
NEAR EAST UNIVERSITY

GRADUATE SCHOOL OF APPLIED
SCIENCES

ANALYSIS AND APPLICATION OF LDPC CODES
TO IMAGE TRANSMISSION AND RESTORATION

Sameh MASHAQI

Master Thesis

Department of Electrical and Electronic
Engineering

Nicosia - 2007

 i

ACKNOWLEDGMENTS

This work would not have been possible without the generous help of God and then the

following people as well as their significant contribution to my work.

Dr. Ali SERENER: I would like to sincerely thank for his invaluable supervision,

support and encouragement through this work and for introducing me to the world of

communications.

Assoc. Prof .Dr. Adnan KHASHMAN: I would like to sincerely thank for his

supervision, suggestions and his instructions through the master degree duration and

undergraduate years and for always being kind and helpful to me all these years.

I would like especially to express my sincere thanks and dedication to my

parents and family and gift them this work for their always constant love and

supporting, spiritual and financial, in my decisions through the years.

I wish to thank the administration of Near East University for the scholarship of

master program that made the work possible.

Finally, I would like to thank my friends specially Mohammed ELAMIN for his

help in Matlab programming and their helpful ideas.

 Sameh MASHAQI

 ii

ABSTRACT

Low-Density Parity-Check (LDPC) codes are one of the recent topics in coding theory

today. Originally invented more than forty years ago, they have been the focus of many

researchers in the last few years and are included in the latest digital video broadcasting

via satellite standard (DVB-S2). Unlike many other classes of codes, LDPC codes are

already equipped with a fast, probabilistic decoding algorithm. This makes LDPC codes

not only attractive from a theoretical point of view, but also very suitable for practical

applications. This thesis presents the application of LDPC error correction codes in

digital image transmission and restoration on images with fixed size (256 by 256 pixels)

in grayscale format. The results show better restoration of images by LDPC codes

compared to other well-known image restoration methods when degradation on images

is caused by additive white Gaussian noise (AWGN) only. The drawback is that the

restoration process is much slower when LDPC codes are used. Consequently, LDPC

codes can be used in applications such as medical imaging, deep-space communications

and multimedia, where delay is not an issue.

 iii

TABLE OF CONTENTS

ACKNOWLEDGMENTS... i

ABSTRACT... ii

TABLE OF CONTENTS .. iii

LIST OF ABBREVIATIONS ..vii

LIST OF FIGURES...viii

LIST OF TABLES.. x

INTRODUCTION .. 1

CHAPTER 1 Communication System Overview... 4

1.1 Overview... 4

1.2 Digital Communication Systems .. 4

1.2.1 Channel Encoder.. 6

1.2.2 Modulator... 6

1.2.3 Communication Channels.. 6

1.2.4 Demodulator .. 8

1.2.5 Channel Decoder.. 9

1.3 Error Control Codes.. 9

1.3.1 Linear Block Codes ... 10

1.3.1.1 Generator and Parity Check Matrices:.. 11

1.3.1.2 Hamming Codes ... 14

1.3.2 Convolutional Codes.. 15

1.3.2.1 Convolutional Encoder ... 15

1.3.2.2 Convolutional Decoder ... 16

1.3.2.3 The Viterbi Algorithm .. 17

1.3.3 Turbo Codes... 20

1.3.3.1 Turbo Encoder and Decoder ... 21

1.3.4 Cyclic Codes .. 22

1.4 Summary... 24

CHAPTER 2 Low–Density Parity–Check Codes and Decoding Algorithms.......... 25

2.1 Overview... 25

2.2 Introduction to LDPC Codes .. 25

2.3 Graph Theory.. 25

 iv

2.4 LDPC .. 26

2.5 Code Design.. 28

2.5.1 Gallager Codes... 29

2.5.2 MacKay Codes... 30

2.6 Encoding ... 30

2.6.1 Generic Encoding .. 31

2.7 Decoding Algorithms.. 32

2.7.1 Message-Passing Decoding Algorithms .. 32

2.7.2 Probability Decoding Algorithm ... 34

2.7.3 Logarithmic Probability Decoding Algorithm... 37

2.7.4 Other Decoding Algorithms... 38

2.8 LDPC Code Performance in AWGN Channel Model .. 39

2.9 Summary... 41

CHAPTER 3 Image Restoration Techniques... 42

3.1 Overview... 42

3.2 Background... 42

3.3 Spatial Filtering... 45

3.4 Smoothing Spatial Filters.. 49

3.4.1 Smoothing Linear Filters ... 49

3.4.2 Order-Statistics Filters ... 51

3.5 A Model of the Image Degradation/Restoration Process 52

3.6 Noise Models .. 53

3.6.1 Spatial and Frequency Properties of Noise.. 53

3.6.2 Gaussian Noise .. 54

3.7 Restoration in the Presence of Noise Only-Spatial Filtering................................ 55

3.7.1 Mean Filters ... 55

3.7.1.1 Arithmetic Mean Filter ... 56

3.7.1.2 Geometric Mean Filter.. 56

3.7.1.3 Harmonic Mean Filter... 56

3.7.1.4 Contraharmonic Mean Filter... 56

3.7.2 Order-Statistics Filters ... 57

3.7.2.1 Median Filter... 57

3.7.2.2 Max and Min Filters ... 57

 v

3.7.2.3 Midpoint Filter .. 58

3.7.2.4 Alpha-trimmed Mean Filter .. 58

3.7.3 Adaptive Filters.. 59

3.7.3.1 Adaptive, Local Noise Reduction Filter ... 59

3.7.3.2 Adaptive Median Filter ... 60

3.8 Summary... 62

CHAPTER 4 Methodology .. 63

4.1 Overview... 63

4.2 Comparison Criteria.. 63

4.2.1 PSNR Values ... 63

4.2.2 Contrast .. 64

4.2.3 Brightness .. 65

4.2.4 Processing Time... 65

4.2.5 Visual Inspection ... 65

4.3 System Structure and Design.. 65

4.3.1 Data Representation... 67

4.3.2 Data Encoding.. 68

4.3.3 Data Decoding ... 69

4.4 Prerequisites of the System... 73

4.4.1 Image Acquisition.. 73

4.4.2 Initial Parameters ... 73

4.4.3 Database Collection ... 74

4.5 Software Tools (MATLAB) ... 74

4.6 Summary... 74

CHAPTER 5 Results and Analysis.. 75

5.1 Overview... 75

5.2 Experimental Results .. 75

5.2.1 Images Database .. 75

5.2.2 Comparison of Methods Using PSNR Values... 97

5.2.3 Comparison of Methods Using Contrast Criteria .. 100

5.2.4 Comparison of Methods Using Brightness.. 100

5.2.5 Comparison of Methods Using Processing Time .. 100

5.3 Analysis and Discussion ... 105

 vi

5.4 Summary... 106

CONCLUSION ... 107

REFERENCES.. 108

APPENDICES.. I-1

Appendix I Matlab Source Code of AWGN Channel Simulation I-1

Appendix II Matlab Source Code of Image Filtering Simulation....................II-1

 vii

LIST OF ABBREVIATIONS

APP: A Posterior Probability

ARQ: Automatic-Repeat-Request

AWGN: Additive White Gaussian Noise

BCH: Bose-Chaudhuri-Hochquenghem

CDF: Cumulative Distribution Function

DSL: Digital Subscriber Line

ECC: Error Control Coding

FEC: Forward Error Correction

LLR: Log-Likelihood Ratio

LDPC: Low-Density Parity-Check

LSB: Least Significant Bit

MAP: Maximum A Posteriori

MSB: Most Significant Bit

NSC: Nonsystematic Convolutional

PDF: Probability Density Function

PSNR: Peak Signal-To-Noise Ratio

RMS: Root Mean Square

SNR: Signal-To-Noise Ratio

SOVA: Soft Output Viterbi Algorithm

TCM: Trellis Coded Modulation

 viii

LIST OF FIGURES

Figure 1.1 Digital Communications System.. 4

Figure 1.2 Linear Filter Channel Module .. 7

Figure 1.3 Fading Channel with Additive White Gaussian Noise................................... 8

Figure 1.4 Matched Filter Demodulator .. 8

Figure 1.5 Rate 21 Encoder ... 16

Figure 1.6 Constraint Length 5 Rate 21 Convolutional Encoder................................. 18

Figure 1.7 Trellis Diagram for 3=K , Rate 21 Convolutional Encoder [4] 20

Figure 1.8 Block Diagram of the Turbo Encoder .. 22

Figure 1.9 Block Diagram of the Turbo Decoder .. 22

Figure 2.1 A Graph and a Tree .. 26

Figure 2.2 Bipartite Graph Representation of ()10,5 == NK Regular LDPC Code ... 28

Figure 2.3 Example of a Parity-Check Matrix for a 20=N , 3=j , 4=k Gallager Code.

