
TURKISH REPUBLIC OF NORTHERN CYPRUS

NEAR EAST UNIVERSITY

FACULTY OF ENGINEERING

DEPARTMENT OF ELECTRICAL & ELECTRONIC
ENGINEERING

DEGREE OF BSc

EE 400 GRADUATION PROJECT

PROGRAMMABLE LOGIC CONTROLLERS

SUBMITTED BY : Mr. GÜRTÜRK KÖSEOGLU, 940192
Mr. ERDAL YILDIZ , 950557

SUBMITTED TO : Mr. ÖZGÜR C.ÖZERDEM

NICOSIA-2000

INDEX

I.LIST OF FIGURES
1. 1. Entrance of the Packing House
1.2. Entrance of the Packing House
1.3. Pesticide and Fungicide Application Unit
1.4. Sizing Unit
1.5. earring Converyor and Stamping and Stabling Unit
1.6. Table of Symbol
2. INTRIDUCTION
3. WHAT IS PLC?
4. PLC IDSTORY
5. GENAREL PHYSICAL BUILD MECHANISM
5. 1. Compact PLCs
5.2. Modular PLC
6. INTERNAL STRACTURE OF PLCs
6.1. Input Unit
6.2. Output Unit
6.3. Processing Unit
7.ADVANTAGE
7. 1 . Accuracy
7.2. Flexibility
7.3. Communication
7.4. Logic Control of Industrial Automation
7.5. Reals and Ladder Logic
7.6. System Overvies
7.7. CPU Overview
7.8. Architecture
7.9. Memory Map

7.9.1. Data Area
7.9.2. Data Objects

8. LADDER AND STL PROGRAM
9. DESCRIPTION OF OPERATION
10. CONCLUSION
11. APPENDIXS
12. REFERENCES

1
1
2
2
3
4
5
6
7
8
8
8
9
9
9
9
10
10
10
10
10
10
11
11
11
11
12
12
13
37
73
74
77

1.LIST OF FIGURES

Figure 1.1: Entrance of the Packing House

Sl

Q

Figure l.2 : Entrance of the Packing House

1

. ı~- : ;; ii~..~: = ~,. /I\\--;;ır \. t ı ». » •• ,
\ ,,•, r, ·,••• ,,.. • • • :ı .,~, •., r, • • •,'.: ';, . ' .. ,., ·~'

Plı;ue. l1.4: Sidıq, Unit

2

Fi,gure 1.5 : Carrybtg Conveyor and Stamping & Stabling
Unit

INSTRUCTION LADDER SEMBOL sn.ı.ıATIC S.7

LOAD t,r- LD

AND -it- A

OR '-it-I o

NOT / NOT

LOAD NOT t-Yı- tDN

AND NOT -uı- AN

OB.NOT YA-1 ON

AND BLOCK At.D

OR BLOCK OLD

OUT --o-t -<rl ;;:

END -<END)- MEND

2. INTRODUCTIONS

Now that we understand how inputs and outputs are processed by the PLC, let's look
at a variation of our regular outputs. Regular output coils are of course an essential
part of our programs but we must remember that they are only true when all
instructions before them on the rung are also true.

Think back to the we did a few chapters ago. What would've happened if we couldn't
find a "push on/push off' switch? Then we would've had to keep pressing the button
for as long as we wanted the bell to sound. (A momentary switch) The latching
instructions let us use momentary switches and program the PLC so that when we
push one the output turns on and when we push another the output turns off.

Picture the remote control for your TV. It has a button for on and another for off.
When I push the on button the TV turns on. When I push the offbutton the TV turns
off. I don't have to keep pushing the on button to keep the TV on. This would be the
function of a latching instruction.

The latch instruction is often called a SET or OTL (output latch). The unlatch
instruction is often called a RES (reset), OUT (output unlatch) or RST (reset). The
diagram below shows how to use them in a program.

5

3. WHAT IS A PLC?

A PLC (ie. Programmable Logic Controller) is a device that was invented to replace
the necessary sequential relay circuits for machine control. The PLC works by
looking at its inputs and depending upon their state, turning on/off its outputs. The
user enters a program, usually via software, that gives the desired results.

PLC 's are used in many "real world" applications. If there is industry present,
chances are good that there is a PLC present. Ifyou are involved in machining,
packaging, material handling, automated assembly or countless other industries you
are probably already using them. If you are not, you are wasting money and time.
Almost any application that needs some type of electrical control bas a need for a
PLC.

For example, let's assume that when a switch turns on we want to tum a solenoid on
for 5 seconds and then turn it off regardless of how long the switch is on for. We can
do this with a simple external timer. But what if the process included 10 switches and
solenoids? We would need 1 O external timers. What if the process also needed to
count how many times the switches individually turned on? We need a lot of external
counters.

As you can see the bigger the process the more of a need we have for a PLC. We can
simply program the PLC to count its inputs and turn the solenoids on for the specified
time.

This site gives you enough information to be able to write programs far more
complicated than the simple one above. We will take a look at what is considered to
be the "top 20" PLC instructions. It can be safely estimated that with a firm
understanding of these instructions one can solvemore than 80% of the applications
inexistence.

6

4. PLC IDSTORY

In the late 1960's PLC 's were first introduced. The primary reason for designing such
a device was eliminating the large cost involved in replacing the complicated relay
based machine control systems. Bedford Associates (Bedford, MA) proposed
something called a Modular Digital Controller (MODICON) to a major US car
manufacturer. Other companies at the time proposed computer based schemes, one of
which was based upon the PDP-8. The MODICON 084 brought the world's first PLC
into commercial production.

When production requirements changed so did the control system. This becomes very
expensive when the change is frequent. Since relays are mechanical devices they also
have a limited lifetime which required strict adhesion to maintenance schedules.
Troubleshooting was also quite tedious when so many relays are involved. Now
picture a machine control panel that included many, possibly hundreds or thousands,
of individual relays. The size could be mind boggling. How about the complicated
initial wiring of so many individual devices! These relays would be individually wired
together in a manner that would yield the desired outcome.

These "new controllers" also had to be easily programmed by maintenance and plant
engineers. The lifetime had to be long and programming changes easily performed.
They also had to survive the harsh industrial environment. That's a lot to ask! The
answers were to use a programming technique most people were already familiar with
and replace mechanical parts with solid-state ones.

In the mid70's the dominant PLC technologies were sequencer state-machines and the
bit-slice based CPU The AMD 2901 and 2903 were quite popular inMODİCON and
A-B PLC 's. Conventional microprocessors lacked the power to quickly solve PLC
logic in all but the smallest PLC 's. As conventional microprocessors evolved, larger
and larger PLC 's were being based upon them. However, even today some are still
based upon the 2903.(ref A-B 's PLC-3) MODICON has yet to build a faster PLC
than their 984A/B/X which was based upon the 2901.

Communications abilities began to appear in approximately 1973. The first such
system was MODICON 's MODBUS. The PLC could now talk to other PLC 'sand
they could be far away from the actual machine they were controlling. They could
also now be used to send and receive varying voltages to allow them to enter the
analog world. Unfortunately, the lack of standardisation coupled with continually
changing technology has made PLC communications a nightmare of incompatible
protocols and physical networks.

7

The 80's saw an attempt to standardise communications with General Motor's
manufacturing automation protocol (MAP). It was also a time for reducing the size of
the PLC and making them software programmable through symbolic programming on
personal computers instead of dedicated programming terminals or hand.held
programmers.

The 90' s have seen a gradual reduction in the introduction of new protocols, and the
modernisation of the physical layers of some of the more popular protocols that
survived the 1980's. The latest standard has tried to merge PLC-programming
languages under one international standard. We now have PLC 's that are
programmable in function block diagrams, instruction lists, C and structured text all at
the same time! PC's are also being used to replace PLC 'sin some applications. The
original company who commissioned the MODICON 084 has actually switched to a
PC based control system.

5. GENAREL PHYSICAL BUILD MECHANISM

PLC 's are separated into two according to their building mechanisms.

5.1. Compact PLC 's

CompactPl.C 's are manufactured such that all units forming the PLC are placed in a
case. They are low price PLC with lower capacity. They are usually preferred by
small or medium size machine manufacturers. In some types compact enlargement
module is present.

5.2.Modular PLC 's

They are formed by combining separate modules (called RACK) together in a board.
They can have different memory capacity, I/O numbers, Power Supply up to the
necessary limits.
Some examples: SIEMENS S5-115U, KLOCKNER-MOELLERPS316 OMRON
C200H.

8

6. INTERNAL STRUCTURE OF PLC 's:

They have three main units:
1. Input unit
2. Processing unit
3. Output unit

6.1. INPUT UNIT:

Is the that converts the signals coming from the control elements of the system that is
going to be controlled into logic levels.
The analog and/or digital signals coming from the sensors or switches showing the
systems pressure, humidity, level, etc. enters the PLC through the input unit.
Digital signals are converted to 5V de by this unit which is the internal voltage level
of the device.

The parasitic signals are first filtered by RC passive filters and than they pass through
up to coupler that has the property to supply galvanised isolation. As a result of this
process the signals are send to input display memory. Analog signals pass through this
process the signals are send to input display memory. Analog signals pass through
frequency converts in some PLC 's. In this way they gain important noise immunity.

6.2. OUTPUT UNITS:

They are suitably manufactured to successfully control the activators in the system to
be controlled. Digital output signals contractor relays, 24V de NPN or PNP transistors
or Tracs, PLC 's output cannot supply large currents. So by digital output relays and
by their contactor groups main contactors or windings are operated. In this way unit
like motors, heaters, hydraulic values can be operated.

6.3. PROCESSING UNIT:

It is composed of the sub units given below:
• CPU (Central Processing Unit): It is also given the name processing unit. It

processes all the input signals according to the user program instruction order and
directs the output signals to the related outputs. This process is controlled by a
microprocessor. Some times instead ofmicroprocessor a micro controller or
microcomputer can also be-used. The difference of these devices from
microprocessor is that processor; memory and I/O interfaces are all in one unit.

As a memory ROM and RAM is used. Data for Operating System and PLC that
cannot be changed are kept in ROM and user program and I/O data are kept in RAM.
• Program Memory: It is also defined as user memory it is the memory where the

user program is kept. Its capacity is variable according to the instruction number.
Eg. lK instruction = 1024instruction lines.

9

__ DVANTAGES

ACCURACY

ay control systems logical knowledge's carries in electro mechanical contactors,
can lose data because of mechanical errors. But PLC 's are microprocessor based

,ç..~ so logical data are carried inside the processor, so that PLC 's are more
.te than relay type of controllers.

there is need of any change in control, relay type of controllers modification are
in PLCthis change can be made with PLC programmer equipment.

COMMUNICATION

-· are computer based systems. So that they can transfers their data to another PC
~· can take external inputs from another PC, with this specification we can

ol the system were they are we can effect the system with our PC. With relays
· not possible.

LOGIC CONTROL OF INDUSTRIAL AUTOMATION

yday examples of these systems are machines like dishwashers, clothes washers
ers, and elevators. In these systems, the outputs tend to be 220vac power

: ..~ı:, to motors, solenoids, and indicator lights, and the inputs are DC or AC signals
user interface switches, motion limit switches, binary liquid level sensors, etc.
er major function in these types of controllers is timing.

REALS AND LADDER LOGIC

"old days" (ie. before the 1980's) these types of controllers were implemented
relays. Relays are a technology from the early days of electricity in which an
omagnet activates an electrical switch. When current flows in the coil,
ically, thermally, and mechanically rugged, easy to design with, cheap, and
le of controlling very large currents in their output contacts.

s can be thought of as logic gates. For example, if two normally open relays are
ed in series, and one end of the resulting output circuit is attached to a voltage
ce, then the two coils form the inputs of a AND gate: only if current is flowing in

- Ö'TH input coils will current flow in the output circuit A typical application in a
hing machine might be to implement the rule that.

10

The shape of these diagrams invariably led to the name "Ladder diagrams" and
"Ladder Logic" to describe them. The term "Relay Ladder Logic" (RLL) describes
this logic notation. By including interconnections between the horizontal rungs, it is
possible to create latches ("flip-flops") and implement state transitions. Although LL
"state machines" get quite complex and are typically not designed with the
convenience of finite state machine theory, they have become widely used and
supported by technical workers. Because the logic was implemented in physical
wiring, it was difficult to change, as new functions were required.

7.6. SYSTEM OVERVIES

A typical S7-200 system will include an S7-200 base unit which includes the central
processing unit, power supply, and discrete input and output points. Expansion
module contains additional input or output points and is connected to the base unit bus
connectors. The central processing unit has a built-in communications port for
programming or talking with intelligent ASCil devices.

7.7. CPU OVERVIEW

The S7-200 series is a line of small, compact, micro-programmable logic controllers
and expansion modules that can be used for a variety of programming applications.
There are two types of base units in the S7-200 product line, CPU 212 and CPU 214.
Each base unit comes in different models to accommodate the type of power supply,
inputs and outputs you require.

7.8. ARCHIECTURE

This section relates to how the S7-200 CPU arranges data and how it executes your
program during it's scan cycle.

7.9. MEMORY MAP

The memory space of the S7-200 is divided into five data areas and six data objects.
To reference a memory location for use, you must address that location. The
addressing conventions allow memory to be accessed as bits, bytes, words and double
words. All addresses are zero-based. ·

Data space is highly flexible, and it allows read and writes access to all memory areas
as bits, bytes, words and double words. Data objects are the memory locations that are
associated with devices (such as the current value of a counter or the temperature
value of an oven). Access to data objects is more restrictive because the data object
can be addressed only according to the intended use of that object.

11

7.9.1. Data Areas
Data memory contains variable memory, and register, and output image register,
internal memory bits, and special memory bits. This memory is accessed by a byte bit
convention. For example to access bit 3 of Variable Memory byte 25 you would use
the address V25.3.
The following table shows the identifiers and ranges for each of the data area memory
types:

Area Identifier
I
Q
M

SM
V

CPU212
IO.O to 17.7
QO.O to 17.7
MO.O to M15.7

SMO.O to SM 45.7
VO.O to V1023.7

Data Are
Input
Output
Internal Memory

Special Memory
Variable Memory

CPU 214
IO.O to 17.7

QO.O to Q7.7
MO.O to M31.7

SMO.O to SM 85.7
VO.O to V4095.7

7.9.2. Data Objects
The S7-200 has six kinds of devices with associated data: timers, counters, analog
inputs, analog outputs, accumulators and high-speed counters. Each device has
associated data (data objects). For example, the S7-200 has counter devices. Counters
have a data value that maintains the current count value. There is also a bit value,
which is set when the current value is greater than or equal to the present value. Since
there are multiple devices are numbered from O ton. the corresponding data objects
and object bits are also numbered.
The following table shows the identifiers and ranges for each of the data object
memory types:

Object Identifier Object
T Timers

C Counters
AI Analog Input
AQ Analog Output
AC Accumulator Registers
HC High-speed Counter

Current

CPU212
TO to T63
CO to C63
AIWO to AIW30
AQWO to AQW30
ACOtoAC3
HCO

12

CPU214
TO to T127
CO to C127

AIWO to AIW30
AQWOtoAQW30

ACOtoAC3
HCOtoHC2

PROGRAM TITLE COMMENTS

Press FI for help and example program

Network l If we don't push the stop button and if the second sensor can see the fruit.

