
Faculty of Engineering

NEAR EAST UNIVERSITY

Department of Computer Engineering

E-COMMERCE USING JAVA SERVLET

\

PROGRAMMING

Graduation Project
COM-400

Student: Altyep Saada

Supervisor: Assoc.Prof.Dr Adnan Khashman

Nicosia - 2002

____ __,,

/

ACKNOWLEDGMENTS

"First, I would like to thank my supervisor Assoc.ProfDr.Adnan Khashman for his

invaluable advice and belief in my work and my self over the course of this Graduation

Project.

Second, I would like to say big thank you java servlet programming, for the knowledge

that give it to me, and the experience and the answers of most questions of the network

and the internet that I am always ask my self about it.

Third, I would like to thank my friends for their advice and support.

Finally, but no means least, thanks Mom and Dad for their years of support, and to my

brother engineer wasem for help me to learn java programming language, and for

advice me during writing my java servlet code. "

ABSTRACT

There is much excitement over the Internet and the World Wide Web. The

Internet ties the "information world" together. The World Wide Web makes the Internet

easy to use and gives it the flair and sizzle of multimedia. Java provides a number of

built- in networking capabilities that make it easy to develop Internet-based and Web

based applications. Java's network capabilities are grouped into several packages. The

fundamental networking capabilities are defined by classes and interfaces of package

java.net, through which java offers socket-based communications that enable

applications to a socket as simply as reading from a file or writing to a file. The classes

and interfaces of package java.net also offer packet-based communications that enable

individual packets of information to be transmitted-commonly used to transmit audio

and video over the Internet.

The project discuss of networking over the next chapters focuses on both sides of a

client-server relationship. The client requests that some action be performed and server

performs the action and responds to the client. This request-response model of

communication is the foundation for the highest-level view of networking in java -

servlets. A servlet extends the functionality of a server. The javax.servlet package and

the javax.servlet.http package provide the classes and interfaces to define servlets. The

servlets enhance the functionality of World Wide Web servers- the most common form

of servlet today. Servlet technology today is primarily designed for use with the HTTP

protocol of the World Wide Web, but servlets are being developed for other

technologies. Servlets are effective for developing Web-based solutions that help

provide secure access to a Web site, that interact with databases on behalf of a client,

that dynamically generate custom HTML documents to be displayed by browsers and

that maintain unique session information for each client.

11

TABLE OF CONTENTS

ACKNOWLEDGMENT
ABSTRACT
TABLE OF CONTENTS
INTRODUCTION

ii
iii
1

Chapter One: Background of Servlets
1.1 Overview
1.2 History of Web applications
1.3 Supports of Servlets
1.4 Why Servlet Programming
1.5 Summary

3
3
3
10
11
13

Chapter Two: HTTP Servlet Basics
2.1 Overview
2.2 HTTP Basics

2.2.1 Request, Response, and Headers
2.2.2 Get and Post
2.2.3 Other Methods

2.3 The Servlet API
2.4 HttpServlet class

2.4.1 HttpServletRequest Interface
2.4.2 HttpServletResponse Interface

2.5 Page Generation
2.5.1 Writing Hello World
2.5.2Running Hello World
2.5.3 Starting the JSDK Server
2.5.4 Setting up the JSDK Server
2.5.5 Stopping the JSDK Server
2.5.6 Configuring JSDK Servlets
2.5.7 Calling Servlets from a Browser
2.5.8 Handling form Data
2.5.9 Handling Post Requests
2.5.10 Handling HEAD Requests

2.6 Server-side includes
2. 7 Servlet Chaining and Filters
2.8 Summary

14
14
14
14
16
17
17
18
19
20
21
21
22
23
23
24
24
25
25
28
29
29
31
33

Chapter Three: The Servlet Life Cycle
3 .1 Overview
3.2 The Servlet Alternative

3.2.1 A Single Java Virtual Machine
3.3 Servlet Reloading

3 .4 I nit and Destroy
3.5 Single -Thread Model
3.6 Last Modified Times
3. 7 Status Codes

