyance efficiency of pipelines and network systems, caused the over extraction of water from the available aquifers [1].

That phenomenon resulted with the higher values of salt contamination due to the salt-water intrusion, where the coastal aquifers are invaded by the sea up to several hundred meters inland from the coast and also cause depletion of some of the small volume aquifers at the interior part of the island.

North Cyprus (NC) has a population of 250 000 with an irrigable land of nearly 87 km2. Part of the population is busy with stock farming. Students and tourists are also one of basic parts of population. The country is divided into three main regions, Lefkosa (LMR), Magosa (MMR), and Girne (GMR), and seventeen sub-regions (Fig. 3.1). 

In this study, the monthly water requirements of the whole sectors within the country, including municipal needs were investigated in the seventeen sub-regions of the country. 

Thus, the water deficiencies of the aquifers, water withdrawals from the resources, sector-wise water consumptions, evaporation effects within the region, water losses due to the old conveyance systems, the amount of water wasted due to late adoption of the new irrigation techniques and the additional amount of water required are all determined. Furthermore, the water deficiencies in the aquifers under drought conditions experienced in the country are also studied and the consequences in the aquifers are designated. In NC, rationing of water supply to the users is effectively used in the dry seasons by the authorities in order to reduce the water consumptions. Also, it is believed that only 80 % of the irrigation water can be supplied to the crops or orchards owing to the limitations in the aquifer storages in the drought seasons.

[image: image271.emf]
Figure 3.1 Main Agricultural Regions and Sub-regions of North Cyprus [1]

3.2.1 Water Planning of TRNC

The only source replenishes the water resources of NC is the rainfall. An analysis of rainfall over South Cyprus indicates that, there is 14 % reduction of rainfall in the present time than the beginning of this century. Investigations of rainfall on Cyprus also revealed that, only 20 % of the rainfall is in fact, contributing to the water budget. The remaining portion returns to the atmosphere through evapotranspiration.

The rainfall degradation in NC is experienced more effectively. This can also be seen after application of the moving average technique to the annual average values. The same value is observed when alternative years of moving averages are used for the same data. 

To overcome water deficiency with the help of Turkey, 41 dams were constructed, of which, only 16 of them were aimed to store water for irrigation purposes. The remaining were constructed for preventing the direct flow to the sea and thus, contributing more efficiently to the aquifer recharge. Efficient reuse of effluent water for irrigation is out of the concept, due to traditional belief among the society. Desalination plants are introduced by some of the institutions, due to shortage of natural resources and availability of brackish water within the coastal regions. Water outputs from the water budget are irrigation, municipal needs, industrial water consumption, stock farming, transmission line and the network system losses, unused effluent water and uncontrolled small seasonal spring flows that directly flows to the sea (Fig.3.2).
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Figure 3.2 Water Balance Scheme of TRNC [1]

3.2.2 Available Water Resources

North Cyprus is a semi-arid country with a typical Mediterranean climate of hot and dry summers and mild winters. The average temperature falls below 0
[image: image273.wmf]o

C at the peaks in winters and rise above 40
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C at the plains in summers. Rainfall distribution over the country varies considerably among these regions. The minimum average annual value is measured at Central Mesaoria region as 294.7 mm and the maximum annual average at Northern Coast and Besparmak Mountains are as 456.6 mm. The average rainfall value for the overall country is 373.3 mm/year. Based on 50 years data, the analysis reveals that, there is 1 mm/year reduction of the rainfall. Fig 3.3 describes fragment of rainfall values obtained durıng 15 years.

Snow rarely occurs upon the upper hills of Beşparmak Mountains at the North and is usually available at the peaks of Trodos Mountains throughout the year at the South Cyprus. The maximum snowfall over the Northern part of Cyprus is measured to be as 15 cm on Besparmak, Selvilitepe and Kantara hills. The Southern part of the Island has a snowfall of varying depth from 0.5m to 3m yielding an amount of 100 MCM per year, that are mostly occurring during the months of January and February. 

