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ABSTRACT 

Low-Density Parity-Check (LDPC) codes are one of the recent topics in coding theory 

today. Originally invented more than forty years ago, they have been the focus of many 

researchers in the last few years and are included in the latest digital video broadcasting 

via satellite standard (DVB-S2). Unlike many other classes of codes, LDPC codes are 

already equipped with a fast, probabilistic decoding algorithm. This makes LDPC codes 

not only attractive from a theoretical point of view, but also very suitable for practical 

applications. This thesis presents the application of LDPC error correction codes in 

digital image transmission and restoration on images with fixed size (256 by 256 pixels) 

in grayscale format. The results show better restoration of images by LDPC codes 

compared to other well-known image restoration methods when degradation on images 

is caused by additive white Gaussian noise (AWGN) only. The drawback is that the 

restoration process is much slower when LDPC codes are used. Consequently, LDPC 

codes can be used in applications such as medical imaging, deep-space communications 

and multimedia, where delay is not an issue. 
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INTRODUCTION 

Traditional communication systems are made up of three major components: the 

transmitter, the channel and the receiver. The transmitter transmits a signal across a 

noisy channel which introduces distortion to that signal. The receiver receives the now 

distorted signal and attempts to recover the original signal. 

In the design of any communication system the designers must consider the 

channel distortion as it will cause errors possibly rendering the received data unusable 

to the receiver. In general, a certain level of signal distortion may be acceptable but it 

may be necessary to design a system in which the receiver is capable of correcting the 

errors in the received data in order to bring the distortion down to an acceptable level. 

This can be accomplished through the use of an error-correcting coding scheme. 

An error-correcting coding scheme adds two additional components to the 

communication system described above. A channel encoder which adds redundancy 

data to the transmitted data, and channel decoder which exploits this redundancy in 

order to find and correct errors caused by the channel noise. 

Error control coding has been frequently used in many wireless systems as 

digital mobile communications started evolving in the early 1980s. By adding redundant 

data to transmitted information, coding techniques could detect and correct errors 

introduced in the channel. 

Low-density parity-check (LDPC) codes, originally invented by Gallager in 

1962 is a linear block code whose parity check matrix is composed of ‘0’ elements 

dominantly. But, since realization was regarded to be impossible in those days, it had 

been forgotten for a long time until Mackay rediscovered it in 1996. LDPC code shows 

good error correcting capability with iterative decoding by the sum-product algorithm. 

One of the recent topics in coding theory today are LDPC codes as an ideal 

candidate for next generation communication systems like wireless, wireline, satellite, 

magnetic recording channels and fiber optical applications. 

In the past few years, Gallager’s Low-Density Parity-Check (LDPC) code have 

received a lot of attention and tremendous efforts have been devoted to analyze and 

improve their error-correcting performance, and their performances have been the 

subject of much recent researchers experimentation and analysis. The interest in these 

codes stems from their near Shannon limit performance using iterative decoding on the 
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AWGN channel with rather low implementation complexity and therefore increasingly 

being applied for error control in various fields of data communications. 

These codes have flexible block lengths and code rates, and may be used in the 

area of communications and data storage. The simulation results show that they have 

better bit-error-rate decoding performance and lower error floors in additive white 

Gaussian noise, their simple descriptions and implementations, and their amenability to 

rigorous theoretical analysis. LDPC codes have become strong competitors to turbo 

codes for error control in many communication and digital storage systems where high 

reliability is required. LDPC codes can be decoded with various decoding methods, 

ranging from low to high complexity and from reasonably good to very good 

performance. 

This thesis explores low-density parity-check codes and designs and analyzes a 

system employing a new application or contribution of LDPC codes on the image 

transmission and restoration techniques in spatial domain for images with dimension of 

256 by 256 pixels in grayscale format. 

The aims of work presented in this thesis are: 

• To investigate Gallager’s LDPC error control codes and their structure. 

• To design and simulate a Matlab program for the LDPC encoder and 

LDPC decoder. 

• To investigate the performance of LDPC error control codes over 

AWGN channel. 

• Investigate the image restoration techniques in spatial domain when the 

only degradation is caused by Gaussian noise. 

• To ensure the LDPC error control codes performance over the image 

restoration techniques as a contribution of the thesis to get better results 

for filtering in spatial domain. 

• To implement the real-life applications design and simulate Matlab 

program to use the major three filters of image restoration techniques in 

spatial domain to filter any image distorted by Gaussian noise. 

• To investigate the differences for both systems with comparison criteria 

for original and reconstructed images using Matlab simulation. 

This thesis organized into four chapters as follow: 
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Chapter 1 is an introduction to communication systems. Basics of structure of 

communication systems, error control coding and their types also are presented. 

Chapter 2 presents the LDPC codes and their basics and the iterative decoding 

algorithms. 

Chapter 3 presents a background of image restoration techniques and various 

filters that work in the spatial domain. 

Chapter 4 presents the proposed system of LDPC code in detail and compares it 

with to image restoration techniques that work in the spatial domain. It also describes 

the comparison criteria. 

Chapter 5 presents the results of the proposed system in detail and compares it 

with to image restoration techniques results that work in the spatial domain. 
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CHAPTER ONE 

CHAPTER 1 Communication System Overview 

1.1 Overview 

In some communication systems, only error-detecting capability is required, and 

messages received with errors are retransmitted. These are known as automatic-repeat-

request (ARQ) systems. On the other hand, systems involving long round-trip delays 

suffer from retransmission. Such systems, rather, correct errors at the receiver without 

asking for retransmission and are known as forward error correction (FEC) systems. 

Figure 1.1 shows the model of a digital communication system using such an approach, 

and this is the model used in this thesis. 

 

 
 

Figure 1.1 Digital Communications System 

 

This chapter gives a brief overview of digital communication system. It begins 

with the background information about the components of the system and a brief 

introduction to error control coding. 

1.2 Digital Communication Systems 

A digital communication system is described as follows: 

 A digital information source produces a finite set of possible messages. 

 A typewriter is a good example of a digital source. There are a finite number of 

characters (messages) that can be emitted by this source. 

 An analog information source produces messages that are defined on a 

continuum. 

Noise 

Received 
Information  Encoder  Modulator  Channel   Demodulator  Decoder 

Digitized 
Information 
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 A microphone is a good example of an analog source. The output voltage 

describes the information in the sound, and it is distributed over a continuous 

range of values. 

 A digital communication system transfers information from a digital source to a 

destination. 

 An analog communication system transfers information from an analog source 

to a destination. 

Strictly speaking, a digital waveform is defined as a function of time that can 

have only a discrete set of values. If the digital waveform is a binary waveform, only 

two values are allowed. An analog waveform is a function of time that has a continuous 

range of values. 

An electronic digital communication system usually has voltages and currents 

that have digital waveforms; however, it may have analog waveforms. For example, the 

information from a binary source may be transmitted to the destination using a sine 

wave of 1000 Hz to represent a binary 1 and a sine wave of 500 Hz to represent a binary 

0. Here the digital source information is transmitted to the sink by use of analog 

waveforms. But this is still called a digital communication system. 

Digital communication has a number of advantages [1]: 

 Relatively inexpensive digital circuits may be used. 

 Privacy is preserved by using data encryption. 

 Greater dynamic range (the difference between largest and smallest value) is 

possible. 

 Data from voice, video, and data sources may be merged and transmitted over a 

common digital transmission system. 

 In long-distance systems noise does not accumulate from repeater to repeater. 

 Errors in detected data may be small, even when there is a large amount of noise 

on the received signal. 

 Errors may often be corrected by the use of coding. 

Digital communication also has disadvantages [1]: 

 Generally, more bandwidth is required than that for analog systems. 

 Synchronization is required. 



 6

1.2.1 Channel Encoder 

An encoder is used to change a signal or data into a code. The code may serve any of a 

number of purposes such as compressing information for transmission or storage, 

encrypting or adding redundancies to the input code, translating from one code to 

another. This is usually done by means of a programmed algorithm, especially if any 

part is digital, while most analog encoding is done with analog circuitry. 

1.2.2 Modulator 

A modulator converts digital data into a carrier waveform by assigning a different 

waveform to each possible symbol. Thus, there are a finite number of different 

waveforms corresponding to the finite number of possible symbols. For example, in 

BPSK modulation, a waveform (t)s0  is assigned to a binary ‘0’ and (t)s1  to a binary ‘1’, 

where 

( )tπf A(t)s c2cos0 =  

( )πtπf A(t)s c += 2cos1 , Tt ≤≤0       (1.1) 

here, A is the waveform magnitude, cf  is the carrier frequency and T is the waveform 

period [12]. 

Note that ( ) ( )tsts 10 −= . 

1.2.3 Communication Channels 

The communication channel provides a connection through which the information-

bearing signal propagates. It is perhaps the most important component of a 

communication system. There are many different types of physical communication 

channels, such as: 

 Wired channels 

 Wireless channels 

 Fiber optic channels 

 Underwater acoustic channels 

 Storage channels 

Different kinds of channels can have very different characteristics. In order to 

design an efficient digital communication system over a specific communication 

channel, our channel model describes the physical communication channel as well as 

http://www.answers.com/main/ntquery?method=4&dsid=2222&dekey=Transmission+%28telecommunications%29&curtab=2222_1�
http://www.answers.com/main/ntquery?method=4&dsid=2222&dekey=Computer+storage&curtab=2222_1�
http://www.answers.com/main/ntquery?method=4&dsid=2222&dekey=Encryption&curtab=2222_1�
http://www.answers.com/main/ntquery?method=4&dsid=2222&dekey=Redundancy+%28information+theory%29&curtab=2222_1�
http://www.answers.com/main/ntquery?method=4&dsid=2222&dekey=Algorithm&curtab=2222_1�
http://www.answers.com/main/ntquery?method=4&dsid=2222&dekey=Digital&curtab=2222_1�
http://www.answers.com/main/ntquery?method=4&dsid=2222&dekey=Analog+circuit&curtab=2222_1�
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the properties of the equipments, such as antennas and amplifiers, necessary to access 

the channel. Notice that the major characteristic of a communication channels interested 

distorts the information-bearing signal. Some common channel defects are: 

 Thermal noise in electronic devices 

 Signal attenuation 

 Amplitude and phase distortion 

 Multi path distortion 

 Finite-bandwidth (low-pass filter) distortion 

 Impulsive noise 

Based on knowledge of these channel defects, we construct the generic channel 

model. Suppose the symbol ( )ts  denotes the transmitted signal at the output of the 

modulator. Then it is found that the following linear filter model (see Figure 1.2) 

sufficiently approximates the behaviors of many typical communication channels: 

( ) ( ) ( ) ( )tndττtstτctr +−= ∫
∞

∞−
, ,      (1.2) 

where ( )tr  represents the received signal at the input of the demodulator, ( )tn  is a 

random process which models the thermal and impulsive noises, and ( )τ,tc  is a linear 

time-varying filter which models the other channel distortions listed above. Note that 

the linear (time-varying) channel model in Equation (1.2) is very general and we work 

with simplifications of this model in many cases. Among the various common 

simplifications of the general model, the additive white Gaussian noise (AWGN) model 

is perhaps the most studied and most important. In the AWGN model, ( ) ( )τδτ =t,c  and 

Equation (1.2) reduces to  

( ) ( ) ( )ttstr += ,         (1.3) 

 

 
 

Figure 1.2 Linear Filter Channel Module 

( )tr  
  ( )ts  

( )t,c τ

( )tn
Communication channel 
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where ( )tn  is a zero-mean wide-sense stationary Gaussian random process with 

autocorrelation function ( ) ( ) ( )τδ20NτRn = . The factor 20N  is called the two-sided 

noise spectral density of the noise ( )tn . This model is primarily employed to represent 

the situation in which the only channel defect is the thermal noise in the electronic 

devices of a communication system [2]. 

1.2.4 Demodulator 

The demodulator attempts to recover the transmitted waveform from the channel output 

( )tr . A matched filter followed by a sampler is typically used in an optimum 

demodulator. Figure 1.3 shows a fading channel with additive white Gaussian noise. 

 

 
 

Figure 1.3 Fading Channel with Additive White Gaussian Noise 

 

In Figure 1.4, is  is given by Equation (1.1) where =i 0, 1, ( )th  is the impulse response 

of the filter, T is the sampling time and the filter output ( )ty  is 

( ) ( ) ( )thtrty *=         (1.4) 

where the symbol * denotes convolution. The demodulator output can be quantized into 

a finite number ( )Q  of levels. A demodulator with 2>Q  is called a soft decision 

demodulator. If the demodulator is quantized into 2=Q  levels, it is called a hard 

decision demodulator [12]. 

 

 
 

Figure 1.4 Matched Filter Demodulator 

    h (t) = Si ( T- t ) 
r(t) y(t) y(T) 

t = T 

a(t) n(t) 
s(t) r(t) 
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1.2.5 Channel Decoder 

The channel decoder accepts the demodulator output and generates an estimate of the 

original information message that was presented to the channel encoder. The channel 

decoder can be designed to work with either hard or soft decision demodulators. 

1.3 Error Control Codes 

Error control coding (ECC) is a signal processing technique that protects digital 

information against transmission and storage errors. In contrast to its early days, ECC is 

now an integral part of almost all digital communications storage and computer 

systems. Error control coding (ECC) algorithms are widely used to improve 

performance in systems for digital communication and storage. Generally speaking, 

ECC allows a system to operate reliably at a low signal-to-noise ratio (SNR). A system 

that could not exist without ECC technology is compact disk (CD) digital audio [11].  

Shannon’s channel coding theorem states that a coding scheme always exists 

where by information can be transmitted and reconstructed with an error probability as 

small as desired. This holds true only if the data rate over the channel is less than the 

channel capacity. The theorem however, does not say how to find the appropriate 

coding for an information source and a channel. A major criterion for all 

communication systems is to achieve error free transmission. Errors, unfortunately, 

occur and methods of detecting and sometimes correcting errors are necessary [11]. 

Error control coding involves systematic addition of extra digits to the message. 

Extra check digits convey no information by themselves, but they make it possible to 

detect or correct errors [11]. 

The disadvantage of adding extra check digits is that the bandwidth of the 

channel increases. 

There are two main types of error control codes, namely block codes and 

convolutional codes. There are many differences between block codes and 

convolutional codes. Block codes are based rigorously on finite field arithmetic and 

abstract algebra. They can be used to either detect or correct errors. Block codes accept 

a block of k information bits and produce a block of n coded bits. By predetermined 

rules, n-k redundant bits are added to the k information bits to form the n coded bits. 

Commonly, these codes are referred to as (n, k) block codes. Some of the commonly 
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used block codes are Hamming codes, Golay codes, BCH codes, and Reed Solomon 

codes (uses nonbinary symbols) [7]. 

This section will present primary information about convolutional codes and 

linear block codes and the other common codes. 

1.3.1 Linear Block Codes 

An (n, k) block code is completely defined by kM 2= binary sequences of length n 

called codeword. A code C consists of M code words ic  for k2i1 ≤≤ . 

{ }MC c,....,c,c 21=  

Where each ic  is a sequence of length n with components equal to 0 or 1. A code is 

linear if any linear combination of two code words is also a code word. In the binary 

case this requires that if ic  and jc  are code words then ji cc ⊕ is also a code word, 

where ⊕  denote component-wise modulo-2 addition. 

With this defection, it is readily seen that a linear block code is a linear block 

code is a k-dimensional subspace of an n-dimensional space. It is also obvious that the 

all zero sequence 0 is a code word of any linear block code since it can be written as 

ji cc ⊕ for any code word ic . Note that according to the above definition linearly of a 

code only depends on the code words and not on the way that the information sequences 

(message) are mapped to the code words. However, it is natural to assume that if the 

information sequence 1x (of length k) is mapped into the code word 1c  (of length n) then 

the information sequence 2x is mapped into 2c , and then 21 xx ⊕ is mapped into 21 cc ⊕ . 

Linear codes will be assumed to possess this special property from now on. 

Let us consider a (5, 2) code which is defined by 

{ }11011,01111,10100,00000=c  

It is very easy to verify that this code is linear. If the mapping between the information 

sequences and code words is given by  

1101111
1010010
0111101
0000000

→
→
→
→

 

the special property mentioned above is satisfied as well. If the mapping is given by 
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1101111
0000010
0111101
1010000

→
→
→
→

 

the special property is not satisfied. However, in both cases the code is linear. 

Here are definitions of some basic parameters that characterize a code [3]: 

 The Hamming distance between two code words ic and jc is the number of bits 

at which the two code words differ, and is denoted by ( )ji ccd , . 

 The Hamming weights, or simply the weight, of a code word ic is the number of 

bits of the codeword that are equal to 1 and is denoted by ( )icw . 

 The minimum distance of a code is the minimum Hamming distance between 

any two different code words; i.e., 

( )ji

ji
cc

ccdd
ji

,min
,min

≠

=         (1.5) 

 The minimum weight of a code is the minimum of the weights of the code words 

except the all zero code word. 

( )ic
cww

i 0min min
≠

=         (1.6) 

 One of the important consequences of this fact is in any linear code minmin wd = . 

1.3.1.1 Generator and Parity Check Matrices: 

In an (n, k) linear block code let the codeword corresponding to the information 

sequences ( )0...10001 =e , ( )0...01002 =e , ( )0...00103 =e ,…, ( )1...0000=ke  be denoted 

by 1g , 2g , 3g ,…, kg  respectively, where each of the ig sequences is a binary sequence 

of length n. Now, any information sequence ( )kxxxxx ,...,,, 321=  can be written as 

∑
=

=
n

i
iiexx

1
         (1.7) 

and, therefore, the corresponding code word will be 

∑
=

=
n

i
ii gxc

1
         (1.8) 

If we define the generator matrix for this code as 
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

knkk

n

n

k

def

ggg

ggg
ggg

g

g
g

G

...
....
....
....

...

...

.

.

.

21

22221

11211

2

1

     (1.9) 

then, we can write 

xGc =           (1.10) 

This shows that any linear combination of the rows of the generator matrix is a 

code word. The generator matrix for any linear block code is a nk ×  matrix of rank k 

(because by definition the dimension of the subspace is k). The generator matrix of a 

code completely describes the code. When the generator matrix is given, the structure of 

an encoder is quite simple [3]. 

For example, in above mentioned (5, 2) code, the code words corresponding to 

information sequences ( )10  and ( )01 are ( )10100  and ( )01111 , respectively. Therefore, 

⎥
⎦

⎤
⎢
⎣

⎡
=

01111
10100

G          (1.11) 

it is seen that for the information sequence ( )21 , xx , the code word is given by  

( ) ( )Gxxccccc 2154321 ,,,,, =        (1.12) 

or  

25

24

213

22

11

xc
xc

xxc
xc
xc

=
=

⊕=
=
=

 

The above code has the property that the code word corresponding to each 

information sequence starts with a replica of the information sequence itself followed by 

some extra bits. Such a code is code systematic code and the extra bits following the 

information sequence in the code word are called the parity check bits. A necessary and 

sufficient condition for a code to be systematic is that the generator matrix be in the 

form 

[ ]PIG k=          (1.13) 
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where kI denotes a kk ×  identity matrix and P  is a ( )knk −×  binary matrix. In a 

systematic code, we have 

⎪⎩

⎪
⎨
⎧

≤≤+
≤≤

= ∑ =
nikxp

kix
c k

j jji

i
i 1,

1,

1

      (1.14) 

where all summations are modulo-2. 

