
Faculty of Engineering

NEAR EAST UNIVERSITY

Department of Computer Engineering

E-COMMERCE USING JAVA SERVLET

\

PROGRAMMING

Graduation Project
COM-400

Student: Altyep Saada

Supervisor: Assoc.Prof.Dr Adnan Khashman

Nicosia - 2002

____ __,,

/

ACKNOWLEDGMENTS

"First, I would like to thank my supervisor Assoc.ProfDr.Adnan Khashman for his

invaluable advice and belief in my work and my self over the course of this Graduation

Project.

Second, I would like to say big thank you java servlet programming, for the knowledge

that give it to me, and the experience and the answers of most questions of the network

and the internet that I am always ask my self about it.

Third, I would like to thank my friends for their advice and support.

Finally, but no means least, thanks Mom and Dad for their years of support, and to my

brother engineer wasem for help me to learn java programming language, and for

advice me during writing my java servlet code. "

ABSTRACT

There is much excitement over the Internet and the World Wide Web. The

Internet ties the "information world" together. The World Wide Web makes the Internet

easy to use and gives it the flair and sizzle of multimedia. Java provides a number of

built- in networking capabilities that make it easy to develop Internet-based and Web

based applications. Java's network capabilities are grouped into several packages. The

fundamental networking capabilities are defined by classes and interfaces of package

java.net, through which java offers socket-based communications that enable

applications to a socket as simply as reading from a file or writing to a file. The classes

and interfaces of package java.net also offer packet-based communications that enable

individual packets of information to be transmitted-commonly used to transmit audio

and video over the Internet.

The project discuss of networking over the next chapters focuses on both sides of a

client-server relationship. The client requests that some action be performed and server

performs the action and responds to the client. This request-response model of

communication is the foundation for the highest-level view of networking in java -

servlets. A servlet extends the functionality of a server. The javax.servlet package and

the javax.servlet.http package provide the classes and interfaces to define servlets. The

servlets enhance the functionality of World Wide Web servers- the most common form

of servlet today. Servlet technology today is primarily designed for use with the HTTP

protocol of the World Wide Web, but servlets are being developed for other

technologies. Servlets are effective for developing Web-based solutions that help

provide secure access to a Web site, that interact with databases on behalf of a client,

that dynamically generate custom HTML documents to be displayed by browsers and

that maintain unique session information for each client.

11

TABLE OF CONTENTS

ACKNOWLEDGMENT
ABSTRACT
TABLE OF CONTENTS
INTRODUCTION

ii
iii
1

Chapter One: Background of Servlets
1.1 Overview
1.2 History of Web applications
1.3 Supports of Servlets
1.4 Why Servlet Programming
1.5 Summary

3
3
3
10
11
13

Chapter Two: HTTP Servlet Basics
2.1 Overview
2.2 HTTP Basics

2.2.1 Request, Response, and Headers
2.2.2 Get and Post
2.2.3 Other Methods

2.3 The Servlet API
2.4 HttpServlet class

2.4.1 HttpServletRequest Interface
2.4.2 HttpServletResponse Interface

2.5 Page Generation
2.5.1 Writing Hello World
2.5.2Running Hello World
2.5.3 Starting the JSDK Server
2.5.4 Setting up the JSDK Server
2.5.5 Stopping the JSDK Server
2.5.6 Configuring JSDK Servlets
2.5.7 Calling Servlets from a Browser
2.5.8 Handling form Data
2.5.9 Handling Post Requests
2.5.10 Handling HEAD Requests

2.6 Server-side includes
2. 7 Servlet Chaining and Filters
2.8 Summary

14
14
14
14
16
17
17
18
19
20
21
21
22
23
23
24
24
25
25
28
29
29
31
33

Chapter Three: The Servlet Life Cycle
3 .1 Overview
3.2 The Servlet Alternative

3.2.1 A Single Java Virtual Machine
3.3 Servlet Reloading

3 .4 I nit and Destroy
3.5 Single -Thread Model
3.6 Last Modified Times
3. 7 Status Codes

34
34
34
35
36
36
37
38
39
41

111

3. 7 .1 Setting a Status Code
3.8 HTTP Headers

3.8. l Setting an HTTP Header
3.9 Exceptions

3.9.1 Logging
3.10 Summary

41
42
43
44
46
46

Chapter Four: Retrieving Information
4.1 Overview
4.2 Initialization Parameters

4.2.1 getting an Init Parameter
4.3 Getting Init Parameter Names
4.4 The Server

4.4.1 Getting Information About the Server
4.5 The Client

4.5.1 Getting Information About the client Machine
4.5.2 Getting Information About the User

4.6 The Request
4.6.1 Request Parameters
4.6.2 Path Information
4.6.3 Getting Path information
4.6.4 Getting Mime Types
4.6.5 How It Was Requested

4. 7 Session Tracking
4.4. 7 Session -Tracking Basics
4.4.8 The Session Life Cycle
4.4.9 Putting Session in Context

4.8 Cookies
4.8.1 Working with Cookies

4.9 Summary

47
47
47
47
48
48
48
49
49
49
51
51
52
53
53
54
54
55
56
56
57
58
60

Chapter Five: Security
5.1 Overview
5.2 What is the Security?

5.2.1 HTTP Authentication
5.2.2 Retrieving Authentication Information
5.2.3 Custom Authorization
5.2.4 Form-based Custom Authorization

5 .3 Digital Certificates
5.4 Secure Sockets Layer (SSL)
5.5 SSL Client Authentication
5.6 Retrieving SSL Authentication Information
5. 7 Running Servlets Securely
5.8 The Servlet Sandbox
5.9 Fine-grained Control
5.10 Summary

61
61
61
62
63
64
67
73
75
76
77
78
79
80
83

Chrpter Six: Database Connectivity
· 6.1 Overview

6.2 Advantages for Using Servlet Database

84
84
84

IV

6.3 Relational Databases
6.3.1 The JDBC API

6.3.2 JDBC Drivers
6.3.3 Getting a Connection
6.3.4 Executing SQL Queries
6.3.5 Handling SQL Exceptions
6.3.6 Handling Null Fields
6.3.7 Using Prepared Statement

6.4 Transactions
6.4.1 Optimized Transaction Processing

6.5 Advanced JDBC Techniques
6.5.1 Stored Procedures
6.5.2 Binaries and Books

6.6 Summary

84
87
87
89
90
92
92
93
94
95
97
97
98
100

Chapter Seven: Result of the Work
7 .1 Overview
7 .2 the Main Page

7 .2.1 Catalog
7.2.2 Shopping Card
7.2.3 Buy your Book
7.3 Summary

101
101
101
103
104
107
107

CONCLUSION
REFERENCES

108
109

V

INTRODUCTION

The rise of server-side java applications is one of the latest and most exciting

trends in java programming. The java language was originally intended for use in small,

embedded devices. It was first hyped as a language for developing elaborate client-side

web content in the form of applets. Until recently, java's potential as a server-side

development platform had been sadly overlooked. Now, java is coming into its own as a

language ideally suited for server-side development.

Business in particular has been quick to recognize java's potential on the server-java is

inherently suited for large client/server applications. The cross platform nature of java is

extremely useful for organizations that have a heterogeneous collection of servers

running various flavors of the UNIX and windows operating systems. Java's modern,

object-oriented, memory-protected design allows developers to cut development cycles

and increase reliability. In addition, java's built-in support for networking and enterprise

APis provides access to legacy data, easing the transition from older client/server

systems.

Java servlets are key component of server-side java development. A servlet is a small,

pluggable extension to a server that enhances the server's :functionality. Servlets allow

developers to extend and customize any java-enabled server-a web server, a mail server,

an application server, or any custom server-with a hitherto unknown degree of

portability, flexibility, and ease.

In this project the portability, flexibility, are considered. The project consists of seven

chapters and conclusion.

Chapter one describe the history of web applications and the support of servlets where

the user can found the servlet and why servlet programming.

Chapter two describe some things of HTTP servlets that can be doing, such as HTTP

basics, requests, responses, headers. The two most important methods GET and POST,

class HTTPServlet, and all the methods of this class. Two interfaces classes which is

HttpServletRequest and HttpServletResponse and all the methods of these interfaces.

1

simple Hello World class how the user can run this code and what the output look like

to the user, and final topic which is the servlet chaining filters.

Chapter three describe the servlet life cycle. Init and destroy methods. Status code,

HTTP headers, and exceptions in the servlet when an unexpected error occurs how the

servlet by using some ways of the exception and logging can be caught these errors.

Chapter four which is the main chapter, it describes all the methods can be used to write

the servlets. Web pages session and cookies and all the methods of each one.

Chapter five describes the security of the servlet, HTTP authentication, Digital

Certificates, Secure Sockets Layer (SSL), and finally Running Servlets Security.

Chapter Six describe database connectivity, how the servlet can hold database by using

the servlet and java database connectivity (JDBC) by using some method and classes.

Chapter Seven describe the hall program and the result of the program, how the output

looks like.

Finally, the conclusion section presents the important results obtained within the

project.

2

Chapter One
Background of Servlets

1.1 Overview
The java server API is an asset of classes, a framework, for the development of IP

servers, especially http servers. The server API is a standard extension to Java. Which

means that it is not included in the base Java release? If has being used in a program,

first thing need to download and install the necessary classes from sun. The servlet API

it does not use in an applet. There are many interesting aspects of the server API; the

most interesting being a concept called servlets; these will be presented this chapter.

1.2 History of web applications
While servlets can be used to extend the functionality of any java -enabled

server, today they are most often used to extend web servers, providing a powerful,

efficient replacement for CGI scripts. When a servlet is used to create dynamic content

for a web page or otherwise extend the functionality of web server, in effect a web

application is being created. While a web page merely displays static content and lets

the user navigate through that content, a web application provides a more interactive

experience. A web application keyword search on a document archive or as complex as

an electronic storefront. Web applications are being deployed on the internet and on

corporate intranets and extranets, where they have the potential to increase productivity

and change the way that companies, large and small, do business.

There are some approaches that can be used to create web applications:

• Common Gateway Interface
The common gateway interface referred to as CGI, was one of the first practical

techniques for creating dynamic content. With CGI, a web server passes certain requests

to an external program. The output of this program is then sent to the client in place of a

static file. The advent of CGI made it possible to implement all sorts of new

functionality jn web pages, and CGI quickly became a defacto standard, implemented

on dozens of a web servers.

3

It's interesting to note that the ability ofCGI programs to create dynamic web pages is a

side effect of its intended purpose: to define a standard method for an information

server to talk with external applications. The origin explains why CGI has perhaps the

worst life cycle imaginable. When a server receives a request that accesses a CGI

program, it must create a new process to run the CGI program and then pass to it, via

environment variables and standard input, every bit of information that might be

necessary to generate a response. Creating a process for every such request requires

time and significant server resources, which limits the number of request a server can

handle concurrently.

Figure 1.1 shows the CGI life cycle.

CGI-based Web Server

Main Process
Request for CGI 1 ~ Child Process for CGI 1

Request for CGI2 4 Child Process for CGI2
Request for CGI 1 , Child Process for CGI 1

Figure 1.1. The CGI life cycle

Even though a CGI program can be written in almost any language, the Perl

programmmg language has became the predominate choice. Its advanced text

processing capabilities are a big help in managing the details of the CGI interface.

Writing a CGI script in perl gives it a semblance of platform independence, but it also

requires that each request start a separate Perl interpreter, which takes even more time

and requires extra resources.

Another often -overlooked problem with CGI is that a CGI program cannot interact

with the web server or take a advantage of the server's abilities once it begins execution

4

------ ------ ----------

because it is running in a separate process. For example, a CGI script cannot write to the

server's log file.

• FastCGI

A company named Open Market developed an alternative to standard CGI

named FastCGI In many ways, FastCGI works just like CGI -the important difference

is that FastCGI creates a single persistent process for each FastCGI program. As shown

in Figure 1.2. This eliminates the need to create a new process for each request.

FastCGI-based Web Server

Main Process

Request for CGI 1_..-•. ·· Single Child Process for CGil
_ ••.. ··•••·

... ··
Request for CGl2 ,. ·····

Request for CGI I /.;::,"-- "···· •·····......... .I Single Child Process for CGU I

Figure 1.2. The FastCGI life cycle

Although FastCGI is a step in the right direction, it still has a problem with process

proliferation: there is at least one process for each FastCGI program, if a FastCGI

program is to handle concurrent requests, it needs a pool of processes, one per request.

Consider that each process may be executing a Perl interpreter, this approach does not

scale as well as one might hope. (Although, to its credit, FastCGI can distribute its

processes across multiple servers.) Another problem with FastCGI is that it does

nothing to help the FastCGI program more closely interact with the server. As of this

writing, the FastCGI approach has not been implemented by some of the more popular

servers, including Microsoft's Internet Information server.
Finally, FastCGI programs are only as portable as the language in which they're written.

5

• mod_perl
If the apache web server is used, another option for providing CGI performance

is using mod _perl is a module for the Apache server that embeds a copy of the Perl

interpreter into the Apache httpd executable. Providing complete access to Perl

functionality within Apache. The effect is that your CGI scripts are precompiled by the

server and executed without forking, thus running much more quickly and efficient.

• PerlEx
PerlEx. Developed by ActiveState, improves the performance of CGI scripts

written in Perl that run on Windows NT web servers (Microsoft's FastTrack Server and

Enterprise Server). PerlEx uses the web Server's native API to achieve its performance

gams.

• Other Solutions
CGI/Perl has the advantage of being a more -or -Iess platform -independent

way to produce dynamic web content. Other well-known technologies for creating web

applications, such as ASP and server-side JavaScript, are proprietary solutions that work

only with certain web servers.

• Server Extension APis
Several companies have created proprieties server extension APis for their web

servers. For example, Netscape provides an internal API called NSAPI (now becoming

WAI) and Microsoft provides ISAPI. Using one of these APis, you can write server

extensions that enhance or change the base functionality of the server, allowing the

server to handle tasks that were once relegated to external CGI programs. As can be

seen in Figure 1.3, server extensions exist within the main process of a web server.

Because server-specific APis use linked C or C++ code, server extensions can run

extremely fast and make full use of the server's resources. Server extensions, however,

are not perfect solutions by any means. Besides being difficult to develop and maintain,

they pose significant security and reliability hazards: a crashed server extension can

bring down the entire server, and, of course, properties server extension are inextricably

6

tied to the server API for which they were written -and often tied to a particular

operating system as well

Web Server with Server Extension API

Main Process

Request for
Servlet Extensionl {- .. ···················:::::>~ Server Extension 1

::::~::ension2 - --- -7jc<~~-------~ Server Extension2 I
Request for- ··················· L---------_J

Servlet Extensionl-

Figure 1.3. The server extension life cycle

• Active Server Pages
Microsoft has developed a technique for generating dynamic web content called

Active Server Pages, or sometimes just ASP. With ASP, an HTML page on the web

server can contain snippets of embedded code (usually VB Script or just Jscript although

it's possible to use nearly any language). This code is read and executed by the web

server before it sends the page to the client. ASP is optimized for generating small

portions of dynamic content.

• Server -side JavaScript
Netscape too has a technique for server -side scripting, which it calls server side

JavaScript, or SSJS for short. Like ASP, SSJS allows snippets of code to be embedded

in HTML pages to generate dynamic web content. The difference is that SSJS uses

JavaScript as the scripting language. With SSJS. Web pages are precompiled to improve

performance.

• Java Servlets
Servlets are Java programs that make servers extensible. Much as you can load

applets into a web browser, you can load servlets into a running server to extend its

capabilities, servlets are commonly used with web servers, where they can take the

7

place of CGI scripts. A servlet is similar to a proprietary server extension, except that it

runs inside a Java Virtual Machine (JVM) on the server (see the figure 1.4). Like

applets, the byte codes for servlets can be read from the local file system or from the

network. In the future, it will even be possible for clients to upload servlets to server to

be run there, just as today clients download and run applets from a server.

Java Servlet-based Web Server

Main Process
JVM

Request for Servletl

Request for Servlet2 i..__
Thread

Servletl

Request for Servletl Servlet2

Figure 1.4. The servlet life cycle

A servlet can return data to the client as a new web page, as servlets themselves are

faceless; they do not have a graphical interface or output stream to which they can send

output. They rely on the web client to provide these services.

Servlets provide yet another way for a web to generate dynamic data. Normally, web

server receives a URL requesting a certain page. The server maps this URL to a file,

reads the file from the local disk, and sends the data to the client. In this situation, the

data is static; it doesn't change until the server administrator changes the file. However

a servlet can generate a new data for each request because it is a program. Thus it can

deliver changing information such as a time of day or a stock price.

Of course, that's nothing really new; CGI programs can also dynamically generate data

to send to a client. How does a servlet differ from a CGI program? Why should consider

writing servlets, rather than sticking with CGI? Those are good questions. CGI has been

around for a while, and it's well understood. It's easy to write a web page that invokes a

CGI program, and easy to write a program that sends data back to the browser.

Furthermore, virtually all web servers understand CGI; currently, Jeeves (a

8

demonstration server that sun supplies with the server distribution) is the only server

that can handle servlets through there are more to come. Servlets are interesting

precisely because they are more than just CGI programs written in Java; servlets can do

many things that CGI programs cannot:

1. A servlet can contain continue to run in the background after it has finished

processing a request so it's ready to process the next request without incurring

additional startup costs. On an active server, the overhead of staring CGI programs

is significant. Furthermore, a servlet can use threads to process simultaneous

requests e:fficiently.aservlet can even pass data between multiple connections. For

example, a servlet can act as a multiplayer game server that listens for input from

multiple clients. And then broadcasts that data to all connected clients.

2. A servlet can communicate interactivity with an applet on the client. A CGI

program receives a request from a client, and then sends a response; at that point the

connection is closed. The client cannot send another request to the CGI program in

response to the data it received. In constrast, a servlet -applet pair can carry on a

conversion. Making many data transfers between the client and the server . they can

even implement a new protocol if necessary. This is much easier to code than a CGI

program that stores form of state on the server or in the URL.

3. Servlets can originate on the client. Like applets, servlets run in secure

environment. So the server does not need to worry about hostile servlets. For

example, a client can upload accustom that searches a web site for information.

With local access to the files, the search can take place much more quickly than it

would if the client had to download each file on the web site. Web spiders and

indexers like Lycos can become far more efficient, and use far less internet

bandwidth, since only the results of a site index need to be transmitted, not every

page on the web site.

4. Servlets are a step towards agents. A servlet can be uploading to different servers

technologies, performing the same action on each server in run. Until now, agent

technologies shared several server limitations. First, hosts had to true the agents.

Using java's security features, a web server can execute a servlet without worrying

9

that it may crash the system or open a security hole. Second agents could only run

on certain platforms; java's portability means that servlets don't care what kind of

system they run on. The possibilities for intelligent agents are almost dimities,

including shopping agents that search for the best prices, clipping service agents that

continuously comb the net for information, system management servlets that upload

mirror sites with copies or changes files, servlets that back up data to a central host.

And more. However servlets are not yet true agents because they must be explicitly

invoked and moved by something other that themselves; that may change the future.

1.3 Supports for Servlets
Like java itself, servlets were design for portability. Servlets are support on all

platforms that support java, and servlets work with all the major web servers. Java

servlets, as defined by the java software division of sun Microsystems (formerly known

as Java Soft), are the first standard extension to java. This means that servlets are

efficiently blessed by sun and are part of the java language, but they are not part of the

core java API.therefore, althougth they may work with any java Virtual Machine

(JVM), servlet classes need not be bundled with all JVMs.

