
NEAR EAST UNIVERSITY

Faculty Of Engineering

Department Of Computer Engineering

STOCK AND REGISTER PROGRAM FOR
OPTICIAN BY USING DELPHI PROGRAMMING

Graduation Project
COM 400

Student: Enis KASIMOGLU

Supervisor : Asst.Prof.Dr Elbrus IMANOV

Nicosia - 2007

ACKNOWLEDGEMENTS

"Firstly, I would like to thank to my supervisor Mr Elbrus IMANOV.for his great
advise and recomendation for finishing my project properly also, teaching and
guiding me in others -lectures

I am greatly indepted to my family for their endless support from my starting day in
my educational life until today. I will never forget the things that my.father Mr. Celal
Kasimoglu did for me during my educational life, also I want to say thanks to my
mother Mrs. Nazife Kastmoglu. I dedicate my project to them.

I thank all the staff of the faculty of engineering for giving .facilities to practise,
teaching and solving problem in my complete undergraduation program

{

Finally, I promise to do my best in my life as an bachelor of engineer afterfinishing
my undergraduate program"

ABSTRACT

The aim of this project is to develop optician tracking program that contain

registration, all applications and also account application. The program was prepared by

using Delphi programming and using database.

This project consist of so many forms and menues. The main form of the

program is designed for login . Which are login must user name and password. An

individual who is working in any of these predefined type can login to the program by

using a predefined password. After loging there will be a form. Which is belongs to

authorised person. The authority of the user to reach, do changes and update the

information in this program is limited with respect to the possition according to letting

users. These are simply expressing how the program was designed to use in proper and

secure way.

To show results show the efficiency of the program of optician tracking system

in program of the using in other chapters

II

TABLE OF CONTENTS

ACKNOWLEDGMENT
ABSTRACT
TABLE OF CONTENTS
INTRODUCTION
CHAPTER ONE: DELPHI

1.1.Introduction to Delphi
1.2 What is Delphi?

1.2.1 What kind of programming can you do with Delphi
1.2.2 Versions are there and How do they differs?

1.3 The VCL to Applications Developers
1.3.1 The VCL Component Writers
1.3.2 The VCL is made up of components
1.3.3 Component Types, Sturcture, and VCL Hierarchy
1.3.4 Component Types

1.3 .4.1 Stand art Component
1.3.4.2 Custom Component
1.3.4.3 Graphical Component
1.3.4.4 Non-Visual Component
1.3.4.5 Structure of Component

1.3.5 Component Properties
1.3.6 Properties provide access to internal storage fields

1.4 Property-Access methods
1.5 Types of Properties
1.6 Methods
1.7 Events
1.8 Containership
1. 9 Ownership
1.10 Parenthood

CHAPTER TWO: DATABASE
2.1 Introduction Database
2.2 History
2.3 Database Models

2.3.1 Flat Model
2.3.2 Hierarchical Model
2.3.3 Network Model
2.3 .4 Relational Model

2.3.4.1 Relational Operations
2.3.5 Dimensional Model
2.3.6 Object Database Model

2.4 Database Internals
2.4.1 Indexing
2.4.2 Transactions and Concurrency
2.4.3 Replication

2.5 Applications of Databases

ii
iii
V

1

1
2
3
5
6
6
7
7
7
8
9
9
9
10
IO
11
12
12
12
15
15
16
17
17
18
20
20
20
21
21
23
24
24
25
25
26
27
27

ll1

2.6 Database Brands
CHAPTER THREE: SQL

3.1 SQL
3.2 History

3.2.1 Standardization
3.3 Scope
3.4 SQL Keywords

3.4.1 Data Retrieval
3 .4.2 Data Manipulation
3.4.3 Transaction Control
3.4.4 Data Definition
3.4.5 Data Control
3.4.6 Other

3.5 Criticisms of SQL
3.6 Logical Operators

CHAPTER FOUR: DESCRIPTION ABOUT PROJECT
CONCLUSION
APPENDIX! : Program Code
APPENDIX2: Table of Database
REFERENCES

28
29
29
29
30
31
32
32
33
34
34
35
35
36
37
38
49
50
112
116

IV

INTRODUCTION

This project is register and stock program for optician which uses SQL quarries. This

program was prepared by using Borland Delphi 7 and SQL (Structured Query

Language).

The subjects chapter by chapter so let us go through the overview the chapters in breif:

CHAPTER I: About the Delphi general information.

CHAPTER2: About the database general information, database models, relational

operations, and database brands.

CHAPTER3: About SQL. It is history , keywords and some of the commands of it.

CHAPTER4: About the project, how we create it, its forms and using the program.

V

CHAPTER 1

DELPHI

1.1 INTRODUCTION TO DELPHI

In this project we will answer some basic questions about Delphi, to give a feel

for where it came from, what it has to offer, and where it is going in the future. This is

an essential part of any course. We feel it is important for those studying a new

programming language to understand the ideology and intended use of the language.
-

Too many programmers are tempted to use the language that they know, rather than

learn a new one to cope with the specific demands of the project that they have at the

end of this lecture, we should have gained sufficient understanding of the Delphi

ideology to decide if it is a suitable language for a specific project that we have.

1.2 WHAT IS DELPHI?

Delphi is an object oriented, component based, visual, rapid development

environment for event driven Windows applications, based on the Pascal language.

Unlike other popular competing Rapid Application Development (RAD) tools, Delphi

compiles the code you write and produces really tight, natively executable code for the

target platform. In fact the most recent versions of Delphi optimise the compiled code

and the resulting executables are as efficient as those compiled with any other compiler

currently on the market.The term "visual" describes Delphi very well. All of the user

interface development is conducted in a What You See Is What You Get environment

(WYSIWYG), which means you can create polished, user friendly interfaces in a very

short time, or prototype whole applications in a few hours.

Delphi is, in effect, the latest in a long and distinguished line of Pascal compilers

(the previous versions of which went by the name "Turbo Pascal") from the company

formerly known as Borland, now known as Inprise. In common with the Turbo Pascal

compilers that preceded it, Delphi is not just a compiler, but a complete development

environment. Some of the facilities that are included in the "Integrated Development

Environment" (IDE) are listed below:

• A syntax sensitive program file editor

• A rapid optimising compiler

• Built in debugging /tracing facilities

• A visual interface developer

• Syntax sensitive help files

• Database creation and editing tools

• Image/Icon/Cursor creation I editing tools

• Version Control CASE tools

The development environment itself is extensible, and there are a number of add

ms available to perform functions such as memory leak detection and profiling.

In short, Delphi includes just about everything you need to write applications that will

run on an Intel platform under Windows, but if your target platform is a Silicon

Graphics running IRIX, or a Sun Spare running SOLARIS, or even a PC running

LINUX, then you will need to look elsewhere for your development tool.

This specialisation on one platform and one operating system, makes Delphi a

very strong tool. The code it generates runs very rapidly, and is very stable, once your

own bugs have been ironed out.

1.2.1 What kind of programming can you do with Delphi?

The simple answer is "more or less anything". Because the code is compiled, it

runs quickly, and is therefore suitable for writing more or less any program that you

would consider a candidate for the Windows operating system.

You probably won't be using it to write embedded systems for washing

machines, toasters or fuel injection systems, but for more or less anything else, it can be

used.

2

Some projects to which Delphi is suited:

• Simple, single user database applications

• Intermediate multi-user database applications

• Large scale multi-tier, multi-user database applications

• Internet applications

• Graphics Applications

• Multimedia Applications

• Image processing/Image recognition

• Data analysis

• System tools

• Communications tools using the Internet, Telephone or LAN

• Web based applications

This is not intended to be an exhaustive list, more an indication of the depth and

breadth of Delphi's applicability. Because it is possible to access any and all of the

Windows API, and because if all else fails, Delphi will allow you to drop a few lines of

assembler code directly into your ordinary Pascal instructions, it is possible to do more

or less anything. Delphi can also be used to write Dynamically Linked Libraries (DLLs)

and can call out to DLLs written in other programming languages without difficulty.

Because Delphi is based on the concept of self contained Components (elements of code

that can be dropped directly on to a form in your application, and exist in object form,

performing their function until they are no longer required), it is possible to build

applications very rapidly. Because Delphi has been available for quite some time, the

number of pre-written components has been increasing to the point that now there is a

component to do more or less anything you can imagine. The job of the programmer has

become one of gluing together appropriate components with code that operates them as

required.

1.2.2 Versions are there and How do they differ?

Borland (as they were then) has a long tradition in the creation of high speed

compilers. One of their best known products was Turbo Pascal - a tool that many

programmers cut their teeth on. With the rise in importance of the Windows

environment, it was only a matter of time before development tools started to appear

3

that were specific to this new environment.In the very beginning, Windows produced

SDKs (software development kits) that were totally non-visual (user interface

development was totally separated from the development of the actual application), and

required great patience and some genius to get anything working with. Whilst these

tools slowly improved, they still required a really good understanding of the inner

workings of Windows a great extent these criticisms were dispatched by the release of
'
Microsoft's Visual Basic product, which attempted to bring Windows development to

the masses. It achieved this to a great extent too, and remains a popular product today.

However, it suffered from several drawbacks:

1) It wasn't as stable as it might have been

2) It was an interpreted language and hence was slow to run

3) It had as its underlying language BASIC, and most "real" programmers

weren't so keen!

Into this environment arrived the eye opening Delphi I product, and in many

ways the standard for visual development tools for Windows was set. This first version

was a 16 bit compiler, and produced executable code that would run on Windows 3 .1

and Windows 3.11. Of course, Microsoft have ensured (up to now) that their 32 bit

operating systems (Win95, Win98, and Win NT) will all run 16 bit applications,

however, many of the features that were introduced in these newer operating systems

are not accessible to the 16 bit applications developed with Delphi I.Delphi 2 was

released quite soon after Delphi I, and in fact included a full distribution of Delphi I on

the same CD. Delphi 2, (and all subsequent versions) have been 32 bit compilers,

producing code that runs exclusively on 32bit Windows platforms, (We ignore for

simplicity the WIN32S DLLs which allow Win 3.lx to run some 32 bit applications).

Delphi is currently standing at Version 4.0, with a new release (version 5.0)

expected shortly. In its latest version, Delphi has become somewhat feature loaded, and

as a result, we would argue, less stable than the earlier versions. However, in its

defence, Delphi (and Borland products in general) have always been more stable than

their competitors products, and the majority of Delphi 4's glitches are minor and

4

forgivable - just don't try and copy/paste a selection of your code, midway through a

debugging session!

The reasons for the version progression include the addition of new components,

improvements in the development environment, the inclusion of more internet related

support and improvements in the documentation. Delphi at version 4 is a very mature

product, and Inprise has always been responsive in developing the product in the

direction that the market requires it to go. Predominantly this means right now, the

inclusion of more and more Internet, Web and CORBA related tools and components - a

trend we are assured continues with the release of version 5.0

For each version of Delphi there are several sub-versions, varying in cost and

features, from the most basic "Developer" version to the most complete (and expensive)

"Client Server" version. The variation in price is substantial, and if you are

contemplating a purchase, you should study the feature list carefully to ensure you are

not paying for features you will never use. Even the most basic "Developer" version

contains the vast majority of the features you are likely to need on a day to day basis.

Don't assume that you will need Client Server, simply because you are intending to

write a large database application - The developer edition is quitcapable ofthis.

1.3 The VCL to Applications Developers

Applications Developers create complete applications by interacting with the

Delphi visual environment (as mentioned earlier, this is a concept nonexistent in many

other frameworks). These people use the VCL to create their user-interface and the

other elements of their application: database connectivity, data validation, business

rules, etc ..

Applications Developers should know which properties, events, and methods

each component makes available. Additionally, by understanding the VCL architecture,

Applications Developers will be able to easily identify where they can improve their

applications by extending components or creating new ones. Then they can maximize

the capabilities of these components, and create better applications.

5

1.3.1 The VCL to Component Writers

Component Writers expand on the existing VCL, either by developing new

components, or by increasing the functionality of existing ones. Many component

writers make their components available for Applications Developers to use.

A Component Writer must take their knowledge of the VCL a step further than

that of the Application Developer. For example, they must know whether to write a new

component or to extend an existing one when the need for a certain characteristic arises.

This requires a greater knowledge of the VCL's inner workings.

1.3.2The VCL is made up of components

Components are the building blocks that developers use to design the user­

interface and to provide some non-visual capabilities to their applications. To an

Application Developer, a component is an object most commonly dragged from the

Component palette and placed onto a form. Once on the form, one can manipulate the

component's properties and add code to the component's various events to give the

component a specific behavior. To a Component Writer, components are objects in

Object Pascal code. Some components encapsulate the behavior of elements provided

by the system, such as the standard Windows 95 controls. Other objects introduce

entirely new visual or non-visual elements, in which case the component's code makes

up the entire behavior of the component.

The complexity of different components varies widely. Some might be simple

while others might encapsulate a elaborate task. There is no limit to what a component

can do or be made up of. You can have a very simple component like a TLabel, or a

much more complex component which encapsulates the complete functionality of a

spreadsheet.

6

1.3.3 Component types, structure, and VCL hierarchy

Components are really just special types of objects. In fact, a component's

structure is based on the rules that apply to Object Pascal. There are three fundamental

keys to understanding the VCL.

First, you should know the special characteristics of the four basic component types:

standard controls, custom controls, graphical controls and non-visual components.

Second, you must understand the VCL structure with which components are built. This

really ties into your understanding of Object Pascal's implementation.

Third, you should be familiar with the VCL hierarchy and you should also know where

the four component types previously mentioned fit into the VCL hierarchy. The

following paragraphs will discuss each of these keys to understanding the VCL.

1.3.4 Component Types

As a component writer, there four primary types of components that you will

work with in Delphi: standard controls, custom controls, graphical controls, and non­

visual components. Although these component types are primarily of interest to

component writers, it's not a bad idea for applications developers to be familiar with

them. They are the foundations on which applications are built.

1.3.4.1 Standard Components

Some of the components provided by Delphi 2.0 encapsulate the behavior of the

standard Windows controls: TButton, TListbox As a component writer, there four

primary types of components that you will work with in Delphi: standard controls,

custom controls, graphical controls, and non-visual components. Although these

component types are primarily of interest to component writers, it's not a bad idea for

applications developers to be familiar with them. They are the foundations on which

applications are built.

7

For example. You will find these components on the Standard page of the

Component Palette. These components are Windows' common controls with Object

Pascal wrappers around them.

Each standard component looks and works like the Windows' common control

which it encapsulates. The VCL wrapper's simply makes the control available to you in

the form of a Delphi component-it doesn't define the common control's appearance or

functionality, but rather, surfaces the ability to modify a control's

appearance/functionality in the form of methods and properties. If you have the VCL

source code, you can examine how the VCL wraps these controls in the file

STDCTRLS.PAS.

If you want to use these standard components unchanged, there is no need to

understand how the VCL wraps them. If, however, you want to extend or change one of

these components, then you must understand how the Window's common control is

wrapped by the VCL into a Delphi component.

For example, the Windows class LISTBOX can display the list box items in

multiple columns. This capability, however, isn't surfaced by Delphi's TListBox

component (which encapsulates the Windows LISTBOX class). (TListBox only

displays items in a single column.) Surfacing this capability requires that you override

the default creation of the TListBox component.

This example also serves to illustrate why it is important for Applications

Developers to understand the VCL. Just knowing this tidbit of information helps you to

identify where enhancements to the existing library of components can help make your

life easier and more productive.

1.3.4.2 Custom components

Unlike standard components, custom components are controls that don't already

have a method for displaying themselves, nor do they have a defined behavior. The

Component Writer must provide to code that tells the component how to draw itself and

determines how the component behaves when the user interacts with it. Examples of

existing custom components are the TPanel and TStringGrid components.

It should be mentioned here that both standard and custom components are

windowed controls. A "windowed control" has a window associated with it and,

therefore, has a window handle. Windowed controls have three characteristics: they can

8

receive the input focus, they use system resources, and they can be parents to other

controls. (Parents is related to containership, discussed later in this paper.) An example

of a component which can be a container is the TPanel component.

1.3.4.3 Graphical components

Graphical components are visual controls which cannot receive the input focus
,

from the user. They are non-windowed controls. Graphical components allow you to

display something to the user without using up any system resources; they have less

"overhead" than standard or custom components. Graphical components don't require a

window handle-thus, they cannot can't get focus. Some examples of graphical

components are the TLabel and TShape components.

Graphical components cannot be containers of other components. This means

that they cannot own other components which are placed on top of them.

1.3.4.4 Non-visual components

Non-visual components are components that do not appear on the form as

controls at run-time. These components allow you to encapsulate some functionality of

an entity within an object. You can manipulate how the component will behave, at

design-time, through the Object Inspector. Using the Object Inspector, you can modify a

non-visual component's properties and provide event handlers for its events. Examples

of such components are the TOpenDialog, TT able, and TTimer components

1.3.4.5 Structure of a component

All components share a similar structure. Each component consists of common

elements that allow developers to manipulate its appearance and function via properties,

methods and events. The following sections in this paper will discuss these common

elements as well as talk about a few other characteristics of components which don't

apply to all components

9

1.3.SComponent properties

Properties provide an extension of an object's fields. Unlike fields, properties do

not store data: they provide other capabilities. For example, properties may use methods

to read or write data to an object field to which the user has no access. This adds a

certain level of protection as to how a given field is assigned data. Properties also cause

"side effects" to occur when the user makes a particular assignment to the property.

Thus what appears as a simple field assignment to the component user could trigger a

complex operation to occur behind the scenes.

1.3.6Properties provide access to internal storage fields

There are two ways that properties provide access to internal storage fields of

components: directly or through access methods. Examine the code below which

illustrates this process.

TCustomEdit = class(TWinControl)

private

FMaxLength: Integer;

protected

procedure SetMaxLength(Value: Integer);

published

property MaxLength: Integer read

FMaxLength write SetMaxLength default O;

end;

The code above is snippet of the TCustomEdit component class. TCustomEdit is

the base class for edit boxes and memo components such as TEdit, and TMemo.

TCustomEdit has an internal field FMaxLength of type Integer which specifies

the maximum length of characters which the user can enter into the control. The user

doesn't directly access the FMaxLength field to specify this value. Instead, a value is

added to this field by making an assigmnent to the MaxLength property.

10

The property MaxLength provides the access to the storage field FMaxLength.

The property definition is comprised of the property name, the property type, a read

declaration, a write declaration and optional default value.

The read declaration specifies how the property is used to read the value of an

internal storage field. For instance, the MaxLength property has direct read access to

FMaxLength. The write declaration for MaxLength shows that assignments made to the

MaxLength property result in a call to an access method which is responsible for

assigning a value to the FMaxLength storage field. This access method is

SetMaxLength.

1.4Property-access methods

Access methods take a single parameter of the same type as the property. One of

the primary reasons for write access methods is to cause some side-effect to occur as a

result of an assignment to a property. Write access methods also provide a method layer

over assignments made to a component's fields. Instead of the component user making

the assignment to the field directly, the property's write access method will assign the

value to the storage field if the property refers to a particular storage field. For example,

examine the implementation of the SetMaxLength method below.

procedure TCustomEdit.SetMaxLength(Value: Integer);

begin

if FMaxLength <> Value then

begin

FMaxLength := Value;

if HandleAllocated then

SendMessage(Handle, EM_LIMITTEXT, Value, O);

end;

end;

The code in the SetMaxLength method checks if the user is assigning the same

value as that which the property already holds. This is done as a simple optimization.

