ABSTRACT

This thesis is devoted to the neural network forecasting of water production. The state of forecasting problem has been analyzed. It was underlined that one of the efficient methodologies for forecasting of time series is a neural network. Because of used nonlinear function, the Neural Networks (NNs) can describe the given processes with desired accuracy. The architecture and learning algorithm of Neural Network have been described. The structure of Neural network based forecasting of water production is proposed. Using Neural Network package Neuroshell the forecasting of water production of EVSU Company has been carried out. The obtained results satisfy the efficiency of application of NNs in forecasting.

TABLE OF CONTENTS

ACKNOWLEDGMENT

 i

INTRODUCTION

 ii

TABLE OF CONTENTS

 iii

1.
Introduction

 1

1.1
Overview

 1

1.2 Forecasting methods 1

 1.3
Neural Network Models In Time Series Prediction

 1

1.4
Non-Linear Time Series

 4

1.5
Linear Time Series

 5

2.
ARTIFICIAL NEURAL NETWORK

2.1
Overview

 7

2.2
Neural Network Definition

 7

2.3
Anology to The Brain

 9

2.4
Artificial Neuron

 10

2.5
Back-Propagation

 11

2.6
Strengths and Weaknesses

 11

2.7
Back-Propagation Algorithm

 12

2.8
Leaning with The Back-Propagation Algorithm

 12

2.9
Network Design Parameters

 13

2.9.1
Number of Input Nodes

 13

2.9.2
Number of Output Nodes

 13

2.9.3
Number of Middle Or Hidden Layers

 13

2.9.4
Number of Hidden Layers

 13

2.9.5
Number of Nodes Per Hidden Layer

 14

2.9.6
Initial Connection Weights

 14

2.9.7
Initial Node Biases

 14

2.9.8
Learning Rate

 14

2.9.9
Momentum Rate

 14

2.9.10
Mathematical Approach

 15

3.
Forecasting Models

3.1
Time Series Forecasting

 28

3.2
Implementation of Neural Network Based Water Forecasting Production

 Using Neuroshell

 44

3.3
Neuroshell Paskage and Its Application to Water Production Forecasting
 45

CONCLUSION

 48

REFRENCES

 49

Appendix A

 52

Appendix B

 56

TABLE OF CONTENTS

ACKNOWLEDGMENT

 i

INTRODUCTION

 ii

TABLE OF CONTENTS

 iii

1.
Introduction

 1

1.1
Overview

 1

1.2 Forecasting methods 1

 1.3
Neural Network Models In Time Series Prediction

 1

1.4
Non-Linear Time Series

 4

1.5
Linear Time Series

 5

2.
ARTIFICIAL NEURAL NETWORK

2.1
Overview

 7

2.2
Neural Network Definition

 7

2.3
Anology To The Brain

 9

2.4
Artificial Neuron

 10

2.5
Back-Propagation

 11

2.6
Strengths And Weaknesses

 11

2.7
Back-Propagation Algorithm

 12

2.8
Leaning With The Back-Propagation Algorithm

 12

2.9
Network Design Parameters

 13

2.9.1
Number Of Input Nodes

 13

2.9.2
Number Of Output Nodes

 13

2.9.3
Number Of Middle Or Hidden Layers

 13

2.9.4
Number Of Hidden Layers

 13

2.9.5
Number Of Nodes Per Hidden Layer

 14

2.9.6
Initial Connection Weights

 14

2.9.7
Initial Node Biases

 14

2.9.8
Learning Rate

 14

2.9.9
Momentum Rate

 14

2.9.10
Mathematical Approach

 15

3.
Forecasting Models

3.1
Time Series Forecasting

 28

3.2
Implementation Of Neural Network Based Water Forecasting Using Neuroshell

 44

3.3
Neuroshell Paskage And Its Application To Water Forecasting

 45

CONCLOSION

 48

REFRENCES

 49

Appendix A

 52

Appendix B

 56

Chapter 1

Introductıon

1.1. Overview

Forecasting plays an important role for effective planning and managing of the production process in most of our activities for the future. One of efffective way for increasing the efficiency of the production system is predicting future behavior of these systems for making adequate control strategy. The present thesis gives consideration of the Forecasting models
1.2. Forecasting Methods

In recent years, neural networks or neural nets have been applied to many areas of statistics, such as regression analysis [7], classification and pattern recognition [33] and time series analysis. General discussions of employment of neural networks in statistics are presented by [38] and [6]. Within the statistical literature, the theory and application of neural networks have been advanced and in certain situations neural networks have been found to work as well or better than rival statistical models. For an account of the historical development of neural computation, one can refer to books by authors such as [27, 3, 22]. Well-written textbooks on neural networks include contributions by [23, 30 , 13, 14]. Neural networks have been featured in mass-circulation popular magazines such as [24] magazine in Canada [8] provides an entertaining and speculative look at the future of neural computation and its impact on the World Wide Web. In spite of the diverse applicability of neural networks in many different areas, much controversy surrounds their employment for tackling problems that can also be studied using well-established statistical models. One such controversial domain is time series forecasting. Accordingly, the main objective of this paper is to use forecasting experiments to explain under what conditions FFNN (feed-forward neural network) models forecast well when compared to competing statistical models.

Following a description of FFNN models in the next section, an overview is given about the use of neural networks in time series forecasting. Model calibration methods for FFNN models and techniques for comparing forecasts from competing models are described. As one of the comparison methods, Pitman’s test is introduced because it is utilized in the subsequent forecasting experiments to determine if one model forecasts significantly better than another. In addition, the residual-fit plot of [6] is put forward as an insightful visual means for comparing the forecasting abilities of two models. In the fourth section, forecasting experiments with lynx data are presented based on the analytical framework explained previously. By making comparisons with a statistical model suggested by [36], many advantages of FFNN models are shown. Overall, FFNN models work well for forecasting certain types of ‘messy’ data that may, for example, be nonlinear and not follow a Gaussian distribution.

1.3. Neural Network Models In Time Series Forecasting

A variety of neural net architectures have been examined for addressing the problem of time series forecasting. These architectures include: multilayer perceptron (MLP) [29], Faraway [4, 22, 15 , 25,12], recurrent networks [13] , radial basis functions (RBF) [12 ,18] , comparison of MLP and RBF [12] .
There is substantial motivation for using FFNN for predicting time series data. [15]. For example, mention the following drawbacks of statistical time series models that neural network models might solve:

• Without expertise, it is possible to misspecify the functional form relating the independent and dependent variables, and fail to make necessary data transformations.

• Outliers can lead to biased estimates of model parameters.

• Time series models are often linear and thus may not capture nonlinear behaviour.

1.4. Nonlinear time series

A FFNN model for predicting European exchange rates is used [29]. The FFNN model was found to perform as well as the best model, which was a chaos model. Chaos or dynamicalnonlinear systems provide another new approach to time seriesforecasting, which has had somesuccess [5]. Both the FFNN and chaosmodels outperformed the classical random walkmodel for one-step-ahead forecasting of daily exchange rate data. According to [29], based on a statistical test,there was no significant difference between FFNN and the chaosmodels, but both of these models performed significantly better than the traditional random walkmodel, which is usually the best model for such data.

In [25] it is mention that [26] generated twodeterministic nonlinear time series, which look chaotic, and found neural networks performed excellentlyin generating forecasts. That neural networks have a key role to play in time seriesforecasting.

FFNN models to daily discharge data at a streamflow gauging station in Hong Kong is applied in [12]. that the FFNN approach is better than the traditional tank model method for forecasting in terms of root mean square error (RMSE) out-of-sampleforecasting. [12] applied the RBF method, which is similar to FFNN, to runoff forecasting.

The RBF approach has the advantage that it does not require a long calculation time and

does not suffer with the overtraining problem. In their study, they found that the RBF method performs the same as FFNN in terms of RMSE out-of-sample forecasting for mean water levels.

1.5. Linear Time Series

In [11] a FFNN models are compared with a seasonal autoregressive integrated moving average model on their accuracy for forecasting airline data. In their paper, they discovered that FFNN models also give smaller mean square errors (MSEs) of out-of-sample forecasting,but they mention that one has to be cautious when applying FFNN models to time series.

For choosing an appropriate FFNN architecture, they recommend using the Baysian information criterion (BIC) [11], [34]. However, the FFNN procedure is not a probabilistic type of neural network which assumes random errors, and therefore it is strange to use the BIC which is based on a likelihood obtained by random errors. In fact, [6] mention that the traditional neural network approach proposes an optimality criterion without any mention of random errors and probability models. Another interesting result from [11] is that their log transformation for the airline data did not improve the forecasting accuracy.

On the contrary, Lachtermacher and [25] suggest using the Box–Cox transformation recommended by [16] in their modelling framework. They employ the Box–Jenkins method approach to build a suitable neural network structure by identifying the lag components of the time series. Moreover, they demonstrate the usefulness of their hybrid methodology by applying it to four stationary time series (annual river flows) and four nonstationary time series (annual electricity consumption).

In [36] FFNN models are applied to several data sets generated by autoregressive models of

Order 2 (abbreviated as AR(2) models) with different signal to noise ratios. He concluded that if the signal to noise ratio is small, FFNN models cannot produce good forecastings. However, his FFNN architecture is chosen without regard to sound theoretical reasons.

In [15] it is mention that the length of training data (number of historical data) influences the forecasting accuracy. Overall, many issues have been discussed by researchers with respect to time series forecasting using FFNN models.

Based on these previous forecasting results, FFNN models seem to be suitable for time series forecasting with small signal to noise ratios if we have enough data and use appropriate data transformation techniques. Therefore, FFNN models should be more widely applied to this type of data not only for forecasting purposes but also for other reasons such as checking the performance of developed statistical models or producing combinations of forecasts as is done by [25]. Especially when a time series is nonlinear or messy and statistical modelling is difficult, FFNN models can be advantageous in providing quick and accurate forecasts of the series.

Accordingly, more forecasting experiments should be carried out to compare the performance of FFNN models with other types of models not only for experimentally generated data but also for actual time series. The lynx data studied later in this paper constitute a typical nonlinear time series for which FFNN models outperform other statistical models.

Comparison methods are another important issue for the FFNN application. Since FFNN models are not probabilistic, residuals do not usually follow a probability distribution.
Therefore, we adopt a methodology to compare the forecasts considering the nonprobabilistic feature of FFNN models.