Because of water deficiency in North Cyprus water is imported from Turkey (Fig. 3.4). 
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Figure 3.3 The rainfall trend and two and three years of moving averages [1]
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Figure 3.4 Monthly water transport quantities between years 1998 and 2002 in Thousands Cubic Meter (TCM) [1]

In North Cyprus, three central treatment plants were constructed to treat the sewerage waste water of the cities Girne, Lapta, and Lefkosa. The first two of these plants that are located in GMR have capacities only to treat black water up to 600 m3/day, but this quantity reduces to 50 % during winter season since the utilization of the freshwater is reduced. Lefkosa Central Plant, treats about 10 000 m3/day of the sewerage water where 6 000 m3 of this black-water is collected from the North and the remaining is pumped from the Southern part of the city.

Yearly an average of 3.6 MCM of effluent water is treated at Lefkosa Plant and diverted into the stream channel for evaporation, since the reuse of this treated water for the irrigation of alternative crop patterns are not accepted by the farmers psychologically. However, recently, farmers are using restricted quantity of this treated water for irrigation purposes, but neither the amount of the water nor the types of the crop patterns grown are known officially.

There is no perennial stream in North Cyprus. Ten of the streams that are originated from the South carry an average of 43 MCM of water. However, most of these streams are controlled at their upper reaches by the recently constructed dams at the South, hence, reducing the water potential of the North. The other 28 streams that are located at the North are approximately discharging 27 MCM of water annually.

In the period [1] of 1974-1984, 20 dams have been constructed for water storage and recharge purposes. The approximate storage of the water within these dams is around 20 MCM per year. Furthermore, until 1990, 15 more dams were constructed of having an extra storage capacity of 15 MCM per year. The amount of municipal drinking water that is supplied from 162 wells and boreholes is about 24.5 MCM and from the streams is nearly 0.34 MCM per year. It is believed that, 500 m3/day of water is pumped to the South from the North and nearly the same amount of water has been pumped back due to common piping systems within the cities. Irrigation water is supplied both from the available dams and the nearby wells. Variable values had been proposed for this utilized quantity of water in the literature due lack of measurements and control facilities. These values are within the range of 82.5 MCM and 144 MCM.              

3.2.3 Agriculture

Agriculture, contributes a lot to the economy of the island. Citrus fruit occupies the greatest part of the production in agriculture and hence, its contribution to the export is also considerably high [1]. The main crop patterns grown in the agricultural sector are, cereals, pulses, fodder crops, grapes and citrus fruits, of which they constitute 52 % of the agricultural land. The ratio of population working in agricultural sector in TRNC is probably. 

3.2.4 Municipal Needs

The municipal water supply overcomes the needs of the householders, the farmers that are dealing with the stock farming, the tourism sector and the small industrial sector of NC. The amount of the water, that is supplied to the public needs, in drought seasons is controlled and restricted by applying a twice in a week type rotational water supply scheme. However, the tourism sector is highly affected by limitations and recently, they found a way to reuse the effluent water for irrigating their gardens.

The rotational supply of water to the public caused the home gardens to be dried up. This scheme is also effectively experienced in the South reducing 33 % of the water consumption. It is unfortunate to note that, in NC, the losses within the pipelines and network systems are in the range of 30 - 60 % due to late non-renewal of the rather old pipes.

3.2.5 Groundwater

Groundwater constitutes the major part of the water resources in the North. Available unconfined aquifers are used to supply potable water for the public needs and for the irrigation requirements. However, over extraction of water from these aquifers and due to poor recharge capacities resulted in the depletion of available freshwater within the aquifers. It is important to note that, due to this excess pumping, the contamination of the aquifers by sea water intrusion within the coastal regions reaches to an alarming stage and in some localized areas, the NaCl concentration is even reaching as high as 5000 ppm that is high beyond the world standards.

In NC, domestic and irrigation water are supplied mainly from the groundwater resources, dams and from the semi-perennial small springs. The aquifers in the island characterized into 13 groups within 8 hydrologic regions, which are having variable capacities. Based on 1970s estimates, the annual safe yield of these aquifers were nearly 74.1 MCM however, it is estimated that 28.9 MCM of water is over extracted from these aquifers.