The method then assigns the new value to the internal storage field, FMaxLength.

Additionally, the method then sends an EM_ LIMITTEXT Windows message to the

window which the TCustomEdit encapsulates. The EM_ LIMITTEXT message places a

limit on the amount of text that a user can enter into an edit control. This last step is

11

what is referred to as a side-effect when assigning property values. Side effects are any

additional actions that occur when assigning a value to a property and can be quite

sophisticated.

Providing access to internal storage fields through property access methods offers the

advantage that the Component Writer can modify the implementation of a class without

modifying the interface. It is also possible to have access methods for the read access of

a property. The read access method might, for example, return a type which is different

that that of a properties storage field. For instance, it could return the string

representation of an integer storage field.

Another fundamental reason for properties is that properties are accessible for

modification at run-time through Delphi's Object Inspector. This occurs whenever the

declaration of the property appears in the published section of a component's

declaration.

1.5Types of properties

Properties can be of the standard data types defined by the Object Pascal rules.

Property types also determine how they are edited in Delphi's Object Inspector. The

table below shows the different property types as they are defined in Delphi's online

help.

1.6Methods

Since components are really just objects, they can have methods. We will

discuss some of the more commonly used methods later in this paper when we discuss

the different levels of the VCL hierarchy.

1.7 Events

Events provide a means for a component to notify the user of some pre-defined

occurrence within the component. Such an occurrence might be a button click or the

pressing of a key on a keyboard.

12

Components contain special properties called events to which the component

user assigns code. This code will be executed whenever a certain event occurs. For

instance, if you look at the events page of a TEdit component, you'll see such events as

OnChange, OnClick and OnDblClick. These events are nothing more than pointers to

methods.

When the user of a component assigns code to one of those events, the user's

code is referred to as an event handler. For example, by double clicking on the events

page for a particular event causes Delphi to generate a method and places you in the

Code Editor where you can add your code for that method. An example of this is shown

in the code below, which is an OnClick event for a TButton component.

TButton component.

-TForml = class(TFonn)
Button 1 : Tbutton;

procedure Button 1 Click(Sender: TObject);

end;

procedure TFonnl .Button l Click(Sender: TObject);

begin

{ Event code goes here }

end;

It becomes clearer that events are method pointers when you assign an event

handler to an event programmatically. The above example was Delphi generated code.

To link your own an event handler to a TButton's OnClick event at run time you must

<, first create a method that you will assign to this event. Since this is a method, it must

belong to an existing object. This object can be the form which owns the TButton

component although it doesn't have to be. In fact, the event handlers which Delphi

creates belong to the form on which the component resides. The code below illustrates

how you would create an event handler method.

TForm 1 = class(TFonn)

Button l: TButton;

private

MyOnClickEvent(Sender: TObject); II Your method declaration

end;

13

{ Your method definition below}

procedure TFonn l .MyOnClickEvent(Sender: TObject);

begin

{ Your code goes here }

end;

The MyOnClickEvent method becomes the event handler for Button 1.0nClick

when it is assigned to Buttonl .OnClick in code as shown below.

Buttonl .OnClick := MyOnClickEvent

This assignment can be made anytime at runtime, such as in the form's OnCreate

event handler. This is essentially the same thing that happens when you create an event

handler through Delphi's Object Inspector except that Delphi generates the method

declaration.

When you define methods for event handlers, these methods must be defined as

the same type as the event property and the field to which the event property refers. For

instance, the OnClick event refers to an internal data field, FOnClick. Both the property

OnC!ick, and field FOnC!ick are of the type TNotifyEvent. TNotifyEvent is a

procedural type as shown below:

TNotifyEvent = procedure (Sender: TObject) of object;
Therefore, if you are creating a method for an On Click event, it must be defined

with the same type and number of parameters as shown below.

TFonn 1 = class(TFonn)
<,

procedure (Sender: TObject);

end;

Note the use of the of object specification. This tells the compiler that the

procedure definition is actually a method and performs some additional logic like

ensuring that an implicit Self parameter is also passed to this method when called. Self

is just a pointer reference to the class to which a method belongs.

14

1.8Containership

Some components in the VCL can own other components as well as be parents

to other components. These two concepts have a different meaning as will be discussed

in the section to follow.

1.9 Ownership

All components may be owned by other components but not all components can

own other components. A component's Owner property contains a reference to the

component which owns it.

The basic responsibility of the owner is one of resource management. The owner

is responsible for freeing those components which it owns whenever it is destroyed.

Typically, the form owns all components which appear on it, even if those components

are placed on another component such as a TPanel. At design-time, the form

automatically becomes the owner for components which you place on it. At run-time,

when you create a component, you pass the owner as a parameter to the component's

constructor. For instance, the below shows how to create a TButton component at run­

time and passes the form's implicit Self variable to the TButton's Create constructor.

TButton.Create will then assign whatever is passed to it, in this case Self or rather the

form, and assign it to the button's Owner property.

MyButton := TButton.Create(self);

When the form that now owns this TButton component gets freed, MyButton

will also be freed.

You can create a component without an owner by passing nil to the component's

Create constructor, however, you must ensure that the component is freed when it is no

longer needed. The code below shows you how to do this for a TTable component.

MyTable := TTable.Create(nil)

try

{ Do stuff with MyTable }

finally

MyTable.Free;

end;

15

As shown in the code above, it is best to use a try .. finally block to ensure that the

component gets freed even if an exception were to be raised.

The Components property of a component is an array property which contains a

list of the components which it owns. For instance, the code below shows how to loop

through a form's components and then shows their class name.

var

I: integer;

begin

for I := 0 to ComponentCount - I do

ShowMessage(Components[i] .ClassName);

end;

1.1 OParenthood

Parenthood is a much different concept from ownership. It applies only to

windowed components, which can be parents to other components. Later, when we

discuss the VCL hierarchy, you will see the level in the hierarchy which introduces

windowed controls.

Parent components are responsible for the display of other components. They

call the appropriate methods internally that cause the children components to draw

themselves. The Parent property of a component refers to the component which is its

parent. Also, a component's parent does not have to be it's owner. Although the parent

component is mainly responsible for the display of components, it also frees children

components when it is destroyed.

Windowed components are controls which are visible user interface elements

such as edit controls, list boxes and memo controls. In order for a windowed

component to be displayed, it must be assigned a parent on which to display itself.

16

CHAPTER2

2.1 INTRODUCTION TO DAT ABASE

A database is an organized collection of data. The term originated within thecomputer

industry, but it s meaning has been broadened by popular use to the extent that the

European Database Directive includes non-electronic databases within its definition.

This article is confined to a more technical use of the term; though even amongst

computing professionals some attach a much wider meaning to the word than others.

One possible definition is that a database is a coll action of records stored in a computer

in a systematic way, so that a computer program can consult it to answer questions. For

better retrieval and sorting , each record is usually organized as a set of data elements.

The items retrieved in answer to queries become information that can be used to make

decisions. The computer program used to manage and query a database is known as a

database management system (DBMS). The properties and design of database system

are included in the study of information science.

The central concept of a database is that of a collection of records, or pieces of

knowledge. Typically, for a given database, there is a structural description of the type

of facts held in that database: this description is known as a schema. The schema

describes the objects that are represented in the database, and the relationships among

them. There are a number of different ways of organizing a schema, that is, of modeling

the database structure: these are known as database models (or data models). The model

in most common use today is the relational model, which in layman's terms represents

all information in the form of multiple related tables each consisting of rows and

columns (the true definition uses mathematical terminology). This model represents

relationships by the use of values common to more than one table. Other models such as

the hierarchical model and the network model use a more explicit representation of

relationships.

The term database refers to the collection of related records, and the software should be

referred to as the database management system or DBMS. When the context is

unambiguous, however, many database administrators and programmers use the term

database to cover both meanings.

17

Many professionals would consider a collection of data to constitute a database only if it

has certain properties: for example, if the data is managed to ensure its integrity and

quality, if it allows shared access by a community of users, if it has a schema, or if it

supports a query language. However, there is no agreed definition of these properties.

Database management systems are usually categorized according to the data model that

they support: relational, object-relational, network, and so on. The data model will tend

to determine the query languages that are available to access the database. A great deal

of the internal engineering of a DBMS, however, is independent of the data model, and

is concerned with managing factors such as performance, concurrency, integrity, and

recovery from hardware failures. In these areas there are large differences between

products.

2.2 HISTORY

The earliest known use of the term 'data base' was in June 1963, when the System

Development Corporation sponsored a symposium under the title Development and

Management of a Computer-centered Data Base. Database as a single word became

common in Europe in the early 1970s and by the end of the decade it was being used in

major American newspapers. (Databank, a comparable term , had been used in the

Washington Post newspaper as early as 1966.)

The first database management systems were developed in the 1960s. A pioneer in the

field was Charles Bachman. Bach.man's early papers show that his aim was to make

more effective use of the new direct access storage devices becoming available: until

then, data processing had been based on punched cards and magnetic tape, so that serial

processing was the dominant activity. Two key data models arose at this time:

CODASYL developed the network model based on Bachman's ideas, and (apparently

independently) the hierarchical model was used in a system developed by North

American Rockwell, later adopted by IBM as the cornerstone of their IMS product.

The relational model was proposed by E. F. Codd in 1970. He criticized existing models

for confusing the abstract description of information structure with descriptions of

physical access mechanisms. For a long while, however, the relational model remained

of academic interest only. While CODASYL systems and IMS were conceived as

18

practical engineering solutions taking account of the technology as it existed at the time,

the relational model took a much more theoretical perspective, arguing (correctly) that

hardware and software technology would catch up in time. Among the first

implementations were Michael Stonebraker's Ingres at Berkeley, and the System R

project at IBM. Both of these were research prototypes, announced during 1976. The

first commercial products, Oracle and DB2, did not appear until around 1980. The first

successful database product for microcomputers was dBASE for the CP/M and PC­

DOS/MS-DOS operating systems.

During the 1980s, research activity focused on distributed database systems and

database machines, but these developments had little effect on the market. Another

important theoretical idea was the Functional Data Model, but apart from some

specialized applications in genetics, molecular biology, and fraud investigation, the

world took little notice.

In the 1990s, attention shifted to object-oriented databases. These had some success in

fields where it was necessary to handle more complex data than relational systems could

easily cope with, such as spatial databases, engineering data (including software

engineering repositories), and multimedia data. Some of these ideas were adopted by

the relational vendors, who integrated new features into their products as a result.

The 2000s, the fashionable area for innovation is the XML database. As with object

databases, this has spawned a new collection of startup companies, but at the same time

the key ideas are being integrated into the established relational products. XML

databases aim to remove the traditional divide between documents and data, allowing

all of an organization's information resources to be held in one place, whether they are

highly structured or not.

19

2.3 DATABASE MODELS

Various techniques are used to model data structure. Most database systems are built

around one particular data model, although it is increasingly common for products to

offer support for more than one model. For any one logical model various physical

implementations may be possible, and most products will offer the user some level of

control in tuning the physical implementation, since the choices that are made have a

significant effect on performance. An example of this is the relational model: all serious

implementations of the relational model allow the creation of indexes which provide

fast access to rows in a table if the values of certain columns are known.

A data model is not just a way of structuring data: it also defines a set of operations that

can be performed on the data. The relational model, for example, defines operations

such as select, project, and join. Although these operations may not be explicit in a

particular query language, they provide the foundation on which a query language is

built.

2.3.1 Flat model

This may not strictly qualify as a data model, as defined above. The flat (or table) model

consists of a single, two-dimensional array of data elements, where all members of a

given column are assumed to be similar values, and all members of a row are assumed

to be related to one another. For instance, columns for name and password that might

be used as a part of a system security database. Each row would have the specific

password associated with an individual user. Columns of the table often have a type

associated with them, defining them as character data, date or time information,

integers, or floating point numbers. This model is, incidentally, a basis of the

spreadsheet.

2.3.2 Hierarchical model

In a hierarchical model, data is organized into a tree-like structure, implying a single

upward link in each record to describe the nesting, and a sort field to keep the records in

a particular order in each same-level list. Hierarchical structures were widely used in the

early mainframe database management systems, such as the Information Management

System (IMS) by IBM, and now describe the structure of XML documents. This

structure allows one 1 :N relationship between two types of data. This structure is very

20

efficient to describe many relationships in the real world; recipes, table of contents,

ordering of paragraphs/verses, any nested and sorted information. However, the

hierarchical structure is inefficient for certain database operations when a full path (as

opposed to upward link and sort field) is not also included for each record.

2.3.3 Network model

The network model (defined by the CODASYL specification) organizes data using two

fundamental constructs, called records and sets. Records contain fields (which may be

organized hierarchically, as in the programming language COBOL). Sets (not to be

confused with mathematical sets) define one-to-many relationships between records:

one owner, many members. A record may be an owner in any number of sets, and a

member in any number of sets.

The operations of the network model are navigational in style: a program maintains a

current position, and navigates from one record to another by following the

relationships in which the record participates. Records can also be located by supplying

key values.

Although it is not an essential feature of the model, network databases generally

implement the set relationships by means of pointers that directly address the location of

a record on disk. This gives excellent retrieval performance, at the expense of

operations such as database loading and reorganization.

2.3.4 Relational model

The relational model was introduced in an academic paper by E. F. Codd in 1970 as a

way to make database management systems more independent of any particular

application. It is a mathematical model defined in terms of predicate logic and set

theory.

The products that are generally referred to as relational databases in fact implement a

model that is only an approximation to the mathematical model defined by Codd. The

data structures in these products are tables, rather than relations: the main differences

being that tables can contain duplicate rows, and that the rows (and columns) can be

treated as being ordered. The same criticism applies to the SQL language which is the

primary interface to these products. There has been considerable controversy, mainly

21

due to Codd himself, as to whether it is correct to describe SQL implementations as

"relational": but the fact is that the world does so, and the following description uses the

term in its popular sense.

A relational database contains multiple tables, each similar to the one in the "flat"

database model. Relationships between tables are not defined explicitly; instead, keys

are used to match up rows of data in different tables. A key is a collection of one or

more columns in one table whose values match corresponding columns in other tables:

for example, an Employee table may contain a column named Location which contains

a value that matches the key of a Location table. Any column can be a key, or multiple

columns can be grouped together into a single key. It is not necessary to define all the

keys in advance; a column can be used as a key even if it was not originally intended to

be one.

A key that can be used to uniquely identify a row in a table is called a unique key.

Typically one of the unique keys is the preferred way to refer to a row; this is defined as

the table's primary key.

A key that has an external, real-world meaning (such as a person's name, a book's ISBN,

or a car's serial number) is sometimes called a "natural" key. If no natural key is suitable

(think of the many people named Brown), an arbitrary key can be assigned (such as by

giving employees ID numbers). In practice, most databases have both generated and

natural keys, because generated keys can be used internally to create links between rows

that cannot break, while natural keys can be used, less reliably, for searches and for

integration with other databases. (For example, records in two independently developed

databases could be matched up by social security number, except when the social

security numbers are incorrect, missing, or have changed.)

22

2.3.4.1 Relational operations

Users (or programs) request data from a relational database by sending it a query that is

written in a special language, usually a dialect of SQL. Although SQL was originally

intended for end-users, it is much more common for SQL queries to be embedded into

software that provides an easier user interface. Many web sites, perform SQL queries

when generating pages.

In response to a query, the database returns a result set, which is just a list of rows

containing the answers. The simplest query is just to return all the rows from a table, but

more often, the rows are filtered in some way to return just the answer wanted.

Often, data from multiple tables are combined into one, by doing a join. Conceptually,

this is done by taking all possible combinations of rows (the Cartesian product), and

then filtering out everything except the answer. In practice, relational database

management systems rewrite ("optimize") queries to perform faster, using a variety of

techniques.

There are a number of relational operations in addition to join. These include project

(the process of eliminating some of the columns), restrict (the process of eliminating

some of the rows), union (a way of combining two tables with similar structures),

difference (which lists the rows in one table that are not found in the other), intersect

(which lists the rows found in both tables), and product (mentioned above, which

combines each row of one table with each row of the other). Depending on which other

sources you consult, there are a number of other operators - many of which can be

defined in terms of those listed above. These include semi-join, outer operators such as

outer join and outer union, and various forms of division. Then there are operators to

rename columns, and summarizing or aggregating operators, and if you permit relation

values as attributes (RVA - relation-valued attribute), then operators such as group and

ungroup. The SELECT statement in SQL serves to handle all of these except for the

group and ungroup operators.

The flexibility of relational databases allows programmers to write queries that were not

anticipated by the database designers. As a result, relational databases can be used by

multiple applications in ways the original designers did not foresee, which is especially

23

important for databases that might be used for decades. This has made the idea and

implementation of relational databases very popular with businesses.

2.3.5 Dimensional model

The dimensional model is a specialized adaptation of the relational model used to

represent data in data warehouses in a way that data can be easily summarized using

OLAP queries. In the dimensional rmodel, a database consists of a single large table of

facts that are described using dimensions and measures. A dimension provides the

context of a fact (such as who participated, when and where it happened, and its type)

and is used in queries to group related facts together. Dimensions tend to be discrete and

are often hierarchical; for example, the location might include the building, state, and

country. A measure is a quantity describing the fact, such as revenue. It's important that

measures can be meaningfully aggregated - for example, the revenue from different

locations can be added together.

In an OLAP query, dimensions are chosen and the facts are grouped and added together

to create a summary.

The dimensional model is often implemented on top of the relational model using a star

schema, consisting of one table containing the facts and surrounding tables containing

the dimensions. Particularly complicated dimensions might be represented using

multiple tables, resulting in a snowflake schema.

A data warehouse can contain multiple star schemas that share dimension tables,

allowing them to be used together. Coming up with a standard set of dimensions is an

important part of dimensional modeling.

2.3.6 Object database models

In recent years, the object-oriented paradigm has been applied to database technology,

creating a new programming model known as object databases. These databases attempt

to bring the database world and the application programming world closer together, in

particular by ensuring that the database uses the same type system as the application

program. This aims to avoid the overhead (sometimes referred to as the impedance

mismatch) of converting information between its representation in the database (for

24

example as rows in tables) and its representation in the application program (typically as

objects). At the same time object databases attempt to introduce the key ideas of object

programming, such as encapsulation and polymorphism, into the world of databases.

A variety of these ways have been tried for storing objects in a database. Some products

have approached the problem from the application programming end, by making the

objects manipulated by the program persistent. This also typically requires the addition

of some kind of query language, since conventional programming languages do not

have the ability to find objects based on their information content. Others have attacked

the problem from the database end, by defining an object-oriented data model for the

database, and defining a database programming language that allows full programming

capabilities as well as traditional query facilities.

Object databases suffered because of a lack of standardization: although standards were

defined by ODMG, they were never implemented well enough to ensure interoperability

between products. Nevertheless, object databases have been used successfully in many

applications: usually specialized applications such as engineering databases or

molecular biology databases rather than mainstream commercial data processing.