NETWORK COMMENT

IO.O 10. l I0.2 10.3 QO.O

I l I I I 111 C)

Network 2 If the fruits com on the band the sif\h sensor will see the fruits and band directly starting the work

I0.4 QO.l
I ()

Network 3 The end of work.

13

1
2
3
4
5
6
7

II
//PROGRAM TITL~ COMMENTS
II
//eress Fl for help and example program
II
NETWORK 1 //If we don•t push the stop button and if the second sensor can

see the fruit.
il
//NETWORK COMMENT
il
LD IO.O
A IO.l
A I0.2
AN I0.3

QO.O

NETWORK 2
fruits and

LD I0.4
"" QO,l

8
9
10
11
12 ıa
14
15
16
17

18
19
20
21
22

NETWORK 3
MEND

I /If the fru.its com on the band the sifth sensor will see the
band directly starting the work

//The end of work.

14

PROGRAM TITLE COMMENTS

Press Fl for help and example Pf(lgTatn

Network l The bant begms to work after the sensor see's th~ fruits.

NETWORK COMMENTS

IO.O QO.O
J . ()

Network 2 After the band works the time counts 5 sec T3 7

QO.O T37
~:roN

+50--IPT I

Network 3 When timer's is active it sprays cbemieal.

T37 Q~l
I C)

15

Network 4 The tim,ers makes the other timer work T38

T37 T38
~mN

+50-\PT I

Network 5 When the other timer is active T37 and Q 0.1 resets.

T38 T37

t a)

.;
R.)

Network 6 When the Q 0.1 doesn't work. T38 resets.

QO.l T38
I I (R)

1

Network 7 If the band is working the timer (T39}ooıutts8 sec.

IO.O T39
.~l'ON

+801PT I

16

Network 8 After the T39 is active it begms to spray chemical.

T39 Q0.2
I C)

Network 9 The timer makes the other nme work (T40)

T39 T40
~WN

+80-IPT

Network 10 When the other time is. active T38 and Q 0.2 resets.

T40 T38

t R)
l

Q0.2
a)
1

Network ll When the Q0.2 doesn't work T40 resets.

Q0.2 T40
I J (R)

l

17

Networlc 12 If the band is working the timer (T41) counts (10 see.)

IO,O T40- TON

PT

Network 13 After the T41 is active it begins to spray chemical.

T41 Q0.3
I {)

Network 14 The timermakes the other timework:(T42)

T41 T42
~:mN

+ıoo;PT ı

When the other time is active T4 l and Q0.3 resets.

18

Network 16 When th~ Q0.2 doesn't work T42 resets.

Q0.3 T42
11 (R)

ı

Network 17 The end of work

19

II
//PROGRAM TlTLE COMM&NTS
II
//Press Fl for help and ex~ple program
II

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52,
53
54
55
56
51.·
58
59
60
6}.
6i
6J
64 NE'l'WORK 14
65) LD 1'41
66 TON T42, +100
67.
68
69
70

//The bant begins to work after the sensor see's the fruits.NETWORK 1
II
//NETWORK COMMENTS
II
LD IO.O

QO.O

//After the band works the time counts 5 sec T37NETWORK 2
LD QO.O
TON T37, +SQ

N!lfWORK 3
LP T37

QO.l

//wtıen timer's is active it sprays chemical.

//The timers makes the other tiıller work T38NETWORK 4
lıD T37
TON T38, +50

//When the other timer is active T37 and Q 0.1 resets.NETWORK 5
LD T38
R T37, l
R QO.l, 1

//When the Q 0.1 doesn't work, T38 resets.NE'nt'OlU< 6
LON QO.l
R T38, 1

//If the band is workıng the timer (T39) counts 8 sec.NETWORK 7
LD IO.O
TON T39, +80

NITWORK 8
LD. T39

Q0,2

//After the T39 is active it begins to spray chemical.

//The timer makes the other time work (T40)NB'l'WORK 9
LD , T39
TON T40, +80

//When the other time is active T38 and Q 0.2 resets .. N£'fWORK 10
LO T40
R T38, 1
R QQ.2, 1

NETWO!UC 11 //When the Q0.2 doesn't work T40 resets,
LDN Q0.2
R T40, 1

//If the band is working the timer (T41l counts (10 sec.)NE1.'WORK 12
LD IO.O
TON T40, +100

NITWORK 13
LD T41

Q0.3

//Af.ter the T41 is active it begins to spray chemical.

//The timer makes the other time work(T42}

//When the other time is active T41 a~~ Q0.3 resets.NB'l'N'O!UC 15
LD T42
R T41, 1

20

71 R Q0.3, 1
72
73 NETWORK 16 //When the Q0.2 doesn't work T42 resets.
74 LON Q0.3
75 R T42, 1
76
77 NETWORK 17 //The en~.9f work
78 MEND

21

PROGRAM TITLE COMMeNl'S

Press F 1 for help and example program

Network l The three bonı:s begin to work when dıe twi~ come on the bant according to there dimension.

NETWORK COMMENTS

IO.O QO.O
-)

QO.l
-)

Network 2 Sensor see's the fruit it works,

IO.I Q0.3
I f)

Network 3 Sensor see's the fruit it wor1's.

10.2 Q0.4

I C)

22

Network 4 The end of work.

23

1
2
3
4
5
6
7

II
//PROGRAM TITLE C~NTS
II
//Press Fl fo.t help and exaıu.ple pr;:ogram
II
NE'f.WORK 1 I /The three bonts begin to work when the twits comeon the bant

according to there dimension.
8 I I
9 //NETWORK COMMENTS
10 II
11 LD
12 ..,
13
14
15
16
17
18
19
20
21
22
23
24
25.

IO.O
QO.O
QO.l
Q0.2

NETWORK 2
tD I0.1

QO.~

NETWORK 3
LD IO. 2
"" Q0.4

NETWORK 4
MEND

//Sensor see's the fruit it works.

//Sensor see•s the fruit it works.

//The end of work.

24

PROGRAM TITLE COMMENTS

Press Fl fur help and exampieprogram

Network l Sensor see's 1be fruit and the stemp and seal doesn't work the bandshould work.

NETWOU COMMENTS

IO.O 10.l QO.O
I ,ı I f ()

Network 2 When the box is seen. the timer waits 1 ~ and th~ stamp and seer to work.

IO.I 1'37,__ .••• IN TON

Q(U
.) +lO-fPT I

'

Network 3 After I sec of timer the band to work

T37 Q0.2ı . ; ()

25

Network 4 The sıemped and sealed boxes to be counted

ıo.ı c::o
~cw

,,Qo.2H

Network 5

vwo;PV ı

When out ofthe normal counter the conted by the digital counter.

co Q0.3

I C)

The end of work.

26

1
2
3
4
5
6
7

II
//PROGRAM TITLE COMMENTS
II
//Press Fl for help ;md example program.
II ·

NETWORK 1 //Sensor see's the fruit and the steınp and seal doesn't work
the band should work.

8 //
9 //NETWORK C~NTS
10 //
11 LP
12 .AN
13 "'
14
15 NETWORK 2 //When

seel to work.
16 LD IO.l.
17 TON T37, +10
18 = Q0.1
19
20
21
22
23
24
25
26
27
28
29

IO.O
IO.l
QO.O

the box is seen, the timer waits 1 sec and the stamp and

NETWORK 3
LD T37

Q0.2

//A£ter 1 sec of timer the band to work.

//The stemp~d and sealed boxes to be counted.NETWORK 4
LD I0.1
LD QO. 2
CTU CO, VWO

NETWORK 5
counter.

LD CO
Q0.3

//When out of the normal counter the canted by the digital

30
31
32
33 N&'.?WORK 6
34 MEND

//The end of work.

27

PROGRAM TITLE COMMENTS

Press F 1 for help and example program

IO.O I0.1 10.2 I0.3 QO.O

' I t, I l i I I ()

If the fruit com on the band. lf the sensor will see the fruits and ıhe band wre.ctly starting the work.
J -

10.4 QO.l
~. ()

Network J The bant begins to work after sensor ~!s 1he fruits.

10.S Q0.2

I < J

Network 4 After the band works the time counts 5 sec T37.

Q0,2, 1'37
~mN

+50-iı>T . ı

28

Network 5 When the timer is active it sprays ~.

T37 Q0.3

I C J

Network 6 The timers makes the other timer work T3S.

T37 T38 .··
·TON

+50"iPT I

Network 7 When the other timer is active T37 and Q<:p · resets.

T38 TI7

t. a)
1

Q0.3
ı)

Network 8 when the QOj doesn't work T38 resets.

QO.J T38
I I { R)

l

29

Network 9 If the band is workitıg the timer (T38) counts 8 see.

105 T39
~TON

+80-f PT J

Network 10 After the T39 is active it begins to spray chemical.

T39 Q0.4
I C)

Network 11 The timer makes the other time work(T40)

T39 T40

~

+80-\PT I

Network 12 Wh.en the other tune is active tJ8 and QO.05 resets.

T40 T38

t
a)
I

Q0.5;R)
l

30

Network 13 When the Q0.5 ~'t work T40- resets,

Q0.5 T40
I I - (R). ı

Network 14 If the band is working the timer (T41) counts (10 sec).

10.5 T41
~WN

+lOOiP_T I

Network 15 After the T41 is active it begins to spray chemiçaL

T4l Q0.6
I ()

Network 16 The timer makes the other time wodı;(T42).

T41 T42

~

+1001PT I

31

Network 17 When the other time is active T4l and Q0.6 resets.

Network 18 When the Q0.2 ~'t work T42 resets,

Q0.6 . T42
I l { R)

1

Network 19 The three bent begin to.~rk when the fruits come on the bant acCQr.ding to th.ere dinı~n.

I0.6 Q0.7
. ')

QU
.)

Netwprk ıo When tlıe sensors.ee's the fruit it works.

{0.7 Ql.2
I . ()

32

Network 21 Wben the sensor see's fruit it works.

n.o Ql.3
I ()

Network 22 Sensor see's the fruit it works and dıe stenw and seal doesn't work 1hen the band should work.

n.ı Il.2 Ql.4I I I ı, ()

Network 23 When the box. is seen, the timer waits l sec and.~ st,amp and seal to work.

U.2 T43

+ıO-tPT I

Network 24 After 1 sec of timer the b:and to wQfk.

T37 Ql.6
I ()

33

Network 2? The stemped and sealed boxesto becounted

Ql.5 co
~cru·

Ql.6HR

VW01PV I

Network 26 When out the normal counter by the digiuıl com.rt«:

co Ql.7l . ()

Network 27 The and of work.

34

1
2
3
4
5
6
7

II
//P{\OGRAM 'lTl'LE COMMENTSI I ..
//Press Fl for help and example pı:ogram
II

//If we don't push the stop button and if the sensor can seeN£'1"WOIU(1
the fruit.

8 I I . .
9 //NETWORK COMMENTS
10 // .
11 LD IO.O
12 A 10.1
13 A I0.2
14 AN I0.3
15 = QO.O
16
17 NETWORK 2 //If the fruit com on the b~nd. İf the aenacz w.J.11 see the

fruits and the band ct'irectly st~rUngi the work.
LD · IO. 4

Q0.1
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41 ·
4 2 NS'l'WOlUC ş
43 LDN Q0.3
44 R T38, 1
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
6'2
63
64
65
66
67
68

NETWORK J //The bant begtns to work after sensor seen's the tfuits.
LO I0:5 ..

Q0.2

NETWORK 4 I /After the band worts the time counts 5 sec T37.
LO . Q0.2 . .. , '
TON 1'37, +50

NETWORK 5
LO T37
= Q0.3

//When the timer is active it sprays chemical.

I /The•· time.rı:ı makes the other timer worlı; T38.NE1'\IOBK 6
LD T37
TON T38,. +~<
NETWORK 7 ·. //When the other timer is active T37 and co, 3 reşets.
LD T3S .
R T37, 1
R Q0.3, 1

_-;,:

I /when .,the QO. 3 doe sn ' t work T3$ re&ets.

I /If th~ band is working the timer (T38) counts ·e sec.NEfllO- 9.
LD .. 10.S
TON T39, +80

NE~IUC ro
LD: . T39
= QQ.4

//Aft'er the T39 'is active it öe:gins to .spray chemical.

NJ'l'WORI{ ll //The timeı; makes·the other tinıe.work(T40)
LO T39 . ..
TON' T4Ö1 +80

NB~ lZ ,J /When the ot:b.er. time is active T38 ari:d QO.5 reset;s ,
LD. T40
R T38, 1
R QO.S, 'l.

NEffORK.l3 //When the Q0.5 dqesn't -workT40 resets~
LDN . 00,5 ,
R '1'40, 1

Nt'l'WORIC 14 //If t~e band is working the timer (T41) counts (10 sec).
LD ro.s

35

TON T41, +10069
70
71 NElfWORK 15
72 LD Tı11
73 = Q0.6
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

//After the T41 iş active it begins to spray cp.enıi.ca'l.

I /The tinı.er makes the other time work {T42).NKTWOR.JC 16
LD T41
TON T42, +100

//When the other time is active T41 and Q0.6 resets.NE'l'WORK 17
LO T42
R T41,- 1
R Q0.6, 1

//When the Q0.6 doesn't work T42 resets.NtlTWORK 18
LPN Q0.6
R T42, 1

the fruits come on the bantNETWORK 19 I /'l'he three bant begin to work when
according to there dimension.