.. 29

Figure 2.4 Graph Showing the Message Send From a Variable Node to a Check Node

.. 33

Figure 2.5 Graph Showing the Message Send From a Check Node to a Variable Node

.. 33

Figure 2.6 The Gaussian Noise Channel.. 39

Figure 3.1 A 33× Neighborhood About a Point (x, y) in an Image 43

Figure 3.2 Gray level Transformation Functions for Contrast Enhancement................ 44

Figure 3.3 The Mechanics of Spatial Filtering. The Magnified Drawing Shows a 33×

Mask and the Image Section Directly Under it... 46

Figure 3.4 Another Representation of a General 33× Spatial Filter Mask 48

Figure 3.5 Two 33× Smoothing (Averaging) Filter Masks ... 49

Figure 3.6 A model of the Image Degradation/ Restoration Process. 53

Figure 3.7 Gaussian Probability Density Function .. 54

Figure 4.1 Grayscale Palette .. 64

Figure 4.2 Block Diagram of the Image Restoration... 66

Figure 4.3 Block Diagram of Image Restoration Filters.. 66

Figure 4.4 Block Diagram of the LDPC System ... 67

 ix

Figure 4.5 Flowchart of the LDPC Encoder .. 71

Figure 4.6 Flowchart of the LDPC Decoder.. 72

Figure 5.1 Original Test Images .. 76

Figure 5.2 Lena Image and Noise Added Images with SNR = 2, 5, 15 and 20 dB 77

Figure 5.3 Moon Surface Image and Noise Added Images with SNR = 2, 5, 15 and 20

dB.. 78

Figure 5.4 Clock Image and Noise Added Images with SNR = 2, 5, 15 and 20 dB....... 79

Figure 5.5 Moon Image and Noise Added Images with SNR = 2, 5, 15 and 20 dB....... 80

Figure 5.6 Lena Image, Noise Added Image with 2 dB SNR and Restored Images 81

Figure 5.7 Lena Image, Noise Added Image with 5 dB SNR and Restored Images 82

Figure 5.8 Lena Image, Noise Added Image with 15 dB SNR and Restored Images ... 83

Figure 5.9 Lena Image, Noise Added Image with 20 dB SNR and Restored Images ... 84

Figure 5.10 Moon Surface Image, Noise Added Image with 2 dB SNR and Restored

Images... 85

Figure 5.11 Moon Surface Image, Noise Added Image with 5 dB SNR and Restored

Images... 86

Figure 5.12 Moon Surface Image, Noise Added Image with 15 dB SNR and Restored

Images... 87

Figure 5.13 Moon Surface Image, Noise Added Image with 20 dB SNR and Restored

Images... 88

Figure 5.14 Clock Image, Noise Added Image with 2 dB SNR and Restored Images . 89

Figure 5.15 Clock Image, Noise Added Image with 5 dB SNR and Restored Images . 90

Figure 5.16 Clock Image, Noise Added Image with 15 dB SNR and Restored Images 91

Figure 5.17 Clock Image, Noise Added Image with 20 dB SNR and Restored Images 92

Figure 5.18 Moon Image, Noise Added Image with 2 dB SNR and Restored Images . 93

Figure 5.19 Moon Image, Noise Added Image with 5 dB SNR and Restored Images . 94

Figure 5.20 Moon Image, Noise Added Image with 15 dB SNR and Restored Images 95

Figure 5.21 Moon Image, Noise Added Image with 20 dB SNR and Restored Images 96

 x

LIST OF TABLES

Table 5.1 Classification Values for PSNR Comparison .. 97

Table 5.2 Standard Deviation of Noise for Various SNR Values.................................. 97

Table 5.3 PSNR Result in (dB) Using 2, 5, 15 and 20 dB SNR 98

Table 5.4 Quality Comparison of PSNR Results ... 99

Table 5.5 Comparison of Contrast Criteria (Original Image – Reconstructed Image) 101

Table 5.6 Brightness Results of HMF, AMF, AdMF and LDPC codes under different

level of noise (2, 5, 15 and 20 dB SNR) ... 102

Table 5.7 Brightness Analysis of HMF, AMF, AdMF and LDPC codes under different

level of noise (Original Image – Reconstructed Image) 103

Table 5.8 Processing Time (in seconds) .. 104

 1

INTRODUCTION

Traditional communication systems are made up of three major components: the

transmitter, the channel and the receiver. The transmitter transmits a signal across a

noisy channel which introduces distortion to that signal. The receiver receives the now

distorted signal and attempts to recover the original signal.

In the design of any communication system the designers must consider the

channel distortion as it will cause errors possibly rendering the received data unusable

to the receiver. In general, a certain level of signal distortion may be acceptable but it

may be necessary to design a system in which the receiver is capable of correcting the

errors in the received data in order to bring the distortion down to an acceptable level.

This can be accomplished through the use of an error-correcting coding scheme.

An error-correcting coding scheme adds two additional components to the

communication system described above. A channel encoder which adds redundancy

data to the transmitted data, and channel decoder which exploits this redundancy in

order to find and correct errors caused by the channel noise.

Error control coding has been frequently used in many wireless systems as

digital mobile communications started evolving in the early 1980s. By adding redundant

data to transmitted information, coding techniques could detect and correct errors

introduced in the channel.

Low-density parity-check (LDPC) codes, originally invented by Gallager in

1962 is a linear block code whose parity check matrix is composed of ‘0’ elements

dominantly. But, since realization was regarded to be impossible in those days, it had

been forgotten for a long time until Mackay rediscovered it in 1996. LDPC code shows

good error correcting capability with iterative decoding by the sum-product algorithm.

One of the recent topics in coding theory today are LDPC codes as an ideal

candidate for next generation communication systems like wireless, wireline, satellite,

magnetic recording channels and fiber optical applications.

In the past few years, Gallager’s Low-Density Parity-Check (LDPC) code have

received a lot of attention and tremendous efforts have been devoted to analyze and

improve their error-correcting performance, and their performances have been the

subject of much recent researchers experimentation and analysis. The interest in these

codes stems from their near Shannon limit performance using iterative decoding on the

 2

AWGN channel with rather low implementation complexity and therefore increasingly

being applied for error control in various fields of data communications.

These codes have flexible block lengths and code rates, and may be used in the

area of communications and data storage. The simulation results show that they have

better bit-error-rate decoding performance and lower error floors in additive white

Gaussian noise, their simple descriptions and implementations, and their amenability to

rigorous theoretical analysis. LDPC codes have become strong competitors to turbo

codes for error control in many communication and digital storage systems where high

reliability is required. LDPC codes can be decoded with various decoding methods,

ranging from low to high complexity and from reasonably good to very good

performance.

This thesis explores low-density parity-check codes and designs and analyzes a

system employing a new application or contribution of LDPC codes on the image

transmission and restoration techniques in spatial domain for images with dimension of

256 by 256 pixels in grayscale format.

The aims of work presented in this thesis are:

• To investigate Gallager’s LDPC error control codes and their structure.

• To design and simulate a Matlab program for the LDPC encoder and

LDPC decoder.

• To investigate the performance of LDPC error control codes over

AWGN channel.

• Investigate the image restoration techniques in spatial domain when the

only degradation is caused by Gaussian noise.

• To ensure the LDPC error control codes performance over the image

restoration techniques as a contribution of the thesis to get better results

for filtering in spatial domain.

• To implement the real-life applications design and simulate Matlab

program to use the major three filters of image restoration techniques in

spatial domain to filter any image distorted by Gaussian noise.

• To investigate the differences for both systems with comparison criteria

for original and reconstructed images using Matlab simulation.

This thesis organized into four chapters as follow:

 3

Chapter 1 is an introduction to communication systems. Basics of structure of

communication systems, error control coding and their types also are presented.

Chapter 2 presents the LDPC codes and their basics and the iterative decoding

algorithms.

Chapter 3 presents a background of image restoration techniques and various

filters that work in the spatial domain.

Chapter 4 presents the proposed system of LDPC code in detail and compares it

with to image restoration techniques that work in the spatial domain. It also describes

the comparison criteria.

Chapter 5 presents the results of the proposed system in detail and compares it

with to image restoration techniques results that work in the spatial domain.

 4

CHAPTER ONE

CHAPTER 1 Communication System Overview

1.1 Overview

In some communication systems, only error-detecting capability is required, and

messages received with errors are retransmitted. These are known as automatic-repeat-

request (ARQ) systems. On the other hand, systems involving long round-trip delays

suffer from retransmission. Such systems, rather, correct errors at the receiver without

asking for retransmission and are known as forward error correction (FEC) systems.

Figure 1.1 shows the model of a digital communication system using such an approach,

and this is the model used in this thesis.

Figure 1.1 Digital Communications System

This chapter gives a brief overview of digital communication system. It begins

with the background information about the components of the system and a brief

introduction to error control coding.

1.2 Digital Communication Systems

A digital communication system is described as follows:

 A digital information source produces a finite set of possible messages.

 A typewriter is a good example of a digital source. There are a finite number of

characters (messages) that can be emitted by this source.

 An analog information source produces messages that are defined on a

continuum.

Noise

Received
Information Encoder Modulator Channel Demodulator Decoder

Digitized
Information

 5

 A microphone is a good example of an analog source. The output voltage

describes the information in the sound, and it is distributed over a continuous

range of values.

 A digital communication system transfers information from a digital source to a

destination.

 An analog communication system transfers information from an analog source

to a destination.

Strictly speaking, a digital waveform is defined as a function of time that can

have only a discrete set of values. If the digital waveform is a binary waveform, only

two values are allowed. An analog waveform is a function of time that has a continuous

range of values.

An electronic digital communication system usually has voltages and currents

that have digital waveforms; however, it may have analog waveforms. For example, the

information from a binary source may be transmitted to the destination using a sine

wave of 1000 Hz to represent a binary 1 and a sine wave of 500 Hz to represent a binary

0. Here the digital source information is transmitted to the sink by use of analog

waveforms. But this is still called a digital communication system.

Digital communication has a number of advantages [1]:

 Relatively inexpensive digital circuits may be used.

 Privacy is preserved by using data encryption.

 Greater dynamic range (the difference between largest and smallest value) is

possible.

 Data from voice, video, and data sources may be merged and transmitted over a

common digital transmission system.

 In long-distance systems noise does not accumulate from repeater to repeater.

 Errors in detected data may be small, even when there is a large amount of noise

on the received signal.

 Errors may often be corrected by the use of coding.

Digital communication also has disadvantages [1]:

 Generally, more bandwidth is required than that for analog systems.

 Synchronization is required.