To make it easy for us to develop servlets. Sun has made publicly available a set of

classes that provide basic servlet support. The javax.servlet and javax.servlet.http

packages constitute this servlet API.Version 2.0 of these classes comes bundled with the

java servlet development kit (JSDK) for use with the java Development kit 1.1 and

above: the JSDK available for download from http://java.sun.com/products/servlet/.

Many web server vendors have incorporated these classes into their servers to provide

servlet support, and several have also provided additional functionality. Sun's Java Web

Server, for instance, includes a proprietary interface to the server's security features.

It doesn't much matter where to get the servlet classes, as long as to have them on

systems, since it is necessary to compile the servlets. In additional to the servlet classes,

there is a servlet engine, so that, it test and deploy the servlets. The choice of servlet

engine depends in part on the web server(s) are running.

There are three flavors of servlet engines: standalone, add-on, and embeddable.

10

1.4 Why Servlet Programming
So far, there is portrayed servlets as an alternative to other dynamic web content

technologies, but really do not explained why servlet. What makes servlets a viable

choice for web development? Servlets offer a number of advantages over approaches,

including: portability, power, efficiency, endurance, safety, elegance, integration,

extensibility, and flexibility. Let's examine each in tum.

Portability
Because servlets are written in Java and conform to a well-define and widely

accepted API, they are highly portable across operating systems and across server

implementation. The servlet has the ability to develop on a Windows NT machine

running the Java Web Server and later deploy it effortlessly on a high-end UNIX server

running Apache. With servlets can be truly "Write Once, server everywhere."

Power
Servlet can harness the full power of the core Java APls: networking and URL

access, multithreading, image manipulation, data compression, database connectivity,

internationalization, remote method invocation (RMI). CORBA connectivity, and object

serialization, among others. If has been written a web application that allows employees

to query a corporate legacy database, it should be consider the advantage of all of the

. Java Enterprise APls in doing so. Or, if need to be created a web -based directly lookup

application. Make used of the JNDI API.

Efficiency and Endurance
Servlets invocation is highly efficient. Once a servlet is loaded, it generally remains

in the server's memory as a single object instance.thereafter; the server invokes the

servlet to handle a request using a simple, lightweight method invocation. Unlike with

CGI, there's no process to spawn or immediately. Multiple, concurrent requests are

handled by separate threads, so servlets are highly scalable.

Servlets, in general, are naturally enduring objects. Because a servlet stays in the

server's memory as a single instance, it automatically maintains its state and can hold

on to external resources, such as database connections, that may otherwise take a

several seconds to establish.

11

Safety
Servlets support safe programming practices on a number of levels. Because they

are written in Java.servlets inherit the strong type safety or the Java language. In

addition, the servlets API is implemented to type-safe. While most values in a CGI

program, including a numeric item like a server port number, are treated as strings,

values are manipulated by the servlets API using their native types, so a server port

number is represented as an integer. Java's automatic garbage collection and lack of

pointers mean that servlets are generally safe from memory management problems like

dangling pointers, invalid pointer refemces, and memory leaks.

Servlets can handle errors safety, due to Java's exception-handling mechanism. If a

servlet divides by zero or performs some other illegal operation, it throws an exception

that can be safety caught and handled by the server, which can politely log the error and

apologize to the user. If C++ based server extension were to make the same mistake, it

could potentially crash server.

A server can further protect itself from servlets thought the use of Java security

manager. A server can execute its servlets under the watch of a strict security manager

that, for example, enforces as security policy designed to prevent a malicious or poorly

written servlet from damagining the servers file system.

Elegance
The elegance of servlet code is striking. Servlet code is clean, object oriented,

modular, and amazing simple. One reason for this simplicity is the servlet API itself,

which includes methods and classes to handle many of the routine chores of the servlet

development. Even advanced operations, like cookie handling and session tracking, are

abstract into convenient classes. A few more advanced but still common tasks were left

out of the API, and, in those places, we have tried to step in and provide a set of helpful

classes in the com.oreilly. Servlet package.

Integration
Servlets are tightly integrated with the server. This integration allows a servlet to

cooperate with the server in ways that CGI program cannot. For example, a servlet can

12

use the server to translates file paths, performe logging, check authorization, perform

MIME type mapping, and, in some cases, even add users to the server's user database.

Server-specific extensions can do much of this, but the process is usually much more

complex and error-prone.

Extensibility and Flexibility
The servlet API is designed to be easily extensibility. As it stands today, the API

includes classes that are optimized for HTTP servlets. But at a later date, it could be

extended and optimized for another type of servles, either by sun or by a third party. It

is also possible that its support for HTTP servlets could be further enhanced.

Servlets are also quite flexible. An HTTP servlet can be used to generate a complete

web page: it can be added to static page using a <Servlet> tag in what's known as a

server-side include: and it can be used in cooperation with any number of other servlets

to filter content in something called a servlet chain. In addition, sun introduced Java

Server Pages, which offer a way to write snippets of servlet code directly within static

HTML page, using syntax that is curiously similar to Microsoft's Active Server Pages

(ASP).

1.5 Summery
This chapter has being a short introduction in history of web application, support of

servlets, and finally why the servlet, what the power of servlets.

13

Chapter Two
HTTP Servlet Basics

2.1 Overview
This chapter provides a quick introduction to some of the things an HTTP

servlet can do. For example, an HTTP servlet can generate an HTML page, either when

the servlet is accessed explicitly by name, by following a hypertext link. Or as the result

of a form submission. An HTTP servlet can also be embedded inside an HTML page;

where it functions as a server -side include.servlets can be chained together to produce

complex effects-one common use of this technique is for filtering content.

2.2 HTTP Basics
Before has be shown a simple HTTP servlet, it should be understanding how the

protocol behind the web, HTTP, works.

2.2.1 Requets, Response, and Headers
HTTP is a simple, stateless protocol. A client, such as a web browser, makes a

request, the web server responds, and the transaction is done. When the client sends a

request, the first thing it specifies is an HTTP command, called a method that tells the

server the type of action it wants performed. This first line of the request also specifies

. the address of a document (a URL) and the version of the HTTP protocol it is using. For

example:

GET l intro.html HTIP/1.0

This request uses the GET method to ask for the document named intro.html, usmg

HTTP Version 1. 0. After sending the request, the client can send optional header

information to tell the server extra information about the request, such as what software

the client is running and what content types it understands. This information doesn't

directly pertain to what was requested, but it could be used by the server in generating

its response. Here are some sample request headers:

User -agent: Mozilla/4.0 (compatible; MSIE 4.0; Windows 95)

Accept: image/gif, image/jpeg, text/*,*/*

14

The User-agent header provides information about the client software, while the Accept

header specifies the media (MIME) types that the client prefers to accept. After the

headers, the client sends a blank line, to indicate the end of the header section. The

client can also send additional data, if appropriate for the method being used, as it is

with the POST method that will be discussed shortly. If the request doesn't send any

data, it ends with an empty line.

After the client sends the request, the server processes it and sends back a response. The

first line of the response is status line that specifies the version of the HTTP protocol the

Server is using, a status code, and a description of the status code. For example:

HTTP/1.0 200 OK

This status line includes a status code of 200, which indicates that the request was

successful, hence the description "OK". Another common status code is 404, with the

description "Not Found"-as can be guessed; it means that the requested document was

not found.

After the status line, the server sends response headers that tell the client things like

what software the server is running and the content type of the server's response. for

example:

Date: Saturday, 23-May-98 03:25:15 GMT

Server: JavaWebServer/1.1.1

MIME-Version: 1.0

Content-type: text/html

Content-length: 1029

Last-modified: Thursday, 7-May-9812:15:35 GMT

The server header provides information about the server software, while the Content-

type header specifies the MIME type of data included with the response. The server

sends a blank line after the headers, to conclude the header section. If the request was

successful, the requested data is then sending as part of the response. Otherwise, the

response may contain human-readable data that explains why the server couldn't fulfill

the request.

15

2.2.2 Get and Post
When a client connects to a server and an HTTP request can be of several

different types, called methods. The most frequently used methods are GET and POST.

PUT simply, the GET method is designed for getting information (a document, a chart,

or the results from a database query), while the POST method is designed for posting

information (a credit card number, some new chart data, or information that is to be

stored in a database). To use a bulletin board analog, GET is for reading and POST is

for tacking up new material.

The GET method, although it's designed for reading information, can include as part of

the request some of its own information that better describes what to get such as an x, y

scale for a dynamically created chart. This information is passed as a sequence of

characters appended to the request. URL in what's called a query string. Placing the

extra information in the URL in this way allows the page to be bookmarked or emailed

like any other. Because GET requests theoretically shouldn't need to send large

amounts of information, some servers limit the length of URLs and query strings to

about 240 characters.

The POST method uses a different technique to the server because in some cases it may

need to send megabytes of information. A POST request passes all its data, of unlimited

length, directly over the socket connection as part of its HTTP request body. The

exchange is invisible to the client. The URL doesn't change at all. Consequently, POST

requests cannot be bookmarked or emailed, or in some cases, even reloaded. That's by

the design- information send to the server, such as your credit card number, should be

send sent only once.

In practice, the use of GET and POST has strayed from the original intent, it's common

for long parameterized requests for information to use POST instead of GET to work

around problems with overly-long URLs. It's also common for simple forms that upload

information to use GET because, well-why not, it works!
Generally, this isn't much of a problem. Because they can be bookmarked so easily,

should not be allowed to cause damage for which the client could be held responsible.

16

In other words, GET request should not be used to place an order, upload a database, or

take an explicit client action in any way.

2.2.3 Other Methods
In addition to GET and POST, there are several other lesser-used HTTP

methods. There's the HEAD method, which is sent by a client when it wants to see only

the headers of the response, to determine the document's size, modification time, or

general availability. There's also PUT, to place documents directly on the server, and

DELETE, to do just the opposite. These last two aren't widely support due to

complicated policy issues. The TRACE method is used as a debugging aid-it returns to

the client the exact contents of its request. Finally, the OPTIONS method can be used to

ask the server which means it supports or what options are available for a particular

resource on the server.

2.3 The Servlet API
Architecturally, all servlets must implement the Servlet interface. As with many

key applet methods, the methods of interface Servlet are invoked automatically (by the

server on which the servlet installed). This interface defines five methods describes in

figure 2.1. The servlet packages define two abstract classes that implement the interface

Servlet-class GenericServlet (from the package javax.servlet) and class HttpServlet

(from the package javax.servlet.http). These classes provide default implementation of

all the Servlet methods. Most servlets extends either GenericServlet or Httpservlet and

override some or all of their methods with appropriate customized behaviors.

Method Description

Void service (ServletRequest request, ServletResponse response)
This is the first method called on

every servlet to response to a client request.

String getServletlnfo ()
This method is defined by a servlet

programmer to return a String containing

servlet information such as the servlet's author and

version.

17

ServletConfig getServletConfig O
This method returns a reference to an object

That implements interface Servletconfig. This

object provides access to the servlet's

configuration
information such as initialization parameters and

the
servlet' s ServletContext, which provides the

servlet with access to its environment.

Figure 2.1. Methods of interface Servlet.

2.4 HttpServlet class

Web-based servlets typically extends class HttpServlet. Class HttpServlet

overrides method service to distinguish between the typical request received from a

client web browser. The two most common HTTP request types (also known as request

methods) are GET and POST. A GET request gets (or retrieves) information from the

server. Common uses of GET requests are to retrieve an HTML document or an image.

A POST request posts (or sends) data to the server. Common uses of POST requests are

to send the server information from HTML form in which the client enters data, to send

the server information so it can search the Internet or query a database for the client, to

send authentication information to the server, etc.

Class HttpServlet defines methods doGet and doPut to response to GET and POST

requests from a client, respectively. These methods are called by the HttpServlet

class's service method, which is called when a request arrives at the server. Method

service first determines the request type, and then calls the appropriate method.

Methods of class HttpServlet that response to other request types are shown in figure

2.3 (all receives parameters of type HttpServletRequest and HttpServletResponse and

return void). Methods doGet and doPost receives as argument an HttpServletRequest

object and an HttpServletResponse object that enable interaction between the client

and the server.

18

Method Description

Called in response to an HTTP DELETE request. Such a request

is normally used to delete a file from the server. This may not be

available on some servers because of its inherent security risks.

Called in response to an HTTP OPTIONS request. This returns

information to the client indicating the HTTP options supported

by the server.

Called in response to an HTTP PUT request. Such a request is

normally used to store a file on the server. This may not be

available on some servers because of its inherent security risks.

Called in response to an HTTP TRACE request. Such a request is

normally used for debugging. The implementation ofthis method

automatically returns an HT:ML document to the client containing

the request header information (data sent by the browser as part of

the request).

doDelete

doOptions

doPut

do Trace

Figure 2.2. Important methods of class HttpServlet.

2.4.1 HttpServletRequest Interface
/

Every call to doGet or doPost for an HttpServlet receives an object that

implements interface HttpServletRequest. The web server that executes the servlet

creates an HttpServletRequest object and passes this to the servlet's service method

(which, in turn, passes it to doGet or doPost). This object contains the request from the

client. A variety of methods are provided to enable the servlet to process the client's

request. Some of these methods are form interface ServletRequest-the interface that

HttpServletRequest extends. A few key methods used are presented in figure 2.4.

Method Description

String getParameter (String name)
Return the value associated with a parameter to the
servlet as part of a GET or POST request. The
name argument represents the parameter name.

Enumeration getParameterN amesf)

19

Return the names of all the parameters sent to the
servlet as part of POST request.

String[] getParameterValues(String name)
Return an array of Strings containing the value for

a specified servlet parameter.

Cookie [] getCookies O
Returns an array of Cookie objects stored on the

client by the server. Cookies can be used to

uniquely identify clients to the servlet.

HttpSession getSession (Boolean create)
Return an HttpSession object associated with the

client's current browsing session.

Figure 2.3. Important methods of interface HttpServletRequest.

2.4.2 HttpServletResponse lnterf ace
Every call to doGet or doPost for an HttpServlet receives an object that

implements interface HttpServletResponse. The web server that executes the servlet

creates an HttpServletResponse object and passes this to the servlet's service method

(which, in tum, passes it to doGet or doPost). This object contains the response from

the client. A variety of methods are provided to enable the servlet to formulate the

response to the client. Some of these methods are form interface ServletResponse-the

interface that HttpServletResponse extends. A few key methods used are presented in

figure 2.5.

Method Description

void addCookie (Cookie cookie)
Used to add a cookie to the header of the response to

the client. The Cookie's maximum age and wether

the client allows Cookie to be saved determine

whether or not Cookie will be stored on the client.

20

ServletOutputStream getOutputStream O
Obtains a byte-based output stream that enables

binary data to be sent to the client.

PrintWriter getWriter 0
Obtains a character-based output stream that enables

text data to be sent to the client.

Void setContentType (string type)
Specifies the MIME type of the response to the browser.

The mime type helps the browser determine how to

display
the data. For example, MIME type "text/html" indicates

that the response is an HTML document, so the browser

displays the HTML page.

Figure 2.4. Important methods of interface HttpServletResponse.

2.5 Page Generation
The most basic type of HTTP servlet generates a full HTML page. Such a

servlet has access to the same information usually sent to a CGI script, plus a bit more.

A servlet that generates an HTML page can be used for all the tasks where CGI is used

currently, such as for processing HTML forms, producing reports from a database,

taking orders, checking identifiers, and so forth.

2.5.1 Writing Hello World
Example below shows an HTTP servlet that generates a complete HTML page.

This servlet just says "Hello World" every time it is accessed via a web browser.

Example 2-1. A servlet that prints "Hello World''

import javax.servlet. *;
import javax. servlet.http. * ~
import java.io. *;

public class Hello World extends HttpServlet{

21

public void doGet(HttpServletRequest req,HttpServletResponse res) throws
ServletException,IOException {

PrintWriter out=res.getWriterQ;
res .setContentType("text/html ");

out.println("<html><head><title>");
out.println("Hello World</title></head><body> ");
out.println("<center>

<hl>Hello,Worldl</hl></center>");
out.println("<lbody></html>");
}}

This servlet extends the HttpServlet class and overloads the doGet () method inherited

from it. Each time the web server receives a GET request for this servlet, the server

invokes this doGet () method, passing it an HttpServletRequest object and an

HttpServlet Response object.

The HttpServletRequest represents the client's request. This object gives a servlet

access to information about the client, the parameters for this request, the HTTP headers

passed along with the request, and so forth. After all, this example is going to say

"Hello World" no matter what the request.

The HttpServletResponse represents the servlet's response. A servlet can use this object

to return data to the client. This data can be of any content type, thought the type should

be specified as part of the response. A servlet can also use this object to set HTTP

response headers.

Our servlet uses the setContentType () method of the response object to set the content

type of its response to "text/html", the standard MIME content type for HTML pages.

Then, it uses the getWriter () method to retrieve a Print Writer, the international-friendly

counterpart to a PrintStream Print Writer converts Java's Unicode characters to a locale

specific encoding. For an English locale, it behaves same as a PrintStream. Finally, the

servlet uses this PrintWriter to send its "Hello World" HTML to the client.

2.5.2 Running Hello World
When developing servlets two things needed: the Servlet API class, which are used

for compiling, and a servlet engine such as a web server, which is used for deployment.

To obtain the servlet API class files, several options have needed:

22

• Install the Java Servlet Development Kit (JSDK), available for free at

http://java.sun.com/proiducts/servlets/ JSDK2.0 Version 2.0 contains the class

files for the servletAPI2.0, along with their source code and simple web server

that acts as a servlet engine for HTTP servlets. It works with JD Kl .1 and later.

• Install one of the many full - featured servlet engines, each of which typically

bundles the Servlet API class files.

There are dozens of servlet engines available for servlet deployment, why not use the

servlet engine included in jsdk2.0? Because the servlet engine is bare-bones simple. It

implements the Servlet API 2.0 and nothing more. Features like robust session tracking,

server-side includes, servlet chaining, and Java Server pages have been left out because

they are technically not part of the Servlet API. For these features, has to be used a full

fledged servlet engine like the Java Web Server or one its competitors.

So, what has be doing to the code to make it run in a web server? Well, the server

included with the JSDK2.1 is a small, multithreaded process that can run one or more

servlets. Unlike some web servers, the JSDK server does not automatically reload

updated servlets. However stopped and restarted the server with very little overhead to

run a new version of a servlet.

2.5.3 Setting up the JSDK Server

It is possible to configure various properties of the JSDK server before starting

it. These properties include the server's port, which defaults to 0000, the hostname of

the server, which defaults to local host, and the document root, which defaults to the

webpages subdirectory of the JSDK installation. To look at or update these

configuration values, edit the default.cfg file in the JSDK installation directory. Now

after compile the servlet code by using javac compiler, take the (.class) file and put it in

Webpages/WEB-INF/servlets

2.5.4 Starting the JSDK Server

To start the server, use the Unix-based Korn-shell script or the Windows-based

batch file that the JSDK provides in the installation directory of the JSDK.

The following command starts the server on UNIX:

23

% startserver

And the following command starts the server on Windows:

C: ~sdk\> startserver

2.5.5 Stopping the JSDK Server

To stop the server, the JSDK provides shut-down commands in the same

directory as the start-up commands (the installation directory of the JSDK).

The following command stops the server on UNIX:

% stopserver

And the following command stops the server on Windows:

C:\jsdk\> stopserver

The output of Hello World similar to figure 2.3.

Hello,World!

Figure 2.5. The Hello World servlet.

2.5.6 Configuring JSDK Servlets

Configure servlet applications that run on the JSDK 2.1 server by specifying

properties. Properties are key-value pairs used for the configuration, creation, and

initialization of a servlet. For example, test.code=Hello World is a property whose key

is test. code and whose value is Hello World. Properties are stored in a text file with a

24

default name of servlets. properties. The file holds the properties for all the servlets that

the servlet-running utility will run.