LD I0.6
"' QO. 7

Ql.0
Ql.1

89
90
91
92 ••
93
94
95
96
97
98 NE'fffOIUC.21 //When the sensor see's frµit it works.
99 LD Il. O . - ,
100 = Ql.3
101 ..
102 N£1.'WOIU{ 22 //Sensor see' s. tıhe fruit it wb'rks and the steınp and seal

doesn't wı:ırkthen the band should work. ·
103 LD IL l .
104 AN IL 2
105 = Ql.4
106107 NJ;~ 23 I /Whep.th.e box is seen, the timer waits 1 sec and the stamp and

seaı. to work. ·
108 LD U.2
109 TON T431 +10
110 ••• oı. s
ııı
112 NE~ 24
113 LD . T37
114 ••• oı. 6
115 -
116 NE'l'fıfORK 25 //The stemped and sealed boxes to be ceunt.ed,
117 LD -Ql.5·
118 LO Ql.6
119 CTU CO, VWO
120
121 NB'l.'WOlUC 26
122 LD CO
123 .,. Ol. 7
124
125 NE'l'WORK 'P //The and of work.
126 MENO .

NE';t'WOlU{ 2 O
LD l0,7
"' Ql.2

//When the sensor see's tAe fruit it works.

//JU;ter 1 sec of timer thf.\! band to work.

//When out the normal counter by the digital counter.

36

ompare Byte Greater Than Or
qual Contact

bol:

rands:

l. n2 (unsigned byte): VB. IB. QB,
rvm. srvm. AC.
Constant, *VD.
*AC

ription of operation:

Compare Byte Greater Than or Equal Contact
closed when the byte value stored at address n 1
greater than or equal to the byte value stored at

.ıress n2 . Power flows through the contact when

Compare Byte Less Than Or
Equal Contact

ymbol:
n1

--i<=Bt--
n2

Operands:

nl. n2 (unsigned byte): VB, IB, QB,
NIB, 5MB, AC,
Constant. *VD,
*AC

Description of operation:
The Compare Byte Less Than or Equal Contact is
closed when the byte value stored at address n 1 is

than or equal to the byte value stored at
3dı:iress nı . Power flows through ıhe contact when
dosed.

Compare Integer Equal Contact

ymbol:
n1--i-,..,rt--
n2

Operands:

nl, n2 (signed integer word): VW. T,C.IW. QW,
MW.SMW.AC,
AIW, Constant, *VOi, *AC

Desçriı>tion of operation:

The Compare Integer Equal Contact is closed when
the signed integer word value stored at address n I
is equal to the signed integer word value stored at
address n2 . Power flows through the contact when
closed.

Compare Integer Greater Than Or
Equal Contact
Symbol:

n1
--t>=It--

n2

Operand$:

nt, n2 (signed integer word): VW, T. C, IW, QW, MW.
SMW, AC, AIW, Constant
*VD. *AC

Description of operation:

The Compare Integer Greater Than or Equal
Contact is closed when the signed integer word
value stored at address nl is greater than or equal
to the signed integer word value stored at address
n2 . Power flows through the contact when closed.

Compare Integer Less Than Or
Equal Contact
Symbol:

n1
--l<=rt--

nz
Operands:

nl, n2 (signed integer word): VW, T, C, IW, QW, MW.
SMW. AC. AIW. Constant
*VD, *AC

Description of operation:

The Compare Integer Less Than or Equal Contact
is closed when, the signed integer word value stored
at address nl is less than or equal to the signed
integer word value stored at address n2 . Power
flows through the contact when closed

37

ompare Double Integer Equal
ontact

ymbol:

n1
--l==D}--

n2

rands:

l. n2 (signed
ı.nteger double word):

VD. ID. QD.
MD.SMD. AC.
HC. Constant
*VD, *AC

ription of operation:

:be Compare Double Integer Equal Contact is
;losed when the double word value stored at
mress nl is equal to the dQUble word value stored

addrçss n2 . Power flows througlı the contact
ben closed.

Compare Double Integer Greater
Than Or Equal Contact
,ymbol:

n1
--l>=D}--

n2

rands:

L n2 (signed
ınteger double word):

VD, JD, QD, MD, SMO,AC
HC, Constant. *VD, *AC

ription of operation:

.:ompare Double Integer Greater Than Or Equal
Contact is closed when the double word value
sored at address n l is greater than or equal to the
.:xruble word value stored at address n2 . Power

,vs through the contact when closed.

Compare Double Integer Less
Than Or Equal Contact
Symbol;

n1
--l<=D}--

nz
rands:

1, n2 (signed
ınıeger double word):

VD,ID,QD,
MD,SMD.AC.
HC. Constant
*VD.. •AC

Description of operation:

The Compare Double Integer Less Than Or Equal
Contact is closed when the double word value
stored al address n ı is less than or equal to the
double word value stored at address n2 . Power
flows through the contact when closed

Compare Real Equal Contact
Note: CPU 214 on(v.

Symbol:
n1

--l==R}--
n2

Operands:

nl, n2 (real): VD, ID, QD, MD. S1v1D, AC,
HC, Constant, *VD, *AC

Description of operation:

The Compare Real Equal Contact is closed when
the real value stored at address nl is equal to the
real value stored at address n2 . Power flows
through the contact when closed.

Compare Real Greater Than Or
Equal Contact
Note: CPU 2l 4 only.

Symbol:
n1

--l>=R}--
n2

Operands:

nl, n2 (Dword): VD, ID, QD, MD, SMD, AC,
HC. Constant, *VD, *AC

Dacıiption of operation:

Compare Real Greater Than Or Equal Contact is
closed when the real value stored at address nl is
greater than or equal to the real value stored at
address n2 . Power flows through the contact when
closed

38

Compare Real Less Than Or
Equal Contact
Note: CPU 21 + only.

Symbol:
n1

-f<=Rl--
n2

Operands:

nl, n2 (Dword): VD. ID, QD. MD.
S1'.ID. AC. HC. Constant,
•VD. *AC

Description of operation:

The Compare Real Less Than Or Equal Contact is
closed when the real value stored at address nl is
less than or equal to the real value stored at address
n2 . Power flows through the contact when closed

Invert Power Flow Contact

Symbol:

-{NoTl-- ...

Operands:

(none)

Description of operation:

The NOT (Invert Power Flow) contact changes the
state of power flow. If power flow reaches the Not
contact, then it stops. When power flow does not
reach the Not contact. it sources power flow.

Positive Transition Contact

Symbol:

-fel--
Operands:

(none)

Description of operutiens

The Positive Transition Contact allows power to
flow for one scan. for each off-to-on transitioa .

Negative Transition Contact

Symbol:

-ıNr
Oper.ınds:
(none)

Description of operation:
The Negative Transition Contact allows power to
flow for one scan. for each on-to-off transition .

Ladder Contact Examples
I Network 1 j

When ıo.1 or I0.3 is on and ıo.2 ıs on then
output 00.1 is turned on.ro.tıı ro.2I QO.l

IO. ()

!Network 2 When 10.4 is on and I0.5 is not Of\, then outpııt 00.2 it
tumedon.

l___.30.4 I0.5 Q0.2l ı ı ,/, c)
[Netwoı1< 3 When VB2 ls greater than or equal to VB8,

then OU\pUtQ0.3 is \\ımed on.

~

VS2. (0.3
>•Bi)
VB8

!Network 4 When VB4 equa1ıs vae. then outpı.ıt 00.4 i$ turned otı
(Note: The NOT instıUCtkın can be
use<t to create a Not equal e<:ımpaı:İS<)n.)

VW4 QO. 4
=rl INoTI ()
vwe

[Na(work5 When ıo.1 traı,sitiQrı$ from on to off,
then output Q0.5 is turned on for one scan cycle.
When ıo. t transitions from off to on,
then Q0.6 ia turned on for one sc;an.

IO.l

t
i Q0.5

N ()

Pj (O.)
[Network 6 End of the main user program.

39

Read Real Time Clock
Nute: Real Time Clock instructions an: supported
by the CPC 21-1 on(v.

Symbol:

RUD R1'C
EN

T

Operands:

T (byte): VB, IB, QB, lvlB, S~IB. *VD.
*AC

Description of operation:

The R;eaci Real Time Clock (READ_RTC) box
reads the current time and date from the dock. and
loads it in an 8--byte buffer CT).

Example Memory Data Starting at VB-WO:
READ_RTC (Clock is read)
VB400
VB401
VB402 till Year

Month
Oay

VB403~\8 Hour
VB404 I 00 Minute
VB405 ı oo Second
VB406 ~
VB407 ~.OayofWeek

24-Mar-95
8:00:00
Friday

Note:
The time of day clock initializ~ the following date
and time nfter extended power outages or memory
has been lost:

Date:
Time:
Dayo!Week

oı.Jaıı-90
00:00:00
Sunday

Note;
Do not use the READ_RTC I SET_RTC
instructions in both tlıe main program and in an
interrupt routine. If you do this and the clock
instruction is exeeuung when the the interrupt that
also executes the clock instnıction occurs. then the
clock insı:rnction in the interrupt routine is not
executed S?vl4.5 is then set, indicating that two
simultaneous accesses to the clock were attempted.

Set Real Time Clock
Note: Real Time Clock tnstructions are supported
by ıhe CPU 21..J only.

Symbol:

EN

T

Operands:

T (byte): VB, JB, QB, ~1B, SMB, *VD. *AC

Description of operation:

The Set Real Time Clock (SET_RTC) box writes
the current time and date loaded in aµ 8-byte buffer
(T) to the clock.
E:taınple Memory Data Starting at VB400:

ser_RTC (New value iş written to clock)

VB400 j 96 / Year
VB4.0l ~ Month
VB402 ~Day
VB403 ~Hour
VB404 :00--1Minuteı · I
VB405 ~ S(tcQnd
VB406 \ 00 \
VB407 i 06.) Day of Week

24-Mar~96
8:00:00
Friday

Note:
The time of day clock initializes the foUowing date
and time after extended power outages or memory
bas been lost:

Date:
Time:
Day of Week

Ol-Jan-90
00:00:00
Sunday

Note:
Do not use the READ_RTC I SET_RTC
instructions in both tbe main program and in an
interrupt routine. If you do this and the clock
insm.ıction is executing when the the interrupt that
also executes the clock Inssrucnon occurs, th~ı:ı the
clock instruction in the interrupt routine is not
execaıed, SM.ı. .5 is then set. indicating that two
simultaneous accesses to the clock were :ıuenıpted.

40

Real-time
Examples

!Network 1

Clock Instruction

When 10.0 is on, the clock is
read and the value is stored in
the buffer, starting at VB400.

~o.o ,.au.o_McI I EN

INetwork.2

!Network4

VB400-1T

When 10.1 is on, the year
value (95) from the first byte
of VB400 ls moved to ACO .

HOV_.S
EN

VB400-f IN OUTt-ACO

When 10.2 is on, the year
value in ACO is incremented
by 1.

mew
EN

A.CO -1 IN OUTf-ACO

When 10.3 is on, the new year
value (96) is stored in V8400 .

EN

ACO~IN OUTt-VB400

!Network 5 When 10.4 is on. the new year
value is written to the ciock.

~O. 4 l Sff_P.XCI f EN

VB400-1T

!Network 6 End of the main user program.

BCD to Integer

Symbol:

BCD I
EN

IN OUT

Operands:

IN (word): VW, T, C, IW, QW, MW, SMW,
AC, AIW, Constant. *VD, •AC

OUT (word): VW, T, C, IW, QW, MW, SMW.
AC, *VD, *AC

Description of oper.ıtion:
The Convert BCD to Integer (BCD_I) box converts
the BCD value (IN) to an integer value (OlTI). If
the input value contains an invalid BCD digit,. the
BCD/BIN memory bit (SMl.6) is set.

41

Integer to BCD

Symb-01:

'J:_BCD
EN

IN OUT

Oper.mds:

IN (word): VW, T, C, IW, QW, MW,
SMW. AC, AfW, Censıanı,
*VD. *AC

OUT(word): VW. T. C. IW, QW. MW,
SMW, AC, *VD, *AC

Description of operation:

The Convert Integer to BCD (I_BCD) box converts
the integer value (IN) to the BCD value (OUT). If
the conversion produces a BCD number greater
than 9999, the BCD/BIN memory bit (SMl.6) is
set.

Integer Double Word to Real
Not,e; CPU 214 only.

Symbol:

DI_.RJ:AL
EN

IN OUT

Operands:

IN (Dword): VD, ID, QD, MD, SMD,
AC, HC, Constant. *VD, *AC

OUT {Dword): VD, ID, QD, MD, SMD, AC,
*VD. *AC

Description or operation:

The Integer Double Word to Real (Dl_REAL)
instruction converts a 32--bil signed integer (IN)
into :ı 32-bit real number (0V1).

Truncate
Note: CPU ıu oniy.

Symbol:

EN

IN OUT

Operands:

IN (Dword): VD, ID. QD. MD. SMD, AC. HC.
Constant, *VD, *AC

OUT (Dword): VD, ID, QO, MD, SMD, AC. *VD,
*AC

Description of operation:

The Truncate (TRUNC) instruction converts a 32·
bit real number (IN) into a 32--bit signed integer
(OUT). Only the whole number portion of the real
number is convened (rouııd-eo-aero),

. Decode
Symbol:

DECO
EN

.I;N OUT

Operands:

IN (byte): VB, IB, QB. MB. SMB, AC,
Constant, *VD. • AC

OUT(word): VW, T, C, rw, QW, MW, SMW.
AC, AQW, *VD, *AC

Description of operation:

The Decode (DECO) box sets the bit in the output
word (OUT) that corresponds to the bit number
represented by the Jeası--sigrufıcantnibble (LSN) of
the input byte (IN). AU other bits of the output
·word are set to O.

42

Encode
Symbol:

EN

IN OUT

Operands:

IN (word): VW, T. C. IW. QW. MW.
SM\V. AC. AIW. Constant.
*VD. *AC

OUT (byte): VB, IB, QB, MB, SMB. AC,
*VD. *AC

Description of operation:

The Encode (ENCO) box writes the bit number (bit
#) of the least-significant bit set of the input word
(IN) into the least-significant nibble (LSN) of the
output byte (OUT).

Segment
Symbol:

EN

IN OUT

Operands:

IN~1e): VB. IB, QB, MB, SMB.
AC, Constant., •VD, *AC

OUT(byte): VB. IB. QB. MB. SMB. AC.
*VD, *AC

Description of operation:

The Segment (SEG) box generates a bit pattern
{OUT) that illuminates the segments of a seven
segment display. The illunıinated segments
represent the character in the least-significanı digit
of the input byte (IN).

ASCII to Hex
Symbol:

EN

IN

LEN OUT

Operands:

LEN (b}te): VB. IB, QB. MB, SMB, AC.
Constant, *VD. *AC

IN (byte): VB,IB,~.MB.Sl\ı1l3,*VD, *AC

OUT (byte): VB, IB. QB, MB. SMB. *VD. *AC

Description of operation;
The ASCII to HEX (ATII) box converts the ASCII
string of length LEN, starting with the character
IN, to hexadecimal digits starting at the location
OUT. The maximum length of the ASCil string is
255 characters.