 6

1.2.1 Channel Encoder

An encoder is used to change a signal or data into a code. The code may serve any of a

number of purposes such as compressing information for transmission or storage,

encrypting or adding redundancies to the input code, translating from one code to

another. This is usually done by means of a programmed algorithm, especially if any

part is digital, while most analog encoding is done with analog circuitry.

1.2.2 Modulator

A modulator converts digital data into a carrier waveform by assigning a different

waveform to each possible symbol. Thus, there are a finite number of different

waveforms corresponding to the finite number of possible symbols. For example, in

BPSK modulation, a waveform (t)s0 is assigned to a binary ‘0’ and (t)s1 to a binary ‘1’,

where

()tπf A(t)s c2cos0 =

()πtπf A(t)s c += 2cos1 , Tt ≤≤0 (1.1)

here, A is the waveform magnitude, cf is the carrier frequency and T is the waveform

period [12].

Note that () ()tsts 10 −= .

1.2.3 Communication Channels

The communication channel provides a connection through which the information-

bearing signal propagates. It is perhaps the most important component of a

communication system. There are many different types of physical communication

channels, such as:

 Wired channels

 Wireless channels

 Fiber optic channels

 Underwater acoustic channels

 Storage channels

Different kinds of channels can have very different characteristics. In order to

design an efficient digital communication system over a specific communication

channel, our channel model describes the physical communication channel as well as

http://www.answers.com/main/ntquery?method=4&dsid=2222&dekey=Transmission+%28telecommunications%29&curtab=2222_1�
http://www.answers.com/main/ntquery?method=4&dsid=2222&dekey=Computer+storage&curtab=2222_1�
http://www.answers.com/main/ntquery?method=4&dsid=2222&dekey=Encryption&curtab=2222_1�
http://www.answers.com/main/ntquery?method=4&dsid=2222&dekey=Redundancy+%28information+theory%29&curtab=2222_1�
http://www.answers.com/main/ntquery?method=4&dsid=2222&dekey=Algorithm&curtab=2222_1�
http://www.answers.com/main/ntquery?method=4&dsid=2222&dekey=Digital&curtab=2222_1�
http://www.answers.com/main/ntquery?method=4&dsid=2222&dekey=Analog+circuit&curtab=2222_1�

 7

the properties of the equipments, such as antennas and amplifiers, necessary to access

the channel. Notice that the major characteristic of a communication channels interested

distorts the information-bearing signal. Some common channel defects are:

 Thermal noise in electronic devices

 Signal attenuation

 Amplitude and phase distortion

 Multi path distortion

 Finite-bandwidth (low-pass filter) distortion

 Impulsive noise

Based on knowledge of these channel defects, we construct the generic channel

model. Suppose the symbol ()ts denotes the transmitted signal at the output of the

modulator. Then it is found that the following linear filter model (see Figure 1.2)

sufficiently approximates the behaviors of many typical communication channels:

() () () ()tndττtstτctr +−= ∫
∞

∞−
, , (1.2)

where ()tr represents the received signal at the input of the demodulator, ()tn is a

random process which models the thermal and impulsive noises, and ()τ,tc is a linear

time-varying filter which models the other channel distortions listed above. Note that

the linear (time-varying) channel model in Equation (1.2) is very general and we work

with simplifications of this model in many cases. Among the various common

simplifications of the general model, the additive white Gaussian noise (AWGN) model

is perhaps the most studied and most important. In the AWGN model, () ()τδτ =t,c and

Equation (1.2) reduces to

() () ()ttstr += , (1.3)

Figure 1.2 Linear Filter Channel Module

()tr
 ()ts

()t,c τ

()tn
Communication channel

 8

where ()tn is a zero-mean wide-sense stationary Gaussian random process with

autocorrelation function () () ()τδ20NτRn = . The factor 20N is called the two-sided

noise spectral density of the noise ()tn . This model is primarily employed to represent

the situation in which the only channel defect is the thermal noise in the electronic

devices of a communication system [2].

1.2.4 Demodulator

The demodulator attempts to recover the transmitted waveform from the channel output

()tr . A matched filter followed by a sampler is typically used in an optimum

demodulator. Figure 1.3 shows a fading channel with additive white Gaussian noise.

Figure 1.3 Fading Channel with Additive White Gaussian Noise

In Figure 1.4, is is given by Equation (1.1) where =i 0, 1, ()th is the impulse response

of the filter, T is the sampling time and the filter output ()ty is

() () ()thtrty *= (1.4)

where the symbol * denotes convolution. The demodulator output can be quantized into

a finite number ()Q of levels. A demodulator with 2>Q is called a soft decision

demodulator. If the demodulator is quantized into 2=Q levels, it is called a hard

decision demodulator [12].

Figure 1.4 Matched Filter Demodulator

 h (t) = Si (T- t)
r(t) y(t) y(T)

t = T

a(t) n(t)
s(t) r(t)

 9

1.2.5 Channel Decoder

The channel decoder accepts the demodulator output and generates an estimate of the

original information message that was presented to the channel encoder. The channel

decoder can be designed to work with either hard or soft decision demodulators.

1.3 Error Control Codes

Error control coding (ECC) is a signal processing technique that protects digital

information against transmission and storage errors. In contrast to its early days, ECC is

now an integral part of almost all digital communications storage and computer

systems. Error control coding (ECC) algorithms are widely used to improve

performance in systems for digital communication and storage. Generally speaking,

ECC allows a system to operate reliably at a low signal-to-noise ratio (SNR). A system

that could not exist without ECC technology is compact disk (CD) digital audio [11].

Shannon’s channel coding theorem states that a coding scheme always exists

where by information can be transmitted and reconstructed with an error probability as

small as desired. This holds true only if the data rate over the channel is less than the

channel capacity. The theorem however, does not say how to find the appropriate

coding for an information source and a channel. A major criterion for all

communication systems is to achieve error free transmission. Errors, unfortunately,

occur and methods of detecting and sometimes correcting errors are necessary [11].

Error control coding involves systematic addition of extra digits to the message.

Extra check digits convey no information by themselves, but they make it possible to

detect or correct errors [11].

The disadvantage of adding extra check digits is that the bandwidth of the

channel increases.

There are two main types of error control codes, namely block codes and

convolutional codes. There are many differences between block codes and

convolutional codes. Block codes are based rigorously on finite field arithmetic and

abstract algebra. They can be used to either detect or correct errors. Block codes accept

a block of k information bits and produce a block of n coded bits. By predetermined

rules, n-k redundant bits are added to the k information bits to form the n coded bits.

Commonly, these codes are referred to as (n, k) block codes. Some of the commonly

 10

used block codes are Hamming codes, Golay codes, BCH codes, and Reed Solomon

codes (uses nonbinary symbols) [7].

This section will present primary information about convolutional codes and

linear block codes and the other common codes.

1.3.1 Linear Block Codes

An (n, k) block code is completely defined by kM 2= binary sequences of length n

called codeword. A code C consists of M code words ic for k2i1 ≤≤ .

{ }MC c,....,c,c 21=

Where each ic is a sequence of length n with components equal to 0 or 1. A code is

linear if any linear combination of two code words is also a code word. In the binary

case this requires that if ic and jc are code words then ji cc ⊕ is also a code word,

where ⊕ denote component-wise modulo-2 addition.

With this defection, it is readily seen that a linear block code is a linear block

code is a k-dimensional subspace of an n-dimensional space. It is also obvious that the

all zero sequence 0 is a code word of any linear block code since it can be written as

ji cc ⊕ for any code word ic . Note that according to the above definition linearly of a

code only depends on the code words and not on the way that the information sequences

(message) are mapped to the code words. However, it is natural to assume that if the

information sequence 1x (of length k) is mapped into the code word 1c (of length n) then

the information sequence 2x is mapped into 2c , and then 21 xx ⊕ is mapped into 21 cc ⊕ .

Linear codes will be assumed to possess this special property from now on.

Let us consider a (5, 2) code which is defined by

{ }11011,01111,10100,00000=c

It is very easy to verify that this code is linear. If the mapping between the information

sequences and code words is given by

1101111
1010010
0111101
0000000

→
→
→
→

the special property mentioned above is satisfied as well. If the mapping is given by

 11

1101111
0000010
0111101
1010000

→
→
→
→

the special property is not satisfied. However, in both cases the code is linear.

Here are definitions of some basic parameters that characterize a code [3]:

 The Hamming distance between two code words ic and jc is the number of bits

at which the two code words differ, and is denoted by ()ji ccd , .

 The Hamming weights, or simply the weight, of a code word ic is the number of

bits of the codeword that are equal to 1 and is denoted by ()icw .

 The minimum distance of a code is the minimum Hamming distance between

any two different code words; i.e.,

()ji

ji
cc

ccdd
ji

,min
,min

≠

= (1.5)

 The minimum weight of a code is the minimum of the weights of the code words

except the all zero code word.

()ic
cww

i 0min min
≠

= (1.6)

 One of the important consequences of this fact is in any linear code minmin wd = .

1.3.1.1 Generator and Parity Check Matrices:

In an (n, k) linear block code let the codeword corresponding to the information

sequences ()0...10001 =e , ()0...01002 =e , ()0...00103 =e ,…, ()1...0000=ke be denoted

by 1g , 2g , 3g ,…, kg respectively, where each of the ig sequences is a binary sequence

of length n. Now, any information sequence ()kxxxxx ,...,,, 321= can be written as

∑
=

=
n

i
iiexx

1
 (1.7)

and, therefore, the corresponding code word will be

∑
=

=
n

i
ii gxc

1
 (1.8)

If we define the generator matrix for this code as

 12

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

knkk

n

n

k

def

ggg

ggg
ggg

g

g
g

G

...
....
....
....

...

...

.

.

.

