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ABSTRACT 

A fundamental aspect of signal processing is filtering. Filtering involves the 

manipulation of the spectrum of a signal by passing or blocking certain portions of the 

spectrum, depending on the frequency of those portions.  

A key element in processing digital signals is the filter. Filters are designed 

according to what kind of manipulation of the signal is required for a particular 

application. There are two basic types of digital filters: Infinite Impulse Response Filter 

(IIR) and the Finite Impulse Response Filter (FIR). 

A microcontroller is a computer on a chip. Because they have on-chip memory 

and I/O circuitry and other circuitries that enable them to function as small standalone 

computers without other supporting circuitry. 

The Microchip PICmicro PIC16F87X family of microcontrollers are popularly 

known for their logic and controlling functions. These features make PIC16F87X 

microcontrollers a competent choice for applications where logic and controlling 

functions are combined with signal processing applications. 

This thesis describes the development of hardware and software for the actual 

realization of digital filters on PIC microcontroller.  An IIR type 2nd order Butterworth 

digital filter has been implemented on a PIC16F877 microcontroller.  It is shown in the 

thesis that digital filters can easily be realized on microcontrollers if a high-level 

programming language is used. 

The PIC microcontroller has been used for the digital filter realization since it is 

a low-cost, widely available and a popular microcontroller.  

The thesis also describes the development of a Matlab based software program 

to design both IIR and FIR type digital filters. The program is user friendly with a 

graphical user interface. Using the program the user can design and obtain the 

parameters for IIR and FIR type lowpass, highpass, and bandpass digital filters. In 

addition, the frequency and the phase responses of the designed filters can be plotted.   
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INTRODUCTION 

Digital signal processing (DSP) is concerned with the representation of signals 

in digital form, and with the processing of these signals and the information that they 

carry. Since the early 1970's, when the first DSP chips were introduced, the field of 

digital signal processing has evolved dramatically. Digital signal processing has become 

an integral part of many commercial products and applications, and is becoming a 

commonplace term. DSP is useful in almost any application that requires the high-speed 

processing of a large amount of numerical data. The data can be anything from position 

and velocity information for a closed-loop control system, to two-dimensional video 

images, to digitized audio and vibration signals. 

In signal processing, signals are often encountered that contain unwanted 

information, such as random noise or interference, or there is a need to selectively 

extract a signal of interest merged with several other signals. Filters are used in these 

situations to separate the signals of interest from others.  

Filters can be analog or digital. Analog filters use electronic circuits to produce 

the required filtering effect, while a digital filter uses a digital processor to perform 

numerical calculations on sampled values of the signal. The processor may be a general 

purpose computing machine, such as a PIC microcontroller or a specialized DSP chip. 

There are two basic types of digital filters: Infinite Impulse Response Filter (IIR) and 

the Finite Impulse Response Filter (FIR).  

Today's microcontrollers are fast, cheap and low power machines that can 

handle just about any control or signal processing application. The microcontroller is a 

direct descendent of the CPU, in fact every microcontroller has a CPU as the heart of 

the device. It is therefore important to understand the CPU in order to ultimately 

understand the microcontroller. The central processor unit is the brain of the 

microcontroller.  The CPU controls all functions and uses the program that resides in 

RAM, EEPROM or EPROM to function.   

Microcontrollers have traditionally been programmed using the native assembly 

language of the target processor.  It is very common nowadays to use high-level 

languages such as Basic, Pascal, and C in programming microcontrollers.  Assembly 

language has the advantage that the execution speed is very fast.  On the other hand, 

developing an assembly language based program is a complex task. High-level 
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languages have the advantage that it is much easier to develop and maintain programs 

developed using these languages. 

The objectives of the work presented within this thesis are to develop a 

microcontroller based digital filter. PIC16F87X series of microcontrollers are used in 

the thesis for the hardware realization of the filter. The high-level programming 

language C is used for software implementation on the PIC microcontroller. 

In addition, it is to develop a Matlab based software for the design of FIR and 

IIR digital filters with given filter specifications, and to plot the frequency and the phase 

responses of the designed filters.  

This thesis is organized into five chapters. The first three chapters present 

background information on the signal processing, analog and digital filters, FIR and IIR 

filter structures and their design. The final two chapters describe the details of the 

developed software program for designing and plotting the FIR and IIR digital filters 

and the microcontroller based digital filter realization. 

 Chapter 1 is an introduction to analog and digital signal processing. 

Advantages, disadvantages and applications of digital signal processing are also 

presented in this chapter. 

In Chapter 2 the theory of filters in general, analog filter types, specifications 

and filter responses are discussed.  Digital filters are introduced. 

Chapter 3 discusses the digital FIR and IIR filter structures and design. First, the 

structure of the filters using different forms is given. The design of the FIR filters based 

on truncated Fourier series and the design based on frequency sampling approach are 

derived. The design of the IIR filters by bilinear transformation is presented. 

Chapter 4 describes the software program developed by the author for the design 

of digital filters.  In this chapter the interfaces and the functions of each component of 

the program are explained.   

Chapter 5 describes the developed microcontroller hardware and software for the 

implementation of digital filters on a PIC microcontroller using a high-level 

programming language.   
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CHAPTER  1  

SIGNALS AND SIGNAL PROCESSING 

1.1 Overview 

Signals play an important role in our daily life. Examples of signals that we 

encounter frequently are speech, music, pictures, and video signals.  

This chapter provides background information about signals and signal 

processing. Also the advantages and disadvantages of digital signal processing will be 

presented in this chapter. 

1.2 What Are Signals? 

A signal is a function of an independent variable such as time, distance, position, 

temperature, pressure. For example speech and music signals represent air pressure as a 

function of time at a point in space. A black-and-white picture is a representation of 

light intensity as a function of two spatial coordinates. The video signal in television 

consists of a sequence of images, called frames, and is a function of three variables: two 

spatial and time. [ 1 ] 

Most signals we encounter are generated by natural means. However, a signal 

can also be generated synthetically or by computer simulation. Signal caries information 

and the objective of signal processing is to extract the information carried by the signal. 

The method of information extraction depends on the type of signal and the nature of 

information being carried by the signal.  

1.3 Classification of Signals 

A signal is also a time-varying measurable quantity whose variation normally 

conveys information.  The quantity is often a voltage obtained from some transducer 

e.g. a microphone. It is useful to define two types of signals, analog and discrete-time 

signals (digital signals). [ 7 ] 
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1.3.1 Analog Signals 

Analog signals, which are continuous functions of time (t) measured in seconds, 

and exist for all values of time in the range -∞ to +∞.  An example of analog signal is 

shown in Figure 1.1. 

 

 

Figure 1.1 Analog Signals 

 

1.3.2 Discrete-Time Signals 

Discrete-time signals exist only at discrete points in time. Such a signal is often 

obtained by sampling an analog signal, i.e. measuring its value at discrete points in 

time. Sampling points are usually separated by equal intervals of time, say T seconds. 

Given an analog signal x(t) and denoting by x[n] the value of x(t) when t=nT, the 

sampling process produces a sequence of numbers: { .., x[-2], x[-1], x[0], x[1], x[2], .. } 

which is referred to as {x[n]} or ' the sequence x[n] '. The sequence exists for all integer 

values of n in the range -∞ to ∞.  

Examples of discrete time signals are: 

 

1. {..., -4, -2, 0, 2, 4, 6, ....}     i.e. a sequence whose nth element, x[n], is 

defined by the formula x[n] = 2n.  It is useful to underline the sample 

corresponding to n = 0. 
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2. {..., 0, ..., 0, 0, 1, 1, 1, ..., 1, ...}   i.e. a “ unit step ” sequence whose nth 

element is:  

 

[ ]
⎩
⎨
⎧

<
≥

=
0n      ,  0
0n      ,   1

nu  

Discrete time signals are represented graphically as shown in Figure 1.2 

 

 

Figure 1.2 Discrete-time Signal 

 

Discrete time signals are often generated by 'analog to digital conversion' (ADC) 

devices which produce binary numbers to represent sampled voltages or currents. The 

accuracy of conversion is determined by the 'word-length ' of the ADC device, i.e. the 

number of bits available for each binary number.  

The process of truncating or rounding the sampled value to the nearest available 

binary number is termed ' quantization ' and the resulting sequence of quantized 

numbers is termed a ‘digital signal'. A digital signal is therefore a discrete time signal 

with each sample digitized for arithmetic processing. 

1.4 Analog Signal Processing 

Analog signals may be "processed" in various ways by circuits typically 

consisting of resistors, capacitors, inductors, transistors and operational amplifiers. 

Examples of the type of processing operations that may be carried out are: 
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1. Scaling (amplification or attenuation) 

Scaling is simply the multiplication of the signal by a positive or a negative 

constant. In the case of analog signals this operation is usually called amplification if 

the magnitude of the multiplying constant called gain is greater than one. If the 

magnitude of the multiplying constant is less than one, the operation is called 

attenuation. 

2. Modulation and Demodulation 

For transmission of signals over long distances, a transmission media such as a 

cable, optical fiber, or the atmosphere is employed. Each such medium has a bandwidth 

that is more suitable for the efficient transmission of signals in the high-frequency 

range.  

As a result, for the transmission of a low-frequency signal over a channel, it is 

necessary to transform the signal to high-frequency signal by means of a modulation 

operation. At the receiving end, the modulated high-frequency signal is demodulated, 

and the desired low-frequency signal is then extracted by further processing. 

3. Multiplexing and Demultiplexing 

For an efficient utilization of a wideband transmission channel, many narrow-

bandwidth low-frequency signals are combined to form a composite wideband signal 

that is transmitted as a single signal.  

The process of combining these signals is called multiplexing which is 

implemented to ensure that a replica of the original   narrow-bandwidth low-frequency 

signals can be recovered at the receiving end. The recovery process is called 

demultiplexing. 

4. Filtering 

One of the most widely used complex signal processing operation is filtering. 

Filtering is used to pass certain frequency components in a signal through the system 

without any distortion and to block other frequency components. The system 

implementing this operation is called a filter. [ 1 ] 

For example, imagine a device for measuring the electrical activity of a baby's 

heart (EKG) while still in the womb. The raw signal will likely be corrupted by the 
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breathing and heartbeat of the mother. A filter might be used to separate these signals so 

that they can be individually analyzed. 

There are many filter types, but the most common are lowpass, highpass, 

bandpass, and bandstop. A lowpass filter allows only low frequency signals (below 

some specified cutoff) through to its output, so it can be used to eliminate high 

frequencies.  

A lowpass filter is handy, in that regard, for limiting the uppermost range of 

frequencies in an audio signal; it's the type of filter that a phone line resembles.  

A highpass filter does just the opposite, by rejecting only frequency components 

below some threshold. An example highpass application is cutting out the audible 60Hz 

AC power "hum", which can be picked up as noise accompanying almost any signal in 

the U.S.  

The designer of a cell phone or any other sort of wireless transmitter would 

typically place an analog bandpass filter in its output RF stage, to ensure that only 

output signals within its narrow, government-authorized range of the frequency 

spectrum are transmitted.  

Engineers can use bandstop filters, which pass both low and high frequencies, to 

block a predefined range of frequencies in the middle. [ 2 ] 

1.5 Digital Signal Processing 

Most – though by no means all – of the signals that we will encounter will 

finally be processed in digital form.  A signal will start life as an analog quantity which 

will be continuously variable.  The processing will be often done on these signals when 

they have been turned into digital format.  Digital signals may be "processed" using 

programmed computers, microcomputers or special purpose digital hardware.  

Digital Signal Processing (DSP) is distinguished from other areas in computer 

science by the unique type of data it uses: signals. In most cases, these signals originate 

as sensory data from the real world: seismic vibrations, visual images, sound waves, etc.  

DSP is the mathematics, the algorithms, and the techniques used to manipulate 

these signals after they have been converted into a digital form. This includes a wide 

variety of goals, such as: enhancement of visual images, recognition and generation of 

speech, compression of data for storage and transmission, etc. [ 2 ] 
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1.6 Digital Signal Processing Applications 

Digital Signal Processing has applications in many areas in science and 

engineering like Medical, Commercial, Communication, etc. Table 1-1 illustrates a few 

of these varied applications.  