Legal ASCII characters are the bexadecima! values
30-39, and 41-46. If an illegal ASCII character is
encountered, the conversion is terminated, and the
NOT_ASCII memory bit (SMI.7) is set.

Hex to ASCII
Symbol:

B!l"A
EN

IN

LEN OUT

Operands:

LEN (byte): VB, IB, QB. MB, SMB, AC,
Constant. -vo, *AC

IN (byte):

OUT (byte):

VB, IB, QB, MB. srvm. -vo, •AC

VB. IB, QR MB, SMB, *YD, •AC

Description of operation:
The HEX to ASCII (HTA) box converts the
hexadecimal digits, starting with the input b_vte IN.
to an ASCII string starting at the location OUT.
The number of he.xadecimal digits to be converted
is specified by length LEN. The maximum number
of the hexadecimal digits that can be converted is
255.

43

Ladder Conversion Instruction
Examples

l~etwork.J When 13.0 is on, the Binary
Coded Oeclmat value in VWO
is converted to an integer
value.

!3.0 I BCD II EN

!Network. 2

I3. 1

vwo-;rN OUTı-vwo

When 13.1 is on, 3 is decoded
and the coıresponding bit. of
Wl/40 is set

t IEN

1Network3

3 '"1IN OUT\-VW40

When 13.2 is on, the
3-character ASCII string
starting wih the character
at VB30 ıs converted to
he:ıcactecımaı digits starting
atVB40.

I3.Z I A7B

jNetwork4, When 13.3 is on, a bit pattern
is generated at QBO that
Rluminates the segments of the
character represented by VB48.

EN

VB4S-;IN OUTf-QBO

!Network 5 End of the main user program.

HSC Definition

Symbol:

EN

RSC

MODE

Operands:

HSC (byte); CPU212: O
CPU214: 0-2

MOOE (bytç): CPU2l2: O
CPU 214: O (HSCO),o.ı l (HSCl-2)

----· EN I I Dcscripdon of operation:

VB30IIN

3-iLEN OUTf-VB40

When the High-speed Counter Definition (HDEF)
box is enabled. the referenced counter (HSC) is
assigned a high-speed counter type or MOOE.
Only one HDEF box may be used per counter.

44

High Speed Counter

Symbol:

BSC
EN

N

Oper.ınds:

N (word): CPU 212: O
CPU 214-: 0·2

Description of operation:

When the High-speed Counter (HSC) box is
enabled, the state of the HSC special memory bits
are examined. The HSC operation defined by the
special· memory bits is then invoked. The
parameter N specifies the High-speed Counter
number.

Pulse Output

Symbol:

PL$
EN

QO.x

Operands:

QO.x (word): CPU 214: 0-1

Description of operation:

The Pulse Output (PLS) box examines the special
memory bits for that pulse output (Qü.x). The pulse
operation defined by the special memory bits is
then invoked.

Ladder High-speed Operation
Instruction Examples

!Network 1 · ı on the first scan, the counter is enabled.
lnitial direction is set to count up.
Start and reset inputs are set to active
high. 4x mode is set.

SMO.ı ıc,v B
I -
I EN

16#F8- IN OUT

l!DBT
EN

ı- ttSC
ıı- MODE

SMB47

o

!Network 2 When 10.2 ls on, the current value of
HSC1 ls cleared and Its preset value
is set to 50.

IO. 2 MOV_DWI
I EN

o- IN OUT

ı«W_DW
EN

so- IN OUT

BSC
EN

ı- N

SMD52

SMD48

45

!Network 3 When 10.1 is on, the Pulse
Train Output control byte is
set up, and the PTO operation
is invoked: cycte time 500ms.
pulse count 4, PLS O -> Q0.0 .

IO. l MOV_B
I
I EN

l6ft8D- IN OUT"'

.ı«W_N
EN

soo- IN OUT

)«)V 1Jfl
.e.N

4- IN OUT"

PLS
EN

o- QO.x

SMD72

SMB67

SMW68

1Network4 End of the main user program.

~No)

Attach Interrupts
~ Symbol:

EN

INT

EVENT

Operands:

INT {byte): CPU 212: 0-31
CPU 2JJ: 0-127

EVENT (byte): CPU 212: O, I. 8-10. 12
CPU 214: 0-20

Description of operation:

The Attach Interrupts (ATCH) box associates an
interrupt event (EVENT) with an interrupt routine
number (IN1), and enables the interrupt event.

Detach Interrupts
Symbql:

EN

EVENT

Operands:

EVENT (byte): CPU 212: O, ı, 8-10, 12
CPU 214: 0-20

Description of operation:

The Detach Interrupts (DTCH) box disassociates
an interrupt event (EVENT) from all interrupt
routines. and dişables the intemıpl event.

Interrupt Routine
Symbol:

Operands:

n (word): CPU 212: 0-31
C?U 214: 0-127

Description of operation:

The Interrupt Routine (INT) label marks the
beginning of the interrupt routine {n). The
maximum number of interrupts supported by the
CPU 212 is 32, and by the CPU 214, 123.

46

Enable Interrupts
Symbol:

--(ENI)

Operands:

(none)

Deşc:ription:

TI1e Enable Interrupts (ENI) coil globally enables
processing of all attached interrupt events.

Disable Interrupts
Symbol:

--(prsy

(none)

Description:

The Disable Imerrupts (DISI) coil globally disables
processing of all interrupt events.

Return from Interrupts
Symbol:

-~0:TY
Interrupts

Conditional Return from

Unconwtionat Return froın

Operands:

(none)

Description:

The Conditional Return from Interrupts (RETI)
coil returns from an interrupt based upon the
condition of the preceding logic.

The Unconditional Return from Interrupts (RETI)
coil must be used to terminate each interrupt
routine.

Network Read
Note: CPU 21.J only.

Symbol:

EN

TABLE

l?ORT

Oper.mds:

TABLE: VB, MB, *VD, *AC

PORT: Constant
(CPU 214: O)

Description or operation:

The Network Read (NETR) instruction initiates a
communication operation to gather data from a
remote device through the specified port (PORT).
as defined in the description table (TABLE).

You can use the NE1R instruction to read up to 16
bytes of information from a remote station, and use
the NETW instruction to write up to 16 bytes of
information to a remote station. A maximum of
eight NETR and NETW instructions may be
activated at any one time. For example, you can
have four NETR and four NETW instructions. or
two NETR and six NETW instructions.

47

Network Write
Note: CPU 21-J only.

Symbol:

--1EN

-tTABLE

-<PORT

Operands:

TABLE: VB. ı-ıa. *VD. *AC

PORT: Constant
(CPU 21-t: 0)

Description of operatien.
The Network Write (NETW) instruction initiates a
communicauon operation to write data to a remote
device through the specified port (PORT). as
defined in the description table (TABLE).

You can use the NETR instruction to read up to 16
bytes of infonnation from a remote station. and use
the- NETW instruction to write up to 16 bytes of
information to a remote station. A maximum of
eight NETR and NETW instructions may be
activated at any one time. For example. you can
have four NETR and four NETW instructions. or
two NETR and six NETW instructions.

Transmit

Symbol:

XMT
EN

TPı.BLE

PORT

Operands:
TABLE (byte): VB. TB. QB. rvrn. SMB. *VD.

*AC
oPORT (byte)

Description of operation:
The Transmit (:\.1vIT) box invokes the transmission
of the data buffer (TABLE} The first entry in the
dara buffer specifics the number of bytes to be
transmitted. PORT specifics the cornınunication
port ıo be used for transmission It must always be
O.

Data
Events

Sharing with Interrupt

Because interrupt events are asynchronous to the
main user-program, they can occur at any point
during execution of the main user-program. When
the main program and an interrupt routine share
data. you must understand the nature of the
problems that can arise and how to avoid such
problems.

Data-sharing problems can occur in situation
where a sequence of operations are performed in
the main program on data stored in a memory
location shared by the main program and an
interrupt routine. If an intermediate result is stored
in the shared memory location, then an interrupt
event occurring before the sequence is complete
will cause the interrupt routine to be executed with
invalid data. or it will corrupt an intermediate
value in the main program.

The situations described above apply whether you
write your programs in STL or LAD. [f you write
your programs in LAD. you should also be aware
that many LAD instructions produce a sequence of
STL instructions. If the LAD instrııction is located
in the main program and is operating on data
stored in a shared memory location, an interrupt
event can occur between the execution of the STL
instructions. altering intermediate values and
making it appear that the LAD instruction
executed incorrectly. Foe techniques to a, oid
problems with data sharing. see Rrosrarum,ing
Te_çbnimıc.uQt Data Sharing .

Programming Techniques for Data
Sharing
The following programming techniques should be
followed to avoid problems with data sharing
between your main program and interrupt routines.
These techniques either restrict the way access is
made ıo shared memory locations. or they make
instruction sequences using shared memory
locations uninterruptible. The appropriate
technique depends upon the size of the data being
shared (simple clements such as a byte, word. or
double-word variable or complex elements such as
multiple variables) and the programming language
(STL or LAD).

If the shared data is a single byte, word. or double
word variable and your program is written in STL
then make sure that intermediate or temporary
values are not stored in shared memory locations.
A shared location should be accessed in the main
program only as the initial source value or the final
destination value in a sequence of operations.

48

[f the shared data is a single byte. word. or double
word variable and your program is written in LAD.
then access shared memory locations using a Move
instruction. If the main program performsone or
more operations on a data value provided. by an
interrupt routine. the Mo-ve instruction must be
US<:d to move the data value from the shared
memory location to a non-shared memory location
or to an accumulator. It the main program
perfonns one or more operations on data in order
to provide a value to an interrupt routine.then the
last operation must be a Move instntction that
moves the data value from an accumulator or non
shared memory location to the shared memory
locution. Other instructions in the sequence must
not directly access the shared memory location.

If the shared data is composed of related b_\1es..
words. or double-words whose values must agree;
for example, the pressure and temperature of a gas
in a tank, then the interrupt disable/enable
instructions, DISI and ENI, must be used to control
intenupt routine execution. At tbe point in your
main program (STL or LAD) where operations on
shared memory locations are to begin. interrupts
must be disabled. Once all actions affecting shared
locations are complete, interrupts must be re
enabled. During the time that interruptS are
di.sabled. interrupt routines cannot execute and
access shared memory locations.

Interrupt Event Priority Table
Interrupt Description
{By group priority) Event

#

Cemeı, (Highest Priority)
Receive interrupt 8
Transmit complete interrupt 9

DiKrete (Middle Priority)
Rising edge, IO.o•• o
Rising edge, IO. l 2
Risingedge,10.2 4
Rising edge. 10.3 6
Falling edge. ıo.o= I
Fallingedge, IO. 1 3
Falling edge, I0.2 5
Falling edge. 10.3 7
HSCOCV=PV** 12

(current value = preset value)
HSCICV;;PV 13

(current valee = preset value)
HSC1 directioninput changed 14
HSC I external reset 15
HSC2 CV==PV 16

(current value ..,. preset value)
HSC2 directioninput changed l7
HSC2 external reset 18
Pl.SO pulse count complete 19
interrupt
PLS1 pulse count complete 20
interrupt

Timed (LowestPriority)
Timed interrupt o
Timed interrupt l

10
11

In
Group
Priority

o
O*

o
l
2
3
4
5
6
7
o
a
9
10
11

12
13
l4

15

o
l

• Since communication is inherently half-duple."(.
both transmit and receive are the same priority.
-*If event 12 (HSCO CV.,.PV) is attached to an
interrupt then neither event O nor event I can be
attached ıe interrupts. Lilceı.~ise. if either event O or
l is attached to an interrupt, then event 12 cannot
be attached to an interrupt.

49

Suppor
tedin
CPU 21

y
y

y

y

y

y

Ladder Interrupt I Communication
Instruction Examples

[Network 1 On the first scan, create a
pointer to the data to be
transmitted. Select freeport
mode, 9600 baud, no parity,
8 bits per character. SMB30 is
the freeport control byte.

il .NDV_Dff
r EN

&.VB200- IN OUT

Jıl:W_B
EN

9- IN OUT SMB30

voıoo

1Netwojk2 When ta.O and SM4.5 are both
on, the message tn the buffer
(pointed to by V0100) ıs
transmitted. SM4.5 is on when
the transmitter is idle.

IO.O SM4.5
I J EN

*VDlOO!TABLE

8 -iPORT

!Netwoı:1(3 Assign receive intem.ıpt event
8 to interrupt routine O, and
enabfe the routine.

SM0.1 A1'Cll
ı---....-----ı:e:N

o1rNT

8 -JEVENT

'--------ı ENı)

!Network 4 End of main ladder program.

!Netwoı:1(5 Begin interrupt routine O .

!Network 6
6

Compare received character in special
memory byte SMB2 with capital ıetter "A•
If character is •A·. QO .1 is set.

HSMB.. 2 Ql.O
'"'""8' (S)
6#41 l

!Network 7 Return from intemıpt to main program.

Horizontal Lines
In iadeler logic, horizontal lines represent wires
connecting elements in series.

All lines in a network must be connected to valid
elements.
All networks must tenninate in a coil or a box.

Vertical Lines
In ladder logic. vertical lines represent wires
connecting to parnllel branches.

All Jines in a network must be connected to valid
elements. ,
All networks must terminate in a coil or a box.

50

A.ND Word

INl.

IN2 OUT

Operands:

INl. IN2 (word}: VW. T. C. IW. QW. MW.
SM\V.AC.AIW.Constant
*VD. *AC

OUT (word): VW, T. C, IW. QW. MW,
SMW. AC. *VD. *AC

Description of operation:

The AND Word (WANO_W) box ANDs the
corresponding bits of the input words IN l and 1N2.
and toads the result (OUT) in a word.

Note!
When INl ,ı: OUT and lN2 :POUT:
• If IN2 and Ot.IT are direct-addressed operands.

and if OUT contains one of the bytes of IN2.
. then the instruction is imlllid.

• If IN2 is an indirect address and OUT is a
direct address containing one of the bytes of
the indirect address pointer. then the
instruction is invalid.