Table 3.1 Aquifer capacities and the consequences after annual extractions in NC [1]
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Güzelyurt aquifer, which is the biggest coastal aquifer in the North located at the westernmost of the island, supplies water, not only for irrigation requirements of the region but also for the municipal needs of Lefkosa and Gazi Magusa cities. 

Although the total storage capacity of the aquifer is 920 MCM, recent studies proves that, the aquifer is depleting and the average water table level is reaching 70 meters below the mean sea level in some local areas.

The second important aquifer is the Girne Coastal Aquifer. The aquifer is elongated through the Northern coast of the island with a thin strip of 1.5 km in width. The aquifer area is about 40 km2 with an average annual replenishment of 10.5 MCM.

3.2.6 Integrated Water resources Analysis

In order to evaluate the water resources of the country, integrated water resources management is considered to reduce the diversity in the management. Therefore, the data collected from the departmental offices are worked until the unity satisfied and then a program prepared in excel are applied for complete evaluation. In the calculation, above mentioned units and those others have not been specified are considered and the budget prepared. For specification of the irrigation water, crop base consumptive water requirements are determined through Blaney-Criddle and Penman method [1].

The irrigation techniques available and the corresponding efficiencies are considered for sensitive results. The available surface water data values are used directly, however the data for missing months are derived using interpolation and extrapolation techniques. Additionally, the surface water is considered to be used in the whole sectors initially and the remaining excess need is let to be subtracted from the groundwater resources. All the calculations are performed separately so that to evaluate the water consumptions as, home base, universities, livestock, agricultural irrigation, water losses, and tourism sector, in monthly base and in total.

The water resources used in water supply is also considered separately in order to clarify the water deficits within the aquifers. The management under drought conditions is also studied to give the reader an idea about the quantity of the water that can be saved during the rationing of water. 

3.3 Modelling of Water Consumption

The WNN system is applied for constructing a prediction model of water consumption in North Cyprus. Here the main goal is to meet customer demand. For planning utilities, it is needed to develop water consumption model. The statistical data for the last 5 years were obtained from Ministry of Environmental and Natural Resources [39] for water consumption model. It was important to know in and what the m
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 of water will be used in the near future (after a few month), even an approximate value would be sufficient.


The WNN structure and its learning algorithm is used to construct the prediction model. In the prediction problem, it is needed to predict the value of  water consumption in the near future x(t+pr) on the base of sample data points {x(t-(D-1)
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),...,x(t)}. Here, pr is the prediction step. Three input data points [x(t-3) x(t-1) x(t)] are used as input to the prediction model. The output training data corresponds to x(t-3). In other words, because the water consumption models are considered monthly and weekly, the value that is to be predicted will be after pr=3 months and weeks.

The training input/output data for the prediction system will be a structure whose first component is the three dimension input vector, and the second component is the predicted output.

3.3.1 Network Training

Data from water consumption tests were measured and recorded for each test separately. For the data set considered in the present study, the input variables as well as the output variables are first normalized linearly in the range of 0-1. This range is selected because of the use of the logistic function as the activation function. The normalization is done using the following equation:

X norm = (X − X min ) /(X max − X min )  





    (4.1)

where Xmin and Xmax are the minimum and maximum values in the data set respectively.

The selection of training and testing data that represent the water consumption is extremely important in the modelling process. Since the selection of training and testing data has a vital impact on the model accuracy, the length of training and testing data on models accuracy was examined. 

For instance, a long length of training data set is beneficial in mimicking more of the non-stationary nature of the input data dynamics. Thus, the length of training data set was selected so that WNN model might provide more reliable prediction during testing session. For this algorithm, a step size, which is called learning rate (η) was selected as 0.0001 in WNN in this thesis. The training was stopped whether the maximum number of epochs is exceeded or the performance gradient has been minimized to the target error goal that is achieved when the sum of square error (SSE) approaches.