 

Table 1-1 Application of Digital Signal Processing [ 2 ] 

Area Application 

Space 
-Space photograph enhancement 

-Intelligent sensory analysis by remote space probes 

Medical 

-Diagnostic imaging (CT, MRI, ultrasound, and others) 

-Electrocardiogram analysis 

-Medical image storage/retrieval 

Commercial 

-Image and sound compression for multimedia presentation 

-Movie special effects 

-Video conference calling 

Communication 

-Voice and data compression 

-Echo reduction 

-Signal multiplexing 

-Filtering 

Military 

-Radar 

-Sonar 

-Ordnance guidance 

-Secure communication 

Industrial 

-Oil and mineral prospecting 

-Process monitoring & control 

-CAD and design tools 
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1.7 Why Process Signals Digitally? 

Signals are naturally analog and need to be converted to digital form for them to 

be processed digitally. Figure 1.3 illustrates this process 

 

 

 

 

 
Figure 1.3 Digital Processing of an Analog Signal  

 

The question might be why process signals digitally, since it may seem easier to 

process them as analog signals. [ 8 ] 

There are more advantages to processing signals digitally than there are 

disadvantages. A list of a few is given with here and discussion will be done on an 

individual basis. These are: 

Analog 

Input 

Analog 

Output 

Analog-to-

Digital 

Converter 

Sample 

and-

Hold 

Digital 

Processor 

Digital -to- 

Analog 

Converter 

Analog 

Lowpass 

Filter 

• Programmability 

• Stability 

• Repeatability 

• Adaptability 

1.7.1 Programmability 

The most important reason why Digital Signal Processing is favored over analog 

signal processing is that it is possible to design one hardware configuration that can be 

programmed to perform a very wide variety of signal processing tasks, simply by 

loading in different software. For example, a digital filter may be reprogrammed from a 

low pass to a high pass with no change in the hardware, which in an analog system 

would result in a complete change of circuit components. 

This programmability of these devices makes them more suitable because they 

can be easily upgraded by simply changing the software in the system. 
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1.7.2 Stability 

Performance is one thing we look into very critically when it comes to the 

design of any system. In analog systems the individual components (resistors, capacitors 

etc.) change their characteristics with changes in temperature. 

Digital circuits will show no variation with temperature throughout their 

guaranteed operating range. Another form of variability that affects analog circuits is 

component aging. DSP circuits can be programmed to detect and compensate for 

changes in the aging of analog and mechanical parts of the system. 

1.7.3 Repeatability 

This refers to the ability to produce the same output with different systems with 

the identical specifications. This is one great advantage of a digital system, because 

analog circuit components have a tolerance specification which causes a spread of 

performance in analog systems. Resistors can have a tolerence of 5% of their value, 

depending on the prize of the component. 

1.7.4 Adaptivity 

This is the ability to change its parameters according to a change in the 

environment. An example of this is the noise cancellation system in a car. In this case 

the noise that is cancelled is originally caused by the engine and the resonances set up in 

the body panels by engine vibrations. 

The noise cancellation system takes the engine speed as a reference and attempts 

to produce an “anti-noise“ signal to cancel the cockpit noise. There are microphones in 

each headrest that determine the success of the attempt. Based on the changes detected 

by the microphones, the system changes the characteristics of the anti-noise until the 

best noise reduction is achieved. When the engine speed changes, the systems adapts 

once more to the new engine speed. 

This answers the question asked earlier about why convert from analog to 

digital. Only a few of the advantages of digital signal processing over analog are listed. 

The list goes on and can be found in books that cover the subject of digital signal 

processing. 
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1.8 Disadvantages of Digital Signal Processing 

Since no system is perfect there are also some disadvantages of digital 

processing, some of them being: 

• DSP designs can be expensive especially for high bandwidth signals 

where fast analog/digital conversion is required. 

• The design of DSP systems can be extremely time-consuming and a 

highly complex and specialized activity.  There is an acute shortage of 

computer science and electrical engineering graduates with the 

knowledge and skill required. 

• The power requirements for DSP devices can be high, thus making them 

unsuitable for battery powered portable devices such as mobile 

telephones.  Fixed point processing devices (offering integer arithmetic 

only) are available which are simpler than floating point devices and less 

power consuming.  However the ability to program such devices is a 

particularly valued and difficult skill. 

However the advantages outweigh the disadvantages and with the cost of digital 

processor hardware constantly decreasing, there is an increase in the use of DSPs. [ 8 ] 

1.9 Summary 

This chapter presented information about signal definition, classification, and 

some examples of signals. Advantages, disadvantages and applications of digital signal 

processing have also been listed in this chapter. 
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CHAPTER  2  

ANALOG AND DIGITAL FILTER 

2.1 Overview 

Filters are signal conditioners. They function by accepting an input signal, 

blocking pre-specified frequency components, and passing the original signal minus 

those components to the output. 

In this chapter the theory of Filters in general, analog filter design and filter 

responses will be discussed.  Digital filtering will be introduced. 

2.2 Filter 

Filtering is a process of selecting, or suppressing, certain frequency components 

of a signal. A coffee filter allows small particles to pass while trapping the larger grains. 

A filter does a similar thing, but with more subtlety. 

In signal processing, the function of a filter is to remove unwanted parts of the 

signal, such as random noise, or to extract useful parts of the signal, such as the 

components lying within a certain frequency range. The following block diagram 

illustrates the basic idea. [ 8 ] 

 

 

 

 

 

 

 

Figure 2.1 Basic idea of how filters work 
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There are two main kinds of filters, analog and digital. They are quite different 

in their physical makeup and in how they work. An analog filter uses analog electronic 

circuits made up from components such as resistors, capacitors and op amps to produce 

the required filtering effect. Such filter circuits are widely used in such applications as 

noise reduction, video signal enhancement, graphic equalizers in hi-fi systems, and 

many other areas.  

There are well-established standard techniques for designing an analog filter 

circuit for a given requirement. At all stages, the signal being filtered is an electrical 

voltage or current which is the direct analogue of the physical quantity (e.g. a sound or 

video signal or transducer output) involved. 

A digital filter uses a digital processor to perform numerical calculations on 

sampled values of the signal. The processor may be a general-purpose computer such as 

a PC, or a specialized Digital Signal Processor chip. [ 5 ] 

2.2.1 Analog Filter Types 

The most common filter Types are the Butterworth, Chebyshev, and Bessel 

types. Many other types are available, but 90% of all applications can be solved with 

one of these three.  

Butterworth ensures a flat response in the passband and an adequate rate of 

rolloff. A good "all rounder" the Butterworth filter is simple to understand and suitable 

for applications such as audio processing.  

The Chebyshev gives a much steeper rolloff, but passband ripple makes it 

unsuitable for audio systems. It is superior for applications in which the passband 

includes only one frequency of interest (e.g., the derivation of a sinewave from a square 

wave, by filtering out the harmonics). 

The Bessel filter gives a constant propagation delay across the input frequency 

spectrum.  

 13



 

2.2.2 Standard Analog Filter Blocks 

The generic filter structure (Figure 2.2) lets us realize a highpass or lowpass 

implementation by substituting capacitors or resistors in place of components G1-G4. 

Considering the effect of these components on the op-amp feedback network, one can 

easily derive a lowpass filter by making G2/G4 into capacitors and G1/G3 into resistors. 

Making G2/G4 into resistors and G1/G3 into capacitors yields the highpass 

implementation.  

 

 

Figure 2.2 Standard Analog Filter Blocks 
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2.2.3 Filtering Definitions 

 The range of frequencies that is allowed to pass through is called the passband, 

and the range of frequencies that is blocked by the filter is called the stopband. Various 

types of filters can be defined depending on the nature of the filtering operation. In most 

cases the filtering operation for analog signals is linear and is described by the 

convolution integral 

∫
∞

∞−
−= τττ dxthty )()()(       (2.1) 

Where x(t) is the input signal and y(t) is the output of the filter characterized by an 

impulse response h(t). 

A lowpass filter passes all low-frequencies components below a certain 

specified frequency fc called the cutoff frequency, and blocks all high-frequency 

components above   fc. A highpass filter passes all high-frequencies components above 

a certain cutoff frequency fc, and blocks all high-frequency components below fc.  

A bandpass filter passes all frequency components between two cutoff 

frequencies fc1 and fc2, and blocks all frequency below the frequency fc1 and above the 

frequency fc2.  

A bandstop filter blocks all frequency components between two cutoff 

frequencies fc1 and fc2, and passes all frequency below the frequency fc1 and above the 

frequency fc2. A bandstop filter designed to block a single frequency component is 

called a notch filter. 

A signal may get corrupted unintentionally by an interfering signal called 

interference or noise. In many applications the desired signal occupies a low-frequency 

band from dc to some frequency fL Hz, and its corrupted by a high–frequency noise 

with frequency components above fH  Hz with fH > fL  . In such cases, he desired signal 

can be recoverd from the noise-corrupted signal by passing the latter through a lowpass 

filter with  a cutoff  frequency fc where  fL < fc < fH . A common source of noise is 

power lines radiating electric and magnetic fields. The noise generated by power lines 

appears as 60-Hz sinusoidal signal corrupting the desired signal and can be removed by 

passing the corrupted signal through a notch filter with a notch frequency at 60 Hz. [ 1 ]  
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2.2.4 Ideal Filters 

The design of a classical analog filter, in many respects, remains today as it was 

practiced during the early days of radio.  The design objective of the radio engineer was 

one of shaping the frequency spectrum of a received or transmitted signal using 

modulators, demodulators, and frequency selective filters.  Filter designs were based, to 

various degrees, on lowpass, highpass, bandpass, bandstop, and all-pass models.  The 

frequency response of an analog filter system is defined by H(jΩ), where Ω  is called 

the analog frequency and is measured in radians per second.  The mathematical 

specifications of classic ideal filters are summarized below: [ 6 ] 

 

Table 2-1 mathematical specifications of classic ideal filters 

 
Filter type Mathematical specifications 

Ideal Lowpass 

⎩
⎨
⎧ ΩΩ∈Ω

=Ω
�otherwise0

],[-for1
|)(| ppjH  

Ideal Highpass 
| ( )|

0 for [- , ]
1 otherwise

p pH jΩ
Ω Ω Ω

=
∈⎧

⎨
⎩

 

Ideal Bandpass 
| ( )|

1 for [- ,- ] or [ , ]
0 otherwise
H L L HH jΩ

Ω Ω Ω Ω Ω Ω
=

∈ ∈⎧
⎨
⎩

Ideal Bandstop 
| ( )|

0 for [- ,- ] or [ , ]
1 otherwise
H L L HH jΩ

Ω Ω Ω Ω Ω Ω
=

∈ ∈⎧
⎨
⎩

 

All-pass | ( )|H jΩ Ω= ∀1  
 
 

 

Figure 2.3 Classical ideal filter models 
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2.3 Analog Lowpass Filter Design 

2.3.1 Filter Specification 

In practice, the magnitude response characteristic of a lowpass filter in the 

passband and in the stopband cannot be constant and are therefore specified with some 

acceptable tolerances. A transition band is specified between the passband and the 

stopband to permit the magnitude to drop off smoothly. [ 1 ] 

 

 

Figure 2.4 Normalized magnitude specification for an analog lowpass filter 

 

 As indicated in figure 2.4, in the passband defined by pΩ≤Ω≤0 , we require 

pap jH δδ +≤Ω≤− 1|)(|1 ,  for pΩ≤Ω || .     (2.2) 

implying that the magnitude approximate unity within an error of  pδ± .In the stopband, 

defined by ∞≤Ω≤Ωs , we require 

sa jH δ≤Ω |)(| ,   for ∞≤Ω≤Ω ||s .   (2.3) 

implying that the magnitude approximate zero within an error of  sδ . The 

frequency andpΩ sΩ are, respectively, called the passband edge frequency and the 

stopband edge frequency. The limits of the tolerances in the passband and the 

stopband, pδ and sδ , are called ripples.  
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Usually these ripples are specified in dB in term of the peak passband ripple pα and the 

minimum stopband attenuation sα , defined by 

)1(log20 10 pp δα −−=  dB       (2.4) 

)(log20 10 ss δα −=  dB      (2.5) 

 Often, the filter specifications are given in term of the loss function or attenuation 

function  in dB, which is defined as the negative of the gain in dB, i.e., )(Ωa

|)(|log20 10 Ω− jHa . 