Using properties requires name of servlet. (The string catalog in the property names

above is the catalog servlet's name.) The servlet name enables the servlet-running

utilities to associate properties with the correct servlets. It is also the name that clients

will use when they access the servlet.

2.5. 7 Calling Servlets from a Browser

The URL for a servlet has the following general forms depending on which
server has be using. For JSDK2. l, the URL is:

http://machine-name:port/servlet/Servlet-name

For example, to see the output of the previous example, type the following URL into the
browser:

http://localhost: 8080/servlet/test

The output like this:

Hello. World!

Figure 2.6. The Hello World Servlet.

2.5.8 Handling form Data

The "Hello World" servlet is not very exciting, so let's try something slightly
more ambitious. This time the user creates servlet by name. First, HTML form that ask
the user for his or her name. The following page should suffice:

<html>
<head>

25

--- --- --- .. ---------

<title> Introduction</title>
</head>
<body>
<form action="/servlet/Hello" method="get">
<p> if you donot mind me asking, what is your name?
<input type="text" name="name">
</p>
<input type="submit">
</form>
</body>
</html>

Figure 2.5 shows how this page appears to the user.

Figure 2.6. An HTML form

When the user submits this form, his name is sending to test servlet program because

the action attribute has been set to point of the servlet. The form is using the GET

method, so any data is appended to the request URL as query string. For example, if the

user enters the name "Inigo Montoya", the request URL is

"http:!/server:8080/servlet/Hello?name=Inigo+Montoya". The space in the name is

specially encoded as plus sign by the browser because URLs cannot contain spaces.

A servlet HttpServletRequest object gives it access to the form data in its query string.

Example below shows a modified version of Hello servlet that uses its request object to

read the "name" parameter.

import javax.servlet. *;
import javax.servlet.http. *;
import java. io. *;

26

public class Hello extends HttpServlet{

public void doGet(HttpServletRequest req,HttpServletResponse res) throws
ServletException,IOException

{
PrintWriter out=res.getWriterO;
res.setContentType("text/html ");

String name=req .getParameter("name ");
out.println("<html>");
out.println("<head><title> Hello,"+name+"<ltitle></head>");
out.println("<body>");
out.println("Hello, "+name);
out.println("</body></html>");
}

public String getServletlnfoO{
return "A servlet that ~ows the name of the person to whom it's"+
"saying hello";
}

}

This servlet nearly identical to the HelloWorld servlet. The most important change is

that it now calls req .getParameter ("name") to find out the name of the user and then

prints this name. The getParameter O method gives a servlet access to the parameters in

its query string. It returns the parameter's decoded value or null if the parameter was not

specified. If the parameter was send but without a value, as in the case of an empty form

field, getParameter () returns the empty string.

This servlet also adds a getServletinfoO method. A servlet can override this method to

return descriptive information about itself, such as its purpose, author, version, and/or

copyright. Its skin to an applet's getAppletlnfo (). The method is used primarily for

putting explanatory into a web server administration tool.

Figure 2.6. Shows how this page appears to the user.

27

~- -----·----·-·--·~ ----

Hello,Elliote R»sty Harold

Figure 2. 7. The Hello servlet using form data.

2.5.9 Handling Post Requests
Until now the servlets has be using the doGet ()method.Now let's change Hello

servlet to handle POST request. Because the behavior of with POST is the same for

GET, simply dispatch all POST requests to the doGet O method with the following

code:

Public void doPost (HttpServletRequest reg, HttpservletRespone res) throws

ServletException, IOException {

doGet ();

}
Now the Hello servlet can handle form submissions that use the POST method:

<form action ="/servlet/Hello" method="post">
in general, it is best if a servlet implements either doGet() or doPost(). Deciding which

to implement depends on what sort of request the servlet needs to be able to handle. The

code has be written to implement the methods is almost identical. The major difference

is that the doPost () has the added ability to accept large amounts of inputs.

28

May be wondering what would have happened had the Hello servlet been accessed

with POST request before implementing doPost Q. The default behavior inherited from

HttpServlet for both doGet () and doPost () is to return an error to the client saying that

the requested URL does not support that method. As seeing from the figure 2.6.

2.5.10 Handling HEAD Requests
A bit of under-the- covers magic makes it trivial to handle HEAD requests (

send by a client when it wants to see only the headers of the response). There is no

doHeadO method to write. Any servlet that subclasses HttpServlet and implements the

doGet () method automatically supports HEAD requests.
Here's how it works. The service O method of the HttpServlet identifies HEAD requests

and treats them specially. It constructs a modified HttpServletResponse object and

passes it, along with an unchanged request, to the doGetO method. The doGet O method

proceeds as normal, but only the headers it sets are returned to the client. The special

response object effectively suppresses all body output. Figure 2- 7 shows an HTTP

servlet handle HEAD requests.

Figure 2.8. An Http servlet handling a HEAD request

2.6 Server-side includes
Servlets can also be embedded in an HTML page using the server-side include

(SSJ).in this case, the servlet only produces a part of the HTML that is sent to the client.

For example, a servlet could return live data, like the current time, the number of hits to

29

a page, or the stock price of the company serving the page at a given moment. The rest

of the page could display logos, headers, footers, setup backgrounds, and provide other

information that doesn't change. To embed a servlet in an HTML file as a server-side

include, use the <servlet> tag:

<servlet code=servletName codebase=http :/ /server: port/dir
initParaml =init Value l initParam2=initValue2>

<param name=paraml value=value l>
<param name=param2 value=value2>

If has being see this text, that means the web server
Providing this page does not support the servlet tag.

</servlet>

The code attribute specifies the class name or registered name of the servlet to invoke.

The codebase attribute is optional. It can refer to a remote location from which the

servlet should be loaded. Without a codebase attribute, the servlet is assumed to be

local.
Any number of parameters may be passed to the servlet using the<param> tag. The

servlet can retrieve the parameter values using the getParameter () method of

servletRequest. Any number of initialization (init) parameters may also be passed to the

servlet appended to the end of the <servlet> tag.

A server that supports SSI detects the <servlet> tag in the process of returning the page

and substitutes in its place the output from the servlet (as shown in figure 2.8). The

server does not parse every page it returns, just those that are specially tagged. The java

web server, by default. Parses only pages with a .shtml extension. Note that with

the<servlet>, unlike the <applet> tag, the client browser never sees anything between

<servlet> and
</servlet> unless the server does not support SSI, in which case the client receives the

content, ignores the unrecognized tags, and displays the descriptive text.

30

Figure 2.9. Server-side include expansion

2. 7 Servlet Chaining and Filters
Now have be seen how an individual servlet can create content by generating a

full page or by used in a server-side include (SSI). Servlets can also cooperate to create

content in a process called servlet chaining.
In many servers that support servlets, a request can be handled by a sequence of

servlets.
The request from the client browser is sent to the first servlet in the chain. The response

from the last servlet in the chain is returned to the browser. In between, the output from

each servlet is passed (piped) as input to the next servlet, so each servlet in the chain has

option to change or extend the content. As shown in figure 2.10. There are two common

ways to trigger a chain of servlets for an incoming request. First, tell the server that

certain URLs should be handled by an explicitly specified chain. Or, tell the server to

send all output of a particular content type through a specified servlet before it is

returned to the client, effectively creating a chain on the fly.

31

--·------ ----- ~- ----~----·--

Figure 2.10. Servlet chaining

When a servlet converts one type of content into another, the technique is called

filtering.
Servlet chaining can change the way of thinking about the web content creation. Here

are some of the things have to do:
Quickly change the appearance of a page, a group of pages, or a type of content.

For example, improve the site by suppressing all <BLINK> tags from the pages of the

server; speak to who don't understand English by dynamically translating the text from

the pages to the language read by the client. Also suppress certain words that don't want

everyone to read, be they the seven dirty words or words not everyone knows already,

like the unreleased name of the secrete project. Also enhance certain words on the site,

so an online new magazine could have a servlet detect the name of any fortune 1000

companies and automatically make each company name a link to its home page.

Take a kernel of content and display it in special formats.

For example, embed custom tags in the page and have a servlet replace them with

HTML content. Imagine an <SQL> tag whose query contents are executed against a

database and whose result are placed in an HTML table. This is, in fact similar to the

java web server supports the <servlet> tag.

Support esoteric data types.
For example, serve unsupported image types with a filter that converts

nonstandard image types to GIF or JPEG.
why would be used a servlet chain when instead could be written a script that edits the

files in place- especially when there is an additional amount of overhead for each

servlet invoked in handling a request?

32

The answer is that servlet chains have a threefold advantage:

• They can easily be undone, so when users riot against the tyranny of

removing their <BLINK> freedom, quickly reverse the change and

appease the masses.

• They handle dynamically created content, so that restrictions are

maintained, the special tags are replaced, and dynamically converted

Postscript images are properly displayed, even in the output of a servlet

(or a CGI script).

• They handle the content of the future, so that don't have to run the

script every time new content added.

2.8 Summary
This chapter presented Http Servlet Basics. And first hello word servlet

program, and how we can compile the source code and running the servlet, and the

different ways can be servlets used to handle a variety of web development tasks.

33

Chapter Three
The Servlet Life Cycle

3.1 Overview
The servlet life cycle is one of the most exciting features of servlets. This life

cycle is a powerful hybrid of the life cycle used in CGI programming and lower-level

NSAPI and ISAPI programming [1].

3.2 The Servlet Alternative
The servlet life cycle allows servlet engines to address both the performance

and resources problems of CGI and the security concerns of low-level server API

programming. A servlet engine may execute all its servlets in a single java virtual

machine (JVM). Because they are in the same JVM, servlets can efficiency share data

with each other, yet they are prevented by the java language from accessing one

another's private data. Servlets may also be allowed to persist between requests as

object instances, taking up far less memory than full-fledged processes.

Servers have significant leeway in how they chooce to support servlets. The only hard

and fast rule is that a servlet engine must conform to the following life cycle contract:

1. Create and initialize the servlet.

2. Handle zero or more service calls from clients.

3. Server removes the servlets
(Some servers do this step only when they shut down)

Figure 3 .1 demonstrate these points.

It's perfectly legal for a servlet to be loaded, create and instantiated in its own JVM,

only to be destroyed and garbage collected without handling any client requests or after

handling just one request.

34

Lnad

Client

Client

-- .Un1oad ·~ .. ,.. .•.........•..• ~
Server

Figure 3.1. The life cycle of servlet.

3.2.1 A Single Java Virtual Machine
Most servlets engines want to execute all servlets in a single JVM. Where that

JVM itself executes can differ depending on the server, through. With a server written

in java, such as java web server, the server itself can execute inside a JVM right

alongside its servlets.
With a single- process, multithreaded web server written in another language, the JVM

can often be embedded inside the server process. Having the JVM be part of the server

process maximizes performance because a servlet becomes, in a sense, just another low

level server API extension. Such a server can invoke a servlet with a lightweight context

switch and can provide information about requests through direct method invocation.

A multiprocess web server (which runs several processes to handle requests) doesn't

really have the choice to embed a JVM directly in its process because there is no one

process. This kind of server usually runs an external JVM that its process can share.

With this approach, each servlet access invokes a heavyweight context switch

reminiscent of FastCGI [I]. All the servlets, however, still share the same external

process.

Fortunately, from the perspective of the servlet, the server's implementation doesn't

really matter because the server always behaves the same way.

35

3.3 Servlet Reloading
Most servers automatically reload a servlet after its class file (under the default

servlet directly, such as server_root/servlets) changes. It's an on-the-fly upgrade

procedure that greatly speeds up the development-test cycle and allows for long server

uptimes.
Servlet reloading may appear to be a simple feature, but it's actually quite a trick and

requires quite a hack. ClassLoader objects are designed to load a class just once. To get

around this limitation and load servlets again and again, servers use custom class

loaders that load servlets from the default servlets directory. This explains why the

servlet classes are found in server_root/servlets even thought that directory doesn't

appear in the server's classpath.
When a server dispatches a request to a servlet, it first checks if the servlet's class file

has changed on disk. If it has changed, the server abandons the class loader used to load

the old version and creates a new instance of the custom class loader to load the new

version. Old servlet versions can stay in memory indefinitely (and, in fact, other classes

can still hold references to the old servlet instances, causing old side effects), but the old

versions are not used to handle any more requests.

Servlet reloading is not performed for classes found in the server's classpath (such as

server_root/classes) because those classes are loaded by the core, primordial class

loader. These classes are loaded once and retained in memory even when their class

files change.

In general best to put servlet support classes somewhere in the server's classpath (such

as server root/classes) where they don't get reloaded. The reason is that support classes

are not nicely reloaded like servlets. A support class, placed in the default servlets

directly and accessed by a servlet, is loaded by the same class loader instance that

loaded the servlet. It doesn't get its own class loader instance. Consequently, if the

support class is recompiled but the servlet referring to it isn't, nothing happens. The

server checks only the timestamp on servlet class files.

A frequently used trick to improve performance is to place servlet in the default servlet

directly during development and move them to the server's classpath for deployment.

36

Having them out of the default directly eliminates the needless timestamp comparison

for each request.

3.4 Init and Destroy

Just like applets, servlets can define init () and destroy () methods. A servlet's

init (ServletConfig) method is called by the server immediately after the server

constructor the server's instance. Depending on the server and its configuration, this can

be at any of these times:

• When the server starts.

• When the servlet first requested, just before the service () method is invoked.

• At any request of server administrator.

In any case, init () is guaranteed to be called before the servlet handles its first request.

The init () method is typically used to perform servlet initialization- creating or

loading objects that are used by the servlet in the handling of its requests. Why not use a

constructor instead? Well, in JSDKl.O (for which servlets were originally written [1]),

constructors for dynamically loaded java classes (such as servlets) couldn't accept

arguments. So, in order to provide a new servlet any information about itself and its

environment, a server had to calla servlet's init () method and pass along an object that

implements the ServletConfig interface. Also, java doesn't allow interfaces to declare

constructors. This means that the javax.servlet.Servlet interface cannot declare a

constructor that accepts a ServletConfig parameter. It has to declare another method,

like init (). It's still possible, of course, to define constructors in servlets, but in the

constructor has not been to access the ServletConfig object or the ability to throw a

ServletException.

The ServletConfig object supplies a servlet with information about its

initialization (init) parameters. These parameters are given to the servlet itself and are

not associated with any single request. They can specify initial values, such as where

counters begin to counting, or default values, perhaps a template to use when not

specified by the request. In the java web server, init parameters for a servlet are usually

set during the registration process.

Other servers set init parameters in different ways. Sometimes it involves editing a

configuration file. One creative technique has been used with java web server, but

currently by no other servers, is to treat servlets as JavaBeans [1]. Such servlets can be

37

loaded from serialized files or have their init properties set automatically by the server

at load time using introspection.

The ServletConfig object also holds a reference to a ServletContext object that a servlet

may use to investigate its environment.

The server calls a servlet's destroy O method when the servlet is about to be unloaded.

In the destroy O method, a servlet should free any resources it has acquired that will not

be garbage collected. The destroy O method also gives a servlet a chance to write out its

unsaved cached information or any persistent information that should be read during the

next call to init O.

3.5 Single -Thread Model
Although it is standard to have one servlet instance per registered servlet name, it is

possible for a servlet to elect instead to have a pool of instances created for each of its

names, all sharing the duty of handling requests. Such servlets indicate this desire by

implementing the javax.servlet.SingleThreadModel interface. This is an empty, tag

interface that defines no methods or variables and servers only to flag the servlet as

waiting the alternate life cycle.

A server that loads a SingleThreadModel servlet must guarantee, according to the

Servlet API documentation, "That no two threads will execute concurrently the service

method of the servlet." To accomplish this, each thread uses a free servlet instance from

the pool, as shown in figure 3.3. Thus any servlet implementing SingleThreadModel can

be considered thread safe and isn't required to synchronize access to its instance

variables.

request

Web server
__............ Thread Servlet Pool

·- ~ Servlet Instance

__........... Thread
····· ···· ················· ·········~ Servlet Instance I request

request
__.. Thread · ·- J Servi et Instance

___ '.f.bread , Servlet Instance
request

Figure 3.2. The single Thread Model

38

3.6 Last Modified Times

Most web servers, when they return a document, include as part of their

response a last-modified header. An example last-modified header value might be:

Tue, 06-may-98 15:41:02 GMT
This header tells the client the time that page was last changed. That information alone

is only marginally interesting, but it proves useful when a browser reloads a page.

Most web browsers, when they reload a page, include in their request an IF-Modified

Since header. It structure is identical to the Last-modified header:

Tue, 06-may-98 15:41:02 GMT

This header tells the server the last-modified time of the page when it was last

downloaded by the browser. The server can read this header and determine if the file

has changed since the given time. If the file has changed, the server must send the

newer content. If the file hasn't changed, the server can reply with a simple, short

response that tells the browser the page has not changed and it is sufficient to redisplay

the cached version of the document. For those familiar with the details of HTTP, this

response is the 304 "Not Modified" status code.

This technique works great for static pages: the server can use the file system to find out

when any file was last modified. For dynamically generated content, through, such as

that returned by servlets, the server needs some extra help. By itself, the best the server

can do is safe and assume the content changes with every access, effectively eliminating

the usefulness of the Last-Modified and If-modified-Since headers.

The extra help servlet can provide is implementing the getLastModified O method. A

servlet should implement this method to return the time is last changed its output.

Servers call this method at two times. The first time the server calls it is when it returns

a response, so that it can set the response's Last-Modified header. The second time

occurs in handling GET requests that include the IF-Modified-Since header (usually

reloads), so it can intelligently determine how to response. If the time returned by

getLastModified O is equal to or earlier than the time sent in the ff-Modified-Since

header, the server returns the"Not Modified" status code. Otherwise, the server calls

doGet O and return the servlet's output.
Some servlets may find it difficult to determine their last modified time. For these

situations, it's often best to use the "play it safe" default behavior. Many servlets,

39

however, should have little or no problem. Consider a «bulletin board" servlet where

people post carpool openings or the need for recquetable partners. It can record and

return when the bulletin board's contents were last changed. Even if the same servlet

manages several bulletin boards, it can return a different modified time depending on

the board given in the parameters of request. Here's a getLastModified() method.

Public long getLastModified(HttpServletRequest req){

Return LastprimeModified.getTime0/1000* I 000; }

Notice that this method returns a long value that represent the time as a number of

milliseconds since midnight, January I, 1970, GMT. This is the same representation

used internally by java to store time values. Thus, the servlet uses the getTime ()

method to retrieve LastprimeModified as long.

Before returning this time value, the servlet rounds it down to the nearest second by

dividing by 1000 and then multiplying by 1000. All times returned by getLastModified

() should be rounded down like this. The reason is that the Last-Modified and If

Modified-Since headers are given to the nearest second. If getLastMopdified () returns

the same time but with higher resolution, it may erroneously appear to be a few

milliseconds later than the time given by If -modified-Since. For example, let's assume

LastprimeModified.getTime Q/1000*1000 is exactly 869127442359 milliseconds, this

told the browser, but the only to the nearest second:

Thu, 17-Jul-97 09:17:22 GMT

Now let's assume that the user reloads the page and the browser tells the server, via the

If-Modified-Since header, the time it believes its cashed page was last modified:

Thu, 17-Jul-97 09:17:22 GMT
Some servers have been known to receive this time, convert it to exactly 869127442000

milliseconds, find that this time is 359 milliseconds earlier than the time returned by

getLastModified (), and falsely assume that the servlet's content has changed. This is

why, to play it safe, getLastModified O should always round down to the nearest
thousands milliseconds.

The HttpServletRequest object is passed to getLastModified () in case the servlet

needs to base its results on information specific to the particular request.

The generic bulletin board servlet can make use of this to determine which board was

being requested.

