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ABSTRACT
Graph labeling is one of the most important models for some applications in graph theory which include design of good radar type codes, x-ray crystallography, communication network addressing system and circuit design. In many graphs, labelings are used only for identifying vertices and edges. This thesis focuses on labelings which signify some additional information as well as identifying the vertices and edges. In this thesis cycles, paths and trees are observed with their vertex-magic and (a,d)-vertex antimagic total labelings. A systematic computer program is designed to try all possible labelings and find the ones that are vertex-magic total labelings and (a,d)-vertex antimagic total labelings. Previously studied properties of these labelings are used as guidance to the systematic program. The results from this thesis are studied with previous studies to answer some unsolved open problems. 

A labeling of a graph is a mapping that assigns numbers (positive or non-negative integers) to the graph elements. This thesis focuses on graph labelings that have weights associated with each vertex. If all the vertex weights have the same value then the labeling is called vertex-magic total labeling. Vertex-magic total labeling is an assignment of integers to the vertices and edges of a graph so that at each vertex the vertex label and the incident edge labels add up to the same constant number. If the vertex weights are all different then the labeling is called vertex-antimagic total labeling. Vertex-antimagic total labeling is an assignment of integers to the vertices and edges of a graph so that at each vertex the vertex label and the incident edge labels add up to a different number. A (a,d)-vertex antimagic total labeling is an assignment of integers to the vertices and edges of a graph in which on each vertex the vertex label and the incident edges add up to numbers that form an arithmetic progression with initial term a and common difference d.
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