Specifically, Pitman’s test constitutes an appropriate statistical test for comparing forecasting accuracy between FFNN models and other statistical models. In addition, a visualization method called residual-fit spread (RFS) plot is introduced to compare two different forecasting methods.

Chapter 2.

ARTIFICIAL NEURAL NETWORKS

2.1 Overview

This chapter presents an overview of Neural Networks, its history, simple structure, biological analogy and the Backpropagation algorithm.

In both the Perceptron Algorithm and the Backpropagation Producer, the correct output for the current input is required for leaming. This type of learning is called supervised learning. Two other types of learning are essential in the evolution of biological intelligence: unsupervised learning and reinforcement leaming. in unsupervised leaming a system is only presented with a set of exemplars as inputs. The system is not given any extemal indication as to what the correct responses should be not whether the generated responses are right or wrong. Statistical elustering methods, without knowledge of the number elusters, are examples of unsupervised learning. Reinforcement learning is somewhere between supervised learnih, in which the system is provided with the desired output, and unsupervised learnig, in which the system gets no feedback at all on how it is doing. in reinforcement leaming the system receİvers a feedback that tells the system whether its output response is right or wrong, but no information on what the right output should be is provided. [27]

2.2 Neural Network Definition

An Artificial Neural Network (ANN) is an information-processing paradigm that is inspired by the way biological nervous systems, such as the brain, process information. The key element of this paradigm is the novel structure of the information processing system. It is composed of a large number of highly interconnected processing elements (neurons) working in unison to solve specific problems. ANN’s, like people, leam by example. An ANN is configured for a specific appIication, such as pattem recognition or data classification, through a learning process.

A neural network is a computational model that shares some of the properties of the brain. It consists of many simple units working in parallel with no central control; the connections between units have numeric weights that can be modifıed by the learning element.
A new form of computing inspired by biological models, a mathematical model composed of a large number of processing elements organized into layers.

Computing system made up of a number of simple, highly interconnected

Elements, which processes information by its dynamic state response to extemal inputs"

Neural networks go by many aliases. Although by no means synonyms the names listed in figure 2.2 below.

[image: image66.emf]

 Receptors

 Neurons Effectors

 Figure 2.2Neural Network Aliases

All refer to this new form of information processing; some of these terms again when we talk about implementations and models. In general though we will continue to use the words "neural networks" to mean the broad class of artifıcial neural systems. This appears to be the one most commonly used.
The history of Neural Networks is given in Table 2.1
 Table 2.2Development of Neural Network

	Present
	
	 Late 80s to now
	Interest explodes with conferences, artides,

	
	
	
	simulation, new companies, and

	
	
	
	
	govemment funded research.

	Late Infaney
	
	1982
	Hopfiled at National Academy of Sciences

	Stunted Growth
	
	1969
	Minsky & Papert's critique Perceptrons

	Early Infancy
	
	Late 50s, 60s
	Excessive Hype Research efforts expand

	Birth
	
	1956
	AI & Neural computing Fields launched

	
	
	
	
	Dartmouth Summer Research Project

	Gestation
	
	1950s
	Age of computer simulation

	
	
	1949
	Hebb, the Organization of Behavior

	
	
	1943
	McCulloch & Pitts paper on neurons

	
	
	1936
	Turing uses brain as computing paradigm

	Conception
	
	 1890
	James, Psychology (Briefer Curse)

2.3 Analogy to the Brain

The human nervous system may be viewed as a three stage system, as depicted in the

block diagram of the block diagram representation of the nervous system.

[image: image67.png]Activation

Error

 Figure 2.3 Block Diagram of the Nervous System.

Central to the system is the brain, represented by the neural (nerve) network which continually receives information, perceives if, and makes appropriate decisions. Two sets of arrows are shown in the block diagram. Those pointing from left to right indicate the forward transmission of information-bearing signals through the system. The receptors convert stimuli from the human body or the extemal environment into electrical impulses which convey information to the neural network (brain). The effectors convert electrical impulses by the neural network into discemible responses as system outputs.

2.4 Artificial Neuron

Our paper starts by copying the simplest element the neuron call our artificial neuron a processing element or for short. The word no de is also used for this simple building bloek, which is represented by circle in the figure "a single mode or processing element PE or Artificial Neuron"

[image: image68.wmf])

(

)

1

(

t

w

t

w

ji

ji

D

=

+

D

[image: image69.png]output layer

[image: image70.png]

[image: image71.png]

[image: image72.png]Activation

Error

[image: image73.wmf])

(

)

1

(

t

w

t

w

ji

ji

D

=

+

D

Figure 2.4 Atifical Neuron
The PE handles several basic functions: EvaIuates the input signals and determines the strength of each one, Calculates the total for the combined input signals and compare that total to some threshold level, and Determines what the output should be.

Input and Output: Just as there are many inputs (stimulation levels) to a neuron there should be many input signals to our PE. All of them should come into our PE simultaneously. in response a neuron either "fires" or "doesn't fire" depending on some threshold level. The PE will be allowed a single output signal just as is present in a biological neuron. There are many inputs and onlyone output.

Weighting Factors: Each input will be given a relative weighting which will affect the impact of that input. In Figure 2.4 "a single mode or processing element PE or Artificial
Neuron" with weighted inputs.

 Figure 2.4 Single Modes Artifıcial Neuron

This is something like the varying synaptic strengths of the biological neurons. Some inputs are more important than others in the way that they combine to produce an impulse. Set of neurons organizes neural networks.

2.5 Back-Propagation

The most popular method for leaming in the multiplayer network is called "back​propagation." It was fırst invented in 1996 by Bryson, but was more or less ignored until the mid- 1980s. The reason for this may be sociologieal, but mayaıso have to do with the computational requirements ofthe algorithm on nontrivial problems.

The back-propagation leaming algorithm works on multiplayer feed-forward networks, using gradient descent in weight space to minimize the output error. İt converges to a loeally optimal solution, and has been used with some success in a variety of applications. As with all hill-climbing techniques, however, there is no guarantee that it will fınd a global solution. Furthermore, its eonverge is often very slow.

2.6 Strengths and Weaknesses

The Back Propagation Network has the ability to leam any arbitrarily complex nonlinear mapping this is due to the introduction of the hidden layer. it also has a capacity much greater than the dimensionality of its input and output layers as we will see later. This is not true of all neural net models.

However Backpropagation can involve extremely long and potentially infinite training time. if you have a strong relationship between input and outputs and you are willing to accept results within a relatively broad time, your training time may be reasonable.

2.7 Back Propagation BP Algorithm

Back propagation is a form of supervised learning for multi-layer nets, also known as the generalized delta rule. Error data at the output layer is "backpropageted" to earlier ones, allowing incoming weights to these layers to be updated. It is most often used as training algorithm in current neural network applications. The back propagation algorithm was developed by Paul Werbos in 1974 and rediscovered independently by Rumelhart and Parker. Since its rediscovery, the back propagation algorithm has been widely used as a learning algorithm in feed forward multilayer neural networks.
2.8 Leaning with the back propagation algorithm

The back propagation algorithm is an involved mathematical tool; however, execution of the training equations is based on iterative processes, and thus is easily implementable on a computer. During the training session of the network, a pair of patterns is presented (Xk, Tk), where Xk in the input pattern and Tk is the target or desired pattern. The Xk pattern causes output responses at teach neurons in each layer and, hence, an output Ok at the output layer. At the output layer, the difference between the actual and target outputs yields an error signal. This error signal depends on the values of the weights of the neurons I each layer. This error is minimized, and during this process new values for the weights are obtained. The speed and accuracy of the learning process-that is, the process of updating the weights-also depends on a factor, known as the learning rate.

Before starting the back propagation learning process, we need the following:

· The set of training patterns, input, and target

· A value for the learning rate

· A criterion that terminates the algorithm

· A methodology for updating weights

· The nonlinearity function (usually the sigmoid)

· Initial weight values (typically small random values)

2.9 Network Design Parameters

Employing a backpropagational neural network requires an understanding of a number of network design options, however a brief discussion of some key network parameters is given below. Be advised that there are no definate rules for choosing the settings of these parameters a priori. Since the solution space associated with each problem is not known, an number of different network runs must be undertaken before the user can determine with relative confidence a suitable combination.
2.9.1 Number of Input Nodes:

These are the independent variables which must be adjusted to fall into a range of 0 to 1. The number of nodes is fixed by the number of inputs. Inputs must not be nominal scale, but can be binary, ordinal or better. Such inputs can be accommodated by providing a separate input node for each category which is associated with a binary (0 or 1) input.

2.9.2 Number of Output Nodes:

For the purposes of this research there was always a single output - also adjusted to fall within the range of 0-1.

2.9.3 Number of Middle or Hidden layers:

The hidden layers allow a number of potentially different combinations of inputs that might results in high (or low) outputs. Each successive hidden layer represents the possibility of recognizing the importance of combinations of combinations.

2.9.4 Number of Hidden Layers:

The more nodes there are the greater the number of different input combinations that the network is able to recognize.

2.9.5 Number of Nodes Per Hidden Layer:

Generally all nodes of any one layer are connected to all nodes of the previous and the following layers. This can be modified at the discretion of the user however.

2.9.6 Initial Connection Weights:

The weights on the input links are initialized to some random potential solution. Because the training of the network depends on the initial starting solution, it can be important to train the network several times using different starting points. Some users may have reason to start the training with some particular set of link weights. It is possible, for example to find a particularly promising starting point using a genetic algorithm approach to weight initialization.

2.9.7 Initial Node Biases:

Node bias values impart a significance of the input combinations feeding into that node. In general node biases are allowed to be modified during training, but can be set to particular values at network initialization time. Modification of the node biases can be also allowed or disallowed.

2.9.8 Learning Rate:

At each training step the network computes the direction in which each bias and link value can be changed to calculate a more correct output. The rate of improvement at that solution state is also known. A learning rate is user-designated in order to determine how much the link weights and node biases can be modified based on the change direction and change rate. The higher the learning rate (max. of 1.0) the faster the network is trained. However, the network has a better chance of being trained to a local minimum solution. A local minimum is a point at which the network stabilizes on a solution which is not the most optimal global solution.