40

3. 7 Status Codes
The most common status code numbers are defined as mnemonic constants

(public final static in fields) in HttpServletResponse class. A few of these are listed in

Table 3.1.however, by using status codes, a servlet can do more with its response. For

example, it can redirect a request or report a problem.

3.7.1 Setting a Status Code
A servlet can use setStatus () to set a response status code:

public void HttpServletResponse.setStatus(int sc)

public void HttpServletResponse.setStatus(int sc, String sm)

Both of these methods set HTTP status code to the given value. The code can be

specified as a number or with one of the SC_ XXX codes defined within

HttpServletResponse. With the single-argument version of the method, the reason

phrase is set to the default message for the given status code. The two-argument version

allows to specify an alternate message.

Mnemonic Constant code Default Message _Meaning

SC OK l 200 I OK I The client's request was successful,
and the server's response contains
the requested data. This is the
default status code.

SC _NO_ CONTENT I 204 I No Content I The request succeeded, but
there was no new response body
to return. Browsers receiving this
code should retain their current
document view. This is a useful
code for a servlet to use when it
accepts data from a form but
wants the browser view to stay at
the form, as it avoids the "Docu-
ment contains no data" error

I
message.

SC_MOVED_
!Moved Permanently I The requested resource has PERMANENTLY 30 1

permanently moved to anew
location. Future references should
use the new URL in requests. The
new location is given by the Loca-
tion header. Most browser auto-

I
matically access the new location

SC MOVED I Moved Temporarily I The requested resource has TEMPORARILY 302
temporarily moved to another
location. But future references
should still use the original URL
to access the resource. The new
location is given by the Location

I
41

header. Most browsers automati
cally access the new location.

SC_ UNAUTHORIZED 40 l I Unauthorized The request lacked proper autho
rization. Used in conjunction with
the WWW-authenticate and
Authorization headers.

SC NOT FOUND 404 I Not Found The requested resource was not
found or is not available.

SC _lNTERNAL_
Server_ERROR

500 I Internal Serve
Error an unexpected error occurred

inside the server that prevented it
from fulfilling the request.

SC_NOT_
IMPLEMENIBD 501 I Not Implemented (The server does not support the

functionality needed to fulfill the
request.

SC SEVICE - -
UNAVAILABLE

503 I Service Unavailable I The service (server) is temporarily
available but should be restored

in the future. If the server knows
when it will be available again, a
Retry-After header may also be
supplied.

Table 3.3. HTTP Status Codes

The setStatus O method should be called before the servlets return any of its response

body.

If a servlet sets a status code that indicates an error during the handling of the request, it

can call send.Error() instead of setStatus ():

public void HttpServletResponse.setError(int sc)

public void HttpServletResponse.setError(int sc, String sm)

a server may give the send.Error O method different treatnment than setStatus (). When

the two-argument version of the method is used, the status message parameter may be

used to set an alternate reason phrase or it may be used directly in the body of the

response, depending on the server's implementation.

3.8 HTTP Headers
A servlet can set HTTP headers to provide extra information about its response.

Table 3.2 lists the HTTP headers that are most often set by the servlets as a part of a

response.

42

3.8.1 Setting an HTTP Header
The HttpServletResponse class provides a number of methods to assist servlets

in setting HTTP response headers. Use setHeader Oto set the value of header:

Public void HttpServletResponse.setHeader (String name, String value)

This method sets the value of the named header as a String. The name rs case

insensitive, as it is for all these methods. If the header had already been set, the new

value overwrites the previous one. Headers of all types can be set with this method.

If has be needed to specify a time stamp for a header, uses setDateHeader() :

Public void HttpServletResponse.setDateHeader(String name, long date)

This method sets the value of the named header to particular date and time. The method

accepts the date value as long that represents the number of milliseconds since the

epoch (midnight, January 1, 1970 GMT). If the header has already been set, the new

value overwrites the pervious one.

Finally, to specify an integer value for a header has been used setlntHeader ():

Public void HttpServletResponse.setlnitHeader (String name, int value)

This methods sets the value of the named header as int. if the header had already been

set, the new value overwrites the previous one.

The containsHeader () method provides a way to check if a header already exists:

Public void HttpServletResponse.containsHeader(String name)

This method return true if the named header has already been set, false if not.

In addition, the HTML 3 .2 specification defines an alternate way to set header values

using the <META HTTP-EQUIV> tag inside the HT1\1L page itself:

<META HTTP-EQUIV="name" CONTENT="value">

This tag must be sent as part of the <HEAD> section of the HTML page. This

technique does not provide any special benefit to servlets; it was developed for use with

static documents, which do not have access to their headers.

43

Header Usage

Cache-Control Specifies aliliy special treabnent a caching system should give to
This document. The most common values are no-cashe (to indi
cate this document should not be cached), no-store (to indicate
this document should not be cached or even stored by a proxy
server, uaually due to its sensitive contents), and max
age=seconds (to indicate how long before the document should
be considered stale). This header was introduced in HTIP 1.1.

Pragma The HTIP 1.0 equivalent of cache-control, with no-caches as
its only possible value.

connection Used to indicate whether the server is willing to maintain an open
persistent) connection to the client. If so, its value is set to keep
Ii ve. If not, its value is set to close. Most web servers handle
this header on behalf of this servlets automatically setting its
value to keep-alive when a servlet sets its Content-Length header.

Retry-After Specifies a time when the server can again handle requests, used
with the SC_ SER VICE_ UNA V AlLABLE status code. Its value is
either an int that represents the number of seconds or a date string
that represents an actual time.

Expires Specifies a time when the document may change or when its
information will become invalid It implies that it is unlikely the
document will change before that time.

Location Specifies a new location of a document, usually used with the
Status codes SC_CREATED, SC_MOVED_PERMANENTLY, and SC_
MOVED_ TEMPORARITY. Its value must be a fully qualified URL
(including "http:/ f').

WWW-Authenticate Specifies the authorization scheme and the realm of authorization
required by the client to access the requested URL.
Used with the status code SC UNAUTIIORIZED.

Content-Encoding Specifies the scheme used to encode the response body. Possible
values are, gzip (or x-gzip) and compress (or x-compress).
Multiple encodings should be represented as a comma-separated
List in the order in which the encoding were applied to the data

Table 3.4. Http Response Headers

3.9 Exceptions
Any exceptions is thrown but not caught by a servlet is caught by its server.

How the server handles the exception is server-dependent: it may pass the client the

message and the stack trace, or it may not. It may automatically log the exception, or it

may even call destroy () on the servlet and reload it, or it may not.

44

Servlets designed and developed to run with a particular server can optimize for that

server's behavior. A servlet designed to interoperate across several servers cannot

expect any particular exception handling on the part of the server. If such a servlet

requires special exception handling, it may catch its own exceptions and handle them

accordingly.

There are some types of exceptions a servlet has no choice but to catch itself. A servlet

propagate to its server only those exceptions that subclass IOException,

ServletException, or RunTimeException. The reason has to do with method

signatures. The service O method of servlet declares in its throws clause that it throws

IOException and ServletException exceptions. For it (or the doGet O and doPostQ

methods it calls) to throw and not catch anything else causes a compile time error. The

RuntimeException is special case exception that never needs to be declared in a throws

clause. A common example is a NullPointerException.

The init O and destroy O methods have their own signatures as well. The init O method

declares that it throws only ServletException exceptions, and destroy O declares that it
throws no exceptions.

ServletException is a subclass of java.lang.Exception that is specific to servlets-the

class is defined in the javax.servlet package. This exception is thrown to indicate a

general servlet problem. It has the same constructors as java.lang.Exception on that

takes no argument and one that takes a single message string. Servers catching this

exception may handle it any way they see fit.

The javax.servlet package defines one subclass of ServletException.

UnavailableException, this exception indicates a servlet is unavailable, either

temporarily or permanently.

UnavailableException has two constructors:

javax.servlet.UnavailableException(Servlet servlet, String msg)

javax.servlet.UnavailableException(int seconds, Servlet servlet, String msg)

the two- argument constructor creates a new exception that indicates the given servlet is

permanently unavailable, with an explanation given by msg. the three-argument version

45

creates a new exception that indicates the given servlet is temporarily unavailable is

given by seconds. This time is only an estimate. If no estimate can be made, a

nonpositive value may be used. Notice the nonstandard placement of the optional

second's parameter as the first parameter instead of the last. This may be changed in an

upcoming release. UnavailableException provides the isPermanent 0, getServlet 0,
and getUnavailableSeconds () methods to retrieve information about an exception.

3.9.1 Logging
Servlets have the ability to write their errors to a log file using the log () method:

Public void ServletContext.log(String msg)

Public void Servlet!Context.log(Exception e,String msg)

The single-argument method writes the given message to a servlet log, which is usually

an event log file. The two-argument version writes the given message and exception's

stack trace to a servlet log. Notice the nonstandard placement of the optional Exception

parameter as the first parameter instead of the last for this method. For both methods,

the output format and location of the log are server specific

The GenericServlet.log(String msg)
This is another version of the ServletContext method to GenericServlet for

convenient. This method allows a servlet to call simply:

Log (msg)

To write to the servlet log. Note, however, the GenericServlet does not provide the

two-argument version of log(). The absent of this method probably an oversight, to be

rectified in a future release. For now, a servlet can perform the equivalent by calling:

getServletContext (j.log (e,msg)

The log() method aids debugging by providing a way to track a servlet's actions. It also

offers a way to save a complete description of any errors encountered by the servlet.

The description can be the same as the one given to the client, or it can be more

exhaustive and detailed.

3.10 Summary
This chapter presented the life cycle of servlet, and the init and destroy methods,

and Status code, HTTP Headers and finally the exceptions in the servlet when bug

happened how the servlet can be caught by using some ways of exceptions and logging.

46

Chapter Four
Retrieving Information

4.1 Overview
To build a successful web application, need to know a lot about the environment

in which it is running, and also need to find out about the server that is executing the

servlets or specific of the client that is sending requests. All these things will be

presented in this chapter.

4.2 Initialization Parameters
Each registered servlet name can have specific initialization (init) parameters

associated with it. Init parameters are available to the servlet at any time; they are often

used in init O to set initial or default values for a servlet or to customize the servlet's

behavior in some way.

4.2.1 Getting an Init Parameter
A servlet uses the getlnitParameter () method to get access to its init

parameters:

Public String ServletConfig.getlnitParameter(String name)

This method returns the value of the named init parameter or null if it does not exit. The

return value is always a single String. It is up to the servlet to interpret the value.

The GenericServlet class implements the ServletConfig interface and thus provides

direct access to the getlnitParameter () method. The method usually called like this:

Public void init (ServletConfig config) throws ServletException {

Supert.init(config);

String greeting=getlnitParameter ("greeting");

}

A servlet that needs to establish a connection to a database can use its init parameter to

define the details of the connection.

47

4.3 Getting Init Parameter Names
A servlet can examine all its init parameters using getlnitParameterNames ():

Public Enumeration ServletConfig.getlnitParameterNames 0

This method returns the names of all the servlet's init parameter as an Enumeration of

String objects or an empty Enumeration if no parameters exit. It's most often used for

debugging.
The GenericServlet class also makes this directly available to servlets.

4.4 The Server
A servlet can find out much about the server in which it is executing. It can learn

the hostname, listening port, and server software, among other things. A servlet can

display this information to a client; use it to customize its behavior based on a particular

server package.

4.4.1 Getting Information About the Server
There are four methods that can use ti learn about its server: two that are called

using the ServletRequest object passed to the servlet and two that are called from the

ServletContext object in which the servlet is executing. A servlet can get the name of

the server and port number for a particular request with getServerName O and
getSerberPort (), respectively:

Public String ServletRequest.getServerName()

Public int ServletRequest.getServerPort()

These methods are attributing of ServletRequest because the values can change for

different requests if the server has more than one name (a technique called virtual

hosting). The return name might be something like"www.servlets.com" while the

returned port might be something like "8080".

The getServerlnfo () and getAttribute O methods of ServletContext provide

information about the server software and its attribute:

Public String ServletContext.getServerlnfo O

48

Public Object ServletContext.getAttribute O
getServerlnfo O returns the name and version of the server software, separated by a

slash. The string returned might be something like "JavaWebServer/1.1. l".

getAttribute O returns the value of the named server attribute as Object or null if the

attribute does not exit. The attributes are server-dependent.

4.5 The Client
For each request, a servlet has the ability to find out about the client machine

and, for pages requiring authentication, about the actual user. This information can be

used for logging access data, associating information with individual users, or

restricting access to certain clients.

4.5.1 Getting Information About the client Machine
A servlet can use getRemoteAddrQ and getRemoteHost O to retrieve the IP

address and hostname of the client machine, respectively:

Public String ServletRequest.getRemoteaddrQ

Public String ServletRequest.getRemoteHost()

Both values are returned as String objects, the information comes from the socket that

connects the server to the client, so the remote address and hostname may be that of a

proxy server. An example of remote address might be "192.26.80.118" while an

example ofremote host might be "dist.engr.sgi.com".

The IP address or remote hostname can be converted to java.net.InetAddress object

using InetAddress.getByName ():

InetAddress remotelnetAddress

(request.getRemoteAddr)

=InetAddress.getByName

4.5.2 Getting Information About the User
What has to do when needing to restrict the access to someone of the web pages

but wanting to have a bit more control over the restriction than this" continent by

continent" approach? For example, an online magazine and need only paid subscribes to

read the articles. Well, it does not need to servlets to do this.

49

Nearly every HTTP server has a built-in capability to restrict access to some or all of its

pages to a given set of registered users. How the restricted access depends on the server,

but here's how it works mechanically. The first time a browser attempts to access one of

these pages, the HTTP server replies that it needs special user authentication. When the

browser receives this response, it usually pops open a window asking the user for a

name and password appropriate for the page, as shown in figure 4 .1.

Figure 4.1. Please log in.

Once the user enters his information, the browser again attempts to access the page, this

time attaching the user's name and password along with the request. If the server

accepts the name/password pair, it happily handles the request. If, on the other hand, the

server doesn't accept the name/password pair, the browser is again denied and the user

swears under his breath about forgetting yet another password.

How this does involves servlets? When access to a servlet has been restricted by the

server, the servlet can get the name of the user that was accepted by the server, using the

getRemoteUser () method:

Public String HttpServletRequest.getRemoteUser ()

This method returns the name of the user making the request as String or null if access

to the servlet was not restricted.

50

A servlet can also use the getAuthType O method to find out what type of authorization

was used:

Public String HttpServletRequest.getAuthType O
This method returns the type of authentication used or null if access to the servlet was

not restricted. The most common authorization types are '"BASIC" and "DIGEST".

With the remote user's name, a servlet can save information about each client. Over the

long term, it can remember each individual's preference. It can remember the series of

pages viewed by the client and use them to the add a sense of state to a stateless HTTP

protocol.

4.6 The Request
In the previous sections have been shown how the servlet finds out about the

server and about the client. Now, how the servlet can be finding what the client wants?

4.6.1 Request Parameters
Each access to a servlet can have any number of request parameters associated

with it. These parameters are typically name/value pairs that tell the servlet any extra

information it needs to handle the request.
An HTTP servlet gets its request parameters as part of its query string (for GET

requests) or as encoded post data (for POST requests). Fortunately, even thought a

servlet can receive parameters in a number of different ways, every servlet retrieves its

parameters the same way, using getParameter () and getParametersValues ():

Public String ServletRequest.getParameter(String name)

Public String[] ServletRequest.getParameterValues(String name)

getParameter () returns the value of the named parameters as String or null if the

parameter was not specified. getParameterValues () method returns all the values of

the named parameter as an array of String objects or null if the parameters was not

specified. A single value is returned in an array of length 1.

In addition to getting parameter values, a servlet can access parameter names using

getParameterNames ():

51

Public Enumeration ServletRequest.getParameterNames 0
This method returns all parameter names as an Enumeration of String object or empty

Enumeration if the servlet has no parameters. The method is most often used for

debugging.

Finally, a servlet can retrieve the raw query of the request with getQueryString Q:

Public String ServletRequest.getQueryString O
This method returns the raw query string (encoded GET parameter information) of the

request or null if there was no query string. For example, "servlet/Sqrt? 576" the query

string is 576.

4.6.2 Path Information

HTTP request can include something called "extra path information" or virtual

path". In general, this extra path information is used to indicate a file on the server that

the servlet should use for something. This path information is encoded in URL of an

HTTP request. An example URL looks like this:

http://server:port/servlet/ViewFile/index.html

This invokes the ViewFile servlet, passing"index.html" as extra path information. A

servlet can access this path information, and it can also translate the "/index.html" string

into the real path of the index.html file. What is the real path of "/index.html"? It's the

full file system path to the file- what the server would return if the client asked for

"/index.html" directly. This probably turns out to be document root/index.html, but, of

course, the server could have special aliasing that changes this.

Besides being specified explicitly in a URL, this extra path information can also be

encoded in ACTION parameter of HTML form:

<form method=GET ACTION="/servlet/Dictionary/dict/definitions.txt">

</form>

This form invokes the Dictionary servlet to handle its submissions and passes the

Dictionary the extra path information "/dict/definition.txt". The same file client would

see if it requested "/dict/definition.txt", probably

server _root/public _html/diet/definition. txt.

Why extra path information? Why does HTTP have special support for extra path

information? Isn't it enough to pass the servlet a path parameter? The answer is yes.

Servlet don't need the special support. But CGI programs do.

A CGI program cannot interact with its server during execution, so it has no way to

receive a path parameter. The server has no somehow translated the path before

invoking the CGI program. This is why there needs to support for special "extra path

information". Servers know to translate this extra path and send the translation to CGI

program as an environment variable.

Of course, just because servlets don't need the special handling of "extra path

information," it does not mean they should not use it. It provides a simple, convenient

way to attach a path along with a request.

4.6.3 Getting Path information
A servlet can use getPathlnfo () method to get extra path information:

Public String HttpServletRequest.getPathlnfo ()

This method returns the extra path information associated with the request or null if

none was given. An example path is "/dict/definitions.txt ". The path information by

itself, however, is only marginally useful. A servlet usually needs to know the actual file

system location of the file given in the path info, which is where, getPathTranslated O
comes m:

Public String HttpServletRequest.getPathTranslated ()

This method returns the extra path information translated to real file system path or null

if there is no extra path information. The returned path does not necessarily point to an

existing file or directory. An example translated path is

"C:\Java WebServerl .1.1 \public_ html\dict\definition.txt".

4.6.4 Getting Mime Types
Once a servlet has the path to a file, it often needs to discover the type of the file.

Use getMimeType Oto do this:

Public String ServletContext.getMimeType (String file)

53

This method returns the MIME type of the given file or null if it isn't known. Some of

MIME returns are "text/plain", '1ext/html","text/gif ","text. jpeg".

4.6.5 How It Was Requested
A servlet has several ways of finding out details about how it was requested. The

getScheme () method returns the scheme used to make this request:

Public String ServletRequest.getScheme ()

as example of the scheme returns are "http","https","ftp",as well as the newer java

specific ')dbc","rmi". There is no direct CGI counterpart (thought CGI implementation

have a SER VER_ URL variable that includes the scheme).

The getProtocol () method returns the protocol a version number used to make the

request:

Public String ServletRequest.getProtocol ()

The protocol and version number are separated by slash. The method returns null if no

protocol; could be determined. For HTTP servlets, the protocol is usually ''vHTTPl.O"

or ''vHTTP 1. 1"

To find out what method was used for a request, a servlet uses getMethod ():

Public String HttpServletRequest.getMethod O
This method returns the HTTP method used to make the request. for example,

"GET","POST","HEAD".

4. 7 Session Tracking
May web sites today provide custom web pages and/or functionality on a client

by-client basic? For example, some web sites allow the user to customize their home

page to suit what has been needed. An excellent example of this is the Yahoo! Web site.