AND Double Word
Symbol:

INl

IN2 OUT

Operands:

INl, IN2 (Dword): VD, ID, QD. MD. SMD. AC,
HC, Constant. *VD. *AC

OUT (Dword): VD, ID. QD, MD. S1'1D, AC.
•VD. *AC

Description of operation:

The AND Double Word (WAND_DW) box ANDs
the corresponding bits of the input double words

lNl and IN2. and loads the result (OUT) in a
double word

Note:
When IN l :t. OUT and IN2 ;= OUT:
• If IN2 and OUT rue direct~addressed operands,

and if OUT contains one of the ~1esof IN2.
then the instruction is invalid.

• If IN2 is an indirect address and OUT is a
direct address containing one of the bytes of
the indirect address pointer, then the
instruction is invalid.

OR Word
Syınbol:

EN

INl

IN2 OUT

Operands:

IN ı. IN2 (word): VW. T. C, lW, QW, MW, SMW.
AC, AIW, Constant, *VD. *AC

OUT(word): VW, T, C, lW, QW, MW. SMW,
AC. •VD, *AC

Description of oper.ition:

The OR Word (WOR_W) box ORs the
corresponding bits of the input words IN 1 and IN2,
and loads the result (OUT) in a word.

Note:
When 1N 1 :t, OUT and. IN2 * OUT:
• If IN2 and OUT are direct-addressed operands,

and if OUT contains one of the bytes of IN2,
then the instruction is invalid.

• If IN2 is an indirı:x:t address and OUT is a
direct address containing one of the bytes of
the indirect address pointer, then the
instruction ls invalid.

51

OR Double Word
Symbol:

JlfOR DN
EN

INl

IN2 OUT

Operands:

INI. IN2 (Dword): VD. ID. QD. MD. SMD. AC,
HC, Consıanı, *VD. *AC

OUT (Dword): VD. ID, QD. MD, SMD, AC.
*VD, *AC

De1ı(ription of operarioıı:

The OR Double Word (WOR_DW) box ORs the
corresponding bits of the input double words INl
and IN2. and loads the result (OUf) in a double
word.

Note:
When INI -:ı; OUT and IN2 :¢: OUT:
• If 1N2 and OUT are direct~,gperands,

. and if our contains one of the bytes of IN2,
then the instruction is invalid.

• If 1N2 is an indirect address and OUT is a
direct address containing one of the bytes of
the indirect address pointer, then the
instruction is invalid.

XOR Word
Symbol:

JUOR_Jr
EN

INl

IN2 OUT

Operands:

INI. IN2 (word): VW, T, C, JW, QW, MW,
SMW. AC. fUW. Constant,
*VD. *AC

OUT (word): VW, T, C. IW. QW. MW,
SMW, AC. *VD, *AC

Description of oper-.ıtion:

The Exclusive OR Word (\VXOR_W) box XORs
the corresponding bits of the input words IN l and
IN2. and loads the result (OUT) in a word

Note:
When IN l :;ı:our and INl ¢. OUT:
• If IN2 and OUT are direct-addressed operands.

and if OUT contains one of the bytes of IN2.
then the instruction is invalid

• If IN2 is an indirect address and OUT is a
direct address conuuning one of the bytes of
the indirect address pointer. then the
instn.ıction is invalid.

XOR Double Word
Symbol:

INl

IN2 OUT

Operands~

lNl, IN2 (Dword): VD, ID, QD, MD, SMD, AC. HC.
Constant, *VD. •AC

OUT(Dword): VD. ID, QD. MD. srvm, AC, *VD,
*AC

Description of operation:

The Exclusive OR Double Word (WXOR_DW)
box XORs the corresponding bits of the input
double worm JNI and IN2, and loads the result
(OUT) in a double word.

Note:
When INI ;ıı: QUI' and IN2 :;ıı: OUT:
• If JN2 and OUT are direct..addre$sed operands..

and if OUT contains one of the bytes of IN2,
then the instruction is invalid.

• If IN2 is an indirect address and our is a
direct address containing one of the bytes of
the indirect address pointer. then the
instruction is invalid.

52

Invert Word
Symbol:

nw_w
EN

IN OUTr

Operands:

IN (word): VW, T, C, IW. QW, MW,
SMW, AC, AJ.W, Constant
•VD. *AC

OUT(word): VW. T, C. IW. QW. MW. S
AC, *VD, *AC

Description of operation:

The Invert Word (INV_W} box takes the ones
complement of the input word value (IN) and loads
the result in a word value (OUT).

Invert Double Word
Symbol:

nw_uıı
EN

!N OUT

Operands:

IN (Dword): VD, ID. QD. MD, SMD, AC.
HC, Constant, *VD. *AC

OUT (Dword): VD, ID. QD, !YID. S.MD. AC,
*VD. *AC

Description of operation:

The Invert Double Word (INV_OW) box takes the
ones complement of the input double word value
(IN) and loads the result in a double word value
(OUT).

Ladder
Examples

fNetwork 1

SMO.O

!Network 2

IO.O

Logical Operations

Every scan. ANO VW100 and VW200
together and store, the result In VW200.
Also, OR VW300 and VW400 together
and store the result In VW500.

ffAND_'fl

B EN

INl

IN2 OUT!'-VW200

WOR_W

3 EN

INl

IN2 oUT ı-.vwsoo

When 10.0 is on, "XOR" AC1 and ACO
together and store the result in ACO .

Ja'OR_W

::J
EN

INl

IN2 OUT t- ACO

!Network 3 When 10.1 transitions from off to on,
invert ACO (ones complement) and store
it in ACO.

r
ı I mv.,,I lııl EN -

ACO-; IN OUT t- A.CO

(Netwonc 4

53

End of main user program.

Add Integer

ADD I
EN

INl

IN2 OUT

Ope.rands:

INl, IN2 (word): VW. T, C, IW. QW. MW.
SMW, AC, AIW. Constant.
*VD. *AC

OUT(word): VW, T, C, IW. QW. MW,
SMW. AC. *VD. *AC

Descriptioo of operatioQ:

The Add Integer (ADD_l) box adds two 16-bit
integers (INl, IN2), and produces a 16-bit result
(OUT), as is shown in the equation:

IN1 + IN2 = OUT

Note:
When INl ,ı,. our and INı ;a OUT:
• If IN2 and OUT are direct-addressed.operands.

and if OUT eonıains one of the bytes of IN2,
then the instruction is invalid.

• If IN2 is an indirect, address and OUT is a
dir-ect address containing one of the bytes of
the indirect address pointer, then the
instruction is invalid.

Add Double Integer

Symbol:

ADD_DI
EN

INl

IN2 OUT

Openuıdıı:

!Nl, IN2 (Dword): VD, ID. QD, MD, S:MD, AC,
HC. Constant, *VD, *AC

OUT (Dword): VD, ID, QO. .MD, SMD, AC,
*VD. *AC

Deseripdon of oper.adon:

The Add Double Integer (ADD_Ol) box adds two
32-bit integers (lNl. IN2), and produces a 32--bit
result (OUT). as is shown in the equation:

INl + IN2 = OUT

Note:
When INI :;ıa OUT and IN2 ;= OUT:
• If IN2 and OUT are direct-addressed operands.

and if oor contains one of the bytes of IN2,
then the instruction is invalid.

• If IN2 is an indirect address and oor is a
direct address containing one of the bytes of
the indirect address pointer. then the
instruction is invalid.

Add Real
Note: CPU 214 only.

Symbol:

ADD R
EN -

INl

IN2 OUT

Operands:

1Nl. IN2 (Dword): VD, ID, QO, MD, SMD, AC, HC.
Constant. •VD. •AC

OUT (Dword): VD, ID, QD, SMD, AC, *VD,* AC

Description of operation:

Tiıe Add Real (ADD_R) box adds two 32-bit real
numbers (lNl, IN2). and produces a 32-bit real
number result (OUT). as is shown in the equation:

INı + IN2 = our
Note:
When INl * OUT and IN2 ;ıı:- OUT:
• If IN2 and OUT are direct-addressed operands.

and if OUT contains one of the bytes of 1N2.
then the instruction is invalid

• If IN2 is an indirect address and OlIT is a
di.reel address containing. one of the b}1es of
the indirect address pointer. then the
instruction is invalid.

54

Subtract Integer

Symbol:

SUB I
EN

INl

IN2 OUT

Operands:

INI. IN2 (word): VW. T, C. IW. QW. MW.
SMW. AC. AIW. Constant
*VD. *AC

OUT (word): VW. T. C. rw, QW, MW,
SMW. AC. *VD, *AC

Description of operation:
The Subtract Integer (SUB_I) box subtracts ıwo
16-bit integers (INl, rN2), and produces a lô-bit
result (OUT), as is shown in the equation:
INl - IN2 = OUT
Note:
When INı * OUT and oo ,;1;. our:
• If IN2 and OUT are direct.addressed operands,

and if OUT contains one of the bytes of IN2,
then the instruction is invalid.

• Tf IN2 is an indirect address and OUT is a
direct address containing one of the bytes of
the indirect address pointer. then the
instruction is invalid.

Subtract DoubleInteger
Symboh

SUB DI
EN

INl

IN2 OUT

Operands:

IN 1, IN2 (Dword): VD, JD, QD, MD, SMD.
AC. HC, Cçnsıanı, *VD, •AC

OUT (Dword): VD, ID. QD. .MD, SMD, AC.
*VD, *AC

Description of operation:

TI1e Subtract Double Integer (SUB_Dl) box
subtracts two 32-bit integers (INL IN2). and
produces a 32-bit result (OUT), as is shown in the
equation:

INl - IN2 = OUT

Note:
When IN! :;ı: OUT and IN2 * OUT:
• lflN2 and OUT are direct-addressed operands.

and if our contains one of the bytes of IN2.
then the instruction is invalid.

• If IN2 is an indirect address and OUT is a
direct address containing one of the bytes of
the indirect address pointer. then the
instruction is invalid.

Subtract Real
Note: CPU 214 only.

Symbol:

SUB_R
EN

INl

IN2 OUT

Operands:

INl, IN2 (Dword): VD, ID, QD, MD, SMD, AC, HC,
Constant *VD, *AC

OUT (Dword): VD, ID, QO, SMD, AC, *VD, *AC

Description of operımon:
The Su.tractReal (SUB_R) box subtracts two 32-bit
real numbers (INl, IN2), and produces a 32-bit
real number result (OUT). as is shown in the
equatiQn:

INl - IN2 = OUT

Note:
When INt ~ OUT and IN2 '* OUT:
• If IN2 and OUT are direct-addressed operands,

and if OUT contains one of the bytes of IN2,
then the instruction is invalid.

• If 1N2 is an indirect address and OUT is a
direct address conı:ııiningone of the bytes of
the indirect address pointer, then the
instruction is invalid.

55

Multiply Integer

Symbol:

EN

INl

IN2 OUT

Operands:

INl, 1N2 (word}: VW. T. C. IW, QW. MW,
SMW, AC, AlW, Constant,
*VD, *AC

OUT (Dword): VD. ID. QD. MD. S1ıID. AC.
*VD, *AC

Descriı>tioQ of operation:
The Multiply Integer (MUL) box multiplies two
16-bit integers (INl, IN2), and produces a 32-bit
result (OUT), as is shown in the equation:

INl * IN2 =OUT

Note:
Some overlapping inJ.llt ~ output operands are
invalid,

Multiply Real
Nau: CPU 214 onty.

Symbol:

EN

INl

IN2 OUT

Openmds:

ıxı, IN2 (Dword.): VD, ID, QD, MD, SMD. AC,
HC, C.onstant. *VD, *AC

OUT (Dword): VO, ID, QD, SMD. AC, *VO,
*AC

Deseription of operation:
The Multiply Real {MUL_R) box multiplies two
32-biı real numbers (lNl. lN2), and produces a 32-
bit real number result (OUf), as is shown in the
equation:

INl * IN2 = OUT

Note:
When INl -:ı, OUT and 1N2 ;,: OUT:
• If lN2 and OUT are direct-addressed ~'ıij~,

and if OUT contains one of the bytes o
then the instruction is invalid.

• If lN2 is an indirect address and OUT is a
direct address containing one of the bytes of
the indirect addres.s pointer. then the
instruction is invaJid.

Divide Integer

Symbol:

DIV
EN

INl

~N2 OUT

Operands:

INl, IN2 (word): VW, T, C. IW, QW. MW, SMW,
AC, AfW. Constant, •VD, •AC

OUT (Dword): VD, ID, QD. MD, SMD, AC, *VD,
*AC

Deseripüoıı of operation~

The Divide Integer (DIV) box divides two 16-bit
integers (INI. IN2). and produces a 32-bit result
{OUI') composed of of a 16-bit quotient and a 16-
bit nınıainder, as is shown in the equation:

INl I IN2 = OUT

Notes:
• Some overlapping input and output operands

are invalid.
• The 32-bit result (Olff) canner be the same as

the second input (IN2).

56

Divide Real
Note: CPU 1/.I only.

Symbol:

DIV_R
EN

INl

IN2 OUT

Operands:

INl, IN2 (Dword): VD. ID. QD, MD, SMD,
AC, HC. Constant,*VD, *AC

OUT (Dword): VD. ID. QD. SMD, AC. *VD.
*AC

Description of operadon:

The Divide Real (D1V_R) box divides two 32-bit
real numbers (IN I, IN2). and produces a 32-bit
real number quotient (OUT), as is shown in the
equation:
INI I IN2 ""OUT
Note:
When IN l -ı, OUT and IN2 ¢ OUT:
• If JN2 and OUT are direct-addressed operands,

and if OUT contains one of the bytes of 1N2.
then the instıuction is invalid.

• If 1N2 is an indirect address and OUT is a
direct address containing one of the bytes of
the indirect address pointer, then ıhe
instruction is invalid

Note:
IN2 = OUT is not valid for Ladder programming.