However, object database ideas were picked up by the relational vendors and influenced
' extensions made to these products and indeed to the SQL language.

2.4 DAT ABASE INTERNALS

2.4.1 Indexing

All of these kinds of database can 'take advantage of indexing to increase their speed,

and this technology has advanced tremendously since its early uses in the 1960s and

1970s. The most common kind of index is a sorted list of the contents of some particular

table column, with pointers to the row associated with the value. An index allows a set

of table rows matching some criterion to be located quickly. Various methods of

indexing are commonly used; B-trees, hashes, and linked lists are all common indexing

techniques.

Relational DBMSs have the advantage that indexes can be created or dropped without

changing existing applications making use of it. The database chooses between many

different strategies based on which one it estimates will run the fastest. In other words,

indexes are transparent to the application or end user querying the database; while they

25

affect performance, any SQL command will run with or without indexes existing in the

database.

Relational DBMSs utilize many different algorithms to compute the result of an SQL

statement. The RDBMS will produce a plan of how to execute the query, which is

generated by analyzing the run times of the different algorithms and selecting the

quickest. Some of the key algorithms that deal with joins are Nested Loops Join, Sort­

Merge Join and Hash Join. Which of these is chosen depends on whether an index

exists, what type it is, and its cardinality.

2.4.2 Transactions and concurrency

In addition to their data model, most practical databases ("transactional databases")

attempt to enforce a database transaction model that has desirable data integrity

properties. Ideally, the database software should enforce the ACID rules, summarized

here:

Atomicity: Either all the tasks in a transaction must be done, or none of them. The

transaction must be completed, or else it must be undone (rolled back).

Consistency: Every transaction must preserve the integrity constraints - the declared

consistency rules - of the database. It cannot place the data in a contradictory state.

Isolation: Two simultaneous transactions cannot interfere with one another.

Intermediate results within a transaction are not visible to other transactions.

Durability: Completed transactions cannot be aborted later or their results discarded.

They must persist through (for instance) restarts of the DBMS after crashes

In practice, many DBMS's allow most of these rules to be selectively relaxed for better

performance.

Concurrency control is a method used to ensure that transactions are executed in a safe

manner and follow the ACID rules. The DBMS must be able to ensure that only

serializable, recoverable schedules are allowed, and that no actions of committed

transactions are lost while undoing aborted transactions.

26

2.4.3 Replication

Replication of databases is closely related to transactions. If a database can log its

individual actions, it is possible to create a duplicate of the data in real time. The

duplicate can be used to improve performance or availability of the whole database

system. Common replication concepts include:

Master/Slave Replication: All write requests are performed on the master and then

replicated to the slaves

Quorum: The result of Read and Write requests is calculated by querying a "majority"

of replicas.

Multimaster: Two or more replicas sync each other via a transaction identifier.

2.5 APPLICATIONS OF DAT ABASES

Databases are used in many applications, spanning virtually the entire range of

computer software. Databases are the preferred method of storage for large multi user

applications, where coordination between many users is needed. Even individual users

find them convenient, though, and many electronic mail programs and personal

organizers are based on standard database technology. Software database drivers are

available for most database platforms so that application software can use a common

application programming interface (API) to retrieve the information stored in a

database. Two commonly used database APis are JDBC and ODBC. A database is also

a place where you can store data and then arrange that data easily and efficiently.

27

2.6 DAT ABASE BRANDS

(In alphabetical order)
4D
A dab as
Adaptive Server Enterprise
Corel Paradox
Dataflex
Dataphor
DB2
Filernaker
Firebird
Information Management System
Informix
Ingres
Intersystern Cache
Kx
Microsoft Access
Microsoft SQL Server
MySQL
Netezza
Openoffice.org
Oracle
PostgreSQL
Progress
Rel(DBMS)
SQ Lite
SQL Anywhere Studio
Teradata
VistaDB

28

CHAPTER3

3.1 SQL (STRUCTURED QUERY LANGUAGE):

SQL (Structured Query Language) is the most popular computer language used to

create, modify, retrieve and manipulate data from relational database management

systems. The language has evolved beyond its original purpose to support object­

relational database management systems. It is an ANSI/ISO standard.

3.2 HISTORY

An influential paper, "A Relational Model of Data for Large Shared Data Banks", by

Dr. Edgar F. Codd, was published in June, 1970 in the Association for Computing

Machinery (ACM) journal, Communications of the ACM, although drafts of it were

circulated internally within IBM in 1969. Codd's model became widely accepted as the

definitive model for relational database management systems (RDBMS or RDMS).

During the 1970s, a group at IBM's San Jose research center developed a database

system "System R" based upon, but not strictly faithful to, Codd's model. Structured

English Query Language ("SEQUEL") was designed to manipulate and retrieve data

stored in System R. The acronym SEQUEL was later condensed to SQL because the

word 'SEQUEL' was held as a trademark by the Hawker-Siddeley aircraft company of

the UK. Although SQL was influenced by Codd's work, Donald D. Chamberlin and

Raymond F. Boyce at IBM were the authors of the SEQUEL language design. Their

concepts were published to increase interest in SQL.
(

The first non-commercial, relational, non-SQL database, Ingres, was developed in 1974

at U.C. Berkeley.

In 1978, methodical testing commenced at customer test sites. Demonstrating both the

usefulness and practicality of the system, this testing proved to be a success for IBM. As

a result, IBM began to develop commercial products based on their System R prototype

that implemented SQL, including the System/38 (announced in 1978 and commercially

available in August 1979), SQL/DS (introduced in 1981), and DB2 (in 1983).

At the same time Relational Software, Inc. (now Oracle Corporation) saw the potential

of the concepts described by Chamberlin and Boyce and developed their own version of

a RDBMS for the Navy, CIA and others. In the summer of 1979 Relational Software,

29

Inc. introduced Oracle V2 (Version2) for VAX computers as the first commercially

available implementation of SQL. Oracle is often incorrectly cited as beating IBM to

market by two years, when in fact they only beat IBM's release of the System/38 by a

few weeks. Considerable public interest then developed; soon many other vendors

developed versions, and Oracle's future was ensured.

3.2.1 Standardization

SQL was adopted as a standard by ANSI (American National Standards Institute) in

1986 and ISO (International Organization for Standardization) in 1987. ANSI has

declared that the official pronunciation for SQL is !Es kju Ell, although many English­

speaking database professionals still pronounce it as sequel.

The SQL standard has gone through a number ofrevisions:

Year Name Alias Comments

1986 SQL-86 SQL- First published by ANSI. Ratified by ISO in 1987.

87

1989 SQL-89 Minor revision.

1992 SQL-92 SQL2 Major revision (ISO 9075).

1999 SQL: 1999 SQL3 Added regular expression matching, recursive queries, triggers,

non-scalar types and some object-oriented features. (The last

two are somewhat controversial and not yet widely supported.)

2003 SQL:2003 Introduced XML-related features, window functions,

standardized sequences and columns with auto-generated values

(including identity-columns).

30

3.3 SCOPE

SQL is defined by both ANSI and ISO. Extensions to and variations of the standards

exist: Oracle Corporation's PL/SQL, IBM's SQL PL (SQL Procedural Language) and

Sybase I Microsoft's Transact-SQL, which are of a proprietary nature. Commercial

implementations commonly omit support for basic features of the standard, such as the

DATE or TIME data types, preferring variations of their own. SQL code can rarely be

ported between database systems without major modifications, in contrast to ANSI C or

ANSI Fortran, which can usually be ported from platform to platform without major

structural changes.

SQL is designed for a specific, limited purpose - querying data contained in a

relational database. As such, it is a set-based, declarative computer language rather than

an imperative language such as C or BASIC which, being general-purpose, are designed

to solve a much broader set of problems.

Language extensions such as PL/SQL bridge this gap to some extent by adding

procedural elements, such as flow-of-control constructs. Another approach is to allow

programming language code to be embedded in and interact with the database. For

example, Oracle and others include Java in the database, and SQL Server 2005 allows

any .NET language to be hosted within the database server process, while PostgreSQL

allows functions to be written in a wide variety of languages, including Perl, Tel, and C.

There are several reasons for this Jack of portability between database systems:

The complexity and size of the SQL standard means that most databases do not

implement the entire standard.

The standard does not specify database behavior in several important areas (e.g.

indexes), leaving it up to implementations of the standard to decide how to behave.

The SQL standard precisely specifies the syntax that a conforming database system

must implement. However, the standard's specification of the semantics of language

constructs is Jess well-defined, leading to areas of ambiguity.

31

Many database vendors have large existing customer bases; where the SQL standard

conflicts with the prior behavior of the vendor's database, the vendor may be unwilling

to break backward compatibility.

Some believe the lack of compatibility between database systems is intentional in order

to ensure vendor lock-in.

3.4 SQL KEYWORDS

SQL keywords fall into several groups.

3.4.1 Data retrieval

The most frequently used operation in transactional databases is the data retrieval

operation. When restricted to data retrieval commands, SQL acts as a declarative

language.

SELECT is used to retrieve zero or more rows from one or more tables in a database. In

most applications, SELECT is the most commonly used Data Manipulation Language

command. In specifying a SELECT query, the user specifies a description of the desired

result set, but they do not specify what physical operations must be executed to produce

that result set. Translating the query into an efficient query plan is left to the database

system, more specifically to the query optimizer.

;

Commonly available keywords related to SELECT include:

FROM is used to indicate from which tables the data is to be taken, as well as how the

tables JOIN to each other.

WHERE is used to identify which rows to be retrieved, or applied to GROUP BY. WHERE is

evaluated before the GROUP BY.

GROUP BY is used to combine rows with related values into elements of a smaller set

of rows.

HAVING is used to identify which of the "combined rows" (combined rows are

produced when the query has a GROUP BY keyword or when the SELECT part contains

aggregates), are to be retrieved. HAVING acts much like a WHERE, but it operates on the

results of the GROUP BY and hence can use aggregate functions.

32

ORDER BY is used to identify which columns are used to sort the resulting data. Data

retrieval is very often combined with data projection; usually it isn't the verbatum data

stored in primitive data types that a user is looking for or a query is written to serve.

Often the data needs to be expressed differently from how it's stored. SQL allows a

wide variety of formulas included in the select list to project data.

Ex: To select the content of columns named "LastName" and "FirstName", from the

database table called "Persons", use a SELECT statement like this:

I SELECT LastName,FirstName FROM Persons
The database table "Persons":
LastName FirstName Address City
Hansen Ola Timoteivn 10 Sandnes
Svendson Tove Borgvn 23 Sandnes
Pettersen Karina Storgt 20 Stavanger
The result
LastName FirstName
Hansen Ola
Svendson Tove
Pettersen Karina

3.4.2 Data manipulation

First there are the standard Data Manipulation Language (DML) elements. DML is the

subset of the language used to add, update and delete data.

INSERT is used to add zero or more rows (formally tuples) to an existing table.

UPDATE is used to modify the values of a set of existing table rows.

MERGE is used to combine the data of multiple tables. It is something of a combination of

the INSERT and UPDATE elements. It is defined in the SQL:2003 standard; prior to that,

some databases provided similar functionality via different syntax, sometimes called an

"upsert".

DELETE removes zero or more existing rows from a table.

Example:

INSERT INTO my_table (field 1, field2, field3) VALUES ('test', 'N', NULL);
UPDATE my_table SET field! = 'updated value' WHERE field2 = 'N';
DELETE FROM my_table WHERE field2 = 'N';

33

3.4.3 Transaction Control

Transaction, if available, can be used to wrap around the DML operations.

BEGIN WORK (or START TRANSACTION, depending on SQL dialect) can be used to mark

the start of a database transaction, which either completes completely or not at all.

COMMIT causes all data changes in a transaction to be made permanent,

ROLLBACK causes all data changes since the last COMMIT or ROLLBACK to be

discarded, so that the state of the data is "rolled back" to the way it was prior to those

changes being requested.

COMMIT and ROLLBACK interact with areas such as transaction control and locking.

Strictly, both terminate any open transaction and release any locks held on data. In the

absence of a BEGIN WORK or similar statement, the semantics of SQL are

implementation-dependent.

Example:

BEGIN WORK;
UPDATE inventory SET quantity= quantity - 3 WHERE item = 'pants';
COMMIT;

3.4.4 Data definition

The second group of keywords is the Data Definition Language (DDL). DDL allows the

user to define new tables and associated elements. Most commercial SQL databases

have proprietary extensions in their DDL, which allow control over nonstandard

features of the database system.

The most basic items of DDL are the CREATE,ALTER,RENAME,TRUNCATE and DROP

commands.

CREATE causes an object (a table, for example) to be created within the database.

DROP causes an existing object within the database to be deleted, usually irretrievably.

TRUNCATE deletes all data from a table (non-standard, but common SQL command).

34

ALTER command permits the user to modify an existing object in various ways -- for

example, adding a column to an existing table.

Example:

CREA TE TABLE my _table {
rnyfield l INT,
my field2 VARCHAR (50),
my_field3 DATE NOTNULL,
PRIMARY KEY (myfield l , my_field2)
}

3.4.5 Data control

The third group of SQL keywords is the Data Control Language (DCL). DCL handles

the authorization aspects of data and permits the user to control who has access to see or

manipulate data within the database.

Its two main keywords are:

GRANT - authorizes one or more users to perform an operation or a set of operations

on an object.

REVOKE - removes or restricts the capability of a user to perform an operation or a set

of operations.

Example:

GRANT SELECT, UPDATE ON mytable TO sorneuser, anotheruser

3.4.6 Other

ANSI-standard SQL supports -- as a single line comment identifier (some extensions

also support curly brackets or C-style /*comments*/ for multi-line comments).

Example:

SELECT * FROM inventory -- Retrieve everything from inventory table

Database system using SQL

35

3.5 CRITICISMS OF SQL

Technically, SQL is a declarative computer language for use with "SQL databases".

Theorists and some practitioners note that many of the original SQL features were

inspired by, but in violation of, the relational model for database management and its

tuple calculus realization. Recent extensions to SQL achieved relational completeness,

but have worsened the violations, as documented in The Third Manifesto.

In addition, there are also some criticisms about the practical use of SQL:

Implementations are inconsistent and, usually, incompatible between vendors. In

particular date and time syntax, string concatenation, nulls, and comparison case

sensitivity often vary from vendor-to-vendor.

The language makes it too easy to do a Cartesian join, which results in "run-away"

result sets when WHERE clauses are mistyped. Cartesian joins are so rarely used in

practice that requiring an explicit CARTESIAN keyword may be warranted.

36

3.6 LOGICAL OPERA TORS:
Logical contsructs consists of other logical constructs, formulas and values,

hich are connected through logical
Operator Description Example Description

Means that the values at both sides of Price JS bigger
AND the operator must be TRUE ' Price> 1 0 AND than 10 and

otherwise this operator returns Preis<lOO smaller than
FALSE. The execution priority is (in 100
SQL) bigger than OR, but smaller
than NOT.
Logical negation ' makes from

NOT FALSE an TRUE value and vice NOT preis=O Price is not zero
versa. Biggest execution priority of all
logical operators.
Means that at least one of the values at Preis> 10 AND Price must be
both sides of the operator must be Preis<! 00 OR bigger than 10

OR TRUE ' otherwise this operator Preis> l 000 and smaller than
returns FALSE. This operator JS 100 or bigger
executed after NOT and AND. than 1000
Is TRUE when the values at both

- sides of the operator are equal. The Preis=I 0 Price is equal l 0
execution priority is bigger than these
of NOT, AND and OR
Is TRUE when the value at the left
side of the operator is greater than the Price JS bigger

> value at the right side. The execution Preis>O than 0
priority is bigger than these of NOT,
AND and OR.
Is TRUE when the value at the left Price JS bigger
side of the operator is greater or equal than or equal to

>= to the value at the right side. The Preis>=300 300
execution priority is bigger than these
of NOT, AND and OR.
Is TRUE when the value at the left Price JS smaller
side of the operator is smaller than the than 300

< value at the right side. The execution Preis<300
priority is bigger than these of NOT,
AND and OR.
Is TRUE when the value at the left

<= side of the operator is smaller or equal Price<=300 Price JS smaller
to the value at the right side. The than or equal to
execution priority is bigger than these 300
'of NOT, AND and OR.
Is TRUE when the value at the left

<> side of the operator is not equal to the Price <>O Price is not equal
value at the right side. The execution 0
priority is bigger than these of NOT,
AND and OR.

37

CHAPTER4
Description About Project

USER NAME enis

PASSWORD ****!

Login Q,ancel Eorget Password

Enter the Program

The first form of the program is designed for login. For entering the program , we must

enter the user name and password. if password is true then login the optician register

and stock program. An individual , who is working in any of these predefined type can

login to the program by using a predefined password.

If you forget the password click the 'Forget Password' button and we will see new

form. Then enter the usemarne we will see your secret question after answer the your

question and click the find button, you can see your password if your answer is true.

If you have not a register you do not use this optic program.

USER NAME enis

PASSWORD

enis

Secret Question

c_antel find

enis

Forget password form

38

S::USTOMER

2.,<)Oj :J 33:,;
lit:,.,!~ kA:s.JM(.+tJ.L.U

05 January 2007 12: I 3:45 am

Main form

In main form contain the main menu which include your requirement. It has customer,

stock , account, and uses tools. If click the customer button we can see some concerned

applications. If click the stock button we will see the glass stock and frame stock

applications. If you choose the account section we can see revenue and expenditure

register. Tools section has a contai12_ new user register , add frame trademark , and other

applications which calculator, word, excel , notepad. At last secion is a exit button, if

we click this we can see some alternatives which save and not save exit.

And m main form include the current date and current time in the screen every time.

Shortly this form include the all applications in the program.

39

Name

'.Aµtomatic Number =... " . ··, Sex [Male··~~-·:]
Customer Number

Address

New Customer Register

Click the customer and new customer register on main form and will open form on top.

In this forrn you can save , edit ,delete , clear about the customer data which name,

surname, phone number, address ,date then you save this information your database.

And you can see your customer details.

You give the automatic number everyone customer. Because you have a many customer

and you dont remember the customers number. And use the this button give the

automatic number.

list

,0(121)343'.31'.22
0(533)845·7475
0(538)254· 7568
0() .
0(553)533·4343 0(000)001

/; Customer N1;n1t,e;j

(; Name
DDA
02AN

AAA
SDSDA
nm

Surname

() Sex
fxit

Customer Register List

40

If you want to see your customer list, you can use this forrn.

You will listed by number , name , surname and sex in your database and see MDA TA

table.

~earch Customer Re ister %,1

SEARCH
Search

() Surname

() Customer Number

0 Register Date
Exit

"""""""""""""'"'"""""""'"'"f""'-
SOVADI ADI CEP TEL. IEV TEI[
EKIZ O(.S.53).533-4343 0(000

L
Customer search Form

If you search the customer in your database, you use the search customer form you can

see customers information. Why you need this form? Because, your database have a

many customer and not easy the find and you search according as name , surname,

customer number and register date. Therefore you need the customer search form.

You click the stock and glass stock button you open the below form

41

K1nd of Glass Total . OOVTL

Pt'ICe

ADCT

Corne From Co,npany

Addres:s

Edit Edit

INCE
ASOOSA 23 .1.2 BASFB

We can enter the new kind of glass in our stock. And we secrete some information our

memory which kind of glass, price, grain, company name, address, and date. We can

see all information in the StockCam Table.