34
34
34
35
36
36
37
38
39
41

111

3. 7 .1 Setting a Status Code
3.8 HTTP Headers

3.8. l Setting an HTTP Header
3.9 Exceptions

3.9.1 Logging
3.10 Summary

41
42
43
44
46
46

Chapter Four: Retrieving Information
4.1 Overview
4.2 Initialization Parameters

4.2.1 getting an Init Parameter
4.3 Getting Init Parameter Names
4.4 The Server

4.4.1 Getting Information About the Server
4.5 The Client

4.5.1 Getting Information About the client Machine
4.5.2 Getting Information About the User

4.6 The Request
4.6.1 Request Parameters
4.6.2 Path Information
4.6.3 Getting Path information
4.6.4 Getting Mime Types
4.6.5 How It Was Requested

4. 7 Session Tracking
4.4. 7 Session -Tracking Basics
4.4.8 The Session Life Cycle
4.4.9 Putting Session in Context

4.8 Cookies
4.8.1 Working with Cookies

4.9 Summary

47
47
47
47
48
48
48
49
49
49
51
51
52
53
53
54
54
55
56
56
57
58
60

Chapter Five: Security
5.1 Overview
5.2 What is the Security?

5.2.1 HTTP Authentication
5.2.2 Retrieving Authentication Information
5.2.3 Custom Authorization
5.2.4 Form-based Custom Authorization

5 .3 Digital Certificates
5.4 Secure Sockets Layer (SSL)
5.5 SSL Client Authentication
5.6 Retrieving SSL Authentication Information
5. 7 Running Servlets Securely
5.8 The Servlet Sandbox
5.9 Fine-grained Control
5.10 Summary

61
61
61
62
63
64
67
73
75
76
77
78
79
80
83

Chrpter Six: Database Connectivity
· 6.1 Overview

6.2 Advantages for Using Servlet Database

84
84
84

IV

6.3 Relational Databases
6.3.1 The JDBC API

6.3.2 JDBC Drivers
6.3.3 Getting a Connection
6.3.4 Executing SQL Queries
6.3.5 Handling SQL Exceptions
6.3.6 Handling Null Fields
6.3.7 Using Prepared Statement

6.4 Transactions
6.4.1 Optimized Transaction Processing

6.5 Advanced JDBC Techniques
6.5.1 Stored Procedures
6.5.2 Binaries and Books

6.6 Summary

84
87
87
89
90
92
92
93
94
95
97
97
98
100

Chapter Seven: Result of the Work
7 .1 Overview
7 .2 the Main Page

7 .2.1 Catalog
7.2.2 Shopping Card
7.2.3 Buy your Book
7.3 Summary

101
101
101
103
104
107
107

CONCLUSION
REFERENCES

108
109

V

INTRODUCTION

The rise of server-side java applications is one of the latest and most exciting

trends in java programming. The java language was originally intended for use in small,

embedded devices. It was first hyped as a language for developing elaborate client-side

web content in the form of applets. Until recently, java's potential as a server-side

development platform had been sadly overlooked. Now, java is coming into its own as a

language ideally suited for server-side development.

Business in particular has been quick to recognize java's potential on the server-java is

inherently suited for large client/server applications. The cross platform nature of java is

extremely useful for organizations that have a heterogeneous collection of servers

running various flavors of the UNIX and windows operating systems. Java's modern,

object-oriented, memory-protected design allows developers to cut development cycles

and increase reliability. In addition, java's built-in support for networking and enterprise

APis provides access to legacy data, easing the transition from older client/server

systems.

Java servlets are key component of server-side java development. A servlet is a small,

pluggable extension to a server that enhances the server's :functionality. Servlets allow

developers to extend and customize any java-enabled server-a web server, a mail server,

an application server, or any custom server-with a hitherto unknown degree of

portability, flexibility, and ease.

In this project the portability, flexibility, are considered. The project consists of seven

chapters and conclusion.

Chapter one describe the history of web applications and the support of servlets where

the user can found the servlet and why servlet programming.

Chapter two describe some things of HTTP servlets that can be doing, such as HTTP

basics, requests, responses, headers. The two most important methods GET and POST,

class HTTPServlet, and all the methods of this class. Two interfaces classes which is

HttpServletRequest and HttpServletResponse and all the methods of these interfaces.

1

simple Hello World class how the user can run this code and what the output look like

to the user, and final topic which is the servlet chaining filters.