If the user has been visited the site

http:! /my .yahoo.com/

The user can be customized how the Yahoo! appear in the future when the user revisit

the site. The HTTP protocol does not support port persistent that could help a web

54

server determine that a request is from a particular client. As far as a web server is

concerned, every request could be from the same client or every request could be from a

different client. Therefore the Session Tracking is:

A mechanism that servlets use to maintain state about a series of requests from the same

user (that is, requests originating from the same browser) across some period of time.

4.7.1 Session -Tracking Basics
Every user of a site is associated with a javax.servlet.http.HttpSession object

that servlets can use to store or retrieve information about that user. A servlet uses its

request object's getSession () method to retrieve the current HttpSession object:

Public Http Session HttpServletRequest.getSession(Boolean crearte)

This method returns the current session associated with the user making the request. If

the user has no current valid session, this method creates one if create is true or return

null if create is false. This method must be called once before any output is written to

the response.

To put data to an HttpSession object with the putValue () method:

Public void HttpSession.putValue(string name, Object value)

This method binds the specific object value under the specific name. any existing

binding with the same name is replaced. To retrieve an object from a session, use

getValue ():

Public Object HttpSession.getValue(String name)

This method returns the object bound under the specific name or null if there is no

binding. To get also the names of all the objects bound to a session with

getValueNames():

Public String O HttpSession.getValueNames ()

This method returns an array that contain the names of all objects bound to this session

or an empty (zero length) array if there are no bindings. To remove an object from a

session with remove Value ():

55

Public void HttpSession.removeValue (String name)

This method removes the object bound to the specific name or does nothing if there is

no binding. Each of these methods can throw a java.lang.IllegalStateException if the

session being accessed is invalid.

4.7.2 The Session Life Cycle

A session expires automatically, after a set time of interactivity (for the java web

server the default is 30 minutes), when it is explicitly invalidated by a servlet. When a

session expires (or invalidated), the HttpSession object and the data values it contains

are removed from the system.

There are several methods involved in managing the session life cycle:

Public Boolean HttpSession.isNew ()

This method returns whether the session is new.

Public void HttpSession.invalidate ()

This method causes the session to be immediately invalidated. All objects stored

in the session are unbound.

Public long HttpSession.getCreationTime ()

This method returns the time at which the session was created, as long value that

represents the number of milliseconds.

Public long HttpSesion.getLastAccessTime ()

This method returns the time at which the client last sent a request associated

with this session, as long value that represents the number of milliseconds.

Each of these methods can throw a java.lang.IllegalStateException if the session being

accessed is invalid.

4. 7.3 Putting Session in Context

How does a web server implement session tracking? When a user first access the

site, that user is assigned a new HttpSession object and unique session ID. The session

ID identifies the user and is used to match the user with the HttpSession object in

subsequent requests. A servlet can discover a session's ID with the getld() method:

56

'

Public String HttpSession.getldO ~.,.-0,... A

This method returns the unique String identifier assigned to this session. The ID~

be something like: HT04D1QAAAAABQDGPM5QAAA. The method throws an

IllegalStateException if the session is invalid.

All valid sessions are grouped together in a HttpSessionContext object. Theoretically, a

server may have multiple session contexts, although in practice most have just one. A

reference to the server's HttpSessionContext is available via any session object's

getSessionContext () method:

Public HttpSessionContext.HttpSession.getSessionContext ()

This method returns the context in which the session is bound; it throws an

IllegalStateException if the session is invalid.

It is possible now to use HttpSessionContext to examine all the currently valid session

with the following two methods:

Public Enumeration HttpSessionContext.getlds ()

Public HttpSession HttpSessionContext.getSession (String

sessionld)

The getlds () method returns an Enumeration that contains the session IDs for all

currently valid sessions in this context or an empty Enumeration if there are no valid

sessions. getSession () returns the session associated with the given session ID. The

session IDs returned by getlds () should be held as a server secret, because any client

with knowledge of another client's session ID can, with a forged URL join the second

client's session.

4.8 Cookies
Cookies are a way for a server (or a servlet, as part of a server) to send some

information to a client to store, and for the server to later retrieve its data from that

client. Servlets send cookies to clients by adding fields to HTTP response headers.

Clients automatically return cookies by adding fields to HTTP request headers.

57

4.8.1 Working with Cookies
Version 2.0 of the servlet API provides the javax.servlet.http.Cookie class for

working with cookies. The HTTP headers details for the cookies are handled by the

servlet API. To create a cookie with Cookie () constructor:

public Cookie (String name, string value)

This creates a new cookie with initial name and value. A servlet can send a ccokie to the

client by passing a cookie object to the add Cookie O method of HttpServletResponse :

Public void HttpServletResponse.addCookie(Cookie cookie)

This method adds the specified cookie to the response. Additional cookies can be added

with subsequent calls to addCookie (). Because cookies are sent using HTTP headers,

they should be added to the response before the user send any content. Browsers are

only required to accept 20 cookies per site, 300 total per user, and they can limit each

cookie's size to 4096 bytes.

The code to set a cookie looks like this:

Cookie cookie=new Cookie ("ID","123");

Response.add Cookie(cookie);

A servlet retrieves cookies by calling the getCookies() method of HttpServletRequest:

Public Cookie[] HttpServletRequest. get Cookie()

This method returns an array of Cookie objects that contains all cookies sent by the

browser as part of the request or null if no cookies were sent. The code to fetch cookies

looks like thisL:

Cookie U cookies=request.getCookies ();
If (cookies! =null) {

For (int i=O; i<cookies.lenght; i++) {

String name=cookies[i].getName ();

String value=cookies[i].getValue ();

}}

The following methods are used to set the attribute of Cookie:

Public void Cookie.setVersion (int v)

58

Sets the version of Cookie.

Public void Cookie.setDomain (String pattern)

Specifies a domain restriction patteren. A domain pattern speciefies the servers

that sould see a cookie. By default, cookies are returned only to the host that saves

them.

Public void Cookie.setMaxAge(int expiry)

Specifies the maximum age of the cookie in seconds before it expires. A

negative value indicates the default, that the cookie should expire when the browser

exits. A zero value tells the browser to delete the cookie immediately.

Public void Cookie.setPatb (String uri)

Specifies a path for a cookie, which is the subset of URis to which a cookie

should be sent. By default, cookies are sent to the page that set the cookie and to all the

pages in that directly or under that directly. For example, if "/servlet/CookieMonster"

sets a cookie, the default path is "/servlet".

Public void Cookie.setSecure (Boolean flag)

Indicates whether the cookie should be sent only over a secure channel, such as

SSI. By default, its value is false.

Public void Cookie.setComment (String comment)

Sets the comment field of the cookie. A comment describes the intended purpose

of a cookie. Web browsers may choose to display this text to the user. Comments are

not supported by version cookies.

Public void Cookie.setValue (String newValue)

Assigns a new value to a cookie. With version cookies, values should not

contain the following: white space, breaks and parentheses, equals signs, commas,

double quotes, and slashes, question marks at signs, colons, and semicolons. Empty

values may not behave the same way on all browsers.

59

4.9 Summary

This chapter presented the most common methods that can be used to write the

servlets, and the most important topic in the web pages session tracking and cookies,

and the methods of each one.

60

Chapter Five
Security

5.1 Overview
This chapter introduces the basics of web security and digital certificate

technology in the context of using servlets. It also discusses how to maintain the

security of your web server when running servlets from untrusted third-parties.

5.2 What is the Security?
Security is the science of keeping sensitive information in the hands of

authorized users. On the web, this boils down to three important issues:

Authentication

Being able to verify the identities of the parties involved

Confidentiality

Ensuring that only the parties involved can understand the communication

Integrity

Being able to verify that the content of the communication is not changed

during transmission

A client wants to be sure that it is talking to a legitimate server (authentication),

and it also want to be sure that any information it transmits, such as credit card

numbers, is not subject to eavesdropping (confidentiality). The server is also

concerned with authentication and confidentiality. If a company is selling a

service or providing sensitive information to its own employees, it has a vested

interest in making sure that nobody but an authorized user can access it. And

both sides need integrity to make sure that whatever information they send gets

to the other party unaltered.

Authentication, confidentiality, and integrity are all linked by digital certificate

technology. Digital certificates allow web servers and clients to use advanced

cryptographic techniques to handle identification and encryption in a secure

manner. Thanks to Java's built-in support for digital certificates, servlets are an

excellent platform for deploying secure web applications that use digital

certificate technology. We'll be taking a closer look at them later.

61

Security is also about making sure that crackers can't gain access to the sensitive

data on your web server. Because Java was designed from the ground up as a

secure, network-oriented language, it is possible to leverage the built-in security

features and make sure that server add-ons from third parties are almost as safe

as the ones you write yourself

5.2.1 HTTP Authentication

As discussed in Chapter 4, Retrieving information, the HTTP protocol

provides built-in authentication support-called basic authentication-based on

a simple challenge/response, usemame/password model. With this technique, the

web server maintains a database of user-names and passwords and identifies

certain resources (files, directories, servlets, etc.) As protected. When a user

requests access to a protected resource, the server responds with a request for the

client's usemame and password. At this point, the browser usually pops up a

dialog box where the user enters the information, and that input is sent back to

the server as part of a second authorized request if the submitted usemame and

password match the information in the server's database, access is granted. The

whole authentication process is handled by the server itself.

Basic authentication is very weak. It provides no confidentiality, no integrity,

and only the most basic authentication. The problem is that passwords are

transmitted over the network, thinly disguised by a well-known and easily

reversed Base64 encoding. Anyone monitoring the TCP/IP data stream has full

and immediate access to all the information being exchanged, including the

username and password. Plus, password is often stored on server in clear text,

making them vulnerable to anyone cracking into the server's file system. While

it's certainly better than nothing, sites that rely exclusively on basic

authentication cannot be considered really secure.

Digest authentication is a variation on the basic authentication scheme. Instead

of transmitting a password over the network directly, a digest of the password is

used instead. The digest is produced by taking a hash (using the very secure

MD5 encryption algorithm) of the username, password, URI, HTTP request

method, and a randomly generated "nonce" value provided by the server. Both

62

sides of the transaction know the password and use it to compute digests. If the

digests match, access is granted. Transactions are thus somewhat more secure

than they would be otherwise because digests are valid for only single URI

request and nonce value. The server, however, must still maintain a database of

the original password. And, as of this writing, digest authentication is not

supports by very many browsers.

The moral of the story is that HTTP authentication can be useful in low-security

environments. For example, a site that charges for access to contents-say, an

online newspaper-is more concerned with ease of use and administration than

lock-tight security, so HTTP authentication is often sufficient.

5.2.2 Retrieving Authentication Information

A server can retrieve information about the server's authentication using

two method introduced in chapter 4: getRemoteUser () and getAuthType ().

Example 5 .1 shows a simple servlet that tells the client its name and what kind

of authentication has been performed (basic digest, or some alternative). To see

this servlet in action, you should install it in your server and protect it with a

basic or digest security scheme. Because web server implementation varies, you

will need to check your documentation for the specifics on how to set this up.

Example 5.1. Snooping the authorization information

import java.io . *;

import javax.sevlet. *;

import javax.sevlet.http. *;

Public class AuthorizationSnoop extends HttpServlet {

Public void doGet (HttpSevletRequest req, HttpSevletResponse res)

Throws ServletException, IOException {

res.setContenType ('text/html");

PrintWriter out =res.get Writer ();

out. println("<HTML><HEAD><TITEL> Authorization Snoop

</TITEL></HEAD><BODY>");

out. println ("<HI> this is a password protected resource</H>");

out. println ("<PRE>");

63

out.println (''User Name:"+ req.getRemoteUser ());

out.println C'Authorization Type: "+ req.getAuthType ());

out. println ("</PRE>");

out.println ("</BODY><IHTML>");

}

5.2.3 Custom Authorization

Normally, client authentication is handled by the web server. The server

administrator tells the server which resources are to be restricted to which users,

· and information about those users (such as their passwords) is somehow made

available to the server.

This is often good enough, but sometimes the desired security policy cannot be

implemented by the server. Maybe the user list needs to be stored in a format

that is not readable by the server. Or maybe you want any username to be

allowed, as image as it is given with the appropriate "skeleton key" password.

To handle these situations, we can use servlets. A servlet can be implemented so

that it learns about user from a specially formatted file or a relational database; it

can also be written enforce any security policy you like. Such a servlet can even

add, remove, or manipulate user entries-something that isn't supported directly

in the Servlet API. Except through proprietary server extensions.

Servlet uses status codes and HTTP headers to manage its own security policy

the servlet receives encoded authorization credentials in the Authorization

reader. If it chooses to deny those credentials, it does so by sending the

SC UNAUORIZED status code and a WWW- Authenticate header that

describes the desire credentials. A web server normally handles these details

without involving its server. But for a servlet to do its own authorization, it must

handle these details itself while the server is told not to restrict access to the
servlet.

The Authorization header, if sent by the client, contains the client's username

and password. With the basic authorization scheme, the authorization header

contains the string of"username:password" encoded in Base 64.

64

For example the username of "webmaster" with the password ''try2gueSS" is

sent in an Authorization header with the value:

BASIC d2VibWFzdGVyOnaRyuIUzvUw

If a servlet needs to, it can send a WWW-Authenticate header to tell the client

the authorization scheme and the realm against which users will be verified. A

realm is simply a collection of user accounts and protected resources. For

example, to tell the client to use basic authorization for the realm"admin", the

WWW-Authenticate header is:

BASIC realm="Admin"

Example 5.2 shows a servlet that performs custom authorization, receiving an

Authorization header and sending the SC_ UNAUTHORIZED status code and

WWW-Authenticate header when necessary. The servlet restricts access to its

atop-secret stuff' to those users (and passwords) it recognizes in its user list. For

this example, the list is kept in a simple Hashtable and its contents are hard

coded: this would, of course, be replaced with some other mechanism, such as

an external relational database, for a production servlet.

To retrieve the Base64-encoded username and password, the servlet needs to

use a Base64 decoder. Fortunately, there are several freely available decoders.

For this servlet, we have chosen to use the sun.misc.BASEG4Decoder class that

accompanies the JDK. Being in the sun. Hierarchy means it's unsupported and

subject to change, but it also means it's probably already on your system. You

can find the details ofBase64 encoding in RFC 1521 at

http://ds.internic.net/,rfdrftcl521.txt.

Example 5. 2. Security in a servlet

import java.io. *;

import java.util. *;

import javax. sevlet. *;

import javax.sevlet.http. *;

Public class CustomAuth extends HttpServlet {

Hashtable users= new Hashtable ();

Public void init (ServletConfig config) throws SevletException {

super.init (config);

users.put ("Wallace :cheese", "allowed");

65

users.put ("Gromit: sheepnapper", "allowed");

users.put ("Penguin:evil", "allowed");

}

public void doGet (HttpSevletRequest req, HttpSevletResponse res)

throws ServletException, IOException {

res. setContentType('1ext/plain");

PrintWriter out =res.getWriter();

II Get Authorization header

String auth = res.getHeader ("Authorization");

I !Do we allow that user?

if (!allowUser (auth)) {

//Not allowed, so rerport he's unauthorized

res.sendError (res.SC_ UNAUTHORIZED);

res.setHeader (''WWW-Authenticate", "BASIC realm=\"users\'"');

//could offer to add him to the allowed user list

}

else {

II Allowed, so show him the sercret stuff

out.println ("Top-secret stuff");

}}
//This method checks the user information sent in the Authorization

//header against the database of users maintained in the users Hashtable.

Protected boolean allow.User (String auth) throws IOException {

if (auth = null) return false; II no auth
if (!auth.toUpperCase () .starts With (''BASIC"))

return false; II we only do BASIC

II Get encoded user and password, canes after ''BASIC"

String userpassEncoded = auth. substring (6);

II Decode it. using any base 64 decoder

sun .misc.BASE64Decoder dee= new sun.misc.BASE64Decoder ();

String userpassDecoded = new String (dee. decodeBuffer (userpassEncoded));

II Check our user list to see if that user and password are "allowed"

if ("allowed" .equals (users .get (userpassDecoded)))

return true;

66

else

return false;

}}
Although the web server is told to grant any client access to this servlet the

servlet sends top-secret output only to those users it recognizes. With a few

modifications, it could allow any user with a trusted skeleton password. Or, like

anonymous FTP, it could allow the "anonymous" usemame with any email

address given a password.

Custom authorization can be used for more than restricting access to a single

servlet. Were we to add this logic to our ViewFile servlet, we could implement a

custom access policy for an entire sect of files. Were we create a special

subclass ofHttpServlet and add this logic to that, we could easily restrict access

to every servlet derived from that subclass. Our point is this: with custom

authorization, the security policy limitations of the server do not limit the

possible security policy implementations of its servlets.

5.2.4 Form-based Custom Authorization
Servlets can also perform custom authorization without relying on HTTP

authorization, by using HTML forms and session tracking instead. It's a bit

more effort to give users a well-designed. Descriptive and friendly login page.

For example, imagine you're developing an online banking site. Would you

rather let the browser present a generic prompt for usemame and password or

provide your customers with a custom login form that politely asks for specific

banking credentials, as shown in Figure 5.1

Many banks and other online services have chosen to use form-based custom

authorization. Implementing such a system is relatively straightforward with

servlets. First, we need the login page. It can be written like any other HTML

form. Example 5.3 shows a sample login.html file that generates the form shown

in the figure below.

67

Figure 5.2. An online banking login screen

Example 5.3. The login.html file

<html>

<title>Login< /title>

<body>

<form action= /servlet /loginHandler method=post>

<center>

<table border=O >

<tr><td colspan=2 >

<p align=center>

Welcome! Please enter your Name

And password to log in.

</td>< /tr>

<tr><td>

<p align=right> Name:

68

</td>

<p align=right >Name:

</td>

<td>

<p><input type= text name=vname" value=" " size= 15>

</td></tr>

<tr><td>

<p align= right> Password: <lb>

</td>

<p><input type=password name="password" value=" " size= 15 >

</td</tr>

<tr><td colspan=2>

<center>

<input type=submit value=" OK ">

<center>

</td></tr>

</table>

</body>

</html>

This form asks the client for her name and password, and then submits the

information to the LoginHandler servlet that validates the login. We'll see the

code for LoginHandler soon, but first we should. Ask ourselves, "When is the

client going to see this login page?" It's clear she can browse to this login page

directly, perhaps following a link on the site's front page. But what if she tries to

access a protected resource directly without first logging? In that case, she

should be redirected to

This login page and, after a successful login, be redirected back to the original

target. The process should work as seamlessly as having the browser pop open a

window-except in this case the site pops open an intermediary page.

Example 5.4 shows a servlet that implements this redirection behavior. It outputs

its secret data only if the client's session object indicates she has already logged

in. If she hasn't logged in, the servlet saves the request URL in her session for

later use, and then redirects her to the login page for validation.

69

Welcome! please oter your ll8.llle
and password to log .i:ft.

Name:J....
Passwurd:j r ---------,

Figure 5.2. A friendly login form

Example 5 .4. A protected resource
. . . * import java.io. ;

import java. util. ";

import java.servlet. * ;
import java.servlet.http. * ;
Public class protectedResource extends HttpServlet {

Public void doGet (HttpServletRequest req, HttpServletResponse res)

Throws ServletException , IOException {

res. setContentType ("text/plain");

PrintWriter out= res.getWriter();

//Get the session

HttpSession = req.getSession (true);

//Does the session indicate this user already logged in?

Object done= session.getValue("logon.isDone"); II maker object

if (done = null) {

/!No logon.isDone means he hasn't logged in.

//save the request URL as the true target and redirect to the login page.