In analog filter theory two additional parameters are defined. The first one, 

called the transition ratio or selectivity parameter, is defined by the ratio of the 

passband edge frequency  and the stopband edge frequency   , and is usually 

denoted by 

pΩ sΩ

spk ΩΩ= /         (2.6)  

Note that for a lowpass filter, k < 1. The second one, called the discrimination 

parameter and defined as  

1/ 2
1 −= Ak ε        (2.7) 

 

2.4 Butterworth Filter 

The Butterworth filter is one of the most basic electronic filter designs. It is 

designed to have a frequency response which is as flat as mathematically possible in the 

passband. 

It was first described by the British engineer S. Butterworth. The most basic 

Butterworth filter is the standard first-order low-pass filter, which can be modified into 

a high-pass filter, or placed in series with others to form band-pass and band-stop filters, 

and higher order versions of these. [ 2 ] 
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2.4.1 Butterworth Approximation 

The magnitude-squared response of an analog lowpass Butterworth filter of N-th 

order is given by 

N
c

a jH 2
2

)/(1
1|)(|
ΩΩ+

=Ω      (2.8) 

It can be easily shown that the first 2N-1 derivatives of  at  are 

equal to zero, and as a result, the Butterworth filter is said to have maximally flat 

magnitude at

2|)(| ΩjHa 0  =Ω

0  =Ω .The gain in dB is equal to zero, and at cΩ=Ω   , the gain is 

approximately  –3 dB. Therefore, cΩ is often called the 3-dB cutoff frequency. [ 1 ] 

As mentioned, the frequency response of the Butterworth filter is maximally flat 

(i.e. no ripples) in the passband, and a frequency response which slopes off towards zero 

in the stopband. As shown in figure 2.5 on a logarithmic Bode plot, the cut band slopes 

off linearly towards negative infinity.  

For a first-order filter, the cut line slopes off at -6 dB per octave, for second-

order, -12 dB per octave, etc. All first-order filters are actually the same filter and so 

have the same frequency response. The Butterworth is the only filter that maintains this 

same shape for higher orders stopband. [ 4 ] 

 

  

 

 

Figure 2.5 A logarithmic Bode plot for Butterworth filter 
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The two parameters completely characterizing a Butterworth filter are therefore 

the 3-db cutoff frequency  and the order N.  The order N is given by cΩ

 

[ ]
)/1(log
)/1(log

)/(log
/)1(log

2
1

10

110

10

22
10

k
kA

N
ps

=
ΩΩ

−
=

ε
    (2.9) 

where 1/ 2
1 −= Ak ε , spk ΩΩ= /   

The transfer function of the Butterworth lowpass filter is given by 

 

∏∑ =

−

=
−

Ω
=

+

Ω
== N

l l

N
C

N

l
l

l
N

N
C

N
a

pssdssD
CsH

1

1

0
)()(

)(    (2.10)  

where   , ]2/)12([ NlNj
cep −+Ω= π

l N1,2,..., =l  

 

Figure 2.6 shows magnitude response of the normalized Butterworth lowpass filter with 

 = 1 for some typıcal values of  N. cΩ

 

Figure 2.6 Typical butterworth lowpass filters responses 
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2.5 Chebyshev Filters 

Chebyshev filters are used to separate one band of frequencies from another. 

They are more than adequate for many applications. The primary attribute of Chebyshev 

filters is their speed. These filters [ 2 ] are named from their use of the Chebyshev 

polynomials, developed by the Russian mathematician Pafnuti Chebyshev (1821-1894).  

2.5.1 Chebyshev Approximation 

In this case, the approximation error, defined as the difference between the ideal 

brickwall characteristic and the actual response, is minimized over a prescribed band of 

frequencies. In fact the magnitude error is equiripple in the band.  

There are two types of Chebyshev transfer functions. In the type 1 

Approximation, the magnitude characteristic is equiripple in the passband and 

monotonic in the stopband, as shown in figure 2.7 [ 1 ] 

 

 

Figure 2.7 Typical Type 1 Chebyshev lowpass filter response 

 

From the figure 2.7 it is seen that the squared-magnitude response is equiripple 

between and , and it decreases monotonically for all 0=Ω 1=Ω 1>Ω . 
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In the type 2 approximation, the magnitude response is monotonic in the 

passband and equiripple in the stopband, as shown in figure 2.8  

 

 

 

Figure 2.8 Typical Type 2 Chebyshev lowpass filter responses  

 

The type1 Chebyshev transfer function Ha(s) has a magnitude response given by  

 

)/(1
1|)(| 22

2

pN
sa T

jH
ΩΩ+

=Ω
ε

,     (2.11) 

 

where  is the Chebyshev polynomial of order N: )(ΩNT
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The order N is given by  

 

[ ]
)/1(cosh
)/1(cosh

)/(cosh
/)1(cosh

1
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1

21

k
kAN

ps
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−

−

=
ΩΩ

−
=

ε ,    (2.13)  

where 1/ 2
1 −= Ak ε , spk ΩΩ= /   

 

The type 2 Chebyshev magnitude response, also known as the inverse 

Chebyshev response, exhibits a monotonic behavior in the passband with maximally flat 

response at  and an equiripple behavior in the stopband. The square- magnitude 

response expression here is given by 

0=Ω
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    (2.14) 

 

For the  type 2 Chebyshev the order N is also given by  
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where 1/ 2
1 −= Ak ε , spk ΩΩ= /  

  

2.6 Elliptic Approximation (Cauer filter) 

An Elliptic filter, also known as a Cauer filter, has an equiripple passband and 

an equiripple stopband magnitude response, as shown in Figure 2.9 for typical elliptic 

lowpass filters. [ 1 ]  
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Figure 2.9 Typical elliptic lowpass filter responses  

 

 

The transfer function of an elliptic filter meets a given set of filter specification, 

passband edge frequency and stopband edge frequency pΩ sΩ , passband ripple and a 

minimum stopband attenuation A, with the lowest filter order N. The square- magnitude 

response of an elliptic lowpass filter is given by 

 

)/(1
1|)(| 22

2

pN
a R

jH
ΩΩ+

=Ω
ε

,     (2.16) 

 

where  is rational function of order N that satisfies the property )(ΩNR

)(1/ )/1( Ω=Ω NN RR with the roots of its numerator lying within the interval 10 <Ω<  

and the roots of its denominator lying in the interval ∞<Ω<1 .  

For most applications, the filter order meeting a given set of specifications of 

passband edge frequency , passband ripplepΩ ε , stopband edge frequency , and the 

minimum stopband ripple A can be estimated using the formula : 

sΩ
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2.7 Bessel Filters 

The term Bessel refers to a type of filter response, which features flat group 

delay in the passband as shown in figure 2.10. This is the characteristic of Bessel filters 

that makes them valuable to designers. [ 3 ] 

 

 

 

Figure 2.10 Group delay characteristic of Bessel filters 
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The Bessel approximation has a smooth passband and stopband response, like 

the Butterworth. For the same filter order, the stopband attenuation of the Bessel 

approximation is much lower than that of the Butterworth approximation as shown in 

figure 2.11  

 

 

Figure 2.11 Typical elliptic lowpass filter responses  

 

It can be seen that there is no ripple in the passband of a Bessel filter, and that it 

does not have as much rejection in the stop band as a Butterworth filter.The phase 

response of the three filter types is shown in figure 2.12. The Bessel response has the 

slowest rate of change of phase. [ 3 ] 

 

 

Figure 2.12 phase response of the three filter types 
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2.8 Filter Comparison  

The following table gives a summary of Advantages and Disadvantages for the 

three filter types   

Table 2-2 Advantages and Disadvantages for the three filter types [ 4 ] 

Advantages: 

Maximally flat magnitude response in the passband.  

Good all-around performance.  

Pulse response better than Chebyshev.  

Rate of attenuation better than Bessel.  

Butterworth 

response 

Disadvantages:  

Some overshoot and ringing in step response.  

Advantages:  

Better rate of attenuation beyond the pass-band than Butterworth
Chebyshev type 1 

response 
Disadvantages:  

Ripple in pass-band. 

Considerably more ringing in step response than Butterworth.  

Advantages:  

Flat magnitude response in passband with steep rate of 

attenuation in transition-band.  

 
Chebyshev type 2 

response 
Disadvantages:  

Ripple in stopband.  

Some overshoot and ringing in step response 

Advantages:  

Best step response-very little overshoot or ringing.  

Bessel response Disadvantages:  

Slower initial rate of attenuation beyond the pass-band than 

Butterworth.  
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2.9 Digital Filters 

Digital filters are used for two general purposes [ 5 ]: separation of signals that 

have been combined, and restoration of signals that have been distorted in some way. 

Analog (electronic) filters can be used for these same tasks; however, digital filters can 

achieve far superior results. Digital filters are a very important part of DSP. In fact, their 

extraordinary performance is one of the key reasons that DSP has become so popular.  

2.9.1 Principal of digital filter 

A digital filter takes a digital input, gives a digital output, and consists of digital 

components. In a typical digital filtering application, software running on a digital 

signal processor reads input samples from an A/D converter, performs the mathematical 

manipulations dictated by theory for the required filter type, and outputs the result via a 

D/A converter. An analog filter, by contrast, operates directly on the analog inputs and 

is built entirely with analog components, such as resistors, capacitors, and inductors. 

The analog input signal must first be sampled and digitized using an A/D 

converter. The resulting binary numbers, representing successive sampled values of the 

input signal, are transferred to the processor, which carries out numerical calculations 

on them.  

These calculations typically involve multiplying the input values by constants 

and adding the products together. If necessary, the results of these calculations, which 

now represent sampled values of the filtered signal, are output through a DAC (digital 

to analog converter) to convert the signal back to analog form. Note that in a digital 

filter, the signal is represented by a sequence of numbers, rather than a voltage or 

current. 

The block diagram in figure 2.13 shows the basic setup of such a system 
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Figure 2.13 Principal of digital filter 

 

2.9.2 Advantages of using digital filters  

The following list gives some of the main advantages of digital filters over analog 

filters. [ 5 ] 

1. A digital filter is programmable, i.e. its operation is determined by a 

program stored in the processor's memory. This means the digital filter 

can easily be changed without affecting the circuitry (hardware). An 

analog filter can only be changed by redesigning the filter circuit. 

2. Digital filters are easily designed, tested and implemented on a general-

purpose computer or workstation. 

3. The characteristics of analog filter circuits (particularly those containing 

active components) are subject to drift and are dependent on temperature. 

Digital filters do not suffer from these problems, and so are extremely 

stable with respect both to time and temperature. 

4. Unlike their analog counterparts, digital filters can handle low frequency 

signals accurately. As the speed of DSP technology continues to 

increase, digital filters are being applied to high frequency signals in the 

RF (radio frequency) domain, which in the past was the exclusive 

preserve of analog technology. 

5. Digital filters are very much more versatile in their ability to process 

signals in a variety of ways; this includes the ability of some types of 

digital filter to adapt to changes in the characteristics of the signal. 
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6. Fast DSP processors can handle complex combinations of filters in 

parallel or cascade (series), making the hardware requirements relatively 

simple and compact in comparison with the equivalent analog circuitry. 

2.9.3 Types of digital filters  

A digital filter, in its most general form, takes in an input sequence of numbers 

x[n], performs computations on these numbers and outputs results of these 

computations as another sequence of numbers y[n]. Generally, y[n] is computed as the 

sum of weighed present and previous input samples and previous output samples, as 

shown in Equation 2.17. [13] 

N]-y[nb  ....  2]-y[nb 1]-y[nb         
  M]-x[na  ....  1]-x[na  x[n]a  y[n]

N21

M10

+++
++++=

   (2.17) 

 

where a0, a1, ... aM and b1, b2, ... bN are constants and referred to as filter coefficients. 

M+1 and N are the number of input and output samples used for computation. [13] 

2.9.4 FIR and IIR filter  

There are two basic types of digital filters Infinite Impulse Response (IIR) filter 

and the Finite Impulse Response (FIR) filter. As indicated in Equation 2.17, if b1 

through bN are all zeros, then y[n] does not depend on the previous output samples (i.e., 

there is no feedback). In this case, this type of filter is termed as a Finite Impulse 

Response (FIR) filter.  