2.9.9 Momentum Rate:

To help avoid settling into a local minimum, a momentum rate allows the network to potentially skip through local minima. A history of change rate and direction are maintained and used, in part, to push the solution past local minima. A momentum rate set at the maximum of 1.0 may result in training which is highly unstable and thus may not achieve even a local minimum, or the network may take an inordinate amount of training time. If set at a low of 0.0, momentum is not considered and the network is more likely to settle into a local minimum. A process of "simulated annealing" is performed if the momentum rate starts high and is slowly shifted to 0 over a training session. Like other statistical and mathematical solutions, back propagation networks can be over- parameterized. This leads to the ability of the statistics to find parameters which can accurately compute the desired output at the expense of the systems ability to interpolate and compute appropriate output for different inputs. To ensure that a back propagation neural network is not over parameterized, the training data must be split into a training and a testing set. It is the performance of the trained network on the data reserved for testing that is the most important measure of training success.

2.10 Mathematical Approach

A sequence of steppes should be followed during the mathematic approach, thus they are listed as below, and Figure 2.1 shows the multilayer BP network steps.

[image: image1]

[image: image2]

[image: image3]
Figure 2.10 Multilayer BP network
Steps : Initialize weights: to small random values;

Step 1: Apply a sample: apply to the input a sample vector
[image: image4.wmf]k

u

having desired output vector
[image: image5.wmf]k

y

;

Step 2: Forward Phase:

 Starting from the first hidden layer and propagating towards the output layer:

 2.1. Calculate the activation values for the units at layer L as:

 ● If L-1 is the input layer

[image: image6.wmf]k

j

N

j

jh

k

h

u

W

a

L

L

å

=

=

0

 (2.1)
 ● If L-1 is a hidden laye

[image: image7.wmf]k

h

j

N

j

h

j

k

h

L

L

L

L

L

L

x

W

a

)

1

(

1

)

1

(

0

-

-

-

å

=

=

 (2.2)
 2.2. Calculate the output values for the units at layer L as:

[image: image8.wmf])

(

k

h

k

h

L

L

a

f

x

=

 (2.3)
 In which use
[image: image9.wmf]o

i

 instead of
[image: image10.wmf]L

h

 if it is an output layer

Step 4: Output errors: Calculate the error terms at the output layer as:

[image: image11.wmf])

(

)

(

'

k

i

o

k

i

k

i

k

i

o

o

o

o

a

f

x

y

-

=

d

 (2.4)
Step 5: Backward Phase Propagate error backward to the input layer through each layer L using the error term

[image: image12.wmf]k

i

h

N

i

k

i

k

h

L

k

h

L

L

L

L

L

L

L

w

a

f

)

1

(

1

1

)

1

(

1

'

)

(

+

+

+

+

å

=

=

d

d

 (2.5)
 in which, use
[image: image13.wmf]o

i

 instead of
[image: image14.wmf])

1

(

+

L

i

 if (L+1) is an output layer;

Step 6: Weight update: Update weights according to the formula

[image: image15.wmf]k

j

k

h

h

j

h

j

L

L

L

L

L

L

x

t

w

t

w

)

1

(

)

1

(

)

1

(

)

(

)

1

(

-

-

-

+

=

+

hd

 (2.7)
Step7: Repeat steps 1-6 until the stop criterion are satisfied, which may be chosen as the mean of the total error is sufficiently small.

[image: image16.wmf]>

-

>=<

<

å

=

2

1

2

1

)

(

k

i

M

i

k

i

k

o

o

o

x

y

e

 (2.8)

 Error backpropagation algorithm
In the previous section the procedure of training simple networks without hidden neurons was described. This procedure performs search for the network with minimal of error. However, unfortunately, such simple networks cannot solve complex problems, because of a lack of computational power.

For training multi–layer neural networks the least squares procedure must be generalized in order to provide adequate adjustment of the weight coefficients of connections, which come to hidden units. The error backpropagation algorithm [25, 26] is a generalization of the least squares procedure for networks with hidden layers.

When such a generalization is built, the following question occurs: how to determine the measure of error for neurons of hidden layers? This problem is solved by estimating the measure of error through the errors of units of the subsequent layer. On every step of learning for each training pair of input/output set a first forward pass is performed. This means that the input of a neural network is given by the input vector and as a result, the activation flow passes through the network in the direction from the input layers towards the output.

After this process, states of all neurons of the network will already have been determined. Output neurons generate the actual output vector, which is compared with the desired vector, and the learning error is calculated. Then, this error is propagated backwards along the network in the direction of the input layer, modifying the values of weight coefficients.

Thus, the learning process is the consequence of interchanging forward and backward passes and during the forward pass, the states of network units are determined, while during the backward pass, the error is propagated and the values of the weights of the connections are updated. That is why this procedure is called the error backpropagation algorithm.

As mentioned above, increasing the number of layers leads to enhancing the computational power of the network and, ultimately, to the possibility of providing much more complex mappings. It can be shown that the three-layer network can extract in input space convex regions. Adding a fourth layer would allow the extracting of the non-convex regions too [1]. Thus, by the use of four-layer neural network, practically any mapping can be provided. However, sometimes using more layers is effective.

On existence of hidden units the problem of their optimal use arises. The error backpropagation algorithm builds internal representations for the neurons of hidden layers. Note, that the automatic search of hidden units requires a significant expenditure of computer time and, therefore, increases to total amount of time needed for learning.

 For defining the step of modification of weight

, calculating the value of derivative
[image: image17.wmf]ji

w

/

E

¶

¶

 is needed. This derivative, in turn, is determined through
[image: image18.wmf]j

y

/

E

¶

¶

. To define the latter derivative for hidden neurons, the following equation is used:

[image: image19.wmf]kj

k

)

1

s

(

k

)

1

s

(

k

)

1

s

(

k

)

s

(

j

)

1

s

(

k

k

)

1

s

(

k

)

1

s

(

k

)

1

s

(

k

)

s

(

j

w

dI

dy

y

E

dy

dI

dI

dy

y

E

y

E

å

å

+

+

+

+

+

+

+

¶

¶

=

¶

¶

=

¶

¶

, (2.9)
where

– is output of j-th neuron of the n-th hidden layer,

 is output of k-th neuron of (s+1)-st layer,
[image: image20.wmf])

1

s

(

k

I

+

is the total weighted sum of k-th neuron of the (s+1)-st layer. Thus, if the network includes M layers, then the derivative
[image: image21.wmf])

M

(

j

y

/

E

¶

¶

, is calculated for output units and then values of
[image: image22.wmf])

1

M

(

j

y

/

E

-

¶

¶

,
[image: image23.wmf])

2

M

(

j

y

/

E

-

¶

¶

,
[image: image24.wmf])

1

(

j

y

/

E

¶

¶

 are defined consequently.

Because the error backpropagation algorithm is mostly widespread from all methods of neural networks learning, let’s consider it in detail.

Figure 2.10.1 the neuron used in error back propagation algorithm.

I=
[image: image25.wmf]å

=

n

1

i

i

i

w

x

 (2.10)
y=f(I)

Figure 2.10.2 Neuron used in the backpropagation algorithm

The activation function f must be differentiable everywhere.

The sigmoid function is used typically as an activation function. As we mentioned in the previous section, this function has the following derivative:

[image: image26.wmf])

y

1

(

y

dx

dy

-

=

 (2.11)
Before the learning process one should assign small random values to all weight coefficients. It is very important that initial values of weights not be equal to each other.

The given above formula for adjusting weight coefficients, is explicitly derived from the gradient descent method

[image: image27.wmf]i

i

w

E

w

¶

¶

g

-

=

D

,

Where E is the squared error that cumulatively measures the error through all cases given by the training set. In this case, all the input vectors are applied to the network consequently and therefore the measure of error is evaluated. According to this error, corrections are made. This procedure is called the batch version of the error backpropagation algorithm.

There is another approach for adapting weight coefficients. In the case where the single (current) input vector is applied, current output is generated and, in conformity with the error of the current case, the single step of weights correction is performed. Then the following input vector is selected and the process is continued. The latter procedure is called the real time version of error backpropagation algorithm.

Below we will consider the second type of algorithm (the real time version). We shall also discuss some modification of the basic procedure, intended for accelerating the learning process and avoiding the problems of stepping over the narrow minima.

Figure 2.10.3 displays graphically the scheme of the error backpropagation algorithm. Let’s now describe the steps of this algorithm [51].

Figure 2.10.3. Graphical scheme of backpropagation

Steps. Start. Weight coefficients initialization.

Steps. Repeat steps 3 - 6 for all vector pairs from the training set and then move to step 7.

Steps. Apply the next input vector from the training set to the input neurons of network.

Steps. Forward pass. Defining the states of all neurons of network layer by layer.

Steps. Calculating the deviation (learning error) of actual output vector from desirable one.

Steps. Backward pass. Propagating error back to the input layer. Modifying weight coefficients.

Steps. If total learning error is not small enough, then return to the step 2.

Steps. End of learning. Stop.

As mentioned above, at the starting point of procedure, weight coefficients are initialized by random numbers, distributed near zero. The initial settings often are crucial for success of learning. If initialization is not good, the network could fail in its attempt to learn. In this case, the learning procedure has to begin anew with another initial set of weight coefficients.

Step 4 is similar to the network functioning in recognition phase. At this step input vector X is connected to input nodes and for neurons of next layer total weighted inputs are defined:

[image: image28.wmf]å

=

i

i

ji

j

x

w

I

, (2.12)
Or in vector notation:

[image: image29.wmf]WX

I

=

After this is done, neurons of considered layer determine their output signals in accordance with the activation function.

[image: image30.wmf]å

=

i

i

ji

j

)

x

w

f(

y

, (2.13)
or

[image: image31.wmf]X)

f(W

Y

=

. (2.14)
Outputs of this layer are inputs for the layer that follows. States of neurons are defined consequently: layer by layer until the output layer will be achieved and the output of the neural network will be achieved and the output of neural will generate actual output vector.

At Step 5 the deviation of the actual value of the output vector from the desired one from the current training pair is calculated. In accordance with the calculated value of deviation (error), at the 6-th step, modification of the weight coefficients of connections is performed consequently, layer by layer, but this time in reverse direction: from output layer – backwards to input one.

This weight adjustment process stops when the layer, which is most close to input, is achieved, after updating all weight coefficients of the network.

On the 7-th step the estimation of the magnitude of error is performed. If this magnitude is higher than the acceptable level then the learning process is continued. If this error is acceptable, then the process is stopped and the values of all weight coefficients are saved for using them in recognition phase.