Session. put Value("login. target",

HttpUtils.getRequestURL (req).toString ());

Res.sendRedirect (req.getScheme ()+":If'+

req.getServerName()+":"+req.getServerPort() +

70

"/login. html");

return;

}

II ifwe get here, the user has logged in and can see the goods

out.println (''Unpublished O'Reilly book manuscripts await you !");

}}
This servlet sees if the client has already logged in by checking her session for

an object with the name "logon.isDone". If such an object exists, the servlet

knows that the client has already logged in and therefore allows her to see the

secret goods. If it doesn't exist, the client must not have logged in, so the servlet

saves the request URL under the name "login.target", and then redirects the

client to the login page. Under form-based custom authorization, all protected

resources (or the servlets that serve them) have to implement this behavior. Sub

classing, or the use of a utility class, can simplify this task. Now for the login

handler after the client enters her information on the login form, the data is

posted to the LoginHandler servlet shown in Example 5. 5. This servlet checks

the username and password for validity, if the client fails the check; she is told

that access is denied. If the client passes that fact is recorded in her session

object and she is immediately redirected to the original target.

Example 5. 5. Handling a login

import java.io. *;

import java.util. *;

import javax.servlet. *;

import javax.servlet.http. * ;

public class LoginHandler extends HttpServlet {

public void doPost (HttpServletRequest reg, HttpServletResponse res)

throws ServletException,IOException {

res. setContetType("text/html");

PrintWriter out=res.getWriter ();

II Get the user's name and password

String name= req.getParameter("name");

String passwd = raq.getParameter("pasawd");

//check the name and password for validity

71

if (!allowUser(name, passwd)) {

out. println("<HTML><HEAD><TITLE> Access Denied</TITLE><IHEAD>");

out. println ("<BODY> Your login and password are invalid.
");

out. println("Y ou may want to try again</ A>");

out.println("</BODY></HTML>");

}

else {

/Nalid login. Make a note in the session object.

HttpSession session= req.getSession(true);

session.putValue ("login.isDone",name); II just a marker object

/fry redirecting the client to the page he first tried to access

try {

String target= (String) session.getValue("login.target");

if (target !=null)

res. sendRedirect (target);

return;

} catch (Exception. ignored) { }

/Couldn't. redirect to the target. Redirect to the site's home page.

res.sendRedirect(req.getScheme() +":If'+

req.getServerName () +":" + req.getServerPort ());
}}
protected boolean allowUser(String user, String passwd) {

return true; //trust every one

}}
The actual validity check in this servlet is quite simple: it assumes any usemame

and password are valid. That keeps things simple, so we can concentrate on how

the servlet behaves when the login is successful. The servlet saves the user's

name (any old object will do) in the client's Session under the name

"logon . .isDone", as a marker that tells all protected resources this client is okay.

It then redirects the client to the original target saved as 'login .target'.

Seamlessly sending her where she wanted to go in the first place. If that fails for

some reason, the servlet redirects the user to the site s home page.

72

5.3 Digital Certificates

Real applications require a higher level of security' than basic and digest

authentication provide. They' also need guaranteed confidentiality and integrity,

as well as more reliable authentication. Digital certificate technology' provides

this.

The key concept is public key cryptography. In a public key cryptographic

system, each participant has two keys that are used to encrypt or decrypt

information. One is the public key, which is distributed freely. The other is a

private key, which is kept secret. The keys are related, but one can not be

derived from the other. To demonstrate, assume Jason wants to send a secret

message to Will. He finds Wills public key and uses it to encrypt the message.

When will get the message. He uses his private key to decrypt it. Anyone

intercepting the message in transit is confronted with indecipherable gibberish.

Public key encryption schemes have been around for several years and are quite

well developed. Most are based on the patented RSA algorithm developed by

Ron Rivest, Adi Shamir, and Leonard Adelman. Individual keys come in

varying lengths. Usually expressed in terms of the number of bits that make up

the key. U.S. government export restrictions currently' limit key size to 40 bits

(about a trillion possible keys). Within the United States, however, many

systems use 128-bit keys (about 3.40282 x 1038 possible keys). Because there is

no known way to decode an RSA encrypted message short of brute-force trial

and error, messages sent using large keys are very, very secure.

Because keys are so large, it is not practical for a user to type one into her web

browser for each request. Instead, keys are stored on disk in the form of digital

certificates. Digital certificates can be generated by' software like Phil

Zimmerman's PGP package, or they can be issued by a third party. The

certificate files themselves can be loaded by most security-aware applications,

such as servers, browsers, and email software. Public key cryptography solves

the confidentiality problem because the communication is encrypted. It also

solves the integrity' problem: Will know that the message he received was riot

tampered with since it decodes properly'. So far, though, it does not provide

any' authentication. Will has no idea whether Jason actually sent the message.

73

This is where digital signatures come into play. It happens that public and

private keys are symmetrical - either key can be used to encode a message, and

the alternate key then decodes what the first one encoded.

This means Jason can first use his private key to encode a message and then use

Will's public key to encode it again. When Will gets the message, he decodes it

first with his private key, and then with Jason's public key. Because only Jason

can encode messages with his private key-messages that can be decoded only

with his public key-Will knows that the message was truly sent by Jason.

This is different from simpler asymmetric key systems, where one key is only

for encoding and another only for decoding. Using symmetric keys for

authentication has the significant advantage that it allows secure communication

without ever requiring a secure channel-eavesdropping on the exchange of

public keys accomplishes nothing. Using symmetric keys, however, has the

disadvantage of requiring much more computational muscle. As a compromise.

Many encryption systems use symmetric public and private keys to identify each

other and then confidentially exchange a separate asymmetric key for encrypting

the actual exchange. These asymmetric keys are usually based on DES (Data

Encryption Standard).

This leaves one final problem-how does one user know that another user is

who she says she is? Jason and Will know each other, so Will trusts that the

public. Key Jason gave him in person is the real one. On the other hand, if Lisa

wants to give Jason her public key, but Jason and Lisa have never met, there is

no reason for Jason to believe that Lisa is not actually Mark. But, if we assume

that Will knows Lisa, we can have Will use his private key to sign Lisa's public

key. Then, when Jason gets the key, he can detect that Will, whom he trusts, is

willing to vouch for Lisa's identity. These introductions are sometimes called a

''web of trust."

In the real world, this third-party vouching is usually handled by a specially

established certificate authority, such as VeriSign Corporation. Because

VeriSign is a well-known organization with a well-known public key, keys

verified and signed by VeriSign can be assumed to be trusted, at least to the

74

extent that VeriSign received proper proof of the receiver's identity. VeriSign

offers a number of classes of digital IDs, each with an increasing level of trust.

You can get a Class 1 ID by simply filling out a form on the VeriSign web site

and receiving an email. Higher classes are individually verified by VeriSign

employees, using background checks and investigative services to verify

identities.

When selecting a certificate authority, it is important to choose a firm with

strong market presence. VeriSign certificates, for instance. Are included in

Netscape Navigator and Microsoft Internet Explorer, so virtually every user on

the Internet will trust and accept them. The following firms provide certificate

authority services:

• VerrSigri (http://www. verisign. Com/)

• , Thawte Consulting (htcp:llwww. thawte. Com/)

• Entrust Technologies (http://www.entrust.com/)

• Keywitness (http://www. keywitness. cal)

5.4 Secure Sockets Layer (SSL)
The Secure Sockets Layer protocol, or SSL, sits between the application-

level

protocol (in this case HTTP) and the low-level transport protocol (for the

internet, almost exclusively TCP /lP). It handles the details of security in

management using public key cryptography to encrypt all client/server

communication. SSL was introduced by Netscape with Netscape Navigator 1. It

has since become the de facto standard for secure online communications and

forms the basis of the Transport Layer Security (TLS) protocol currently under

development by the internet Engineering Task Force. SSL Version 2.0, the

version first to gain widespread acceptance. includes support for server

certificates only. It provides authentication of the server, confidentiality, and

integrity. Here's how it works:

1. A user connects to a secure site using the HTTPS (HTTP plus SSL)

protocol. (You can detect sites using the HTTPS protocol because their

75

URLs begin with https: instead of http).

2. The server signs its public key with its private key' and sends it back to the

browser.

3. The browser uses the server's public key to verify that the same person

who signed the key actually owns it.

4. The browser checks to see whether a trusted certificate authority signed

the key. If one didn't the browser asks the user if the key can be trusted and

proceeds as directed

5. The client generates an asymmetric (DES) key for the session, which is

encrypted with the server's public key and sent back to the server. This new

key is used-to encrypt all subsequent transactions. The asymmetric key is used

because of the high computational cost of public key cryptosystems.

All this is completely transparent to servlets and servlet developers. You just

need to obtain an appropriate server certificate, install it, and configure your

server appropriately. Information transferred between servlets and clients is now

encrypted. Voila, security!

5.5 SSL Client Authentication

Our security toolbox now includes strong encryption and strong server

authentication, but only weak client authentication. Of course- using SSL 2. 0

puts us in better shape because SSL-equipped servers can use the basic

authentication methods discussed at the beginning of this chapter without

concern for eavesdropping. We still don't have proof of client identity,

however-after all, anybody could have guessed or gotten a hold of a client

usemame and password.

SSL 3. 0 fixes this problem by providing support for client certificates. These are

the same type of certificates that servers use, but they are registered to clients

instead. As of this writing, VeriSign claims to have distributed more than

76

750,000 client certificates. SSL 3.0 with client authentication works the same

way as SSL 2.0, except that after the client has authenticated the server, the

server requests the client's certificate. The client then sends its signed certificate,

and the server performs the same authentication process as the client did,

comparing the client certificate to a library of existing certificates (or simply

storing the certificate to identify the user on a return visit). As a security

precaution, many browsers require the client user to enter a password before

they will send the certificate.

Once a client has been authenticated, the server can allow access to protected

resources such as servlets or files just as with HTTP authentication. The whole

process occurs transparently, without inconveniencing the user. It also provides

an extra level of authentication because the server knows the client with a John

Smith certificate really is John Smith (and it can know which John Smith it is by

reading his unique certificate). The disadvantages of client certificates are that

users must obtain and install signed certificates, servers must maintain a

database of all accepted public keys, and servers must support SSL 3.0 in the

first place. As of this writing, most do, including the Java Web Server.

5.6 Retrieving SSL Authentication Information

As with basic and digest authentication, all of this communication is

transparent to servlets. It is sometimes possible, though, for a servlet to retrieve

the relevant SSL authentication information. The java. security package has

some basic support for manipulating digital certificates and signatures. To

retrieve a client's digital information, however, a servlet has to rely on a server

specific implementation of the request's

getAttributet) method.

The first certificate is the user's public key. The second is VeriSign's signature

that vouches for the authenticity of the first signature. Of course, the information

from these certificate chains isn't particularly useful to the application

programmer. In some applications, it is safe to simply assume that a user is

authorized if she got past the SSL authentication phase. For others, the

77

certificates can be picked apart using the javax.security.cert.X509certificate

class. More commonly, a web server allows you to assign a username to each

certificate you tell it to accept Servlets can then call getRemoteUser Oto get a

unique username. The latter solution works with almost all web servers.

5. 7 Running Servlets Securely

CGI programs and C++-based plug-ins operate with relatively unfettered

access to the server machine on which they execute (limited on UNIX machines

by the user account permissions of the web server process). This isn't so bad for

an isolated programmer developing for a single web server, but it's a security

nightmare for Internet service providers (ISPs), corporations, schools, and

everyone else running shared web servers.

For these sites, the problem isn't just protecting the server from malicious CCI

programmers. The more troublesome problem is protecting from careless CGI

programmers. There are dozens of well-known CCI programming mistakes that

could let a malicious client gain unauthorized access to the server machine. One

innocuous-looking but poorly written Perl eval function is all it takes.

To better understand the situation, imagine you're an ISP and want to give your

customers the ability to generate dynamic content using CCI programs. What

can you do to protect yourself? Historically, ISPs have chosen one of three

options:

Have blind faith in the customer.

He's a good guy and a smart programmer, and besides, we have his credit

card number.

Educate the customer.

If he reads the WWW Security FAQ and passes a written test, we'll let

him write CGI programs for our server.

Review all code.

Before we install am CGI program on the server, we'll have our expert

review it and scan for security problems.

None of these approaches works very well. Having blind faith is just asking for

trouble. Programmer education helps, but programmers are human and bound to

78

make mistakes. As for code review, there's still no guarantee, plus it takes time

and costs money to do the extra work.

Fortunately, with servlets there's another, better solution. Because servlets are

written in Java they can be forced to follow the rules of a security manager (or

access controller with JDK 1.2) to greatly limit the servers' exposure to risk, all

with a minimal amount of human effort.

5.8 The Servlet Sandbox

Servlets built using JDK 1.1 generally operate with a security model called

the "servlet sandbox." Under this model, servlets are either trusted or given open

access to the server machine, or they're untrusted and have their access limited

by a restrictive security manager. The model is very similar to the "applet

sandbox," where untrusted applet code has limited access to the client machine.

What's a security manager? It's a class subclasses from java.lang.SecurityMan

ager that is loaded by the Java environment to monitor all security-related

operations: opening network connections, reading and 'writing files, exiting the

program, and so on. Whenever an application, applet, or servlet performs an

action that could cause a potential security' breach, the environment queries the

security manager to check its permissions. For a normal Java application, there

is no security manager. When a web browser loads an un trusted applet over the

network, however, it loads a very restrictive security manager before allowing

the applet to execute.

Servlets can use the same technology, if the web server implements it. Local

servlets lets can be trusted to run without a security manager, or with a fairly

lenient one. For the Java Web Server 1.1, this is what happens when servlets are

placed in the default servlet directory or another local source. Servlets loaded

from a remote source, on the other hand, are by nature suspect and untrusted, so

the Java Web

Server forces them to run in a very restrictive environment where they can't

access the local file system, establish network connections, and so on. All this

79

logic is contained within the server and is invisible to the servlet, except that the

servlet may see a SecurityExcepton thrown when it tries to access a restricted

resource. The servlet sandbox is a simple model, but it is already more potent

than any other server extension technology to date.

Using digital signatures, it is possible for remotely loaded servlets to be trusted

just like local servlets. Third-party servlets are often packaged using the Java

Archive (JAR) file format. AJAR file collects a group of class files and other

resources into a single archive for easy maintenance and fast download. Another

nice feature of JAR files that is useful to servlets is that they can be signed using

digital certificates. This means that anyone with the public key for "Crazy AL's

Servlet Shack" can verify that her copy of Al's Guestbook Servlet actually came

from Al. On some servers, including the Java Web Server, these authenticated

servlets can then be trusted and given extended access to the system.

5.9 Fine-grained Control

This all-or-nothing approach to servlet permissions is useful, but it can be

overly limiting. Consequently, some servlet engines have begun to explore a

more fine grained protection of server resources-for example, allowing a

specific servlet to establish a network connection but not write to the server's

file system. This fine grained control is fairly awkward using the JDK 1.1 notion

of a SecurityManager class and, therefore, isn't widely implemented, although it

can be done, as the Java Web Server 1.1 proves.

The Java Web Server 1.1 includes eight permissions that can be granted to

servlets:

Load servlet

Let the servlet load a named servlet.

Write files

Let the servlet write any file on the local file system.

Listen to socket

Allow the servlet to accept incoming socket (network) connections.

Link libraries

Allow the loading of native libraries, such as the JDBC-ODBC bridge.

Read.files

80

Let the servlet read any file on the local file system.

Open remote socket

Allow the servlet to connect to an external host.

Execute Programs

Permit the servlet to execute external programs on the server. This is useful for

servlets that absolutely require access to some system utilities, but it is very

dangerous: rm and del qualify as an external program!

Access system properties

Grant access to java.lang.System properties.

A screen shot of the Administration Tool configuration page that assigns these

permissions is shown in Figure 5.3.

Figure 5.3. Eight Permissions

Theoretically, any criterion can be used to determine what a servlet can or

cannot do. It's possible for the security manager to base its permission-granting

decision on any factor, including these:

The servlet itself

For example, this servlet can read files and load native libraries but cannot

write files.

The client user

For instance, any servlet responding to a request from this client user can

81

write files.

The client host

For example, any servlet responding to a request from this machine can

establish network connections.

Digital signatures

For instance, any servlet in a JAR file signed by this entity has full reign on
The server system.

Access Controllers

JSDKl .2 introduces a new extension to the security manager system: the access

controller. The new architecture is quite similar to the live particular servlets

particular privileges_ approach implemented by the Java Web Server 1.1, except

that it applies to all JDK 1.2 programs and therefore makes fine-grained permis

sion implementations much easier.

An access controller allows what might be called super-fine-grained permission

control. Instead of granting a servlet the general ability to write files, with an

access controller a servlet can be given the right to write to a single file-perfect

for a counter servlet, for example. Or it can be given the right to read and write

files only in the client user's home directory on the server-appropriate for a

client/server application. With access controllers, servlets can be given the rights

to do exactly what they need to do and nothing more.

Access controllers work by placing individual pieces of code, often identified by

digital signatures, into particular virtual domains. Classes in these domains can

be granted fine-grained permissions, such as the ability to read from the server's

document root, write to a temporary directory, and accept socket connections.

All permission policy decisions are managed by a single instance of the

java.securtiy. AccessController class. This class bases its policy decisions on a

simple configuration file, easily managed using a graphical user interface.

Now, instead of relying on complicated custom security managers as the Java

Web Server team had to do, a servlet engine need only add a few lines of code to

use an access controller. So, while the Java Web Server is the only servlet

82

implementation supporting fine-grained security as of early 1998, once JSDK

1.2 becomes popular, it should be easy for other servlet engine implementers to

add the same level of fine-grained access control. These implementations may

already be available by the time you read this.

5.10 Summary
This chapter presented more important topic especially on the Internet,

which is Security, HTTP Authentication, Digital Certificates, Secure Sockets

Layer (SSL), and finally Running Servlets Security.

83

Chapter Six
Database Connectivity

6.1 Overview

This chapter introduces relational databases, the Structures Query Language

(SQL) used to manipulate those databases, and the java database connectivity (JDBC)

API itself Servlets, with their enduring life cycle, and JDBC, as well-defined database

independence database connectivity API, are elegant and efficient solutions for

webmasters who need to hook their web sites to back-end databases.

6.2 Advantages for Using Servlet Database

The biggest advantage for servlets with regard to database connectivity is that

the servlet life cycle allows servlets to maintain open database connections. An existing

connection can trim several seconds from a response time, compared to a CGI script

that has to reestablish its connection for every invocation. Exactly how to maintain the

database connection depends on the task at hand.

Another advantages of servlets over CGI and many other technologies are that JDBC is

database-independence. A servlet written to access a Sybase database can, with a two

line modification or a change in a properties file, begin accessing an Oracle database

(assuming none of the database calls it makes are vendor-specific).

6.3 Relational Databases
Relational database management system (RDBMS), organizes data into tables.

These tables are organized into rows and columns, much like a spreadsheet. Particular

rows and columns in table can be related (hence the term "relational") to one or more

rows and columns in another table.

One table in a relational database might contain information about customers, another

might contain orders, and a third might contain information about individual items

within an order. By including unique identifier (say, customer numbers and order

84

numbers), orders from the orders table can be linked to customer records and individual

order components. Figure 6.1 shows how this might look if we drew it out on paper.

Figure 6.1. Related tables

Data in table can be read, update, appended, and deleted using the structured Query

Language, or SQL, sometimes also referred to as the Standard Query Language. Java's

JDBC API introduced in JDKl .1 uses a specific subset of SQL known as ANSI SQL-2

Entry Level. Unlike most programming languages, SQL are declarative: you say what

you want, and the SQL interpreter gives it to you. Other languages, like C, C++, and

java, by contrast, are essentially procedural, in that you specify the steps required to

perform a certain task. SQL, while not prohibitively complex, is also rather too broad a

subject to cover in great (or, indeed, merely adequate) detail here.