By definition a linear block code C is a k dimensional linear subspace of the n 

dimensional space. From linear algebra, it is known that in order to take all sequences of 

length n that are orthogonal to all vectors of this k dimensional linear subspace, the 

result must be an ( )kn −  dimensional subspace called the orthogonal complement of the 

k dimensional subspace. This ( )kn −  dimensional subspace naturally defines an 

( )knn −,  linear code which is known as the dual of the original ( )kn,  code C. The dual 

code is denoted by TC . Obviously the code words of the original code C and the dual 

code TC  are orthogonal to each other. In particular, if the generator matrix of the dual 

code is denoted by H, which is an ( ) nkn ×−  matrix, then any codeword of the original 

code is orthogonal to all rows of H; i.e., 

0=TcH  for all Cc ∈        (1.15) 

The matrix H, which is the generator matrix of the dual code TC , is called the 

parity check matrix of the original code C. Since all rows of the generator matrix are 

code words, it is concluded that 

0=TGH          (1.16) 

In the special case of a systematic code, where 

[ ]PIG k=          (1.17) 

the parity check matrix has the following form 

[ ]k
T IPH −=          (1.18) 

Note that in the binary case PPT =− . 

For the above mentioned (5, 2) code 

⎥
⎦

⎤
⎢
⎣

⎡
=

01111
10100

G  

⎥
⎦

⎤
⎢
⎣

⎡
=

01
10

I  
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⎥
⎦

⎤
⎢
⎣

⎡
=

111
100

P  

Note that in the binary case TT PP =− . Therefore, it is concluded that 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

01
01
11

TP  

so that 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

001
010
100

01
01
11

H  

1.3.1.2 Hamming Codes 

Hamming codes are a class of linear block codes with 12 −= mn , 12 −−= mk m , and 

3min =d , for some integer 2≥m . With this minimum distance, these codes are capable 

of providing error-correction capabilities for single errors. The parity check matrix for 

these has a very simple structure. It consists of all binary sequences of length m except 

the all zero sequence. The rate of these codes is given by 

12
12

−
−−

= m

m

c
mR         (1.19) 

which is close to 1 for large value of m. Therefore, Hamming codes are high-rate codes 

with relatively small minimum distance ( 3min =d ). Minimum distance of a code is 

closely related to its error-correcting capabilities. Therefore, Hamming codes have 

limited error-correcting capability. 

For example, for the (7, 4) Hamming code 3=m and, therefore, H consists of all 

binary sequences of length 3 except the all zero sequence. Parity check matrix can be 

generated in the systematic form as [3] 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
010
001

1110
1011
1101

H  

and the generator matrix is obtained to be 
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⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

111
101
110
011

1000
0100
0010
0001

G  

1.3.2 Convolutional Codes 

Convolutional codes are one of the most widely used channel codes in practical 

communication systems. These codes are developed with a separate strong 

mathematical structure and are primarily used for real time error correction. 

Convolutional codes convert the entire data stream into one single codeword. 

The encoded bits depend not only on the current k input bits but also on past input bits. 

The main decoding strategy for convolutional codes is based on the widely used Viterbi 

algorithm. 

As a result of the wide acceptance of convolutional codes, there have been many 

advances to extend and improve this basic coding scheme. This advancement resulted in 

two new coding schemes, namely, trellis coded modulation (TCM) and turbo codes. 

TCM adds redundancy by combining coding and modulation into a single 

operation (as the name implies). The unique advantage of TCM is that there is no 

reduction in data rate or expansion in bandwidth as required by most of the other coding 

schemes [8]. 

1.3.2.1 Convolutional Encoder 

Convolutional encoders add redundancy to continued stream of input data by using a 

linear shift register. Each set of n output bits is a linear combination of the current set of 

k input bits and the m bits stored in the shift registers (Figure 1.5 ). The total number of 

bits that each output depends on is called the constraint length, and is denoted by L, 

where 1+= mL , and the total number of states of the code is m2 . The rate, r, of the 

convolutional encoder is the number of k input data bits divided by the number of n 

coded output bits, or nkr = . Outputs are determined by the connections to the modulo-

2 adders. These connections are called the generator sequences or the generator 

polynomials of the code. For the example encoder given in Figure 1.5 generator 

polynomials are ( ) ( )1012
0

1
0

0
00 == gggg  and ( ) ( )1112

1
1
1

0
11 == gggg  or in 

octal form 80 5=g  and 81 7=g , and the outputs are given by 



 16

∑
=

−=
m

i
ik

i
k dgY

0
0

0          (1.20) 

and 

∑
=

−=
m

i
ik

i
k dgY

0
1

1          (1.21) 

 

 
 

Figure 1.5 Rate 21  Encoder 

 

The convolutional encoder given in Figure 1.5 is a nonrecursive Nonsystematic 

Convolutional (NSC) encoder, which is the most common form of convolutional 

encoder [5]. 

1.3.2.2 Convolutional Decoder  

The convolutional decoder normally takes as input estimates for both the systematic bits 

and the coded bits along with preset information about the finite automation that was 

used. In this case, the estimates for the systematic bits come from the permuted results 

of the repetition decoder (for the first iteration, this information is null; that is, the 

probabilities are 0.5) and the occasional systematic estimate from the channel. These 

two probabilities are combined as if for a rate one-half repetition decoder: 

( ) ( )2121

21

11 pppp
ppp

−−+
=        (1.22) 

Note that when one of the estimates is 0.5, the total information is that of the 

other estimate. Naturally, this formula will reappear in the repetition decoder 

component. 

 Yk
0 

 Yk
1 

 m0  m1 

 g0
2

 g1
2

 g0
0 

 g1
0  g1

1

 dk 
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For each transmitted codeword, the estimates for the coded bits are constant; 

they come for the most part directly from the channel. Whenever the channel provides 

an estimate for a systematic bit, the information about the corresponding coded bit is set 

to null (i.e. probability that the coded bit was 1 is 0.5). The decoding algorithm for a 

convolutional code involves the belief propagation of messages containing probabilities 

for the state of the finite automation, sent forward and backward in time. The principle 

behind this is that at any point in time, the message traveling forward contains the 

combined information of all systematic and coded estimates before it, and the backward 

message contains information from later estimates. Thus, a certain input bit’s extrinsic 

probability, taking into account all other estimates except for its own, can be found by 

combining the forward and backward messages with the corresponding output bit 

estimate [6]. 

1.3.2.3 The Viterbi Algorithm 

Convolutional codes are widely used to encode digital data before transmission through 

noisy or error-prone channels. During encoding, k input bits are mapped to n output bits 

to give a rate nk  coded bitstream. The encoder consists of a shift register of kL stages, 

where L is described as the constraint length of the code. At the receiver, the bitstream 

can be decoded to recover the original data, correcting errors in the process. The 

optimum decoding method is maximum-likelihood decoding where the decoder 

attempts to find the closest "valid" sequence to the received bitstream. The most popular 

algorithm for maximum-likelihood decoding is the Viterbi algorithm. The possible 

received bit sequences form a "trellis" structure and the Viterbi algorithm tracks likely 

paths through the trellis before choosing the most likely path [4]. 

Encoding Process: 

Convolutional encoder error-correction capabilities result from outputs that depend on 

past data values. Each coded bit is generated by convolving the input bit with previous 

uncoded bits. An example of this process is shown in Figure 1.6. The information bits 

are input to a shift register with taps at various points. The tap values are combined 

through a Boolean XOR function (the output is high if one and only one input is high) 

to produce output bits. 
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Figure 1.6 Constraint Length 5 Rate 21  Convolutional Encoder 

 

Error correction is dependent on the number of past samples that form the code 

symbols. The number of input bits used in the encoding process is the constraint length 

and is calculated as the number of unit delays plus one. 

In Figure 1.6, there are four delays. The constraint length is five. The constraint 

length represents the total span of values used and is determined regardless of the 

number of taps used to form the code words. The symbol L represents the constraint 

length. The constraint length implies many system properties; most importantly, it 

indicates the number of possible delay states [4]. 

Coding Rate: 

Another major factor influencing error correction is the coding rate, the ratio of input 

data bits to bits transmitted. In Figure 1.6, two bits are transmitted for each input bit for 

a coding rate of 21 . 

For a rate 31  system, one more XOR block produces one more output for every 

input bit. Although any coding rate is possible, rate n1  systems are most widely used 

due to the efficiency of the decoding process. 

The output-bit combination is described by a polynomial. The system, as shown 

in Figure 1.6, uses the polynomials: 

 z -1

 G0

 G1 

Information 

Bits (Input) 
 z -1 z -1 z -1 Code symbols 

(Output) 
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( ) 43
0 1 xxxG ++=         (1.23) 

( ) 43
1 1 xxxxG +++=         (1.24) 

Polynomial selection is important because each polynomial has different error 

correcting properties. Selecting polynomials that provide the highest degree of 

orthogonality maximizes the probability of finding the correct sequence [4]. 

Decoding Process: 

Convolutionally encoded data is decoded through knowledge of the possible state 

transitions, created from the dependence of the current symbol on past data. The 

allowable state transitions are represented by a trellis diagram. 

A trellis diagram for a 3=K , rate 21  encoder is shown in Figure 1.7. The 

delay states represent the state of the encoder (the actual bits in the encoder shift 

register), while the path states represent the symbols that are output from the encoder. 

Each column of delay states indicates one symbol interval. 

The number of delay states is determined by the constraint length. In this 

example, the constraint length is three and the number of possible states is 422 21 ==−k . 

Knowledge of the delay states is very useful in data decoding, but the path states are the 

actual encoded and transmitted values. 

The number of bits representing the path states is a function of the coding rate. 

In this example, two output bits are generated for every input bit, resulting in 2-bit path 

states. A rate 31  (or 32 ) encoder has 3-bit path states; rate 41  has 4-bit path states, 

and so forth. Since path states represent the actual transmitted values, they correspond 

to constellation points, the specific magnitude and phase values used by the modulator. 

The decoding process estimates the delay state sequence, based on received data 

symbols, to reconstruct a path through the trellis. The delay states directly represent 

encoded data, since the states correspond to bits in the encoder shift register. 

In Figure 1.7, the most significant bit (MSB) of the delay states corresponds to 

the most recent input and the least significant bit (LSB) correspond to the previous 

input. Each input shifts the state value one bit to the right, with the new bit shifting into 

the MSB position. For example, if the current state is 00 and a 1 is input, the next state 

is 10; a 0 input produces a next state of 00. 
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Figure 1.7 Trellis Diagram for 3=K , Rate 21  Convolutional Encoder [4] 

 

Systems of all constraint lengths use similar state mapping. The correspondence 

between data values and states allows easy data reconstruction once the path through the 

trellis is determined [4]. 

1.3.3 Turbo Codes 

Recently, a near channel capacity error correcting code called turbo code was 

introduced. This error correcting code is able to transmit information across the channel 

with arbitrary low (approaching zero) bit error rate [8]. This code is a parallel 

concatenation of two component convolutional codes separated by a random interleaver. 

It has been shown that a turbo code can achieve performance within 1 dB of 

channel capacity. Random coding of long block lengths may also perform close to 

channel capacity, but this code is very hard to decode due to the lack of code structure. 

Without a doubt, the performance of a turbo code is partly due to the random 

interleaver used to give the turbo code a “random” appearance. However, one big 

advantage of a turbo code is that there is enough code structure (from the convolutional 

codes) to decode it efficiently [9]. 
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There are two primary decoding strategies for turbo codes. They are based on a 

maximum a posteriori (MAP) algorithm and a soft output Viterbi algorithm (SOVA). 

Regardless of which algorithm is implemented, the turbo code decoder requires the use 

of two (same algorithm) component decoders that operate in an iterative manner.  

1.3.3.1 Turbo Encoder and Decoder 

The turbo encoder consists of two recursive systematic convolutional codes known as 

constituent codes (Figure 1.8). Since the turbo code is a type of linear block code, the 

encoding operation can be viewed as the modulo-2 matrix multiplication of an 

information matrix with a generator matrix. Encoder 1 encodes the input data sequence 

directly, while Encoder 2 encodes the data sequence permuted in time by a 

pseudorandom interleaver with length N. The encoder outputs are composed of the 

systematic bit kd  and parity bits kpx ,1  and kpx ,2  from the two constituent codes. In this 

encoding process, a very large effective constraint length is generated through 

interleaving and concatenation. For this reason, the conventional Viterbi decoding 

algorithm is not feasible for turbo decoding, and turbo decoding is typically performed 

in an iterative manner. In particular, each constituent code is separately decoded using 

the most recent decoding information from the other constituent code. Each constituent 

decoder computes the a posteriori log-likelihood ratio (LLR) of the systematic bits, 

which is given by 

( )
( )Nk

Nk
k yyydP

yyydP
,,,0
,,,1

log
21

21

L

L

=
=

=Λ       (1.25) 

where )1( Niyi ≤≤  is the decoder output and ),,,|( 21 Nk yyyidp ⋅⋅⋅=  is the a posteriori 

probability of the bit value. This extrinsic information kΛ can be regarded as a type of 

diversity in that it can refine the decoder outputs in each iteration. The decoding process 

continues until some stopping criterion is met. After each iteration, the data bit decision 

kd̂  is made based on the final decoder output [10]. The Figures 1.8 and 1.9 show the 

block diagrams of turbo encoder and turbo decoder. 
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Figure 1.8 Block Diagram of the Turbo Encoder 

 

 
 

Figure 1.9 Block Diagram of the Turbo Decoder 

 

The turbo code integrates code concatenation in a pseudorandom approach 

where the randomness and long block size are provided by the interleaver. The first 

decoder passes the extrinsic information [a part of the soft output provided by an a 

posteriori probability (APP)] to the next decoding stage. The term “turbo” stems from 

the fact that the decoder uses its processed output as a priori input in the next iteration, 

and thus reuses the information in the observations [10]. 

1.3.4 Cyclic Codes 

Cyclic codes form an important sub class of linear block codes. Cyclic codes have well-

defined mathematical structure, which lead to the development of very efficient 

Demodulator output 

kd̂  
 deinterleaver 

Interleaver decoder 1 
k,1Λ  

decoder 2 data decision 

Interleaver 

k,2Λ  

d k 

Encoder 2 x p2,k 
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d k 

Interleaver 
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encoding and decoding circuits. Indeed, most block codes used in various applications 

are cyclic. This includes Hamming codes, BCH codes and Reed-Solomon codes. 

A cyclic code is a linear code with the additional property that shifting a 

codeword cyclically produces another codeword. To restate the cyclic property 

formally, let vector ( )1210 .... −nxxxx  denote a codeword of a ( )kn,  linear block 

code. 

The code is a cyclic code if the following vectors are all valid codewords as 

well: 

( )2101 .... −− nn xxxx , ( )3012 .... −−− nnn xxxx , .... , ( )0321 .... xxxx  

The cyclic property of a linear code suggests that the components of a codeword 

may be viewed as the coefficients of a binary polynomial of degree n- 1, i.e. 

( )1210 .... −= nxxxxX ; 

( ) 1
1

2
210 .... −

−+++= n
n DxDxDxxDX ; 

For example, ( )11001=X ; ( ) 41 DDDX ++=  where the power of D determines the 

position of the corresponding component in the codeword. Note that although the 

exponents of various terms of this polynomial are taken from the set of integers, the 

polynomial is essentially a binary polynomial. The coefficients are binary numbers. 

This establishes a one-to-one relationship between the codeword of a cyclic code 

and binary polynomials of degree 1−n  or less. These polynomials are called code 

polynomials. For a ( )kn,  cyclic code, all code polynomials contain a polynomial of a 

minimum degree as a factor. This polynomial, called the generator polynomial ( )DG , 

possesses the following properties: 

 The generator polynomial is unique in that it is the only nonzero code 

polynomial of minimum degree kn − . 

 The polynomial is a factor of polynomial 1+nD , i.e. ( ) ( )DHDGD n =+1 . 

 The code polynomial for each message block is formed by first forming the 

message polynomial, and then multiplying the message polynomial by the 

generator polynomial. 

 The last property defines the encoding mechanism for cyclic codes. The second 

property stipulates a method for the construction of cyclic codes. 
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The algebraic structure of the cyclic codes leads to efficient encoding and 

decoding methods. Indeed, the encoder consists of a simple linear feedback shift register 

circuit with kn −  memory cells (flip flops). Similarly, one can exploit the elegant 

algebraic structure of cyclic codes to devise efficient decoding systems for error 

detection and correction [11]. 

1.4 Summary 

This chapter presented an overview of a digital communication system. Linear block 

codes, convolutional codes, and other common error control coding are described. 

The next chapter will present in detail the low density parity check (LDPC) 

codes, and iterative decoding algorithms that it is used for their encoding decoding 

process, which will be simulated by Matlab program within this thesis. 
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CHAPTER TWO 

CHAPTER 2 Low–Density Parity–Check Codes and Decoding Algorithms 

2.1 Overview 

This chapter presents low-density parity-check (LDPC) codes. First, a brief historical 

introduction of LDPC codes is given and basics of graph theory are explained. Then, 

LDPC code fundamentals are presented and several code design methods are discussed. 

Also, the details of LDPC encoding and decoding are given. 

2.2 Introduction to LDPC Codes 

LDPC codes were invented by Gallager [13] in 1962, but did not receive much attention 

until they were rediscovered independently by MacKay [16] following the invention of 

turbo codes. The work of Tanner [15] about 20 years after Gallager, in which he 

introduced a graphical representation of LDPC codes, they were rarely used until the 

rediscovery of MacKay [16]. 

An LDPC code is a linear block code which has a very sparse parity-check matrix. 

LDPC codes were initially constructed using regular graphs until the work of Luby et 

al. who proposed graphs with degrees that are not constant, called irregular codes [17]. 

2.3 Graph Theory 

Graph theory is often useful for understanding the operation of codes and how well they 

perform. A graph ( )EVG ,=  (Figure 2.1(a)) consists of two sets, a finite set V of points 

called vertices or nodes and a finite set E of lines called edges. An edge is incident on a 

node if it is connected to it. Each edge connects two nodes and makes them adjacent. 