Since the desirable output vector is immediately given by the training set, determining the value of error for every output neuron j is easily done by the formula:

[image: image32.wmf]j

*

j

j

y

y

e

-

=

,

(2.15)
Where

– is the magnitude of error of j-th output neuron;

 – value of j-th component of the actually present output vector (current output of j-th output neuron). Thus error is multiplied by the first derivative of the activation function

:

[image: image33.wmf])

I

(

f

)

y

y

(

j

j

*

j

j

¢

×

-

=

d

 (2.16)
If the activation function f is sigmoid, then the above formula will be transformed as follows:

[image: image34.wmf])

y

1

(

y

)

y

y

(

j

j

*

j

j

-

×

-

=

d

 (2.17)

By means of a chosen estimate (3), which includes the error of the j-th output unit and derivative of activation function on the total weighted input in the point, given by the current states of neurons of foregoing layer, one can determine value of the modifications of the weight coefficients of connections between the last and previous layers or, the updated weights of the output neurons. The magnitude of the modification is determined by the following formula:

[image: image35.wmf]i

j

ji

x

w

gd

=

D

,

 (2.18)
where

 is modification of weight coefficient of the output neuron j on i-th input;

 is input signal of j-th output unit, which is the output signal of i-th neuron of the previous layer; (is constant, the learning rate, which is selected within the boundaries [0.01; 1.0]. The updated values of the weights are calculated the following way:

[image: image36.wmf]ji

ji

ji

w

)

t

(

w

)

1

t

(

w

D

+

=

+

,

(2.19)
Where

– value of the weight after the (t+1)-th learning step and

– value of that weight coefficient before the (t+1)-th step.

Thus, we have derived the formulas for learning the last layer of multi-layer neural network. When one attempts to apply the above described algorithm for training the weights of the hidden layer, the problem is determining the error for the hidden neurons. In fact, the desirable output values

 are given beforehand by the training set, but the objective values of the outputs of the hidden neurons cannot be known before the learning process. For a long time, this fact prevented the development of learning algorithms for multi-layer networks until Rummelhart et al proposed the idea of the error backpropagation algorithm.

During the forward pass, each neuron of each layer influences the global error. In order to determine the error put by the hidden neurons into the final error, it is necessary to establish the error of the output layer. Thus, the magnitude of error for neurons of the layer prior to last layer is determined through the error of output layer. Then error for all the neurons of layer s can be determined through the error of the neurons layer (s+1). Thus, errors, as it were, are propagated backward through the network.

Consider the s-th and (s+1)-st layers of the multi-layer neural network. Assume that the error of neurons of the (s+1)-st layer is known already. Then we can define

for all neurons of the (s+1)-st layer.

[image: image37.wmf])

y

1

(

y

e

)

1

s

(

j

j

)

1

s

(

j

)

1

s

(

j

+

+

+

-

×

=

d

(2.20)
where
[image: image38.wmf])

1

s

(

j

+

d

 is error of j-th neuron on layer (s+1);
[image: image39.wmf])

1

s

(

j

y

+

– state of j-th neuron of layer (s+1). In order to estimate the value of the error for j-th neuron of s-th layer propagate the value (5.26) through weighted connections from the neurons of the layer (s+1) to neuron i . Consequently, the value of the error for neuron I on layer s:

[image: image40.wmf]å

å

+

+

+

+

+

+

-

=

d

=

j

j

)

1

s

(

ji

)

1

s

(

j

)

1

s

(

j

)

1

s

(

j

)

1

s

(

ji

)

1

s

(

j

)

s

(

i

w

)

y

1

(

y

e

w

e

[image: image41.wmf]å

+

+

d

×

-

=

d

i

)

1

s

(

ji

)

1

s

(

j

)

s

(

j

)

s

(

j

)

s

(

j

w

)

y

1

(

y

(2.21)
Here

 is output of i-th neuron of s-th layer,

is weight of the neuron j of layer (s+1) on the input from neuron i of layer s.

Therefore, like in the case for the output layer neurons, the value of the weight modifications of neurons of k are defined as:

[image: image42.wmf])

s

(

l

)

s

(

i

)

s

(

il

x

w

gd

=

D

(2.22)
and finally,

[image: image43.wmf])

s

(

il

)

s

(

il

)

s

(

il

w

)

t

(

w

)

1

t

(

w

D

+

=

+

,

(2.23)
where

 – k-th input of neuron of s-th layer,

 – weight of neuron i of s-th layer line k, which is the output of neuron k of the previous layer after the (t+1)-st learning step,

 – the same weight after t-th step .

For solving many problems, the use of some bias in the formula of common weighted input of neuron would be desirable (sometimes this is necessary):

[image: image44.wmf]å

q

+

=

i

i

i

ji

j

x

w

I

,

which is close to the notion of threshold. This ensures the trainability of bias, which would have presented as weight of input, on which have always presented the signal “1” as we have accomplished that previously. To train the bias

 of neuron I on the layer s the following formulas are used:

(2.24)

[image: image45.wmf])

s

(

i

)

s

(

i

)

s

(

i

)

t

(

)

1

t

(

q

D

+

q

=

+

q

(2.25)
If the network consists of m layers, then the error of the neuron of output layer will be

[image: image46.wmf])

M

(

q

)

M

*(

q

)

M

(

q

y

y

e

-

=

, q=1,2

(2.26)
So, the formulas (6)-(12) represent the error backpropagation algorithm. Note that magnitude of (stays constant during the learning process for all layers of the network.
Figure 2.10.4. Error backpropagation
Thus, for every training pair at every step the value

 is calculated only one time. The case in which for one pair of vectors the whole learning process is accomplished to the end and then next pair is selected is erroneous. In this case, when the next pair is selected, the weight, derived for the first pair is deteriorated. For example, if one would like to train a neural network to recognize a letter of the alphabet and begin to train it to letter “a”, then, when we in a similar manner have trained it to recognize the letter “b”, the network already would forget “a’, because the corresponding weight coefficients would be lost.

One of the deficiencies of the error backpropagation algorithm is that when the addition of new mapping input/output to an already trained network is necessary, the whole learning process has to begin anew with the initial training set, added with a training pair (or pairs, if there are several pairs). On the basis of the error backpropagation algorithm a number of its modifications have been developed for increasing the efficiency of learning process.

In [26], so called the “momentum” method has been suggested which increases the stability of learning and decreases time expenses when backpropagation is used. Consider it in detail.

In the geometric interpretation, the error surface has multiple hills and valleys, when the hidden layers and non-layers activation function are used. In the beginning, the learning network finds itself in one of the points of this surface. During learning process the motion (descent) toward the closest valley (local minimum) is performed. The step of this motion depends on the selected learning rate. If the learning rate is too high then the network can stride over nearest valley, if it is sufficiently narrow. In the described method the previous weight correction is used for the determination of the current ones that would compel the network to descend to the bottom of these valleys. The corresponding equations for weight correction are written in the following form:

[image: image47.wmf])

t

(

w

x

)

1

t

(

w

ji

i

j

ji

D

×

e

+

d

×

g

=

+

D

(2.27)

[image: image48.wmf])

1

t

(

w

)

t

(

w

)

1

t

(

w

ji

ji

ji

+

D

+

=

+

(2.28)
Here (is momentum, which typically is set to a value about 0.9.

The application of exponential smoothing in the learning process leads to the following equations

[image: image49.wmf]i

j

ji

ji

x

)

1

(

)

t

(

w

)

1

t

(

w

d

e

-

+

D

e

=

+

D

(2.29)

[image: image50.wmf])

1

t

(

w

)

t

(

w

)

1

t

(

w

ji

ji

ji

+

D

g

+

=

+

(2.30)
The formula (15) was suggested by Sejnowsky and Rosenberg [27]. Here (is a smoothing coefficient. As one can see from the above equations, when (=0, the smoothing is not performed and formulas (15)-(16) represent the basic error backpropagation algorithm. When (=1

 (2.31)

That is, the previous weight modifications are repeated. When (is chosen between 0 and 1, smoothing proportional to (is performed.

Using the second derivative of the activation function in order to speed up learning was suggested in [28]. The corresponding method is called the second order error backpropagation algorithm. Parker in his work has shown that using derivatives of higher than the second order does not lead to improving the training time, but requires additional expenses for calculating the second derivatives.

The main drawback of the error backpropagation algorithm is a possibility of the network falling into the local minimum, i.e. finding such a local decision, which could be non-satisfactory. In geometric interpretation it means that the closest valley on the error surface is not sufficiently deep, having fallen into such a valley from which the network could not escape.

One way to solve this problem is to use additional hidden units, which could allow escaping the local minima.

The low speed of the considered learning method is another drawback. If we have the network, which contains Q1 neurons and we wish to train it to provide Q2 mappings and use Q3 learning steps, then the total time of learning will be
[image: image51.wmf]3

1

2

Q

Q

Q

´

´

. Assuming, that approximately
[image: image52.wmf]3

2

1

Q

Q

Q

=

=

, in a very rough estimation the time of learning will be proportional to O(

. Using parallel computations decreases this estimation to O(
[image: image53.wmf]2

1

Q

), since neurons work in parallel.
The error back-propagation algorithm is also very useful for training radial based function neural networks (RBFNN).

A series of supervised algorithms are employed for training RBFNNThese algorithms are based on a training set of N pairs (Xl ,Yl) (l=1,2,…,N) that represent associations of a given mapping or samples of a continuous multivariate function. RBFNN have a differentiable nature, providing a differentiation approach to all the parameters from the point of view of network training. Therefore, it is possible to use a gradient method to train the parameters of RBFNN. This method consists in the following iteration procedures:

[image: image54.wmf].

w

)

t

(

w

)

1

t

(

w

,

b

)

t

(

b

)

1

t

(

b

,

a

)

t

(

a

)

1

t

(

a

ij

ij

ij

i

i

i

i

i

i

D

+

=

+

D

+

=

+

D

+

=

+

 (2.32)
Here

[image: image55.wmf]i

a

i

a

E

a

¶

¶

g

-

=

D

,
[image: image56.wmf],

b

E

b

i

b

i

¶

¶

g

-

=

D

 (2.33)
And

[image: image57.wmf],

w

E

w

ij

w

ij

¶

¶

g

-

=

D

Where (a, (b, and (w are small positive constants; E is a mean-square error between outputs of a modelled object (or a function)

 and corresponding outputs of RBFNN

[image: image58.wmf]å

å

=

=

-

=

S

1

r

M

1

j

2

jr

*

jr

)

y

y

(

2

1

E

 (2.34)
Chapter 3

ForecastIng MODELS

3.1. Timeseries Forecasting

Ideally, organizations which can afford to do so will usually assign crucial forecast responsibilities to those departments and/or individuals that are best qualified and have the necessary resources at hand to make such forecast estimations under complicated demand patterns. Clearly, a firm with a large ongoing operation and a technical staff comprised of statisticians, management scientists, computer analysts, etc. is in a much better position to select and make proper use of sophisticated forecast techniques than is a company with more limited resources. Notably, the bigger firm, through its larger resources, has a competitive edge over an unwary smaller firm and can be expected to be very diligent and detailed in estimating forecast (although between the two, it is usually the smaller firm which can least afford miscalculations in new forecast levels).