21

22221

11211

2

1

 (1.9)

then, we can write

xGc = (1.10)

This shows that any linear combination of the rows of the generator matrix is a

code word. The generator matrix for any linear block code is a nk × matrix of rank k

(because by definition the dimension of the subspace is k). The generator matrix of a

code completely describes the code. When the generator matrix is given, the structure of

an encoder is quite simple [3].

For example, in above mentioned (5, 2) code, the code words corresponding to

information sequences ()10 and ()01 are ()10100 and ()01111 , respectively. Therefore,

⎥
⎦

⎤
⎢
⎣

⎡
=

01111
10100

G (1.11)

it is seen that for the information sequence ()21 , xx , the code word is given by

() ()Gxxccccc 2154321 ,,,,, = (1.12)

or

25

24

213

22

11

xc
xc

xxc
xc
xc

=
=

⊕=
=
=

The above code has the property that the code word corresponding to each

information sequence starts with a replica of the information sequence itself followed by

some extra bits. Such a code is code systematic code and the extra bits following the

information sequence in the code word are called the parity check bits. A necessary and

sufficient condition for a code to be systematic is that the generator matrix be in the

form

[]PIG k= (1.13)

 13

where kI denotes a kk × identity matrix and P is a ()knk −× binary matrix. In a

systematic code, we have

⎪⎩

⎪
⎨
⎧

≤≤+
≤≤

= ∑ =
nikxp

kix
c k

j jji

i
i 1,

1,

1

 (1.14)

where all summations are modulo-2.

By definition a linear block code C is a k dimensional linear subspace of the n

dimensional space. From linear algebra, it is known that in order to take all sequences of

length n that are orthogonal to all vectors of this k dimensional linear subspace, the

result must be an ()kn − dimensional subspace called the orthogonal complement of the

k dimensional subspace. This ()kn − dimensional subspace naturally defines an

()knn −, linear code which is known as the dual of the original ()kn, code C. The dual

code is denoted by TC . Obviously the code words of the original code C and the dual

code TC are orthogonal to each other. In particular, if the generator matrix of the dual

code is denoted by H, which is an () nkn ×− matrix, then any codeword of the original

code is orthogonal to all rows of H; i.e.,

0=TcH for all Cc ∈ (1.15)

The matrix H, which is the generator matrix of the dual code TC , is called the

parity check matrix of the original code C. Since all rows of the generator matrix are

code words, it is concluded that

0=TGH (1.16)

In the special case of a systematic code, where

[]PIG k= (1.17)

the parity check matrix has the following form

[]k
T IPH −= (1.18)

Note that in the binary case PPT =− .

For the above mentioned (5, 2) code

⎥
⎦

⎤
⎢
⎣

⎡
=

01111
10100

G

⎥
⎦

⎤
⎢
⎣

⎡
=

01
10

I

 14

⎥
⎦

⎤
⎢
⎣

⎡
=

111
100

P

Note that in the binary case TT PP =− . Therefore, it is concluded that

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

01
01
11

TP

so that

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

001
010
100

01
01
11

H

1.3.1.2 Hamming Codes

Hamming codes are a class of linear block codes with 12 −= mn , 12 −−= mk m , and

3min =d , for some integer 2≥m . With this minimum distance, these codes are capable

of providing error-correction capabilities for single errors. The parity check matrix for

these has a very simple structure. It consists of all binary sequences of length m except

the all zero sequence. The rate of these codes is given by

12
12

−
−−

= m

m

c
mR (1.19)

which is close to 1 for large value of m. Therefore, Hamming codes are high-rate codes

with relatively small minimum distance (3min =d). Minimum distance of a code is

closely related to its error-correcting capabilities. Therefore, Hamming codes have

limited error-correcting capability.

For example, for the (7, 4) Hamming code 3=m and, therefore, H consists of all

binary sequences of length 3 except the all zero sequence. Parity check matrix can be

generated in the systematic form as [3]

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
010
001

1110
1011
1101

H

and the generator matrix is obtained to be

 15

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

111
101
110
011

1000
0100
0010
0001

G

1.3.2 Convolutional Codes

Convolutional codes are one of the most widely used channel codes in practical

communication systems. These codes are developed with a separate strong

mathematical structure and are primarily used for real time error correction.

Convolutional codes convert the entire data stream into one single codeword.

The encoded bits depend not only on the current k input bits but also on past input bits.

The main decoding strategy for convolutional codes is based on the widely used Viterbi

algorithm.

As a result of the wide acceptance of convolutional codes, there have been many

advances to extend and improve this basic coding scheme. This advancement resulted in

two new coding schemes, namely, trellis coded modulation (TCM) and turbo codes.

TCM adds redundancy by combining coding and modulation into a single

operation (as the name implies). The unique advantage of TCM is that there is no

reduction in data rate or expansion in bandwidth as required by most of the other coding

schemes [8].

1.3.2.1 Convolutional Encoder

Convolutional encoders add redundancy to continued stream of input data by using a

linear shift register. Each set of n output bits is a linear combination of the current set of

k input bits and the m bits stored in the shift registers (Figure 1.5). The total number of

bits that each output depends on is called the constraint length, and is denoted by L,

where 1+= mL , and the total number of states of the code is m2 . The rate, r, of the

convolutional encoder is the number of k input data bits divided by the number of n

coded output bits, or nkr = . Outputs are determined by the connections to the modulo-

2 adders. These connections are called the generator sequences or the generator

polynomials of the code. For the example encoder given in Figure 1.5 generator

polynomials are () ()1012
0

1
0

0
00 == gggg and () ()1112

1
1
1

0
11 == gggg or in

octal form 80 5=g and 81 7=g , and the outputs are given by

 16

∑
=

−=
m

i
ik

i
k dgY

0
0

0 (1.20)

and

∑
=

−=
m

i
ik

i
k dgY

0
1

1 (1.21)

Figure 1.5 Rate 21 Encoder

The convolutional encoder given in Figure 1.5 is a nonrecursive Nonsystematic

Convolutional (NSC) encoder, which is the most common form of convolutional

encoder [5].

1.3.2.2 Convolutional Decoder

The convolutional decoder normally takes as input estimates for both the systematic bits

and the coded bits along with preset information about the finite automation that was

used. In this case, the estimates for the systematic bits come from the permuted results

of the repetition decoder (for the first iteration, this information is null; that is, the

probabilities are 0.5) and the occasional systematic estimate from the channel. These

two probabilities are combined as if for a rate one-half repetition decoder:

() ()2121

21

11 pppp
ppp

−−+
= (1.22)

Note that when one of the estimates is 0.5, the total information is that of the

other estimate. Naturally, this formula will reappear in the repetition decoder

component.

 Yk
0

 Yk
1

 m0 m1

 g0
2

 g1
2

 g0
0

 g1
0 g1

1

 dk

 17

For each transmitted codeword, the estimates for the coded bits are constant;

they come for the most part directly from the channel. Whenever the channel provides

an estimate for a systematic bit, the information about the corresponding coded bit is set

to null (i.e. probability that the coded bit was 1 is 0.5). The decoding algorithm for a

convolutional code involves the belief propagation of messages containing probabilities

for the state of the finite automation, sent forward and backward in time. The principle

behind this is that at any point in time, the message traveling forward contains the

combined information of all systematic and coded estimates before it, and the backward

message contains information from later estimates. Thus, a certain input bit’s extrinsic

probability, taking into account all other estimates except for its own, can be found by

combining the forward and backward messages with the corresponding output bit

estimate [6].

1.3.2.3 The Viterbi Algorithm

Convolutional codes are widely used to encode digital data before transmission through

noisy or error-prone channels. During encoding, k input bits are mapped to n output bits

to give a rate nk coded bitstream. The encoder consists of a shift register of kL stages,

where L is described as the constraint length of the code. At the receiver, the bitstream

can be decoded to recover the original data, correcting errors in the process. The

optimum decoding method is maximum-likelihood decoding where the decoder

attempts to find the closest "valid" sequence to the received bitstream. The most popular

algorithm for maximum-likelihood decoding is the Viterbi algorithm. The possible

received bit sequences form a "trellis" structure and the Viterbi algorithm tracks likely

paths through the trellis before choosing the most likely path [4].

Encoding Process:

Convolutional encoder error-correction capabilities result from outputs that depend on

past data values. Each coded bit is generated by convolving the input bit with previous

uncoded bits. An example of this process is shown in Figure 1.6. The information bits

are input to a shift register with taps at various points. The tap values are combined

through a Boolean XOR function (the output is high if one and only one input is high)

to produce output bits.

 18

Figure 1.6 Constraint Length 5 Rate 21 Convolutional Encoder

Error correction is dependent on the number of past samples that form the code

symbols. The number of input bits used in the encoding process is the constraint length

and is calculated as the number of unit delays plus one.

In Figure 1.6, there are four delays. The constraint length is five. The constraint

length represents the total span of values used and is determined regardless of the

number of taps used to form the code words. The symbol L represents the constraint

length. The constraint length implies many system properties; most importantly, it

indicates the number of possible delay states [4].

Coding Rate:

Another major factor influencing error correction is the coding rate, the ratio of input

data bits to bits transmitted. In Figure 1.6, two bits are transmitted for each input bit for

a coding rate of 21 .

For a rate 31 system, one more XOR block produces one more output for every

input bit. Although any coding rate is possible, rate n1 systems are most widely used

due to the efficiency of the decoding process.

The output-bit combination is described by a polynomial. The system, as shown

in Figure 1.6, uses the polynomials:

 z -1

 G0

 G1

Information

Bits (Input)
 z -1 z -1 z -1 Code symbols

(Output)

 19

() 43
0 1 xxxG ++= (1.23)

() 43
1 1 xxxxG +++= (1.24)

Polynomial selection is important because each polynomial has different error

correcting properties. Selecting polynomials that provide the highest degree of

orthogonality maximizes the probability of finding the correct sequence [4].