Square Root Real
Note: CPU 214 only.
Symbol:

EN

IN OUT
Operands;
IN (Dword): VD. ID. QD. MD. SMD. AC,

HC. Constant. *VD. *AC
VD, IP, QD. :MD, sıvro. AC,
*VD. *AC

OUT (Dword):

Descriptioo of Ol>Cnttion:

The Square Root of Real Numbers (SQRT) box
takes the square root of a 32-bit real number (IN)
and produces a 32--bit real nwnber result (OUT). as
is shown in the equation:

.JfN = OUT

Increment Word

Symbol:

INC 11
EN

IN OUT

Operands:

IN (word): VW, T. C, IW, QW, MW, SMW.
AC. AJW, Constant, *VD, *AC

OUT (word): VW. T. C. IW. QW. MW, SMW,
AC, •VO, *AC

Description of operation:

The Increment Word (INC_W) box adds 1 to the
input word value (IN) and loads the result in a
word value (OUT), as is shown in the equation:
IN+ 1 =OUT

Increment Double Word

Symbol:--
EN

IN OUT

OperanWJ:
IN(Dword): VD. ID. QD, MD, SMD, AC, HC,

Constant. *VD, *AC

OUT (Dword): VD, JD, QD, MD, SMD. AC, *VD,
*AC

Description of operation.:
The Increment Double Word (lNC_DW) box adds
ı to the input double word value (IN) and loads the
result in a double wor(l value (OUT), as is shown
in the equation:

IN+l=OUT

57

Decrement Word

Symbol:

'D'IJC N
EN

IN OUT

Operands:

JN (word): VW, T, C, IW, QW. MW,
SMW. AC, AIW, Constant
*VD, *AC

OUT(word): VW, T, C, IW. QW, MW,
SN1W, AC, *VD, *AC

DescriptJon of operation:

The Decrement Word (DBC_W) box subtracts l
from the input word value (JN) and loads the result
in a word value (OUT), as is shown in the
equation:

[N-I=OUT

Decrement Double Word
Symbol:

oı:c_rırı
EN

IN OUT

'
Operands:

IN (Dword): VD, ID, QD, MD, SMD,AC
, HC, Constant, *VD,*AC

our (Dword}: VD, ID. QD, NID, SMD, AC.
*VD. *AC

Description of operation:

The Decrement Double Word (DEC_DW) box
subtracts 1 from the input double word value (IN)
and loads the result in a double word value (OUT),
as is shown in the equation:

IN-l""OUT

lVlath/lnc/Dec Exam pies

!Network 1

IO.O

When 10.0 or 10.1 is on then ACO equals ı
the sum of IN1 and IN2.

I.0 ..1

ADD I
EN

3~IN1

5 -J IN2 OUT 1-ACO

I Network 2 · · ı ıt ACO equals 8, tum on ao.o .

!Network 3

I0.2

VW2.00 ls divided by VW10. The quotient
ıs put in VW202, and the remainder is pu1
In VW200. (Note: VD200 contaiM VW20(
and VW202.}

D:J.V
EN

I r:,etwork 4

I0.3

VW2001 INl

vwıo-lıN2 OUT l-vo200

When 10.3 is on, then the value in ACO
is incremented by 1 and stored In ACO.

INC ff
EN

!Network 5

58

ACO -tIN OUT t- ACO

End of the main user program.

Move Byte

Symbol:

MOV B
EN

IN OUT

Oper.ınds:

IN (byte):

OUT {byte):

VB, m. QB. MB. SMB.
AC Constant, *VD. *AC

VB. IB, QB, MB. SMB, AC,
*VD, *AC

Description of operation:

The Move Byte (MOV_B) box moves the input
byte (IN) to the output byte (QUI). The input ~1e
is not altered by the move.

Move Word

Symbol:

MOV 11
EN

IN OUT

IN (word):

OUT(word):

VW, T. C, IW, QW. MW,
SMW. AC, AJ.W, Constant,
*VD, *AC

VW, T, C. IW. QW, MW,
SMW, AC, AQW, *VD, •AC

Description of operation:

The Move Word (MOV_W) box moves the input
word (IN) to the output word (OUT). The input
word is not altered by the move.

Move Double Word

Symbol:

MOV DJf
EN

IN OUT

Operands:

IN (Dword): VD, ID, QD. MD, SMD, AC, HC.
Constant, *VD. *AC, &VB, &IB.
&QB, &MB, &T, &C

OUT (Dword): VD, ID, QD, MD. SMD, AC, *VD,
*AC

Description of operation:

The Move Double Word (MOV_DW) box moves
the input double word (IN) to the output double
word (OUT). The input double word is not altered
by the move.

Move Real
Note: CPU 214 only.

Symbol:

EN

IN OUT

Operands:

IN (Dword): VD, ID, QD, MD, SMD, AC, HC,
Consıanı, *VD. *AC

OUT (Dword): VD, IO, QD. MD. SMD, AC, *VD,
*AC

Description of operation:

The Move Real (MOV_R) box moves a 32-bil real
input double word (IN) to the output double word
(OU'I). The input double word. is not altered by the
move.

59

Block Move Byte

Symbol:

BLKMDVB
EN

IN

N OUT

Operands:

IN (byte):

OUT(byte):

VB, IB, QB. MB, SMB •VD,
*AC
VB, m. QB. MB. SMB. •VD,
*AC
VB, IB. QB. tvıB. SMB,
AC, Consıanı, *VD, *AC

N (byte):

Description of operation;

The Block Move Byte (BLKMOV _B) box moves
the number of bytes speçifı.ed (N), from the input
array starting at IN, to the output array starting at
our. N bas a range of l to 255.

Block Move Word
Symbol:

IN

N OUT

Operands:

IN (word): VW, T, C. IW, QW, MW,
SMW. Af.W. *VD. *AC

OUT(word): VW, T, C, 1W, QW, MW,
SMW, AQW, *VD, *AC

N (byte): VB, IB, QB. MB, SMB,
AC> Constant. *VD, • AC

Description of operation:

The Block Move Word (BLKMOV _B) box moves
the number of words specified {N), from the input
army Slatting at IN, to the output array starting at
OUT. N has a range of 1 to 255.

Swap

Symbol:

--tEN

Operands:

IN (word): VW, T, C. JW. QW, MW, SMW.
AC, *VD. *AC

Description of operation:

The Swap Byte box exchanges the most-significant
~1e with the lcast--signiticant byte of the word
(IN).

Shift Right Word

Symool:~
SB.,R_ır

EN

IN

N OUT

Operands:
IN (word}: VW, T, C, IW, QW. MW, SMW,

AC, AfW, Constant. *VD, *AC
VB, ts, QB, MB, S"MB, AC,
Constant, *VD, *AC
VW, T, C. IW, QW, MW, SMW,
AC, *VD, *AC

N (byte):

OUT(wnrd):

Descripüon of openıtion;
The Shift Right Word (SHR_W) box shifts the
word value (IN) right by the shift count (N), and
loads the result in the output word {OUT).

SMl.O (zero) = 1 ifOUf • 0
SMl. l (overflow) ""' l iflast bit shifted out
""o

Note:
When IN *OUT:
• If N and our are direct-addresşed operands.

and if OUT contains N, then the instruction is
invalid.

• lfN is an indited address and our is a direct
address ccnıaining one of the bytes of the
indirect address pointer, then the instruction is
invalid.

• ff N aw.I OUT are indirect ~ pointers
and the pointers are equal, then the instruction
is invalid.

60

Shift Left Word

Symbol:

SHL_rt
EN

IN

N OUT

Operands:

IN (word): VW, T, C, IW. QW. MW.
SMW. AC. AIW, Constant
*VD. *AC

N (byte): VB, IB. QB, MB, SMB,
AC, Constant. *VD, *AC

OUT (word): VW, T. C, IW, QW, MW.
SMW. AC. *VD, *AC

Description of operation:
The Shift Left Word (Slil.._W} box shifts the word
value (IN) left by the shift count (N), and loads the
result in the output word (OUT).

SMl.0 (zero) ••• l if OUT = O
SMl.l (overflow) = I if last bit shifted out
;:;;Q

Note:
When IN :;ıı: OUT:
• If N and OUT are direct-addressed operands.

and if OUT contains N, then the instruction is
invalid.

• If N is an indirect address and OUT is a direct
address containing one of the ~1es of the
indirect address pointer, then the instruction is
invalid.

• If N and OUT are indirect address pointers
and the pointers are equal. then the instruction
is invalid.

Shift Left Double Word

Symbol:

SBL_DW
EN

IN

N OUT

Operands:

IN (Dword): VD. ID, QD. MD. S~ID, AC. HC.
Constant. *VD. *AC

N (byte): VB. m. QB. MB. sıvın. AC.
Constant. *VD. *AC

OITT (Dword): VD. ID, QD. MD. S.MD, AC, *VD.
*AC

Description of operation:
The Shift Left Double Word (SHL_DW) box shifts
the double word value (IN) left by the shift count
(N), and loads the result in the output double word
(OUT).

$Ml.O (zero) = 1 if OUT= O
SMl.l (overüow) = I if last bit shifted out
=O

Note:
When IN* OUT:
• If N and our are direct-addressed operands,

and if our contains N, then the instruction is
invalid.

• If N is an indirect address and our is a direct
address containing one of the bytes of the
indirect address pointer, then the instruction is
invalid

• If N and OUT are indirect address pointers
and the pointers are equal, then the instruct.ion
is invalid.

61

Shift Right Double Word

Symbol:

SBP._UH
EN

IN

N OUT

Operands:

IN (Dword): VD. ID, QD, MD. SMD. AC.
HC, Constant, *VD, * AC

N (byte): VB, IB, QB, MB, SMB,
AC. Constant, *VD. •AC

OUT (Oword}: VD. ID. QD, MD, SMD, AC,
*VD, *AC

Description of oper.ıtlon:

The Shift Right Double Word (SHR_DW) box
shifts the double word value (IN) right by the shift
count (N), and loads the result in the output double
word(OU1).

SMI.0 (zero) "" I üOUT = O
SMU (overflow) = ı if last bit shifted out
=O

Note:
When IN .ı: OUT:
• If N and OUT are direct-addressed operands.

and if OUT contains N, then the instruction is
invalid.

• If N is an indirect address and our is a direct
address containing one of the bytes of the
indirect a<1<lress pointer, then the instruction is
invalid

• If N and OUT are indirect address pointers
and the pointers are equal. then the insuuction
is invalid

Rotate Right Word

Symbol:- ROR_W
EN

IN

N OUT

Operands:

IN (word): VW, T, C, IW, QW, MW. SMW.
AC, AIW. Constant. *VD. *AC

N (byte): VB. ra, QB, MB. srıım. AC.
Constant, *VD, *AC

OUT(word): VW, T. C, IW, QW, MW, SMW.
AC, *VD, *AC

Description of operation:
The Rotate Right Word (ROR_W) box rotates the
word value (IN) right by the shift count (N), and
loads the result in the output word (Oun.

SMl.O (zero) :,: l if OUT= O
SMl.l (overflow) = 1 if last bit rotated= O

Note:
When IN ,ı,. OUT:
• If N and OUT are direct-addressed operands,

and if OUT contains N, then the instruction is
invalid.

• If N is an indirect addtess and OUT is a direct
address containing one of the bytes of the
indirect address pointer, then the instruction is
invalid.

• If N and OUT are indirect address pointers
and the pointers are equal then the instruction
is invali<l

62

Shift Register Bit

Symbol:

SHRB
EN

DATA

S BIT

N

Operands;

DATA. S_BIT (bit): ı Q, M, SM, T. C. V

N (byte): VB, IB. QB, MB. S1v1B, AC.
Constant •VD. *AC

Description of operation:

The Shift Register Bit (SHRB) instruction shifts
the value of DATA into the shift register. S_BIT
specifies the least-significant bit of the shift
register. N specifies the length of ıhe shift register
and the direction of the shift (shift plus= N. shift
minus = -N).
Fill Memory
Symbol:

TILL N
EN

IN

N OUT

Operands:

IN (word): VW, T, C, IW. QW, MW,
SMW, AlW, Constant *VD,
*AC
VW, T, C. rw, QW. MW.
SMW, AQW, *VD. • AC

OUT {word):

N (byte): VB, IB, QB. MB. SMB. AC,
Constant *VD. *AC

Description of operation:

The Fill Memory Box (FILL_N) fills the memory
starting at the output word (OUT) with the word
input pattern (IN) for the number of words
specified by N. N has a range of I lo 2.55.

Move I Shift I Rotate I Fill
Examples

[Network l

IO.O IO.
t--1

llietwork 2

I0.2

When IQ.O and 10.1 are on then
move VB50 to ACO, and swap
the most significant byte (MSB)
of VWO with the LSB of VWO.

il MOV .B
I EN

VBSO- IN OUT

SJfAP
EN

vwo- IN

ACO

When 10.2 is on then move
VB20-VB23 toVB100-VB103.

:LI<HOVB

I JEN -
VB20 !N

!Network 3

I0.3

4-tN our ı-vaıoo

When 10.3 is on then fill
VW200-VW218 with O's.

63

FILL, No~::
lO~N OUT VW200

!Network4

I0.4

Wheıı 10.4 is on, then the word
value in ACO ıs rotated right
twice and stored in ACO, and
the word value in VW200 is
shifted left 3 times and stored
In VW200.

!Network5

aaa_w
ENAC°L2 N OUT I-A.co

SBL W
EN

vw2oojrn
3 N oUT l-vwzoo

Upon every O to 1 transition of
10.5, the value of 10.6 is shifted
into the shift register starting
at V100.0 and of length 4.

I0.5 IPI {ENI
SHRB

!Betwork6

I0.6-1DATA

vıoo.o1s BIT

4~N

Main end of the user program.

Output

Symbol:

n
-()
Operands:

n (bit): I, Q, lvL SM. T, C. V

Deııcription of operation:
An Output coil is turned on and the Bit stored at
address n is set to l when power flows to the coil.

A negated output can be created by placing a ~
(Invert Power Flow) contact before an output coil.

Output Immediate Coil

Symbol:

n
-(ı)
Oper.uıds:

n (bit): Q

Description of opeı-.ıtion:

An Output Immediate Coil is turned on and the Bit
at output address n is set to ı when power flows to
the coil. An update of the addressed image register
output Bit and also the corresponding physical
output Bit occurs immediately after the coil is
scanned. without waiting for scan cycle completion.

Set
Symbol:

S BIT

---ı(s)
N

Oper.uıds:

S_BIT (bit):

N (byte):

L Q, M, SM, T, C. V

ta, QB. MB, SMB, VB. AC.
Constant, *VD. * AC

Description of operation;

The Set Coil sets the range of points starting at
S_BIT for the: number of points specified by N.

64

Set Immediate Coil

Symbol:
s BIT

-~(s_ı)
N

Operands:
S_BIT (bit):
N (byte):

Q
IB. QB. MB. SMR VB, AC,
Constant. *VD. "'AC

Description of operation:
The Set Immediate Coil immediately sets the range
of points starting at S_BlT for the number of points
specified by N .

Reset Coil

Symbol:
S BIT

----<(R)
N

Operands;
S_BIT (bit):

N (byte):

LQ,M,SM. T,C, V

lB, QB, MB, SMB. VB,
AC, Constant, *VD. *AC

Description <Jf operation:
The Reset Coil resets the range of points st:ırting at
S_BIT for the nııınber of points specified by N. If
s_BIT is specified to be either a Tor a C bit. then
both the timer/counter bit and the timer/counter
current value are reset

Reset Immediate Coil

Symbol:
S B!T

---ı(R_ı)
N

Oı,erands:
S_BIT (bit): Q

N (byte): ra QB. MB. SMB,
VB, AC, Constant, *VD,
*AC

°'*riptlon of operation:
TI1e Reset Immediate Coil immediately resets the
range of points starting at S_BIT for the number of
points specified by N .