Chapter three describe the servlet life cycle. Init and destroy methods. Status code,

HTTP headers, and exceptions in the servlet when an unexpected error occurs how the

servlet by using some ways of the exception and logging can be caught these errors.

Chapter four which is the main chapter, it describes all the methods can be used to write

the servlets. Web pages session and cookies and all the methods of each one.

Chapter five describes the security of the servlet, HTTP authentication, Digital

Certificates, Secure Sockets Layer (SSL), and finally Running Servlets Security.

Chapter Six describe database connectivity, how the servlet can hold database by using

the servlet and java database connectivity (JDBC) by using some method and classes.

Chapter Seven describe the hall program and the result of the program, how the output

looks like.

Finally, the conclusion section presents the important results obtained within the

project.

2

Chapter One
Background of Servlets

1.1 Overview
The java server API is an asset of classes, a framework, for the development of IP

servers, especially http servers. The server API is a standard extension to Java. Which

means that it is not included in the base Java release? If has being used in a program,

first thing need to download and install the necessary classes from sun. The servlet API

it does not use in an applet. There are many interesting aspects of the server API; the

most interesting being a concept called servlets; these will be presented this chapter.

1.2 History of web applications
While servlets can be used to extend the functionality of any java -enabled

server, today they are most often used to extend web servers, providing a powerful,

efficient replacement for CGI scripts. When a servlet is used to create dynamic content

for a web page or otherwise extend the functionality of web server, in effect a web

application is being created. While a web page merely displays static content and lets

the user navigate through that content, a web application provides a more interactive

experience. A web application keyword search on a document archive or as complex as

an electronic storefront. Web applications are being deployed on the internet and on

corporate intranets and extranets, where they have the potential to increase productivity

and change the way that companies, large and small, do business.

There are some approaches that can be used to create web applications:

• Common Gateway Interface
The common gateway interface referred to as CGI, was one of the first practical

techniques for creating dynamic content. With CGI, a web server passes certain requests

to an external program. The output of this program is then sent to the client in place of a

static file. The advent of CGI made it possible to implement all sorts of new

functionality jn web pages, and CGI quickly became a defacto standard, implemented

on dozens of a web servers.

3

It's interesting to note that the ability ofCGI programs to create dynamic web pages is a

side effect of its intended purpose: to define a standard method for an information

server to talk with external applications. The origin explains why CGI has perhaps the

worst life cycle imaginable. When a server receives a request that accesses a CGI

program, it must create a new process to run the CGI program and then pass to it, via

environment variables and standard input, every bit of information that might be

necessary to generate a response. Creating a process for every such request requires

time and significant server resources, which limits the number of request a server can

handle concurrently.

Figure 1.1 shows the CGI life cycle.

CGI-based Web Server

Main Process
Request for CGI 1 ~ Child Process for CGI 1

Request for CGI2 4 Child Process for CGI2
Request for CGI 1 , Child Process for CGI 1

Figure 1.1. The CGI life cycle

Even though a CGI program can be written in almost any language, the Perl

programmmg language has became the predominate choice. Its advanced text

processing capabilities are a big help in managing the details of the CGI interface.

Writing a CGI script in perl gives it a semblance of platform independence, but it also

requires that each request start a separate Perl interpreter, which takes even more time

and requires extra resources.

Another often -overlooked problem with CGI is that a CGI program cannot interact

with the web server or take a advantage of the server's abilities once it begins execution

4

------ ------ ----------

because it is running in a separate process. For example, a CGI script cannot write to the

server's log file.

• FastCGI

A company named Open Market developed an alternative to standard CGI

named FastCGI In many ways, FastCGI works just like CGI -the important difference

is that FastCGI creates a single persistent process for each FastCGI program. As shown

in Figure 1.2. This eliminates the need to create a new process for each request.

FastCGI-based Web Server

Main Process

Request for CGI 1_..-•. ·· Single Child Process for CGil
_ ••.. ··•••·

... ··
Request for CGl2 ,. ·····

Request for CGI I /.;::,"-- "···· •·····......... .I Single Child Process for CGU I

Figure 1.2. The FastCGI life cycle

Although FastCGI is a step in the right direction, it still has a problem with process

proliferation: there is at least one process for each FastCGI program, if a FastCGI

program is to handle concurrent requests, it needs a pool of processes, one per request.