A time series is a set of ordered observations on a quantitative characteristic of a phenomenon at equally spaced time points. One of the main goals of time series analysis is to forecast future values of the series.

A trend is a regular, slowly evolving change in the series level. Changes that can be modeled by low-order polynomials

We examine that can be constructed for purposes of forecasting or policy analysis. Each involves a different degree of model complexity and presumes a different level of comprehension about the processes one is trying to model.

Many of us often either use or produce forecasts of one sort or another. Few of us recognize, however, that some kind of logical structure, or model, is implicit in every forecast.

In making a forecast, it is also important to provide a measure of how accurate one can expect the forecast to be. The use of intuitive methods usually precludes any quantitative measure of confidence in the resulting forecast. The statistical analysis of the individual relationships that make up a model, and of the model as a whole, makes it possible to attach a measure of confidence to the model’s forecasts.

Once a model has been constructed and fitted to data, a sensitivity analysis can be used to study many of its properties. In particular, the effects of small changes in individual variables in the model can be evaluated. For example, in the case of a model that describes and predicts interest rates, one could measure the effect on a particular interest rate of a change in the rate of inflation. This type of sensitivity study can be performed only if the model is an explicit one.

In Time-Series Models we presume to know nothing about the causality that affects the variable we are trying to forecast. Instead, we examine the past behavior of a time series in order to infer something about its future behavior. The method used to produce a forecast may involve the use of a simple deterministic model such as a linear extrapolation or the use of a complex stochastic model for adaptive forecasting.

One example of the use of time-series analysis would be the simple extrapolation of a past trend in predicting population growth. Another example would be the development of a complex linear stochastic model for passenger loads on an airline. Time-series models have been used to forecast the demand for airline capacity, seasonal telephone demand, the movement of short-term interest rates, and other economic variables. Time-series models are particularly useful when little is known about the underlying process one is trying to forecast. The limited structure in time-series models makes them reliable only in the short run, but they are nonetheless rather useful.

In the Single-Equation Regression Models the variable under study is explained by a single function (linear or nonlinear) of a number of explanatory variables. The equation will often be time-dependent (i.e., the time index will appear explicitly in the model), so that one can predict the response over time of the variable under study to changes in one or more of the explanatory variables. A principal purpose for constructing single-equation regression models is forecasting. A forecast is a quantitative estimate (or set of estimates) about the likelihood of future events which is developed on the basis of past and current information. This information is embodied in the form of a model—a single-equation structural model and a multi-equation model or a time-series model. By extrapolating our models beyond the period over which they were estimated, we can make forecasts about near future events. This section shows how the single-equation regression model can be used as a forecasting tool.

The term forecasting is often thought to apply solely to problems in which we predict the future. We shall remain consistent with this notion by orienting our notation and discussion toward time-series forecasting. We stress, however, that most of the analysis applies equally well to cross-section models.

An example of a single-equation regression model would be an equation that relates a particular interest rate, such as the money supply, the rate of inflation, and the rate of change in the gross national product.

The choice of the type of model to develop involves trade-offs between time, energy, costs, and desired forecast precision. The construction of a multi-equation simulation model may require large expenditures of time and money. The gains from this effort may include a better understanding of the relationships and structure involved as well as the ability to make a better forecast. However, in some cases these gains may be small enough to be outweighed by the heavy costs involved. Because the multi-equation model necessitates a good deal of knowledge about the process being studied, the construction of such models may be extremely difficult.

The decision to build a time-series model usually occurs when little or nothing is known about the determinants of the variable being studied, when a large number of data points are available, and when the model is to be used largely for short-term forecasting. Given some information about the processes involved, however, it may be reasonable for a forecaster to construct both types of models and compare their relative performance.

Two types of forecasts can be useful. Point forecasts predict a single number in each forecast period, while interval forecasts indicate an interval in which we hope the realized value will lie. We begin by discussing point forecasts, after which we consider how confidence intervals (interval forecasts) can be used to provide a margin of error around point forecasts.

The information provided by the forecasting process can be used in many ways. An important concern in forecasting is the problem of evaluating the nature of the forecast error by using the appropriate statistical tests. We define the best forecast as the one which yields the forecast error with the minimum variance. In the single-equation regression model, ordinary lest-squares estimation yields the best forecast among all linear unbiased estimators having minimum mean-square error.

The error associated with a forecasting procedure can come from a combination of four distinct sources. First, the random nature of the additive error process in a linear regression model guarantees that forecasts will deviate from true values even if the model is specified correctly and its parameter values are known. Second, the process of estimating the regression parameters introduces error because estimated parameter values are random variables that may deviate from the true parameter values. Third, in the case of a conditional forecast, errors are introduced when forecasts are made for the values of the explanatory variables for the period in which the forecast is made. Fourth, errors may be introduced because the model specification may not be an accurate representation of the "true" model.

Multi-predictor regression methods include logistic models for binary outcomes, the Cox model for right-censored survival times, repeated-measures models for longitudinal and hierarchical outcomes, and generalized linear models for counts and other outcomes. Below we outline some effective forecasting approaches, especially for short to intermediate term analysis and forecasting:

Modeling the Causal Time Series: With multiple regressions, we can use more than one predictor. It is always best, however, to be parsimonious, that is to use as few variables as predictors as necessary to get a reasonably accurate forecast. Multiple regressions are best modeled with commercial package such as SAS or SPSS The forecast takes the form:

where X0 is the intercept, X1, X2, . . . Xn are coefficients representing the contribution of the Forecasting is a forecasting of what will occur in the future, and it is an uncertain process. Because of the uncertainty, the accuracy of a forecast is as important as the outcome predicted by forecasting the independent variables X1, X2,..., Xn. A forecast control must be used to determine if the accuracy of the forecast is within acceptable limits. Two widely used methods of forecast control are a tracking signal, and statistical control limits.

Tracking signal is computed by dividing the total residuals by their mean absolute deviation (MAD). To stay within 3 standard deviations, the tracking signal that is within 3.75 MAD is often considered to be good enough.

Statistical control limits are calculated in a manner similar to other quality control limit charts, however, the residual standard deviation are used.

Multiple regressions are used when two or more independent factors are involved, and it is widely used for short to intermediate term forecasting. They are used to assess which factors to include and which to exclude. They can be used to develop alternate models with different factors.

Trend Analysis: Uses linear and nonlinear regression with time as the explanatory variable, it is used where pattern over time have a long-term trend. Unlike most time-series forecasting techniques, the Trend Analysis does not assume the condition of equally spaced time series.

Nonlinear regression does not assume a linear relationship between variables. It is frequently used when time is the independent variable.

Modeling Seasonality and Trend: Seasonality is a pattern that repeats for each period. For example annual seasonal pattern has a cycle that is 12 periods long, if the periods are months, or 4 periods long if the periods are quarters. We need to get an estimate of the seasonal index for each month, or other periods, such as quarter, week, etc, depending on the data availability.

1. Seasonal Index: Seasonal index represents the extent of seasonal influence for a particular segment of the year. The calculation involves a comparison of the expected values of that period to the grand mean.

A seasonal index is how much the average for that particular period tends to be above (or below) the grand average. Therefore, to get an accurate estimate for the seasonal index, we compute the average of the first period of the cycle, and the second period, etc, and divide each by the overall average. The formula for computing seasonal factors is:

Si = Di/D,

where:
Si = the seasonal index for ith period,
Di = the average values of ith period, (3.1)
D = grand average,
i = the ith seasonal period of the cycle.

A seasonal index of 1.00 for a particular month indicates that the expected value of that month is 1/12 of the overall average. A seasonal index of 1.25 indicates that the expected value for that month is 25% greater than 1/12 of the overall average. A seasonal index of 80 indicates that the expected value for that month is 20% less than 1/12 of the overall average.

2. Deseasonalizing Process: Deseasonalizing the data, also called Seasonal Adjustment is the process of removing recurrent and periodic variations over a short time frame, e.g., weeks, quarters, months. Therefore, seasonal variations are regularly repeating movements in series values that can be tied to recurring events. The Deseasonalized data is obtained by simply dividing each time series observation by the corresponding seasonal index.

Almost all time series published by the US government are already deseasonalized using the seasonal index to unmasking the underlying trends in the data, which could have been caused by the seasonality factor.

3. Forecasting: Incorporating seasonality in a forecast is useful when the time series has both trend and seasonal components. The final step in the forecast is to use the seasonal index to adjust the trend projection. One simple way to forecast using a seasonal adjustment is to use a seasonal factor in combination with an appropriate underlying trend of total value of cycles.

4. A Numerical Application: The following table provides monthly sales ($1000) at a college bookstore. The sales show a seasonal pattern, with the greatest number when the college is in session and decrease during the summer months.

 Table 3.1
	M

T

	Jan

	Feb

	Mar

	Apr

	May

	Jun

	Jul

	Aug

	Sep

	Oct

	Nov

	Dec

	Total

	1

	196

	188

	192

	164

	140

	120

	112

	140

	160

	168

	192

	200

	1972

	2

	200

	188

	192

	164

	140

	122

	132

	144

	176

	168

	196

	194

	2016

	3

	196

	212

	202

	180

	150

	140

	156

	144

	164

	186

	200

	230

	2160

	4

	242

	240

	196

	220

	200

	192

	176

	184

	204

	228

	250

	260

	2592

	Mean:

	208.6

	207.0

	192.6

	182.0

	157.6

	143.6

	144.0

	153.0

	177.6

	187.6

	209.6

	221.0

	2185

	Index:

	1.14

	1.14

	1.06

	1.00

	0.87

	0.79

	0.79

	0.84

	0.97

	1.03

	1.15

	1.22

	12

	

Suppose we wish to calculate seasonal factors and a trend, then calculate the forecasted sales for July in year 5.

The first step in the seasonal forecast will be to compute monthly indices using the past four-year sales. For example, for January the index is:

S(Jan) = D(Jan)/D = 208.6/181.84 = 1.14,

where D(Jan) is the mean of all four January months, and D is the grand mean of all past four-year sales.