The set of all nodes that are adjacent to a particular node is its neighbors. The number of 

edges that are connected to a node is called the local degree of the node. A cycle of 

length v, called a v cycle, in a graph is a closed path consisting of v edges. The graph in 

Figure 2.1(a) has two three cycles, two four cycles and a five cycle. A tree (Figure 

2.1(b)) is a connected graph with no cycles (a graph is connected if there is a path from 

iv  to jv  , for all iv  and jv  in V ). Each node has one or more children below and at 

most one parent above it. Nodes with no children are called leaf nodes and the node 

with no parent is the root node. 
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Figure 2.1 A Graph and a Tree 

 

An LDPC code can be represented by a bipartite graph also called Tanner graph. 

In a Tanner graph the nodes of the graph are separated into two distinctive sets. The 

elements of these sets, called variable and check nodes, are connected by edges. 

Variable nodes are also called symbol nodes (or bit nodes in binary case) and 

check nodes are also called function nodes. In some literature, variable and check nodes 

are referred to as left nodes and right nodes, respectively. 

2.4 LDPC 

LDPC code is a linear block code for which the NM ×  parity-check matrix, H, has a 

low density of ones. A regular LDPC code contains exactly cw  ones in each column 

(i.e. column weight cw= ) and exactly rw  ones in each row (i.e. row weight rw= ), 

where rw  is related to cw   by NwMw cr = . Also, Mwc <<  and Nwr << . If H is full 

rank, the code rate R can also be written in terms of the row and column weights 

as rc wwR −= 1 . If the number of ones in each column or row is not constant, then the 

code is an irregular LDPC code [14]. 

There is an edge connecting the check node j  to variable node j if the value in 

row i  and column i  of matrix H is a one. There are a total of N variable nodes and M 

check nodes. For a particular code, degree distribution polynomials, ( )xλ  and ( )xρ , 

given by 

( ) ∑
=

−=
vd

i

i
i xx

2

1λλ         (2.1) 

and 

Edge 

(a) Graph 

Node 

(b) Tree 
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( ) ∑
=

−=
cd

i

i
i xx

2

1ρρ         (2.2) 

represent the distributions of variable and check node degrees, respectively. Here, vd  is 

the maximum variable node degree and cd  is the maximum check node degree. The iλ  

represents the fraction of edges emanating from variable nodes of degree i  and iρ  

represents the fraction of edges emanating from check nodes of degree i . The iλ  and iρ  

can be converted into node perspective equivalents iλ̂  and iρ̂  by defining 

∑
=

=
vd

j
j

i
i

ji
2

ˆ

λ

λ
λ          (2.3) 

and 

∑
=

=
cd

j
j

i
i

ji
2

ˆ
ρ

ρ
ρ          (2.4) 

Now iλ̂  is the fraction of variable nodes with degree i  and iρ̂  is the fraction of check 

nodes with degree i . Assuming check equations are linearly independent, the rate R of 

an irregular LDPC code becomes 

( )
( )

( )∫
∫

−=
−

= 1
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1

01,
dxx

dxx

N
MNR

λ

ρ
ρλ       (2.5) 

For regular codes the degree of each variable node is exactly vd  and the degree 

of each check node is exactly cd . Therefore, the degree distribution pairs for regular 

codes are ( ) 1−= vdxxλ  and ( ) 1−= cdxxρ . 

The number of variable nodes of degree i  is 

( )
( )∫∑

==

=

1

0
2

dxx
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iNiN i
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i
v v λ

λ

λ

λ       (2.6) 

And the number of check nodes of degree i  is 

( )
( ) dxx

iM
j

iMiN i
d

j
j

i
c c

∫∑
==

=

1

0
2

λ

ρ

ρ

ρ       (2.7) 

the total number of edges emerging from all variable nodes, E, is equal to 
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( )∫
= 1

0

1

dxx
NE

λ
        (2.8) 

Consider a rate ( )10,521 == NK  regular LDPC code with the following H 

matrix: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1101001000
1010100100
0110010010
0001110001
0000001111

H  

 

Here, 2== vc dw , 4== cr dw  and ( ) xx =λ  and ( ) 3xx =ρ . The bipartite graph 

representation of this code is given in Figure 2.2. 

 

 
 

Figure 2.2 Bipartite Graph Representation of ( )10,5 == NK  Regular LDPC Code 

 

The bipartite graph in Figure 2.2 consists of a six cycle, as shown in bold edges. 

The shortest possible cycle in a bipartite graph is a four cycle. Short cycles degrade the 

performance of LDPC codes, so they should be avoided if possible [14]. 

2.5 Code Design 

The code properties described in previous section determine the dimensions of the 

parity-check matrix as well as the column and row weights, but they do not indicate 

how the matrix should be constructed. There are various code design methods in the 

literature that address this issue. Depending on the application, the code is designed to 

meet certain criteria, including low error floors, efficient encoding and decoding, or 
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near capacity performance. Trade-offs exists among them and it is difficult to design 

LDPC codes that meet all of the criteria. Different code design approaches in the 

literature fall into two categories, random and deterministic, although there exists codes 

that carry the characteristics of both. The following sections describe some different 

LDPC codes, starting with Gallager’s initial definition of the codes [13]. 

2.5.1 Gallager Codes 

Gallager expressed the original LDPC codes as regular. The parity-check matrix has N 

columns with j ones in each column, k ones in each row and zeros elsewhere. This 

forms a matrix having kNj /  rows and a code having a rate kjR −≥1 . The matrix is 

also divided into j submatrices of column weight one. For the first submatrix i  the i th 

row contains ones in columns ( ) 11 +− ki  to ik  The other submatrices are simply 

column permutations of the first. This procedure does not guarantee the absence of four 

cycles but Gallager showed that the ensemble of such codes should have excellent 

distance properties if 3≥j and jk > . Figure 2.3 shows a 20=N , 3=j , 4=k  Gallager 

code [13]. 

 

10000100001000010000
00010010000100001000
01000001000010000100
00001000010001000010
00100000100000100001
10001000100010000000
01000100010000001000
00100010000001000100
00010000001000100010
00000001000100010001
11110000000000000000
00001111000000000000
00000000111100000000
00000000000011110000
00000000000000001111

 

 

Figure 2.3 Example of a Parity-Check Matrix for a 20=N , 3=j , 4=k  Gallager Code. 
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2.5.2 MacKay Codes 

MacKay rediscovered Gallager's work in [16] and showed that these codes could also 

achieve near capacity performance like the well known Turbo codes [9]. He extended 

the code construction method of Gallager and provided six methods of generating code 

ensembles. 

1. Generate H by starting from all-zero matrix and randomly changing vd  not 

necessarily distinct values in each column. 

2. Generate H as in 1 but with columns having exactly weight vd . 

3. Generate H as in 2 and also with uniform weight per row. 

4. Generate H as in 3 and constrain it so that no two columns overlap in more than 

one position. Also named ‘Construction 1A’. 

5. Further constraint H so that its graph has large girth (shortest cycle length). This 

is achieved by eliminating the short cycles. Also named ‘Construction 1B’. 

6. Generate H as in 5 and partition H in the form ][ 21 HHH =  so that 2H  is 

invertible or H is full rank. 

MacKay suggests that encoding be performed by using the generator matrix G 

obtained through Gaussian elimination from H. This method is not efficient because 

even though the parity-check matrix is sparse the generator matrix is generally not. 

Therefore, the encoding complexity of long block length codes generated in this manner 

would be high. 

2.6 Encoding 

Even though the encoding process is defined by the generator matrix G, it is the parity-

check matrix H that is used in constructing and decoding LDPC codes. 

The encoder is defined by a NK ×  generator matrix, G , which maps each 

K  symbol data block, u , into N  symbol codeword, c , using the form 

cuG =           (2.9) 

The receiver (decoder) is defined by an NM ×  parity-check matrix, H , which 

is related to the generator matrix by 

0=TGH          (2.10) 

The decoder verifies a received codeword is valid by performing the operation 

 



 31

TT uGHcH =  

0=TcH          (2.11) 

The decoding is simplified due to the sparse nature of H. The encoding, on the 

other hand, is more complex since G is not necessarily sparse [14]. The following 

subsections describe a few ways of encoding using H, without directly computing G. 

2.6.1 Generic Encoding 

Let [ ]21xxH =  be the NM ×  parity-check matrix with the submatrices 1x  and 2x  

having the dimensions KM ×  and MM × , respectively. Assume, the codeword c  is in 

the systematic form ][ puc = , where u is the K bit message and p is the M bit parity. As 

defined by Equation 2.11, a valid codeword should satisfy M parity checks of H. i.e. 

0=TcH  

][ [ ] 021 =TT xxpu  

021 =+ TT pxux  
TT uxpx 12 −=  

TT xuxp −−= 21          (2.12) 

Since the message u and the parity-check matrix H are binary, the negative sign 

in Equation 2.12 can be removed. This equation shows that p exists if and only if 2x  is 

invertible i.e. if H is full rank or the rank of H is equal to M. If it is not, then the linearly 

dependent rows of H can be deleted to obtain a full rank H, at the expense of obtaining a 

higher code rate. If 2x  is still not invertible, columns of H can also be reordered. Note 

that with this method a generator matrix is never used. 

Another method also exists which does not necessitate a matrix inversion. 

Instead, 2x  submatrix is partitioned into a lower triangular matrix L and an upper 

triangular matrix U using LU decomposition. 
TT xuxp −= 21  

Tzxp −= 2  
TTT UpLzxz == 2  

TyUz =          (2.13) 
TpLy =          (2.14) 
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First, y is obtained from Equation 2.13 by forward substitution. Then, y is used 

in Equation 2.14 to obtain p using backward substitution. 

2.7 Decoding Algorithms 

The algorithm used to decode LDPC codes was discovered independently several times 

and as a matter of fact comes under different names. The most common ones are the 

belief propagation algorithm, the message passing algorithm and the sum-product 

algorithm. 

The following sections describe the probability version of the decoding 

algorithm. 

2.7.1 Message-Passing Decoding Algorithms 

This algorithm is iterative; in each iteration it calculates the a posteriori (extrinsic) 

probability that a given bit in the transmitted codeword [ ]110 ,...,, −= Ncccc  equals one, 

given the received word [ ]110 ,...,, −= Nyyyy . i.e. 

( )iir ycP 1=          (2.15) 

Note that, as stated earlier, every codeword c must satisfy a set of equations 

defined by 

0=TcH          (2.16) 

Therefore, the event iS , that the code bit ic  satisfies the equations defined by the 

parity-check matrix H , should also be included in the probability 

( )iiir SycP ,1=          (2.17) 

Iterative computation of the probabilities can be best visualized by the Tanner 

graph drawn based on the parity-check matrix. The edges on the graph can be thought of 

as the paths for the extrinsic probabilities, called ‘messages’, to travel between each set 

of nodes of the graph. Figure 2.4 is a subgraph showing the variable node 0v  connected 

to three check nodes. The directional arrows connecting the four nodes indicate that the 

extrinsic information being passed from node 0v  to node 2f  comprises of the 

information node that 0v  receives from the channel with the received bit 0y  as well as 

the extrinsic information node 0v  received from check nodes 0f  and 1f  on the previous 

half iteration. 
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Figure 2.4 Graph Showing the Message Send From a Variable Node to a Check Node 

 

Figure 2.4 Subgraph showing the message send from a variable node to a check 

node. Similarly, Figure 2.5 shows the subgraph for the node 0f  involving the 

information it is sending to variable node 4v . The information sent to variable node 4v  

from check node 0f  is the information node 0f  had received on the previous half 

iteration from nodes 0v , 1v  and 2v . 

 

 
 

Figure 2.5 Graph Showing the Message Send From a Check Node to a Variable Node 

 

The same procedure is repeated for all nodes connected to each check and 

variable node, where each node sends all extrinsic information it has received to its 

connecting nodes, excluding the information the receiving node already has. One 

iteration consists of traversal of information along all the edges from variable to check 
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nodes and back. Decoding is stopped after a specified number iterations is reached, or 

before that if a valid estimated codeword, ĉ , is found (for ĉ  to be valid, 0ˆ =THc  should 

be satisfied) [14]. 

2.7.2 Probability Decoding Algorithm 

Before deriving the probability decoding algorithm, the following notation is 

introduced: 

 jR : The set of column locations of the ones in the j th row. 

 ijR \ : The set of column locations of the ones in the j th row, excluding 

location i . 

 iC : The set of row locations of the ones in the i th column. 

 jiC \ : The set of row locations of the ones in the i th column, excluding 

location j . 

 ( )iiri ycPP 1: =   

  ( )ijijrij ycPP 1: =  

 :iS  Event that the check equations involving ic   are satisfied. 

 ( ) ( )iiirij ySbcPbq ,: = , { }=∈ 1,0b Probability that bci =  given extrinsic 

information from all neighboring nodes, except node jf  . 

 ( ) ( )ybcSPbr iirij ,: = , { }=∈ 1,0b  Probability of the j th check equation being 

satisfied given bci =  and extrinsic information from all variable nodes, except 

node iv . 

 ( ) =bQij Probability that bci =  given extrinsic information from all check nodes. 

The algorithm is initialized with ( )bqij , for all i and j  for which 1=ijH , where 

( )bqij  is given by 

( ) ( )iirij ybcPbq ==  { }1,0∈b       (2.18) 

Note that ( ) iiir PycP −== 10  and ( ) iiir PycP == 1 . The received symbol 

corresponding to ic  is iy . For the binary input additive white Gaussian noise (AWGN) 

channel, ( )iir ybcP =  is calculated by the technique discussed below. 
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Let iii nxy += , where in  is zero mean Gaussian noise with variance 2σ , 

ii cx 21−=   and ( ) ( ) 2/111 =−==+= irir xPxP . Using Bayes' rule: 

( ) ( ) ( )
( )yp

xxpxxyp
yxxp ii

i

==
==  

                  
( ) ( )

( ) ( ) ( ) ( )2121
21

2222

22

2121

2

σσ

σ

+−−−

−−

+
=

yy

xy

ee
e  

                  22 σσ yy

xy

ee
e

−+
=  

                  ( ) ( ) 22 11

1
σσ xyxy ee +− +

=  

                  221
1

σyxe−+
=        (2.19) 

On the last step, one of the terms in the denominator is going to be one no matter 

what the value of x is. In order to derive ( )ybcSP iir ,= , first note the following Lemma 

by Gallager [13]. 

For a set of M binary numbers ( )Maaa ,...,1= , the probability that a contains an 

even number of ones is 

( )∏
=

−+
M

k
kp

1

21
2
1

2
1         (2.20) 

where ( ) kkr paP ==1 . The probability that it contains an odd number of ones is 

( )∏
=

−−
M

k
kp

1

21
2
1

2
1         (2.21) 

Using this Lemma, given 1=ic , in order for event iS  to be valid, the probability 

that the other set of bits that are in the same check equation contain an odd number of 

ones is 

( )∏
∈′

′−−
ijRi

jip
\

21
2
1

2
1         (2.22) 

If 0=ic , then the probability that the other bits contain an even number of ones is 

( )∏
∈′

′−+
ijRi

jip
\

21
2
1

2
1         (2.23) 



 36

The probability that all the check equations involving ic are satisfied is the 

product of the individual probabilities. Thus, using Equations 2.22 and 2.23, 

( )ybcSP iir ,=  corresponds to 

( ) ( )∏ ∏
∈ ∈′

′ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+==

icj iRji
jiiir pycSP

\

21
2
1

2
1,0      (2.24) 

and 

( ) ( )∏ ∏
∈ ∈′

′ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−==

icj iRji
jiiir pycSP

\

21
2
1

2
1,1      (2.25) 

The a posteriori probability (APP) for ic , given the received codeword y  and the 

event iS  is 

( ) ( ) ( )
( )ir

iriir
iir SyP

bcPbcSyP
SybcP

,
,

,
==

==
 

                       
( ) ( )

( )ir

iriir

SP
bcPbcSP ==

=      (2.26) 

For 0=ic  and 1=ic , this simplifies to 

( ) ( ) ( )
( )ir

iiri
iir SP

ycSPp
SycP

,01
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==  

                      ( ) ( )∏ ∏
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and 

( ) ( )
( )ir

iiri
iir SP

ycSPp
SycP

,1
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=
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                     ( )∏ ∏
∈ ∈

′ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−=

i ijcj Ri
jii pp

\

21
2
1

2
1      (2.28) 

With all the notation defined, the decoding algorithm can be summarized as follows: 

For all i and j   for which 1=ijH : 

1. Initialize 

( ) ( )iirij yxPq 10 ==  

( ) ( )iirij yxPq 11 −==  
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2. Set the number of iterations to 1. Loop through the denoted steps below until 

either the number of iterations equals a specified number or 0ˆ =THc  ( ĉ  defined 

below). Then go back to step 1 with another received codeword y . 

 ( )( )∏
∈′

′−+=
ijRi

jiji qr
\

121
2
1

2
1)0(  

 ( ) ( )011 jiji rr −=  

 ( ) ( )∏
′

′−=
ijcj

ijiijij rpKq
\

01)0(  

 ( )∏
′

′=
jicj

ijiijij rpKq
\

1)1(  

 where ( )0ijq  and ( )1ijq  are scaled by ijK  so that ( ) ( ) 110 =+ ijij qq . 

 For all Ni ,...,1=  do: 

 ( ) ( ) ( )∏
∈

−=
icj

jiiii rpKQ 010  

 ( ) ( )∏
∈

=
icj

jiiii rpKQ 11  

 where ( )0iQ and ( )1iQ  are scaled by iK  so that ( ) ( ) 110 =+ ii QQ . 

 If ( )1iQ is greater than 0.5, then 1ˆ =ic . Otherwise, set 0ˆ =ic .Here iĉ is the 

estimate of ic . 

2.7.3 Logarithmic Probability Decoding Algorithm 

After many iterations of the probability decoding algorithm, the multiplications 

involved might produce precision errors. Therefore, a logarithmic version of this 

algorithm has been proposed [14]. 

The logarithmic decoding algorithm can be summarized as follows. 

For all i  and j for which 1=ijH : 

1. Initialize 

( ) ( )iij cLqL =  

2. Set the number of iterations to 1. Loop through the denoted steps below until 

either the number of iterations equals a specified number or 0ˆ =THc  whichever 

comes first ( ĉ  defined below). Then go back to step 1 with another received 

codeword y . 
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 Where 

 ( )( )ijij qLsign=α  

 ( )ijij qL=β  

 ( ) ( )( )
1
1log2tanhlog

−
+

=−= x

x

e
exxφ  

 ( ) ( ) ( )∑
∈′

′+=
jij

ijiij rLcLqL
\

 

 For all Ni ...1= do: 

 ( ) ( ) ( )∑
∈

+=
icj

jiii rLcLQL  

 If ( )iQL is smaller than 0, then set 1ˆ =ic . Otherwise, set 0ˆ =ic . 

2.7.4 Other Decoding Algorithms 

Besides the logarithmic decoding, a few other reduced complexity decoders have been 

designed. Although not the focus of this research, two are briefly summarized below. 