Decoding Process:

Convolutionally encoded data is decoded through knowledge of the possible state

transitions, created from the dependence of the current symbol on past data. The

allowable state transitions are represented by a trellis diagram.

A trellis diagram for a 3=K , rate 21 encoder is shown in Figure 1.7. The

delay states represent the state of the encoder (the actual bits in the encoder shift

register), while the path states represent the symbols that are output from the encoder.

Each column of delay states indicates one symbol interval.

The number of delay states is determined by the constraint length. In this

example, the constraint length is three and the number of possible states is 422 21 ==−k .

Knowledge of the delay states is very useful in data decoding, but the path states are the

actual encoded and transmitted values.

The number of bits representing the path states is a function of the coding rate.

In this example, two output bits are generated for every input bit, resulting in 2-bit path

states. A rate 31 (or 32) encoder has 3-bit path states; rate 41 has 4-bit path states,

and so forth. Since path states represent the actual transmitted values, they correspond

to constellation points, the specific magnitude and phase values used by the modulator.

The decoding process estimates the delay state sequence, based on received data

symbols, to reconstruct a path through the trellis. The delay states directly represent

encoded data, since the states correspond to bits in the encoder shift register.

In Figure 1.7, the most significant bit (MSB) of the delay states corresponds to

the most recent input and the least significant bit (LSB) correspond to the previous

input. Each input shifts the state value one bit to the right, with the new bit shifting into

the MSB position. For example, if the current state is 00 and a 1 is input, the next state

is 10; a 0 input produces a next state of 00.

 20

Figure 1.7 Trellis Diagram for 3=K , Rate 21 Convolutional Encoder [4]

Systems of all constraint lengths use similar state mapping. The correspondence

between data values and states allows easy data reconstruction once the path through the

trellis is determined [4].

1.3.3 Turbo Codes

Recently, a near channel capacity error correcting code called turbo code was

introduced. This error correcting code is able to transmit information across the channel

with arbitrary low (approaching zero) bit error rate [8]. This code is a parallel

concatenation of two component convolutional codes separated by a random interleaver.

It has been shown that a turbo code can achieve performance within 1 dB of

channel capacity. Random coding of long block lengths may also perform close to

channel capacity, but this code is very hard to decode due to the lack of code structure.

Without a doubt, the performance of a turbo code is partly due to the random

interleaver used to give the turbo code a “random” appearance. However, one big

advantage of a turbo code is that there is enough code structure (from the convolutional

codes) to decode it efficiently [9].

 21

There are two primary decoding strategies for turbo codes. They are based on a

maximum a posteriori (MAP) algorithm and a soft output Viterbi algorithm (SOVA).

Regardless of which algorithm is implemented, the turbo code decoder requires the use

of two (same algorithm) component decoders that operate in an iterative manner.

1.3.3.1 Turbo Encoder and Decoder

The turbo encoder consists of two recursive systematic convolutional codes known as

constituent codes (Figure 1.8). Since the turbo code is a type of linear block code, the

encoding operation can be viewed as the modulo-2 matrix multiplication of an

information matrix with a generator matrix. Encoder 1 encodes the input data sequence

directly, while Encoder 2 encodes the data sequence permuted in time by a

pseudorandom interleaver with length N. The encoder outputs are composed of the

systematic bit kd and parity bits kpx ,1 and kpx ,2 from the two constituent codes. In this

encoding process, a very large effective constraint length is generated through

interleaving and concatenation. For this reason, the conventional Viterbi decoding

algorithm is not feasible for turbo decoding, and turbo decoding is typically performed

in an iterative manner. In particular, each constituent code is separately decoded using

the most recent decoding information from the other constituent code. Each constituent

decoder computes the a posteriori log-likelihood ratio (LLR) of the systematic bits,

which is given by

()
()Nk

Nk
k yyydP

yyydP
,,,0
,,,1

log
21

21

L

L

=
=

=Λ (1.25)

where)1(Niyi ≤≤ is the decoder output and),,,|(21 Nk yyyidp ⋅⋅⋅= is the a posteriori

probability of the bit value. This extrinsic information kΛ can be regarded as a type of

diversity in that it can refine the decoder outputs in each iteration. The decoding process

continues until some stopping criterion is met. After each iteration, the data bit decision

kd̂ is made based on the final decoder output [10]. The Figures 1.8 and 1.9 show the

block diagrams of turbo encoder and turbo decoder.

 22

Figure 1.8 Block Diagram of the Turbo Encoder

Figure 1.9 Block Diagram of the Turbo Decoder

The turbo code integrates code concatenation in a pseudorandom approach

where the randomness and long block size are provided by the interleaver. The first

decoder passes the extrinsic information [a part of the soft output provided by an a

posteriori probability (APP)] to the next decoding stage. The term “turbo” stems from

the fact that the decoder uses its processed output as a priori input in the next iteration,

and thus reuses the information in the observations [10].

1.3.4 Cyclic Codes

Cyclic codes form an important sub class of linear block codes. Cyclic codes have well-

defined mathematical structure, which lead to the development of very efficient

Demodulator output

kd̂
 deinterleaver

Interleaver decoder 1
k,1Λ

decoder 2 data decision

Interleaver

k,2Λ

d k

Encoder 2 x p2,k

Encoder 1

d k

Interleaver

x p1,k

 23

encoding and decoding circuits. Indeed, most block codes used in various applications

are cyclic. This includes Hamming codes, BCH codes and Reed-Solomon codes.

A cyclic code is a linear code with the additional property that shifting a

codeword cyclically produces another codeword. To restate the cyclic property

formally, let vector ()1210 −nxxxx denote a codeword of a ()kn, linear block

code.

The code is a cyclic code if the following vectors are all valid codewords as

well:

()2101 −− nn xxxx , ()3012 −−− nnn xxxx , , ()0321 xxxx

The cyclic property of a linear code suggests that the components of a codeword

may be viewed as the coefficients of a binary polynomial of degree n- 1, i.e.

()1210 −= nxxxxX ;

() 1
1

2
210 −

−+++= n
n DxDxDxxDX ;

For example, ()11001=X ; () 41 DDDX ++= where the power of D determines the

position of the corresponding component in the codeword. Note that although the

exponents of various terms of this polynomial are taken from the set of integers, the

polynomial is essentially a binary polynomial. The coefficients are binary numbers.

This establishes a one-to-one relationship between the codeword of a cyclic code

and binary polynomials of degree 1−n or less. These polynomials are called code

polynomials. For a ()kn, cyclic code, all code polynomials contain a polynomial of a

minimum degree as a factor. This polynomial, called the generator polynomial ()DG ,

possesses the following properties:

 The generator polynomial is unique in that it is the only nonzero code

polynomial of minimum degree kn − .

 The polynomial is a factor of polynomial 1+nD , i.e. () ()DHDGD n =+1 .

 The code polynomial for each message block is formed by first forming the

message polynomial, and then multiplying the message polynomial by the

generator polynomial.

 The last property defines the encoding mechanism for cyclic codes. The second

property stipulates a method for the construction of cyclic codes.

 24

The algebraic structure of the cyclic codes leads to efficient encoding and

decoding methods. Indeed, the encoder consists of a simple linear feedback shift register

circuit with kn − memory cells (flip flops). Similarly, one can exploit the elegant

algebraic structure of cyclic codes to devise efficient decoding systems for error

detection and correction [11].

1.4 Summary

This chapter presented an overview of a digital communication system. Linear block

codes, convolutional codes, and other common error control coding are described.

The next chapter will present in detail the low density parity check (LDPC)

codes, and iterative decoding algorithms that it is used for their encoding decoding

process, which will be simulated by Matlab program within this thesis.

 25

CHAPTER TWO

CHAPTER 2 Low–Density Parity–Check Codes and Decoding Algorithms

2.1 Overview

This chapter presents low-density parity-check (LDPC) codes. First, a brief historical

introduction of LDPC codes is given and basics of graph theory are explained. Then,

LDPC code fundamentals are presented and several code design methods are discussed.

Also, the details of LDPC encoding and decoding are given.

2.2 Introduction to LDPC Codes

LDPC codes were invented by Gallager [13] in 1962, but did not receive much attention

until they were rediscovered independently by MacKay [16] following the invention of

turbo codes. The work of Tanner [15] about 20 years after Gallager, in which he

introduced a graphical representation of LDPC codes, they were rarely used until the

rediscovery of MacKay [16].

An LDPC code is a linear block code which has a very sparse parity-check matrix.

LDPC codes were initially constructed using regular graphs until the work of Luby et

al. who proposed graphs with degrees that are not constant, called irregular codes [17].

2.3 Graph Theory

Graph theory is often useful for understanding the operation of codes and how well they

perform. A graph ()EVG ,= (Figure 2.1(a)) consists of two sets, a finite set V of points

called vertices or nodes and a finite set E of lines called edges. An edge is incident on a

node if it is connected to it. Each edge connects two nodes and makes them adjacent.

The set of all nodes that are adjacent to a particular node is its neighbors. The number of

edges that are connected to a node is called the local degree of the node. A cycle of

length v, called a v cycle, in a graph is a closed path consisting of v edges. The graph in

Figure 2.1(a) has two three cycles, two four cycles and a five cycle. A tree (Figure

2.1(b)) is a connected graph with no cycles (a graph is connected if there is a path from

iv to jv , for all iv and jv in V). Each node has one or more children below and at

most one parent above it. Nodes with no children are called leaf nodes and the node

with no parent is the root node.

 26

Figure 2.1 A Graph and a Tree

An LDPC code can be represented by a bipartite graph also called Tanner graph.