Since there is no feedback term if the input sequence stops (i.e., x[n]’s become 

zeros), then y[n]’s also will become zeros after some delay. If any one of the 

coefficients b1 through bN are non-zero, the filter is called an Infinite Impulse Response 

(IIR) filter. For the FIR filter, the sequence of coefficients a0, a1, .. aM also represent the 

response of the filter for a unit impulse (also called an impulse response). 
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The design of the IIR filters is similar to that of an analog filter whereas the 

design of the FIR filters is unique to digital filtering. The order of a FIR to meet the 

desired filter specifications is much greater then that of an IIR filter. This may be so, but 

FIR filters possess characteristics unknown to IIR filters. The most important of these 

are linear phase and constant group delay. This makes FIR filters a necessity in 

applications which demand little phase distortion. [8] 

 

The advantages of FIR filters are: 

  

• They can be designed to have linear phase response with respect to 

frequency, whereas IIR filters do not have linear phase response. 

• They are always stable, unlike IIR filters. 

 

The disadvantages of FIR filters over IIR filters are: 

 

• FIR filters take relatively more memory and computation time. 

• FIR filters cannot give sharper cut-off than IIR filters for the same 

number of filter coefficients. 

2.10 Summary 

This chapter discussed analog filter definitions, types and specifications. Filter 

responses were discussed and compared. An introduction to digital filtering and digital 

filter types was given. 
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CHAPTER  3  

DIGITAL FILTER STRUCTURES AND DESIGN 

3.1  Overview 

After the description of digital filters have been introduced in the last chapter, 

the Finite Impulse Response (FIR) filters and the Infinite Impulse Response (IIR) filters 

will be discussed in this chapter. It will include the block diagram, realization, 

specifications, and basic approaches to filter design. 

3.2  Digital Filter Structure 

The actual implementation of a digital filter could be either in software or hard- 

ware form, depending on applications. A structural representation using interconnected 

basic building blocks is the first step in the hardware or the software implementation of 

a digital filter.  The structural representation provides the relations between some 

pertinent internal variables with the input and the output that in turn provide the keys to 

the implementation. [1] 

3.2.1 Block Diagram Representation  

The I/O relations of a digital filter can be expressed in the time domain by the 

convolution sum 

∑
∞

−∞=

−=
k

knxkhny ][][][       (3.1) 

or by the linear constant coefficient difference equation 
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or by the state equations 

Bx[n]  As[n]  1] s[n +=+       (3.3a) 

Dx[n]  Cs[n]  y[n] +=        (3.3b) 
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An N point FIR digital filter is given by the following transfer function  

k
N

k

zkhzH −
−

=
∑=

1

0

)()(        (3.4) 

For a given input sequence X(z), the output from the filter Y(z) is 
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A digital filter can be implemented on a general-purpose digital computer in 

software form or with special-purpose hardware. To this end, it is necessary to describe 

the I/O relationship by means of a computational algorithm.  

3.2.1.1. Basic Building Blocks  

The computational algorithm of an LTI digital filter can be conveniently 

represented in block diagram form using the basic building blocks representing the unit 

delay, the multiplier, and the adder as shown in Figure 3.1. In addition, this figure 

shows a pick-off node that splits a single incoming signal into multiple identical 

outgoing signals. Also the symbol of delay is represented by . 1−z

 

 

Figure 3.1 (a) pick-off node, (b) adder, (c) multiplier and (d) unit delay 

3.2.2 Analysis of Block Diagram 

Digital filter structures represented in block diagram form can often be analyzed 

by writing down the expressions for the output signal of each adder as a sum of its 

inputs, developing a set of equations relating the filter input and output signals in terms 

of all internal signals. Eliminating the unknown internal variables then results in the 
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expression for the output signal as a function of the input signal and the filter 

parameters that are the multiplier coefficients. 

 

 

 

Figure 3.2 Single loop digital filter structure 

 

3.2.2.1. The Delay-Free Loop Problem 

For physical realizability of the digital filter structure, it is necessary that the 

block diagram representation contains no delay-free loop, i.e., feedback loops without 

any delay element. Illustration of a typical delay-free loop that appears unintentionally 

in a specific structure is shown in Figure 3.3. Analysis of this structure yields  

   ]}[])[][({][ nvnynwABny ++=  

 

 

Figure 3.3 An example of a delay free loop 

As noticed the determination of the current value of y[n] requires the knowledge 

of the same value which is physically impossible. 

A simple graph-theoretic-based method has been proposed to detect the presence 

of delay-free loops in an arbitrary digital filter structure, along with the methods to 

locate and remove these loops without altering the overall input-output relations. The 

 34



removal is achieved by replacing the portion of the structure containing the delay-free 

loops by an equivalent realization with no delay-free loops as shown in figure 3.4 

 

 

 

Figure 3.4 Realization of Figure 3.3 with no delay-free loop 

 

3.2.2.2. Canonic and Noncanonic Structures 

A digital filter structure is said to be canonic if the number of delays in the block 

diagram representation is equal to the order of the difference equation (i.e., the order of 

the transfer function). Otherwise, it is a noncanonic structure.  

3.3 Basic FIR Digital Filter Structures 

A causal FIR filter of order N is characterized by a transfer function, 
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The I/O relation of the FIR filter is given by 
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where y[n] and x[n] are the output and input sequences, respectively. Several methods 

of realization are outlined below. 
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3.3.1 Direct Form 

An FIR filter of order N is characterized by N coefficients and requires N 

multipliers and N -1 two-input adders for implementation. Structures in which the 

multiplier coefficients are precisely the coefficients of the transfer function are called 

direct form structures. A direct form realization on an FIR filter can be readily 

developed from Eq. (3.7). Figure 3.5 is an indication of this structure in two ways for N 

= 5, where:  

  ]4[]4[]3[]3[]2[]2[]1[]1[][]0[][ −+−+−+−+= nxhnxhnxhnxhnxhny  

 

 

Figure 3.5 Direct form for FIR structure 

 

3.3.2 Cascade Form 

A higher-order FIR transfer function can also be realized as a cascade if FIR 

sections with each section characterized by either a first-order or a second-order transfer 

function. For example, Eq (3.6) can be factorized and be written in the form: 

∏
=

−− ++=
K

k
kk zzhzH

1

2
2

1
1 )1(]0[)( ββ       (3.8) 

where K=N/2 if N is even, and K=(N-1)/2 if N is odd, with 02 =kβ . A cascade 

realization of Eq. (3.8) for N=6 is shown in Figure 3.6 requiring three second-order 

sections. Note that the structure of Figure 3.6 is canonic form. 
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Figure 3.6 Cascade form FIR filter structure for a sixth order filter 

 

3.3.3 Linear-Phase FIR Structure 

Consider the realization of a length-7 Type 1 FIR transfer function with a 

symmetric impulse response: 

( ) ( ) ( ) 342516

654321

]3[]2[]1[1]0[
]0[]1[]2[]3[]2[]1[]0[)(

−−−−−−

−−−−−−

++++++=

++++++=

zhzzhzzhzh
zhzhzhzhzhzhhzH

 (3.9) 

A similar decomposition can be applied for the realization of a length- 8 Type 2 

FIR transfer function as follows:  

( ) ( ) ( ) ( )43352617 ]3[]2[]1[1]0[)( −−−−−−−− +++++++= zzzhzzhzzhzhzH  (3.10) 

Figure 3.7(a,b) shows the two types realization. [1] 

 

 

 

 

 

 

 

Figure 3.7 Linear-phase FIR structures: (a) Type 1, and (b) Type 2 
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3.4 Digital Filter Specifications 

The magnitude response specification of a digital filter in the passband and in 

the stopband is given with some acceptable tolerance. In addition, a transition band is 

specified between the passband and the stopband to permit the magnitude to drop off 

smoothly. Figure 3.8 shows the specification for a lowpass filter. 

 

In the passband: 

p
j

p eG δδ ω +≤≤− 1)(1 ,  for pωω ≤||    (3.11) 

In the stopband: 

s
jeG δω ≤|)(| ,  for πωω ≤≤ ||s     (3.12) 

 

Where pω  and sω  are respectively the passband edge frequency and stopband 

edge frequency. The limits of the tolerance in the passband and stopband, pδ and sδ , are 

usually called the peak ripple values.  

 

 

Figure 3.8 Typical magnitude specifications of digital filter 

 

 

 38



Digital filter specifications are often given in terms of the loss function, 

|)(|log20)( 10
ωω jeGA −= , in  dB. 

Here the peak passband ripple and the minimum stopband attenuation are given in dB. 

i.e., the loss specifications of a digital filter are given by 

 

)1(log20 10 pp δα −−=  dB,      (3.13) 

)(log20 10 ss δα −=  dB      (3.14) 

 

 
Figure 3.9 Alternative magnitude specifications for a digital filter 

 

The maximum passband attenuation )1(log20 2
10max εα +−=  dB   (3.15) 

For <<pδ  1, as is typically the case, it can be shown that 

pp αδα 2)21(log20 10max ≅−−=     (3.16) 

Let denote the sampling frequency in Hz, and and denote, respectively, 

the passband and stopband edge frequency in Hz. Then the normalized angular edge 

frequencies in radian are given by : 

TF pF sF

TF
F
F

F p
T

p

T

p
p π

π
ω 2

2
==

Ω
=      (3.17) 

  TF
F

F
F s

T

s

T

s
s π

π
ω 2

2
==

Ω
=      (3.18) 
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3.5 Estimation of FIR Filter Order 

For the design of FIR lowpass digital filters, several formulas had been 

introduced by researchers, like Kaiser and Park [10], [11], to estimate the minimum 

value of the filter length N directly from the filter’s specifications. A rather simple 

approximation formula developed by Kaiser is  

 

Kaiser approximation:  

πωω
δδ

2/)(6.14
13)(log20 10

ps

spN
−

−−
≅    (Moderate passband)     (3.19) 

Park approximation:  

πωω
δ

2/)(
22.0)(log20 10

ps

sN
−

+−
≅    (Narrow passband)   (3.20) 

 

πωω
δ

2/)(27
94.5)(log20 10

ps

pN
−

+−
≅    (Wide passband)   (3.21) 

 

 Note that in the above formulas the filter length of the FIR filter is inversely 

proportional to the transition band width and does not depend on the actual location of 

the transition band. This implies that a sharp cutoff FIR filter with narrow transition 

band would be of very long length, while an FIR filter with a wide transition band will 

have a very short length. 

 

3.6 Design of FIR Filters 

Two methods for designing FIR filters will be discussed in this section. The 

direct and straightforward method is based on truncating the Fourier series 

representation of the prescribed frequency response. The other method is based on the 

observation that, for a length-N FIR filter, N distinct equally spaced frequency samples 

of its frequency response constitute the N-point DFT of its impulse response, hence, the 

impulse response sequence can be readily computed by applying an inverse DFT of 

these frequency samples. 
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3.6.1 FIR Filter Design Based on Truncated Fourier series 

The Fourier coefficients { } are impulse response samples of the desired 

frequency response function  , where 

][nhd

][ ωj
d eH

∑
∞

−∞=

−=
n

nj
d

j
d enheH ωω ][][       (3.22) 

and it is given by: 

,)(
2
1][ ω
π

ωωπ

π
deeHnh njj

dd ∫−
=   -∞ ≤ n ≤ ∞   (3.23) 

Because the corresponding impulse response sequence { } is of infinite 

length and noncausal, it is objective to find a finite duration impulse response sequence 

{ ]} of length 2N+1 whose DTFT  approximate the desired DTFT 

in some sense. 