Min-Sum Decoding Algorithm: 

The min-sum decoding algorithm [18] is essentially same as the logarithmic decoding 

algorithm with only a small complexity reducing change. It uses the fact that ( )xφ  is 

maximum when x is minimum to make the following simplification 
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ji
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ji
\\\

minmin
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⎜
⎝

⎛
∑ ββφφβφφ      (2.29) 

Note that ( )( ) xx =φφ . Incorporating this into the logarithmic decoding algorithm, 

set 2 can be simplified as  

( ) jiiRi
jiji

ij
ij

rL ′
∈′

∈′
′ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∏ βα

\
\

min  

Normalized Min-Sum Algorithm: 

In the normalized min-sum algorithm, all the log- likelihood ratios in the min-sum 

algorithm are normalized by 22σ . This eliminates the need to know the noise 

variance 2σ . 
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2.8 LDPC Code Performance in AWGN Channel Model 

The channel, which may include other effects besides those of the physical medium, 

invariably distorts the transmitted modulation signals in random and non-random ways. 

It is often characterized by the way it distorts the transmitted signals. 

The codeword is passed through a communication channel, which introduces 

random errors into the codeword. Even though the errors are random, statistical 

properties of the channel are known, which enables the receiver to predict the original 

input to the channel. In order to test the LDPC system used in this thesis, the additive 

white Gaussian channel was used. For each bit in the codeword, the Gaussian channel 

outputs a Gaussian random variable of a certain known standard deviation. If the bit 

going in the channel is one, the output has mean negative one, and if the bit going in is 

zero, the output has mean one. The receiver knows the standard deviation of the channel 

used. Therefore, for each bit received, the receiver is able to deduce a probability for the 

original bit to be one given the output from the channel for that bit. In the additive white 

Gaussian noise channel model, zero mean noise having a Gaussian distribution is added 

to the signal, as shown in Figure 2.6. 

 

 
 

Figure 2.6 The Gaussian Noise Channel 

 

Figure 2.7 shows the performance of the LDPC system given in chapter four of a 

rate 1/2 LDPC code in AWGN channel. Binary phase-shift keying (BPSK) modulation 

is assumed and the block size is 512 bits. It is compared to the probability of error for a 

binary antipodal signal. It is shown that adding LDPC codes to the system significantly 

improves the performance. For LDPC codes this improvement is affected by the block 

size. 
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Figure 2.7 Performance of LDPC Code in AWGN Channel 

 

The standard way to report the standard deviation of the white Gaussian channel 

is through the signal-to-noise ratio (SNR). Symbolicaly, this is written 0NEb , and if 

1±  signaling is used, it is defined to be 

2
0 2

1
σRN

Eb =          (2.30) 

where R is the rate of the encoder used. 

SNR is usualy recorded in decibels. That is ( )010log10 NEb  dB. For exampel 

assume 1.5 dB, that means should set 0NEb  so that ( ) 5.1log10 010 =NEb  that is 

.4125.110 105.1

0

==
N
Eb  

Then, by reversing this formula again to solve for σ , wich is that case is .8414.0=σ  

So, when 0NEb  goes up, σ  goes down. 
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2.9 Summary 

This chapter presented low-density parity-check codes. After giving a brief background 

on LDPC code graph theory, a few code design methods were discussed, along with 

different methods of encoding and iterative decoding. The next chapter gives the details 

of image restoration techniques in spatial domain, and chapter four shows their results 

to be compared with LDPC codes. 
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CHAPTER THREE 

CHAPTER 3 Image Restoration Techniques 

3.1 Overview 

The principal objective of enhancement is to process an image so that the result is more 

suitable than the original image for a specific application. 

Image enhancement approaches fall into two broad categories: spatial domain 

methods and frequency domain methods. The term spatial domain refers to the image 

plane itself, and approaches in this category are based on direct manipulation of pixels 

in an image. Frequency domain processing techniques are based on modifying the 

Fourier transform of an image [20]. 

As in image enhancement, the ultimate goal of restoration techniques is to 

improve an image in some predefined sense. Although there are areas of overlap, image 

enhancement is largely a subjective process, while image restoration is for the most part 

an objective process. Restoration attempts to reconstruct or recover an image that has 

been degraded by using a priori knowledge of the degradation phenomenon. Thus 

restoration techniques are oriented toward modeling the degradation and applying the 

inverse process in order to recover the original image [19]. 

The material developed in this chapter is strictly introductory, considering the 

restoration problem only from the point where a degraded, digital image is given. Some 

restoration techniques are best formulated in the spatial domain, while others are better 

suited for the frequency domain. For example, spatial processing is applicable when the 

only degradation is additive noise. On the other hand, degradations such as image blur 

are difficult to approach in the spatial domain using small masks. In this case, frequency 

domain filters based on various criteria of optimality are the approaches of choice [19]. 

Since the only degradation considered in this thesis is additive white Gaussian 

noise, this chapter focuses only on spatial domain filtering processes. 

3.2 Background 

As indicated previously, the term spatial domain refers to the aggregate of pixels 

composing an image. Spatial domain methods are procedures that operate directly on 

these pixels. Spatial domain processes will be denoted by the expression 
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( ) ( )[ ]yxfTyxg ,, =         (3.1) 

where f(x, y) is the input image, g(x, y) is the processed image, and T is an operator on f, 

defined over some neighborhood of (x, y). In addition, T can operate on a set of input 

images, such as performing the pixel-by-pixel sum of K images for noise reduction. The 

principal approach in defining a neighborhood about a point (x, y) is to use a square or 

rectangular subimage area centered at (x, y), as Figure 3.1 shows. The center of the 

subimage is moved from pixel to pixel starting at the top left corner. The operator T is 

applied at each location (x, y) to yield the output, g, at that location. The process utilizes 

only the pixels in the area of the image spanned by the neighborhood. Although other 

neighborhood shapes, such as approximations to a circle, sometimes are used, square 

and rectangular arrays are by far the most predominant because of their ease of 

implementation [20]. 

 

 
 

Figure 3.1 A 33×  Neighborhood About a Point (x, y) in an Image 

 

The simplest form of T is when the neighborhood is of size 11×  (that is, a single 

pixel). In this case, g depends only on the value of f at (x, y), and T becomes a gray-level 

(also called an intensity or mapping) transformation function of the form 

Origin 
y  

( )yx,  

x  

Image  ( )yxf ,  
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( )rTs =          (3.2) 

where, for simplicity in notation, r and s are variables denoting, respectively, the gray 

level of  f(x, y) and g(x, y) at any point (x, y). For example, if T(r) has the form shown in 

Figure 3.2(a), the effect of this transformation would be to produce an image of higher 

contrast than the original by darkening the levels below m and brightening the levels 

above m in the original image. In this technique, known as contrast stretching, the 

values of r below m are compressed by the transformation function into a narrow range 

of s, toward black. The opposite effect takes place for values of r above m. In the 

limiting case shown in Figure 3.2(b), T(r) produces a two-level (binary) image. A 

mapping of this form is called a threshold function. Some fairly simple, yet powerful, 

processing approaches can be formulated with gray-level transformations. Because 

enhancement at any point in an image depends only on the gray level at that point, 

techniques in this category often are referred to as point processing. 

 

 
 

Figure 3.2 Gray level Transformation Functions for Contrast Enhancement 

(a) Contrast Stretching and (b) Threshold Function 

Larger neighborhoods allow considerably more flexibility. The general approach 

is to use a function of the values of f in a predefined neighborhood of (x, y) to determine 

the value of g at (x, y). One of the principal approaches in this formulation is based on 
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the use of so-called masks (also referred to as filters, kernels, templates, or windows). 

Basically, a mask is a small (say, 33× ) 2-D array, such as the one shown in Figure 3.1, 

in which the values of the mask coefficients determine the nature of the process, such as 

image sharpening. Enhancement techniques based on this type of approach often are 

referred to as mask processing or filtering [20].  

3.3 Spatial Filtering 

As mentioned in Section 3.2, some neighborhood operations work with the values of the 

image pixels in the neighborhood and the corresponding values of a subimage that has 

the same dimensions as the neighborhood. The subimage is called a filter, mask, kernel, 

template, or window, with the first three terms being the most prevalent terminology. 

The values in a filter subimage are referred to as coefficients, rather than pixels. 

The concept of filtering has its roots in the use of the Fourier transform for 

signal processing in the so-called frequency domain. The term spatial filtering is used to 

differentiate this type of process from the more traditional frequency domain filtering. 

The mechanics of spatial filtering are illustrated in Figure 3.3. The process 

consists simply of moving the filter mask from point to point in an image. At each point 

(x, y), the response of the filter at that point is calculated using a predefined relationship. 

For linear spatial filtering, the response is given by a sum of products of the filter 

coefficients and the corresponding image pixels in the area spanned by the filter mask. 

For the 33×  mask shown in Figure 3.3, the result (or response), R, of linear filtering 

with the filter mask at a point (x, y) in the image is 

( ) ( ) ( ) ( ) L+−−+−−−−= yxfwyxfwR ,10,11,11,1  

      ( ) ( ) ( ) ( ) ( ) ( ),1,11,1,10,1,0,0 +++++++ yxfwyxfwyxfw L  

which we see is the sum of products of the mask coefficients with the corresponding 

pixels directly under the mask. Note in particular that the coefficient w (0, 0) coincides 

with image value f(x, y), indicating that the mask is centered at (x, y) when the 

computation of the sum of products takes place. For a mask of size nm× , it is assumed 

that 12 += am  and 12 += bn , where a  and b are nonnegative integers. The following 

discussion will be on masks of odd sizes, with the smallest meaningful size being 33× . 
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Figure 3.3 The Mechanics of Spatial Filtering. The Magnified Drawing Shows a 33×  

Mask and the Image Section Directly Under it 

 

In general, linear filtering of an image f of size NM ×  with a filter mask of size 

nm×  is given by the expression: 
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where ( ) 21−= ma  and ( ) 21−= nb . To generate a complete filtered image this 

equation must be applied for 1,,2,1,0 −= Mx K  and 1,,2,1,0 −= Ny K . In this way, it 

is assured that the mask processes all pixels in the image. It is easily verified when 

3== nm  that this expression reduces to the example given in the previous paragraph 

[19]. 

The process of linear filtering given in Equation (3.3) is similar to a frequency 

domain concept called convolution. For this reason, linear spatial filtering often is 

referred to as “convolving a mask with an image”. Similarly, filter masks are sometimes 

called convolution masks. The term convolution kernel also is in common use. 

When interest lies on the response, R, of an nm×  mask at any point (x, y), and 

not on the mechanics of implementing mask convolution, it is common practice to 

simplify the notation by using the following expression: 

mnmn zwzwzwR +++= K2211        (3.4) 

   .
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mn

i
i zw∑

=

=  

where the w’s are mask coefficients, the z’s are the values of the image gray levels 

corresponding to those coefficients, and nm  is the total number of coefficients in the 

mask. For the 33×  general mask shown in Figure 3.3 the response at any point (x, y) in 

the image is given by 

992211 zwzwzwR +++= K        (3.5) 

   .
9

1
i

i
i zw∑

=

=  

Nonlinear spatial filters also operate on neighborhoods, and the mechanics of 

sliding a mask past an image are the same as was just outlined. In general, however, the 

filtering operation is based conditionally on the values of the pixels in the neighborhood 

under consideration, and they do not explicitly use coefficients in the sum-of-products 

manner described in Equations (3.3) and (3.4). As shown in Section 3.4.2, for example, 

noise reduction can be achieved effectively with a nonlinear filter whose basic function 

is to compute the median gray-level value in the neighborhood in which the filter is 

located. Computation of the median is a nonlinear operation, as is computation of the 

variance. The Figure 3.4 gives another representation of a general 33×  spatial filter 

mask [19]. 
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Figure 3.4 Another Representation of a General 33×  Spatial Filter Mask 

 

An important consideration in implementing neighborhood operations for spatial 

filtering is the issue of what happens when the center of the filter approaches the border 

of the image. Consider for simplicity a square mask of size nn× . At least one edge of 

such a mask will coincide with the border of the image when the center of the mask is at 

a distance of ( ) 21−n  pixels away from the border of the image. If the center of the 

mask moves any closer to the border, one or more rows or columns of the mask will be 

located outside the image plane. There are several ways to handle this situation. The 

simplest is to limit the excursions of the center of the mask to be at a distance no less 

than ( ) 21−n  pixels from the border. The resulting filtered image will be smaller than 

the original, but all the pixels in the filtered imaged will have been processed with the 

full mask. If the result is required to be the same size as the original, then the approach 

typically employed is to filter all pixels only with the section of the mask that is fully 

contained in the image. With this approach, there will be bands of pixels near the border 

that will have been processed with a partial filter mask. Other approaches include 

“padding” the image by adding rows and columns of 0’s (or other constant gray level), 

or padding by replicating rows or columns. The padding is then stripped off at the end 

of the process. This keeps the size of the filtered image the same as the original, but the 

values of the padding will have an effect near the edges that becomes more prevalent as 

the size of the mask increases. The only way to obtain a perfectly filtered result is to 

accept a somewhat smaller filtered image by limiting the excursions of the center of the 

filter mask to a distance no less than ( ) 21−n  pixels from the border of the original 

image [20]. 
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3.4 Smoothing Spatial Filters 

Smoothing filters are used for blurring and for noise reduction. Blurring is used in 

preprocessing steps, such as removal of small details from an image prior to (large) 

object extraction, and bridging of small gaps in lines or curves. Noise reduction can be 

accomplished by blurring with a linear filter and also by nonlinear filtering [19]. 

3.4.1 Smoothing Linear Filters 

The output (response) of a smoothing, linear spatial filter is simply the average of the 

pixels contained in the neighborhood of the filter mask. These filters sometimes are 

called averaging filters. They also are referred to a lowpass filters. 

The idea behind smoothing filters is straightforward. By replacing the value of 

every pixel in an image by the average of the gray levels in the neighborhood defined by 

the filter mask, this process results in an image with reduced “sharp” transitions in gray 

levels. Because random noise typically consists of sharp transitions in gray levels, the 

most obvious application of smoothing is noise reduction. However, edges (which 

almost always are desirable features of an image) also are characterized by sharp 

transitions in gray levels, so averaging filters have the undesirable side effect that they 

blur edges. Another application of this type of process includes the smoothing of false 

contours that result from using an insufficient number of gray levels. A major use of 

averaging filters is in the reduction of “irrelevant” detail in an image. By “irrelevant” 

we mean pixel regions that are small with respect to the size of the filter mask [20]. 

 

 
 

Figure 3.5 Two 33×  Smoothing (Averaging) Filter Masks 
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Figure 3.5 shows two 33×  smoothing filters. Use of the first filter yields the 

standard average of the pixels under the mask. The constant multiplier in front of each 

mask is equal to the sum of the values of its coefficients, as is required to compute an 

average. This can best be seen by substituting the coefficients of the mask into 

Equation. (3.5): 

,
9
1 9

1
∑

=

=
i

izR  

which is the average of the gray levels of the pixels in the 33×  neighborhood defined 

by the mask. Note that, instead of being 91 , the coefficients of the filter are all 1’s. The 

idea here is that it is computationally more efficient to have coefficients valued 1. At the 

end of the filtering process the entire image is divided by 9. An nm×  mask would have 

a normalizing constant equal to nm1 . A spatial averaging filter in which all 

coefficients are equal is sometimes called a box filter [19]. 

The second mask shown in Figure 3.5 is a little more interesting. This mask 

yields a so-called weighted average, terminology used to indicate that pixels are 

multiplied by different coefficients, thus giving more importance (weight) to some 

pixels at the expense of others. In the mask shown in Figure 3.5(b) the pixel at the 

center of the mask is multiplied by a higher value than any other, thus giving this pixel 

more importance in the calculation of the average. The other pixels are inversely 

weighted as a function of their distance from the center of the mask. The diagonal terms 

are further away from the center than the orthogonal neighbors (by a factor of 2 ) and, 

thus, are weighed less than these immediate neighbors of the center pixel. The basic 

strategy behind weighing the center point the highest and then reducing the value of the 

coefficients as a function of increasing distance from the origin is simply an attempt to 

reduce blurring in the smoothing process. It is possible to pick other weights to 

accomplish the same general objective. However, the sum of all the coefficients in the 

mask of Figure 3.5(b) is equal to 16, an attractive feature for computer implementation 

because it has an integer power of 2. In practice, it is difficult in general to see 

differences between images smoothed by using either of the masks in Figure 3.5, or 

similar arrangements, because the area these masks span at any one location in an image 

is so small. 
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With reference to Equation (3.3), the general implementation for filtering an 

NM ×  image with a weighted averaging filter of size nm×  (m and n odd) is given by 

the expression 

( )
( ) ( )

( )∑∑

∑∑

−=−=

−=−=

++
= b

bt

a

as

b

bs

a

as

tsw

tysxftsw
yxg

,

,,
,      (3.6) 

The parameters in this equation are as defined in Equation (3.3). As before, it is 

understood that the complete filtered image is obtained by applying Equation (3.6) for 

1,,2,1,0 −= Mx K  and 1,,2,1,0 −= Ny K . The denominator in Equation (3.6) is 

simply the sum of the mask coefficients and, therefore, it is a constant that needs to be 

computed only once. Typically, this scale factor is applied to all the pixels of the output 

image after the filtering process is completed [19]. 

3.4.2 Order-Statistics Filters 

Order-statistics filters are nonlinear spatial filters whose response is based on ordering 

(ranking) the pixels contained in the image area encompassed by the filter, and then 

replacing the value of the center pixel with the value determined by the ranking result. 

The best-known example in this category is the median filter, which, as its name 

implies, replaces the value of a pixel by the median of the gray levels in the 

neighborhood of that pixel (the original value of the pixel is included in the computation 

of the median). Median filters are quite popular because, for certain types of random 

noise, they provide excellent noise-reduction capabilities, with considerably less 

blurring than linear smoothing filters of similar size. Median filters are particularly 

effective in the presence of impulse noise, also called salt-and-pepper noise because of 

its appearance as white and black dots superimposed on an image. 

The median, ξ, of a set of values is such that half the values in the set are less 

than or equal to ξ, and half are greater than or equal to ξ. In order to perform median 

filtering at a point in an image, we first sort the values of the pixel in question and its 

neighbors, determine their median, and assign this value to that pixel. For example, in a 

33×  neighborhood the median is the 5th largest value, in a 55×  neighborhood the 13th 

largest value, and so on. When several values in a neighborhood are the same, all equal 

values are grouped. For example, suppose that a 33×  neighborhood has values (10, 20, 
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20, 20, 15, 20, 20, 25, 100). These values are sorted as (10, 15, 20, 20, 20, 20, 20, 25, 

100), which results in a median of 20. Thus, the principal function of median filters is to 

force points with distinct gray levels to be more like their neighbors. In fact, isolated 

clusters of pixels that are light or dark with respect to their neighbors, and whose area is 

less than 22n  (one-half the filter area), are eliminated by an nn×  median filter. In this 

case “eliminated” means forced to the median intensity of the neighbors. Larger clusters 

are affected considerably less [19]. 