In a Tanner graph the nodes of the graph are separated into two distinctive sets. The

elements of these sets, called variable and check nodes, are connected by edges.

Variable nodes are also called symbol nodes (or bit nodes in binary case) and

check nodes are also called function nodes. In some literature, variable and check nodes

are referred to as left nodes and right nodes, respectively.

2.4 LDPC

LDPC code is a linear block code for which the NM × parity-check matrix, H, has a

low density of ones. A regular LDPC code contains exactly cw ones in each column

(i.e. column weight cw=) and exactly rw ones in each row (i.e. row weight rw=),

where rw is related to cw by NwMw cr = . Also, Mwc << and Nwr << . If H is full

rank, the code rate R can also be written in terms of the row and column weights

as rc wwR −= 1 . If the number of ones in each column or row is not constant, then the

code is an irregular LDPC code [14].

There is an edge connecting the check node j to variable node j if the value in

row i and column i of matrix H is a one. There are a total of N variable nodes and M

check nodes. For a particular code, degree distribution polynomials, ()xλ and ()xρ ,

given by

() ∑
=

−=
vd

i

i
i xx

2

1λλ (2.1)

and

Edge

(a) Graph

Node

(b) Tree

 27

() ∑
=

−=
cd

i

i
i xx

2

1ρρ (2.2)

represent the distributions of variable and check node degrees, respectively. Here, vd is

the maximum variable node degree and cd is the maximum check node degree. The iλ

represents the fraction of edges emanating from variable nodes of degree i and iρ

represents the fraction of edges emanating from check nodes of degree i . The iλ and iρ

can be converted into node perspective equivalents iλ̂ and iρ̂ by defining

∑
=

=
vd

j
j

i
i

ji
2

ˆ

λ

λ
λ (2.3)

and

∑
=

=
cd

j
j

i
i

ji
2

ˆ
ρ

ρ
ρ (2.4)

Now iλ̂ is the fraction of variable nodes with degree i and iρ̂ is the fraction of check

nodes with degree i . Assuming check equations are linearly independent, the rate R of

an irregular LDPC code becomes

()
()

()∫
∫

−=
−

= 1

0

1

01,
dxx

dxx

N
MNR

λ

ρ
ρλ (2.5)

For regular codes the degree of each variable node is exactly vd and the degree

of each check node is exactly cd . Therefore, the degree distribution pairs for regular

codes are () 1−= vdxxλ and () 1−= cdxxρ .

The number of variable nodes of degree i is

()
()∫∑

==

=

1

0
2

dxx

iN
j

iNiN i
d

j
j

i
v v λ

λ

λ

λ (2.6)

And the number of check nodes of degree i is

()
() dxx

iM
j

iMiN i
d

j
j

i
c c

∫∑
==

=

1

0
2

λ

ρ

ρ

ρ (2.7)

the total number of edges emerging from all variable nodes, E, is equal to

 28

()∫
= 1

0

1

dxx
NE

λ
 (2.8)

Consider a rate ()10,521 == NK regular LDPC code with the following H

matrix:

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1101001000
1010100100
0110010010
0001110001
0000001111

H

Here, 2== vc dw , 4== cr dw and () xx =λ and () 3xx =ρ . The bipartite graph

representation of this code is given in Figure 2.2.

Figure 2.2 Bipartite Graph Representation of ()10,5 == NK Regular LDPC Code

The bipartite graph in Figure 2.2 consists of a six cycle, as shown in bold edges.

The shortest possible cycle in a bipartite graph is a four cycle. Short cycles degrade the

performance of LDPC codes, so they should be avoided if possible [14].

2.5 Code Design

The code properties described in previous section determine the dimensions of the

parity-check matrix as well as the column and row weights, but they do not indicate

how the matrix should be constructed. There are various code design methods in the

literature that address this issue. Depending on the application, the code is designed to

meet certain criteria, including low error floors, efficient encoding and decoding, or

f0

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9

f1 f2 f3 f4

Variable
Nodes

Check
Nodes

 29

near capacity performance. Trade-offs exists among them and it is difficult to design

LDPC codes that meet all of the criteria. Different code design approaches in the

literature fall into two categories, random and deterministic, although there exists codes

that carry the characteristics of both. The following sections describe some different

LDPC codes, starting with Gallager’s initial definition of the codes [13].

2.5.1 Gallager Codes

Gallager expressed the original LDPC codes as regular. The parity-check matrix has N

columns with j ones in each column, k ones in each row and zeros elsewhere. This

forms a matrix having kNj / rows and a code having a rate kjR −≥1 . The matrix is

also divided into j submatrices of column weight one. For the first submatrix i the i th

row contains ones in columns () 11 +− ki to ik The other submatrices are simply

column permutations of the first. This procedure does not guarantee the absence of four

cycles but Gallager showed that the ensemble of such codes should have excellent

distance properties if 3≥j and jk > . Figure 2.3 shows a 20=N , 3=j , 4=k Gallager

code [13].

10000100001000010000
00010010000100001000
01000001000010000100
00001000010001000010
00100000100000100001
10001000100010000000
01000100010000001000
00100010000001000100
00010000001000100010
00000001000100010001
11110000000000000000
00001111000000000000
00000000111100000000
00000000000011110000
00000000000000001111

Figure 2.3 Example of a Parity-Check Matrix for a 20=N , 3=j , 4=k Gallager Code.

 30

2.5.2 MacKay Codes

MacKay rediscovered Gallager's work in [16] and showed that these codes could also

achieve near capacity performance like the well known Turbo codes [9]. He extended

the code construction method of Gallager and provided six methods of generating code

ensembles.

1. Generate H by starting from all-zero matrix and randomly changing vd not

necessarily distinct values in each column.

2. Generate H as in 1 but with columns having exactly weight vd .

3. Generate H as in 2 and also with uniform weight per row.

4. Generate H as in 3 and constrain it so that no two columns overlap in more than

one position. Also named ‘Construction 1A’.

5. Further constraint H so that its graph has large girth (shortest cycle length). This

is achieved by eliminating the short cycles. Also named ‘Construction 1B’.

6. Generate H as in 5 and partition H in the form][21 HHH = so that 2H is

invertible or H is full rank.

MacKay suggests that encoding be performed by using the generator matrix G

obtained through Gaussian elimination from H. This method is not efficient because

even though the parity-check matrix is sparse the generator matrix is generally not.

Therefore, the encoding complexity of long block length codes generated in this manner

would be high.

2.6 Encoding

Even though the encoding process is defined by the generator matrix G, it is the parity-

check matrix H that is used in constructing and decoding LDPC codes.

The encoder is defined by a NK × generator matrix, G , which maps each

K symbol data block, u , into N symbol codeword, c , using the form

cuG = (2.9)

The receiver (decoder) is defined by an NM × parity-check matrix, H , which

is related to the generator matrix by

0=TGH (2.10)

The decoder verifies a received codeword is valid by performing the operation

 31

TT uGHcH =

0=TcH (2.11)

The decoding is simplified due to the sparse nature of H. The encoding, on the

other hand, is more complex since G is not necessarily sparse [14]. The following

subsections describe a few ways of encoding using H, without directly computing G.

2.6.1 Generic Encoding

Let []21xxH = be the NM × parity-check matrix with the submatrices 1x and 2x

having the dimensions KM × and MM × , respectively. Assume, the codeword c is in

the systematic form][puc = , where u is the K bit message and p is the M bit parity. As

defined by Equation 2.11, a valid codeword should satisfy M parity checks of H. i.e.

0=TcH

][[] 021 =TT xxpu

021 =+ TT pxux
TT uxpx 12 −=

TT xuxp −−= 21 (2.12)

Since the message u and the parity-check matrix H are binary, the negative sign

in Equation 2.12 can be removed. This equation shows that p exists if and only if 2x is

invertible i.e. if H is full rank or the rank of H is equal to M. If it is not, then the linearly

dependent rows of H can be deleted to obtain a full rank H, at the expense of obtaining a

higher code rate. If 2x is still not invertible, columns of H can also be reordered. Note

that with this method a generator matrix is never used.

Another method also exists which does not necessitate a matrix inversion.

Instead, 2x submatrix is partitioned into a lower triangular matrix L and an upper

triangular matrix U using LU decomposition.
TT xuxp −= 21

Tzxp −= 2
TTT UpLzxz == 2

TyUz = (2.13)
TpLy = (2.14)

 32

First, y is obtained from Equation 2.13 by forward substitution. Then, y is used

in Equation 2.14 to obtain p using backward substitution.

2.7 Decoding Algorithms

The algorithm used to decode LDPC codes was discovered independently several times

and as a matter of fact comes under different names. The most common ones are the

belief propagation algorithm, the message passing algorithm and the sum-product

algorithm.

The following sections describe the probability version of the decoding

algorithm.

2.7.1 Message-Passing Decoding Algorithms

This algorithm is iterative; in each iteration it calculates the a posteriori (extrinsic)

probability that a given bit in the transmitted codeword []110 ,...,, −= Ncccc equals one,

given the received word []110 ,...,, −= Nyyyy . i.e.

()iir ycP 1= (2.15)

Note that, as stated earlier, every codeword c must satisfy a set of equations

defined by

0=TcH (2.16)

Therefore, the event iS , that the code bit ic satisfies the equations defined by the

parity-check matrix H , should also be included in the probability

()iiir SycP ,1= (2.17)

Iterative computation of the probabilities can be best visualized by the Tanner

graph drawn based on the parity-check matrix. The edges on the graph can be thought of

as the paths for the extrinsic probabilities, called ‘messages’, to travel between each set

of nodes of the graph. Figure 2.4 is a subgraph showing the variable node 0v connected

to three check nodes. The directional arrows connecting the four nodes indicate that the

extrinsic information being passed from node 0v to node 2f comprises of the

information node that 0v receives from the channel with the received bit 0y as well as

the extrinsic information node 0v received from check nodes 0f and 1f on the previous

half iteration.