The best-fit network for each model was generated based on two-goodness of fit statistical indices. The goodness of fit statistics that were used in the selection of the best fit networks are the root mean square error (RMSE) and sum of square error (SSE), expressed as:
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    (4.3)

More details about the training procedure is discussed in the above section. In the present case, prediction has been considered for training of the wavelet neural network, which consists of the following steps:

1) Training samples are normalized and read.

2) Weights of hidden layer and output layer are initialized to randomly within [0,1] values, and the dilation and translation factors a and b are initialized to randomly within [0,1] values.

3) Determine other initial parameters as the following through trial and error. The momentum factor is not used in wavelet neural network. The initial learning rate is set at 0.0001 in WNN. The training iteration epochs of  WNN is 3500. 

4) The output of WNN from output layer is calculated.

5) SSE of training sample is determined. If the SSE training not reach the goal specified then weight is updated based on gradient descent method. 

6) The process was carried out for a designated number of iteration.

To start the training, the WNN structure is generated. It includes three input and one output neurons. Sixteen hidden neurons (rules) are used in the hidden layer of the WNN. The initial values cover the whole input space. The training of the parameters was performed by using learning algorithms described in Chapter 2. For training of the WNN system, the statistical data describing monthly of water consumption from 1th January 2005 to 31th May 2008 and weekly of water consumption from 1th January 2005 to 9th December 2008 are considered. The statistical data describing monthly of water consumption from 1th June 2009 to 31th March 2009 and weekly of water consumption from 10th December 2008 to 31th March 2009 are used for diagnostic testing. Figure 3.5 describes the monthly water consumption process before (a) and after scaling (b). All input and output data are scaled in the interval [0,1]. The training input/output data for the prediction system will be a structure whose first component is the three dimension input vector, and the second component is the predicted output. As mentioned the prediction is performed for 2 cases: monthly and weekly. At first monthly prediction of water consumption process is considered. 41 data used for training 10 data for diagnostic testing process. Table 3.2 (a) describes the number of training and testing data for monthly and weekly water consumption processes. The training is carried out for 3500 epochs in WNN. The values of the parameters of the WNN system were determined at the conclusion of training. 

Using training data points the learning of WNN has been performed. Figure 3.6 demonstrate  learning of WNN for monthly water consumption

Table 3.2 (a) The Wavelet Neural Network Configuration for all Proposed Models

	MODEL
	METHOD
	Training Data Number
	Testing Data Number

	Monthly Water Consumption
	NN
	41
	10

	
	WNN
	41
	10

	Weekly Water Consumption

 
	NN
	138
	80

	
	WNN
	138
	80


Table 3.2 (b) Parameters of NN and WNN models

	MODEL
	METHOD
	Input No.
	Hidden No.
	Output No.
	Momentum
	Learming Rate

	MonthlyWater Consumption
	NN
	3
	16
	1
	0.85
	0.015

	
	WNN
	3
	16
	1
	0
	0.0001

	Weekly Water Consumption
	NN
	3
	16
	1
	0.85
	0.015

	
	WNN
	3
	16
	1
	0
	0.0001
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                                    (a)                                                               (b)

Figure 3.5 A plot of the statistical data for monthly water consumption: (a) real data, (b) normalized data
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Figure 3.6 Graphic of SSE WNN

In Figure 3.7, the trajectories of desired and predicted values for both training and checking data for pr=3 are shown. Here, the solid line indicates the trajectory of statistical data and the dashed line indicates the predicted value of time series. The difference between them is very small. These differences might only be seen in large scale. In Figure 3.8 the prediction error is shown. Once the WNN has been successfully trained, it is then used for the prediction of the 2009 monthly and weekly water consumption. The result of the WNN based prediction models are obtained using 3 inputs, 1 output, 16 hidden neurons. Figure 3.9 demonstrate three step ahead prediction of WNN model.
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Figure 3.7 Plot of the prediction of water consumption. Plot of output signals:generated by WNN and predicted signal. Curves describing learning and training data together
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Figure 3.8 Plot of the prediction error
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Figure 3.9 Curves for testing data