Similar calculations are made for all other months. Indices are summarized in the last row of the above table. Notice that the mean (average value) for the monthly indices adds up to 12,
which is the number of periods in a year for the monthly data.

Next, a linear trend often is calculated using the annual sales:

Y = 1684 + 200.4T,

The main question is whether this equation represents the trend.

 Table 3.2
	Determination of the Annual Trend for the Numerical Example

	Year No:

	Actual Sales

	Linear Regression

	Quadratic Regression

	1

	1972

	1884

	1981

	2

	2016

	2085

	1988

	3

	2160

	2285

	2188

	4

	2592

	2486

	2583

	

Often fitting a straight line to the seasonal data is misleading. By constructing the scatter-diagram, we notice that a Parabola might be a better fit. Using the Polynomial Regression, the estimated quadratic trend is:

Y = 2169 - 284.6T + 97T2 (3.2)
Predicted values using both the linear and the quadratic trends are presented in the above tables. Comparing the predicted values of the two models with the actual data indicates that the quadratic trend is a much superior fit than the linear one, as often expected.

Forecast could be made for the next annual sales; which, corresponds to year 5, or T = 5 in the above quadratic equation:

Y = 2169 - 284.6(5) + 97(5)2 = 3171 (3.3)
sales for the following year. The average monthly sales during next year is, therefore: 3171/12 = 264.25.

Finally, the forecast for month of July is calculated by multiplying the average monthly sales forecast by the July seasonal index, which is 0.79; i.e., (264.25).(0.79) or 209.

Using the Seasonal Index we can check hand computation by means of Plot of the Time Series as a tool for the initial characterization process.

For testing seasonality based on seasonal index, the Test for Seasonality could be used.

Trend Removal and Cyclical Analysis: The cycles can be easily studied if the trend itself is removed. This is done by expressing each actual value in the time series as a percentage of the calculated trend for the same date. The resulting time series has no trend, but oscillates around a central value of 100.

Decomposition Analysis: It is the pattern generated by the time series and not necessarily the individual data values that offers to the manager who is an observer, a planner, or a controller of the system. Therefore, the Decomposition Analysis is used to identify several patterns that appear simultaneously in a time series.

A variety of factors are likely influencing data. It is very important in the study that these different influences or components be separated or decomposed out of the 'raw' data levels. In general, there are four types of components in time series analysis: Seasonality, Trend, Cycling and Irregularity.

Xt = St . Tt. Ct . I (3.4)
The first three components are deterministic which are called "Signals", while the last component is a random variable, which is called "Noise". To be able to make a proper forecast, we must know to what extent each component is present in the data. Hence, to understand and measure these components, the forecast procedure involves initially removing the component effects from the data (decomposition). After the effects are measured, making a forecast involves putting back the components on forecast estimates (recomposition). The time series decomposition process is depicted by the following flowchart:

[image: image59.png]Time Series _, | Secasonal Remaval Trend Remaval Cyeling Remaval
X,=§,T,c,1 | usingsmoothing using egression ‘using Y% ratin

The Three Signals Decomposition and ts Reversal Pracesses For Forecasting

 Figure 3.1
Definitions of the major components in the above flowchart:

Seasonal variation: When a repetitive pattern is observed over some time horizon, the series is said to have seasonal behavior. Seasonal effects are usually associated with calendar or climatic changes. Seasonal variation is frequently tied to yearly cycles.

Trend: A time series may be stationary or exhibit trend over time. Long-term trend is typically modeled as a linear, quadratic or exponential function.

Cyclical variation: An upturn or downturn not tied to seasonal variation. Usually results from changes in economic conditions.

Seasonalities are regular fluctuations which are repeated from year to year with about the same timing and level of intensity. The first step of a times series decomposition is to remove seasonal effects in the data. Without deseasonalizing the data, we may, for example, incorrectly infer that recent increase patterns will continue indefinitely; i.e., a growth trend is present, when actually the increase is 'just because it is that time of the year'; i.e., due to regular seasonal peaks. To measure seasonal effects, we calculate a series of seasonal indexes. A practical and widely used method to compute these indexes is the ratio-to-moving-average approach. From such indexes, we may quantitatively measure how far above or below a given period stands in comparison to the expected or 'business as usual' data period (the expected data are represented by a seasonal index of 100%, or 1.0).

Trend is growth or decay that is the tendencies for data to increase or decrease fairly steadily over time. Using the deseasonalized data, we now wish to consider the growth trend as noted in our initial inspection of the time series. Measurement of the trend component is done by fitting a line or any other function. This fitted function is calculated by the method of least squares and represents the overall trend of the data over time.

Cyclic oscillations are general up-and-down data changes; due to changes e.g., in the overall economic environment (not caused by seasonal effects) such as recession-and-expansion. To measure how the general cycle affects data levels, we calculate a series of cyclic indexes. Theoretically, the deseasonalized data still contains trend, cyclic, and irregular components. Also, we believe predicted data levels using the trend equation do represent pure trend effects. Thus, it stands to reason that the ratio of these respective data values should provide an index which reflects cyclic and irregular components only. As the business cycle is usually longer than the seasonal cycle, it should be understood that cyclic analysis is not expected to be as accurate as a seasonal analysis.

Due to the tremendous complexity of general economic factors on long term behavior, a general approximation of the cyclic factor is the more realistic aim. Thus, the specific sharp upturns and downturns are not so much the primary interest as the general tendency of the cyclic effect to gradually move in either direction. To study the general cyclic movement rather than precise cyclic changes (which may falsely indicate more accurately than is present under this situation), we 'smooth' out the cyclic plot by replacing each index calculation often with a centered 3-period moving average. The reader should note that as the number of periods in the moving average increases, the smoother or flatter the data become. The choice of 3 periods perhaps viewed as slightly subjective may be justified as an attempt to smooth out the many up-and-down minor actions of the cycle index plot so that only the major changes remain.

Irregularities (I) are any fluctuations not classified as one of the above. This component of the time series is unexplainable; therefore it is unpredictable. Estimation of I can be expected only when its variance is not too large. Otherwise, it is not possible to decompose the series. If the magnitude of variation is large, the projection for the future values will be inaccurate. The best one can do is to give a probabilistic interval for the future value given the probability of I is known.

Making a Forecast: At this point of the analysis, after we have completed the study of the time series components, we now project the future values in making forecasts for the next few periods. The procedure is summarized below.

Step 1: Compute the future trend level using the trend equation.

Step 2: Multiply the trend level from Step 1 by the period seasonal index to include seasonal effects.

Step 3: Multiply the result of Step 2 by the projected cyclic index to include cyclic effects and get the final forecast result.

There in find a detailed workout numerical example in the context of the sales time series this consists of all components including a cycle.

Smoothing Techniques: A time series is a sequence of observations, which are ordered in time. Inherent in the collection of data taken over time is some form of random variation. There exist methods for reducing of canceling the effect due to random variation. A widely used technique is "smoothing". This technique, when properly applied, reveals more clearly the underlying trend, seasonal and cyclic components.

Smoothing techniques are used to reduce irregularities (random fluctuations) in time series data. They provide a clearer view of the true underlying behavior of the series. Moving averages rank among the most popular techniques for the preprocessing of time series. They are used to filter random "white noise" from the data, to make the time series smoother or even to emphasize certain informational components contained in the time series.

Exponential smoothing is a very popular scheme to produce a smoothed time series. Whereas in moving averages the past observations are weighted equally, Exponential Smoothing assigns exponentially decreasing weights as the observation get older. In other words, recent observations are given relatively more weight in forecasting than the older observations. Double exponential smoothing is better at handling trends. Triple Exponential Smoothing is better at handling parabola trends.

Exponential smoothing is a widely method used of forecasting based on the time series itself. Unlike regression models, exponential smoothing does not imposed any deterministic model to fit the series other than what is inherent in the time series itself.

Simple Movig Averages: The best-known forecasting methods is the moving averages or simply takes a certain number of past periods and add them together; then divide by the number of periods. Simple Moving Averages (MA) is effective and efficient approach provided the time series is stationary in both mean and variance. The following formula is used in finding the moving average of order n, MA(n) for a period t+1,

MAt+1 = [Dt + Dt-1 + ... +Dt-n+1] / n

where n is the number of observations used in the calculation.

The forecast for time period t + 1 is the forecast for all future time periods. However, this forecast is revised only when new data becomes available.

Weighted Moving Average: Very powerful and economical. They are widely used where repeated forecasts required-uses methods like sum-of-the-digits and trend adjustment methods. As an example, a Weighted Moving Averages is:

Weighted MA(3) = w1.Dt + w2.Dt-1 + w3.Dt-2 (3.5)
where the weights are any positive numbers such that: w1 + w2 + w3 = 1. A typical weights for this example is, w1 = 3/(1 + 2 + 3) = 3/6, w2 = 2/6, and w3 = 1/6.

An illustrative numerical example: The moving average and weighted moving average of order five are calculated in the following table.

 Table 3.3

	Week
	Sales ($1000)
	MA(5)
	WMA(5)

	1
	105
	-
	-

	2
	100
	-
	-

	3
	105
	-
	-

	4
	95
	-
	-

	5
	100
	101
	100

	6
	95
	99
	98

	7
	105
	100
	100

	8
	120
	103
	107

	9
	115
	107
	111

	10
	125
	117
	116

	11
	120
	120
	119

	12
	120
	120
	119

	
	
	
	

Moving Averages with Trends: Any method of time series analysis involves a different degree of model complexity and presumes a different level of comprehension about the underlying trend of the time series. In many business time series, the trend in the smoothed series using the usual moving average method indicates evolving changes in the series level to be highly nonlinear.

In order to capture the trend, we may use the Moving-Average with Trend (MAT) method. The MAT method uses an adaptive linearization of the trend by means of incorporating a combination of the local slopes of both the original and the smoothed time series.

The following formulas are used in MAT method:

M(t) = X(i) / n (3.6)

X(t): The actual (historical) data at time t.

i.e., finding the moving average smoothing M(t) of order n, which is a positive odd integer number X 3, for i from t-n+1 to t.

F (t) = F(t-1) + a [(n-1)X(t) + (n+1)X(t-n) -2nM(t-1)], where constant coefficient a = 6/(n3 – n).

F (t) = the smoothed series adjusted for any local trend
With initial condditios F(t)=X(t) for all t Xn,

Finally, the h-step-a-head forecast f(t+h) is:

F(t+h) = M(t) + [h + (n-1)/2] F(t).