Consider that each process may be executing a Perl interpreter, this approach does not

scale as well as one might hope. (Although, to its credit, FastCGI can distribute its

processes across multiple servers.) Another problem with FastCGI is that it does

nothing to help the FastCGI program more closely interact with the server. As of this

writing, the FastCGI approach has not been implemented by some of the more popular

servers, including Microsoft's Internet Information server.
Finally, FastCGI programs are only as portable as the language in which they're written.

5

• mod_perl
If the apache web server is used, another option for providing CGI performance

is using mod _perl is a module for the Apache server that embeds a copy of the Perl

interpreter into the Apache httpd executable. Providing complete access to Perl

functionality within Apache. The effect is that your CGI scripts are precompiled by the

server and executed without forking, thus running much more quickly and efficient.

• PerlEx
PerlEx. Developed by ActiveState, improves the performance of CGI scripts

written in Perl that run on Windows NT web servers (Microsoft's FastTrack Server and

Enterprise Server). PerlEx uses the web Server's native API to achieve its performance

gams.

• Other Solutions
CGI/Perl has the advantage of being a more -or -Iess platform -independent

way to produce dynamic web content. Other well-known technologies for creating web

applications, such as ASP and server-side JavaScript, are proprietary solutions that work

only with certain web servers.

• Server Extension APis
Several companies have created proprieties server extension APis for their web

servers. For example, Netscape provides an internal API called NSAPI (now becoming

WAI) and Microsoft provides ISAPI. Using one of these APis, you can write server

extensions that enhance or change the base functionality of the server, allowing the

server to handle tasks that were once relegated to external CGI programs. As can be

seen in Figure 1.3, server extensions exist within the main process of a web server.

Because server-specific APis use linked C or C++ code, server extensions can run

extremely fast and make full use of the server's resources. Server extensions, however,

are not perfect solutions by any means. Besides being difficult to develop and maintain,

they pose significant security and reliability hazards: a crashed server extension can

bring down the entire server, and, of course, properties server extension are inextricably

6

tied to the server API for which they were written -and often tied to a particular

operating system as well

Web Server with Server Extension API

Main Process

Request for
Servlet Extensionl {- .. ···················:::::>~ Server Extension 1

::::~::ension2 - --- -7jc<~~-------~ Server Extension2 I
Request for- ··················· L---------_J

Servlet Extensionl-

Figure 1.3. The server extension life cycle

• Active Server Pages
Microsoft has developed a technique for generating dynamic web content called

Active Server Pages, or sometimes just ASP. With ASP, an HTML page on the web

server can contain snippets of embedded code (usually VB Script or just Jscript although

it's possible to use nearly any language). This code is read and executed by the web

server before it sends the page to the client. ASP is optimized for generating small

portions of dynamic content.

• Server -side JavaScript
Netscape too has a technique for server -side scripting, which it calls server side

JavaScript, or SSJS for short. Like ASP, SSJS allows snippets of code to be embedded

in HTML pages to generate dynamic web content. The difference is that SSJS uses

JavaScript as the scripting language. With SSJS. Web pages are precompiled to improve

performance.

• Java Servlets
Servlets are Java programs that make servers extensible. Much as you can load

applets into a web browser, you can load servlets into a running server to extend its

capabilities, servlets are commonly used with web servers, where they can take the

7

place of CGI scripts. A servlet is similar to a proprietary server extension, except that it

runs inside a Java Virtual Machine (JVM) on the server (see the figure 1.4). Like

applets, the byte codes for servlets can be read from the local file system or from the

network. In the future, it will even be possible for clients to upload servlets to server to

be run there, just as today clients download and run applets from a server.

Java Servlet-based Web Server

Main Process
JVM

Request for Servletl

Request for Servlet2 i..__
Thread

Servletl

Request for Servletl Servlet2

Figure 1.4. The servlet life cycle

A servlet can return data to the client as a new web page, as servlets themselves are

faceless; they do not have a graphical interface or output stream to which they can send

output. They rely on the web client to provide these services.