][nhd

[nhd ][ ωjeHt

][ ωj
d eH

 

3.6.1.1. Impulse Response of Ideal Filter 

For an ideal lowpass filter has a zero-phase frequency response 

⎩
⎨
⎧

≤≤

≤
=

πωω
ωωω

c

cj
LP eH

           0
            1

)(      (3.24) 

The corresponding impulse response coefficients are given by: 

∞≤≤∞−= n
n

n
nh c

LP ,
sin

][
π
ω

     (3.25) 

As the impulse response is doubly infinite, the coefficients outside the range  

–M ≤ n ≤ M is setting equals to zero. The new length of the LPF N = 2M + 1. The new 

coefficients when shifting to the right will be: 

( )   
othewise                                     0,

10              , 
))(sin(

][
⎪⎩

⎪
⎨

⎧ −≤≤
−

−
=

Nn
Mn

Mn
nh

c

LP π
ω

)
   (3.26) 

Likewise, the impulse response coefficients  of the ideal highpass filter 

are given by: 

][nhHP
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⎪
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nh
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π
ω

π
ω

    (3.27) 

Also, the impulse response coefficients  of the ideal bandpass filter with 

cutoffs at 

][nhBP

1cω  and 2cω  are given by: 

0,
)sin()sin(

][ 12 ≥−= n
n

n
n

n
nh cc

BP π
ω

π
ω

   (3.28) 

And that of an ideal bandstop filter with cutoffs at 1cω and 2cω  are given by: 

⎪
⎩

⎪
⎨

⎧

>−

=
−

−
=

0
)sin()sin(

0
)(

1
][

21
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nfor
nh
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BS

π
ω

π
ω

π
ωω

   (3.29) 

3.6.1.2. Gibbs Phenomenon 

Since the Fourier series represents a continuous time signal as a linear 

combination of continuous function, therefore it should be expected that the Fourier 

series is well suited for modeling smooth signals. Recall that the Fourier series is the 

infinite sum of weighted complex exponentials given by: 

          (3.30) ∑
∞

−∞=

=
k

k tjkatx )exp()( 0ω

In practice, it may be more partial to consider using only a finite sum to 

approximate . Using 2N+1 coefficients, the reconstruction approximation of  

shall be defined to be: 

)(tx )(tx

∑
−=

=
N

Nk
kN tjkatX )exp()( 0ω      (3.31) 

Any difference between  and is attribute to the use of a finite number 

of terms (harmonics) to reconstruct . Defining the approximation error to be: 

)(tX N )(tx

)(tx

     (3.32) ∑
−=

−=−=
N

Nk
kNN tjkatxtXtxte )exp()()()()( 0ω

The number of harmonics required to produce an error that does not exceed a 

given mean error is signal-dependant. 
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Figure 3.10 shows the convergence of the Fourier series representation of a 

square wave. The finite series approximation of a square wave by different values of N 

has been produced. The behavior of partial sum in the vicinity of discontinuity exhibits 

ripples. As N increases, the ripple in the partial sum becomes compressed toward the 

discontinuity, but any finite values of N, the peak amplitude of these ripples remain 

constant. This behavior is called the Gibbs phenomenon. [3] 

 

 

Figure 3.10 Convergence of the Fourier series representation of square wave 

 

Now, if an ideal filter is considered the impulse response of it will be infinite 

length. To achieve simple truncation of ideal infinite length impulse response a window 

should be used. First, a rectangular window will be used, and it is given by: 

⎩
⎨
⎧ ≤≤

=
otherwise

Mn
nwR ,0

01
][     (3.33) 

The presence of the oscillatory behavior in the Fourier transform of a truncated 

Fourier series representation of an ideal filter is basically due two reasons. First, the 

impulse response of an ideal filter is infinitely long and not absolutely summable, and as 

a result, the filter is unstable. Second, the rectangular window has an abrupt transition to 
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zero. The oscillatory behavior can be explained by examining the Fourier transform 

)( nj
R e ωψ  of the rectangular window function in Eq. (3.33): 

)2/sin(
)2/]12sin([)(

ω
ωψ ωω +

== ∑
−=

− Mee
M

Mn

njnj
R       (3.34) 

A plot of the above is shown in Figure 3.11 for M = 4 and 10. The frequency 

response )( nj
R e ωψ has a narrow main lobe centered at ω = 0. As M increases, the width 

of the main lobe decreases. This implies that with increasing M, ripples in 

around the point of discontinuity occur more closely but with no decrease in 

amplitude. 

)( nj
t eH ω

The rectangular window has an abrupt transition to zero outside the range –M ≤ 

n ≤ M, which is the reason behind the Gibbs phenomenon in the magnitude response of 

the window ideal filter impulse response sequence. It can be reduced by either using a 

window that tapers smoothly to zero at each end or by providing a smooth transition 

from the passband to the stopband. [1] 

 

Figure 3.11 Frequency response of rectangular window  
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3.6.2 Fixed and Adjustable Window Functions 

There are many proposed tapered windows. In this research three fixed tapered 

windows which are Hanning window, Hamming window, and Blackman window will 

be introduced. [12] 

Hanning:   

MnM
M

nnw ≤≤−⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

+
+= ,

12
2cos1

2
1][ π    (3.35) 

Hamming:    

MnM
M

nnw ≤≤−⎟
⎠
⎞

⎜
⎝
⎛

+
+= ,

12
2cos46.054.0][ π    (3.36) 

Blackman:    

MnM
M

n
M

nnw ≤≤−⎟
⎠
⎞

⎜
⎝
⎛

+
+⎟

⎠
⎞

⎜
⎝
⎛

+
+= ,

12
4cos08.0

12
2cos5.042.0][ ππ   (3.37) 

 

 

 

Figure 3.12 Gain response of the fixed window functions 
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A plot of the magnitude of the Fourier transform of each of the above windows 

in the dB scale is shown in Figure 3.12 for M = 25. Table 3.1 summarizes the essential 

properties of the above windows. In the case of these windows the value of the ripple δ 

does not depend on the filter length, and the cutoff frequency cω , and is essentially 

constant. Also, the transition bandwidth is approximately given by: 

M
c

≈∆ω       (3.38) 

where c is a constant for most practical purposes. 

 

Table 3.1 Properties of Some Fixed Windows [14] 

Name of 
window 
function 

Transition width/ 
sample 

frequency C 

Passband ripple 
(dB) 

Main lobe relative 
to side lobe (dB) 

Maximum 
stopband 

attenuation (dB) 

Rectangular 0.9 / N 0.75 13 21 

Hanning 3.1/N 0.055 31 44 

Hamming 3.3/N 0.019 41 53 

Blackman 5.5/N 0.0017 57 74 

Kaiser (β=4.54) 2.93/N 0.0274  50 

Kaiser (β=8.96) 5.71/N 0.000275  90 

 

For designing an FIR filter using one of the above windows, first the cutoff 

frequency cω  is determined from the specified passband and stopband edges, 

pω and sω , by setting: 

cω = ( pω + sω ) / 2 

Next, M is estimated using Eq. (3.38) , where the value of the constant c is 

obtained from Table 3.1 for the window chosen. Figure 3.13 shows the gain response of 

a lowpass FIR filter using the fixed window functions Hanning, Hamming, and 

Blackman. 
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Figure 3.13 Gain response of LP FIR filter using fixed window functions 

 

Also, an adjustable window which is the most widely used, Kaiser window, is 

given by: 
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( ) MnM
I

M
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nw ≤≤−⎭
⎬
⎫

⎩
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⎧ −

= ,
1
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0

2

0

β

β
  (3.39) 

where β is an adjustable parameter and ( )uI 0  is the modified zeroth-order Bessel 

function, which can be expressed in a power series form: 
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The parameter β controls the minimum attenuation sα i.e. the ripple sδ , in the 

stopband of the windowed filter response. The parameter β can be computed from: 
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The filter length N can be estimated using the formula: 

⎪
⎪
⎩
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≈
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α
α

   (3.42) 

It should be noted that the Kaiser window provides no independent control over 

the passband ripple pδ . In practice pδ is approximately sδ . 

 

3.6.3 FIR Filter Design Based on Frequency Sampling Approach 

In this approach, the specified frequency response  is first uniformly 

sampled at N equally spaced points

][ ωj
d eH

1,.......,1,0,/2 −== NkNkk πω , providing N 

frequency samples. These frequency samples constitute an N-point DFT H[k] whose N-

point inverse-DFT thus yields the impulse response coefficient h[n] of the FIR filter of 

length N. The basic assumption here is that the specified frequency response is uniquely 

characterized by the N frequency samples. 

Now,  is a periodic function of ω  with a Fourier series representation 

given by Eq. 3.22. Its Fourier coefficients 

][ ωj
d eH

[ ]nhd  are given by Eq. 3.23. It is instructive 

to develop the relation between [ ]nhd  and h[n]. 

From Eq. 3.22, 

( )( ) [ ] kl
N

l
d

Nkj
d

kj
d WlheHeHkH ∑

∞

−∞=

=== /2)(][ πω    (3.43) 

where ( )Nkj
N eW /2π−= . 

Taking the inverse-DTF of H[k] yields 

[ ] kn
N

N

k

WkH
N

nh −
−

=
∑=

1

0

1][       (3.44) 

Then, substituting Eq. 3.43 in Eq. 3.44 yields: 
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Using the Equation 
otherwise
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in Eq. 3.45 yields the desired relation: 

( ) 10][ −≤≤+= ∑
∞

−∞=

NnmNnhnh
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d    (3.46) 

The above relation indicates that h[n] is obtained from  by adding an 

infinite number of shifted replicas of 

[ ]nhd

[ ]nhd  to [ ]nhd , with each replica shifted by an 

integer multiple of N sampling instants, and observing the sum only for the 

interval . Thus, if 10 −≤≤ Nn [ ]nhd  is a finite-length sequence of length less than or 

equal to N, then h[n] =  for  [ ]nhd 10 −≤≤ Nn , otherwise there is a time-domain 

aliasing of samples bearing no resemblance to [ ]nhd . 

Now, the expression of the transfer function H(z) of the FIR filter designed 

using the frequency sampling approach will be introduced. 

                        (3.47) ∑
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Substituting Eq. 3.44 in Eq. 3.47 yields: 
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Using algebra results: 
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 49



3.7 Basic IIR Digital Filter Structures 

The causal IIR digital filters are characterized by a real rational transfer function 

of the form  

N
N

M
M

zdzdzdd
zpzpzppzH −−−

−−−

++++
++++

=
L

L
2

2
1

10

2
2

1
10)(      (3.50) 

 

The computation of the nth output sample requires the knowledge of several past 

samples of the output sequences, or in other words, the realization of a causal IIR filter 

requires some form of feedback. Some realization forms are followed. [1] 

3.7.1 Direct Form 

An Nth-order IIR digital filter transfer function is characterized by 2N+1 unique 

coefficients and requires 2N+1 multipliers and 2N two-input adders for implementation. 

Consider a third-order IIR filter characterized by  
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+++
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==
zdzdzd

zpzpzpp
zD
zPzH      (3.51) 

 

The structure of the direct form realization of the transfer function H(z) in Eq. 

(3.51) is shown in figure 3.14.  

  

 

 

Figure 3.14 Direct form realization of a third-order IIR filter 
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3.7.2 Cascade Realizations 

An IIR digital filter is often realized as a cascade of low-order filter sections as 

follows: 

)()()(
)()()(
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)()(
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321

zDzDzD
zPzPzP

zD
zPzH ==      (3.52) 

Various different cascade realization of H(z) can be obtained by different pole-zero 

polynomial pairings. Some examples of such realization are shown in figure 3.15. 

Usually, the polynomials are factored into a product of first-order and second-order 

polynomials. In this case, H(z) is expressed as 
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where for a first order factor, 022 == kk βα . 

Figure 3.16 shows a possible realization of a third-order transfer function 
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Figure 3.15 Different equivalent cascade IIR filter realizations  

 

 

Figure 3.16 Cascade realization of a third-order IIR filter 
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3.8 Design of IIR Filters 

Just as in the design of FIR filter, there are several methods that can be used to 

design IIR digital filters. IIR filters are usually designed by converting a prototype 

analog filter into a digital filter. Some methods of generating a digital filter from the 

analogue prototype are: [9] 

 

• Impulse invariant design  

• Step invariant design 

• Design by Approximation of Derivatives 

• Design by Bilinear transformation 

 

The most useful method in practice is the bilinear transformation, which will be 

discussed in the following. 

3.8.1 IIR Filter Design by Bilinear transformation 

The bilinear transformation is a mathematical mapping of variables. In digital 

filtering, it is a standard method of mapping the s or analog plane into the z or digital 

plane. It transforms analog filters, designed using classical filter design techniques, into 

their discrete equivalents. [16] 

The bilinear transformation from the s-plane into the z-plane is given by  
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 The bilinear transformation maps the s-plane into the z-plane by 
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For 2=T , the inverse transformation is given by 
s
sz

−
+

=
1
1     (3.56) 

For  is 0Ω= js
0

0

1
1

Ω−
Ω+

=
j
j

z  which has a unity magnitude. This implies that a point on 

the imaginary axis in the s-plane is mapped onto a point on the unit circle in the z-plane. 
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Therefore  2
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2
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2
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2
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σ
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z  

Thus a point in the left-half s-plane with 00 <σ  is mapped to a point inside the 

unit circle in the z-plane 1<z . Likewise a point in the right-half s-plane with 00 >σ  is 

mapped to a point outside the unit circle in the z-plane 1>z . Any point in the s-plane is 

mapped onto a unique point in the z-plane as shown in Figure 3.17.  