Ladder Output Coil Examples

(Network 1 When 10.0 is on, then output Q0.1 is
turned on.

~o.o QO.ı.

1 , ı c)

1Network2 When 10.1 is on. then outputs 01 .O, 01.1
and 01 .2 are set (turned on).
These outputs will remain on, even if 10.1
is turned off, until they are reset.

!Network 3 When 10.2 is turned on, then outpufr·
Q1.0, 01.1 and Q1.2 are reset (turned oft

!Network4 End of the main user program.

65

End
Symbols:

Conditiomd End

Unconditional End

Operands:

(none)

Description of oper-.ıtioo:

The Conditional End coil terminaıes the main user
program based on the conditionof the preceding
logic.

Toe UnconditionalEnd coil mus\ be used to
terminatetheuser program.

Stop,
Symbol:

~T_O~

Operands:

(none)

Description of operation:

The Stop coil terminates execution of the user
program by causing a transition to the stop mode.

Watchdog Reset
Symbol:

(none)

Description of operation:

The Watchdog Reset (WDR) coil allows the
watclıdog timer to be retriggered. This extends the
time the scan takes without getting a warehdog
error.

Jump
Symbol:

n
--(JMP)

Ot>erıuıds:

n: CPU 212: 0-63
CPU 21..ı.: 0-255

Destription of operation:

The Jump to Label (lMP) coil performs a branch to
the specified label (n) within the prognun.

Label
Symbol:

Operands:

n: CPU 212: 0-63
CPU 214: 0-255

Description of operation:

The Label (LBL) instruction marks the location of
the jump destination (n). The CPU 212 allows 6-ı.
labels, and the CPU 214 allows 256.

Call
Symbol:

Operands:

n: CPU 212: 0-15
CPU 214: 0-63

DeKription of operation:

The Subroutine Call (CALL) coil transfers control
to the subroutine (n).

66

Subroutine
Symbol:

Operands:
n: CPU 212: 0-15

CPU 214: 0-63

Descripti.on of operatioa;
The Subroutine (SBR) label marks the beginning
of the subroutine (n). The CPU 212 supports 16
subroutines. and the CPU 2 l 4 supports 64.

Return
Symbols:
-=--cRET)
Subroutine

Conditional Return from

HET)
Subroutine

Unconditional Return from

Operands:
(none)

Description of operation:
The Conditional Return from Subroutine coil may
be used to terminate a subroutine, based on the
condition of the preceding logic.
The Unconditional Return from Subroutine coil
must be used to terminate each subroutine.

For

Symbol:

EN

INDEX

INITIAL

FINAL

Operands:
INDEX (word): VW, T, C. IW. QW. MW.

SMW, AC, •VD, *AC

INITIAL (word): VW, T, C. IW, QW. MW,
SMW. AC, AfW, Constant,
*VD. *AC

FINAL (word): VW, T, C, IW. QW. MW,
SMW. AC, AfW, Constant,
*VD. *AC

Description of operation:
The FOR box executes the code between the FOR
and the NEXT. You must specify the current loop
count (lNDE.-X), the starting value (INITIAL). and
the ending value (FINAL). If the starting value is
greater than the final value. the loop is not
executed After each execution of the instructions
between the FOR and the NEXT instruction, the
INDEX value is incremented and the result is
compared to the final value. If the INDEX is
greater than the final value. the loop ts terminated.
For example. given an INITIAL value of 1, and a
FINAL value of 10. the instructions between the
FOR and the NEXT are executed I O times with the
INDEX value incrementing 1,2,3, .. 10.

Next
Symbol:

~x~
Operands:
(none)
Description of operation:
The NEXT coil marks the end of the FOR loop,
and sets the top of stack to l.

No Operation
Svmbol:h~P)
Operands:
n: 0-255

Description of operation:
The No Operation (NOP) coil has no effect on the
user program execution. The operand n is a
number from 0-255.

67

Ladder Program
Examples

[Network 1

Control

When 10.0 is on. execute
Subroutine O.

When 10.1 is on, jump to
Label 1.

!Network 2

When 10.2 is on, execute the
For/Next loop 1 O times.

!Network3

I0.2
. ~ IEN

FOR

vwıoo -fINDEX

l iINITIAL
ıo-inNAL

@.~twork 4) lf VB10 = V820, then
increment ACO by 1.

vaıo \ mew
' \-si EN -

VB20

ACO -1 IN OUT t-ACO

l This network does nothing.[Network 5

SMO.O ıs always on, therefore
the Watch<:log Timer is
extended to aJlow a longer
scan.

jNetwork6

This is the end of the For/Next
loop.

\Network 7

If 10.3 comes on, then the CPU goes to
Stop mode.

!Network 8

~0·HT0~
!Network 9 I The Jump in Network #2jumps to this

location.

When 10.5 is on, tum on Q0.2.!Network 10

uo.,s 90.2I I ı---\)
End of the main user program.!Network 11

Start of Subroutine o.!Network 12

If I0.4 is on, then tum on ao.o and ao.1.f~etwork 1~

ro.ıj·.0·)

QO.l
)

End of Subrouttne O.[Network 14

68

Add to Table
Note: Table and Find instrucuons are supported
by the CPU 11.ı only.

Symbol:

DATA

TABLE-
Operands:

DAT A (word): VW. T. C, ıw. QW, MW,
SMW, AC, AlW. Constant.
*VD, *AC

TABLE (word): VW, T, C, IW, QW, MW,
SMW, *VD, *AC

Description of operation:

The Add To Table (AD_T_TBL) box adds word
values (DATA) to the table (TABLE). The first
value of the table is the maximum table length
(TL). The second value is the entry count (EC) that
specifies the number of entries in the table. New
data are added to the table after the last enıry. Each
time new data are added to the table, the entry
count (EC) is incremented. If you try to overfill the
table, the Table Full memory bit (SMI A·) is set.

LIFO (Last In First Out)
Note: Table and Ftnd instructions are supported
by the CPU 2U only.

Symbol:

LIFO
EN

TABLE

DATAF

Oper.ınds:

TABLE (word): VW, T, C. IW, QW, MW.
SMW. *VD, *AC

DATA (word): VW, T, C, IW. QW, MW,
SMW. AC, AQW, *VD. *AC

Description of operation:

The Last In First Out (LIFO) box removes the last
entry in the table {TABLE), and outputs the value
to the location (DATA). The entry count (EC) in
the table is decremented. for each instruction
execution. lf you try ıo removean entry from an
empty table. the Table Empty memory bit (SMI.5)
is set.

FIFO (First In First Out)
Note: Table and Find instructions are supported
by the CPU 21..J on(v.

Symbol:

FIFO
EN

TABLE

DAT.Po.

Operands;

TABLE (word): VW, T, C, IW, QW. MW, SMW.
*VD, *AC

DATA (word): VW, T, C, IW, QW, MW, SMW,
AC, AQW, *VD, *AC

Description of operation;

The First In First Out (FIFO) box removes the first
entry in the table (TABLE), and outputs the value
to the location (DATA). All other entries of the
table are shifted up one locanon, The entry count
(EC) in the table is decremented for each
instruction execution. If you tcy to remove an entry
from an empty table, the Table Empty memory bit
(SMU) is set.

69

Find Table
Note: Table and Find instructions are supported
b,v the CPU 1 /.I only.

Symbol:

!l'BL FIND
EN -

SRC

PATRN
INDX

CMD

Operands:

SRC (word); VW, T, C, IW, QW, MW,
SMW, *VD, *AC

PATRN (word): VW, T, C, IW, QW, MW,
SMW, AIW, AC, Constant,
*VD, •AC

INDX (word): VW. T, C, IW, QW, MW,
SMW, AC, •VD, *AC

1-lCMD:

Description of operation:

The Find Table (TBL_FIND) box searches the
table (SRC), starting with the table entry spec.ified
by INDX. for the data ,raJue (PATRN) that matches
the criteria (CMD). The CMD parameter is given a
numeric value 1-4 that corresponds to =, <>, <,
and >, respectively.

If a match is found, the INDX points to the
matciıing entry in the table. If a match is not
found. the INDX has a value equal to the entry
count To find the next matching entry, the INDX
must be incremented before invoking the
'TBL_FINO again.

Ladder Table I Find Instruction
Examples

!Network 1 When 13.0 is on, the value VW100 is
added to the table starting at VW200.
The EC (entry count) is incremented by
one.

I3.0 'AD 7 7BL I EN- -

!Network 2

vwıoo-;oATA
VW2 00 -1TABLE

When 13.1 is on, the last data value of
the table starting at VW200 is output
to the data location VW300. The EC is
decremented by one.

I3.l jENI
LIEO

!Network 3

VWZOO ,TABLE

DATA~VW300

When 13.2 is on, the first data value of
the table starting at VW200 is output to
the data location VW300. The EC is
decremented by one.

~---iEN
nıro

!Network 4

I3.3

!Network 5

70

VW200 lTAB. LE I
DATAl-VW300...._____.

When 13.3 is on, the table vw202 ıs
searched for a value equal to 3130 Hex.

fllL FIND
ı.-------ıEN

VW202 SRC

16#3130 PATRN

ACl INDX

1 CMD

End of the main user program.

Timer - On Delay

Symbol:

Openuıds;
Txx (word): CPU 212: 32-63

CPU l\4: 32--63.. 96-127

PT (word): VW. T, C. IW. QW. MW. SMW.
AC, AIW. Constant -vn •AC

Description of oper.ıtioo:
The On-Delay Timer (TON) box times up to the
maxineıra value when the enabling. Input (lN)
comes on. When the current value (Txxx) is >= the
Preset Time (PT). the timer bit turns on. lt resets
when the enabling input goes off. Tuning stops
upon reaching the maximum value.

CPU 212/214 CPU 21+
T32 1'96
T33-T36 T97-T100
T37-T63 Tl0t-T127

ı ms
ıoms
ıooms

Timer - Retentive On Delay

Symbol:

~

~

Operands:
TX."{.,'< (word): CPU212: 0-31

CPU 214:0-31,64--95

PT (word): VW. T. C, IW. QW. MW. S1v1W.
AC. AJW, Constant. •VD. *AC

Description of operation!
The Retentive On Delay Timer (fONR) box times
up to the ma.ximum value when the enabling Input
(IN) comes on. When the current value (Txxx) is
~ the Preset Time (PT), the timer bit turns on.
Timing stops when the enabling input goes off.. or
upon reaching the maximum value.

ı ms
toms
100 ms

CPU 212121+
TO
Tl-T4
T5-T31

CPU 214
T~
T65-T68
T69-T95

Count Up

Symbol:
cxx:.c_

cu era

R

EV

Operands:
Cxxx (word):

PY (word):

CPU 212: 0-63
CPU 214: 0·127

VW. T, C. IW. QW, MW, SMW.
AC, AlW, Constant *VD. *AC

Deseription of operation:
The Count Up (CfU) box counts up to the
maximum value on the rising edges of the Count
Up (CU) input. When the current value (Cxxx) is
>= to the Preset Value (PV), the counter bit (Cxxx)
nırns on. It resets when the Reset (R) input turns
on. It stops counting upon reaching the maximum
value (32,767).

Count Up I Down

Symbol:

cu crtJD

CD

R

F__V
Operands:

Cxxx(word): CPU212:0-63
CPU 214: 0~127

PV (word): VW. T, C, IW, QW, MW, SMW,
AC, AfW, Constant. *VD, *AC

Description of operation:
The Count UplDo,\'u (CTUD) box counts up on
rising edges of the Count Up (CU) input. It counts
down on the rising edges of the Count Down (CD)
input When the current value (Cxxx) is >» to the
Preset Value (PV). the counter bit (Cxxx) turns on.
It stops counting up upon reaching the maximum
value (32.767). and stops counting down upon
reaching the minimum value (~32.768). It resets
when tlıe Reset (R) input turns on. /

71

Ladder Timer I Counter Examples

!Network l When IO.O is on then the
timer will start. After 3 seconds
(30 X lOOınsJ T37 bit will

come on.

ro-ıo

!Network2 When Timer 37 reaches its
prescı.. turn on QO.O .

!Network3 When SM0.5 (1 sec. clock
pulse .. 5 sec. on an<1 .5 sec.
off) is ON, then the timer
will time. The T5 bit '\\ill come
on after 6 seconds.

r"i'
!Network4 When Timer 5 reaches its

preset, tum on Q0.1 .

~TS QO.l, ı ()

!Network.5 By using SM0.5 (l sec. clock
puJse) the counter will count
pulses and tum oo the CO bit
when a CQUl\t of 10 is reached.
10.O resets the counter.

SM0.5 CQ

!0.11:--------ı R

lO'ifV I

[Network6 When CO reaches its preset. tum on Q0.2 .

~co Q0.2ı' ()
!Network 7 J End of the main user program.

~)

72

CONCLUSION

When developing this project we see that PLC the individual's life easier which it has
gained our interest and notice.