The simplest and most common SQL expression is the SELECT statement, which

queries the database and returns a set of rows that matches a set of search criteria.

For example, the following SELECT statement selects everything from the

CUSTOMERS table:

SELECT * FROM CUSTOMERS

SQL keywords like select and from and objects like CUSTOMERS are case insensitive

but frequently written in uppercase. When run in Oracle's SQL *PLUS SQL interpreter,

this query would produce something like the following output:

85

CUSTOMER ID NAME PHONE

1 bob copier 617 555-1212

2 Janet stapler 617 555-1213

3 Joel laptop 508 555-7171

4 Larry Coffee 212 555-6225

More advance statements might restrict the query to particular columns or include some

specific limiting criteria:

SELECT ORDER_ID, CUSTOMER_ID, TOTAL FROM ORDERS WHERE

ORDER ID=4

The statement selects the ORDER_ ID, CUSTOMER_ ID, and TOT AL columns from all

records where the ORDER_ ID field is equal to 4. Here's a possible result:

ORDER ID

4

CUSTOMER ID

1

TOTAL

72.19

A SELECT statement can also link two or more tables based on the values of particular

fields. This can be either a one-to-one relationship or, more typically, a one-to-many

relation, such as one customer to several orders:

SELECT CUSTOMERS. NAME, ORDERS.TOTAL FROM CUSTOMERS, ORDERS

WHERE ORDERS.CUSTOMER ID=CUSTOMERS.CUSTOMER ID - - AND

ORDERS.ORDER ID=4

This statement connects (or, in database parlance, joins) the CUSTOMERS table with

the ORDERS table via the CUSTOMER ID field. Note that both tables have this field.

The query returns information from both tables: the name of the customer who made

order 4 and the total cost of that order. Here's some possible output:

NAME TOTAL

72.19 Bob Copier

SQL is also used to update the database. For example:

INSERT INTO CUSTOMERS (CUSTOMER_ID, NAME, PHONE) VALUES (5,"Bob

Smith","555 123-3456")

UPDATE CUSTOMERS SET NAME="Robert Copier" where CUSTOMER_ID=l

DELETE FROM CUSTOMERS WHERE CUSTOMER ID =2

86

The first statement creates a new record in the CUSTOMERS table, filling in the

CUSTOMER_ID, NAME AND PHONE

Fields with certain values. The second updates an existing record, changing the value of

the NAME field for a specific customer. The last deletes any records with a

CUSTOMER_ID of 2. Be very careful with all of these statements, especially DELETE.

A DELETE statement without a WHERE clause will remove all the records in the table.

6.3.1 The JDBC API
JDBC is an SQL-level API-one that allows the user to execute SQL statements

and retrieve the results, if any. The API itself is a set of interfaces and classes designed

to perform actions against any database. Figure 6.2 shows how JDBC programs

interactive with database.

Figure 6.2. Java and the database

6.3.2 JDBC Drivers
The JDBC API, found in the java.sql package, contains only a few concrete

classes. Much of the API is distributed as database-neural interfaces classes that specify

behavior without providing any implementation. Third-party vendors provide the actual

implementations.

An individual database system is accessed via a specific JDBC driver that implements

the java.sql.Driver interface. A driver exits for nearly popular RDBMS systems, though

few are available for tree. Sun bundles a free JDBC-ODBC bridge driver with the JDK

87

to allow access to standard ODBC data sources, such as a Microsoft Access database.

However, sun advises against using the bridge driver for anything other than

development and very limited deployment. Servlets developers in particular should heed

this warning because any problem in the JDBC-ODBC bridge driver's native code

section can crash the entire server, not just your servlets.

JDBC drivers are available for most database platforms, from a number of vendors and

in a number of different flavors. There are four driver categories:

Type 1-jdbc-odbc Bridge Drivers

Type 1 drivers use a bridge technology to connect a java client to an ODBC database

service. Sun's JDBC-ODBC bridge is the most common type 1 driver. These drivers are

implemented using native code.

Type 2-native -AP! partly-Java Driver

Type 2 drivers wrap a thin layer of java around database-specific native code libraries.

For Oracle database, the native code libraries might be based on the OCI (Oracle Call

Interface) libraries, which were originally designed for CIC++ programmers. Because

type 2 drivers are implemented using native code, in some case they better performance

than heir all-java counter-parts. They add an element of risk; however, because a

defect in a driver's native code section can crash the entire server.

Type 3-nel -protocol All -Java Driver

Type 3 drivers communicate via a generic network protocol to a piece of custom

middleware. The middleware component might use any type of driver to provide the

actual database access. Web Logic's Tengah product line is an example. These drivers

are all java, which means makes them useful for applet deployment and safe for servlet

deployment.

Type 4 -Native-protocol All-Java Driver

Type 4 drivers are the most direct of the lot. Written entirely in java, type 4 drivers

understand database-specific networking protocols and can access the database directly

without any additional software.

88

6.3.3 Getting a Connection

The first step in using a JDBC driver to get a database connection involves

loading the specific driver class into the application's JVM. This makes the driver

available later, when we need it for opening the connection. An easy way to load

The driver class is to use the Class.forName() method:

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

When the driver is loaded into memory, it registers itself with the

java.sql.DriverManager class as an available database driver.

The next step is to ask the DriverManager class to open a connection to a given

database, where a specially formatted URL specifies the database. The method used to

open the connection is DriverManager.getConnection (). It returns a class that

implements the java.sql.Connection interface:

Connection con=

DriverManager.getConnection

('jdbc:odbc:somedb","user","password");

A JDBC URL identifier an individual database in a driver-specific manner. Different

drivers may need different information in the URL to specify the host database. JDBC

URLs usually begin with jdbc:subprotocol:subname. For example, the Oracle JDBC

Thin driver uses a URL of the form of jdbc:oracle:thin:@dbhost:port:sid; the JDBC

ODBC bridge uses jdbc: odbc: datasourcename;odbcoptions.

During the call to getConnection(), the DriverManager object asks each registered

driver if it recognizers the URL. If a driver says yes, the driver manager uses that driver

to create the Connection object. Here is a snippet of code a servlet might use to load its

database driver with the JDBC-ODBC Bridge and create an initial connection:

Connection con=null;
Try {
II load (and therefore regsiter) the JDBC-ODBC Bridge
II might throw a ClassNotFoundException

Class. for Name("sun.jdbc. odbc.JdbcOdbcDriver");
I I Get a connection to the database
II might throw an SQLException
con=DriverManager .getConnection('j dbc: odbc: somedb", ''user", "passwd");
I I The rest of the code goes here
} catch(ClassN otF oundException e){
I I Handle an error loading the driver

89

}catch(SQLException e){
II Handle an error getting the connection
}finally {
//close the connection to release the database resources immediately
try{
if (conl=null) con.closet);
}catch(SQLException e){}
}

6.3.4 Executing SQL Queries

To really use a database, we need to have some way to execute queries. The

simplest way to execute a query is to use the java.sql.Statement class. Statement objects

are never instantiated directly; instead, a program calls the createStatement() method of

Connection to obtain a new Statement object:

Statement stmt=con. create Statement();

A query that returns data can be executed using the executeQuery () method of

Statement. This method executes the statement and returns a java.sql.ResultSet that
encapsulates the retrieved data:

ResultSet rs=stm.executeQuery("SELECT * FROM CUSTOMERS");

You can thing of ResultSet object as a representation of the query result returned one

row at a time. You use the next () method of ResultSet to move from row to row. The

ResultSet interface also boasts a multiple of methods designed for retrieving data from

the current row. The getString () and getObject() methods are among the most
frequently used for retrieving column values:

While (rs.next()){
String event=rs.getString();
Object count=(Integer)rs. getstring("count");
}

The ResultSet is linked to its parent Statement. Therefore, if a Statement is closed or

used to execute another query, any related Resultset objects are closed automatically.

Table 1.3 shows the java methods that be used to retrieve some common SQL data

types from database. No matter what the type, the user can always use the getObject ()

method of the ResultSet, in which case the type of object returned is shown in the

second column. You can also use a specific get:XXX () method. These methods are

shown in third column, along with the java data types they return.

90

SQL Data Type
Alternative

.Java Type Returned by
getObjectO

Recommended
to getObjectO

CHAR
VARCHAR

LONGVARCHAR

String
String
String

String getString ()
String getString 0

Input Stream

getAdcii Stream()

DECIMAL java.math.BigDecimal

getUicodeStream()
java. math.BigDecimal

getBigDecimal()
java.math.BigDecimal

getBigDecimal()

NUMERIC java.math.BigDecimal

BIT Boolean boolean getBoolean()

TINY1NT Integer byte getByteO

SMALL INT Integer short
getShort()

INTEGER Integer int getintO

BIGINT Long long getLong()

REAL Float float getFloat()

FLOAT Double double getDouble()

BINARY byte[] byte[]
getBytes()

VARBINARY byte[} byte[]
getBytes()

LONGV ARBINARY byte[] InputStream
getBinaryStre
am()

DATE java.sql.Date java.sql.Date
getDate 0

TIME Java.sql.Time java.sql.Time
getTime()

java. sql. Timestamp
getTimestamp ()

TimeStamp Java. sql. Timestamp

Table 1.3. Methods to retrieve Data from a ResultSet

91

6.3.5 Handling SQL Exceptions

Any exception statement must be inside try/catch block. This block catches two

exceptions:ClassNotFoundException and SQLException. The former is thrown by the

Class.forNameO method when the JDBC driver class can not be loaded. The latter is

thrown by any other exception type, with the additional feature that they can chain. The

SQLException class defines an extra method getNextException O, that allows the

exception to encapsulate additional Exception objects. Here is how to use it:

catch (SQLException e){
out. println(e.getMessageO);
while ((e=e.getNextMessage())!=null){
out. println(e. getMessageQ);
}}

This code displays the message from the first exception and then loops though all the

remaining exceptions, outputting the error message associated with each one. In

practice, the first exception will generally include the most relevant information.

6.3.6 Handling Null Fields

Handling null database values with JDBC can be a little tricky. (A database field

can be set to null to include that no value is present, in much the same way that a java

object can be set to null.) a method that doesn't return an object, like getlnu), has no

way of indicating wether a column is null or whether it contains actual information.

(Some drivers returns a string that contains the text "null" when get Stringf) is called

on a null columnl) any special value like -1, might be a legitimate value. Therefore,

JDBC includes the wasNull () method in read was a true database null. This means that

that you must read data from the ResultSet into a variable, call wasNull O, and proceed

according. It's not pretty, but it works. Here's an example:

int age =rs.getlnt("age");
if (!wasNullQ)
out. println(" Age: "+age);

Another way to check for null values is to use the getObject () method. If a column is

null, getObjectO always returns null. Compare this to the getString O method that has

been shown, in some implementations, to return the empty string if a column is null.

Using getObject O eliminates the need to call wasNull O and leads to simpler code.

92

6.3. 7 Using Prepared Statement

A prepared statement object is like a regular Statement object, in that it can be

use to execute SQL statements. The important difference is that the SQL in a

PreparedStatement is perecompiled by the database for faster execution. Once a

PreparedStatemenst has been compiled, it can still be customized by adjusting prepared

parameters. Prepared statements are usefull in application that have to run general SQL

command over and over.

Use PreparedStatement(String) merthod of Connection to create Preparedstatement

objects. Use the? Character as placeholder for values to be submitted later. For example:

Prepared Statement pstm=con. preparedStatement("INSERT INTO

(ORDER_ID,CUSTOMER_ID,TOTAL) VALVES(?,?,?)");

pstm. clearParameters();
pstm.setlnt(l,2);
pstm.setlnt(2,4);
pstm.setDouble(3,53 .43);
pstm. executeUpsdate();

I I clear any previus parameter values
I I set ORDER ID
I I set CUSTOMER ID
I I set TOTAL
I I execute the stored SQL

The clearParameters() method removes any previously defined parameter value while

the set:XXX O methods are used to assign actual values to each of the placeholder

question marks. Once you have assigned values for all the parameters.

pstm.executeUpdate () to execute the PreparedStatement.

The preparedStatement class has an important application in conjunction with servlet.

When loading user-submitted text into the database using Statement object and dynamic

SQL, you must be careful not to accidentally introduce any SQL control characters

(such as" or ') without escaping them in the manner required by your database. With a

database like Oracle that surrounds strings with single quotes, an attempt to insert "John

d' Artagan" into the database results in this corrupted SQL:

INSERT INTO MUSKETEERS (NAME) VALVES ('John d' Artagan")

As you can see, the string terminates twice. One solution is to manually replace the

single quote ' with two single quotes ' ', the Oracle escape sequence for one single

quote. This solution, requires you to escape every character that your database treats as

special- not an easy task and not consistent with writing platform-independence code. A

far better solution is to use a PreparedStatement and pass the string using its setString ()

93

method, as shown below. The PreparedStatement automatically escapes the string as

necessary for your database:

Prepared Statement pstmt=con. preparedStatemnt(
"INSERT INTO MUSKETEERS (NAME) VALUES(?)");
pstmt.setString(l,"John d' Artagan");
pstmt.executeUpdateQ;

6.4 Transactions
Most service -oriented web sites need to do more than run SELECT statements

and insert single pieces of data. Let's look at an online banking application. To perform

a transfer of $50.000 between accounts, your program needs to perform an operation

that consists of two separate but related actions: credit one account and debit another.

Now, imagine that for some reason or another, the SQL statement for the credit

succeeds but the one for the debit fails. One account holder is $ 50.000 richer, but the

other account has not been debited to much.

SQL failure is not only potential problem. If another user checks the account balance in

between the credit and the debit, he will see the original balance. The database is shown

in an invalid state. Granted, this of thing is unlikely to occur often, but in as a universe

of infinite possibilities, it will almost certainly happen sometime. This kind of problem

is similar to the synchronization issues. This time, instead of concerning ourselves with

the validity of data stored in a servlet, we are concerned with the validity of an

underlying database. Simple synchronization is not enough to solve this problem:

multiple servlets may be accessing the same database. For system like banking

software, chances are good that the database is being used by a number of entirely non
java applications as well.

Sounds like a fairly tricky problem, right? Fortunately, it was a problem long before

java came along, so it has already been solved. Most major RDBMS systems support

the concept of transactions. A transaction allows you to group multiple SQL statements

together. Using a transaction-aware RDBMS, you can begin a transaction or roll back

all your SQL statements. If we build our online banking application with a transaction

based system. The credit will automatically be canceled if the debit fails.

A transaction is isolated from the rest of the database until finished. As far as the rest of

the database is concerned, everything takes place at once (in other words, transactions

are atomic). This means that other users accessing the database will always see a valid

94

view of the data, although not necessarily an up-to-data view. If a user requests a report

on widgets sold before your widget sales transaction is completed, the report will not

include the most recent sale.

6.4.1 Optimized Transaction Processing
How do we use transactions without having to connect to the database every

time a page is requested? There are several possibilities:

• Synchronization the doPost () method. This means each instance of the

servlet deals with only one request at a time. This works well for very low

traffic sites, but it does slow things down for your users because every

transaction has to finish before the next can start. If the user needs to

perform database-intensive updates and inserts, the delay will probably be

unacceptable.

• Leave things as they are, but create a new Connection object for each

transaction. If the user needs to update data only once in every few thousand

page requests, this might be the simplest route.

• Create a pool of Connection objects in the init () method and hand them out

as needed, as shown in Figure 6.3. This is probably the most efficient way

to handle the problem, if done right. It can, however, become very

complicated very quickly without third-party support classes.

• Create a single Connection object in the init () method and have the servlet

implement SingleThreadModel, so the web server creates a pool of servlet

instances with a Connection for each, as shown in Figure 6.4. This has the

same effect as synchronizing doPost (), but because the web server has a

number of servlet instances to choose from, the performance hit for the user

is not as great. This approach is easy to implement, but it less robust than

using a separate connection pool because the servlet has no control over

how many servlet instances are created and how many connections are used.

When creating single-threaded database servlets, be especially sure to have

the destroy () method close any open database connections.

• Implement session tracking in the servlet and use the HttpSession object to

hold onto a Connection for each user. This allows the user to go one step

95

beyond the other solutions and extend transaction across multiple page

requests or even multiple servlets.

Web server

Servlet instance Connection Pool

Request . , Local
variable

Local
variable

Local

Connection

Connection

Request .
Database

Request . Connection

Connection

Figure 6.3. Servlets using a database connection pool

Web Server

Servlet Pool

Request Ihr.~1:1.4 . Servlet Instance
instance variable

Request Ih!:~~~L ~ Servlet Instance
instance variable

Request .Ih!:~~~L .i Servlet Instance
instance variable

Figure 6.4. Servlets using SingleThreadModel for a server-managed connection pool

96

6.5 Advanced JDBC Techniques

Now that we've covered the basics, let's talk about a few advanced techniques

that use servlets and JDBC. First, we'll examine how servlets can access stored database

procedures. Then we'll look at how servlets can fetch complicated data types, such as

binary data (images, application, etc.), large quantities of text, or even executable

database-manipulation code, from a database.

6.5.1 Stored Procedures

Most RDBMS system includes some sort of internal programming language.

One example is Oracle's PL/SQL. These languages allow database developers to embed

procedural application code binary within a database and then call that code from other

application. RDBMS programming languages are often well suited to performing

certain database actions; existing database installations have a number of useful stored

procedures already written and ready to go.

The following code is an Oracle PL/SQL stored procedure.

CREATE OR REPLACE PROCEDURE SP INTEREST
(id IN INTEGER
bal IN OUT FLOAT) IS
BEGIN
SELECT BALANCE
INTObal
FROM accounts
WHERE account_id=id;

Bal: =bal+bal *O. 03;
UPDATE accounts
SET balance =bal
WHERE account_id=id;

END;

This procedure executes a SQL statement, performs a calculation, and executes another

SQL statement. It would be fairly simple to write the SQL to handle this, so why bother

with at all? There are several reasons:

• Stored procedures are precompiled in the RDBMS, so they run faster than

dynamic SQL.

• A stored procedure executes entirely within the RDBMS, so they can perform

multiple queries and updates without network traffic.

97

• Stored procedures allow the user to write database manipulation code once

and use it across multiple applications in multiple languages.

• Changes in the underlying table structures require changes only in the stored

procedures that access them; applications using the database are unaffected.

• Many older databases already have a lot of code written as stored procedures,

and it would be nice to be able to leverage the effort.

The Oracle PL/SQL procedure in the previous example takes an input value, in this case

an account ID, and returns an update balance. While each database has its own syntax

for accessing stored procedures, JDBC creates a standardized eascape sequence for

accessing stored procedures using the java.sql.CallableStatement class. The syntax for a

procedure that doesn't return a result is "{Call procedure_name(?,?)}". The syntax for

stored procedure that returns a result value is "{?=call procedure_ name(?,?)}". The

parameters inside the parentheses are optional.

Using the CallableStatement class is similar to using the PreparedStatement class:

CallableStatement cstm=con. prepareCall(" { call sp _interest(?,?)}");
Cstm.registerOutParameter(2,java.sql. Types.FLOAT);
Cstm. setlnt(l ,accountID);
Cstm. executeQ;
Out.println(''New Balance: "+cstm.getFloat(2));

This code first creates a Callstatement using the prepareCallQ method of Connection.

Because this stored procedure has an output parameter, it uses the

registerOutParameterQ merthod of CallableStaternent to identify that parameter as

output parameter of type FLOAT. Finally, the code executes the stored procedure and

uses the getFloatQ method of CallableStatement to display the new balance. The

getXXX () methods in CallableStatement interface are similar to those in the ResultSet

interface.