To have a notion of F(t), notice that the inside bracket can be written as:

n[X(t) – F(t-1)] + n[X(t-m) – F(t-1)] + [X(t-m) – X(t)],

this is, a combination of three rise/fall terms.

In making a forecast, it is also important to provide a measure of how accurate one can expect the forecast to be. The statistical analysis of the error terms known as residual time-series provides measure tool and decision process for modeling selection process. In applying MAT method sensitivity analysis is needed to determine the optimal value of the moving average parameter n, i.e., the optimal number of period m. The error time series allows us to study many of its statistical properties for goodness-of-fit decision. Therefore it is important to evaluate the nature of the forecast error by using the appropriate statistical tests. The forecast error must be a random variable distributed normally with mean close to zero and a constant variance across time.

For computer implementation of the Moving Average with Trend (MAT) method one may use the forecasting (FC) module of WinQSB which is commercial grade stand-alone software. WinQSB’s approach is to first select the model and then enter the parameters and the data. With the Help features in WinQSB there is no learning-curve one just needs a few minutes to master its useful features.

Exponential Smoothing Techniques: One of the most successful forecasting methods is the exponential smoothing (ES) techniques. Moreover, it can be modified efficiently to use effectively for time series with seasonal patterns. It is also easy to adjust for past errors-easy to prepare follow-on forecasts, ideal for situations where many forecasts must be prepared, several different forms are used depending on presence of trend or cyclical variations. In short, an ES is an averaging technique that uses unequal weights; however, the weights applied to past observations decline in an exponential manner.

Forecasting: The estimates of the parameters are used in Forecasting to calculate new values of the series, beyond those included in the input data set and confidence intervals for those predicted values.

An Illustrative Numerical Example: The analyst at Aron Company has a time series of readings for the monthly sales to be forecasted. The data are shown in the following table:

 Table 3.4
	Aron Company Monthly Sales ($1000)

	t

	X(t)

	t

	X(t)

	t

	X(t)

	t

	X(t)

	t

	X(t)

	1

	50.8

	6

	48.1

	11

	50.8

	16

	53.1

	21

	49.7

	2

	50.3

	7

	50.1

	12

	52.8

	17

	51.6

	22

	50.3

	3

	50.2

	8

	48.7

	13

	53.0

	18

	50.8

	23

	49.9

	4

	48.7

	9

	49.2

	14

	51.8

	19

	50.6

	24

	51.8

	5

	48.5

	10

	51.1

	15

	53.6

	20

	49.7

	25

	51.0

	

By constructing and studying the plot of the data one notices that the series drifts above and below the mean of about 50.6. By using the Time Series Identification Process JavaScript, a glance of the autocorrelation and the partial autocorrelation confirm that the series is indeed stationary, and a first-order (p=1) autoregressive model is a good candidate.

X(t) = X0 + X(t-1) + Xt, (3.7)
where Xt is a White-Noise series.:

is expressed as a null hypothesis H0 that must be tested before forecasting stage. To test this hypothesis, we must replace the t-test used in the regression analysis for testing the slope with the X-test introduced by the two economists, Dickey and Fuller.

The estimated AR (1) model is:
X (t) = 14.44 + 0.715 X(t-1) (3.8)
The 3-step ahead forecasts are:

X(26) = 14.44 + 0.715 X(25) = 14.44 + 0.715 (51.0) = 50.91
X(27) = 14.44 + 0.715 X(26) = 14.44 + 0.715 (50.91) = 50.84 (3.9)
X(28) = 14.44 + 0.715 X(27) = 14.44 + 0.715 (50.84) = 50.79

Notice: As always, it is necessary to construct the graph and compute statistics and check for stationary both in mean and variance, as well as the seasonality test. For many time-series, one must perform, differencing, data transformation, and/or deasonalitization prior to using this JavaScript.

3.2. Implementation of Neural Network Based Water Forecasting Using neuroshell

In Neurosheel paskage the defining characteristics and classifying characteristics must be defined before anything else can be accomplished. If using the analog version, the minimum and maximum values are also set here. There are set tools for managing the system.

If the sample cases were obtained from an expert and two or more that match have different classifications, then only one must be correct. If cases were obtained from actual data and two or more that match have different classifications, then we will have to decide if this is natural or if there are errors. If the problem characteristics file is oversize, only the segment currently loaded into memory can be checked.

After completing checking and the sample cases have been entered, NeuroShell can learn them with this menu entry. Learning stops when the error factors for all sample cases fall below the learning threshold. Learning could be stopped at any time, and resume later because the contents of the net- work are saved automatically on disk. Speed of learning is affected by number and complexity of distinct patterns found in sample cases, number of characteristics, number of hidden nodes, number of sample cases, learning threshold, learning rate, momentum, and presentation.

After learning, NeuroShell will be ready to classify new cases. New cases are entered like sample cases are entered. Unlike sample cases, new cases are not automatically adjusted if you later insert or delete characteristic definitions. After characteristics for a new case are set, classification could be made.

The structure NN based water forecasting system is given in figure. The two inputs are used for forecasting. Forecasting is performed for one two days.

 SHAPE * MERGEFORMAT

Figure 3.10 Structure Neural Network based forecasting system

3.3 Neurosheel paskage and its application to water forecasting

Neurosheel provides several choices for graphing the characteristics (a scatter plot of characteristics, a graph that plots the general shape of the data, and a graph of one characteristic's values in every case). Either the .CHR or the .CLS file can be graphed (you are given a choice in the next menu). A CGA adapter is the minimum requirement for the use of this utility (other adapters provide better resolution).

Below given an example about the Neurosheel application.

At first the parameters of the system are selected.

3 (the header)

1.2 3.4 5.6 7.8 (the data for the cases)

9.0 1.2 3.4 5.67.8 9.0 1.2 3.4

Then the cases are entered.

1 2 3 4 5 (just the data)

6 7 8 9 0

1 2 3 4 5

After entering input data the learning of the system start.

The Neuroshell paskage is used for forecasting of water production. Below given fragment of monthly production of water for EVSU company. The simulation has been performed for towelve month. Using input data the learning of the system has been performed. Below figure demonstrate the learning process of the forecasting system. Preiction is made for one month. In the result of forecasting the recommendation is made to determine the quantity of water for new future (for month).
Daily Sales (Evsu)

	Date
	Amount of Sales

	1 March 2007
	4100

	2 March 2007
	4040

	3 March 2007
	4050

	4 March 2007
	4000

	5 March 2007
	4071

	6 March 2007
	4011

	7 March 2007
	4048

	8 March 2007
	4078

	9 March 2007
	4051

	10March 2007
	4099

	11March 2007
	4004

	12March 2007
	4058

	13March 2007
	4040

	14March 2007
	4063

	15March 2007
	4074

	16March 2007
	4082

	17March 2007
	4044

	18March 2007
	4056

	19March 2007
	4043

	20March 2007
	4036

	21March2007
	4054

	22March 2007
	4078

	23March 2007
	4079

	24March 2007
	4083

	25March 2007
	4075

	26March 2007
	4060

	27March 2007
	4001

	28March 2007
	4088

	29March 2007
	4015

	30March 2007
	4007

	31March 2007
	4018

[image: image61.emf]3940

3960

3980

4000

4020

4040

4060

4080

4100

4120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Figure 3.11.Forecasted daily water production

CONCLUSION

Nowadays, the neural network is one of most important and powerful techniques in many areas, and particularly, in forecasting problems. Such abilities of neural network as adaptive learning for a training process, self-organization process during learning time, and operation in real time have shown its effectiveness to be realized on many problems.

In this thesis the application of the neural network technology for forecasting problem of water production is considered. The feed – forward structure of the supervised neural network is represented. This neural network consists of three layers. The first, hidden, and output layers have two, ten, and one neurons, respectively.

The Neoroshell software has been used for a forecasting problem. The statistical data for forecasting process have been collected from EVSU LTD. Totally 31 data have been taken. After learning process the weight coefficients of neural network are determined to be later applied to forecast the production for some next steps.

REFERENCES

[1] Akaike H. 1977. On entropy maximization principle. In Applications of Statistics, Krishnaiah PR (ed.). North-Holland: Amsterdam; 27–41.

[2] Amilon H. 2003. A neural network versus Black–Scholes: a comparison of pricing and hedging performances. Journal of Forecasting 22: 317–335.

[3] Anderson JA, Rosenfeld E. 1998. Talking Nets: An Oral History of Neural Networks. MIT Press: Cambridge, MA.

[4] Box GEP, Jenkins GM. 1973. Comments on ‘Box–Jenkins seasonal forecasting: problems in a case-study’ by C. Chatfield and D.L. Prothero. Journal of the Royal Statistical Society A136: 295–308.

[5] Casdagli M. 1989. Nonlinear forecasting of chaotic time series. Physica D35: 335–356.

[6] Chen B, Titterington DM. 1994. Neural networks: a review from a statistical perspective. Statistical Science 9: 2–54. Cleveland WS. 1993. Visualizing Data. Hobart Press: Summit, NJ.

[7] De Veux RD, Schumi J, Schweinsberg J, Ungar LH. 1998. Forecasting intervals for neural networks via nonlinear regression. Technometrics 40: 273–282.

[8] Dyson G. 1997. Darwin among the Machines: The Evolution of Global Intelligence. Addison-Wesley: Reading, MA.

[9] Elton C. 1927. Animal Ecology. MacMillan: New York.

[10] Elton C, Nicholson M. 1942. The ten-year cycle in numbers of the lynx in Canada. Journal of Animal Ecology 11: 215–244.

[11] Faraway J, Chatfield C. 1998. Time series forecasting with neural networks: a comparative study using the airline data. Applied Statistics 47: 231–250.

[12] Fernando DAK, Jayawardena AW. 1998. Runoff forecasting using RBF networks with OLS algorithm. Journal of Hydrologic Engineering 3(3): 203–209.

[13] Freeman JA. 1994. Simulating Neural Networks with Mathematica. Addison-Wesley: Reading, MA.

[14] Hertz J, Krogh A, Palmer RG. 1991. Introduction to the Theory of Neural Computation. Addison-Wesley: Reading, MA.

[15] Hill T, O’Conner M, Remus W. 1996. Neural network models for time series forecasts. Management Science 42(7): 1082–1092.

[16] Hipel KW, McLeod AI. 1994. Time Series Modelling of Water Resources and Environmental Systems. Elsevier: Amsterdam.