And enter the price and grain about the glass, it can calculate the total price. Then on the

form, edit, delete, clear your stock information.

UST

<·> patel
Total Kind or Glass INC£

This kind of glass in stock

() Price

O Company

List of Glass Stock

In this fonn , we can list of the our stock, according the some values which date, price

company name. And if choose the total kind of glass checkbox you will see total value

selected glass in stock.

42

Frame TrademartENISSS

Klnd of Frame

Price ,OOYTL

ADET

Company

Address

Date 05.01.2007

General Total .OOYTL
~ave Edit

Frame Stock Register

In the form we can register the new frame for our stock. This form like the glass stock.

We can enter the new frame in our stock. And we secrete some information our

memory which kind of frame, price, grain, company name, address, date and general

total.

CtNSI BIRIM FtVATl ADET l$1RKH
EAX
TOP TEN
CERMAR

1
2
INCE

2000
1500
20000

50 2
10 2
10 ADANAOPTIK

(MEMO)
(MEMO)
(MEMO)

100000
15000
200000

28.12.2006
28.05.2006
28.05.2006

Frame Stock List

In this form we can list the frame in our stock. we want to know , how many frame have

got stock. And use the this form then listed an according the some values which date,

pnce company name.

43

Click the account and revenue ;

Income

MURAT
02AN
ENIS

SASA
EKIZ
KASJMOGLU

21.12.2006
01.11.2006
18.10.2006

.OOVTL Save f;dit --___,..--,-, Qelete E~it

Revenue Register

In this form, we can register the income information the our company which include the

customer name, surname, address information and why take the money from the

customer.

Whom Pay;

Name

Date :OS.01.2007
Y"'"™"""'''

Cash

,Company

Address

Qelete

Expenditure Register

Expenditure register form for account the contain the expenses information about our

company. Informations which name, surname, company name, company address,

reason, cash.

44

Soyaci

~xit .'-----'
Tarih Sebeb --·=1-·- ~1ktat
01.11.2006 JDFJNF 53 0
18.10.2006 SDS80S 2138 B

KS AON

JKSDJAS

I
I
I
WJ

Account List

Account list form include the revenue and expenditure informations. We listed revenue

and expences. We can easly see the account informations.

Tools section contains the some applications. That include new user register, useful

programs (word, excel, nodpad, calculator), add frame trademark, save section, and

change user.

45

New User Register:

User Name I
Password

''"''''""'"'''''-""'"'"''''"''"'''''"'''""'"'

Authorization V

T

TARiHi IPR

18.10.2006 ADMIN

New User Register

For entering the program , we can create the new user. And also necessary some

informations which usemame, password, confirm password, secret qestion, answer, and

authority.

Secret question necessary for forget the password, if we forget our password we answer

the our question, if it is true it will be our password in the entering form.

In this form , confirm password not equal to password we can see warning message and

edit our password.

Another point is a Authorization, If we selected ADMIN we can use the all application

in the program, if we select USER we can use the limited the application in project. The

authority of the user to reach , do changes and update the information in this program is

limited with respect to the position according to letting users.

Kullamci.db has include Username , Register Date , Authorization informations you can

see.

46

Another application is;

Add Frame Trademark:

Frame Trademark I

~ave 1;.dit Delete EKit

Add Frame Trademark

We can add the new frame trademark this form. And use the automatically this mark in

frame stock register and frame stock list.

Tools section have a calculator, microsoft word, microsoft excel, and notepad for easly

use.

47

Save Section:

Sav1e to Hard Disk

Save tio Eloppy Disk

Save

If we want to take the reserve, about the information in our computer harddisk or floppy

disk we can use this section.

48

CONCLUSION

The OPTIC is optician automation. The program prepared this software by using

Borland Delphi 7 and the SQL and Database Desktop. Both of them are powerful

software and help me very much.

Borland Delphi is very easy language. It has many tools and components to help

programmer. Delphi has got a many component, that easly used in the program.

Database desktop is very easy to create tables. Create tables without much effort with

it.

SQL helped me very much. In one line of program code I solved many problems with it.

OPTIC is for optician shops which is small but has to manage lot of data. It is easy to

use and user friendly.

49

APPENDIX 1
Program Code

program optik;
uses
windows,
Forms,
Unitl in 'Unitl.pas' {Form 1 },
Unit2 in 'Unit2.pas' {Fonn2},
Unit3 in 'Unit3.pas' {Fonn3 },
Unit4 in 'Unit4.pas' {Fonn4},
Unit5 in 'Unit5.pas' {Fonn5},
Unit6 in 'Unit6.pas' {Fon116},
Unit7 in 'Unit7.pas' {Fonn7},
Unit8 in 'Unit8.pas' {Fonn8},
Unit9 in 'Unit9.pas' {Forrn9},
UnitlO in 'Unit JO.pas' {FonnlO},
Unitl l in 'Unit! l.pas' {Fonnl l},
Unitl2 in 'Unitl2.pas' {Fonn12},
Unit13 in 'Unit13.pas' {Fonnl3},
Unit 14 in 'Unit 14.pas' {Form 14},
Unitl5 in 'Unitl5.pas' {Fonnl5},
Unitl6 in 'Unitl6.pas' {Fonn16},
Unitl 7 in 'Unitl 7.pas' {Form 17},
Unit18 in 'Unitl8.pas' {Fonnl8},
Unitl9 in 'Unit19.pas' {Fonnl9};
{$R *.res}
begin
form 19:=tfonn 19.Create(nil);
form I 9.Show;
Application.ProcessMessages;
Application.Initialize;
Application.CreateFonn(TFonn3, Fonn3);
Application.CreateFonn(TFonnl, Form 1);
Application.CreateFonn(TFonn2, Fonn2);
Application.CreateForm(TFonn4, Fonn4);
Application.CreateFonn{TFonn5, Fonn5);
Application.CreateFonn(TFonn6, Fonn6);
Application. CreateF onn(TF onn 7, F onn 7);
Application.CreateFonn(TFonn8, F 011118);
Appl ication.Createf onn(TF orm9, Fonn9);
Application.CreateForm(TFonnl 0, Forml O);
Application.CreateFonn(TForml 1, Forml 1);
Application.CreateForm(TFonn12, Form12);
Application.CreateForm(TForml 3, Fonnl 3);
Application.CreateForm(TForm14, Form14);
Application.CreateForm(TForml 5, Forml 5);
Application.CreateForm(TForml 6, Fonnl 6);
Application. CreateF orm(TF onn 17, Form 1 7);

50

Application.CreateFonn(TFonn 18, Form 18);

sleep(30000);
fonn19.Hide;
form 19.Release;
Application.Run;
end.·

Form 1

unit Unitl;
interface
uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Menus, XPMenu, ExtCtrls, jpeg, StdCtrls, DB, DBTables;

type
TFonn I = class(TFonn)
MainMenu 1: TMainMenu;
mterlemlerl: TMenultern;
stoklemlerl: TMenuitem;
amstou I: TMenuitem;
stokgrl: TMenuitern;
stoklstes l: TMenuitern;
ercevelstesl: TMenuitern;
stokkaydi I: TMenuitem;
stoklstes2: TMenultem;
carlemlerl: TMenultern;
aralar 1 : TMenultern;
yenkullarucrkaydi l: TMenultem;
yardimcrprogramlar l: TMenultern;
yedeklern l: TMenultern;
hardskeyedeklem 1: TMenultern;
dsketeyedeklernel: TMenultem;
hesabmaknesl: TMenuitern;
rncrosoftword l: TMenultern;
mcrosoftexcel 1: TMenuitern;
nod pad l : TMenuitern;
hakkmda l : TMenultem;
programdanrki l : TMenultem;
yedekeleik l: TMenuitem;
yedeklernederuk 1: TMenuI tern;
XPMenu 1: TXPMenu;
Panel2: TPanel;
Timer I: TTimer;
mterkaydi l: TMenuitem;
yenkayit l : TMenuitem;
slmel: TMenultem;
dzeltme 1: TMenultem;
arama 1 : TMenultem;
lstelemel: TMenultem;

51

DataSourcel: TDataSource;
Queryl: TQuery;
kasal: TMenultem;
kasagrds 1: TMenultem;
kasaiktisi l: TMenultem;
kurumlemlerl: TMenultem;
yenkurumkaydi l : TMenuitem;
kasazetl: TMenuitem;
kasasmsondurumu l: TMenultem;
ercevemarkastekleme l : TMenuitem;
Image 1 : Timage;
Aboutl: TMenuitem;
Editl: TEdit;
changeuserl: TMenuitem;
procedure yedeklemedemk 1 click(Sender: TObject);
procedure Timerl Timer(Sender: TObject);
procedure yenkullamcikaydr l click(Sender: TObject);
procedure slmelclick(Sender: TObject);
procedure yenkayrteclickrSender: TObject);
procedure lsteI click(Sender: TObject);
procedure arama2click(Sender: TObject);
procedure dzeltme2click(Sender: TObject);
procedure slme2click(Sender: TObject);
procedure kayitslmezclickfxender: TObject);
procedure kayrtdzeltrne-lclick/Sender: TObject);
procedure kayitdzeltme.SclickrSender: TObject);
procedure kayrtslmeoclickrSender: TObject);
procedure kasanmsonhal 1 click(Sender: TObject);
procedure kasazetlemel click(Sender: TObject);
procedure kaynslmeSclick/Sender: TObject);
procedure yenkayit l click/Sender: TObject);
procedure dzeltmelclick(Sender: TObject);
procedure lstelemel click(Sender: TObject);
procedure arama 1 click(Sender: TObject);
procedure yenkayrtdclick/Sender: TObject);
procedure kayuslme-lclick/Sender: TObject);
procedure yenkayrt.Sclick/Sender: TObject);
procedure kurumlstes 1 click(Sender: TObject);
procedure hesabmaknesl click(Sender: TObject);
procedure mcrosoftword 1 click(Sender: TObject);
procedure rncrosoftexcel 1 click(Sender: TObject);
procedure nod pad l click(Sender: TObject);
procedure hardskeyedeklern 1 click(Sender: TObject);
procedure dsketeyedeklemel click(Sender: TObject);
procedure yedekeleik l click/Sender: TObject);
procedure yenkurumkaydi l click(Sender: TObject);
procedure kasagrds 1 click(Sender: TObject);
procedure kasaikttsi I click(Sender: TObject);
procedure kasasinsondurumu l click(Sender: TObject);
procedure stoklsteslclick(Sender: TObject);

52

procedure stokgrl click(Sender: TObject);
procedure ercevernarkasieklerne 1 click(Sender: TObject);
procedure stokkaydi l click(Sender: TObject);
procedure stoklstes2click(Sender: TObject);
procedure About! Click(Sender: TObject);
procedure changeuserl Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;
var
Forml: TForml;

implementation
uses Unit2, Unit3, Unit4, Unit5, Unit6, Unit7, Unit8, Unit9, UnitlO, Unitl 1,
Unit12, Unit14, Unit15, Unit16, Unitl 7, Unit18;
{$R *.dfm}
function ye(a:string):boolean;
begin
ye:=false;
forml .Queryl .First;
while not forml .Queryl .eof do
if (a=form I .Query l .Fields[O].asstring) then
begin
ye:=true;
exit;
end
else
form 1.Queryl .Next;
end;
procedure TForm 1.yedeklernedenikl click(Sender: TObject);
begin
forrn I .close;
fonn3 .close;
end;

procedure TForrn I .Timer! Tirner(Sender: TObject);
var zarnan:tDateTime;
begin
panel2.caption:=FonnatDateTime('d mmmrn yyyy dddd hh:nn:ss arn/prn',Date+ Time);
end;

procedure TFonn l .yenkullarucrkaydi l clicktSender: TObject);
begin
ye(editl .Text);
if (query! .Fields[O].AsString=editl .Text) then
begin
if (query! .Fields[1].AsString='l ') then
begin
form2.Show;

53

form 1.Enabled:=false;
end
else application.MessageBox('THIS SECTION CAN USE ONLY ADMIN USERS
! !','Waming',48);
end;
end;

procedure TFonnl.slmelclick(Sender: TObject);
begin
ye(editl .Text);
if (queryl .Fields[O].AsString=editl .Text) then
begin
if (query] .Fields[1] .AsString='O') then
application.MessageBox('THIS SECTION CAN USE ONLY AD MIN USERS
! !','Waming',48)
else begin
fonn4.show;
with fonn4 do begin
with panel 1 do begin
bitbtn2.enabled:=false;
bitbtnl .enabled:=false;
bitbtn3 .enabled:=true;
end;
end;
forml .enabled:=false;
end;
end;

end;
procedure TForm l .yenkayrtoclickr Sender: TObject);
begin
ye(editl .Text);
if (queryl .Fields[O].AsString=editl .Text) then
begin
if (query I.Fields[1] .AsString='O') then
application.MessageBox('THIS SECTION CAN USE ONLY AD MIN USERS
! !','Waming',48)
else begin
fonn13.show;
form l .Enabled:=false;
end; end; end;

procedure TFonn 1.lstel click(Sender: TObject);
begin
ye(edit I .Text);
if (queryl .Fields[O].AsString=editl .Text) then
begin
if (query 1. Fields[l].AsString='O') then
application.MessageBox('THIS SECTION CAN USE ONLY AD MTN USERS
! !','Warning',48)

54

else begin
end; end; end;

procedure TFonn l .arama2click(Sender: TObject);
begin
ye(edit 1. Text);
if (query I .Fields[O].AsString=editl .Text) then
begin
if (queryl.Fields[I].AsString='O') then
application.MessageBox('THIS SECTION CAN USE ONLY AD MIN USERS
! !','Warning',48)
else begin
end; end;
end;

procedure TFonn l .dzeltrne2click(Sender: TObject);
begin
ye(editl.Text);
if (queryl .Fields[O].AsString=editl .Text) then
begin
if (query I.Fields[I] .AsString='O') then
application.MessageBox('THIS SECTION CAN USE ONLY ADMIN USERS
! !','Warning',48)
else begin
end;
end;
end;

procedure TForml .slme2click(Sender: TObject);
begin
ye(editl .Text);
if (query I .Fields[O].AsString=editl .Text) then
begin
if (queryl .Fields[I] .AsString='O') then
application.MessageBox('THIS SECTION CAN USE ONLY AD MIN USERS
! !','Warning',48)
else begin
II form cagirma kornutlari
end;
end;
end;
procedure TForml .kayitslmezclick/Sender: TObject);
begin
ye(editl .Text);
if (queryl .Fields[O].AsString=editl .Text) then
begin
if (query I .Fields[1].AsString='O') then
application.MessageBox('THIS SECTION CAN USE ONLY ADMIN USERS
! !','Waming',48)
else begin

55

II form c;agirma komutlari
end; end; end;

procedure TForml .kayrtdzeltrnedclick/Sender: TObject);
begin
form'z.show;
form l .Enabled:=false;
with fonn7 do begin
with panel 1 do begin
bitbtn l .enabled:=false;
bitbtn2.enabled:=true;
bitbtn4.enabled:=false;
end;
end;
end;

procedure TForm l .kayttdzeltmeSclickt Sender: TObject);
begin
fonn9.show;
form l .enabled:=false;
with fonn9 do begin
bitbtn l .enabled:=false;
bi tbtn2. enab I ed: =true;
bitbtn3 .enabled:=false;
end;
end;

procedure TForml .kayttslmericlickrSender: TObject);
begin
fonn9.show;
form l .enabled:=false;
with fonn9 do begin
bi tbtn3. enab I ed: =true;
bitbtn2.enabled:=false;
bitbtn 1.enabled:=false;
end;
end;

procedure TF orm l.kasanmsonhal 1 click(Sender: TObject);
begin
ye(editl .Text);
if (query! .Fields[O].AsString=editl .Text) then
begin
if (queryl .Fields[1].AsString='O') then
application.MessageBox('THIS SECTION CAN USE ONLY AD MIN USERS
! !','Waming',48)
else begin
I I form cagirma komutlari
end;
end; end;

56

procedure TFonn l .kasazetleme 1 click(Sender: TObject);
begin
ye(editl.Text);
if (query! .Fields[O].AsString=editl .Text) then
begin
if (queryl.Fields[1] .AsString='O') then
application.MessageBox('THIS SECTION CAN USE ONLY AD MIN USERS
! !','Waming',48)
else begin
II form cagirrna komutlari
end;
end;
end;

procedure TForm I .kayttslrne.Sclickt Sender: TObject);
begin
ye(editl .Text);
if (query! .Fields[O].AsString=editl .Text) then
begin
if (queryl. Fields[1] .AsString='O') then
application.MessageBox('THIS SECTION CAN USE ONLY ADMIN USERS
! !','Waming',48)
else begin
fonn7.show;
form 1.Enabled:=false;
with fonn7 do begin
with panel 1 do begin
bitbtn4.enabled:=true;
bitbtn2.enabled:=false;
bitbtn l .enabled:=false;
end;
end;
end;
end;
end;

procedure TF orm l .yenkayit I click(Sender: TObject);
begin
fonn4.show;
with form4 do begin
with panel! do begin
bitbtn2.enabled:=false;
bitbtn3 .enabled:=false;
bitbtn l .enabled:=true;
end;
end;
form l .enabled:=false;
end;

57

procedure TFonn l.dzeltmel click(Sender: TObject);
begin
fonn4.show;
with form4 do begin
with panell do begin
bitbtnl .enabled:=false;
bitbtn3 .enabled:=false;
bitbtn2.enabled:=true;
end;
end;
form l .enabled:=false;
end;

procedure TFonn l .lstelerne 1 click(Sender: TObject);
begin
fonn5.show;
form I .Enabled:=false;
end;

procedure TFonn l.aramal click(Sender: TObject);
begin
form6.show;
form 1. Enabled:=false;
end;

procedure TForm l .yenkayit-lclickt Sender: TObject);
begin
forrn7.show;
formI .Enabled:=false;
with fo11117 do begin
with panel 1 do begin
bitbtnl .enabled:=true;
bitbtn2.enabled:=false;
bi tbtn4. enab 1 ed: =false;
end;
end;
end;

procedure TForml .kayitslme-lclick/Sender: TObject);
begin
form8.show;
form l .Enabled:=false;
end;

procedure TForrn l .yenkayrtoclicktSender: TObject);
begin
fonn9.show;
form I .enabled:=false;
with fonn9 do begin

58

bitbtnl .enabled:=true;
bi tbtn2. enabl ed:=false;
bitbtn3 .enabled:=false;
end;
end;

procedure TForml.kurumlsteslclick(Sender: TObject);
begin
fonnlO.show;
forml .Enabled:=false;
end;

procedure TFonn l .hesabrnaknes 1 click(Sender: TObject);
begin
winexec('C:\wmdows\systern32\calc.exe', 1);
end;

procedure TFonnl.rncrosoftwordl click(Sender: TObject);
begin
winexec('C:\Prograrn Files\Microsoft Office\Officel 1 \wmword.exe', 1);
end;

procedure TFonn l .rncrosoftexcel 1 click(Sender: TObject);
begin
winexec('C:\Prograrn Files\Microsoft Office\Officel 1 \excel.exe', I);
end;

procedure TFonn l .nodpad 1 click(Sender: TObject);
begin
winexec('C:\wmdows\notepad.exe', 1);
end;

procedure TFonn l.hardskeyedeklern 1 click(Sender: TObject);
begin
form 1 I .show;
form l .Enabled:=false;
end;

procedure TFonn l .dsketeyedeklernel click(Sender: TObject);
begin
form l 1.show;
form l .Enabled:=false;
end;

procedure TForm l.yedekeleik 1 click(Sender: TObject);
begin
winexec('yedeklehdd.bat',O);
application.MessageBox('Saved C:\YEDEK.','Warning',32);
form I .Close;
fonn3.close; end;

59

procedure TForm l .yenkurumkaydi l click(Sender: TObject);
begin
form7.show;
fonnl .Enabled:=false;
end;

procedure TFonnl.kasagrdslclick(Sender: TObject);
begin
fonn9.Show;
form 1.Enabled:=false;
end;

procedure TForm l .kasarknsi l click(Sender: TObject);
begin
form8.show;
forml .Enabled:=false;
end;

procedure TForm l.kasasmsondurumu l click(Sender: TObject);
begin
forml O.show;
forml .Enabled:=false;
end;

procedure TFonn 1.stoklstesl click(Sender: TObject);
begin
form 15.show;
form 1.enabled:=false;
end;

procedure TFonn l .stokgrl click(Sender: TObject);
begin
fonn14.show;
fonnl .Enabled:=false;
end;

procedure TF orm l .ercevernarkasi ekleme 1 cl ick(Sender: TO bj ect);
begin
form 16.show;
form 1.Enabled:=false;
end;

procedure TForm l .stokkaydi l ciick(Sender: TObject);
begin
forml 7.show;
form 1.Enabled:=false;
end;

60

procedure TFonn l.Stoklstes2click(Sender: TObject);
begin
fonnl 8.show;
form l .enabled:=false;
end;

procedure TFonn l.Aboutl Click(Sender: TObject);
begin
form 12.show;
forrn l .enabled:=false;
end;

procedure TF onn l.changeuserl Click(Sender: TObject);
begin
form3.show;
form I .close;
end;
end.