Although the median filter is by far the most useful order-statistics filter in 

image processing, it is by no means the only one. The median represents the 50th 

percentile of a ranked set of numbers, but ranking lends itself to many other 

possibilities. For example, using the 100th percentile results in the so-called max filter, 

which is useful in finding the brightest points in an image. The response of a 33×  max 

filter is given by { }9,,2,1max K== kzR k . The 0th percentile filter is the min filter, 

used for the opposite purpose. Median, max, and mean filters are considered in more 

detail in section 3.7.2 [20]. 

3.5 A Model of the Image Degradation/Restoration Process 

As Figure 3.6 shows, the degradation process is modeled in this chapter as a degradation 

function that, together with an additive noise term, operates on an input image f(x, y) to 

produce a degraded image g(x, y). Given g(x, y), some knowledge about the degradation 

function H, and some knowledge about the additive noise term q(x, y), the objective of 

restoration is to obtain an estimate f(x, y) of the original image. We want the estimate to 

be as close as possible to the original input image and, in general the more we know 

about H and η, the closer ( )yxf ,ˆ  will be to f(x, y). The approach used throughout most 

of this chapter is based on various types of image restoration filters. 

If H is a linear, position-invariant process, then the degraded image is given in 

the spatial domain by 

( ) ( ) ( ) ( )yxyxfyxhyxg ,,*,, η+=       (3.7) 

where h(x, y) is the spatial representation of the degradation function and the symbol * 

indicates convolution. The convolution in the spatial domain is equal to multiplication 

in the frequency domain, so the model in Equation (3.7) might be written in an 

equivalent frequency domain representation: 



 53

( ) ( ) ( ) ( )vuNvuFvuHvuG ,,,, +=       (3.8) 

where the terms in capital letters are the Fourier transforms of the corresponding terms 

in Equation (3.7). 

 

 
 

Figure 3.6 A model of the Image Degradation/ Restoration Process. 

 

In the following two sections, we assume that H is the identity operator, and we 

deal only with degradations due to noise [20]. 

3.6 Noise Models 

The principal sources of noise in digital images arise, during image acquisition 

(digitization) and/or transmission. The performance of imaging sensors is affected by a 

variety of factors, such as environmental conditions during image acquisition, and by 

the quality of the sensing elements themselves. For instance, in acquiring images with 

an camera, light levels and sensor temperature are major factors affecting the amount of 

noise in the resulting image. Images are corrupted during transmission principally due 

to interference in the channel used for transmission. For example, an image transmitted 

using a wireless network might be corrupted as a result of lightning or other 

atmospheric disturbance [19]. 

3.6.1 Spatial and Frequency Properties of Noise 

Relevant to this discussion are parameters that define the spatial characteristics of noise, 

and whether the noise is correlated with the image, Frequency properties refer to the 

frequency content of noise in the Fourier sense (i.e., as opposed to the electromagnetic 

spectrum). For example, when the Fourier spectrum of noise is constant, the noise 

usually is called white noise. This terminology is a carry over from the physical 
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properties of white light, which contains nearly all frequencies in the visible spectrum in 

equal proportions. It is not difficult to show that the Fourier spectrum of a function 

containing all frequencies in equal proportions is a constant. With the exception of 

spatially periodic noise, noise is independent of spatial coordinates, and that it is 

uncorrelated with respect to the image itself (that is, there is no correlation between 

pixel values and the values of noise components) [19]. 

3.6.2 Gaussian Noise 

Gaussian noise is a very good approximation of noise that occurs in many practical 

cases. Probability density of the random variable is given by the Gaussian curve. Based 

on the assumptions in the previous section, the spatial noise descriptor with which it 

shall be concerned is the statistical behavior of the gray-level values in the noise 

component of the model in Figure 3.6. These may be considered random variables, 

characterized by a probability density function (PDF). 

Because of its mathematical tractability in both the spatial and frequency 

domains, Gaussian (also called normal) noise models are used frequently in practice. In 

fact, this tractability is so convenient that it often results in Gaussian models being used 

in situations in which they are marginally applicable at best. The Figure 3.7 showing the 

Gaussian probability density function. 

 
Figure 3.7 Gaussian Probability Density Function 
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The PDF of a Gaussian random variable, z is given by 

( ) ( ) 22 2

2
1 σμ

πσ
−−= zezp        (3.9) 

where z represents gray level, μ is the mean of average value of z, and σ is its standard 

deviation. The standard deviation squared, 2σ , is called the variance of z. A plot of this 

function is shown in Figure 3.7. When z is described by Equation (3.9), approximately 

70% of its values will be in the range ( ) ( )[ ]σμσμ +− , , and about 95% will be in the 

range ( ) ( )[ ]σμσμ 2,2 +−  [20]. 

3.7 Restoration in the Presence of Noise Only-Spatial Filtering 

When the only degradation present in an image is noise, Equations (3.7) and (3.8) 

become 

( ) ( ) ( )yxyxfyxg ,,, η+=        (3.10) 

and 

( ) ( ) ( )vuNvuFvuG ,,, +=        (3.11) 

The noise terms are unknown, so subtracting them from g(x, y) or G(u, v) is not a 

realistic option. In the case of periodic noise, it usually is possible to estimate N(u, v) 

from the spectrum of G(u, v). In this case N(u, v) can be subtracted from G(u, v) to 

obtain an estimate of the original image. In general, however, this type of knowledge is 

the exception, rather than the rule. 

Spatial filtering is the method of choice in situations when only additive noise is 

present. This topic was discussed in detail in Sections 3.3 and 3.4 in connection with 

image enhancement. In fact, enhancement and restoration become almost 

indistinguishable disciplines in this particular case [19]. With the exception of the 

nature of the computation performed by a specific filter, the mechanics for 

implementing all the filters that follow are exactly as discussed in Section 3.3. 

3.7.1 Mean Filters 

In this section, the noise-reduction spatial filters introduced in Section 3.4 are discussed 

briefly including several other filters whose performances are in many cases superior to 

the filters discussed in that section. 
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3.7.1.1 Arithmetic Mean Filter 

This is the simplest of the mean filters. Let xyS  represent the set of coordinates in a 

rectangular subimage window of size nm× , centered at point (x, y). The arithmetic 

mean filtering process computes the average value of the corrupted image g(x, y) in the 

area defined by xyS . The value of the restored image f̂  at any point (x, y) is simply the 

arithmetic mean computed using the pixels in the region defined by xyS ,. In other 

words, 

( ) ( )
( )
∑

∈

=
yxSts

tsg
nm

yxf
,

,1,ˆ        (3.12) 

This operation can be implemented using a convolution mask in which all coefficients 

have value nm1 . As discussed in Section 3.4.1, a mean filter simply smoothes local 

variations in an image. Noise is reduced as a result of blurring. 

3.7.1.2 Geometric Mean Filter 

An image restored using a geometric mean filter is given by the expression 
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Here, each restored pixel is given by the product of the pixels in the subimage window, 

raised to the power mn1 . A geometric mean filter achieves smoothing comparable to 

the arithmetic mean filter, but it tends to lose less image detail in the process [19]. 

3.7.1.3 Harmonic Mean Filter 

The harmonic mean filtering operation is given by the expression 

( )

( )( )
∑

∈

=

yxSts tsg

mnyxf

, ,
1,ˆ        (3.14) 

The harmonic mean filter works well for salt noise, but fails for pepper noise. It does 

well also with other types of noise like Gaussian noise [19]. 

3.7.1.4 Contraharmonic Mean Filter 

The contraharmonic mean filtering operation yields a restored image based on the 

expression 



 57

( )
( )

( )

( )
( )

∑

∑

∈

∈

+

=

yx

yx

Sts

Q
Sts

Q

tsg

tsg
yxf

,

,

1

,

,
,ˆ        (3.15) 

where Q is called the order of the filter. This filter is well suited for reducing or virtually 

eliminating the effects of salt-and-pepper noise. For positive values of Q, the filter 

eliminates pepper noise. For negative values of Q it eliminates salt noise. It cannot do 

both simultaneously. Note that the contraharmonic filter reduces to the arithmetic mean 

filter if 0=Q , and to the harmonic mean filter if 1−=Q  [19]. 

3.7.2 Order-Statistics Filters 

Order-statistics filters were introduced in Section 3.4.2. As noted in Section 3.4.2, 

order-statistics filters are spatial filters whose response is based on ordering (ranking) 

the pixels contained in the image area encompassed by the filter. The response of the 

filter at any point is determined by the ranking result [19]. 

3.7.2.1 Median Filter 

The best-known order-statistics filter is the median filter, which, as its name implies, 

replaces the value of a pixel by the median of the gray levels in the neighborhood of that 

pixel 

( )
( )

( ){ }tsgyxf
yxSts

,median,ˆ
, ∈

=        (3.16) 

The original value of the pixel is included in the computation of the median. Median 

filters are quite popular because, for certain types of random noise, they provide 

excellent noise-reduction capabilities, with considerably less blurring than linear 

smoothing filters of similar size. Median filters are particularly effective in the presence 

of both bipolar and unipolar impulse noise [19]. In fact, the median filter yields 

excellent results for images corrupted by this type of noise. Computation of the median 

and implementation of this filter are discussed in detail in Section 3.4.2. 

3.7.2.2 Max and Min Filters 

Although the median filter is by far the order-statistics filter most used in image 

processing, it is by no means the only one. The median represents the 50th percentile of 

a ranked set of numbers, but the reader will recall from basic statistics that ranking lends 
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itself to many other possibilities. For example, using the 100th percentile results in the 

so-called max filter, given by 

( )
( )

( ){ }tsgyxf
yxSts

,max,ˆ
, ∈

=        (3.17) 

This filter is useful for finding the brightest points in an image. Also, because pepper 

noise has very low values, it is reduced by this filter as a result of the max selection 

process in the subimage area xyS . 

The 0th percentile filter is the min filter 

( )
( )

( ){ }tsgyxf
yxSts

,min,ˆ
, ∈

=        (3.18) 

This filter is useful for finding the darkest points in an image. Also, it reduces salt noise 

as a result of the min operation [19]. 

3.7.2.3 Midpoint Filter 

The midpoint filter simply computes the midpoint between the maximum and minimum 

values in the area encompassed by the filter 
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Note that this filter combines order statistics and averaging. This filter works best for 

randomly distributed noise, like Gaussian or uniform noise [19]. 

3.7.2.4 Alpha-trimmed Mean Filter 

Suppose that the 2d  lowest and the 2d  highest gray-level values of g(s, t) in the 

neighborhood yxS  are deleted. Let ( )tsgr ,  represent the remaining dnm −  pixels. A 

filter formed by averaging these remaining pixels is called an alpha-trimmed mean filter 
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,1,ˆ        (3.20) 

where the value of d can range from 0 to 1−nm . When 0=d , the alpha-trimmed filter 

reduces to the arithmetic mean filter discussed in the previous section. If we choose 

1−= nmd , the filter becomes a median filter. For other values of d, the alpha-trimmed 

filter is useful in situations involving multiple types of noise, such as a combination of 

salt-and-pepper and Gaussian noise [19]. 
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3.7.3 Adaptive Filters 

Once selected, the filters discussed thus far are applied to an image without regard for 

how image characteristics vary from one point to another. In this section, two simple 

adaptive filters whose behavior changes based on statistical characteristics of the image 

inside the filter region defined by the nm ×  rectangular window yxS . As shown in the 

following discussion, adaptive filters are capable of performance superior to that of the 

filters discussed thus far. The price paid for improved filtering power is an increase in 

filter complexity [20]. 

3.7.3.1 Adaptive, Local Noise Reduction Filter 

The simplest statistical measures of a random variable are its mean and variance. These 

are reasonable parameters on which to base an adaptive filter because they are quantities 

closely related to the appearance of an image. The mean gives a measure of average 

gray level in the region over which the mean is computed, and the variance gives a 

measure of average contrast in that region. 

The filter is to operate on a local region, yxS . The response of the filter at any 

point (x, y) on which the region is centered is to be based on four quantities: (a) g(x, y), 

the value of the noisy image at (x, y) ; (b) 2
ησ , the variance of the noise corrupting f(x, y) 

to form g(x, y); (c) Lm , the local mean of the pixels in yxS  and (d) 2
Lσ . The local 

variance of the pixels in yxS . The behavior of the filter should be as follows: 

1. If 2
ησ  is zero, the filter should return simply the value of g(x, y). This is the 

trivial, zero-noise case in which g(x, y) is equal to f(x, y). 

2. If the local variance is high relative to 2
ησ  the filter should return a value close to 

g(x, y). A high local variance typically is associated with edges, and these should 

be preserved. 

3. If the two variances are equal, we want the filter to return the arithmetic mean 

value of the pixels in yxS . This condition occurs when the local area has the 

same properties as the overall image, and local noise is to be reduced simply by 

averaging. 
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An adaptive expression for obtaining ( )yxf ,ˆ  based on these assumptions maybe written 

as 

( ) ( ) ( )[ ]L
L

myxgyxgyxf −−= ,,,ˆ
2

2

σ
ση       (3.21) 

The only quantity that needs to be known or estimated is the variance of the 

overall noise, 2
ησ . The other parameters are computed from the pixels in yxS , at each 

location (x, y) on which the filter window is centered. A tacit assumption in Equation 

(3.20) is that 22
Lσση ≤ ,. The noise in our model is additive and position independent, so 

this is a reasonable assumption to make because yxS  is a subset of g(x, y). Therefore, it 

is possible for this condition to be violated in practice. For that reason, a test should be 

built into an implementation of Equation (3.21) so that the ratio is set to 1 if the 

condition 22
Lσση >  occurs. This makes this filter nonlinear. However, it prevents 

nonsensical results (i.e., negative gray levels, depending on the value of Lm ) due to a 

potential lack of knowledge about the variance of the image noise. Another approach is 

to allow the negative values to occur, and then rescale the gray level values at the end. 

The result then would be a loss of dynamic range in the image [19]. 

3.7.3.2 Adaptive Median Filter 

The median filter discussed in Section 3.7.2.1 performs well as long as the spatial 

density of the impulse noise is not large (as a. It is shown in this section that adaptive 

median filtering can handle impulse noise with probabilities even larger than these. An 

additional benefit of the adaptive median filter is that it seeks to preserve detail while 

smoothing nonimpulse noise, something that the traditional median filter does not do. 

The adaptive median filter also works in a rectangular window area yxS . Unlike those 

filters, however, the adaptive median filter changes (increases) the size of yxS  during 

filter operation, depending on certain conditions listed in this section. Keep in mind that 

the output of the filter is a single value used to replace the value of the pixel at (x, y), the 

particular point on which the window yxS , is centered at a given time. 

Consider the following notation: 

 =minz  minimum gray level value in yxS  
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 =maxz  maximum gray level value in yxS  

 =medz  median gray levels in yxS  

 =yxz  gray level at coordinates (x, y) 

 =maxS  maximum allowed size of .yxS  

The adaptive median filtering algorithm works in two levels, denoted level A and level 

B, as follows: 

 Level A: minmed1 zzA −=  

manmed2 zzA −=  

If ,02AND01 <> AA  Go to level B 

Else increase the window size 

If window size ≤ maxS  repeat level A 

Else output .medz  

 Level B: minyx1 zzB −=  

maxyx1 zzB −=  

If ,02AND01 <> BB  output yxz  

Else output .medz  

The key to understanding the mechanics of this algorithm is to keep in mind that 

it has three main purposes: to remove salt-and-pepper (impulse) noise, to provide 

smoothing of other noise that may not be impulsive, and to reduce distortion, such as 

excessive thinning or thickening of object boundaries. The values minz , and maxz  are 

considered statistically by the algorithm to be ‘‘impulselike’’ noise components, even if 

these are not the lowest and highest possible pixel values in the image. 

With these observations in mind, the purpose of level A is to determine if the 

median filter output, medz , is an impulse (black or white) or not. If the condition 

maxmedmin zzz <<  holds, then medz  cannot be an impulse for the reason mentioned in the 

previous paragraph. In this case, go to level B and test to see if the point in the center of 

the window, yxz , is itself an impulse (recall that yxz  is the point being processed). If the 

condition B1 > 0 AND B2 < 0 is true, then maxmin zzz yx << , and yxz  cannot be an 

impulse for the same reason that medz  was not. In this case, the algorithm outputs the 
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unchanged pixel value, yxz . By not changing these ‘‘intermediate-level’’ points, 

distortion is reduced in the image. If the condition B1 > 0 AND B2 < 0 is false, then 

either minzz yx = or maxzz yx = . In either case, the value of the pixel is an extreme value 

and the algorithm outputs the median value medz , which we know from level A is not a 

noise impulse. The last step is what the standard median filter does. The problem is that 

the standard median filter replaces every point in the image by the median of the 

corresponding neighborhood. This causes unnecessary loss of detail. 

Continuing with the explanation, suppose that level A does find an impulse (i.e., 

it fails the test that would cause it to branch to level B). The algorithm then increases the 

size of the window and repeats level A. This looping continues until the algorithm either 

finds a median value that is not an impulse (and branches to level B), or the maximum 

window size is reached. If the maximum window size is reached, the algorithm returns 

the value of medz . Note that there is no guarantee that this value is not an impulse. The 

smaller the noise probabilities ap  and/or bp  are, or the larger maxS  is allowed to be, the 

less likely it is that a premature exit condition will occur. This is plausible. As the 

density of the impulses increases, it stands to reason that we would need a larger 

window to ‘‘clean up’’ the noise spikes. 

Every time the algorithm outputs a value, the window yxS  is moved to the next 

location in the image. The algorithm then is reinitialized and applied to the pixels in the 

new location. The median value can be updated iteratively using only the new pixels, 

thus reducing computational overhead [19]. 

3.8 Summary 

As mentioned before, this chapter discussed most important image restoration 

techniques in spatial domain and types of filters that is used for this case (deal with only 

additive noise, when only degradation function is noise). 

Next chapter will present the selected filters from spatial domain that described 

as a good noise removal for Gaussian noise, and comparison criteria will be used to 

compare between previous mentioned filters and LDPC system. 

 



 63

    CHAPTER FOUR 

CHAPTER 4 Methodology 

4.1 Overview 

This chapter presents a proposed system of digital image transmission and 

restoration. It also discusses the details of criteria for the comparison of the proposed 

LDPC system and other restoration methods.  

4.2 Comparison Criteria 

In order to compare between LDPC codes and image restoration techniques in spatial 

domain, comparison criteria should first be defined. Visual inspection of reconstructed 

images and analysis using the comparison criteria will help in deciding which 

restoration method is superior. 