6.5.2 Binaries and Books

Most databases support data types to handle text strings up to several gigabytes

in size, as well as binary information like multimedia files. Different databases handle

this kind of data in different ways, but the JDBC methods for retrieving it are standard.

The getAsciistream () method of ResultSet handles large text strings; getBinaryStream

() works for large binary objects. Each of these methods returns an InputStream.

98

Support for large data types is one of the most common sources of JDBC problems.

Make sure to test your drivers thoroughly, using the largest pieces of data your

application will encounter. Oracle's JDBC driver is particularly prone to errors in this

area.

Here's some code from a message board servlet that demonstrate reading a long ASCII

string. Assume that connections, statements, and so on have already been created.

Try{
Result Set rs=stmt. executeQuery(
"SELECT TITLE,SENDER,,MESSAGE FROM MESSAGES
MESSAGE_ ID=9");
if (rs.next()){
out. println("<h 1 >" +rs. getS tring("title")+" </h 1 >");
out. println(" From:" +rs. getString("sender")+"
");
BufferReader msgText=new BufferReader(
new InputStreamReader(rs.getAscii Stream("message")));

WHERE

while (msgText.ready()){
out. println(msgText.readLine());
}}}
catch(SQLException e){
//Report it
}

While it is reading from the Inputstream, this servlet doesn't get the value of any other

columns in the result set. This is important because calling any other get:XXX () method

ofReultSet closes the lnputStream.

Binary data can be retrieved in the same manner using the ResultSet.getBinaryStream

(). In this case, we need to set the content type as appropriate and write the output as

bytes. As shown below servlet code to return a GIF file loaded from a database.
I . . * mport java.io. ;
Import java.sql. *;
Import javax.servlet. *;
Import javax.servlet.http. *;

Public class DBGifR.eader extends HttpServlet {
Connection con;
Public void init(ServletConfig config) throws SeervletException {
Super.init(config);
Try{
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
Con=DriverManager.getConnection('jdbc: odbc: imagedb", "user", "passw");
}
Catch(ClassNotFoundException e){
Throw new UnavailableException (this,"Couldn't load JdbcOdbcDriver");

99

}
Catch(SQLException e){
Throw new UnavailableException (this,"Couldn't get connection");
}}
public void doGet(HttpServletRequest req,HttpServletResponse res) throws
ServletException,IOException {
try{
res. setContentType("imagel gif ');
ServletOutputStream out=res. getOutputStreamO;
Statement stmt=con. createstatcmenu);
Result Set rs=stmt. executeQuery(
"SELECT JMAGE FROM PICTURES WHERE PID="+req.getParameter("PID"));

if (rs.nextfj)]
BufferinputStream gifData=new BufferlnputStream(rs.getBinaryStream("image"));
Byte[] buf=new byte[4*1024];
Int len;
While ((len=gifData. read(buf, O,buflength)) !=-1) {
Out. write(buf, O,len);
}}
else{
res.sendError(res.SC_NOT_FOUND);
}}
catch(SQLException e){
II Report it
}}}

6.6 Summary
This chapter presented database connectivity, relational databases, the JDBC

API, reusing Database Objects, Transactions, and finally advances of JDBC techniques.

100

-

Chapter 7
Result of the Work

7.1 Overview

This chapter is showing and giving general information about the outputs; so

that it is very easy for the customer to enter and compile their needs over the Internet,

and also will show all the available books, prices and their general information in our

site.

7.2 The Main Page

First, any customers it will enter to the following address:

http://localhost:8080/servlet/welcome.

When the customers write this address he will be able to see the main page as shown in

Figure 7.1.

ECOMMERCE

Catalog
Clsoocejrolft °"' B:tce1Jut ~ of Books.

JnSgrv/ets:A Web Developer's Dream Come True,ubcr
webster Mlmfflin. a Woddrenownedg111U on web
developmem,tab aOOQt how semets can transform the way you
develop 1pplicalions foclbe web.This is alDQStread for my sd
respecting web developer!

Shopping Cart
Loot.At YOJU ~ Carl To &I. 77N books
YDMW Cltosm.

Buy Your Books
Pay For '1'- /Jooa Youw Put ill Your Cart!

Figure 7.1. The Main Page

101

------·--- ------~------- --- - - -·--- -------~----- --· -- ~-------------

In the main page, the customers can be shown, simple paragraph in the left side to

encourage his/her to purchase this item. By click on the "servlet: A Web developer's

Dream Come True", the customers can see more information about this item as can be

shown in Figure 7.2.

ECOMMERCE

Servlets: A Web Developers Dream Come True

Here'swllattlle criacs say:

What a cool book

Ourprice: $17.75

Figure 7 .2. Information about Specific Book

As have be shown in Figure 7.2. More information about this item. And also shown in

the button of this page"add this item to your shopping cart", this to encourage the

customer to add this item to his/her cart. If the customer clicks it, the item will be added

to his/her shopping cart as shown in Figure 7.3.

ECOMMERCE

You just added Senuts: A W.,b Developers Drt!am Conte Tntt to your shopping cart

Che~k Shopping Cart Buy your Books

. by~~"'

uke: A Biography of the Java Evangelist

!l!~rom CJakto Java:. The RevolutionofaLan~a!le

Figure 7.3. Your Book Added to Your Cart

As have be shown in Figure 7 .1. In the right side of the main page there is three chooses

to the customers:

7.2.1 Catalog

Which is simple HTTP servlet, this class listing to the user all the books

available in the database. And encourage the customers to choose and add any items

from the excellent selection to his/her shopping cart. As shown in figure 7.4.

103

ECOMMERCE

lFrmn Oak to Java: The Revolution of a Language

•The Green

Figure 7.4. List all the Books

7.2.2 Shopping Cart

Which is a simple HTTP servlet, that displays the contents of a customer's

shopping cart. It responds to the GET and HEAD methods of the HTTP protocol. for

example, If the customers chosen an item from the selection of books lets say he/she

chosen "Moving from C++ to the Java (tm) Programming Language" by added this item

to to his/her Shopping Cart, if the customer's click on his/her Shopping Cart it will give

it to his/her simple message to display to the customer's how many items in his/her

Shopping Cart and the Grand Total of this item as shown in figure 7.5.

104

ECOMMERCE
r!- !P'

You have 1 item in your shopping cart

from C+t w :the Jaya(tmf Pro ~moveltem1

Subtotal: $10.75

Grand Total: :$11.64

See the Catalog Check Out Clear Cart

Figure 7.5. How Many Items in your Shopping Cart

and also give it to the customer's to Remove Item if the customer's decide to delete this

item, and also give it to the customers three options shown in the bottom of the page

which is "See the Catalog" to back to the "CatalogServlet" as shown in the figure 7.4.

and "Check Out" to give to the customer the amount of item purchase that has been

chosen, and to let the customer's to write his/her name and Credit Card Number shown

in figure 7.6.

105

ECOMlVIERCE

N-,
Cn<litCwdN.....-:! ~

-~ ••••••••••••••• 1

Figure 7.6. Your Total Purchase

After the customer's follow his/her Name and Credit Card Number and submit the

Query, the customer's will be shown message to thank him for the order and resets the

page to the main page as shown in figure 7. 7.

ECOMMERCE

'l1wlk,... for •• di •• ,,_Neb •.•.••• - ~

..._. •.••.• _...-s.-1

Figure 7.7. Thank the User

106

and last option which is "Clear Cart", which is give it to the customer's to clear his/her

Cart. As shown in figure 7.8.

ECOMMERCE

You just cleared your shopping cart!

There is nothing in your shopping cart.
Back to the Catalog

,,u-..--- - ,..... n~--.....c..- __
Figure 7.8. Clear Your Shopping Cart

7.2.3 Buy Your Book

As shown in figure 7.5. this class give it to the customer's total amount purchase

and let the customer's to enter his/her Name and Credit Card Number.

7.3 Summary
This chapter included an explanation of the main page of the company that will

help the customers, and also the pages that giving general information about each

available book, its price, and also that how the customers can buy their books using

their cards.

107

CONCLUSION

The project was about Electronic Commerce (Ecommerce), there is a revolution

going on now in electronic commerce. As this project entered production already one

third of stock transactions were being transacted over the Internet by individuals.

Companies like Amazon.com, barnesadnoble.com, and borders.com are handling huge

volumes of electronic sales. Servlet technology will help more organizations get into

electronic commerce.

There is also an explosion in so-called business-to-business transactions. As Internet

transmission becomes more secure, more and more organizations will entrust increasing

portions of their business activities to the Internet.

Companies are finding it possible to offer clients with Internet access all kinds of value

added services. Today, people often contact companies over the Internet and enter their

own information rather than phoning it in verbally.

Two popular applications that many companies have off-loaded to the Web are

shipment tracking and invoice tracking. People want to know where the products they

have ordered are. The customers want to know when they will be paid.

Small business is particularly excited about electronic commerce possibilities. By

putting up a respectable Web site, they present themselves to the world and can

considerably leverage their business activities.

For client-server systems, many developers prefer a full java solution with applets on

the client and servlets on the server.

108

---- -- --.,....- --------

REFERENCES

[1] Jason Hunter with William Crawford. Java servlet programming, O'reilly & associate.
Inc., 101 Morris Street.1998.

[2] Elliote Rusty Harold, java network programming, O'reilly & associates, inc., 101 Morris
Street 1997.

[3] Web site Address "http://java.sun.com/docs/tutorial/servlets/index.html".

109

	Page 1
	Titles
	NEAR EAST UNIVERSITY
	Faculty of Engineering

	Images
	Image 1
	Image 2
	Image 3

	Page 2
	Titles
	ACKNOWLEDGMENTS

	Images
	Image 1

	Page 3
	Titles
	ABSTRACT

	Images
	Image 1

	Page 4
	Titles
	TABLE OF CONTENTS
	ACKNOWLEDGMENT
	TABLE OF CONTENTS

	Images
	Image 1

	Page 5
	Images
	Image 1

	Page 6
	Images
	Image 1

	Page 7
	Titles
	INTRODUCTION

	Images
	Image 1

	Page 8
	Images
	Image 1

	Page 9
	Titles
	Chapter One
	1.1 Overview
	1.2 History of web applications

	Images
	Image 1

	Page 10
	Page 11
	Images
	Image 1

	Page 12
	Images
	Image 1

	Page 13
	Titles
	::::~::ension2 - --- -7jc<~~-------~ Server Extension2 I

	Images
	Image 1

	Page 14
	Images
	Image 1
	Image 2

	Page 15
	Page 16
	Titles
	1.3 Supports for Servlets

	Images
	Image 1

	Page 17
	Titles
	1.4 Why Servlet Programming

	Images
	Image 1

	Page 18
	Images
	Image 1

	Page 19
	Titles
	1.5 Summery

	Images
	Image 1

	Page 20
	Titles
	Chapter Two
	2.1 Overview
	2.2 HTTP Basics
	2.2.1 Requets, Response, and Headers

	Images
	Image 1

	Page 21
	Images
	Image 1

	Page 22
	Titles
	2.2.2 Get and Post

	Images
	Image 1

	Page 23
	Titles
	2.2.3 Other Methods
	2.3 The Servlet API

	Images
	Image 1

	Page 24
	Titles
	2.4 HttpServlet class

	Images
	Image 1

	Page 25
	Page 26
	Images
	Image 1

	Page 1
	Titles
	2.5 Page Generation
	2.5.1 Writing Hello World

	Images
	Image 1

	Page 2
	Titles
	2.5.2 Running Hello World

	Images
	Image 1

	Page 3
	Titles
	2.5.3 Setting up the JSDK Server
	2.5.4 Starting the JSDK Server

	Images
	Image 1

	Page 4
	Titles
	2.5.5 Stopping the JSDK Server
	2.5.6 Configuring JSDK Servlets

	Images
	Image 1
	Image 2

	Page 5
	Titles
	2.5. 7 Calling Servlets from a Browser
	2.5.8 Handling form Data

	Images
	Image 1
	Image 2

	Page 6
	Images
	Image 1
	Image 2

	Page 7
	Page 8
	Titles
	2.5.9 Handling Post Requests
	}

	Images
	Image 1
	Image 2

	Page 9
	Titles
	2.5.10 Handling HEAD Requests
	2.6 Server-side includes

	Images
	Image 1
	Image 2

	Page 10
	Images
	Image 1

	Page 11
	Titles
	2. 7 Servlet Chaining and Filters

	Images
	Image 1

	Page 12
	Images
	Image 1
	Image 2

	Page 13
	Titles
	2.8 Summary

	Images
	Image 1

	Page 14
	Titles
	Chapter Three
	3.1 Overview
	3.2 The Servlet Alternative

	Images
	Image 1
	Image 2

	Page 15
	Titles
	--
	.. ,.. .Ł.........Ł..Ł ~
	3.2.1 A Single Java Virtual Machine

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 16
	Titles
	3.3 Servlet Reloading

	Images
	Image 1
	Image 2

	Page 17
	Titles
	3.4 Init and Destroy

	Images
	Image 1
	Image 2

	Page 18
	Titles
	3.5 Single -Thread Model

	Images
	Image 1
	Image 2

	Page 19
	Titles
	3.6 Last Modified Times

	Images
	Image 1
	Image 2

	Page 20
	Images
	Image 1
	Image 2

	Page 1
	Titles
	3. 7 Status Codes
	3.7.1 Setting a Status Code
	Mnemonic Constant
	code Default Message _Meaning

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 2
	Titles
	3.8 HTTP Headers

	Images
	Image 1
	Image 2
	Image 3

	Page 3
	Titles
	3.8.1 Setting an HTTP Header

	Images
	Image 1
	Image 2

	Page 4
	Titles
	Header
	Usage
	3.9 Exceptions
	44

	Images
	Image 1
	Image 2

	Page 5
	Images
	Image 1
	Image 2

	Page 6
	Titles
	3.9.1 Logging
	3.10 Summary

	Images
	Image 1
	Image 2
	Image 3

	Page 7
	Titles
	Chapter Four
	4.1 Overview
	4.2 Initialization Parameters
	4.2.1 Getting an Init Parameter

	Images
	Image 1
	Image 2

	Page 8
	Titles
	4.3 Getting Init Parameter Names
	4.4 The Server
	4.4.1 Getting Information About the Server

	Images
	Image 1
	Image 2
	Image 3

	Page 9
	Titles
	4.5 The Client
	4.5.1 Getting Information About the client Machine
	4.5.2 Getting Information About the User

	Images
	Image 1
	Image 2
	Image 3

	Page 10
	Images
	Image 1
	Image 2
	Image 3

	Page 11
	Titles
	4.6 The Request
	4.6.1 Request Parameters

	Images
	Image 1
	Image 2

	Page 12
	Titles
	4.6.2 Path Information

	Images
	Image 1
	Image 2

	Page 13
	Titles
	4.6.3 Getting Path information
	4.6.4 Getting Mime Types

	Images
	Image 1
	Image 2

	Page 14
	Titles
	4.6.5 How It Was Requested
	4. 7 Session Tracking

	Images
	Image 1
	Image 2

	Page 15
	Titles
	4.7.1 Session -Tracking Basics

	Images
	Image 1
	Image 2

	Page 16
	Titles
	4.7.2 The Session Life Cycle
	4. 7.3 Putting Session in Context

	Images
	Image 1
	Image 2
	Image 3

	Page 17
	Titles
	4.8 Cookies

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 18
	Titles
	4.8.1 Working with Cookies

	Images
	Image 1
	Image 2

	Page 19
	Images
	Image 1
	Image 2

	Page 20
	Titles
	4.9 Summary

	Images
	Image 1
	Image 2

	Page 1
	Titles
	Chapter Five
	5.1 Overview
	5.2 What is the Security?

	Images
	Image 1

	Page 2
	Titles
	5.2.1 HTTP Authentication

	Images
	Image 1
	Image 2

	Page 3
	Titles
	5.2.2 Retrieving Authentication Information

	Images
	Image 1
	Image 2

	Page 4
	Titles
	5.2.3 Custom Authorization

	Images
	Image 1

	Page 5
	Images
	Image 1
	Image 2

	Page 6
	Titles
	}
	}}

	Images
	Image 1
	Image 2

	Page 7
	Titles
	}}
	5.2.4 Form-based Custom Authorization

	Images
	Image 1
	Image 2

	Page 8
	Images
	Image 1
	Image 2
	Image 3

	Page 9
	Images
	Image 1
	Image 2

	Page 10
	Titles
	. . . *

	Images
	Image 1
	Image 2
	Image 3

	Page 11
	Titles
	}
	}}

	Images
	Image 1
	Image 2

	Page 12
	Titles
	}}
	}}

	Images
	Image 1
	Image 2

	Page 13
	Titles
	5.3 Digital Certificates

	Images
	Image 1
	Image 2

	Page 14
	Images
	Image 1

	Page 15
	Titles
	5.4 Secure Sockets Layer (SSL)

	Images
	Image 1

	Page 16
	Titles
	5.5 SSL Client Authentication

	Images
	Image 1

	Page 17
	Titles
	5.6 Retrieving SSL Authentication Information

	Images
	Image 1
	Image 2

	Page 18
	Titles
	5. 7 Running Servlets Securely

	Images
	Image 1
	Image 2

	Page 19
	Titles
	5.8 The Servlet Sandbox

	Images
	Image 1

	Page 20
	Titles
	5.9 Fine-grained Control

	Images
	Image 1
	Image 2

	Page 1
	Images
	Image 1

	Page 2
	Images
	Image 1

	Page 3
	Titles
	5.10 Summary

	Images
	Image 1

	Page 4
	Titles
	Chapter Six
	6.1 Overview
	6.3 Relational Databases

	Images
	Image 1

	Page 5
	Images
	Image 1
	Image 2

	Page 6
	Images
	Image 1

	Tables
	Table 1

	Page 7
	Titles
	6.3.1 The JDBC API
	6.3.2 JDBC Drivers

	Images
	Image 1
	Image 2

	Page 8
	Images
	Image 1

	Page 9
	Titles
	6.3.3 Getting a Connection

	Images
	Image 1

	Page 10
	Titles
	6.3.4 Executing SQL Queries
	}

	Images
	Image 1

	Page 11
	Images
	Image 1

	Page 12
	Titles
	6.3.5 Handling SQL Exceptions
	}}
	6.3.6 Handling Null Fields

	Images
	Image 1

	Page 13
	Titles
	6.3. 7 Using Prepared Statement

	Images
	Image 1

	Page 14
	Titles
	6.4 Transactions

	Images
	Image 1

	Page 15
	Titles
	6.4.1 Optimized Transaction Processing

	Page 16
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Tables
	Table 1

	Page 17
	Titles
	6.5 Advanced JDBC Techniques
	6.5.1 Stored Procedures

	Images
	Image 1

	Page 18
	Titles
	6.5.2 Binaries and Books

	Images
	Image 1

	Page 19
	Titles
	}

	Images
	Image 1
	Image 2

	Page 20
	Titles
	}
	}}
	}}
	}}
	}}}
	6.6 Summary

	Page 21
	Titles
	Chapter 7
	7.1 Overview
	7.2 The Main Page
	ECOMMERCE

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 22
	Titles
	ECOMMERCE

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 23
	Titles
	ECOMMERCE

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 24
	Titles
	ECOMMERCE

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 25
	Titles
	ECOMMERCE
	You have 1 item in your shopping cart

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 26
	Titles
	ECOMlVIERCE
	N-,
	ECOMMERCE

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 27
	Titles
	,,u-..--- - ,..... n~--.....c..- __
	7.3 Summary
	107

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 28
	Titles
	CONCLUSION

	Page 29
	Titles
	REFERENCES

	Images
	Image 1
	Image 2