 33

Figure 2.4 Graph Showing the Message Send From a Variable Node to a Check Node

Figure 2.4 Subgraph showing the message send from a variable node to a check

node. Similarly, Figure 2.5 shows the subgraph for the node 0f involving the

information it is sending to variable node 4v . The information sent to variable node 4v

from check node 0f is the information node 0f had received on the previous half

iteration from nodes 0v , 1v and 2v .

Figure 2.5 Graph Showing the Message Send From a Check Node to a Variable Node

The same procedure is repeated for all nodes connected to each check and

variable node, where each node sends all extrinsic information it has received to its

connecting nodes, excluding the information the receiving node already has. One

iteration consists of traversal of information along all the edges from variable to check

f0

v0 v1 v2 v4

f2 f0 f1

y0

v0

Channel

 34

nodes and back. Decoding is stopped after a specified number iterations is reached, or

before that if a valid estimated codeword, ĉ , is found (for ĉ to be valid, 0ˆ =THc should

be satisfied) [14].

2.7.2 Probability Decoding Algorithm

Before deriving the probability decoding algorithm, the following notation is

introduced:

 jR : The set of column locations of the ones in the j th row.

 ijR \ : The set of column locations of the ones in the j th row, excluding

location i .

 iC : The set of row locations of the ones in the i th column.

 jiC \ : The set of row locations of the ones in the i th column, excluding

location j .

 ()iiri ycPP 1: =

 ()ijijrij ycPP 1: =

 :iS Event that the check equations involving ic are satisfied.

 () ()iiirij ySbcPbq ,: = , { }=∈ 1,0b Probability that bci = given extrinsic

information from all neighboring nodes, except node jf .

 () ()ybcSPbr iirij ,: = , { }=∈ 1,0b Probability of the j th check equation being

satisfied given bci = and extrinsic information from all variable nodes, except

node iv .

 () =bQij Probability that bci = given extrinsic information from all check nodes.

The algorithm is initialized with ()bqij , for all i and j for which 1=ijH , where

()bqij is given by

() ()iirij ybcPbq == { }1,0∈b (2.18)

Note that () iiir PycP −== 10 and () iiir PycP == 1 . The received symbol

corresponding to ic is iy . For the binary input additive white Gaussian noise (AWGN)

channel, ()iir ybcP = is calculated by the technique discussed below.

 35

Let iii nxy += , where in is zero mean Gaussian noise with variance 2σ ,

ii cx 21−= and () () 2/111 =−==+= irir xPxP . Using Bayes' rule:

() () ()
()yp

xxpxxyp
yxxp ii

i

==
==

() ()

() () () ()2121
21

2222

22

2121

2

σσ

σ

+−−−

−−

+
=

yy

xy

ee
e

 22 σσ yy

xy

ee
e

−+
=

 () () 22 11

1
σσ xyxy ee +− +

=

 221
1

σyxe−+
= (2.19)

On the last step, one of the terms in the denominator is going to be one no matter

what the value of x is. In order to derive ()ybcSP iir ,= , first note the following Lemma

by Gallager [13].

For a set of M binary numbers ()Maaa ,...,1= , the probability that a contains an

even number of ones is

()∏
=

−+
M

k
kp

1

21
2
1

2
1 (2.20)

where () kkr paP ==1 . The probability that it contains an odd number of ones is

()∏
=

−−
M

k
kp

1

21
2
1

2
1 (2.21)

Using this Lemma, given 1=ic , in order for event iS to be valid, the probability

that the other set of bits that are in the same check equation contain an odd number of

ones is

()∏
∈′

′−−
ijRi

jip
\

21
2
1

2
1 (2.22)

If 0=ic , then the probability that the other bits contain an even number of ones is

()∏
∈′

′−+
ijRi

jip
\

21
2
1

2
1 (2.23)

 36

The probability that all the check equations involving ic are satisfied is the

product of the individual probabilities. Thus, using Equations 2.22 and 2.23,

()ybcSP iir ,= corresponds to

() ()∏ ∏
∈ ∈′

′ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+==

icj iRji
jiiir pycSP

\

21
2
1

2
1,0 (2.24)

and

() ()∏ ∏
∈ ∈′

′ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−==

icj iRji
jiiir pycSP

\

21
2
1

2
1,1 (2.25)

The a posteriori probability (APP) for ic , given the received codeword y and the

event iS is

() () ()
()ir

iriir
iir SyP

bcPbcSyP
SybcP

,
,

,
==

==

() ()

()ir

iriir

SP
bcPbcSP ==

= (2.26)

For 0=ic and 1=ic , this simplifies to

() () ()
()ir

iiri
iir SP

ycSPp
SycP

,01
,0

=−
==

 () ()∏ ∏
∈ ∈

′ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+−=

i ijcj Ri
jii pp

\

21
2
1

2
11 (2.27)

and

() ()
()ir

iiri
iir SP

ycSPp
SycP

,1
,1

=
==

 ()∏ ∏
∈ ∈

′ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−=

i ijcj Ri
jii pp

\

21
2
1

2
1 (2.28)

With all the notation defined, the decoding algorithm can be summarized as follows:

For all i and j for which 1=ijH :

1. Initialize

() ()iirij yxPq 10 ==

() ()iirij yxPq 11 −==

 37

2. Set the number of iterations to 1. Loop through the denoted steps below until

either the number of iterations equals a specified number or 0ˆ =THc (ĉ defined

below). Then go back to step 1 with another received codeword y .

 ()()∏
∈′

′−+=
ijRi

jiji qr
\

121
2
1

2
1)0(

 () ()011 jiji rr −=

 () ()∏
′

′−=
ijcj

ijiijij rpKq
\

01)0(

 ()∏
′

′=
jicj

ijiijij rpKq
\

1)1(

 where ()0ijq and ()1ijq are scaled by ijK so that () () 110 =+ ijij qq .

 For all Ni ,...,1= do:

 () () ()∏
∈

−=
icj

jiiii rpKQ 010

 () ()∏
∈

=
icj

jiiii rpKQ 11

 where ()0iQ and ()1iQ are scaled by iK so that () () 110 =+ ii QQ .

 If ()1iQ is greater than 0.5, then 1ˆ =ic . Otherwise, set 0ˆ =ic .Here iĉ is the

estimate of ic .

2.7.3 Logarithmic Probability Decoding Algorithm

After many iterations of the probability decoding algorithm, the multiplications

involved might produce precision errors. Therefore, a logarithmic version of this

algorithm has been proposed [14].

The logarithmic decoding algorithm can be summarized as follows.

For all i and j for which 1=ijH :

1. Initialize

() ()iij cLqL =

2. Set the number of iterations to 1. Loop through the denoted steps below until

either the number of iterations equals a specified number or 0ˆ =THc whichever

comes first (ĉ defined below). Then go back to step 1 with another received

codeword y .

 38

 () ()⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑∏

∈′
′

∈′ ijij Ri
ji

Ri
ijjirL

\\

\ βφφα

 Where

 ()()ijij qLsign=α

 ()ijij qL=β

 () ()()
1
1log2tanhlog

−
+

=−= x

x

e
exxφ

 () () ()∑
∈′

′+=
jij

ijiij rLcLqL
\

 For all Ni ...1= do:

 () () ()∑
∈

+=
icj

jiii rLcLQL

 If ()iQL is smaller than 0, then set 1ˆ =ic . Otherwise, set 0ˆ =ic .

2.7.4 Other Decoding Algorithms

Besides the logarithmic decoding, a few other reduced complexity decoders have been

designed. Although not the focus of this research, two are briefly summarized below.

Min-Sum Decoding Algorithm:

The min-sum decoding algorithm [18] is essentially same as the logarithmic decoding

algorithm with only a small complexity reducing change. It uses the fact that ()xφ is

maximum when x is minimum to make the following simplification

()
ijijij Ri

ji
Ri

ji
Ri

ji
\\\

minmin
∈′

′
∈′

′
∈′

′ =
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑ ββφφβφφ (2.29)

Note that ()() xx =φφ . Incorporating this into the logarithmic decoding algorithm,

set 2 can be simplified as

() jiiRi
jiji

ij
ij

rL ′
∈′

∈′
′ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∏ βα

\
\

min

Normalized Min-Sum Algorithm:

In the normalized min-sum algorithm, all the log- likelihood ratios in the min-sum

algorithm are normalized by 22σ . This eliminates the need to know the noise

variance 2σ .

 39

2.8 LDPC Code Performance in AWGN Channel Model

The channel, which may include other effects besides those of the physical medium,

invariably distorts the transmitted modulation signals in random and non-random ways.

It is often characterized by the way it distorts the transmitted signals.

The codeword is passed through a communication channel, which introduces

random errors into the codeword. Even though the errors are random, statistical

properties of the channel are known, which enables the receiver to predict the original

input to the channel. In order to test the LDPC system used in this thesis, the additive

white Gaussian channel was used. For each bit in the codeword, the Gaussian channel

outputs a Gaussian random variable of a certain known standard deviation. If the bit

going in the channel is one, the output has mean negative one, and if the bit going in is

zero, the output has mean one. The receiver knows the standard deviation of the channel

used. Therefore, for each bit received, the receiver is able to deduce a probability for the

original bit to be one given the output from the channel for that bit. In the additive white

Gaussian noise channel model, zero mean noise having a Gaussian distribution is added

to the signal, as shown in Figure 2.6.