[17] Y. Kajitani, K. W. Hipel and A. I. McLeod 2005 John Wiley & Sons, Ltd. J. Forecast. 24, 105–117 (2005).

[18] Hutchinson JM. 1994. A radial basis function approach to financial time series analysis. PhD dissertation, Massachusetts Institute of Technology, Cambridge, MA.

[19] Jayawardena AW, Fernando DAK. 1995. Artificial neural networks in hydro-meteorological modeling. In Developments in Neural Networks and Evolutionary Computing for Civil and Structural Engineering, Topping BHV (ed.). Civil-Comp: Edinburgh; 115–120.

[20] Jayawardena AW, Fernando DAK. Use of radial basis function type artificial neural networks for runoff simulation. Computer-Aided Civil and Infrastructure Engineering 13(2): 91–99.

[21] Jayawardena AW, Fernando DAK, Zhou MC. 1996. Comparison of multilayer perceptron and radial basis function networks as tools for flood forecasting. In Destructive Water: Water-Caused Natural Disaster, their Abatement and Control. International Association of Hydrological Sciences Press: Oxfordshire; 173–182.

[22] Johnson RC, Brown C. 1988. Cognizers: Machines that Think. Wiley: New York.

Kajitani Y. 1999. Forecasting time series with neural nets. Master’s thesis, Department of Statistical and Actuarial Sciences, The University of Western Ontario, London, Ontario, Canada.

[23] Kasabov NK. 1998. Foundations of Neural Networks, Fuzzy Systems and Knowledge Engineering. MIT Press: Cambridge, MA.

[24] Kurzweil R. 1999. When machines think. Maclean’s, March 1, 54–57.

[25] Lachtermacher G, Fuller JD. 1995. Backpropagation in time-series forecasting. Journal of Forecasting 14: 381–393.

[26] Lapedes A, Farber R. 1987. Nonlinear signal processing using neural networks: forecasting and system modelling. Technical Report LA-UR-87–2662, Los Alamos National Laboratory, New Mexico.

[27] Lapedes A, Farber R. 1988. How neural nets works. In Neural Information Processing Systems, Anderson DZ (ed.). American Institute of Physics: New York; 442–456.

[28] Lin TC, Pourahmadi M. 1998. Nonparametric and nonlinear models and data mining in time series: a case-study on the Canadian lynx data. Applied Statistics 47(2): 187–201.

[29] Lisi F, Schiavo RA. 1999. A comparison between neural networks and chaotic models for exchange rate forecasting. Computational Statistics and Data Analysis 30: 87–102.

[30] Mehrotra K, Mohan CK, Ranka S. 1997. Elements of Artificial Neural Nets. MIT Press: Cambridge, MA.

[31] Moran PAP. 1953. The statistical analysis of the Canadian lynx cycle. Australian Journal of Zoology 1: 163–173.

[32] Moshiri S, Cameron N. 2000. Neural network versus econometric models in forecasting inflation. Journal of Forecasting 19: 201–217.

[33] Ripley BD. 1996. Pattern Recognition and Neural Networks. Cambridge University Press: Cambridge, MA.

[34] Schwarz G. 1978. Estimating the dimension of a model. Annals of Statistics 6: 1310–1317.

[35] SPSS Inc. 1998. Neural Connection, Version 2.0. SPSS Inc./ Recognition System Inc., Chicago.

[36] Stern HS. 1996. Neural networks in applied statistics. Technometrics 38: 205–220.

Tong H. 1983. Threshold Models in Nonlinear Time Series Analysis. Springer-Verlag: New York.

[37] Tong H. 1990. Nonlinear Time Series Oxford University Press: Oxford.

Tukey JW. 1977. Exploratory Data Analysis. Addison-Wesley: Reading, MA.

[38] Warner B, Misra M. 1996. Understanding neural networks as statistical tools. The American Statistician 50: 284–293.

[39] Rafık A. Aliyev, Bijan Fazlollahi, Rashad Rafik Aliyev, Soft Computing and its Applications in Businness and Economics.

APPENDIX A

Memory available is 437624 bytes = 427k; problem is MUSTAFA

 ╔════════════════════════ Main Menu Options . .

 ║ Define the characteristics...

 Enter characteristics for sample cases (training set)...

 ║ Check for duplicate sample cases

 ║ Learn the sample cases (develop a neural model of the problem)

 ║ Classify new cases (test set) according to the problem model...

 ║ Print the characteristic definitions

 ║ Print the characteristics of sample cases (training set)

 ║ Print the characteristics of classified cases (test set)

 ║ Select from Advanced Options menu...

 ║ Quit this program

 ║

 ↑↓ - scroll Enter - select indicated option F1 – help

 Learning finished; learning events completed: 1114200

 ╔════════════════════════ Main Menu Options

 ╔═════════════════Summary of Learning Error Factors

 ║ Error range Count Percent Histogram

 ║ ┌────────────────────┐

 ║ 1.0001 99999.0000 0 0.00 │ │

 ║ 0.5001 1.0000 0 0.00 │ │

 ║ 0.1001 0.5000 0 0.00 │ │

 ║ 0.0501 0.1000 0 0.00 │ │

 ║ 0.0201 0.0500 0 0.00 │ │

 ║ 0.0101 0.0200 0 0.00 │ │

 ║ 0.0051 0.0100 0 0.00 │ │

 ║ 0.0001 0.0050 0 0.00 │ │

 ║ 0.0000 0.0001 29 100.00

 ║ └────────────────────┘

 ║ Input nodes: 2 Learn rate: 0.1 Total error: 0.0012266

 ║ Hidden nodes: 10 Momentum: 0 Min. total: 0.0012266

 ║ Output nodes: 1 Threshold: 0.0001 Events > min: 50

 ║ ║ Problem name: MUSTAFA . Presentation: random

 Esc - interrupt learning at the end of next learning event

Case number: 1

╔═══════════════Identify Characteristics and Classify/Predict ║

║ 4007 x1

║ 4018 x2

║ --

 4005 y1

║ ║

║ ║

║ ║

║ ║

║ ║

║ ║

║ ║

║ ║

║ ║

║ ║

║ ║

║ ║

║ ║

║ ║

║ ║

║ ║

╚══ ══════════════════════════╝

Esc-main menu ↑↓-scroll →←-cases F1-show Fx F3-classify F9-class out

Case number: 2

╔═══════════════Identify Characteristics and Classify/Predict ║

║ 4018 x1

║ 4005 x2

║ --

║ 4009 y1

║ ║

║ ║

║ ║

║ ║

║ ║

║ ║

║ ║

║ ║

║ ║

 ══════════════════════════╝

Esc-main menu ↑↓-scroll →←-cases F1-show Fx F3-classify F9-class out

Case number: 3

╔═══════════════ Identify Characteristics and Classify/Predict ════════════════╗

║

║ 4005 x1

║ 4009 x2

║ --

║ 4006 y1

║ ║

║ ║

║ ║

║ ║

║ ║

║ ║

║ ║

║ ║

║ ║

║ ║

║ ║

║ ║

║ ║

║ ║

╚══╝

Esc-main menu ↑↓-scroll →←-cases F1-show Fx F3-classify F9-class out

Case number: 4

╔═══════════════ Identify Characteristics and Classify/Predict ════════════════╗

║

║ 4009 x1

║ 4006 x2

║ --

║ 4007 y1

║

║ ║

║ ║

║ ║

║ ║

║ ║

║ ║

║ ║

║ ║

║ ║

║ ║

╚══╝

Esc-main menu ↑↓-scroll →←-cases F1-show Fx F3-classify F9-class out

APPENDIX B

 X1= 4100
X2 = 4040
 Y1 = 4050

 SHAPE * MERGEFORMAT

X1= 4040
X2= 4050

Y1= 4000

 SHAPE * MERGEFORMAT

X1=4050

X2= 4000
Y1=4071

 SHAPE * MERGEFORMAT

[image: image65.emf]

Parallel distributed processing models

Connectivist /connectionism models

Adaptive systems

Self-organizing systems

Neurocomputing

Neuromorphic systems

Stimulus

�

Inputs

 1

 2 Outputs

 N

Inputs

 I

 ¹

 Output=Sum of inputs*Weights

 I ‘Note: Many inputs one output’

 ²

 I

 ³

 ∑

� EMBED PBrush ���

1

3

4

2

5

6

7

8

w1i

wni

(s+1)

(1

(s+1)

(2

(s+1)

(n

w2i

(

(

(

(

(

(

(

� EMBED Equation.3 ���

X1

X2

Y1

Sale

Day

PAGE
lix

_1035746531.unknown

_1035746683.unknown

_1038148432.unknown

_1197542057.unknown

_1197557389.unknown

_1197557454.unknown

_1259141887.unknown

_1197542513.unknown

_1197543387.unknown

_1197544213.unknown

_1197543090.unknown

_1197542119.unknown

_1197541762.unknown

_1197541903.unknown

_1197542012.unknown

_1197541554.unknown

_1035747294.unknown

_1035747329.unknown

_1035747351.unknown

_1035747358.unknown

_1036427206.unknown

_1037818187.unknown

_1036426111

_1035747354.unknown

_1035747346.unknown

_1035747305.unknown

_1035747317.unknown

_1035747324.unknown

_1035747301.unknown

_1035746690.unknown

_1035747152.unknown

_1035747286.unknown

_1035746686.unknown

_1035746592.unknown

_1035746655.unknown

_1035746668.unknown

_1035746672.unknown

_1035746665.unknown

_1035746642.unknown

_1035746646.unknown

_1035746633.unknown

_1035746578.unknown

_1035746584.unknown

_1035746591.unknown

_1035746581.unknown

_1035746549.unknown

_1035746575.unknown

_1035746539.unknown

_1035746546.unknown

_977485035.unknown

_1035746503.unknown

_1035746517.unknown

_1035746528.unknown

_1035746521.unknown

_1035746509.unknown

_1035746496.unknown

_1035746499.unknown

_977500864.unknown

_977500865.unknown

_977485039.unknown

_977485003.unknown

_977485012.unknown

_977485014.unknown

_977485034.unknown

_977485013.unknown

_977485006.unknown

_977485007.unknown

_977485004.unknown

_977484990.unknown

_977485001.unknown

_977485002.unknown

_977484991.unknown

_977484986.unknown

_977484987.unknown

_977484973.unknown

_977484984.unknown

_977484953.unknown

_977484961.unknown

_977484952.unknown