For comparative analysis NN based prediction models are developed. The results of NN based model was obtained when number of neurons in hidden layer is 16, input layer is 3, output later is 1, learning rate is set at 0.015, the momentum factor is fixed on 0.85. The training epochs of NN is  10000. The learning of NN based prediction system is performed at the same initial condition. Figure 3.11(a) demonstrates learning process of NN. In the result of learning the parameters of NN is determined. In Figure 3.11(b), the trajectories of desired and predicted values for both training and checking data for pr=3 are shown. Here, the solid line indicates the trajectory of statistical data and the dashed line indicates the predicted value of time series. The plot of prediction error is shown in Figure 3.12. As shown in the Figure 3.8, in the generalization step, the value of error increases.
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Figure 3.10 Architecture of NN
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(b)

Figure 3.11 (a)Learning curve of NN (b) Plot of the prediction of water consumption. Plot of output signals:generated by NN and predicted signal.

Curves describing learning and training data together
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Figure 3.12 Plot of the prediction error

3.3.2 Analyses of the Results 

The result of simulation of the WNN prediction model is compared with the result of simulation of the NN based prediction model. To estimate the performance of the neural and WNN prediction system, the SSE values of error between the predicted and current output signal are compared.

Comparison of WNN and NN based models is done for monthly and weekly water consumption prediction.  

Table 3.3 provides the comparative results of simulations for monthly and weekly water consumption. As shown in the tables, the performance of WNN prediction is better than the performance of the NN model. Here result of NN prediction model is given for 2 cases: NN learning using momentum, NN learning without momentum.

Table 3.3 Prediction Results Comparisons

	MODEL
	METHOD
	EPOCHS
	SSE

	Monthly Water Consumption

 
	NN with momentum
	 10000
	0.0546

	
	NN without momentum
	 10000
	0.2125

	
	WNN
	 3500 
	0.0001

	 
	 
	 
	 

	Weekly Water Consumption

 
	NN with momentum
	 10000
	0.9305

	
	NN without momentum
	 10000
	1.0169

	
	WNN
	3500
	0.7055


The simulation results satisfy the efficiency of the application of WNN technology in constructing a prediction model of water consumption.


The simulation results demonstrated that the applied WNN structure has better performance than NN model.

3.4 Summary


The application of WNN for forecasting of water consumption in North Cyprus is performed. The monthly and weekly water consumption prediction models have been developed. The comparison of WNN and NN prediction model have been done. Analysis of the results of these models have been given.

CHAPTER 4

WAVELET NEURAL NETWORK SYSTEM FOR PREDICTION OF AIRLINE PASSENGER

4.1 Overview

This chapter describes a comprehensive, pragmatic air demand model system that has been implemented for Turkish Republic of Northern Cyprus’s Ercan  Airport. Providing forecasts of future air passenger’s volumes and aircraft movements are based on generic passenger demand growth, global economy.

The implementation of forecasting models will be considered for the prediction of the number of passengers of arriving to and departing from the civil airport Ercan, and the total number of airline passengers in TRNC. The prediction models are constructed using WNN and NN. For this purpose, the development of software is considered and the obtained simulation results are discussed.

4.2 Planning Airport Capacity Movements

Airport capacity planning requires long-term forecasts of aircraft movements. The classical approach to generate such forecasts includes the use of time series data together with econometric models to extrapolate observed patterns of growth into the future. More recently, the dramatically increased competition between airports, airlines and alliances on the one hand, and serious capacity problems on the other, has made this approach no longer adequate. Airport demand forecasts now need to focus heavily on the many competitive elements in addition to the growth element.

In this section we describe a comprehensive, pragmatic air demand model system that has been implemented for Ercan Airport. Forecasting the future of air passenger volumes allows to plan aircraft movements.

The model for passenger forecasts for a target year is obtained by taking passenger numbers, observed in the past years. The number of passengers depends on some factors. These are a growth factor, to express the global impact of key drivers of passenger demand growth such as population size, income, trade volume; Secondly a market share ratio factor, to express the increase (or decline) in attractiveness of the airport due to anticipated changes in its air network and land side-accessibility, relative to other (competing) airports.