 

 

 

 

 

 

 

 

 

 

 

 

σ  

Ωj  
Im z 

-1 

Re z 

1 

s-plane  Z-plane 

 

 

Figure 3.17 The bilinear transformation mapping 
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3.9 Summary 

This chapter discussed the digital FIR and IIR filter structures and design. First, 

the structure of the filters using different forms was introduced. The design of the FIR 

filters based on truncated Fourier series and the design based on frequency sampling 

approach are derived. The design of the IIR filters by bilinear transformation was 

discussed. 
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CHAPTER  4  

DEVELOPMENT OF A MATLAB-BASED DIGITAL 

FILTER DESIGN PROGRAM 

4.1 Overview 

This chapter describes the software program developed by the author for the 

design of digital filters.  The chapter shows the interfaces and the functions of each 

component of the program. The complete source code of this application is included in 

Appendix A.   

4.2 The Developed Design Program  

The design program developed by the author was built to design different types 

of FIR and IIR digital filters. To design a specific digital filter, filter parameter must be 

given as input through graphical user interface and the desired filter gain and phase 

response will be plotted as a graph on the screen.  Also the filter coefficients will be 

calculated and displayed. 

4.3 Software Development Environment  

The MATLAB software was used in developing the application program in this 

thesis. Packages such as MATLAB include many of features that a standard language 

includes, for example the support of graphical user interface (GUI). The principle 

advantage of MATLAB is that it enables sophisticated signal processing to be carried 

out using a simpler set of commands than a programming language typically uses.  

4.3.1 Important Parts of Matlab System 

The MATLAB system includes important parts for developing programs, which 

are listed below:  

1. Development Environment 

This is the set of tools and facilities that help you use MATLAB functions and 

files. Many of these tools are graphical user interfaces. It includes the MATLAB 

desktop and Command Window, a command history, and browsers for viewing help, 

the workspace, files, and the search path. 
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2. The MATLAB Mathematical Function Library   

This is a vast collection of computational algorithms ranging from elementary 

functions like sum, sine, cosine, and complex arithmetic, to more sophisticated 

functions like matrix inverse, matrix eigenvalues, Bessel functions, and fast Fourier 

transforms.  

3. The MATLAB Language.    

This is a high-level matrix/array language with control flow statements, 

functions, data structures, input/output, and object-oriented programming features. It 

allows both "programming in the small" to rapidly create quick and dirty throw-away 

programs, and "programming in the large" to create complete large and complex 

application programs.  

4.3.2 GUI Development Environment in Matlab 

A graphical user interface (GUI) is a user interface built with graphical objects, 

such as buttons, text fields, and menus. In general, these objects already have meanings 

to most computer users. For example, when you press an OK button, your settings are 

applied and the dialog box is dismissed. Applications that provide GUIs are generally 

easier to learn and use since the person using the application does not need to know 

what commands are available or how they work. The action that results from a 

particular user action can be made clear by the design of the interface. 

 GUIDE, MATLAB's Graphical User Interface development environment, 

provides a set of tools for creating GUI’s. This includes laying out the components, 

programming them to do specific things in response to user actions, and saving and 

launching the GUI; in other words, the mechanics of creating GUIs. [17] 

4.4 The User Application Interface 

The main user interface of the application developed in this thesis consists of a 

window. This window contains a menu list for FIR filter design and another one for IIR 

filter design. Figure 4.1 shows the application interface which will be described in more 

detail within this chapter. 
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Figure 4.1 Main user interface of the application developed by the author 

 

4.5 Functional Description of the Filter Design Interface 

When a filter type is selected to be designed, the user interface shown in Figure 4.2 is 

obtained.  On the Filter design interfaces window the following components exist: 

1. Depending on filter type number of edit text boxes to get the filter parameter 

needed for the design.  

2. One command button to give the order to design the filter. 

3. Depending on filter type one or two list boxes to display filter coefficients 

obtained by the design of the filter.  

4. Depending on filter type one or two command button to give the order to display 

filter coefficients. 

In the following sections the components and functions of the program will be 

discussed. 
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Figure 4.2 FIR filter design interface window 

 

 

Figure 4.3 IIR filter design interfaces window 
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4.5.1 Edit Text Boxes 

After selecting a filter type from menu list in the main user interface another 

filter design interface gives the possibility to enter the needed filter parameter like filter 

order, cutoff frequency and other parameter in labeled text boxes. 

 

 

Figure 4.4 Text boxes for entering filter parameter 

 

4.5.2 Command Buttons 

After entering the needed filter parameter a command button design filter 

activate the design of the filter and show the filter responses. Depending on filter type 

another command button Coefficients, Numerator or Denominator make it possible to 

display Filter coefficients in a list box.    

 

 

 

Figure 4.5 Command buttons  
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4.5.3 List boxes 

The computed FIR filter Coefficients are displayed on the list box FIR filter 

Coefficients. For IIR filter the Numerator Coefficients are displayed on the list box 

Numerator and the Denominator Coefficients are displayed on the list box 

Denominator . 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 List boxes display filter C
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4.6 Digital Filter Design Matlab Statements 

In the developed filter design program a number of Matlab Statements are used, 

which are listed in the following sections with their syntax. [16], [17] 

   

• Kaiser statement: 

Kaiser statement computes a Kaiser window to design an FIR filter.  

 

Syntax 

w = kaiser(n,beta) 

 

Description 

The statement kaiser(n,beta) computes a length n Kaiser window with parameter 

beta. w = kaiser(n,beta) returns an n-point Kaiser window in the column vector w. beta 

is the Kaiser window  β parameter that affects the sidelobe attenuation of the Fourier 

transform of the window. 

 

• hann statement: 

hann statement Compute a Hann (Hanning) window to design an FIR filter 

 

Syntax 

w = hann(n) 

 

Description 

w = hann(n) returns an n-point symmetric Hann window in the column vector w. 

n must be a positive integer. 
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• Blackman statement: 

Blackman statement Compute a Blackman window to design an FIR filter. 

 

Syntax 

w = blackman(n) 

 

Description 

w = blackman(n) returns the n-point symmetric Blackman window in the 

column vector w, where n is a positive integer. 

 

• fir1 statement: 

fir1 statement is used to design a window-based finite impulse response filter. 

fir1 implements the classical method of windowed linear-phase FIR digital filter design. 

It designs filters in standard lowpass, highpass, bandpass, and bandstop 

configurations.By default the filter is normalized so that the magnitude response of the 

filter at the center frequency of the passband is 0 dB.    

 

Syntax 

b = fir1(n,Wn) 

b = fir1(n,Wn,window) 

 

Description 

b = fir1(n,Wn) returns row vector b containing the n+1 coefficients of an order n 

lowpass FIR filter. This is a Hamming-window based, linear-phase filter with 

normalized cutoff frequency Wn. The output filter coefficients, b, are ordered in 

descending powers of z. Wn is a number between 0 and 1, where 1 corresponds to the 

Nyquist frequency.  

If Wn is a two-element vector, Wn = [w1 w2], fir1 returns a bandpass filter with 

passband w1 <ω < w2. 
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• butter statement: 

Butter statement is used for Butterworth analog and digital filter design. Butter 

designs lowpass, bandpass, highpass, and bandstop digital and analog Butterworth 

filters.  

Syntax 

[b,a] = butter(n,Wn) 

 

Description 

In digital Domain [b,a] = butter(n,Wn) designs an order n lowpass digital 

Butterworth filter with cutoff frequency Wn. It returns the filter coefficients in length 

n+1 row vectors b and a, with coefficients in descending powers of z..  

For butter, the normalized cutoff frequency Wn must be a number between 0 and 

1, where 1 corresponds to the Nyquist frequency, Л radians per sample. If Wn is a two-

element vector, Wn = [w1 w2], butter returns an order 2*n digital bandpass filter with 

passband w1 < ω  < w2. 

 

• cheby1 statement: 

Cheby1 statement is used for  Chebyshev Type I filter design (passband 

ripple).Cheby1 designs lowpass, bandpass, highpass, and bandstop digital and analog 

Chebyshev Type I filters.  

 

Syntax 

[b,a] = cheby1(n,Rp,Wn) 
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Description 

In Digital Domain [b,a] = cheby1(n,Rp,Wn) designs an order n Chebyshev 

lowpass digital Chebyshev filter with cutoff frequency Wn and Rp dB of peak-to-peak 

ripple in the passband. It returns the filter coefficients in the length n+1 row vectors b 

and a, with coefficients in descending powers of z. 

Cutoff frequency is the frequency at which the magnitude response of the filter 

is equal to -Rp dB. For cheby1, the cutoff frequency Wn is a number between 0 and 1, 

where 1 corresponds to the Nyquist frequency,  Л radians per sample. Smaller values of 

passband ripple Rp lead to wider transition widths (shallower rolloff characteristics).  

 

• Ellip statement: 

Ellip statement is used for  Elliptic (Cauer) filter design. ellip designs lowpass, 

bandpass, highpass, and bandstop digital and analog elliptic filters.  

 

Syntax 

[b,a] = ellip(n,Rp,Rs,Wn) 

 

Description 

In digital Domain [b,a] = ellip(n,Rp,Rs,Wn) designs an order n lowpass digital 

elliptic filter with cutoff frequency Wn, Rp dB of ripple in the passband, and a stopband 

Rs dB down from the peak value in the passband. It returns the filter coefficients in the 

length n+1 row vectors b and a, with coefficients in descending powers of z. 

The cutoff frequency is the edge of the passband, at which the magnitude 

response of the filter is -Rp dB. For ellip, the cutoff frequency Wn is a number between 

0 and 1, where 1 corresponds to half the sampling frequency (Nyquist frequency).  
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Impinvar statement: 

Impinvar statement is used to design IIR digital filter using Impulse invariance 

method for analog-to-digital filter conversion. 

 

Syntax 

[bz,az] = impinvar(b,a,fs) 

 

Description 

[bz,az] = impinvar(b,a,fs) creates a digital filter with numerator and denominator 

coefficients bz and az, respectively, whose impulse response is equal to the impulse 

response of the analog filter with coefficients b and a, scaled by 1/fs. If the argument fs, 

is leaved out or specified as the empty vector [], it takes the default value of 1 Hz. 

• Bilinear statement: 

Bilinear statement is used to design IIR digital filter using Bilinear 

transformation method for analog-to-digital filter conversion.  

 

Syntax 

[numd,dend] = bilinear(num,den,fs) 

 

Description 

The bilinear transformation is a mathematical mapping of variables. In digital 

filtering, it is a standard method of mapping the s or analog plane into the z or digital 

plane. It transforms analog filters, designed using classical filter design techniques, into 

their discrete equivalents. 
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4.7 Parts of the program listing 

The complete source code of the application program is given in Appendix A.  

In this section, only the important parts of the source code for some FIR and IIR digital 

filter are given.    