Form 2

unit Unit2;
interface
uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Grids, DBGrids, StdCtrls, Buttons, ExtCtrls, DB, DBTables,
XPMenu, Menus;

type
TFonn2 = class(TForm)
Label 1: TLabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
Label5: TLabel;
Label6: TLabel;
Editl: TEdit;
Edit2: TEdit;
Edit3: TEdit;
Edit4: TEdit;
Edit5: TEdit;
ComboBox 1: TComboBox;
Panel 1: TPanel;
BitBtn 1: TBitBtn;
BitBtn2: TBitBtn;
BitBtn3: TBitBtn;
BitBtn4: TBitBtn;
DBGrid 1: TDBGrid;
DataSource 1 : TDataSource;
Query 1 : TQuery;

61

DataSource2: TDataSource;
Query2: TQuery;
Query3: TQuery;
DataSource3: TDataSource;
BitBtn5: TBitBtn;
XPMenu l: TXPMenu;
PopupMenu l: TPopupMenu;
Clear]: TMenultem;
Save 1: TMenuitem;
Edit6: TMenuitem;
Deletel: TMenultem;
Exitl: TMenultem;
procedure BitBtn4Click(Sender: TObject);
procedure BitBtn l Click(Sender: TObject);
procedure BitBtn2Click(Sender: TObject);
procedure DB Grid 1 Db!Click(Sender: TObject);
procedure BitBtn3Click(Sender: TObject);
procedure BitBtn5Click(Sender: TObject);
procedure Clear I Click(Sender: TObject);
procedure SavelC!ick(Sender: TObject);
procedure Edit6Click(Sender: TObject);
procedure Delete 1 Click(Sender: TObject);
procedure Exitl Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form2: TFonn2;

implementation
uses Unitl;
{$R *.dfm}
function ye(a:string):boolean;
begin
ye:=false;
form2.Queryl .First;
while not fonn2.Queryl .eof do
if (a=fonn2.Queryl .Fields[O].asstring) then
begin
ye:=true;
exit;
end
else
fonn2.Queryl .Next;
end;

function yel(a:string):boolean;
begin

62

yel :=false;
fonn2.Query2.First;
while not form2.Query2.eof do
if (a=fonn2.Query2.Fields[O].asstring) then
begin
yel :=true;
exit;
end
else
form2.Query2.Next;
end;

procedure TFonn2.BitBtn4Click(Sender: TObject);
begin
form 1.enabled:=true;
fonn2.Close;
end;

procedure TFonn2.BitBtnl Click(Sender: TObject);
begin
ye(editl .Text);
if (queryl. Fields[O] .AsString=edit I .Text) then
application.MessageBox('This usemame was using!! !','Waming',32)
else begin
if (edit2.text<>edit3 .Text) then
application.MessageBox('Check confirm password ! ! !','Waming',32)
else begin
if (edit I.text=") and (edit2.text=") then
application.MessageBox('You must write Usemame and password ','Waming',32)
else begin
query] .Insert;
query I .Fields[O].AsString:=editl .Text;
query I .Fields[1] .AsString:=edit2.Text;
query l .Fields[2] .AsString:=edit4. Text;
query! .Fields[3].AsString:=edit5. Text;
query! .Fields[4 J .AsString:=datetostr(date());
query I .Fields[5].AsString:=combobox I .Text;
queryl .post;
query2 .Insert;
query2.Fields[O].AsString:=editl .Text;
query2.Fields[1] .AsString:='O';
query2.Post;
editl .Text:=";
edit2.Text:=";
edit3.Text:=";
edit4.Text:=";
edit5.Text:=";
editl .setfocus;
query3 .Refresh;
end; end; end; end;

63

procedure TFonn2.BitBtn2Click(Sender: TObject);
begin
if (edit2.text<>edit3.Text) then
application.MessageBox('Check confirm Password ! ! !','Warning',48)
ELSE begin
if(editl.text=") and (edit2.text=") then
application.MessageBox('You must write username and password','Waming',48)
else begin
query} .edit;
queryl .Fields[O].AsString:=editl .Text;
queryl .Fields[l].AsString:=edit2.Text;
queryl .Fields[2].AsString:=edit4.Text;
query! .Fields[3].AsString:=edit5.Text;
query 1 . Fields [4]. As String :=datetostr(date());
query! .Fields[5].AsString:=comboboxl .Text;
query! .post;
query2.edit;
query2.Fields[O] .AsString:=editl .Text;
query2.Fields[I] .AsString:='O';
query2.Post;
edit I .Text:=";
edit2.Text:=";
edit3.Text:=";
edit4.Text:=";
edit5.Text:=";
edit l .setfocus;
query3 .Refresh;
end;
end;
end;

procedure TFonn2.DBGridlDblClick(Sender: TObject);
var a:string;
begin
a:=dbgridl .Fields[O].AsString;
ye(a);
if (query I .Fields[O].AsString=a) then
begin
edit! .Text:=queryl .Fields[O].AsString;
edit2.Text:=queryl .Fields[1].AsString;
edit3 .Text:=queryl .Fields[1] .AsString;
edit4.Text:=queryl .Fields[2].AsString;
edit5 .Text:=queryl .Fields[3].As String;
combobox l .Text:=queryl .Fields[5].AsString;
end;
end;

64

procedure TFonn2.BitBtn3Click(Sender: TObject);
begin
ye(edit I .Text);
yel(editl .Text);
if (query 1.Fields[O].AsString=edit 1. Text) then
begin
if (query2.Fields[O].AsString=editl .Text) then
begin
query2.delete;
end;
query I .Delete;
query3 .Refresh;
editl .Text:=";
edit2.Text:=";
edit3.Text:=";
edit4.Text:=";
edit5.Text:=";
end;
end;

procedure TFonn2.BitBtn5Click(Sender: TObject);
begin
editl .Text:=";
edit2.Text:=";
edit3 .Text:=";
edit4.Text:=";
edit5:fext:=";
end;

procedure TFonn2.Clearl Click(Sender: TObject);
begin
edit I .Text:=";
edit2.Text:=";
edit3.Text:=";
edit4.Text:=";
edit5.Text:=";
end;

procedure TFonn2.Savel Click(Sender: TObject);
begin
ye(edit I .Text);
if (query I .Fields[O].AsString=editl .Text) then
application.MessageBox('This usemame was using!! !','Waming',32)
else begin
if(edit2.text<>edit3.Text) then
application.MessageBox('Check confinn password ! ! !','Waming',32)
else begin
if (edit I.text=") and (edit2.text=") then
application.MessageBox('You must write Usemame and password ','Waming',32)
else begin

65

query I .Insert;
query! .Fields[O].AsString:=editl .Text;
query! .Fields[I].AsString:=edit2.Text;
query! .Fields[2].AsString:=edit4.Text;
queryl .Fields[3] .AsString:=edit5.Text;
query! .Fields] 4].AsString:=datetostr(date());
queryl .Fields[5].AsString:=combobox I .Text;
query! .post;
query2.Insert;
query2.Fields[O].AsString:=editl .Text;
query2.Fields[1] .AsString:='O';
query2.Post;
edit! .Text:=";
edit2.Text:=";
edit3. Text:=";
edit4.Text:=";
edit5.Text:=";
editl .setfocus;
query3.Refresh;
end;
end;
end;
end;

procedure TFonn2.Edit6Click(Sender: TObject);
begin
if (edit2. text'<-edits .Text) then
application.MessageBox('Check confirm Password ! ! !','Warning',48)
ELSE begin
if (edit I.text=") and (edit2.text=") then
application.MessageBox('You must write usemame and password','Warning',48)
else begin
queryl .edit;
query! .Fields[O].AsString:=editl .Text;
queryl .Fields[1].AsString:=edit2.Text;
query I .Fields[2] .AsString:=edit4.Text;
query 1 .Fields[3].AsString:=edit5 .Text;
query I .Fields[4] .AsStri ng:=datetostr(date());
query] .Fields[5].AsString:=combobox I .Text;
queryl .post;
query2.edit;
query2.Fields[O].AsString:=editl .Text;
query2.Fields[1] .AsString:='O';
query2.Post;
editl .Text:=";
edit2.Text:=";
edit3.Text:=";
edit4.Text:=";
edit5.Text:=";
editl .setfocus;

66

query3 .Refresh;
end;
end;
end;

procedure TFonn2.Deietel Click(Sender: TObject);
begin
ye(edit I .Text);
ye 1 (edit I.Text);
if (queryl .Fields[O].AsString=editl .Text) then
begin
if (query2.Fields[O] .AsString=editl .Text) then
begin
query2.delete;
end;
query I .Delete;
query3 .Refresh;
edit I .Text:=";
edit2.Text:=";
edit3 .Text:=";
edit4.Text:=";
edit5.Text:=";
end;
end;

procedure TForm2.Exitl Click(Sender: TObject);
begin .
fonnl .enabled:=true;
fonn2.Close;
end;
end.

Form3

unit Unit3;
interface
uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, ExtCtrls, Buttons, DB, DBTables, XPMenu, WinSkinData;

type
TFonn3 = class(TFonn)
Panell: TPanel;
Label3: TLabel;
CornboBox2: TCornboBox;
Label4: TLabel;
Labels: TLabel;
Edit2: TEdit;
Edi t3: TEdi t;

67

BitBtn4: TBitBtn;
BitBtn5: TBitBtn;
DataSourcel: TDataSource;
Query!: TQuery;
Query2: TQuery;
DataSource2: TDataSource;
Panel2: TPanel;
Label I: TLabel;
Label2: TLabel;
Combo Box 1: TCornboBox;
Editl: TEdit;
BitBtn 1: TBitBtn;
BitBtn2: TBitBtn;
BitBtn3: TBitBtn;
Panel3: TPanel;
XPMenu 1: TXPMenu;
SkinDatal: TSkinData;
procedure BitBtn 1 Click(Sender: TObject);
procedure FonnActivate(Sender: TObject);
procedure BitBtn3Click(Sender: TObject);
procedure BitBtn5Click(Sender: TObject);
procedure BitBtn2Click(Sender: TObject);
procedure CornboBox2Change(Sender: TObject);
procedure BitBtn4Click(Sender: TObject);
procedure Timerl Timer(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
F onn3: TF onn3;

implementation
uses Unitl;
{$R *.dfm}
function ye(a:string):boolean;
begin
ye:=false;
fonn3.Query2.First;
while not fonnJ.Query2.eof do
if (a=fonn3.Query2.Fields[O].asstring) then
begin
ye:=true;
exit;
end
else
fonn3.Query2.Next;
end;

68

function bu] (a:string;b :string): boolean;
begin
bul:=false;
fonn3.Queryl .First;
while not form3.Queryl .eof do begin
if (a=form3.Queryl .Fields[O].asstring)and (b=fonn3.Queryl .Fields[I].asstring)then
begin
bul:=true;
exit;
end
else
fonn3.Queryl .Next;
end;
end;

function bul2(a:string;b: string): boolean;
begin
bul2:=false;
fonn3.Queryl .First;
while not fonn3.Queryl .eof do
if (a=fonn3 .Queryl .Fields[O].asstring)and (b=fonn3 .Queryl .Fields[3] .asstring)then
begin
bul2 :=true;
exit;
end
else
fonn3.Queryl .Next;
end;

function bul 1 (a:string):boolean;
begin
bu! 1 :=false;
fonn3.Queryl .First;
while not fonn3.Queryl .eof do
if (a=fonn3.Queryl .Fields[O].asstring)then
begin
bu! 1 :=true;
exit;
end
else
fonn3.Queryl .Next;
end;

procedure TFonn3.BitBtnl Click(Sender: TObject);
begin
if (editl.text=") and (edit2.text=") then begin
application.MessageBox('You must write usemame and password','Waming',48);
end;
begin
ye(combobox I .Text);

69

bultform.l.combobox l .Text,form3 .editl .Text);
if (query] .Fields[O].AsString=combobox l .Text) and
(queryl .Fields[1] .AsString=editl .Text) then begin
if (queryl .Fields[S].AsString='ADMIN') then begin
if (query2.Fields[O].AsString=combobox I .Text) then begin
query2.Edit;
query2.Fields[l].AsString:='1 ';
query2.Post;
form 1.show;
form lHide;
form J .Editl .Text:=fonn3.CornboBox I .Text;
end;
end else
begin
query2.Edit;
query2.Fields[1].AsString:='O';
query2.Post;
form l .show;
form3.Hide;
form l .Editl .Text.=formj .ComboBox I .Text;
end;

end;
end;

end;

procedure Tf-orm.s.Form.Activatet'Sender: TObject);
begin
panell .Visible:=false;
combo box I .Items.Clear;
cornbobox2.Items.Clear;
while(not queryl.Eof) do begin
combo box 1 .Items.Add(queryl .Fields[O] .asstring);
cornbobox2. Items.Add(query 1.Fields[O] .asstring);
query! .Next;
end;
fonn3.Height:=176;
end;

procedure TFon113.BitBtn3Click(Sender: TObject);
begin
combobox2.Text:=";
edit2.Text:=";
edit3.Text:=";
panel3.Caption:=";
form3 .Height:=3 72;
panel 1.Visible:=true;
panel2 .Enabled :=false;
end;

70

procedure TFonn3.BitBtn5Click(Sender: TObject);
begin
fonn3.Height:=176;
panel 1. Visible:=false;
panel2.Enabled:=true;
end;

procedure TFonn3.BitBtn2Click(Sender: TObject);
begin
fonn3.Close;
end;

procedure TFonn3.ComboBox2Change(Sender: TObject);
begin
bu! 1 (combobox2.Text);
if (queryl .Fields[O].AsSt1ing=combobox2.Text) then
begin
edi t2. Text:=query 1.Fields[2].AsString;
edit3 .SetFocus;
end;
end;

procedure TFonn3 .BitBtn4Click(Sender: TObject);
begin
bul2(combobox2.Text,edit3 .Text);
if (queryl .Fields[O].AsString=combobox2.Text) and
(queryl .Fields[3].AsString=edit3.Text) then
begin
panel3 .Caption:=queryl .Fields[l] .AsString;;
end;
end;

procedure TFonn3.Timerl Timer(Sender: TObject);
begin
if form l .AlphaBlendVal ue<255 then
form] .AlphaBlendValue:=fonnl .AlphaB1endValue+5
end;
end.