The target year passenger forecasts are then converted into aircraft movements to assess whether or not the available runway capacity is adequate. Key inputs to the model are the data describing for base year and target year of the land-side accessibility of Ercan airport considered. 

4.2.1 Aircraft Operations

Passenger carrier operations forecasts for each year were derived directly from the passenger forecasts. The number of commercial passenger operations at an airport depends on three factors: total passengers, average aircraft size, and the average load factor. 

The relationship is shown in the equation below.[5]

Operations = Total Passengers / (Average Aircraft Size * Average Load Factor) 

As a first step in preparing the aircraft operations forecast, the fleet mix for previous years for the commercial passenger airlines was reviewed to identify the most recent changes in aircraft types. Historical average seats per departure were calculated for the passenger carriers in conjunction with other historical data. Current aircraft orders and options placed by the major carriers were reviewed, along with expected delivery schedules. 

Historical load factors were also evaluated and industry trends were examined in order to forecast future load factors. While regional jets are expected to continue their dominant role at CVG, their share of the market will diminish after 2010 as larger aircraft are introduced in maturing markets. 

4.3 Modelling of Airline Passenger

The WNN system is applied for constructing a prediction model of number of passengers arriving to and departing from the civil airport Ercan, and the total number of passengers in TRNC. Here the main goal is to meet customer demand. For planning utilities, it is needed to develop an airline passenger model. The statistical data were obtained from the archives of Civil Aviation of TRNC [40] for predicting the number of passengers arriving to and departing from the only civil airport Ercan for last 6 years. It was important to know the number of passenger in the near future (after a few month), even an approximate value would be sufficient.


The WNN structure and its learning algorithm is used to construct the prediction model. Three input data points [x(t-3) x(t-1) x(t)] are used as input to the prediction model. The output training data corresponds to x(t+3). In other words, because the airline passenger model is considered monthly and weekly, the value that is to be predicted will be after pr = 3 months and weeks.

The training input/output data for the prediction system will be a structure whose first component is the three dimension input vector, and the second component is the predicted output. Prediction of airline passengers has been realized by wavelet neural network and neural network, which are described in Chapter 2.

Table 4.1 (a) describes the number of training and testing data for monthly and weekly airline passengers processes. The simulation is performed using WNN and NN models. 

Table 4.1 (a) The Neural Network and Wavelet Neural Network Configuration for all Proposed Models

	MODEL
	METHOD
	Training Data Number
	Testing Data Number

	Monthly Arriving Passengers
	NN
	51
	10

	
	WNN
	51
	10

	Monthly Departing passengers
	NN
	51
	10

	
	WNN
	51
	10

	Monthly Total Number of Passengers
	NN
	41
	20

	
	WNN
	41
	20

	Weekly Total Number of Passengers
	NN
	82
	75

	
	WNN
	82
	75


Table 4.1 (b) Parameters of NN and WNN models

	MODEL
	METHOD
	Input No.
	Hidden No.
	Output No.
	Momentum
	Learming Rate

	Monthly Arriving and Departing Passengers
	NN
	3
	16
	1
	0.85
	0.015

	
	WNN
	3
	16
	1
	0
	0.0001

	Monthly Total Number of Passengers
	NN
	3
	16
	1
	0.85
	0.015

	
	WNN
	3
	16
	1
	0
	0.0001

	Weekly Total Number of Passengers
	NN
	3
	16
	1
	0.85
	0.015

	 
	WNN
	3
	16
	1
	0
	0.0001


In the present case, prediction has been considered for training of the wavelet neural network, which consists of the following steps:

1) Load statistical data. After normalization of the statistical data, partition them into training and test samples. 

2) Randomly initialize the weight coefficients of hidden and output layers and the dilation and translation factors a and b in the interval [0,1].

3) Enter the value of learning rate as 0.0001. The momentum factor is not used in wavelet neural network. Enter the training epoch as 3500. 