4.7.1 Source Code for FIR Digital Filters 

 

• FIR filter Design using Kaiser window 

 

data = getappdata(gcbf, 'UserData');  %Get filter parameter 

w=kaiser(data.N+1,data.beta);    %Kaiser window 

b = fir1(data.N,data.cf,w)  % Design the FIR filter using Kaiser window 

freqz(b,1,512);     % Plot the frequency and phase response 

 

• FIR filter Design using Blackman window 

 

data = getappdata(gcbf, 'UserData'); %Get filter parameter 

w=blackman(data.N+1);  %Blackman window 

b = fir1(data.N,data.cf,ftype,w) %Design the FIR filter using Blackman window 

freqz(b,1,1024);   % Plot the frequency and phase response 

 

• FIR filter Design using Hanning window 

 

data = getappdata(gcbf, 'UserData'); %Get filter parameter 

w=hann(data.N+1);   %Hanning window 

b = fir1(data.N,data.cf,ftype,w)  %Design the FIR filter using Hanning window 

freqz(b,1,1024);   % Plot the frequency and phase response 
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4.7.2 Source Code for IIR Digital Filter 

 

• IIR Butterworth Bandpass Filter Design 

 

data = getappdata(gcbf, 'UserData'); 

M=data.N/2; 

Wn=[data.W1 data.W2] 

[b,a] = butter(M,Wn); 

w= 0:0.01/pi:pi; 

h = freqz(b,a,w); 

gain = 20*log10(abs(h)); 

plot (w/pi,gain);grid; 

xlabel('Normalized frequency');  

ylabel('Gain, dB'); 

 

• IIR Elliptic Lowpass Filter Design 

 

data = getappdata(gcbf, 'UserData'); 

[b,a] = ellip(data.N,data.Rp,data.Rs,data.Wn); 

w= 0:0.01/pi:pi; 

h = freqz(b,a,w); 

plot (w/pi,20*log10(abs(h)));grid; 

xlabel('\omega/\pi');  

ylabel('Gain, dB'); 
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• IIR Type I Chebyshev Highpass Filter Design 

 

data = getappdata(gcbf, 'UserData'); 

[b,a] = cheby1(data.N,data.Rp,data.Wn,'high'); 

w= 0:0.01/pi:pi; 

h = freqz(b,a,w); 

plot (w/pi,20*log10(abs(h)));grid; 

xlabel('\omega/\pi');  

ylabel('Gain, dB'); 

 

• IIR Butterworth LP Filter Design using Impulse Invariance Method  

 

data = getappdata(gcbf, 'UserData'); 

[num,den]=butter(data.N,data.Wn,'s'); 

% Convert analogue filter into Discrete IIR filter 

[b, a]=impinvar(num, den, data.Fs);   

subplot(2,1,2)      

[h, omega]=freqz(b, a, 512);    

mag = 20*log10(abs(h)) 

plot(omega/pi,mag);grid; 

xlabel('Normalized Frequency ') 

ylabel('Gain dB') 
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4.8 Design and Results examples using the developed program  

In the following a design example using the developed program and other results 

examples are given. 

4.8.1 Transfer function general form of the digital filter 

The general form of an FIR digital filter transfer function is given by 

 

∑
−

=

−=
1

0
][)(

N

k

kzkhzH      (4.1) 

 

The general form of IIR digital filter transfer function is given by 
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4.8.2 Design example using the developed program: 

A second order IIR butterworth lowpass digital filter is to design with the 

following specification: 

 

Cuttoff frequency fc = 100 Hz 

Sampling frequency fs = 1000 Hz 

 

Solution: 

1- Calculating filter coefficients 

 

• Using the developed program lowpass butterworth from menu list IIR 

design is to choose. 

• Filter parameter are to input 
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• Command button design filter plots the filter response and produce a file 

blp.cff containing the filter coefficients. 

• Command buttons Numerator, Denominator displays the filter 

coefficients on the screen. 

 

 

2- Plotting frequency response of designed filter  

 

 

Figure 4.7 IIR butterworth lowpass filter  

 

 

3- Writing transfer function of the designed filter 
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4.8.3 Additional Results Examples 

The following figures show some design examples obtained using the MATLAB 

program developed by the author: 

 

 

 

 

 

Figure 4.8 FIR lowpass filter using Kaiser window  
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Figure 4.9 IIR elliptic lowpass filter  

 

Figure 4.10 IIR Butterworth lowpass filter using impulse invariance method  
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4.9 Summary 

This chapter has described the development of a MATLAB program for the 

design of FIR and IIR type digital filters. The program accepts the filter type and the 

required filter specifications from the user and then calculates the filter coefficients.  

The program is GUI based, easy to use, and is user friendly.   

Another advantage of the program is that the frequency response and the phase 

response of the designed filter are also plotted by the program. 
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CHAPTER  5  

DIGITAL FILTER IMPLEMENTATION 

5.1  Overview 

This chapter is about the implementation of a physical digital filter using a 

microcontroller.  A PIC type microcontroller is used as the processing element.  In this 

chapter a 2nd order IIR type Butterworth filter has been designed and implemented on 

the microcontroller. 

5.2  Implementation 

The block diagram of the digital filter implemented in this section is shown in 

Figure 5.1.  The overall system consists of: A/D converter, Microcontroller, D/A 

converter. 

 

 

 

 

 

 

 

Figure 5.1 Block diagram of the digital filter 

 

Analog 
out  

D/A 

 

 

Micro 

Controller 

Analog 
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The operation of the system is as follows:  

A/D Converter:  Analog input signal is read from the A/D converter. In this project an 

8-bit bipolar A/D converter is used.  The input signal voltage level is ±5V and the 

converter provides a quantized digital signal. The converter used is the AD673 8-bit 

A/D converter manufactured by Analog Devices. This converter has a 20µs conversion 

time, accepts both unipolar and bipolar input voltages, and operates with two power 

supplies: +5V and -12V.  [21] 
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The A/D converter has a built-in zener regulated reference voltage source which 

is used by the chip. The functional block diagram of the AD673 A/D converter is shown 

in Figure 5.2.   

Basically the device has: 

• An analog input pin 

• 8 digital output pins 

• A CONVERT input pin 

• A DATA READY output pin 

 

Conversion starts by applying the analog signal to the input pin and then pulsing 

the CONVERT pin. The high-to-low transition of the CONVERT signal starts the A/D 

conversion and the DATA READY pin goes to logic HIGH.  After about 20µs the 

conversion is complete and the digital data is available at the 8 output pins. The end of 

conversion is signaled by the DATA READY output pin going low.  This output is used 

to inform the microcontroller that the conversion is complete and the converted digital 

data can be read from the output of the A/D. 

 

 

8 

AD 

673 

Analog 
Input 

Digital 
Output 

Data Ready 

 

 

 

 

 

 

 

Convert 

Figure 5.2 Functional block diagram of the A/D converter 
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The AD673 A/D converter provides offset-binary type output for bipolar signals. 

Offset-binary is similar to the standard 2s-complement numbering notation, but the 

most-significant-bit (MSB) is inverted.  Some offset-binary numbers and their 2s-

complement equivalents in 8-bit code are given below: 

Table 5.1 offset-binary numbers and their 2s-complement 

SCALE OFFSET BINARY 2s COMPLEMENT 
+Full scale 11111111 01111111 

+0.75 Full scale 11100000 01100000 

+0.5 Full scale 11000000 01000000 

+0.25 Full scale 10100000 00100000 

0 10000000 00000000 

-0.25 Full scale 01100000 11100000 

-0.5 Full scale 01000000 11000000 

-0.75 Full scale 00100000 10100000 

-Full scale 00000000 10000000 

 

2s-complement is the commonly used numbering system in signal processing 

applications. Numbers represented in 2s-complement notation can easily be added, 

subtracted, multiplied, and divided.   A given offset-binary number can be converted to 

its 2s-complement equivalent by simply inverting the MSB bit. 

Microcontroller: In the practical part of this thesis a popular PIC16F877 type 

microcontroller, operating with 20MHz crystal is used. With 20MHz clock, the basic 

instruction cycle time is 0.2µs (the clock frequency is divided by 4 to obtain the 

instruction cycle time).  This is a 40-pin microcontroller with the following features: 

• 8K program memory 
• 368 byte RAM 
• 256 byte EEPROM 
• 33 I/O ports 
• 14 interrupt sources 
• 8-bit timer 
• 2x16-bit timers 
• 10-bit 8 channel A/D converter 
• USART 
• Pulse width modulation (PWM) output 
• 25mA output current 
• Up to 20MHz operation 
• Power on reset 
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The pin layout of the PIC16F877 microcontroller is shown in Figure 5.3.  Notice 

that the I/O port pins are multi-function and shared between different functionalities. 

 

 

Figure 5.3 PIC16F877 pin layout 

 

D/A Converter:  The D/A converter receives digital signals from the microcontroller 

and provides an analog output signal.  In the practical part of this thesis an AD7302 type 

D/A converter is used.  This converter is manufactured by Analog Devices and is a dual, 

8-bit buffered voltage output converter that operates from a single 2.7V to 5.5V supply. 

The on-chip output amplifier allows rail-to-rail output swing to be achieved.   The 

device accepts parallel digital input data, converts this data to analog format and 

provides analog output. The functional block diagram, of the AD7302 converter is 

shown in Figure 5.4.  [21] 

Basically the device has: 

• 8 digital inputs 

• WR write input 

• Channel select input 

• Reference input 

• Vo analog output 
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Figure 5.4 Functional block diagram of the D/A converter 

 

Digital data is sent to the converter in 8-bit parallel format and then the WR 

write control input is pulsed low and then high.  After about 2µs the analog data is 

available at the output of the device. 

The input of the D/A converter should be in offset-binary. Thus, it is necessary 

to complement the MSB bit before the data is sent to the converter.  Normally the 

output of AD7302 is in unipolar mode and an operational amplifier is connected to 

obtain bipolar signals in the range ±5V.  The operational amplifier used in this project is 

the OP295 manufactured by Analog Devices.  This is a quad operational amplifier in a 

small 8-pin package.  The device operates from 3V to 36V either unipolar or with dual 

supply.  The gain-bandwidth product of this amplifier is 75 kHz which is more than 

sufficient for our application.  One of the advantages of using OP295 is that this 

operational amplifier provides rail-to-rail output voltage swing.  Thus, the output 

voltage is accurate.  Another advantage of the OP295 is its large current drive 

capability. The device can provide in excess of 20mA to coaxial cables and to 

capacitive loads. 
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The circuit diagram of the digital filter implementation is shown in Figure 5.5.  

Power is provided to the circuit using LM7805 for the +5V supply, LM7905 for -5V 

supply, and LM7912 for the -12V supply.  All the power supplies are rated at a 

maximum current of 100mA. 

The PIC microcontroller is at the centre of the design.  The AD673 A/D 

converter is connected to Port B pins of the microcontroller.  The converter is controlled 

from Port C pins of the microcontroller as follows: 

 

 PORT C pin  AD673 pin 

    RC0     DATA OUTPUT 

   RC1     CONVERT input 

 

 

 

Figure 5.5 Circuit diagram of the digital filter designed 
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Analog signal is directly applied to pin 14 of the AD673.  Pin 11 is connected to 

+5V supply, and pin 13 is connected to -12V supply. 

Port D output of the microcontroller is connected to the data inputs of the 

AD7302 D/A converter.  The WR control input of the converter is directly controlled 

from port RC2 of the microcontroller.  The output of the D/A converter is connected to 

the positive input of the OP295 operational amplifier through a series of resistors.  The 

negative input of the operational amplifier is driven from the +5V supply.  The output 

voltage of the operational amplifier is ±5V. 

5.3 Digital Filter Parameters 

The digital filter was designed with the following parameters: 

 
• 2nd order Butterworth IIR filter 

• Sampling frequency = 2.5 kHz 

• Cut-off frequency = 250 Hz 

 

The filter coefficients were obtained by running the MATLAB program 

developed earlier. The coefficients are:  

b0= 0.06745   b1= 0.13491   b2= 0.06745  

a0=1    a1= -1.14298   a2= 0.412801 

Based on these parameters and the general form  
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of the digital filter transfer function, we can write the transfer function as follows: 

21

21

412801.014298.11
06745.00.1349106745.0)( −−

−−

+−
++

=
zz

zzzH  

21

21

412801.014298.11
)21(06745.0)( −−

−−

+−
++

=
zz

zzzH  

We can now derive the necessary equations for the implementation of this 

second order section as follows: 
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Writing the above transfer function as: 

 21

21

1
)21(

)(
)()( −−

−−

++
++

==
CzBz

zzK
zu
zyzH  

where, K = 0.06745  B = -1.14298  C = 0.412801 
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from (5.1) :      (5.3) 
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Let, x1 and x2 be two state variables, where  and  
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Then we can write, 
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Thus, the following operations will be required to implement the second order filter 

section: 
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The block diagram of the 2ed order filter implementation is shown in Figure 5.6. 
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Figure 5.6 Second order filter implementation 

 

The steps for a second order filter implementation are summarized below: 

• Input u from A/D converter 

• Calculate Ku – Bx1 – Cx2  

• Store result in q 

• Calculate q + 2x1 + x2  

• Output result to D/A converter 

• Perform x1 –> x2  

   q –> x1  

• Enable interrupts 

• If interrupt occurs repeat this process 
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5.4 Software of the Digital Filter 

The microcontroller was programmed using the C language. The compiler used 

was the PICC Lite, manufactured by Hi-Tech and distributed free for a few types of 

microcontrollers. 