The comparison criteria suggested include: 

• PSNR Values 

• Contrast 

• Brightness 

• Processing Time 

• Visual Inspection 

4.2.1 PSNR Values 

One of the simple ways to measure the difference between an original image and a 

reconstructed image is to measure the PSNR (Peak Signal to Noise Ratio) value [22]. A 

higher value of PSNR means higher quality of reconstructed images. The PSNR value is 

calculated according to the following form 
( )rmsbPSNR 10log20=  

where b is the largest possible value of the signal (typically 255), and RMS is the root 

mean square difference between two images. The PSNR is given in decibel units (dB), 

which measures the ratio of the peak signal and the difference between two images. An 

increase of 20 dB corresponds to a ten-fold decrease in the rms difference between two 

images. There are many versions of signal-to-noise ratios, but the PSNR is very 
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common in image processing, probably because it gives better-sounding numbers than 

other measures. It is defined using the following formula 

( ) ( )( )
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255
1
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4.2.2 Contrast 

Contrast adjustment increases or decreases the apparent difference in lightness between 

lighter and darker pixels. Increasing or decreasing contrast is applicable to each pixel in 

image. Increasing contrast, if gray value of pixel is greater 128 contrast changes the 

value up to 255, if the pixel value is less than or equal to 128 contrast change the value 

down to 0. In decreasing contrast, if gray value of pixel grater than 128 contrast change 

the value down to 128, if the pixel value is less than or equal to 128 contrast changes the 

value up to 128 according to the contrast adjustment level as shown in Figure 4.1. 

It is better in the experiment if the total change in contrast between the original 

image and the restored image is minimum [23]. 

 

 

 
 

Figure 4.1 Grayscale Palette 

 

Image contrast is defined as the difference between the average of the ‘N’ 

brightest pixels present in the image and the average of the ‘M’ darkest pixels in the 

image, as follow form. 

Average of the ‘N’ Whitest Pixels - Average of the ‘M’ Blackest Pixels 

Total change in contrast of an image will be calculated and compared with the total 

change in contrast of a reconstructed image using the following equation. 
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Contrast of an image ∑ −=
256

,
)(Re)(

ji
ijijijij yxcyxOrg     (4.2) 

4.2.3 Brightness 

Brightness is used to increase or decrease the brightness of pixel. Low brightness will 

result in dark tones while high brightness will result in higher, pastel tones. 

Increasing or decreasing the brightness is applicable in same level to each pixel 

in image. Increasing brightness changes the pixel values up to 255 while decreasing 

brightness changes the pixel values down to 0 according to brightness adjustment level. 

In experiments, brightness of original images will be compared with brightness 

of the reconstructed images [23]. Reconstructed images that have a brightness level 

most near to brightness level of an original image will be better. Brightness of an image 

is calculated according to the following formula: 

Brightness of an image
256256×

=
imageinpixeleachofValuesGrayTotal   (4.3) 

4.2.4 Processing Time 

Processing time is the period of time that the Matlab program takes to restore an image 

for each method. 

4.2.5 Visual Inspection 

This is based on visual inspection and observation of humans. The results of this visual 

inspection form part of the comparison criteria which is then combined with the results 

of the computed analysis in order to decide upon the ideal restoration technique [23]. 

4.3 System Structure and Design 

As mentioned in chapter three, the system is dealing with additive white Gaussian noise 

only. As the additive noise added to the original image, the system will de-noise the 

original image according to the LDPC decoder and the other chosen filters, then 

comparing the result of LDPC system with the image restoration techniques according 

the comparison criteria listed in the previous section. Figure 4.2 shows the block 

diagram of image restoration techniques. 
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Figure 4.2 Block Diagram of the Image Restoration 

 

Image restoration techniques used in the experiment will include three various filters; 

namely Harmonic Mean filter, Alpha-trimmed Mean filter and Adaptive Median filter. 

The only added noise is Gaussian noise. Figure 4.3 explains the stages of the system for 

those filters and prerequisites steps to filtering an captured image. 

 

 
 

Figure 4.3 Block Diagram of Image Restoration Filters 
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Figure 4.4 shows the block diagram of LDPC system including the steps of the 

captured image that consist the grayscaling and resizing the dimension of the image and 

preparing step of the codeword blocks (data blocks). 

 

 
 

Figure 4.4 Block Diagram of the LDPC System 

 

4.3.1 Data Representation 

The third step in block diagram of LDPC system shows how the image data (pixels) is 

coded to pass through the LDPC encoder. The data is prepared according to the 

following steps: 

1. An image of size [ ]256256×  contains 65536 pixels. This number is obtained by 

multiplying the number of pixels in X axis (row) and the number of pixels in Y 

axis (column) of the image. 

2. According to the grayscale image format each pixel should have a value between 

0 to 255, so eight digits are needed to implement these values in binary number. 

3. The matrix passing through the LDPC encoder should have a size of 

[ ]2562048× . This matrix is obtained by dividing the result of multiplying 

number of pixels by the number of bits for each pixel to 256. Therefore, size of 

matrix representing the number of blocks is 2048 and the block length is 256. 

Resize Image 
to Dimension 
256×256 Pixels 

Convert Each 
Pixel to 8 Bits 

Convert Each 
8 Bits to Pixel 

Image with 
Dimension 

256×256 Pixels 

Convert 
 Image to 

Grayscale Level 
65536 
Pixels 

2048 Blocks 
of 256 Bits 

2048 Blocks 
of 256 Bits 

65536 
Pixels 

      Get the 
Reconstructed 
       Image 

White Gaussian 
       Noise 

2048 Blocks 
of 512 Bits 

2048 Blocks 
of 512 Bits 

LDPC 
Encoder 

LDPC 
Decoder 



 68

4. According to the block length is equal [ ]2561×  each block contain 32 pixels, 

this number is obtained by dividing the block length (256) to number of bit for 

each pixel (8). 

5. The step after this data be noised after passing the encoder and passed form the 

decoder it will be with same steps but with opposite direction. 

4.3.2 Data Encoding 

Considering that u is representing the data words or according the system is applied in 

this thesis is the first block (matrix) of size [1×256], the encoding process of LDPC 

encoder is performable according to the general steps of LDPC encoder as follow: 

• [ ]PuuGuC M==  where G, as mentioned in chapter two is the generator 

matrix, and C  is the code words matrix. 

• Since xPu =  then [ ]xuC M= . 

• [
}

]
}

44 344 21

M

N

M

KM

M BAH
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=  the NKG ×=  and NMH ×=  so they are related to 

each other, where K is data word length and N is a code word length, KN >  

and H is representing the low density parity check matrix. 

• Since 0== TT HCCH  then [ ]⎡ ⎤
⎣ ⎦

0=+= xBuA
x
u

BAM , and uABx 1−= . 

Therefore, the data is coded according to the equation [ ]uABuC 1−= M  (with 

dimension [ ]NN × ). 

The above steps of encoding process of LDPC encoder are performed in this 

thesis from the following 

1. Data word matrix or in this case pixels matrix with size [ ]2561×=u  then 

[ ]2562048×=u  and 1−AB  should equal the size of [ ]256256×  to perform the 

code word matrix [ ]uABuC 1−= M . 

2. The matrix of uAB 1−  should equal to size of [ ]2562048×  so it could be 

performed by multiplication of 1−AB  matrix by transpose of u  matrix ( Tu ) 

matrix to be as in form [ ]TuAB ×−1 .the resulting matrix equal to size 

[ ]2048256× . 
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3. In this step taking of the transpose of the resulting matrix and putting it in the 

code word order as in form [ ] [ ][ ]TuABuC 1−= M  this arrangement gives request 

code word matrix of size [ ]5122048× . 

4. Sending this size of matrix row by row to the decoder with adding the Gaussian 

noise. 

The Figure 4.5 shows the flowchart for encoding process of LDPC encoder in the 

mentioned system. 

4.3.3 Data Decoding 

According to the explanations given in the previous section and the first and second 

chapters H matrix is too important for decoding process and in this case it should have 

the dimension of [ ]512256× . 

The H matrix consists mostly of ones as explained previously in first and second 

chapters. 

As will be mentioned later in experimental results, the experiment will be performed 

using four different values of variance ( )σ  of Gaussian noise in each case. 

The decoding process of LDPC decoder is applied by the message passing - 

algorithm in probability domain perform looping below ji ,∀  for which 1=jih  

according the following steps. 

1. Initialize: 

( ) 221
110

σiYiji
e

pq
−+

=−=  

( ) 221
11

σiYiji
e

pq
−

==  

2. Calculate: 

( ) ( )( )∏
∈′

′−+=
iRi

jiij
j

qr
\

121
2
1

2
10  

( ) ( )011 ijij rr −=  

3. Update the values of ( )0jiq  and ( )1jiq  according to the following equations to 

perform the iterations until finding the correct message word: 

( ) ( ) ( )010
\

∏
∈′

′−=
jCj

ijijiji
i

rpKq  
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( ) ( )11
\

∏
∈′

′=
jCj

ijijiji
i

rpKq  

where the constants jiK  are chosen to ensure ( ) ( ) 110 =+ jiji qq . 

4. Compute i∀ : 

( ) ( ) ( )010 ∏
∈

−=
iCj

ijiii rpKQ  

( ) ( )11 ∏
∈

=
iCj

ijiii rpKQ  

where the constants jiK  are chosen to ensure ( ) ( ) 110 =+ ii QQ . 

5. Apply following two conditions: 

• i∀ , 

( )
⎩
⎨
⎧ >

=
else

Qif
C i

i 0
5.011ˆ  

• ( ) or0ˆif =THC  

   ( )iterations  maximumiterationsof# =  

then stop, else go to step 2. 

Figure 4.6 shows the flowchart decoding process of LDPC decodes in the system. 
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Figure 4.5 Flowchart of the LDPC Encoder 
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Figure 4.6 Flowchart of the LDPC Decoder 
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4.4 Prerequisites of the System 

The system mentioned in this research needs some prerequisites to work properly. The 

prerequisites have many effects on the algorithm that is used in the assembled system. If 

they are not insuring satisfactory conditions, then the system will be not usable. 

These conditions are used in different processing steps and are considered as 

insured by the following sections. 

4.4.1 Image Acquisition 

This stage does the capturing of the images using peripheral capturing devices. The 

image can be obtained from many sources. There are obvious ways to obtain digitized 

images: scanning a photo camera made picture, saving web-cam generated static or 

dynamic images, capturing with high quality video camera, or using other sources (e.g. 

manual scratches, painted images and results of other digital image processing 

procedures). 

4.4.2 Initial Parameters 

The initial parameters of the system are set as follows: 

1. This system is accomplished to denoise the images noised with Gaussian noise 

with mean equal to zero, and the value of variance randomly selected, or as 

selected in the section of analysis the system. 

2. The accomplished system set to process the images in grayscale level with 

dimensions of pixels equal [ ]256256× . 

3. The dimension of 1−AB  matrix should be [ ]256256× . 

4. The dimension of H matrix should be [ ]512256 × . 

5. In order to increase the dimensions of the input images the values of the other 

matrices respectively should be changed according to the explanations of data 

encoding and data decoding. Number of iteration in decoding process is set to be 

100 iterations. 

6. The size of window for Harmonic mean filter and Alpha-trimmed filter is set to 

be with size [ ]33× . For Adaptive median filter maximum allowable size 

7max =S . 
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4.4.3 Database Collection 

The database of images which are used in the experiments only contains images of 

dimensions [ ]256256× . The database contains 5 normal images in the same resolution 

but with different backgrounds. The developed system is implemented using 

miscellaneous famous pictures database [21]. 

4.5 Software Tools (MATLAB) 

This section contains a simple description of the tools that were used. The software 

implementation has been done using Matlab version 7.0, Image Processing Toolbox. 

Matlab is a simulation environment for doing numerical computations with 

matrices and vectors. It handles a wide range of computing tasks in engineering and 

science, and has several built-in interfaces. In addition there are several toolboxes 

available to expand the capabilities of Matlab one such toolbox is image processing 

toolbox, which extends the Matlab computing environment to provide functions and 

interactive tools for enhancing and analyzing digital images and developing image 

processing algorithms. 

4.6 Summary 

A comparison criterion has been created to help select the ideal restoration method. The 

criteria includes: PSNR Values, Contrast, Brightness and Processing Time. 

To make a decision upon which method is ideal, various images and criteria 

must be considered. An overall sufficient and good quality reconstructed image, with 

the highest value of variance and lowest PSNR is sought after. 

This chapter explained in detail developed image restoration system and the 

experimental results will be discussed in the next chapter. 
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  CHAPTER FIVE 

CHAPTER 5 Results and Analysis 

5.1 Overview 

This chapter will present a real life application of digital image restoration. Different 

restoration methods as well as low-density parity-check LDPC coding will be applied to 

different images and all the resulting reconstructed images will be analyzed using the 

comparison criteria in order to decide upon the optimum restoration method. 

Additionally, the application software using Matlab to restore an image by 

different methods which are, LDPC encoding and decoding system, Harmonic mean 

filter, Alpha-trimmed mean filter, and Adaptive median filter, will be covered.  

5.2 Experimental Results 

In this section, various amounts of white Gaussian noise will be added to the selected 

images and comparison tables will be made based on some chosen criteria and visual 

inspection of the reconstructed images. All results will then be analyzed. 

5.2.1 Images Database 

To provide a real-life application, five images are chosen for analysis. These images are 

from a database of experimental work, and contain images of various contrasts and 

patterns. The five images are: Lena, Moon Surface, Clock and Moon, as shown in 

Figure 5.1. 

The following sections of visual inspection could be dividing to three types of 

show. 

The first block figures shows the original test images; and the second block figures will 

contain four block figures of images, every one consist from five images, the original 

image with four value of white Gaussian noise added to original image, shown with 

each other to help the viewer to understanding how the selected values of noise effect 

the images. 

The Third section will contain sixteen block figures of images, every one consist from 

six images, the original one and the filtering results of that image. 

As well as it is easy to observe that figures shows the best restored image is 

obtained by LDPC coding system. 



 76

50 100 150 200 250

50

100

150

200

250

Original Lena Image 

50 100 150 200 250

50

100

150

200

250

Original Moon Surface Image 

50 100 150 200 250

50

100

150

200

250

Original Clock Image 
50 100 150 200 250

50

100

150

200

250

Original Moon Image 

 

Figure 5.1 Original Test Images 

 

From the images that are chosen, it could be easily observed that two of them 

opposite to each other one is too bright and the other is almost darkly image. The other 

two are chosen to symbolize the humans’ life and there need to photo capturing, and the 

other one is symbolize the modern communications and science investigations and 

researches. 
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Figure 5.2 shows the original Lena image and four noise added Lena images with 

different values of Gaussian noise. 

 

 
Original Lena Image 

 
Image with 20 dB SNR 

 
Image with 15 dB SNR 

 
Image with 5 dB SNR 

 
Image with 2 dB SNR 

 

Figure 5.2 Lena Image and Noise Added Images with SNR = 2, 5, 15 and 20 dB 
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Figure 5.3 shows the original Moon surface image and four noise added Moon surface 

images with different values of Gaussian noise. 

 

 
Original Moon Surface Image 
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Image with 2 dB SNR 

 

Figure 5.3 Moon Surface Image and Noise Added Images with SNR = 2, 5, 15 and 20 

dB 

 



 79

Figure 5.4 shows the original Clock image and four noise added Clock images with 

different values of Gaussian noise. 

 

 
Original Clock Image 

 
Image with 20 dB SNR 
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Image with 2 dB SNR 

 

Figure 5.4 Clock Image and Noise Added Images with SNR = 2, 5, 15 and 20 dB 
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Figure 5.5 shows the original Moon image and four noise added Moon images with 

different values of Gaussian noise. 
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Figure 5.5 Moon Image and Noise Added Images with SNR = 2, 5, 15 and 20 dB 
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Figure 5.6 shows the original Lena image and the noise added Lena image with 2 dB 

SNR. Subsequent images are the results of image restoration by various methods 

including LDPC coding. 
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Figure 5.6 Lena Image, Noise Added Image with 2 dB SNR and Restored Images 
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Figure 5.7 shows the original Lena image and the noise added Lena image with 5 dB 

SNR. Subsequent images are the results of image restoration by various methods 

including LDPC coding. 
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Figure 5.7 Lena Image, Noise Added Image with 5 dB SNR and Restored Images 
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Figure 5.8 shows the original Lena image and the noise added Lena image with 15 dB 

SNR. Subsequent images are the results of image restoration by various methods 

including LDPC coding. 
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Figure 5.8 Lena Image, Noise Added Image with 15 dB SNR and Restored Images 
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Figure 5.9 shows the original Lena image and the noise added Lena image with 20 dB 

SNR. Subsequent images are the results of image restoration by various methods 

including LDPC coding. 
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Figure 5.9 Lena Image, Noise Added Image with 20 dB SNR and Restored Images 
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Figure 5.10 shows the original Moon surface image and the noise added Moon surface 

image with 2 dB SNR. Subsequent images are the results of image restoration by 

various methods including LDPC coding. 
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Figure 5.10 Moon Surface Image, Noise Added Image with 2 dB SNR and Restored 

Images 
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Figure 5.11 shows the original Moon surface image and the noise added Moon surface 

image with 5 dB SNR. Subsequent images are the results of image restoration by 

various methods including LDPC coding. 
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Figure 5.11 Moon Surface Image, Noise Added Image with 5 dB SNR and Restored 

Images 
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Figure 5.12 shows the original Moon surface image and the noise added Moon surface 

image with 15 dB SNR. Subsequent images are the results of image restoration by 

various methods including LDPC coding. 
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Figure 5.12 Moon Surface Image, Noise Added Image with 15 dB SNR and Restored 

Images 
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Figure 5.13 shows the original Moon surface image and the noise added Moon surface 

image with 20 dB SNR. Subsequent images are the results of image restoration by 

various methods including LDPC coding. 
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Figure 5.13 Moon Surface Image, Noise Added Image with 20 dB SNR and Restored 

Images 
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Figure 5.14 shows the original Clock image and the noise added Clock image with 2 dB 

SNR. Subsequent images are the results of image restoration by various methods 

including LDPC coding. 
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Figure 5.14 Clock Image, Noise Added Image with 2 dB SNR and Restored Images 
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Figure 5.15 shows the original Clock image and the noise added Clock image with 5 dB 

SNR. Subsequent images are the results of image restoration by various methods 

including LDPC coding. 
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Figure 5.15 Clock Image, Noise Added Image with 5 dB SNR and Restored Images 
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Figure 5.16 shows the original Clock image and the noise added Clock image with 15 

dB SNR. Subsequent images are the results of image restoration by various methods 

including LDPC coding. 
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Figure 5.16 Clock Image, Noise Added Image with 15 dB SNR and Restored Images 
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Figure 5.17 shows the original Clock image and the noise added Clock image with 20 

dB SNR. Subsequent images are the results of image restoration by various methods 

including LDPC coding. 
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Figure 5.17 Clock Image, Noise Added Image with 20 dB SNR and Restored Images 
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Figure 5.18 shows the original Moon image and the noise added Moon image with 2 dB 

SNR. Subsequent images are the results of image restoration by various methods 

including LDPC coding. 
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Figure 5.18 Moon Image, Noise Added Image with 2 dB SNR and Restored Images 
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Figure 5.19 shows the original Moon image and the noise added Moon image with 5 dB 

SNR. Subsequent images are the results of image restoration by various methods 

including LDPC coding. 
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Figure 5.19 Moon Image, Noise Added Image with 5 dB SNR and Restored Images 
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Figure 5.20 shows the original Moon image and the noise added Moon image with 15 

dB SNR. Subsequent images are the results of image restoration by various methods 

including LDPC coding. 