4) Enter the input signal to WNN and calculate the output of network.

5) Determine the value of SSE for training sample. If value of SSE will be less than goal value defined by programmer, then training process is sopped. In other case, if SSE of training does not reach the goal specified, then using gradient descent method the parameters of WNN are updated. 

6) Test the number of epochs. If current number of epoch is equal to training epoch then stop training process. In other case repeat steps 4-6.

To start the training, the WNN structure is generated. It includes three input and one output neurons. Sixteen hidden neurons are used in the hidden layer of the WNN. The initial values cover the whole input space. The training of the parameters was performed by using learning algorithms described in chapter 2. For training of the WNN system, the statistical data describing monthly number of arriving and departing airline passengers from 1th January 2004 to 31th March 2008 are taken. For monthly total number of passengers from 1th January 2004 to 31th May 2007 are taken. For weekly total number of airline passengers from 1th August 2006 to 21th October 2006 are taken. The statistical data describing monthly arriving and departing airline passengers from 1th April  2008 to 31th January 2009 and monthly total number of passengers from 1th June 2007 to 31th January 2009 and  weekly total number of  airline passengers from 22th October 2006 to 31th July 2009 are used for diagnostic testing. As mentioned the prediction is performed for 2 cases: monthly and weekly. At first monthly prediction of airline passengers process is considered. 41 data used for training 10 data for diagnostic testing process. Figure 4.1 describes the number of monthly airline arriving (a) and departing (b) passengers. For training all input and output data are scaled in the interval [0,1] (Fig.4.2). Figure 4.3 describes the total number of monthly passengers.
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(a)                                                         (b)

Figure 4.1 A plot of the statistical data for monthly passengers: (a) arriving, (b) departing
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(a)                                                                           (b)

Figure 4.2 A plot of the scaled value of statistical data for monthly passengers: (a) arriving, (b) departing
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Figure 4.3 A plot of the statistical data for Monthly Total Number of Passengers: (a) real data, (b) normalized data

Using training data points the learning of WNN has been performed. Figure 4.4(a,b) demonstrate  learning of WNN prediction model for arriving and departing cases.
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Figure 4.4 Plot of SSE:  arriving (a) and departing (a) 

In Figure 4.5, the trajectories of desired and predicted values for both training and checking data for pr=3 are shown. Here, the solid line indicates the trajectory of statistical data and the dashed line indicates the predicted value of time series. The difference between them is very small. These differences might only be seen in large scale. 

In Figure 4.6 the prediction error is shown. Once the WNN has been successfully trained, it is then used for the prediction of the 2009 monthly and weekly airline passengers. The result of the WNN based prediction models are obtained using 3 input, 1 output, 16 hidden neurons. Figure 4.7 demonstrate three step ahead prediction of WNN model.
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Figure 4.5 Plot of the prediction of airline passengers. Plot of output signals: generated by WNN and predicted signal. Curves describing learning and training data:

arriving (a) and departing (b) 
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Figure 4.6 Plot of the prediction error: arriving (a) and departing (b) 
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Figure 4.7 Curves for testing data: arriving (a) and departing (b) 

For comparative analysis NN based prediction models are developed. The results of NN based model was obtained when number of neurons in hidden layer is 16, input layer is 3, output later is 1,learning rate is set at 0.015, the momentum factor is fixed on 0.85. The training epochs of NN is  10000. 

The learning of NN based prediction system is performed at the same initial condition. Figure 4.9 (a) demonstrate learning process of NN. In the result of learning the parameters of NN is determined. In Figure 4.9 (b), the trajectories of desired and predicted values for both training and checking data for pr=3 are shown. Here, the solid line indicates the trajectory of statistical data and the dashed line indicates the predicted value of time series. The plot of prediction error is shown in Figure 4.10. As shown in the figures, in the generalization step, the value of error increases.
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Figure 4.8 Architecture of N
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Figure 4.9 (a) Learning curve of NN. (a) arriving, (b) departing 
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Figure 4.9 (b) Plot of the prediction of airline passengers. Plot of output signals: generated by NN and predicted signal. Curves describing learning and training data: 

(a) arriving and (b) departing 
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Figure 4.10 Plot of the prediction error: (a) arriving and (b) departing 

4.3.1 Analyses of the Results 

The result of simulation of the WNN prediction model is compared with the result of simulation of the NN based prediction model. To estimate the performance of the neural and WNN prediction system, the SSE values of error between the predicted and current output signal are compared.