The program is interrupt driven. The timer TMR0 of the microcontroller was 

programmed to generate an interrupt at every sampling time i.e. at every 400µs 

(sampling frequency = 2.5 kHz which has a period of 400µs).  The program normally 

waits for an interrupt to occur and then reads a sample from the analog input channel, 

processes the input and then sends a signal to the analog output channel. The operation 

of the software is described below in simple steps: 

• Initialize the program 

• Perform digital filtering 

 

The initialization consists of the following: 

• Initialize program variables 

• Initialize filter states 

• Initialize port directions 

• Load TMR0 timer register 

• Enable interrupts 

• Wait for interrupts 

 

The digital filtering section of the program is entirely implemented in an 

interrupt service routine (ISR) so that the required sampling frequency is obtained 

accurately. The ISR consists of the following operations: 

 

• Re-load TMR0 timer register 

• Read a sample from A/D converter 

• Perform filtering action 

• Send output data to D/A converter 

• Return from interrupt 
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On return from the ISR routine, the program goes back to the main code and 

waits for the next interrupt to occur.  This way, the filtering action is guaranteed to 

occur at every sampling interval. i.e. at every 400µs. 

The full listing of the digital filter program is given in Figure 5.7.  At the 

beginning of the program the program variables are declared, filter states cleared to zero 

and the filter coefficients K, B and C are initialized. Then, the microcontroller registers 

are initialized. Timer TMR0 is set to interrupt at every 400 microseconds, and interrupts 

are enabled. The main program then waits in a loop for the occurrence of timer 

interrupts.TMR0 timing is controlled with the following formula: [20]  

 

Time_to_interrupt (microsecond) = (4*clock_period)*pre_scaler*(256-TMR0) 

where, 

 Time_to_interrupt: is the required interrupt interval (400 microsecond) 

 clock _period:  is the crystal clock period (0.05us for 20MHz) 

 Pre_scaler:  is the timer pre-scaler value 

 TMR0:   is the number to be loaded into timer register TMR0 

 

The pre-scaler can be programmed between 2 and 256 using the OPTION_REG 

register of the PIC microcontroller.  We need a 400 microsecond interrupt time. 

Assuming a pre-scaler value of 8, with a 20MHz clock, the value to be loaded into the 

timer register TMR0 at every iteration can be calculated as: 

 

 TMR0 = 256 - 400 / (4*0.05*8) 

or, 

 TMR0 = 6 

 

Thus the timer register TMR0 should be loaded with decimal number 6 at the 

beginning of every interrupt loop. When a timer interrupt occurs program jumps to the 

interrupt service routine. This routine starts with procedure name “filter”. 
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The following variables are used in the program: 

 Variable  Description 

     x1     Filter state 
    x2     Filter state 
    q     Temporary state 
    fu     Floating point A/D input value 
    u     Integer A/D value 
    y     D/A value 
    K     Filter coefficient 
    B     Filter coefficient 
    C     Filter coefficient 
    temp     Temporary floating point variable 
 

Integer offset binary variables are converted to floating point 2s complement 

format at the input.  Similarly, 2s complement floating point variables are converted 

into offset binary format just before output to the D/A converter. 

 

/********************************************************* 
 2nd Order Butterworth IIR Digital Filter 
 ============================ 
This is the program for a 2nd order Butterworth IIR digital filter. 
The filter is implemented on a PIC16F877 microcontroller, operating 
At 20 MHz clock. The basic instruction cycle time is 0.2 microsecond. 
 
The filter parameters are as follows: 
 Sampling frequency = 2.5 kHz 
 Cut-off frequency = 250 Hz 
 
The filter is implemented in a timer interrupt routine (ISR). The ISR 
is called every 400 microsecond (2.5 kHz) and the filter algorithm is 
implemented.  The steps at every 400 microseconds are basically: 
 
 Read analog input 
 Process data 
 Send out analog output 
File: FILTER.C    Date: February 2006 
***********************************************************/ 
 

 85



 #include <pic.h> 
// Declare variables 
 float x1, x2, q, fu, temp, K, B, C; 
 unsigned char u, y, s, j; 
// Declare symbols 
 #define DATA_READY RC0 
 #define CONVERT  RC1 
 #define WR   RC2 
/**************** INTERRUPT SERVICE ROUTINE *************** 

     This is the interrupt service routine where the filter algorithm is implemented. 
     This routine is called at every 400 microseconds. Inside the routine the 
     analog data is received from the A/D converter, the digital filter algorithm 
     is implemented, and the data is sent to the D/A converter */ 
 
void interrupt filter(void) 
{ 
 TMR0 = 6;    // Re-load TMR0 
 // Start A/D conversion 
 CONVERT = 1; 
 for(j = 0; j<10; j++) CONVERT = 1; // Wait for DATA_READY to rise 

CONVERT = 0;  
while(DATA_READY);  // Wait until DATA_READY=0 

 // Read converted analog data 
 u = PORTB;    // Get converted data 
 // Convert to 2s complement floating point 
 s = u & 0x80; 
 u = u ^ 0x80; 
 if(s == 0) 
 { 
  u = u ^ 0xFF;   u++; 
 } 
 fu = u;     // A/D data in floating point, fu 
 // Perform the digital filtering 
 q = K*fu – B*x1 – C*x2; 
 temp = q + 2*x1+x2; 
 y = (int)temp; 
 // Convert to offset binary 
 if(s != 0) 
 { 
  y = y | 0x80;  
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else  
{ 

y = y ^ 0xFF;   y++;   y = y & 0x7F; 
 } 
 PORTD = y; 
 WR = 0; 
 WR = 1;    // Send out digital data to D/A 
  x2 = x1;    // Swap registers 
 x1 = q;  
 // Re-enable TMR0 interrupts 
 T0IF = 0;    // Re-enable TMR0 interrupts 
} 
/* ------------------- Start of MAIN program ---------------------- */ 
main() 
{ 
// Initialize filter parameters 
 x1 = 0;   x2 = 0; 
 K = 0.06745;  B = -1.14298;  C = 0.412801; 
// Initialize registers 
 TRISB = 0xFF;    // PORT B is all input 
 TRISC = 1;     // RC0 is input 
 TRISD = 0;     // PORT D is all output 
 CONVERT = 0;    // A/D in idle mode 
 WR = 1;     // D/A in idle mode 
 T0CS = 0;   PSA = 0;     // Select TMR0 
 PS0 = 0;   PS1 = 1;   PS2 = 0;   // Set timer pre-scaler to 8 
 TMR0 = 6;     // Set for 400us interrupt 
 T0IE = 1;     // Enable TMR0 interrupts 
 T0IF =0;     // Enable TMR0 interrupt 

flag 
 ei();      // Enable global interrupts 
WAIT:  goto WAIT;    // Wait for timer interrupt 
} 
/*------------------------- END OF PROGRAM -------------------------*/ 

 

Figure 5.7 Program listing of the digital filter 
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A part of the object code of the program is given in Figure 5.8. This code can be 

used to load the microcontroller memory using a programmer device. 

 
:10000000830100308A00DF28FC0003088301C2005E 
:100010000408C3007008C7007108C8007208C60051 
:100030007708C9007808CA008330831 ... 
 

Figure 5.8 Program object code 

5.5 Experimental Setup 

 

 

 

 

 

Voltage 
regulators 

Microcontroller
PIC16F877 

A/D 
converter 
AD673 

D/A 
converter 
AD7302 

 

Op Amp 
OP295 Analog 

in 

Analog 
output 

Power 
supply 

 

 

 

20MHz 
crystal 

Figure 5.9 Digital filter implemented on a breadboard 
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The construction of the digital filter hardware on a breadboard is shown in 

Figure 5.9.  The connections between various components are carried out using strip 

wires.  The +5V, -5V, and -12V voltage regulators are on the breadboard but the ±15V 

main power supply is external to the breadboard. All the major components on the 

breadboard have been indicated with arrows in Figure 5.9. 

5.5.1 Testing the Digital Filter 

 

In order to test the digital filter designed, a sine-wave frequency generator with a 

sweeping range of 0-5kHz was connected to the analog input of the filter.  Also, one 

channel of an oscilloscope was connected to this input so that the magnitude and the 

frequency of the input sine wave could be observed and also measured.  Similarly, the 

second channel of the oscilloscope was connected to the analog output of the filter so 

that the magnitude and the shape of the output signal could be observed and also 

measured. Figure 5.10 and figure 5.11 show the experimental setup. 

 

 

 

 

 

 

 

 

 

O  

A D Microcontroller

O

Freq. 

Generator 

Fi

 

A/
 
gure 5.10 Experimental setup block diagram 
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Figure 5.11 Experimental setup 
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5.5.2 Input/Output oscilloscope observation  

The figures 5.12 (a, b, c, d) show the magnitude and the frequency of the input 

sine wave which could be observed and also measured on the oscilloscope.  Similarly, 

through the second channel of the oscilloscope the analog output of the filter could be 

displayed. The magnitude and the shape of the output signal could be observed and also 

measured. 

 

 

 

Figure 5.12a Magnitude and frequency response by 100 Hz 
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Figure 5.12b Magnitude and frequency response by 250 Hz 

 

 

Figure5.12c Magnitude and frequency response by 500 Hz 

 92



 

Figure 5.12d Magnitude and frequency response by 750 Hz 

 

5.6 Experimental Results 

The frequency values of the input sine wave, the value of input magnitude and 

the measured output magnitude values are listed in table 5.2. 

 

Table 5.2 Input-output gain response of the filter 

FREQUENCY 
(Hz) 

INPUT 
MAGNITUDE  

(V) 

OUTPUT 
MAGNITUDE  

(V) 

20*log Vo/Vi 

(dB) 

10 6 6 0 

50 6 6 0 

100 6 6 0 

250 6 4.2 -3 

500 6 3 -6 

750 6 2 -9 
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Figure 5.13 Frequency response of the developed digital filter 

 

 

Figure 5.14 Frequency response of the digital filter using Matlab 
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When the frequency response plot of the digital filter obtained from 

microcontroller digital filter design (figure 5.13) is compared with the theoretical 

frequency plot obtained using Matlab GUI design (figure 5.14), it can be seen that the 

cut-off frequency of the hardware design matched very well with theory, the attenuation 

levels of the two designs occurring for frequencies higher than the cut-off frequency are, 

on the other hand different. Possible reasons for this are: 

 

 Optimal standard theoretical software implementation by Matlab 

 Hardware components (8-bit  A/D and D/A converter) with small data 

widths.  

5.7 Summary 

This chapter has described the developed microcontroller based hardware and 

software for the implementation of an IIR 2nd order Butterworth digital filter. The 

popular PIC microcontroller has been used as the hardware.  The software of the filter 

algorithm is based on the high-level PIC C language.  
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CONCLUSION 

Digital filters are increasingly used in many fields such as speech analysis and 

processing, biomedical analysis and processing, telecommunications, etc. 

This thesis focused on the development of a microcontroller based hardware and 

software system for the implementation of an IIR 2nd order Butterworth digital filter.  

The PIC microcontroller has been used as the processing element since it is a 

low-cost, widely available and a popular microcontroller. The software of the filter 

algorithm is based on the high-level PIC C language. Digital filters can easily be 

realized on microcontrollers if a high-level programming language is used. High-level 

languages have the advantage that it is much easier to develop and maintain programs 

developed using these languages. 

The digital filter designed and implemented behaved as expected. The filter was 

designed for a cut-off frequency of 250 Hz and a sampling frequency of 2.5 kHz. The 

results obtained were satisfactory related to the cut-off frequency compared with 

theoretical results. The obtained attenuation levels for frequencies higher than the cut-

off frequency are different from theoretical results.  

The output response of the filter could be improved if an A/D and a D/A 

converter with higher data widths are used. E.g. a much better response could be 

obtained if 16-bit converters are used.  

Digital filters of higher order can easily be implemented by simply cascading the 

second order sections. 

However, the ideas presented in this thesis can be applied to other types of 

digital filter. In addition, digital filters realized using PIC microcontroller can be used 

for a variety of applications, such as noise filtering, as well as detecting some selected 

frequency components present in a speech signal. 

The thesis focused also on the development of a program for the design of FIR 

and IIR digital filters. The developed program is based on MATLAB and is GUI based, 

easy to use, and is user friendly. It can be used as learning tool for undergraduate 

students without Matlab experience  
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