 

 
Original Moon Image 

 
Image with 15 dB SNR 

 
Image Restored By Harmonic Mean Filter

 
Image Restored By Adapt. Median Filter 

 
Image Restored By Alpha-trimmed Filter 

 
Image Restored By LDPC Coding 

 

Figure 5.20 Moon Image, Noise Added Image with 15 dB SNR and Restored Images 
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Figure 5.21 shows the original Moon image and the noise added Moon image with 20 

dB SNR. Subsequent images are the results of image restoration by various methods 

including LDPC coding. 
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Figure 5.21 Moon Image, Noise Added Image with 20 dB SNR and Restored Images 
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5.2.2 Comparison of Methods Using PSNR Values 

The PSNR results were classified as Super Quality, Ultra Low Loss, Low Loss, Medium 

Loss and High Loss as shown in Table 5.1. 

 

Table 5.1 Classification Values for PSNR Comparison 

PSNR Value Classification 

0↔20 High Loss 

20↔30 Medium Loss 

30↔40 Low Loss 

40↔60 Ultra Low Loss 

>60 Super Quality 

 

The aim of this classification is to help in determining the performance of the 

restoration methods. 

When analyzing the PSNR values of each restoration method some of the 

following should be noted: 

• The amount of noise added in this analysis was high because of good 

performance of LDPC error correction codes. 

• While setting the noise amount, the SNR is calculated in two different ways 

depending on if coding has been used. 

coding 22
1

σ××
=

R
SNR  

no coding 22
1
σ×

=SNR  

       where 2σ  is the noise variance, and R is the coding rate. 

Table 5.2 shows the standard deviation of noise for various SNR values which are used 

in the simulation. 

 

Table 5.2 Standard Deviation of Noise for Various SNR Values 

SNR Values 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR 
σ  0.79435 0.56237 0.17783 0.1 
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The PSNR values for four restoration methods with different noise values presented in 

Table 5.3. 

 

Table 5.3 PSNR Result in (dB) Using 2, 5, 15 and 20 dB SNR 

 Harmonic Mean Filter  

 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR 

Lena 10.2177 8.6169 7.2291 7.1209 
Moon Surface 9.2662 7.4223 6.1334 6.0151 

Clock 10.8885 7.1732 3.4579 3.0543 
Moon 14.0616 11.3902 8.5559 8.2528 

 Alpha-trimmed Mean Filter  

 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR 

Lena 19.4802 17.5582 14.6097 13.9625 
Moon Surface 19.3203 17.5313 15.1494 14.6104 

Clock 19.6093 17.6169 13.6254 12.7253 
Moon 19.3792 17.0033 12.7517 11.7322 

 Adaptive Median Filter 

 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR 

Lena 14.4235 12.8148 11.1175 10.8159 
Moon Surface 14.1549 12.8543 11.4681 11.2681 

Clock 14.9256 13.0376 10.5405 10.1413 
Moon 15.2513 13.1911 10.3217 9.8438 

 LDPC Coding  

 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR 

Lena No Noise No Noise No Noise 44.8750 
Moon Surface No Noise No Noise No Noise 44.8580 

Clock No Noise No Noise No Noise 44.9227 
Moon No Noise No Noise No Noise 48.2415 

 

Noise ratio and the quality of the reconstructed image are important factors. When an 

image data is being sent through the communication channel, the quality of the restored 
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image is as important as the rate of transmission. In this section, the PSNR values of the 

reconstructed images are compared with each other. The results show that, LDPC codes 

should be preferred when restorating images corrupted by Gaussian noise. Table 5.4 

shows the quality comparison of PSNR values given in Table 5.1. 

 

Table 5.4 Quality Comparison of PSNR Results 

 Harmonic Mean Filter  

 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR 

Lena High Loss High Loss High Loss High Loss 
Moon Surface High Loss High Loss High Loss High Loss 

Clock High Loss High Loss High Loss High Loss 
Moon High Loss High Loss High Loss High Loss 

 Alpha-trimmed Mean Filter  

 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR 

Lena High Loss High Loss High Loss High Loss 
Moon Surface High Loss High Loss High Loss High Loss 

Clock High Loss High Loss High Loss High Loss 
Moon High Loss High Loss High Loss High Loss 

 Adaptive Median Filter 

 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR 

Lena High Loss High Loss High Loss High Loss 
Moon Surface High Loss High Loss High Loss High Loss 

Clock High Loss High Loss High Loss High Loss 
Moon High Loss High Loss High Loss High Loss 

 LDPC Coding  

 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR 

Lena Super Quality Super Quality Super Quality U. Low Loss 
Moon Surface Super Quality Super Quality Super Quality U. Low Loss 

Clock Super Quality Super Quality Super Quality U. Low Loss 
Moon Super Quality Super Quality Super Quality U. Low Loss 
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5.2.3 Comparison of Methods Using Contrast Criteria 

Contrast is widely used in image processing when analyzing images. It could also be 

used to see if a restored image has lost too much detail with respect to the original 

image. If the contrast of the restored image is very different, then the method of 

restoration is not satisfactory. Table 5.5 presents the results of the reconstruction 

method according to the contrast criteria. It can be observed that the results are too 

perfect for LDPC codes. The second best results are for Alpha-trimmed filter but they 

are still not good enough. 

5.2.4 Comparison of Methods Using Brightness 

Brightness, just like contrast, can be used to analyze the restored images. Table 5.5 

presents the results of the reconstruction methods according to the brightness criteria. 

The brightness of the images restored using LDPC codes are almost the same as the 

brightness of the original images. The results were too perfect for LDPC codes. Table 

5.7 shows anlysis of brightness values given in Table 5.6 which represent the 

differences between the brightness of original images and brightness of reconstructed 

images. 

5.2.5 Comparison of Methods Using Processing Time 

Many factors affect the processing time in communication system such as data 

processing software and hardware structure. The time of processing should be as 

minimum as possible. Table 5.8 presents a comparison of restoration methods according 

to the processing time. It is observed that the highest processing time is for the LDPC 

codes. The reasons for this are discussed in the analysis and discussion (section 5.3). 
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Table 5.5 Comparison of Contrast Criteria (Original Image – Reconstructed Image) 

 Harmonic Mean Filter  

 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR 

Lena -55.2126 -67.3664 -87.455 -94.8218 
Moon Surface -68.6651 -92.0029 -122.5304 -127.6989 

Clock -17.4452 -21.717 -42.6385 -49.0335 
Moon 5.7861 3.6764 -2.0364 -9.684 

 Alpha-trimmed Mean Filter  

 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR 

Lena -3.9068 -4.9526 -4.5595 -3.8746 
Moon Surface -16.3054 -22.1165 -33.0279 -35.2813 

Clock 11.519 17.2594 33.6314 36.8755 
Moon 22.3022 30.6731 56.2493 62.6678 

 Adaptive Median Filter 

 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR 

Lena -24.618 -32.4542 -43.4593 -45.7405 
Moon Surface -47.7852 -58.3736 -74.979 -76.7486 

Clock 4.9307 3.6022 -3.0668 -5.4142 
Moon 16.7232 19.7787 22.2429 20.9369 

 LDPC Coding  

 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR 

Lena 0 0 0 -1.4750 
Moon Surface 0 0 0 -1.4943 

Clock 0 0 0 -0.1635 
Moon 0 0 0 0.6932 
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Table 5.6 Brightness Results of HMF, AMF, AdMF and LDPC codes under different 

level of noise (2, 5, 15 and 20 dB SNR) 

Harmonic Mean Filter  

 Original 
Brightness 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR 

Lena 105.7428 41.5529 24.5973 6.3508 5.0125 
Moon Surface 127.7600 57.6814 32.2889 8.6162 5.8828 

Clock 185.9803 131.7579 96.9836 31.5073 21.3196 
Moon 64.5697 37.8661 26.4056 7.7747 5.2794 

 Alpha-trimmed Mean Filter  

 Original 
Brightness 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR 

Lena 105.7428 107.5943 109.8575 113.5447 116.7933 
Moon Surface 127.7600 128.5522 127.5453 127.4515 127.8204 

Clock 185.9803 178.6808 174.3141 162.1475 157.5082 
Moon 64.5697 76.7516 80.4172 92.2404 96.6608 

 Adaptive Median Filter 

 Original 
Brightness 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR 

Lena 105.7428 109.4716 112.3919 114.9577 117.1010 
Moon Surface 127.7600 128.4747 127.4939 127.5040 127.0630 

Clock 185.9803 174.4797 169.0919 160.3359 158.0781 
Moon 64.5697 77.2850 80.6674 90.4823 93.2432 

 LDPC Codes 

 Original 
Brightness 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR 

Lena 105.7428 105.7428 105.7428 105.7428 105.7586 
Moon Surface 127.7600 127.7600 127.7600 127.7600 127.7770 

Clock 185.9803 185.9803 185.9803 185.9803 185.6151 
Moon 64.5697 64.5697 64.5697 64.5697 65.0228 
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Table 5.7 Brightness Analysis of HMF, AMF, AdMF and LDPC codes under different 

level of noise (Original Image – Reconstructed Image) 

 Harmonic Mean Filter  

 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR 

Lena 64.1899 81.1455 99.392 100.73 
Moon Surface 70.0786 95.4711 119.144 121.877 

Clock 54.2224 88.9967 154.473 164.661 
Moon 26.7036 38.1641 56.795 59.2903 

 Alpha-trimmed Mean Filter  

 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR 

Lena -1.8515 -4.1147 -7.8019 -11.051 
Moon Surface -0.7922 0.2147 0.3085 -0.0604 

Clock 7.2995 11.6662 23.8328 28.4721 
Moon -12.182 -15.848 -27.671 -32.091 

 Adaptive Median Filter 

 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR 

Lena -3.7288 -6.6491 -9.2149 -11.358 
Moon Surface -0.7147 0.2661 0.256 0.697 

Clock 11.5006 16.8884 25.6444 27.9022 
Moon -12.715 -16.098 -25.913 -28.674 

 LDPC Coding  

 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR 

Lena 0 0 0 -0.0158 
Moon Surface 0 0 0 -0.017 

Clock 0 0 0 0.3652 
Moon 0 0 0 -0.4531 
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Table 5.8 Processing Time (in seconds) 

 Harmonic Mean Filter  

 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR 

Lena 1.2969 1.2344 1.2344 1.2969 
Moon Surface 1.2813 1.2500 1.2188 1.2031 

Clock 1.2500 1.2500 1.2344 1.2031 
Moon 1.2500 1.2500 1.2344 1.2344 

 Alpha-trimmed Mean Filter  

 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR 

Lena 1.2344 1.2656 1.2344 1.2656 
Moon Surface 1.2500 1.2656 1.2188 1.2500 

Clock 1.2656 1.2656 1.2813 1.2500 
Moon 1.2813 1.2656 1.2969 1.2656 

 Adaptive Median Filter 

 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR 

Lena 1.4688 1.3906 1.4063 1.4375 
Moon Surface 1.4688 1.4531 1.4063 1.4375 

Clock 1.5000 1.4375 1.4063 1.4375 
Moon 1.4375 1.4531 1.4531 1.4375 

 LDPC Coding  

 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR 

Lena 13728.5166 13672.4119 13992.4844 19982.5469 
Moon Surface 13699.4176 13534.6314 12541.5466 19708.6719 

Clock 13427.2348 13536.7516 13708.6729 17541.1563 
Moon 13285.6543 13525.9719 13982.1521 18436.1719 

Time results were obtained using Matlab 7 on a 3.01 GHz PC with 512 Mb of RAM, running Windows 

XP  
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5.3 Analysis and Discussion 

It is shown that LDPC coding removes the additive white Gaussian noise successfully in 

most of the images. 

In image restoration high accuracy of restoration is very important. In coding, 

this is determined by various parameters such as parity check matrix H, G matrix, and 

number of iterations, and for other restoration techniques by the window size, and 

maximum allowable value maxS , and also by the amount of noise. 

The PSNR criteria shows that the highest value is obtained when LDPC coding 

is used, (classified as super quality) while the result of the Alpha-trimmed filter is the 

second best among the three filters. 

The contrast criteria shows that there is almost no change in contrast value 

between the restored images and the original images for LDPC coding while some 

change has been occurred for the restoration methods. The change in contrast is 

increased by increasing the amount of noise but this increase is the last for LDPC 

coding. 

The brightness criteria also shows that LDPC coding is successful in the removal 

of white Gaussian noise as for all set test images in all amounts of noise, the brightness 

of restored images and the original images are almost the same. The second best result 

is again using Alpha-trimmed filter in most cases. Note that sometimes the result of the 

other two methods are too close to the brightness of the original image, not because they 

have good quality of filtering but because the number of black pixels are too many as in 

the moon image. 

LDPC codes are slow compared to the other restoration methods. The reason is 

the number of steps that the data has to go through for restoration, such as converting 

the image data from decimal to binary numbers and then restoring them to the suitable 

form that the encoder can use and restoring the restored data. It is believed those 

simulation could be done in C language in much less time compared to Matlab 

language. The efficiency of the written program could be improved for faster processing 

time. (Note that no Matlab toolbox commands are used for the LDPC encoder and 

decoder). A final factor affecting the LDPC codes is the amount of iterations needed for 

decoding. 
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Experimental results have shown that for LDPC coding, the presence of details 

in the images never effected from white Gaussian noise and the accuracy of restoration 

was 100% in the selected values of noise even when the other methods in most cases did 

not perform well to the LDPC codes. The second best result in most comparison criteria 

was for the Alpha-trimmed filter. 

The performance of the system has been illustrated by the implementation using 

the other database such as Lena image and Moon image observing that they are famous 

for the researchers on topic of image processing field, which contains images with small 

variations in illumination and orientation. 

The efficiency of the method suggested in this thesis has been shown to have 

100% filtering accuracy with high value of noise added. 

5.4 Summary 

The software application which was developed has been presented and demonstration of 

applying the restoration methods has been shown. 

Different restoration methods are applied to different images and all the 

reconstructed images are analyzed using the comparison criteria in order to decide upon 

the optimum restoration method. 

Based on the work and analysis, the LDPC decoder is found to be the ideal 

restoration method in this work. 

The experimental results were also discussed in this chapter, which 

demonstrated the successful implementation of the developed method. 
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CONCLUSION 

LDPC codes provide coding gains when used in communication systems. Due to their 

iterative decoding structure, coding gains could be increased by increasing the number 

of iterations of each block of data in the decoder, although the amount of noise 

decreases by each of iterations. The LDPC decoder performance is also affected by the 

size of the G and H matrices. Larger H sizes provide larger coding gains, but also 

increase the latency of the overall system. For power-limited communication systems 

where latency is a critical issue, it is desirable to have moderate good H and G size for 

the encoder and decoder of LDPC codes with a reasonable number of decoder iterations. 

LDPC codes are also known to provide significant gains for AWGN channels. LDPC 

codes are currently being considered as part of a standard for future communication 

systems such as in medical imaging, deep-space and multimedia. 

Removing or eliminating the noise from image data is one of the difficult 

problems. This thesis presents a system that corrects data in spatial domain using LDPC 

error correction codes. The white Gaussian noise is removed from images without 

affecting the pixel values. In order to analyze the accuracy and efficiency of this system, 

the results are compared using various criteria to some of the well-known filters used 

for image restoration. 

The analysis criteria introduced can be used for the application of LDPC codes 

to image transmission and restoration. The criteria consist of visual inspection as well as 

theoretical computation. The results show better restoration of images using LDPC 

codes. However, the delay introduced is substantially larger as compared to other 

filtering techniques utilized. 

The idea of future work for the presented work is to make the system dealing 

with the 3 D images (colored) not only with images in grayscale dimension. Also, for 

more flexibility, make the system work with bigger sizes of images. 