Comparison of WNN and NN based models is done for monthly and weekly prediction of arriving, departing and total number passengers.  

Table 4.2 provides the comparative results of simulations for monthly and weekly prediction of arriving, departing and total number passengers. As shown in the tables, the performance of WNN prediction model is better than the performance of the NN model. Here result of NN prediction model is given for 2 cases: NN with momentum, NN without momentum.

Table 4.2 Prediction Results Comparisons

	MODEL
	METHOD
	EPOCHS
	SSE

	Monthly Total Number of Arriving Passengers
	NN with momentum
	10000
	0.1080

	
	NN without momentum
	10000
	0.2484

	
	WNN
	3500
	0.0057

	
	
	
	

	Monthly Total Number of Departing passengers
	NN with momentum
	10000
	0.0747

	
	NN without momentum
	10000
	0.3547

	
	WNN
	3500
	0.0009

	
	
	
	

	Monthly Total Number of Passengers
	NN with momentum
	10000
	0.0246

	
	NN without momentum
	10000
	0.2386

	
	WNN
	3500
	0.0000

	
	
	
	

	Weekly Total Number of Passengers
	NN with momentum
	10000
	0.5915

	
	NN without momentum
	10000
	0.9082

	
	WNN
	3500
	0.5575



The simulation results demonstrate that the applied WNN structure has better performance than NN model as shown tables and figures.

4.4 Summary


The brief descriptions of planning the future for passengers demand, and prediction of airline passengers models were considered. The time series prediction model is developed by integrating neural network and wavelet technologies. Using statistical data, the prediction model based on WNN is constructed. Comparative simulation results demonstrate the better performance of WNN prediction model over NN model. 

CONCLUSION

The analysis of application of different forecasting models demonstrate that the models based on softcomputing technologies are more accurate models. In the thesis the development of wavelet neural network based forecasting is considered in order to improve the accuracy of the forecasting.

Wavelet networks include wavelet functions in the neurons of hidden layer of network. The WNN is one of most important and powerful techniques in many areas, and particularly, in forecasting problems. NN models basically use the sigmoid activation function in neurons. However, the sigmoid function is not orthogonal, and the energy of the sigmoid function is limitless, and this leads to slow convergence. Wavelet function is a waveform that has limited duration and an average value of zero. The integration of the localization properties of wavelets and learning abilities of NN shows advantages of WNNs over NN in complex nonlinear system modeling. In the thesis WNNs are used for the forecasting of chaotic time series, for short-term and long-term forecasting. The wavelet analysis approximates the decomposed time series at different levels of resolution.

The application WNN  is considered for forecasting of water consumption and number of airline passengers in North Cyprus. The statistical data 5 years for water consumption and 6 years for airline passengers are taken. The time series prediction model is developed using integration of neural network and wavelet technologies. The structure and learning algorithms of the WNN systems are developed. The gradient and back propogation algorithms are applied for learning of WNN structure. The WNN forecasting model has been realized using MATLAB package. Simulation results of model have been obtained in numerical and graphical formats. The result of simulation of the WNN prediction model is compared with the result of simulation of the NN based prediction model. To estimate the performance of the neural and WNN prediction system, the SSE values of error between the predicted and current output signal are compared. Comparison of WNN and NN based models is done for prediction of water consumption and for prediction of arriving, departing passengers. 

The simulation results have demonstrated that the WNN prediction model has better performance than NN model. Results of this research work allow to learn theory of time series forecasting, practical part is necessary to realize the main ideas. The development of program for considered forecasting methods makes this thesis more complete.
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