Form4

unit Unit4;
interface
uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Grids, DBGrids, StdCtrls, Buttons, ExtCtrls, XPMenu, Mask, DB,
DBTables, Menus;

type
TFonn4 = class(TFonn)

71

Label I : TLabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
Label5: TLabel;
Label6: TLabel;
Editl: TEdit;
Edit2: TEdit;
Edit3: TEdit;
MaskEditl: TMaskEdit;
MaskEdit2: TMaskEdit;
Mernol: TMerno;
XPMenu 1 : TXPMenu;
Panel 1: TPanel;
BitBtn 1: TBitBtn;
BitBtn2: TBitBtn;
BitBtn3: TBitBtn;
BitBtn4: TBitBtn;
BitBtn5: TBitBtn;
DBGridl: TDBGrid;
DataSource 1: TDataSource;
Query l : TQuery;
Query2: TQuery;
DataSource2: TDataSource;
Label 7: TLabel;
CornboBox 1: TCornboBox;
DataSource3: Tfrataxource;
Query3: TQuery;
Label8: TLabel;
MaskEdit3: TMaskEdit;
BitBtn6: TBitBtn;
BitBtn7: TBitBtn;
procedure BitBtnl Click(Sender: TObject);
procedure BitBtn2Click(Sender: TObject);
procedure BitBtn3Click(Sender: TObject);
procedure BitBtn4Click(Sender: TObject);
procedure BitBtn5Click(Sender: TObject);
procedure DBGridlDblClick(Sender: TObject);
procedure BitBtn6Click(Sender: TObject);
procedure BitBtn7Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Fonn4: TForm4;

72

implementation
uses Unit l ;
{$R *.dfm}
function RandomString(PWLen: integer): string;
const StrTable: string=

'1234567890';
var
N, K, X, Y: integer;

begin
Randomize;
if (PWlen > Length(StrTable)) then K := Length(StrTable)-1
else K := PWLen;

SetLength(result, K);
Y := Length(StrTable);
N :=O;

while N < K do begin
X := Random(Y) + 1;
if (pos(StrTable[X], result)= 0) then begin
inc(N);
Result[NJ := StrTable[XJ;

end;
end;

end;
procedure kayit;
begin
with fonn4 do begin
query! .Fields[O].AsString:=editl .Text;
query] .Fields[1 J.AsString:=edit2.Text;
query] .Fields[2].AsString:=edit3.Text;
query] .Fields[3].AsString:=maskeditl .Text;
queryl .Fields[4].AsString:=rnaskedit2.Text;
query! .Fields[5].AsString:=rnemo I .Text;
query] .Fields[6].AsString:=cornbobox I .Text;
query I .Fields[7] .AsString:=rnaskedit3 .Text;
end;
end;
procedure oku;
begin
with fonn4 do begin
editl .Text:=queryl .Fields[O].AsString;
edit2.Text:=queryl .Fields[1 J .AsString;
edit3 .Text:=queryl .Fields[2].AsString;
rnaskeditl .Text:=query 1.Fields[3 J .AsString;
maskedit2.Text:=queryl .Fields[4] .AsString;
memo 1.Text:=queryl .Fields[5].AsString;
combobox l .Text:=queryl .Fields[6].AsString;
maskedit3 .Text:=queryl .Fields[7] .As String;
end;
end;

73

procedure temizle;
begin
with fonn4 do begin
editl .Text:=";
edit2.Text:=";
edit3 .Text:=";
maskedit1 .Text:=";
maskedit2.Text:=";
memo I .Text:=";
comboboxl .Text:=";
maskedit3 .Text:=";
editl .SetFocus;
end;
end;
function mnum(a:string):boolean;
begin
mnum:=false;
fonn4.Queryl .First;
while not fonn4.Queryl.eof do
if (a=fonn4.Query1 .Fields[O].asstring) then
begin
mnum:=true;
exit;
end
else
fonn4.Queryl .Next;
end;

function ye(a:string):boolean;
begin
ye:=false;
fonn4.Queryl .First;
while not form4.Queryl.eof do
if (a=fonn4.Queryl .Fields[O].asstring) then
begin
ye:=true;
exit;
end
else
form4.Queryl .Next;
end;

procedure TFonn4.BitBtn5Click(Sender: TObject);
begin
form 1.enabled:=true;
form-l.Close;
end;

74

procedure TFonn4.BitBtn4Click(Sender: TObject);
var a:word;
begin
a:=application.MessageBox('infonnations will clear ?','warning',36);
if a=IDYES then
begin
temizle;
end;
end;

procedure TFonn4.BitBtn 1 Click(Sender: TObject);
var a:word;
begin
a:=appl ication.MessageBox('infonnations true?', 'W arni ng',3 6);
if a=IDYES then
begin
ye(editl .Text);
if (query I .Fields[O].AsString<>editl .Text) then
begin
query I . Insert;
kayit;
queryl .Post;
temizle;
query3 .Refresh;
end else application.MessageBox('This customer number is saved ! ! !','Warning',48);
end;
end;

procedure TForm4.BitBtn2Click(Sender: TObject);
var a:word;
begin
a:=application. MessageBox('infonnations true?' ,'W arning',3 6);
if a=IDYES then
begin
query I .Edit;
kayit;
queryl .Post;
query3 .Refresh;
temizle;
end;
end;
procedure TFonn4.BitBtn3C1ick(Sender: TObject);
var a:word;
begin
a:=application.MessageBox('Are You Sure Delete?','Waming',36);
if a=IDYES then
begin
ye(editl .Text);
if (query I .Fields[O].AsString=editl .Text) then begin
queryl .Delete;

75

query3 .Refresh;
temizle;
end;
end;
end;

procedure TFonn4.DBGrid1Db1Click(Sender: TObject);
var a:string;
begin
a:=dbgrid 1.Fields[O].AsString;
ye(a);
if (query! .Fields[O].AsString=a) then
begin
oku;
end;
end;

procedure TFonn4.BitBtn6Click(Sender: TObject);
begin
ye(editl .Text);
if(queryl .Fields[O].asstring=editl .Text) then
begin
oku;
end; end;

procedure TFonn4.BitBtn7Click(Sender: TObject);
begin
mnum(editl .Text);
if (query] .Fields[O].AsString<>editl .Text) then
begin editl .Text:=RandomString(5); end
else begin editl .Text:=RandornString(5); end;
end;
end.

FormS

unit Unit5;
interface
uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Buttons, ExtCtrls, Grids, DBGrids, DB, DBTables,
XPMenu;

type
TFonn5 = class(TFonn)
DataSourcel: TDataSource;
Queryl: TQuery;
DBGridl: TDBGrid;
RadioGroup l: TRadioGroup;

76

BitBtn2: TBitBtn;
XPMenu 1: TXPMenu;
procedure RadioGroup 1 Click(Sender: TObject);
procedure FonnActivate(Sender: TObject);
procedure BitBtn2Click(Sender: TObject);
procedure DBGridlDblC!ick(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Fonn5: TFonn5;

implementation
uses Unit I, Unit4;
{$R *.dfm}

procedure TFonn5.RadioGroupl Click(Sender: TObject);
begin
if (radio group 1.Itemindex=O) then
begin
query] .Active:=false;
query] .SQL.Clear;
queryl .SQL.Text:='select mno,adi,soyadi,ceptel,evteJ,ktarihi,cinsiyet from mdata order
by mno ASC'
end;

if (radiogroup l.Iternlndex= 1) then
begin
query] .Active:=false;
queryl .SQL.Clear;
query I .SQL.Text:='select rnno,adi,soyadi,ceptel,evtel,ktarihi,cinsiyet from mdata order
by adi ASC'
end;

if (radio group 1.Iternindex=2) then
begin
query I .Active:=false;
query! .SQL.Clear;
query I .SQL.Text:='select mno,adi,soyadi,ceptel,evtel,ktarihi,cinsiyet from mdata order
by soyadi ASC'
end;
if (radiogroupl .Itemlndex=3) then
begin
query I .Active:=false;
query I .SQL.Clear;
query I .SQL.Text:='select rnno,adi,soyadi,ceptel,evtel,ktarihi,cinsiyet from mdata order
by cinsiyet ASC'

77

end;
queryl .Active:=true;
end;

procedure TF onn5 .F onnActivate(Sender: TObj ect);
begin
queryl .Active:=false;
queryl .Active:=true;
end;

procedure TFonn5.BitBtn2Click(Sender: TObject);
begin
fonn5. Close;
form 1.enabled:=true;
end;

procedure TFonn5.DBGridl DblClick(Sender: TObject);
var a:string;
begin
a:=dbgrid 1.Fields[O] .As String;
fonn4.show;
form-l.edit l .text:=a;
form-l. bitbtn6.cl i ck;
end;
end.

Form 6

unit Unit6;
interface
uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Grids, DBGrids, DB, DBTables, StdCtrls, Buttons, ExtCtrls,
XPMenu;

type
TFonn6 = class(TForm)
XPMenu I : TXPMenu;
RadioGroup l: TRadioGroup;
BitBtn 1: TBitBtn;
BitBtn2: TBitBtn;
Edit]: TEdit;
DataSourcel: TDataSource;
Queryl: TQuery;
DBGrid 1: TDBGrid;
procedure FonnActivate(Sender: TObject);
procedure BitBtn 1 Click(Sender: TObject);
procedure RadioGroup 1 Click(Sender: TObject);

78

procedure BitBtn2Click(Sender: TObject);
procedure DBGridlDblClick(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Fonn6: TForm6;

implementation
uses Unitl, Unit4;
{$R *.dfm}
function bulad(a:string):boolean;
begin
bulad:=false;
fonn6.Queryl .SQL.Clear;
fonn6. Query 1. SQL. Text:='select mno,adi,soyadi,ceptel,evtel,ktarihi,cinsi yet from
mdata where adi like'+#39+(form6.editl .text)+'%'+#39;
form6.Queryl .Open;
if not fonn6.Queryl .IsEmpty then bulad:=true;
end;
function bulsoy(a:string):boolean;
begin
bulsoy:=false;
fonn6.Queryl .SQL.Clear;
fonn6.Queryl .SQL.Text:='select mno,adi,soyadi,ceptel,evtel,ktarihi,cinsiyet from
mdata where soyadi like'+#39+(form6.editl .text)+'%'+#39;
fonn6.Queryl .Open;
if not fonn6.Queryl .IsEmpty then bulsoy:=true;
end;
function bulmno(a:string):boolean;
begin
bulmno:=false;
fonn6.Queryl .SQL.Clear;
fonn6.Queryl .SQL.Text:='select mno,adi,soyadi,ceptel,evtel,ktarihi,cinsiyet from
mdata where mno like'+#39+(fonn6.editl.text)+'%'+#39;
forrn6.Queryl .Open;
if not fonn6.Queryl .Is Empty then bulrnno:=true;
end;
function bulc(a:string):boolean;
begin
bulc:=false;
fonn6.Queryl .SQL.Clear;
fonn6.Queryl .SQL.Text:='select mno,adi,soyadi,ceptel,evtel,ktarihi,cinsiyet from
rndata where ktarihi like'+#39+(fonn6.editl .text)+'%'+#39;
fonn6.Query1 .Open;
if not formo.Queryl .IsErnpty then bulc:=true;
end;

79

procedure TFonn6.FormActivate(Sender: TObject);
begin
query I .Active:=false;
edit I .visible:=false;
end;

procedure TFonn6.BitBtn I Click(Sender: TObject);
var a:integer;
begin
a:=radiogroup I. Itemlndex;
if a=O then
bulad(editl .Text);
if a=l then
bulsoy(editl .Text);
if a=2 then
bulmno(editl .Text);
if a=3 then
bulc(editl .Text);
end;

procedure TFonn6.RadioGroupl Click(Sender: TObject);
begin
editl .Visible:=true;
end;

procedure TFonn6.BitBtn2Click(Sender: TObject);
begin
form6.Close;
form l .enabled:=true;
end;

procedure TFonn6.DBGridlDb!Click(Sender: TObject);
var a:string;
begin
fonn4.show;
a=dbgrid l .Fields[O].AsString;
fonn4.editl .Text:=a;
form-l.bitbtno.cl ick;
end;
end.

80

Form 7

unit Unit7;
interface
uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, DB, DBTables, Grids, DBGrids, StdCtrls, Buttons, ExtCtrls, Mask,
XPMenu;

type
TFonn7 = class(TFonn)
XPMenu 1: TXPMenu;
Label I: TLabel;
Label2: TLabel;
Label3: TLabel;
Edit!: TEdit;
Edit2: TEdit;
Panell: TPanel;
BitBtnl: TBitBtn;
BitBtn2: TBitBtn;
BitBtn3: TBitBtn;
BitBtn4: TBitBtn;
DBGrid 1: TDBGrid;
Edi t3 : TE di t;
Query 1 : TQuery;
DataSource 1: TDataSource;
Query2: TQuery;
DataSource2: TDataSource;
Label4: TLabel;
Label5: TLabel;
procedure BitBtn3Click(Sender: TObject);
procedure FormActivate(Sender: TObject);
procedure BitBtnl Click(Sender: TObject);
procedure BitBtn2Click(Sender: TObject);
procedure BitBtn4Click(Sender: TObject);
procedure DBGridlDb!Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Fonn7: TFonn7;

implementation
uses Unit l;
{$R *.dfm}
procedure kaydet;
begin

81

with fonn7 do begin
query! .Fields[O].asstring:=editl .Text;
query 1.Fields[2] .asstring:=edit2.Text;
queryl. Fields[1] .asstring:=edit3 .Text;
end;
end;
procedure oku;
begin
with fonn7 do begin
edit 1.Text:=queryl .Fields[O].asstring;
edit2.Text:=queryl .Fields[1].asstring;
edit3 .Text:=queryl .Fields[2].asstring;
end;
end;
procedure temizle;
begin
with form7 do begin
editl .Text:=";
edit2.Text:=";
edit3 .Text:=";
editl .SetFocus;
end;
end;
function ye(a:string):boolean;
begin
ye:=false;
fonn7.Query1 .First;
while not form7.Queryl.eof do
if (a=fonn7.Query1 .Fields[O].asstring) then
begin
ye:=true;
exit;
end
else
fonn7.Queryl .Next;
end;

procedure TFonn7.BitBtn3Click(Sender: TObject);
begin
fonn7.Close;
form l .enabled:=true;
end;

procedure TFonn7.FormActivate(Sender: TObject);
begin
edi t3. Text: =datetostr(date());
end;
function ye 1 (a:string):boolean;
begin

82

yel :=false;
fonn 7 .Query2. First;
while not fonn7.Query2.eof do
if (a=fonn7.Query2.Fields[O].asstring) then
begin
ye! :=true;
exit;
end
else
form 7. Query 2. Next;
end;
procedure TFonn7.BitBtnlClick(Sender: TObject);
var a:word;
begin
a:=appl ication.rnessagebox('infonnations true?' ,'Warning' ,3 6);
if (a=IDYES) then
begin
ye l (edit] .Text);
if(query2. fields[OJ .asstri ng=edi t 1 . Text) then begin
queryl .Insert;
kaydet;
queryl .Post;
queryl .Refresh;
temizle;
edit3. Text: =datetostr(date());
end else begin
query2.insert;
query2.Fields[O] .AsString:=editl .Text;
query2.Post;
query I .Insert;
kaydet;
queryl .Post;
query! .Refresh;
temizle;
edit3. Text:=datetostr(date());
end;
end;
end;
procedure TFonn7.BitBtn2Click(Sender: TObject);
var a:word;
begin
a:=app lication.rnessagebox('infonnations true?', 'W aming' ,3 6);
if (a=IDYES) then
begin
query! .edit;
kaydet;
queryl .Post;
query} .Refresh;
temizle;
edit3. Text:=datetostr(date());

83

end;
end;
procedure TFonn7.BitBtn4Click(Sender: TObject);
var a:word;
begin
a:=app I ication. MessageBox('Delete?', 'W aming' ,3 6);
if a=IDYES then
begin
ye(editl .Text);
if (query! .Fields[O].AsString=editl .Text) then
begin
queryl .Delete;
queryl .Refresh;
temizle;
end;
end;
end;

procedure TFonn7.DBGrid 1 DblClick(Sender: TObject);
var a:string;
begin
a:=dbgrid 1.Fields[O].AsString;
ye(a);
if (queryl .Fields[O].AsString=a) then
begin
oku;
end;
end;
end.

Form8

unit Unit8;
interface
uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Buttons, Grids, DBGrids, DB, DBTables, XPMenu;

type
TFonn8 = class(TForm)
BitBtnl: TBitBtn;
XPMenu I: TXPMenu;
Label I: TLabel;
Edit I: TEdit;
Label2: TLabel;
Label3: TLabel;
Edit2: TEdit;
Label4: TLabel;
Label5: TLabel;
Edit3: TEdit;

84

Edit4: TEdit;
Label6: TLabel;
Edit5: TEdit;
Edit6: TEdit;
Label 7: TLabel;
DBGridl: TDBGrid;
BitBtn2: TBitBtn;
BitBtn3: TBitBtn;
BitBtn4: TBitBtn;
Label9: TLabel;
Memo 1: TMemo;
DataSourcel: TDataSource;
Query 1 : TQuery;
Query2: TQuery;
DataSource2: TDataSource;
Query3: TQuery;
DataSource3: TDataSource;
Label8: TLabel;
Label l O: TLabel;
procedure BitBtnl Click(Sender: TObject);
procedure BitBtn3Click(Sender: TObject);
procedure BitBtn2Click(Sender: TObject);
procedure BitBtn4Click(Sender: TObject);
procedure DBGridlDblClick(Sender: TObject);
procedure FonnActivate(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Fon118: TForm8;

implementation
uses Unitl;
{$R *.dfm}

procedure kaydet;
begin
with form S do begin
query l .Fields[O].AsString:=editl .text;
queryl .Fields[1].AsString:=edit2. text;
queryl .Fields[2] .AsString:=edit3 .text;
queryl .Fields[3 J .AsString:=edit4.text;
queryl .Fields[4].AsString:=edit5.text;
query I .Fields[5] .AsString:=edit6.text;
query I .Fields[6].AsString:=memo l .text;
end;
end;

85

procedure oku;
begin
with fonn8 do begin
editl .text:=queryl .Fields[O] .AsString;
edit2. text:=queryl .Fields[1] .As String;
edit3. text:=query l .Fields[2] .AsString;
edit 4. text:=queryl .Fields[3] .AsString;
edit5 .text:=queryl .Fields[4].AsString;
edit6.text:=query I .Fields[5] .As String;
memo 1.text:=query I .Fields[6] .As String;
end;
end;
procedure temizle;
begin
with fonn8 do begin
editl .text:=";
edit2.text:=";
edit3.text:=";
edit4.text:=";
edit5.text:=";
edit6.text:=";
memo I .text:=";
editl .SetFocus;
edi t3. Text: =datetostr(date());
end;
end;
function ye(a:string;b :string;c:string): boolean;
begin
ye:=false;
fonn8.Queryl .First;
while not fonn8.Queryl .eof do
if (a=fonn8.Queryl .Fields[O] .asstring) and (b=fonn8.Queryl .Fields[1] .asstring)and
(c=fonn8 .Query 1 .Fields[3] .asstring)then
begin
ye:=true;
exit;
end
else
form8.Queryl .Next;
end;

procedure TFonn8.BitBtn 1 Click(Sender: TObject);
begin
fonn8. Close;
form 1.enabled:=true;
end;

procedure TFonn8.BitBtn3Click(Sender: TObject);
var a:word;
begin

86

a:=application. MessageBox('infonnations true?' ,'Warning' ,3 6);
if (a=IDYES) then
begin
queryl .Insert;
kaydet;
queryl .Post;
query3 .Insert;
query3 .Fields[O] .AsString:=edi t3. Text;
query3 .Fields[1] .AsString:=edit5.Text;
query3 .Post;
query2 .Refresh;
temizle;
end;
end;

procedure TFonn8.BitBtn2Click(Sender: TObject);
var a:word;
begin
a:=application.MessageBox('Delete?','Warning',36);
if (a=IDYES) then
begin
ye(editl .Text,edit2.Text,edit4.Text);
if (queryl .Fields[O].AsString=editl .text) and (queryl .Fields[1] .AsString=edit2. text) and
(queryl.Fields[3].AsString=edit4.text) then begin
queryl .Delete;
query2.Refresh;
temizle;
end;
end;
end;

procedure TFonn8.BitBtn4Click(Sender: TObject);
var a:word;
begin
a:=application.MessageBox('lnfonnation true ?','Warning',36);
if (a=IDYES) then
begin
queryl .edit;
kaydet;
queryl .Post;
query3.edit;
query3. Fields[OJ .AsS tri ng:=edit3. Text;
query3 .Fields[1] .AsString:=edit5 .Text;
query3 .Post;
query2.Refresh;
temizle;
end;
end;

procedure TForm8.DBGridlDblClick(Sender: TObject);

87

var a,b,c:string;
begin
a:=dbgtid l .Fields[O] .AsString;
b:=dbgrid 1 .Fields[l].AsString;
c:=dbgrid] .Fields[4].AsString;
ye(a,b,c);
if (queryl .Fields[O] .AsString=a) and (query I .Fields[1] .AsString=b) and
(queryl.Fields[3].AsString=c) then begin
oku;
end;
end;

procedure TForm8.FonnActivate(Sender: TObject);
begin
edi t3. Text:=datetostr(date());
end;
end.