Servlets provide yet another way for a web to generate dynamic data. Normally, web

server receives a URL requesting a certain page. The server maps this URL to a file,

reads the file from the local disk, and sends the data to the client. In this situation, the

data is static; it doesn't change until the server administrator changes the file. However

a servlet can generate a new data for each request because it is a program. Thus it can

deliver changing information such as a time of day or a stock price.

Of course, that's nothing really new; CGI programs can also dynamically generate data

to send to a client. How does a servlet differ from a CGI program? Why should consider

writing servlets, rather than sticking with CGI? Those are good questions. CGI has been

around for a while, and it's well understood. It's easy to write a web page that invokes a

CGI program, and easy to write a program that sends data back to the browser.

Furthermore, virtually all web servers understand CGI; currently, Jeeves (a

8

demonstration server that sun supplies with the server distribution) is the only server

that can handle servlets through there are more to come. Servlets are interesting

precisely because they are more than just CGI programs written in Java; servlets can do

many things that CGI programs cannot:

1. A servlet can contain continue to run in the background after it has finished

processing a request so it's ready to process the next request without incurring

additional startup costs. On an active server, the overhead of staring CGI programs

is significant. Furthermore, a servlet can use threads to process simultaneous

requests e:fficiently.aservlet can even pass data between multiple connections. For

example, a servlet can act as a multiplayer game server that listens for input from

multiple clients. And then broadcasts that data to all connected clients.

2. A servlet can communicate interactivity with an applet on the client. A CGI

program receives a request from a client, and then sends a response; at that point the

connection is closed. The client cannot send another request to the CGI program in

response to the data it received. In constrast, a servlet -applet pair can carry on a

conversion. Making many data transfers between the client and the server . they can

even implement a new protocol if necessary. This is much easier to code than a CGI

program that stores form of state on the server or in the URL.

3. Servlets can originate on the client. Like applets, servlets run in secure

environment. So the server does not need to worry about hostile servlets. For

example, a client can upload accustom that searches a web site for information.

With local access to the files, the search can take place much more quickly than it

would if the client had to download each file on the web site. Web spiders and

indexers like Lycos can become far more efficient, and use far less internet

bandwidth, since only the results of a site index need to be transmitted, not every

page on the web site.

4. Servlets are a step towards agents. A servlet can be uploading to different servers

technologies, performing the same action on each server in run. Until now, agent

technologies shared several server limitations. First, hosts had to true the agents.

Using java's security features, a web server can execute a servlet without worrying

9

that it may crash the system or open a security hole. Second agents could only run

on certain platforms; java's portability means that servlets don't care what kind of

system they run on. The possibilities for intelligent agents are almost dimities,

including shopping agents that search for the best prices, clipping service agents that

continuously comb the net for information, system management servlets that upload

mirror sites with copies or changes files, servlets that back up data to a central host.

And more. However servlets are not yet true agents because they must be explicitly

invoked and moved by something other that themselves; that may change the future.

1.3 Supports for Servlets
Like java itself, servlets were design for portability. Servlets are support on all

platforms that support java, and servlets work with all the major web servers. Java

servlets, as defined by the java software division of sun Microsystems (formerly known

as Java Soft), are the first standard extension to java. This means that servlets are

efficiently blessed by sun and are part of the java language, but they are not part of the

core java API.therefore, althougth they may work with any java Virtual Machine

(JVM), servlet classes need not be bundled with all JVMs.

To make it easy for us to develop servlets. Sun has made publicly available a set of

classes that provide basic servlet support. The javax.servlet and javax.servlet.http

packages constitute this servlet API.Version 2.0 of these classes comes bundled with the

java servlet development kit (JSDK) for use with the java Development kit 1.1 and

above: the JSDK available for download from http://java.sun.com/products/servlet/.

Many web server vendors have incorporated these classes into their servers to provide

servlet support, and several have also provided additional functionality. Sun's Java Web

Server, for instance, includes a proprietary interface to the server's security features.

It doesn't much matter where to get the servlet classes, as long as to have them on

systems, since it is necessary to compile the servlets. In additional to the servlet classes,

there is a servlet engine, so that, it test and deploy the servlets. The choice of servlet

engine depends in part on the web server(s) are running.

There are three flavors of servlet engines: standalone, add-on, and embeddable.

10