The idea of future work also on LDPC error control codes is to give the 

flexibility of the structure algorithms of LDPC codes to can be usable or dealing with all 

kind of noise. Because they show efficient performance to correct the data corrupted as 

the results of this work is shown. 
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APPENDICES 

Appendix I Matlab Source Code of AWGN Channel Simulation 

%%%%%%%%% SIMULATION OF LDPC CODES OVER AWGN CHANNEL %%%%%%%%%% 
 
% VARIABLES 
 
clear all;clc;                                    %Clean the previous results 
m=256;                                                         %Number of rows 
n=512;                                                          %Number of columns 
max_iterations=100;                          %Maximum number of iterations 
rate=(n-m)/n;                                        %Rate of decoder 
 
%LOADING OF CODING MATRICES 
 
load ldpc256_512_gen.txt;                        %Load of A inverse B 
load ldpc256_512_pchk.txt;                     %Load of H matrix 
AinvB_256_256=ldpc256_512_gen;            % 
H_256_512=ldpc256_512_pchk;        % 
load codeword_order.txt;           %Load of codeword order 
cnt=1; 
for i=1:26 
    for j=1:20; 

new_codeword_order(cnt)=codeword_order(i,j);%Sorting of codeword 
        cnt=cnt+1; 
    end 
end 
codeword_order_1_512=new_codeword_order(1:512); 
 
%RANGE OF THE SIMULATION FOR NOISE VALUES 
 
  SNR_db=0:0.5:2;                                       %SNR range 
for o=1:length(SNR_db)                        %Calculating of SNR 
    disp('SNR');SNR_db(o)                       % 
    SNR=10^(SNR_db(o)/10);                    % 
    variance=1/(2*SNR*rate)                  %Calculating of Variance 
    err=0;                      % 
    DATA_SUM=0;                 %Initial value of errors 
    while (err<1000)            %Number of errors 
      
        for i=1:(n-m)           % 
            original_data(i)=rand;        %Random generate of data 
             
            if (original_data(i)>0.5)     %Normalizing the data 
              original_data(i)=1;         % 
            else                          % 
              original_data(i)=0;         % 
            end                           % 
        end                               % 
 
%ACTIVATION OF THE ENCODER         
 
yi=ldpc_encoder(m,n,AinvB_256_256,codeword_order_1_512,original_data); 
 
%CONSIDERATION OF AWGN CHANNEL 
        DATA_SUM=DATA_SUM+256; 
        for i=1:n 
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            yi(i)=yi(i)+(sqrt(variance)*randn);%Function of AWGN channel 
        end 
 
%ACTIVATION OF THE DECODER         
 
est_data=ldpc_decoder1(m,n,max_iterations,variance,yi,codeword_order_1
_512,H_256_512); 
 
%ELIMINATING THE EXTRA MESSAGE BITS ADDED BY ENCODER 
 
        for i=1:(n-m) 
          if(original_data(i)~=est_data(codeword_order_1_512(m+i)+1)) 
            err=err+1; 
          end 
        end 
             
       err 
       end 
 
 %CALCULATING OF BER       
 
      ber(o)=err/DATA_SUM 
      q(o)=0.5*erfc(sqrt(SNR)); 
end 
 
%VARIABLES FOR PLOTING GRAPH 
 
semilogy(SNR_db,ber,'-',SNR_db,q,'--') 
title('AWGN channel') 
xlabel('S/N(dB)'),ylabel('BER') 
legend('AWGN','LDPC AWGN') 
grid 
set(gca,'XTick',[0;0.5;1;1.5;2]) 
axis([0 2 10e-5 1]) 
 

%%%%%%%%%%%%%%%%%%%%% LDPC ENCODER %%%%%%%%%%%%%%%%%%%% 
 
%FUNCTION TO CALL THE ENCODER 
 
function codeword=ldpc_encoder(m,n,AinvB,codeword_order,s_tx) 
%MULTIBLICATION OF ORIGINAL DATA BY AINV B 
c_tx=rem(AinvB*s_tx',2);                   % Applying the binary mult.for c_tx  
x_tx=[c_tx' s_tx];                                 % putting the x_tx in a new form 
 
%NORMALIZING OF NEW MATRIX 
 
for (i=1:n)                                                    % 
    if (x_tx(i)==1)                                      % 
        x_tx(i)=-1;                                           % converting the c_tx to 1 or -1 
    else                                                                % 
        x_tx(i)=1;                                              % 
    end                                                                   % 
end                                                                       % 
 
%ARRANGING THE DATA ACCORDING TO CODEWORD 
 
for i=1:n                                                          % 
    for j=1:n                                                     % 
        if (codeword_order(j)==(i-1)) % Arranging the data 
            codeword(i)=x_tx(j);                    % 
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        end                                      % 
    end                                          % 
end                                              % 
 

%%%%%%%%%%%%%%%%%%%%%% LDPC DECODER %%%%%%%%%%%%%%%%%%% 
 
%FUNCTION FOR CALLING LDPC DECODER 
 
Function c_est=ldpc_decoder1(n,z,max_iterations,d,yi,codeword_order, 
H) 
% LDPC matrix 
    H1= H';              % transpose of LDPC matrix 
 
%VARIABLES 
 
    qr=1;        %initial value for qij(1)needed to calculate rji(0) 
    rji=1;       %initial value for rji(0)needed to calculate qij(0) 
    excl=1; 
    coun=0;    %initial value for a counter needed to verify that c*H'=0 
    c1=[]; 
    k=[];                                
    L=[]; 
    qs=[]; 
    iteration=0; 
 
% FIRST STEP: TO FIND INITIALIZED CODE qij(0) 
 
    x=1+exp(2*yi./d);                              
    qij=x.^(-1);                      %initialized code 
    for i=1:z 
        qs=[qs;qij];                  %loop to put qij(1)in zxn matrix so that 
rji(0)can be obtained 
    end 
    qu=qs;                                     %initial value for qo1(Ki) 
    for i=1:n 
        c1=[c1,1];                        %initial value of c*H' 
    end 
while iteration~=max_iterations       %program's loop 
 
% SECOND STEP: TO FIND rji(0) 
 
    for i=1:n                      
        a=[]; 
        x=0; 
           for j=1:z 
                  if H(i,j)==1 
   m=[i,j]; 
   k=[k;m];%finding how many ones and their coordinates in H matrix 
  a=[a,j];%columns number of each element equals to one in a certain row  
                    x=x+1;             %number of elements equal to one in a certain row  
                end 
            end 
            excl=1;                     %excluding operation 
            for t=1:x                                             % 
                s=zeros(1,x);                               % 
                index=1;                                           % 
                for m=1:x                                         %  
                    qr=1;                              
                    if (m~=excl)                              %  
                        s(index)=m;                            % 



 I-4

                        index=index+1;                                         % 
                    end                                                                        % 
                    if index==x  
                       for g=1:(x-1) 
                           qr=qr*(1-2*qu(i,a(s(g))));          %qij(1)used in an iteration 
                       end 
                                       r(i,a(t))=0.5+0.5*qr;          %rji(0) 
                wes=isinf (r(i,a(t))); 
                mur=isnan (r(i,a(t))); 
                if r(i,a(t))<1e-15 
                 r(i,a(t)); 
                   %disp zero1                         
                else if (mur==1) 
                      r(i,a(t)); 
                        %disp Not-a-Number1 
                else if (wes==1) 
                      r(i,a(t))=0.9999; 
                        %disp infinty1 
                else if r(i,a(t))==1 
                         r(i,a(t))=0.9999;  
                           %disp one1 
                 end 
                 end 
                 end 
                 end 
                        if r(i,a(t))<=(1e-15) 
                        r1(i,a(t))=0.9999; 
                        else 
                          r1(i,a(t))=1-r(i,a(t));      %rji(1) 
                        end 
        end 
                end 
 
                s; 
                excl=excl+1; 
            end 
    end  
    k=[];                                                                        %re initializing k 
 
% THIRD STEP: TO FIND  qij(0) BY USING rji(0) 
 
    for i=1:z                                      
        a=[]; 
        x=0; 
        for j=1:n                                 
           if H1(i,j)==1                          
   m= [i,j];                         
  L=[L;m];%finding how many ones and their coordinates in H' matrix 
  a=[a,j];%rows number of each element equals to one in a certain column 
                x=x+1;                      %number of elements equal to one in a certain row                  
            end                                    
        end                                                                             
        excl=1;                                                   %excluding operation 
        for t=1:x                                              % 
            s=zeros(1,x);                                 % 
            index=1;                                             % 
            for m=1:x                                           % 
                rji=1; 
                rji1=1; 
                if (m~=excl)                                % 
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                    s(index)=m;                                                              % 
                    index=index+1;                                                       % 
                end                                                                                      %  
 
                                if index==x 
                                for g=1:(x-1) 
                                 rji=rji*r(a(s(g)),i);                           %rji(0) 
                                 rji1=rji1*r1(a(s(g)),i);                    %rji(1) 
                                end 
                                    if rji==1 
                                       q(i,a(t))=(1-qs(a(t),i));            %qij(0) 
                                    else 
                                    q(i,a(t))=(1-qs(a(t),i))*(rji); %qij(0) 
                                    end 
                                        wes=isinf (q(i,a(t))); 
                                        mur=isnan (q(i,a(t))); 
                                        if q(i,a(t))<1e-15 
                                      q(i,a(t)); 
                                        %disp zero2 
                                        %q(i,a(t)) 
                                        else if (mur==1) 
                                      q(i,a(t)); 
                                        %disp Not-a-Number2 
                                        else if (wes==1) 
                                      q(i,a(t))=0.9999; 
                                        %disp infinty2 
                                        else if q(i,a(t))==1 
                                      q(i,a(t))=0.9999;  
                                        %disp one2 
                                            end 
                                            end 
                                            end 
                                            end 
                                                if rji1==1 
                                                    q1(i,a(t))=qs(a(t),i);                      %qij(1) 
                                                else 
                                                    q1(i,a(t))=qs(a(t),i)*(rji1);     %qij(1) 
                                                end 
                                                    wes=isinf (q1(i,a(t))); 
                                                    mur=isnan (q1(i,a(t))); 
                                                    if q1(i,a(t))<1e-15 
                                                  q1(i,a(t)); 
                                                    %disp zero3 
                                                    %q1(i,a(t)) 
                                                    else if (mur==1) 
                                                  q1(i,a(t)); 
                                                    %disp Not-a-Number3 
                                                    else if (wes==1) 
                                                  q1(i,a(t))=0.9999; 
                                                    %disp infinty3 
                                                    else if q1(i,a(t))==1 
                                                  q1(i,a(t))=0.9999;  
                                                    %disp one3 
                                                        end 
                                                        end 
                                                        end 
                                                        end 
        qo0(i,a(t))=q(i,a(t))/(q(i,a(t))+q1(i,a(t)));        %Ki for qij(0) 
        qo1(i,a(t))=q1(i,a(t))/(q(i,a(t))+q1(i,a(t)));      %Ki for qij(1) 
                            end 
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                end 
    s; 
    excl=excl+1; 
    end 
end 
L=[];                                                                          %re initializing L 
 
%FORTH STEP DETERMINING Qi(0) 
 
    for i=1:z 
        rji=1; 
        rji1=1; 
        for j=1:n  
            if r(j,i)~=0 
                rji=rji*r(j,i);                                  %rji(0) 
                rji1=rji1*r1(j,i);                           %rji(1) 
            end 
        end 
        Q(i)=(1-qs(j,i))*rji;                            %Qi(0) 
        Q1(i)=qs(j,i)*rji1;                                 %Qi(1) 
        Qo0(i)=Q(i)/(Q(i)+Q1(i));                   %Ki of Qi(0) 
        Qo1(i)=Q1(i)/(Q(i)+Q1(i));                 %Ki of Qi(1) 
    end 
 
%FIFTH STEP THE ORIGINAL CODE 
 
    for i=1:z 
        if Qo1(i)>0.5 
            c(i)=1; 
        else  
            c(i)=0; 
        end 
    end 
       qu=qo1'; 
    iteration=iteration+1; 
    c1=rem(c*H1,2);                              %cxH' 
    coun=[0]; 
    for j=1:n                                            % 
        if c1(j)==0                                   %check if c*H'=0 
           coun=coun+1;                              % 
        end                                                       % 
    end                                                         % 
    if coun==n                                          % 
        iteration=max_iterations;  % 
    end   
end 
c_est=c; 
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Appendix II Matlab Source Code of Image Filtering Simulation 

%%%%%% PROGARM FOR PRESENTING THE IMAGE DATA TO LDPC ENCODER %%%%%% 
 
function TOTAL_BLOCKS=PreEncodingProcess(A) 
TOTAL_BLOCKS=[];           %INITIAL VALUE OF BLOCKS MATRIX 
x=0;                                        % 
y=0;                                        %INITIAL VALUES 
z=32;                                     % 
Data =de2bi(double(A),8);%CONVERSION IMAGE DATA FROM DECIMAL TO BINARY 
for i=1:2048                %NUMBER OF BLOCKS 
    Block=[];                         % 
    x=y+1;                                % 
    y=y+z;                                % 
    for j=x:y                         % 
        for n=1:8                     % 
        B=Data(j,(9-n));    % 
        Block=[Block B];    %CONSTRUCTED BLOCK 
        end                                   % 
    end                                       % 
    TOTAL_BLOCKS=[TOTAL_BLOCKS; Block]; %ALL BLOCKS MATRIX 
end                                           %ENDING PROCESS 
 
%%%%%% % PROGRAM TO APPLAYING THE WGN OVER PIXELS OF IMAGES %%%%%%% 

 
%VARIABLES 
 
clear all,clc; 
starttime = cputime; 
m=256;                                         %number of rows 
n=512;                                         %number of columns 
max_iterations=100;          %maximum number of iterations 
rate=(n-m)/n; 
variance=1; 
 
%LOADING THE MATRICES 
 
load ldpc256_512_gen.txt; 
load ldpc256_512_pchk.txt; 
AinvB_256_256=ldpc256_512_gen; 
H_256_512=ldpc256_512_pchk; 
%SORTING OF CODE WORD 
load codeword_order.txt; 
cnt=1; 
for i=1:26 
    for j=1:20; 
        new_codeword_order(cnt)=codeword_order(i,j); 
        cnt=cnt+1; 
    end 
end 
  
codeword_order_1_512=new_codeword_order(1:512); 
 
%CALCULATION VALUE OF SNR 
 
SNR_db=5; 
    disp('SNR'); 
    SNR=10^(SNR_db/10); 
    variance=1/(2*SNR*rate) 
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load ldpc256_512_gen.txt; 
load ldpc256_512_pchk.txt; 
 
AinvB_256_256=ldpc256_512_gen; 
H_256_512=ldpc256_512_pchk; 
 
%INSERTING THE IMAGE 
 
A = imread('Lena_','tiff'); %IMAGE AQUISITION 
%CALLING DATA PREPERING PROGRAM 
Blocks=PreEncodingProcess(A); 
for i=1:2048 
    original_data = Blocks(i,:); 
 
%CALLING THE LDPC ENCODER 
 
yi=ldpc_encoder(m,n,AinvB_256_256,codeword_order_1_512,original_data); 
%APPLAYING WGN NOISE 
        for j=1:n 
            yi(j)=yi(j) + (sqrt(variance)*randn); 
        end 
 
%CALLING THE LDPC DECODER 
 
est_data=ldpc_decoder1(m,n,max_iterations,variance,yi, 
codeword_order_1_512,H_256_512); 
final_est=est_data(codeword_order_1_512(m+(1:(n-m)))+1); 
TOTAL_BLOCKS(i,:)=final_est; 
end 
 
%CALLING THE PROGRAM FOR CONVERTING THE FILTERED DATA TO PIXEL VALUES 
 
Reconstructed_Image=AfterDecodingProcess(TOTAL_BLOCKS) 
%SHOWING THE RECONSTRUCTED IMAGE BY LDPC SYSTEM 
figure,imshow(Reconstructed_Image),title('Reconstructed Lena Image')% 
Test_time =cputime - starttime; 
disp(sprintf('CPU PROCESSING TIME = %5.4f Second',Test_time)) 
 

%%%%%%%%%%%% PROGRAM TO RECONSTRUCT DECODED IMAGE %%%%%%%%%%% 
 
function Reconstructed_Image= AfterDecodingProcess(TOTAL_BLOCKS) 
%VARIABLES 
decoded_matrix=[];                      %  
for i=1:2048                                     % 
x=1;                                                        % 
y=8;                                                        % 
z=8;                                                        % 
    while x<257                                   %  
        decoded_row=[];                     % 
        for j=x:y                                    % 
        decoded_element=TOTAL_BLOCKS(i,j);                            % 
        decoded_row=[decoded_row decoded_element];  %Converting the data 
from binary to decimal 
        end                                            % 
       decoded_matrix=[decoded_matrix; decoded_row]; % 
        x=y+1;                                     % 
        y=y+z;                                     % 
    end                                                % 
end                                                    % 
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Pixels=bi2de(decoded_matrix,'left-msb');            %        
Primary_Result=[];                                                                 % 
x=0;                                                                                                   % 
y=0;                                                                                                   % 
z=256;                                                                                              % 
for i=1:256                                                           %Sorting the data in image size 
    Image_row=[];                                                  % 
    x=y+1;                                                                   % 
    y=y+z;                                                                   % 
    for j=x:y                                                            % 
        pixel=Pixels(j);                                       % 
        Image_row=[Image_row pixel];          % 
    end                                                                          % 
   Primary_Result=[Primary_Result; Image_row];    % 
end                                                                                                       % 
Img=Primary_Result';                                                              % 
Reconstructed_Image = uint8(Img);                               % 
 
%%%%%% PROGRAM FOR IMPLIMENTING CHOSEN OTHER THREE FILTERS %%%%%%%% 

clear all,clc; 
    starttime = cputime; 
      I = imread('Moon Image','tiff'); 
      J = imnoise(I,'gaussian',0,0.09); 
 
     figure, IMshow(I) 
     image([],[],I),title('Original Moon Image') 
     figure, IMshow(J) 
     image([],[],J),title('Noisily Image with Gaussian Variance=0.09') 
      
     Test_time =cputime - starttime; 
     disp(sprintf('CPU PROCESSING TIME = %5.4f Second',Test_time)) 

%%%%%%%%%%%%%%%%%%% HARMONIC MEAN FILTER %%%%%%%%%%%%%%%% 
      starttime = cputime; 
      A = SPFILT(J,'hmean',3,3); 
      figure, IMshow(A) 
      image([],[],A),title('Filtered Image by Harmonic Mean Filter') 
      Test_time =cputime - starttime; 
      disp(sprintf('CPU PROCESSING TIME = %5.4f Second',Test_time))   

%%%%%%%%%%%%%%%%%%% ALPHA-TRIMMED FILTER %%%%%%%%%%%%%%%%% 
      starttime = cputime; 
      B = SPFILT(J,'atrimmed',3,3,2); 
      figure, IMshow(B) 
      image([],[],B),title('Filtered Image by Alpha-trimmed Filter') 
      Test_time =cputime - starttime; 
      disp(sprintf('CPU PROCESSING TIME = %5.4f Second',Test_time)) 

%%%%%%%%%%%%%%%%%%% ADAPTIVE MEDIAN FILTER %%%%%%%%%%%%%%% 
      starttime = cputime; 
      C = adpmedian(J,7); 
      figure, IMshow(C) 
      image([],[],C),title('Filtered Image by Adaptive Median Filter') 
      Test_time =cputime - starttime; 
      disp(sprintf('CPU PROCESSING TIME = %5.4f Second',Test_time)) 
%%%%%%%%% CALCULATING PSNR FOR OUTPUT IMAGE FOR EACH FILTER %%%%%%% 

  %error = I - A; 
  error = double(I) - double(A); 
  decibels = 20*(log10(255./(sqrt((1/256^2)*(sum(sum(error.^2))))))); 
  disp(sprintf('PSNR = +%5.4f dB',decibels)) 
 
  %error = I - B; 
  error = double(I) - double(B); 
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decibels = 20*(log10(255./(sqrt((1/256^2)*(sum(sum(error.^2))))))); 
disp(sprintf('PSNR = +%5.4f dB',decibels)) 
       
%error = I - C; 
error = double(I) - double(C); 
decibels = 20*(log10(255./(sqrt((1/256^2)*(sum(sum(error.^2))))))); 
disp(sprintf('PSNR = +%5.4f dB',decibels)) 
 

%%%%%%% PROGRAM FOR CALCULATING BRIGHTNESS AND CONTRAST %%%%%% 
       
FIL = A; 
FILB= double(FIL); 
k=0; 
N=0; 
b=0; 
M=0; 
for i=1:256 
    for j=1:256 
        if FILB(i,j)>128 
            FILB(i,j); 
           k=k + FILB(i,j); 
            N=N+1; 
        else 
            b=b+FILB(i,j); 
            M=M+1; 
        end 
    end 
end 
whitest=k/N; 
Darkest=b/M; 
Contrast_A=whitest-Darkest 
Brightness_A=mean(mean(FIL)) 
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