Form 9

unit Unit9;
interface
uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, XPMenu, DB, DBTables, Grids, DBGrids, StdCtrls, Buttons;

type
TF onn9 = class(TF onn)
XPMenul: TXPMenu;
BitBtn4: TBitBtn;
Labell: TLabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
Label5: TLabel;
Label6: TLabel;
Label7: TLabel;
Editl: TEdit;
Edit2: TEdit;
Edit3: TEdit;
Edit4: TEdit;
Edit5: TEdit;
Memo 1: TMemo;
BitBtnl: TBitBtn;
Bi tB tn2: TB i tB tn;
BitBtn3: TBitBtn;
DBGrid 1: TDBGrid;
Queryl: TQuery;
DataSource 1 : TDataSource;

88

Query2: TQuery;
DataSource2: TDataSource;
Query3: TQuery;
DataSource3: TDataSource;
DataSource4: TDataSource;
Query4: TQuery;
Label8: TLabel;
Label9: TLabel;
procedure FonnActivate(Sender: TObject);
procedure BitBtn4Click(Sender: TObject);
procedure BitBtn 1 Click(Sender: TObject);
procedure BitBtn2Click(Sender: TObject);
procedure BitBtn3Click(Sender: TObject);
procedure DB Grid l DblClick(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Fonn9: TFonn9;

implementation
uses Unitl;
{$R *.dfm}

procedure kaydet;
begin
with fonn9 do begin
queryl .Fields[O].AsString:=editl .Text;
query I .Fields[l J.AsString:=edit2.Text;
query I .Fields[2].AsString:=memo I .Text;
query I .Fields[3].AsString:=edit3.Text;
query I .Fields[4 J .AsString:=edit4. Text;
query I .Fields[5] .AsString:=edit5. Text;
end;
end;
procedure oku;
begin
with fonn9 do begin
editl .Text:=queryl .Fields[O].AsString;
edit2.Text:=queryl .Fields[1 J .AsString;
memo 1.Text:=queryl .Fields[2].AsString;
edit3 .Text:=queryl .Fields[3 J .As String;
edit4.Text:=query I .Fields[4].AsString;
edit5.Text:=queryl .Fields[5].AsString;
end;
end;
procedure temizle;

89

begin
with form9 do begin
editl .Text:=";
edit2.Text:=";
memo I .Text:=";
edit3 .Text:=";
edit4.Text:=";
edit5.Text:=";
editl .SetFocus;
edit4. Text:=datetostr(date());
end;
end;
function ye(a:stri ng;b :stri ng;c:string): boo lean;
begin
ye:=false;
fonn9.Queryl .First;
while not fonn9.Queryl.eof do
if (a=fonn9.Queryl .Fields[O].asstring) and (b=form9.Queryl .Fields[1].asstring)and
(c=fonn9 .Query l .Fields[3].asstring)then
begin
ye:=true;
exit;
end
else
fonn9.Queryl .Next;
end;

procedure TFonn9.FonnActivate(Sender: TObject);
begin
edit4.Text:=datetostr(date());
end;

procedure TFonn9.BitBtn4Click(Sender: TObject);
begin
fonn9.Close;
form 1.enabled:=true;
end;

procedure TFonn9.BitBtnl Click(Sender: TObject);
var a:word;
begin
a:=application.MessageBox('lnformations true ?', 'Waming',3 6);
if (a=IDYES) then
begin
queryl .Insert;
kaydet;
queryl .Post;
query3 .Insert;
query3 .Fields[OJ .AsString:=edit4. Text;

90

query3 .Fields[1] .AsString:=edit5.Text;
query3 .Post;
query2.Refresh;
temizle;
end;
end;
procedure TForm9.BitBtn2Click(Sender: TObject);
var a:word;
begin
a:=application.MessageBox('Infonnations true ?','Waming',36);
if (a=IDYES) then
begin
query] .edit;
kaydet;
queryl .Post;
query3 .edit;
query3. Fields[O] .AsString:=edit4. Text;
query3 .Fields] 1] .AsString:=edit5.Text;
query3.Post;
query2.Refresh;
temizle;
end;
end;

procedure TForrn9.BitBtn3Click(Sender: TObject);
var a.word;
begin
a:=application.MessageBox('Delete?','Waming',36);
if (a=IDYES) then
begin
ye(editl .Text,edit2.Text,edit3 .Text);
if (queryl .Fields[O] .AsString=editl .Text) and (queryl .Fields[l] .AsString=edit2.Text)
and (queryl.Fields[3].AsString=edit3.Text) then
begin
query I .Delete;
query2 .Refresh;
temizle;
end;
end;
end;

procedure TForm9.DBGridlDblC!ick(Sender: TObject);
var a,b,c:string;
begin
a:=dbgrid 1.Fields[O].AsString;
b:=dbgrid I .Fields[l] .AsString;
c:=dbgridl .Fields[4].AsString;

ye(a,b,c);

91

if (queryl.Fields[O].AsString=a) and (query I.Fields[1] .AsString=b) and
(queryl.Fields[3].AsString=c) then
begin
oku;
end;
end;
end.

Form 10

unit Unitl O;
interface
uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Buttons, DB, DBTables, Grids, DBGrids, XPMenu,
ExtCtrls;

type
TFonn l O = class(TFonn)
BitBtnl: TBitBtn;
XPMenu 1: TXPMenu;
DBGridl: TDBGrid;
Queryl: TQuery;
DataSourcel: TDataSource;
Panell: Tf'anel;
RadioGroup l: TRadioGroup;
DataSource2: TDataSource;
DataSource3: TDataSource;
Query2: TQuery;
Query3: I Query;
procedure BitBtn l Click(Sender: TObject);
procedure RadioGroup 1 Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
FonnlO: TFonnlO;

implementation
uses Unitl;
{$R * .dfrn}
procedure ye l;
begin
fonnl O.Queryl .SQL.Clear;
fonnlO.Queryl .SQL.Text:='select * from kasacikti';
form 1 O.Queryl .Open;
end;

92

procedure ye2;
begin
fonnl O.Queryl .SQL.Clear;
form 1 O.Queryl .SQL.Text:='select * from kasagirdi';
form 10. Query 1. Open;
end;

procedure TFonnl O.BitBtnl Click(Sender: TObject);
begin
form 1.enabled:=true;
fonnlO.Close;
end;

procedure TF onn 10 .Radio Group 1 Click(Sender: TObj ect);
begin
if radiogroupl.Itemlndex=O then
ye2;
if radiogroupl.Itemlndex=l then
yel;
end;
end.

Form 11

unit Unitl 1;
interface
uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Buttons, XPMenu;

type
TF onn 1 1 = class(TF orm)
XPMenu 1: TXPMenu;
BitBtnl: TBitBtn;
BitBtn2: TBitBtn;
BitBtn3: TBitBtn;
procedure BitBtn I Click(Sender: TObject);
procedure BitBtn2Click(Sender: TObject);
procedure BitBtn3Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Forn1 l l: TFonn 11;
implementation
uses Unitl;
{$R *.dfrn}

93

procedure TFonn 11.BitBtn I Click(Sender: TObject);
begin
wi nexec('yedekl ehdd. bat' ,O);
application.MessageBox('Saved C:\YEDEK.','Warning',48);
end;

procedure TFonn 1 l .BitBtn2Click(Sender: TObject);
begin
application.MessageBox('Please insert Floppy Disk','Waming',48);
winexec('yedeklefdd.bat',O);
end;

procedure TFonn l 1.BitBtn3Click(Sender: TObject);
begin
form I .Enabled:=true;
form I I.Close;
end;
end.

Form 12

unit Unitl 2;
interface
uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, XPMenu;

type
TFonn12 = class(TForm)
Memol: TMemo;
Button 1: TButton;
XPMenul: TXPMenu;
procedure Button 1 Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;
var
Fonn12: TFonn12;

implementation
uses Unitl;
{$R * .dfrn}

procedure TFonn 12.Button 1 Click(Sender: TObject);
begin
form 12.Close;
form 1.enabled:=true;
end;
end.

94

Form 14

unit Unit14;
interface
uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Buttons, Grids, DBGrids, ExtCtrls, XPMenu, DB,
DBTables;

type
TF orm 14 = cl ass(TF orm)
Label 1: TLabel;
Edit 1: TEdit;
Label2: TLabel;
Edit2: TEdit;
Edit3: TEdit;
Label3: TLabel;
Label4: TLabel;
Edit4: TEdit;
Label5: TLabel;
Merno l : TMemo;
Label I 0: TLabel;
Edit9: TEdit;
BitBtn l: TBitBtn;
DBGridl: TDBGrid;
Panell: TPanel;
BitBtn2: TBitBtn;
BitBtn3: TBitBtn;
BitBtn4: TBitBtn;
BitBtn5: TBitBtn;
BitBtn6: TBitBtn;
XPMenu 1: TXPMenu;
Query 1 : TQuery;
DataSourcel: TDataSource;
Label 11: TLabel;
Edi tl O: TEdi t;
Label6: TLabel;
Label 7: TLabel;
Label8: TLabel;
Label9: TLabel;
DataSource2: TDataSource;
Query2: TQuery;
procedure BitBtn5Click(Sender: TObject);
procedure FonnActivate(Sender: TObject);
procedure BitBtn2Click(Sender: TObject);
procedure BitBtn 1 Click(Sender: TObject);
procedure BitBtn3Click(Sender: TObject);
procedure BitBtn4Click(Sender: TObject);
procedure DBGridlDblC!ick(Sender: TObject);

95

procedure BitBtn6Click(Sender: TObject);
private

{ Private declarations }
public

{ Public declarations }
end;

var
Fonnl4: TFonnl4;

implementation
uses Unitl;
{$R *.dfm}
procedure kaydet;
begin
with fonnl4 do begin
queryl .Fields[O].AsString:=editl .Text;
queryl .Fields[1] .AsString:=edit2.Text;
query 1.Fields[2] .AsString:=edit3. Text;
query] .Fields[3].AsString:=edit4.Text;
queryl .Fields[4].AsString:=rnemo 1.Text;
queryl .Fields[5] .AsString:=edit9 .Text;
queryl .Fields[6].AsString:=editl O.Text;
end;
end;
procedure oku;
begin
with form 14 do begin
edit] .Text:=queryl .Fields[O].AsString;
edit2.Text:=query1. Fields[1].AsString;
edit3. Text:=queryl .Fields[2] .AsString;
edit4.Text:=queryl .Fields[3] .AsString;
memo 1.Text:=queryl .Fields[4].As String;
edit9.Text:=queryl .Fields[5].AsString;
editl O.Text:=queryl .Fields[6].AsString;
end;
end;
procedure temizle;
begin
with forrn 14 do begin
edit I.Text:=";
edit2.Text:=";
edit3.Text:=";
edit4.Text:=";
memo l .Text:=";
edit9.Text:=";
editl .SetFocus;
end;
end;
function ye(a:string):boolean;
begin

96

ye:=false;
form l 4.Query2.First;
while not form l 4.Query2.eof do
if (a=form 14.Queryl .Fields[O].asstring) then
begin
ye:=true;
exit;
end
else
forml4.Query2.Next;
end;
procedure TForml4.BitBtn5Click(Sender: TObject);
begin
form 14.close;
form 1. enab I ed: =true;
end;
procedure TFonn 14.FonnActivate(Sender: TObject);
begin
edit l 0. Text:=datetostr(date());
end;

procedure TFonn 14.BitBtn2Click(Sender: TObject);
var a:word;
begin
bitbtn I .Click;
a:=application.MessageBox('INFORMATIONS TRUE ?','Waming',36);
if (a=IDYES) then
begin
ye(edit 1.Text);
if (query2.Fields[O].AsString<>editl .Text) then begin
query2.Insert;
query2. Fields[O] .AsString:=editl. Text;
query2.Post;
query! .Insert;
kaydet;
query! .Post;
query! .Refresh;
temizle;
end else begin
query I .Insert;
kaydet;
query] .Post;
queryl .Refresh;
temizle;
end;
end;
end;

97

procedure TFonn 14.BitBtn l Click(Sender: TObject);
var
a:integer;
d,c:integer;
begin
a:=0;
c:=O;
d:=0;
a:=strtoint(edit2.Text);
c:=strtoint(edit3 .Text);
d:=a*c;
edit9. Text:=inttostr(d);
end;

procedure TForml4.BitBtn3Click(Sender: TObject);
var a:word;
begin
bitbtn I .Click;
a:=application.MessageBox('INFORMA TIONS TRUE ?','Waming',36);
if (a=IDYES) then
begin
queryl.edit;
kaydet;
query I .Post;
query I .Refresh;
temizle;
end;
end;

procedure TF orm 14.BitBtn4Click(Sender: TObject);
begin
ye(editl .Text);
if (queryl .Fields[O].AsString=editl .Text) then
begin
queryl .Delete;
query 1. Refresh;
temizle;
end;
end;

procedure TFonn I 4.DBGrid lDblClick(Sender: TObject);
var a: string;
begin
a:=dbgrid l .Fields[O].AsString;
ye(a);
if (queryl .Fields[O].AsString=a) then begin
oku;
end;
end;

98

procedure TForm l4.BitBtn6Click(Sender: TObject);
var a:word;
begin
a:=application.MessageBox('Do You Want to Clear ?','Warning',36);
if a=IDYES then
temizle;
end;
end.

Form 15

unit Unit15;
interface
uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, DB, DBTables, Grids, DBGrids, StdCtrls, ExtCtrls, Buttons,
XPMenu;

type
TFonn15 = class(TForm)
DataSourcel: TDataSource;
DBGridl: TDBGrid;
Query I: TQuery;
ComboBox l: TComboBox;
CheckBox I: TCheckBox;
Label 1: TLabel;
Editl: TEdit;
BitBtn2: TBitBtn;
Query2: TQuery;
DataSource2: TDataSource;
XPMenul: TXPMenu;
Panell: TPanel;
RadioGroup l: TRadioGroup;
procedure CheckBox 1 Click(Sender: TObject);
procedure BitBtn2Click(Sender: TObject);
procedure Combo Box l Change(Sender: TObject);
procedure FormActivate(Sender: TObject);
procedure Radio Group 1 Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form 15: TFonn 15;

implementation
uses Unit 1;

99

{$R*.dfm}
procedure TFonn 15.CheckBox 1 Click(Sender: TObject);
var a:string;
begin
if (checkbox 1 . Checked=true) then
begin
combo box l .Enabled:=true;
cornbobox] .Items.Clear;
label 1.Visible:=true;
edit I .Visible:=true;
query] .First;
while (not query2.Eof) do begin
combobox l .Jtems.Add(query2.Fields[O].AsString);
query2.Next;
end;
end else begin
combo box l .Enabled:=false;
label l .Visible:=false;
editl .Visible:=false;
end;end;

procedure TFonnl 5.BitBtn2Click(Sender: TObject);
begin
checkboxl .Checked:=false;
form 1.enabled:=true;
form 15.Close;
end;
function ye(a:string):boolean;
begin
ye:=false;
form I 5.Queryl .First;
while not form l 5.Queryl .eof do
if (a=form 15.Queryl .Fields[O].asstring) then
begin
ye:=true;
exit;
end
else
form 15.Queryl .Next;
end;
function bulad(a:string):boolean;
begin
bulad:=false;
form I 5.Queryl .SQL.Clear;
fonn15.Queryl.SQL.Text:='select * from stokcarn where carncinsi
='+#39+(fonn 15.ComboBox 1.Text)+#39;
form 15.Queryl .Open;
if not fonnl.S.Queryl.IsEmpty then bulad:=true;
end;

100

procedure TF orm 15. Combo Box 1 Change(Sender: TObject);
var a,b,c:integer;
begin
bulad(combo box l .Text);
query] .First;
while(not queryl .Eof) do begin
a:=queryl .Fields[2].Aslnteger;
b:=b+a;
query! .Next;
end;
edit l .Text:=inttostr(b);
end;

procedure TFonn 15.ForrnActivate(Sender: TObject);
begin
queryl .Refresh;
end;

procedure TFonn 15.RadioGroup l Click(Sender: TObject);
begin
if (radiogroup l .Iternindex=O) then
begin
query I .Active:=false;
query I .SQL.Clear;
query I .SQL.Text:='select * from stokcam order by tarih ASC'
end;
if (radio group l .Itemlndex= 1) then
begin
query! .Active:=false;
queryl .SQL.Clear;
query] .SQL.Text:='select * from stokcam order by bfiyat ASC'
end;
if (radio group l .Itemindex=2) then
begin
queryl .Active:=false;
queryl .SQL.Clear;
query I .SQL.Text:='select * from stokcam order by gelsirket ASC'
end;
query I .Active:=true;
end;
end.

Form 16

unit Unitl6;
interface
uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Grids, DBGrids, StdCtrls, Buttons, DB, DBTables, XPMenu, Menus;

type
TFonnl6 = class(TFonn)
Label 1: TLabel;
Editl: TEdit;
BitBtn l: TBitBtn;
BitBtn2: TBitBtn;
BitBtn3: TBitBtn;
DBGridl: TDBGrid;
BitBtn4: TBitBtn;
DataSource l : TDataSource;
Query I : TQuery;
XPMenu 1: TXPMenu;
procedure BitBtn4Click(Sender: TObject);
procedure BitBtn 1 Click(Sender: TObject);
procedure BitBtn2Click(Sender: TObject);
procedure BitBtn3Click(Sender: TObject);
procedure DBGridlDb!Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Fonn16: TFonn16;

implementation
uses Unit l ;
{$R *.dfm}

procedure TFonnl6.BitBtn4Click(Sender: TObject);
begin
form! .enabled:=true;
form 16.close;
end;
function ye(a:string):boolean;
begin
ye:=false;
fonn 16.Queryl .First;
while not form 16.Queryl .eof do
if (a=form I 6.Queryl .Fields[O].asstring) then

102

begin
ye:=true;
exit;
end
else
fonnl 6.Queryl .Next;
end;

procedure TFonnl 6.BitBtnl Click(Sender: TObject);
begin
ye(editl.text);
if (query I .Fields[O] .AsString<>editl .Text) then begin
query] .Insert;
query] .Fields[O].AsString:=editl .Text;
query I .Post;
editl .Text:=";
editl .SetFocus;
query] .Refresh;
end else application.MessageBox('This Trademark was using! !','Waming',48);
end;

procedure TFonnl6.BitBtn2Click(Sender: TObject);
begin
ye(editl .text);
if (query! .Fields[O].AsStting<>editl .Text) then begin
queryl .edit;
queryl .Fields[O].AsString:=editl .Text;
query] .Post;
edit! .Text:=";
edit 1.SetFocus;
query] .Refresh;
end else application.MessageBox('This trademark was using ! !','Waming',48);
end;

procedure TForm 16.BitBtn3Click(Sender: TObject);
begin
ye(edit I.text);
if (queryl .Fields[O].AsString=editl .Text) then begin
query I .Delete;
end;
end;

procedure TFonn16.DBGrid1DblClick(Sender: TObject);
var a:string;
begin
a:=dbgtid 1. fields[O] .asstring;
ye(a);
if (query I .Fields[O] .AsString=a) then begin
editl .Text:=queryl .Fields[O].AsString;
end; end; end.