With the information observed from our lecturer and our researchers for this topic
PLC, is a convenet tool with a wide rage of useful ways to be used. Such examples
can be mentiaoned severel machines can be used at the same time, easy adjustments
from the PLC programe can be meek within a few minutes by the keyboard, ınstalled
PLL programmes can be controlled or checked before within the office and
laboratory, even the PLC program es for firm can be meet at home. İt is very
protective and safe for the workers which they me protected from <lager,
communication programes of PLC's within each other or within opperatus can happen
with the PLC; the developed lantues have constructed the productivity, security,
establisment security fast productivity, quality, and we can see that PLC is a very
cheap programe that can be fundamentelly used

73

APPENDIXS

Compare Byte Greater Than Or Equal Contact (37)
Compare Byte Less Than Or Equal Contact (37)
Compare Integer Equal Contact (37)
Compare Integer Greater Than Or Equal Contact (37)
Compare Integer Less Than Or Equal Contact (37)
Compare Double Integer Equal Contact (38)
Compare Dounle Integer Greater Than Or Equal Contact (38)
Compare Double Integer Less Than Or Equal Contact (38)
Compare Real Equal Contact (38)
Compare Real Greater Than Or Equal Contact (38)
Compare Real Less Than Or Equal Contact (39)
Invert Power Flow Contact (39)
Positive Transition Contact (39)
Negative Transition Contact (39)
Ladder Contact Examples (39)
Read Real Time Clock (40)
Set Real Time Clock (40)
Real-time Clock Instruction Examples (41)
BCD to Integer (41)
Integer to BCD (42)
Integer Double Word to Real (42)
Truncate (42)
Decode (42)
Encode (43)
Segment (43)
ASCII to Hex (43)
Hex to ASCII (43)
Ladder Conversion Instruction Examples (44)
HSC Definition (44)
High Speed Counter (45)
Pulse Output (45)
Ladder High-speed Operation Instruction Examples (45)
Attach Interrupts (46)
Detach Interrupts (46)
Interrupt Routine (46)
Enable Interrupts (47)
Disable Interrupts (47)
Return from Interrupts (47)
Network Read (47)
Network Write (48)
Transmit (48)
Data Sharing with Interrupt Events (48)
Programming Techniques for Data Sharing (48)
Interrupt Event Priority Table (49)

74

Ladder Interrupt I Communication Instruction Examples (50)
Horzontal Lines (50)
Vertical Lines (50)
AND Word (51)
AND Double Word (51)
OR Word (51)
OR Double word (52)
XOR Word (52)
XOR Double Word (52)
Invert Word (53)
Invert Double Word (53)
Ladder Logical Operations Examples (53)
Add Integer (54)
Add Double Integer (54)
Add Real (54)
Subtract Integer,(55)
Subtract Double Integer (55)
Subtract Real (55)
Multiply Integer (56)
Multiply Real (56)
Divide Integer (56)
Divide Real (57)
Square Root Real (57)
Increment Word (57)
Increment Double Word (57)
Decrement Word (58)
Decrement Double Word (58)
Math/Inc/Dec Examples (58)
Move Byte (59)
Move Word (59)
Move Double Word (59)
Move Real (59)
Block Move Byte (60)
Block Move Word (60)
Swap (60)
Shift Right Word (60)
Shift Left Word (61)
Shift Left Doble Word (61)
Shift Right Double Word (62)
Rotate Right Word. (62)
Shift Register Bit (63)
Fill Memory (63)
Move I Shift I Rotate I Fill/ Examples (63)
Output (64)
Output Immediate Coil (64)
Set (64)
Set Immediate Coil (65)
Reset Coil (65)
Reset Immediate Coil (65)
Ladder Output Coil Examples (65)

75

End (66)
Stop (66)
Watchdog Reset (66)
Jump (66)
Label (66)
Call (66)
Subroutine (67)
Return (67)
For (67)
Next (67)
No Operation (67)
Ladder Program Control Examples (68)
Add to Table (69)
LIFO (Last In First Out) (69)
FIFO (First In First Out) (69)
Find Table (70)
Ladder Table I Find Instruction Examples (70)
Timer - On Delay (71)
Timer - Retentive On Delay (71)
Count Up (71)
Count Up I Down (71)
Ladder Timer I Counter Examples (72)

76

REFERENCES

1. SIMATIC S7-200 and Industrial Automation,
İTÜ Electric & Electronic Department, July 1998
Doç.Dr. Salman KURTULAN

2. PLC, November 1999
Richard BALDRY

3. Programmable Logic Controllers, June 1999
Hugh JACK

77

	Page 1
	Page 2
	Titles
	INDEX
	1
	2
	4
	8

	Page 3
	Titles
	Q

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 4
	Titles
	. ı
	~- : ;; ii~ ..
	' . .

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 5
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 6
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 7
	Titles
	2. INTRODUCTIONS

	Page 8
	Titles
	3. WHAT IS A PLC?

	Page 1
	Titles
	4. PLC IDSTORY

	Page 2
	Titles
	5. GENAREL PHYSICAL BUILD MECHANISM

	Images
	Image 1

	Page 3
	Titles
	6. INTERNAL STRUCTURE OF PLC 's:

	Images
	Image 1
	Image 2

	Page 4
	Titles
	__ DVANTAGES

	Images
	Image 1

	Page 5
	Images
	Image 1

	Page 6
	Titles
	M

	Page 7
	Titles
	I l I I I 111 C)
	I ()

	Images
	Image 1
	Image 2

	Page 8
	Titles
	II
	II

	Page 9
	Titles
	J . ()
	~:roN
	I C)
	15

	Page 10
	Titles
	~mN
	ta)
	.;
	R.)
	I I (R)
	.~l'ON

	Page 11
	Titles
	I C)
	tR)
	I J (R)

	Images
	Image 1

	Page 12
	Titles
	�漀漀㬀倀吀 �
	~:mN
	I {)
	-
	TON

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 1
	Titles
	11 (R)
	ı

	Images
	Image 1
	Image 2

	Page 2
	Titles
	II
	II
	II

	Images
	Image 1

	Page 3
	Images
	Image 1

	Page 4
	Titles
	I f)
	I C)

	Images
	Image 1
	Image 2

	Page 5
	Images
	Image 1
	Image 2

	Page 6
	Titles
	II
	II
	II
	8 I I

	Images
	Image 1

	Page 7
	Titles
	,__ .••• IN TON
	'
	ı . ; ()
	I ,ı I f ()

	Images
	Image 1

	Page 8
	Titles
	vwo;PV ı
	,,Qo.2H
	I C)
	ıo.ı c::o
	~cw

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 9
	Titles
	II
	II
	II ·

	Images
	Image 1

	Page 10
	Titles
	The bant begins to work after sensor ~!s 1he fruits.
	~mN
	I < J
	' I t, I l i I I ()

	Images
	Image 1
	Image 2

	Page 1
	Titles
	I C J
	·TON
	I I { R)
	t.a)

	Images
	Image 1
	Image 2

	Page 2
	Titles
	+80-f PT J
	After the T3 9 is active it begins to spray chemical.
	ta)
	Q0.5
	~
	I C)
	~TON

	Images
	Image 1

	Page 3
	Titles
	31
	~
	I ()
	~WN
	I I - (R)
	. ı

	Images
	Image 1

	Page 4
	Titles
	I . ()
	QU
	. ')
	I l { R)

	Images
	Image 1
	Image 2
	Image 3

	Page 5
	Titles
	I ()
	I I I ı, ()
	I ()

	Images
	Image 1
	Image 2
	Image 3

	Page 6
	Titles
	l . ()
	~cru·

	Images
	Image 1
	Image 2
	Image 3

	Page 7
	Titles
	LD ro.s
	LDN . 00,5 ,
	II
	8 I I . .

	Images
	Image 1

	Page 8
	Titles
	seaı. to work. ·
	ııı

	Images
	Image 1

	Page 9
	Titles
	--l<=rt--
	nz
	Compare Integer Less Than Or
	Compare Integer Greater Than Or
	--t>=It--
	Compare Byte Less Than Or
	ompare Byte Greater Than Or
	Compare Integer Equal Contact
	--i-,..,rt--
	--i<=Bt--

	Images
	Image 1

	Page 10
	Titles
	ompare Double Integer Equal
	--l==D}--
	Compare Real Equal Contact
	--l==R}--
	Compare Double Integer Greater
	--l>=D}--
	Compare Real Greater Than Or
	--l>=R}--
	Compare Double Integer Less
	--l<=D}--
	nz

	Images
	Image 1
	Image 2

	Page 11
	Titles
	-f<=Rl--
	Compare Real Less Than Or
	Invert Power Flow Contact
	ro.tıı ro.2
	Ladder Contact Examples
	Negative Transition Contact
	-ıNr
	Positive Transition Contact
	=rl INoTI ()
	vwe
	l___.30.4 I0.5 Q0.2
	l ı ı ,/, c)
	...
	-{NoTl--
	-fel--
	Pj (O.)

	Images
	Image 1
	Image 2
	Image 3

	Page 1
	Titles
	Read Real Time Clock
	Set Real Time Clock
	Operands:
	Date:
	ser _RTC (New value iş written to clock)
	VB404 :00--1 Minute
	ı · I
	VB405 ~ S(tcQnd
	24-Mar~96
	8:00:00
	Friday
	till
	VB405 ı oo Second
	VB407 ~.OayofWeek
	24-Mar-95
	Friday

	Images
	Image 1

	Page 2
	Titles
	Real-time
	Clock
	Instruction
	~o.o ,.au.o_Mc
	BCD to Integer

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 3
	Titles
	Integer to BCD
	Oper.mds:
	Truncate
	Note: CPU ıu oniy.
	Symbol:
	OUT (Dword):
	VD, ID, QO, MD, SMD, AC. *VD,
	Integer Double Word to Real
	Symbol:
	. Decode
	VD, ID, QD, MD, SMD,
	AC, HC, Constant. *VD, *AC
	OUT(word):
	VW, T, C, rw, QW, MW, SMW.
	Description or operation:

	Images
	Image 1

	Page 4
	Titles
	Encode
	ASCII to Hex
	Segment
	Hex to ASCII

	Page 5
	Titles
	Ladder Conversion Instruction
	HSC Definition

	Images
	Image 1
	Image 2

	Page 6
	Titles
	Ladder High-speed Operation
	o
	Pulse Output
	High Speed Counter

	Images
	Image 1
	Image 2

	Tables
	Table 1
	Table 2

	Page 7
	Titles
	Interrupt Routine
	Detach Interrupts
	~No)
	Attach Interrupts

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 8
	Titles
	Enable Interrupts
	--(ENI)
	Network Read
	Note: CPU 21.J only.
	Disable Interrupts
	--(prsy
	Return from Interrupts
	-~0:TY

	Images
	Image 1
	Image 2

	Page 9
	Titles
	Network Write
	Note: CPU 21-J only.
	Data
	Sharing
	with
	Interrupt
	Programming Techniques for Data
	48
	o
	Transmit
	TABLE:

	Page 10
	Titles
	Interrupt Event Priority Table
	a
	o

	Page 1
	Titles
	Ladder Interrupt I Communication
	[Network 1
	voıoo
	'"'""8' (S)
	!Network 7
	I J
	Horizontal Lines
	ı---....-----ı:e:N
	!Netwoı:1(3
	'--------ı ENı)
	Vertical Lines

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1

	Page 2
	Titles
	A.ND Word
	OR Word
	AND Double Word
	Operands:
	Note:
	When 1N 1 :t, OUT and. IN2 * OUT:

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 3
	Titles
	OR Double Word
	Note:
	XOR Double Word
	XOR Word
	Note:
	Operands~
	OUT (Dword): VD. ID, QD. MD. srvm, AC, *VD,
	Note:
	Operands:
	52

	Images
	Image 1
	Image 2

	Page 4
	Titles
	Invert Word
	Ladder
	Logical
	Operations
	nw_w
	IN2 oUT ı-.vwsoo
	Invert Double Word
	nw_uıı
	::JEN
	!Network 3
	rı I mv.,,
	I lııl EN -
	(Netwonc 4

	Images
	Image 1

	Page 5
	Titles
	Add Integer
	Add Real
	Add Double Integer
	Note:

	Images
	Image 1

	Page 6
	Titles
	Subtract Integer
	Subtract Double Integer

	Page 7
	Titles
	Multiply Integer
	Note:
	Divide Integer
	Descriı>tioQ of operation:
	Note:
	Multiply Real

	Images
	Image 1
	Image 2

	Page 8
	Titles
	Divide Real
	.JfN = OUT
	--
	Increment Double Word
	INI I IN2 ""OUT
	IN2 = OUT is not valid for Ladder programming.
	Square Root Real
	OUT (word):
	IN(Dword):
	VW, T. C, IW, QW, MW, SMW.

	Images
	Image 1

	Page 9
	Titles
	Decrement Word
	lVlath/lnc/Dec Exam pies
	!Network 1
	When 10.0 or 10.1 is on then ACO equals ı
	I Network 2 · · ı ıt ACO equals 8, tum on ao.o .
	Decrement Double Word
	oı:c_rırı
	vwıo-lıN2 OUT l-vo200
	When 10.3 is on, then the value in ACO
	!Network 5
	End of the main user program.

	Images
	Image 1
	Image 2

	Page 10
	Titles
	Move Byte
	Move Double Word
	Move Word
	Move Real

	Images
	Image 1
	Image 2

	Page 1
	Titles
	Block Move Byte
	Swap
	Block Move Word
	Shift Right Word
	""o

	Images
	Image 1

	Page 2
	Images
	Image 1

	Page 3
	Titles
	Shift Right Double Word
	Rotate Right Word
	-
	Note:
	VD. ID, QD, MD. SMD. AC.
	62

	Page 4
	Titles
	Shift Register Bit
	Move I Shift I Rotate I Fill
	t--1
	I JEN -
	llietwork 2
	Fill Memory
	o~::

	Tables
	Table 1

	Page 5
	Titles
	Output
	-()
	Output Immediate Coil
	n
	-(ı)
	I
	Set
	---ı(s)

	Images
	Image 1

	Tables
	Table 1

	Page 6
	Titles
	Set Immediate Coil
	Ladder Output Coil Examples
	Reset Coil
	1 , ı c)
	-~(s_ı)
	----<(R)
	Q
	(Network 1
	When 10.0 is on, then output Q0.1 is
	When 10.1 is on. then outputs 01 .O, 01.1
	These outputs will remain on, even if 10.1
	Reset Immediate Coil
	---ı(R_ı)
	End of the main user program.

	Images
	Image 1
	Image 2
	Image 3

	Page 7
	Titles
	End
	--(JMP)
	n:
	Stop,
	Watchdog Reset
	Label
	Call

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 8
	Titles
	Subroutine
	~x~
	No Operation
	h~P)
	Next
	HET)
	-=--cRET)
	Return
	For

	Images
	Image 1

	Page 9
	Titles
	~0·HT0~
	Control
	Ladder Program
	Examples
	uo.,s 90.2
	I I ı---\)
	. ~ IEN
	vaıo \ mew
	' \-si EN -
	ro.ıj·.0·)
)

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10
	Image 11
	Image 12

	Page 10
	Titles
	Add to Table
	FIFO (First In First Out)
	-
	LIFO (Last In First Out)

	Images
	Image 1
	Image 2

	Page 1
	Titles
	I
	nıro
	~---iEN
_ __ __.

	Images
	Image 1

	Page 2
	Titles
	Timer - On Delay
	Count Up
	cu era
	Count Up I Down
	Timer - Retentive On Delay

	Images
	Image 1

	Page 3
	Titles
	Ladder Timer I Counter Examples
	1:--------ı R
	ro-ıo
	ı' ()
	~)
	r"i'
	, ı ()

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 4
	Titles
	CONCLUSION

	Page 5
	Titles
	APPENDIXS

	Images
	Image 1

	Page 6
	Page 7
	Page 8
	Titles
	REFERENCES