103

Form 17

unit Unitl 7;
interface
uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, DB, DBTables, Grids, DBGrids, XPMenu, Buttons,
ExtCtrls;

type
TFonnl 7 = class(TFonn)
Label 1: TLabel;
ComboBoxl: TCornboBox;
Label2: TLabel;
Editl: TEdit;
Label3: TLabel;
Edit2: TEdit;
Label4: TLabel;
Edit3: TEdit;
Labels: TLabel;
Edit4: TEdit;
Label6: TLabel;
Mernol: TMerno;
Label 7: TLabel;
Edit5: TEdit;
DataSource 1 : TDataSource;
Query l : TQuery;
Label8: TLabel;
Label9: TLabel;
Labell 0: TLabel;
Label 11 : TLabel;
Label 12: TLabel;
Edit6: TEdit;
DataSource2: TDataSource;
Query2: TQuery;
Panell: TPanel;
BitBtn 1: TBitBtn;
BitBtn2: TBitBtn;
BitBtn3: TBitBtn;
BitBtn4: TBitBtn;
BitBtn5: TBitBtn;
XPMenul: TXPMenu;
Query3: TQuery;
DataSource3: TDataSource;
BitBtn6: TBitBtn;
DBGrid I: TDBGrid;
procedure FonnActivate(Sender: TObject);
procedure BitBtn5Click(Sender: TObject);
procedure BitBtn 1 Click(Sender: TObject);

104

procedure BitBtn2Click(Sender: TObject);
procedure BitBtn3Click(Sender: TObject);
procedure BitBtn4Click(Sender: TObject);
procedure ComboBox 1 Change(Sender: TObject);
procedure BitBtn6Click(Sender: TObject);
procedure DBGridlDb!Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Fonnl7: TFonnl7;

implementation
uses Unitl;
{$R *.dfm}
procedure kaydet;
begin
with form 1 7 do begin
queryl .Fields[O].asstring:=combobox I .Text;
queryl .Fields[1].asstring:=editl .Text;
queryl .Fields[2].asstring:=edit2.Text;
query I .Fields[3].asstring:=edit3 .Text;
queryl .Fields[4].asstring:=edit4.Text;
query} .Fields[5].asstring:=memo I .Text;
queryl. F ields[7].asstring:=edit5. Text;
query I .Fields[6].asstring:=edit6. Text;
end;
end;
procedure oku;
begin
with fonn 1 7 do begin
combobox 1.Text:=queryl .Fields[O].asstring;
edit l .Text:=queryl .Fields[I] .asstring;
edi t2. Text:=query 1.Fields[2] .as string;
edit3 .Text:=queryl .Fields[3] .asstring;
edit4.Text:=queryl .Fields[4].asstring;
memo l .Text:=queryl. Fields[5].asstring;
edit5 .Text:=queryl .Fields[7].asstring;
edit6.Text:=query l. Fields[6] .asstring;
end;
end;
procedure temizle;
begin
with form 17 do begin
combobox 1.Text:=";
editl .Text=";
edit2.Text:=";

105

edit3.Text:=";
edit4.Text:=";
memo I .Text:=";
edit6.Text:=";
editl .SetFocus;
end;
end;
function bu!(a:string;b :string): boolean;
begin
bul :=false;
forml 7.Queryl.First;
while not form 17.Queryl .eof do
if (a=form l .Queryl .Fields[O].asstring)and (b=form l .Queryl .Fields[1] .asstring)then
begin
bul:=true;
exit;
end
else
form 17.Queryl .Next;
end;
function bull (a:string):boolean;
begin
bul 1 :=false;
form l 7.Query3.First;
while not forml 7.Query3.eof do
if (a=form l 7.Query3.Fields[O].asstring)then
begin
bu! 1 :=true;
exit;
end
else
form l 7.Queryl.Next;
end;

procedure Tf'orm l 7.FonnActivate(Sender: TObject);
begin
queryl .Refresh;
edi t5. Tex t:=datetostr(date());
query2.Refresh;
query2.First;
combobox I .Items.Clear;
while(not query2.Eof) do begin
combo box I. Items.Add(query2.Fields[O] .AsString);
query2.Next;
end;
end;

106

procedure TFonn 17.BitBtn5Click(Sender: TObject);
begin
form 1.enabled:=true;
form] 7.Close;
end;

procedure TFonn 17.BitBtnl Click(Sender: TObject);
var a:word;
begin
bitbtn6.Click;
a:=appl i cation.MessageB0x('Inforn1ations True?' ,'Warni ng',36);
if a=IDYES then
begin
query3. Insert;
query3 .Fields[O] .AsString:=combobox I .Text;
query3 .Fields[1].AsString:=editl .Text;
query3 .Post;
query I .Insert;
kaydet;
query I .Post;
temizle;
queryl .Refresh;
end;
end;

procedure TFonnl 7.BitBtn2Click(Sender: TObject);
var a:word;
begin
bitbtn6.Click;
a:=application.MessageBox('Infonnation true?', 'Warning' ,3 6);
if a=IDYES then
begin
query3.edit;
query3 .Fields[O] .AsString:=combobox I .Text;
query3 .Fields[1] .AsString:=edit 1. Text;
query3.Post;
queryl.edit;
kaydet;
queryl .Post;
temizle;
queryl .Refresh;
end;
end;

procedure TFonn l 7.BitBtn3Click(Sender: TObject);
var a:word;
begin
a:=application.MessageBox('Delete?','Waming',36);
if a=IDYES then
begin

107

bu)(combo box 1.Text,editl .Text);
if (queryl .fields[O].asstring=cornbobox I .Text) and
(queryl .Fields[1] .AsString=editl .Text) then
begin
queryl .Delete;
query I .Refresh;
ternizle;
end;
end;
end;

procedure TForrn 17.BitBtn4Click(Sender: TObject);
var a:word;
begin
a:=application.MessageBox('Are You Sure ?','Warning',36);
if a=TDYES then
begin
ternizle;
end;
end;

procedure TF onn 1 7. Corn boBox 1 Change(Sender: TObject);
begin
edit 1. SetF ocus;
end;

procedure TFonnl 7.BitBtn6Click(Sender: TObject);
var a,b,c:integer;
begin
a:=strtoint(edit2.Text);
b:=strtoint(edit3 .Text);
c:=a*b;
edit6.Text:=inttostr(c);
end;

procedure TFonnl 7.DBGridlDb!Click(Sender: TObject);
var a,b:string;
begin
a:=dbgrid 1.Fields[O] .As String;
b:=dbgridl .Fields[1].As String;
bul(a,b);
if (query 1. fields[O].asstring=a) and (queryl.Fields[1].AsString=b) then
oku;
end;
end.

108

Form 18

unit Unitl 8;
interface
uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, ExtCtrls, Grids, DBGrids, DB, DBTables, Buttons,
XPMenu;

type
TFonnl 8 = class(TFonn)
Panell: TPanel;
RadioGroup 1: TRadioGroup;
DataSourcel: TDataSource;
Query 1 : TQuery;
DBGridl: TDBGrid;
CheckBox l: TCheckBox;
Combo Box 1: TComboBox;
DataSource2: TDataSource;
Query2: TQuery;
BitBtn2: TBitBtn;
XPMenu 1 : TXPMenu;
Label I: TLabel;
Editl: TEdit;
procedure CheckBox 1 Click(Sender: TObject);
procedure ComboBox 1 Change(Sender: TObject);
procedure RadioGroup I Click(Sender: TObject);
procedure BitBtn2Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form 18: TFonn 18;

implementation
uses Unitl;
{$R *.dfm}

procedure TFonnl 8.CheckBoxl Click(Sender: TObject);
begin
if (checkbox 1. Checked=true) then
begin
query2.First;
combo box l .Enabled:=true;
LABEL I .visible:=true;
editl .Visible:=true;

109

cornbobox l .Items.Clear;
while(not query2.Eof) do begin
combo box I .Items.Add(query2.Fields[O] .AsString);
query2.Next;
end;
end else begin
combo box I .Text:=";
edit I .text:=";
combo box I .Enabled:=false;
label I .visible:=false;
editl. Visible:=false;
end;
end;
function bulad(a:string):boolean;
begin
bulad:=false;
form I 8.Queryl .SQL.Clear;
form I 8.Queryl .SQL.Text:='select * from stoke where cmarka
='+#39+(fonn 18.combobox l .text)+#39;
form I 8. Query 1 . Open;
if not fonnl8.Queryl.IsEmpty then bulad:=true;
end;
procedure Tf'orml 8.ComboBox 1 Change(Sender: TObject);
var a,b:integer;
begin
bulad(combo box I .Text);
while(not queryl.Eof) do begin
a:=sttioJnt(queryl .Fields[3].AsString);
b:=b+a;
query I .Next;
end;
edit l .Text:=inttostr(b);
end;

procedure TF orm 18.RadioGroup 1 Click(Sender: TObject);
begin
if (radio group 1. Itemlndex=O) then
begin
query] .Active:=false;
queryl .SQL.Clear;
queryl .SQL.Text:='select * from stoke order by tarih ASC'
end;

if (radio group l .Itemlndex=l) then
begin
queryl .Active:=false;
query I .SQL.Clear;
queryl .SQL.Text:='select * from stoke order by bfiyat ASC'
end· -

'

110

if (radiogroup l .lternlndex=2) then
begin
queryl .Active:=false;
query! .SQL.Clear;
queryl .SQL.Text:='select * from stoke order by gsirket ASC'
end;
query! .Active:=true;
end;

procedure TFonn l 8.BitBtn2Click(Sender: TObject);
begin
cornboboxl .Text:=";
editl. text:=";
combo box 1.Enabled:=false;
label 1. visible:=false;
editl .Visible:=false;
forrn 18.Close;
forml .enabled:=true;
end;
end.

Form 19

unit Unitl 9;
interface
uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, ExtCtrls, jpeg;

type
TFonnl 9 = class(TFonn)
Imagel: Tlmage;

private
{ Private declarations }

public
{ Public declarations }

end;
var
Form 19: TFonn 19;

implementation
uses Unitl;
{$R *.dfm}
end.

111

APPENDIX 2
Table of the Database

Figure 1. User's Table

Kullarnci.db for users. It has include the username, password, secret question , answer,

date and authorization datas. For entering the program, needed this database table.

:\. .. lmdata.08
Numoer Name

Figure2. Customer Data Table

Mdata.db for customer's data. It contain the customer number, name, surname, mobile

phone, address, sex, and register date.

efe
3Jfatih 4. de niz

2
2

Figure 3 Authority table

Y etki .db create for authorization. It has include usemarne and state.

If state is 'l' user is. ADM IN, if state '2 'user is USER.

112

Figure 4 Company Table

Kurum.db create for company name.

3IXYZ FIRM

Figure 5 company register table

Kurumkaydi.db create for company register which has include the company name,

register date, and take a cash amount.

Figure 6 Trademark glasses

Marka.db create for register of glass trademark

113

Figure 7 Income table

Kasagirdi.db use for revenue. It has include the name, surname, address, date, take cash

amount, and reason which why the take money this person.

Surname
1J6fu1 -,
21 ENiS
3ltATIH

!EklZ
iKASIMOGI 11
I
!SAU

Figure 8 Expenditure table

Kasacikti.db create for expenditure. Contain the name , surname, date, address,

company name, give money amount, and reason which why give the money this person

and company.

f glass i-Price
L1:{()
'15((1
.znn

ram Company
~ OelMR
10 ASDFF
0 ADAfJAOPTIK

Figure 9 stock of glass

Stock.db create for stock amount. Contain the glass trademark, glass kind, pnce,

address, gene! total, and date.

114

Figure IO.Kind of Glass

Create the cinsl .db for kind of glass and glass trademark informations.

115

REFERENCES

[l] Yuksel inan - Nihat Demirli Delphi 7 Leaming Book

[2] Ihsan Karagulle Delphi 7 Edition Book

[3] Memik Yanik Borland Delphi- Sistem Yaymcihk

[4] http://www.google.com

[5] http://www.wikipedia.org

[6] http://www.w3schools.com/sq II

[7]http://www.lkeydata.com/sql

116

	Page 1
	Titles
	NEAR EAST UNIVERSITY
	Faculty Of Engineering

	Images
	Image 1
	Image 2

	Page 2
	Titles
	ACKNOWLEDGEMENTS

	Images
	Image 1

	Page 3
	Titles
	ABSTRACT

	Images
	Image 1

	Page 4
	Titles
	1

	Images
	Image 1
	Image 2
	Image 3

	Page 5
	Titles
	CHAPTER FOUR: DESCRIPTION ABOUT PROJECT
	REFERENCES

	Images
	Image 1

	Page 6
	Titles
	INTRODUCTION

	Images
	Image 1

	Page 7
	Titles
	CHAPTER 1
	DELPHI
	1.1 INTRODUCTION TO DELPHI
	-

	Images
	Image 1

	Page 8
	Titles
	2

	Images
	Image 1

	Page 9
	Titles
	1.2.2 Versions are there and How do they differ?

	Images
	Image 1

	Page 10
	Images
	Image 1

	Page 11
	Titles
	1.3 The VCL to Applications Developers

	Images
	Image 1

	Page 12
	Titles
	1.3.1 The VCL to Component Writers
	1.3.2The VCL is made up of components

	Images
	Image 1

	Page 13
	Titles
	1.3.3 Component types, structure, and VCL hierarchy
	1.3.4 Component Types
	1.3.4.1 Standard Components

	Images
	Image 1

	Page 14
	Titles
	1.3.4.2 Custom components

	Images
	Image 1

	Page 15
	Titles
	1.3.4.3 Graphical components
	1.3.4.4 Non-visual components
	1.3.4.5 Structure of a component
	9

	Images
	Image 1

	Page 16
	Images
	Image 1

	Page 17
	Titles
	1.4Property-access methods
	11

	Images
	Image 1

	Page 18
	Titles
	1.5Types of properties
	1.6Methods
	1.7 Events

	Images
	Image 1

	Page 19
	Images
	Image 1

	Page 20
	Titles
	14

	Images
	Image 1

	Page 21
	Titles
	1.8Containership
	1.9 Ownership

	Images
	Image 1

	Page 22
	Titles
	1.1 OParenthood

	Images
	Image 1

	Page 23
	Titles
	CHAPTER2
	17

	Images
	Image 1

	Page 24
	Titles
	18

	Images
	Image 1

	Page 25
	Images
	Image 1

	Page 26
	Titles
	2.3.1 Flat model
	2.3.2 Hierarchical model

	Images
	Image 1

	Page 1
	Titles
	2.3.3 Network model
	2.3.4 Relational model

	Images
	Image 1

	Page 2
	Images
	Image 1

	Page 3
	Titles
	2.3.4.1 Relational operations

	Images
	Image 1

	Page 4
	Titles
	2.3.5 Dimensional model
	2.3.6 Object database models

	Images
	Image 1

	Page 5
	Titles
	'
	2.4.1 Indexing

	Images
	Image 1

	Page 6
	Titles
	2.4.2 Transactions and concurrency

	Images
	Image 1

	Page 7
	Titles
	2.4.3 Replication

	Images
	Image 1

	Page 8
	Images
	Image 1

	Page 9
	Titles
	CHAPTER3

	Images
	Image 1

	Page 10
	Titles
	3.2.1 Standardization

	Images
	Image 1

	Page 11
	Images
	Image 1

	Page 12
	Titles
	3.4.1 Data retrieval

	Images
	Image 1

	Page 13
	Titles
	3.4.2 Data manipulation

	Images
	Image 1

	Tables
	Table 1
	Table 2

	Page 14
	Titles
	3.4.3 Transaction Control
	3.4.4 Data definition

	Images
	Image 1

	Page 15
	Titles
	3.4.5 Data control
	3.4.6 Other

	Images
	Image 1

	Page 16
	Images
	Image 1

	Page 17
	Images
	Image 1

	Tables
	Table 1

	Page 18
	Titles
	CHAPTER4
	Description About Project
	USER NAME enis
	Login
	Q,ancel
	Eorget Password

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Page 19
	Images
	Image 1
	Image 2

	Page 20
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 21
	Titles
	L
	41

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 22
	Titles
	<·> patel

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 23
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 24
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10

	Page 25
	Titles
	I
	I
	I

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 26
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 27
	Images
	Image 1
	Image 2
	Image 3

	Page 28
	Titles
	Sav1e to Hard Disk
	Save tio Eloppy Disk

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 29
	Titles
	CONCLUSION

	Images
	Image 1

	Page 30
	Titles
	APPENDIX 1

	Images
	Image 1

	Page 1
	Titles
	Form 1
	51

	Images
	Image 1

	Page 2
	Images
	Image 1

	Page 3
	Images
	Image 1

	Page 4
	Images
	Image 1

	Page 5
	Images
	Image 1
	Image 2

	Page 6
	Images
	Image 1

	Page 7
	Images
	Image 1

	Page 8
	Images
	Image 1

	Page 9
	Images
	Image 1

	Page 10
	Images
	Image 1

	Page 11
	Titles
	Form 2

	Images
	Image 1

	Page 12
	Images
	Image 1

	Page 13
	Images
	Image 1

	Page 14
	Images
	Image 1

	Page 15
	Images
	Image 1

	Page 16
	Images
	Image 1

	Page 17
	Titles
	Form3

	Images
	Image 1
	Image 2

	Page 18
	Images
	Image 1

	Page 19
	Images
	Image 1

	Page 20
	Images
	Image 1

	Page 21
	Titles
	Form4

	Images
	Image 1

	Page 22
	Images
	Image 1

	Page 23
	Images
	Image 1

	Page 24
	Images
	Image 1

	Page 25
	Titles
	75

	Images
	Image 1

	Page 26
	Titles
	FormS

	Images
	Image 1

	Page 27
	Images
	Image 1

	Page 28
	Titles
	Form 6

	Images
	Image 1

	Page 29
	Images
	Image 1

	Page 30
	Images
	Image 1

	Page 1
	Titles
	Form 7
	81

	Images
	Image 1

	Page 2
	Images
	Image 1
	Image 2

	Page 3
	Images
	Image 1

	Page 4
	Titles
	Form8

	Images
	Image 1
	Image 2

	Page 5
	Images
	Image 1
	Image 2

	Page 6
	Images
	Image 1

	Page 7
	Images
	Image 1

	Page 8
	Titles
	Form 9

	Images
	Image 1

	Page 9
	Images
	Image 1

	Page 10
	Images
	Image 1

	Page 11
	Images
	Image 1

	Page 12
	Titles
	Form 10

	Images
	Image 1

	Page 13
	Titles
	Form 11

	Images
	Image 1

	Page 14
	Titles
	Form 12

	Images
	Image 1
	Image 2

	Page 15
	Titles
	Form 14

	Images
	Image 1

	Page 16
	Images
	Image 1

	Page 17
	Images
	Image 1

	Page 18
	Images
	Image 1

	Page 19
	Titles
	Form 15

	Images
	Image 1

	Page 20
	Images
	Image 1

	Page 21
	Images
	Image 1

	Page 22
	Titles
	Form 16

	Images
	Image 1

	Page 23
	Images
	Image 1

	Page 24
	Titles
	Form 17

	Images
	Image 1

	Page 25
	Images
	Image 1

	Page 26
	Images
	Image 1

	Page 27
	Images
	Image 1

	Page 28
	Images
	Image 1

	Page 29
	Titles
	Form 18

	Images
	Image 1
	Image 2

	Page 30
	Titles
	'

	Images
	Image 1

	Page 31
	Titles
	Form 19

	Images
	Image 1

	Page 32
	Titles
	APPENDIX 2
	:\. .. lmdata.08

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Page 33
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 34
	Titles
	1J6fu1
	-,
	21 ENiS
	3ltATIH
	Surname
	!SAU
	.znn

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 35
	Titles
	115

	Images
	Image 1
	Image 2

	Page 36
	Titles
	REFERENCES

	Images
	Image 1
	Image 2