Figure 2.6 The Gaussian Noise Channel

Figure 2.7 shows the performance of the LDPC system given in chapter four of a

rate 1/2 LDPC code in AWGN channel. Binary phase-shift keying (BPSK) modulation

is assumed and the block size is 512 bits. It is compared to the probability of error for a

binary antipodal signal. It is shown that adding LDPC codes to the system significantly

improves the performance. For LDPC codes this improvement is affected by the block

size.

Transmitter

White Gaussian

Noise

Receiver

 40

0 0.5 1 1.5 2
10-4

10-3

10-2

10-1

100

S/N(dB)

B
E

R

LDPC AWGN
Uncoded AWGN

Figure 2.7 Performance of LDPC Code in AWGN Channel

The standard way to report the standard deviation of the white Gaussian channel

is through the signal-to-noise ratio (SNR). Symbolicaly, this is written 0NEb , and if

1± signaling is used, it is defined to be

2
0 2

1
σRN

Eb = (2.30)

where R is the rate of the encoder used.

SNR is usualy recorded in decibels. That is ()010log10 NEb dB. For exampel

assume 1.5 dB, that means should set 0NEb so that () 5.1log10 010 =NEb that is

.4125.110 105.1

0

==
N
Eb

Then, by reversing this formula again to solve for σ , wich is that case is .8414.0=σ

So, when 0NEb goes up, σ goes down.

 41

2.9 Summary

This chapter presented low-density parity-check codes. After giving a brief background

on LDPC code graph theory, a few code design methods were discussed, along with

different methods of encoding and iterative decoding. The next chapter gives the details

of image restoration techniques in spatial domain, and chapter four shows their results

to be compared with LDPC codes.

 42

CHAPTER THREE

CHAPTER 3 Image Restoration Techniques

3.1 Overview

The principal objective of enhancement is to process an image so that the result is more

suitable than the original image for a specific application.

Image enhancement approaches fall into two broad categories: spatial domain

methods and frequency domain methods. The term spatial domain refers to the image

plane itself, and approaches in this category are based on direct manipulation of pixels

in an image. Frequency domain processing techniques are based on modifying the

Fourier transform of an image [20].

As in image enhancement, the ultimate goal of restoration techniques is to

improve an image in some predefined sense. Although there are areas of overlap, image

enhancement is largely a subjective process, while image restoration is for the most part

an objective process. Restoration attempts to reconstruct or recover an image that has

been degraded by using a priori knowledge of the degradation phenomenon. Thus

restoration techniques are oriented toward modeling the degradation and applying the

inverse process in order to recover the original image [19].

The material developed in this chapter is strictly introductory, considering the

restoration problem only from the point where a degraded, digital image is given. Some

restoration techniques are best formulated in the spatial domain, while others are better

suited for the frequency domain. For example, spatial processing is applicable when the

only degradation is additive noise. On the other hand, degradations such as image blur

are difficult to approach in the spatial domain using small masks. In this case, frequency

domain filters based on various criteria of optimality are the approaches of choice [19].

Since the only degradation considered in this thesis is additive white Gaussian

noise, this chapter focuses only on spatial domain filtering processes.

3.2 Background

As indicated previously, the term spatial domain refers to the aggregate of pixels

composing an image. Spatial domain methods are procedures that operate directly on

these pixels. Spatial domain processes will be denoted by the expression

 43

() ()[]yxfTyxg ,, = (3.1)

where f(x, y) is the input image, g(x, y) is the processed image, and T is an operator on f,

defined over some neighborhood of (x, y). In addition, T can operate on a set of input

images, such as performing the pixel-by-pixel sum of K images for noise reduction. The

principal approach in defining a neighborhood about a point (x, y) is to use a square or

rectangular subimage area centered at (x, y), as Figure 3.1 shows. The center of the

subimage is moved from pixel to pixel starting at the top left corner. The operator T is

applied at each location (x, y) to yield the output, g, at that location. The process utilizes

only the pixels in the area of the image spanned by the neighborhood. Although other

neighborhood shapes, such as approximations to a circle, sometimes are used, square

and rectangular arrays are by far the most predominant because of their ease of

implementation [20].

Figure 3.1 A 33× Neighborhood About a Point (x, y) in an Image

The simplest form of T is when the neighborhood is of size 11× (that is, a single

pixel). In this case, g depends only on the value of f at (x, y), and T becomes a gray-level

(also called an intensity or mapping) transformation function of the form

Origin
y

()yx,

x

Image ()yxf ,

 44

()rTs = (3.2)

where, for simplicity in notation, r and s are variables denoting, respectively, the gray

level of f(x, y) and g(x, y) at any point (x, y). For example, if T(r) has the form shown in

Figure 3.2(a), the effect of this transformation would be to produce an image of higher

contrast than the original by darkening the levels below m and brightening the levels

above m in the original image. In this technique, known as contrast stretching, the

values of r below m are compressed by the transformation function into a narrow range

of s, toward black. The opposite effect takes place for values of r above m. In the

limiting case shown in Figure 3.2(b), T(r) produces a two-level (binary) image. A

mapping of this form is called a threshold function. Some fairly simple, yet powerful,

processing approaches can be formulated with gray-level transformations. Because

enhancement at any point in an image depends only on the gray level at that point,

techniques in this category often are referred to as point processing.

Figure 3.2 Gray level Transformation Functions for Contrast Enhancement

(a) Contrast Stretching and (b) Threshold Function

Larger neighborhoods allow considerably more flexibility. The general approach

is to use a function of the values of f in a predefined neighborhood of (x, y) to determine

the value of g at (x, y). One of the principal approaches in this formulation is based on

r

()rT

m
Light Dark

Li
gh

t
 D

ar
k

()rTs =

r

()rT

m
Light Dark

Li
gh

t
 D

ar
k

()rTs =

 (a) (b)

 45

the use of so-called masks (also referred to as filters, kernels, templates, or windows).

Basically, a mask is a small (say, 33×) 2-D array, such as the one shown in Figure 3.1,

in which the values of the mask coefficients determine the nature of the process, such as

image sharpening. Enhancement techniques based on this type of approach often are

referred to as mask processing or filtering [20].

3.3 Spatial Filtering

As mentioned in Section 3.2, some neighborhood operations work with the values of the

image pixels in the neighborhood and the corresponding values of a subimage that has

the same dimensions as the neighborhood. The subimage is called a filter, mask, kernel,

template, or window, with the first three terms being the most prevalent terminology.

The values in a filter subimage are referred to as coefficients, rather than pixels.

The concept of filtering has its roots in the use of the Fourier transform for

signal processing in the so-called frequency domain. The term spatial filtering is used to

differentiate this type of process from the more traditional frequency domain filtering.

The mechanics of spatial filtering are illustrated in Figure 3.3. The process

consists simply of moving the filter mask from point to point in an image. At each point

(x, y), the response of the filter at that point is calculated using a predefined relationship.

For linear spatial filtering, the response is given by a sum of products of the filter

coefficients and the corresponding image pixels in the area spanned by the filter mask.

For the 33× mask shown in Figure 3.3, the result (or response), R, of linear filtering

with the filter mask at a point (x, y) in the image is

() () () () L+−−+−−−−= yxfwyxfwR ,10,11,11,1

 () () () () () (),1,11,1,10,1,0,0 +++++++ yxfwyxfwyxfw L

which we see is the sum of products of the mask coefficients with the corresponding

pixels directly under the mask. Note in particular that the coefficient w (0, 0) coincides

with image value f(x, y), indicating that the mask is centered at (x, y) when the

computation of the sum of products takes place. For a mask of size nm× , it is assumed

that 12 += am and 12 += bn , where a and b are nonnegative integers. The following

discussion will be on masks of odd sizes, with the smallest meaningful size being 33× .

 46

Figure 3.3 The Mechanics of Spatial Filtering. The Magnified Drawing Shows a 33×

Mask and the Image Section Directly Under it

In general, linear filtering of an image f of size NM × with a filter mask of size

nm× is given by the expression:

() () ()tysxftswyxg
a

as

b

bt

++= ∑ ∑
−= −=

,,, (3.3)

Image origin

Mask

Image ()yxf ,

Mask coefficient showing

 coordinate arrangement

 Pixel of image

section under mask

)1,1(−w

)1,1(+− yxf),1(yxf −)1,1(−− yxf

)1,(+yxf),(yxf)1,(−yxf

)1,1(−+ yxf),1(yxf +)1,1(++ yxf

)1,0(−w

)1,1(−−w

)0,1(w

)0,0(w

)0,1(−w

)1,1(w

)1,0(w

)1,1(−w

 47

where () 21−= ma and () 21−= nb . To generate a complete filtered image this

equation must be applied for 1,,2,1,0 −= Mx K and 1,,2,1,0 −= Ny K . In this way, it

is assured that the mask processes all pixels in the image. It is easily verified when

3== nm that this expression reduces to the example given in the previous paragraph

[19].

The process of linear filtering given in Equation (3.3) is similar to a frequency

domain concept called convolution. For this reason, linear spatial filtering often is

referred to as “convolving a mask with an image”. Similarly, filter masks are sometimes

called convolution masks. The term convolution kernel also is in common use.

When interest lies on the response, R, of an nm× mask at any point (x, y), and

not on the mechanics of implementing mask convolution, it is common practice to

simplify the notation by using the following expression:

mnmn zwzwzwR +++= K2211 (3.4)

 .
1

i

mn

i
i zw∑

=

=

where the w’s are mask coefficients, the z’s are the values of the image gray levels

corresponding to those coefficients, and nm is the total number of coefficients in the

mask. For the 33× general mask shown in Figure 3.3 the response at any point (x, y) in

the image is given by

992211 zwzwzwR +++= K (3.5)

 .
9

1
i

i
i zw∑

=

=

Nonlinear spatial filters also operate on neighborhoods, and the mechanics of

sliding a mask past an image are the same as was just outlined. In general, however, the

filtering operation is based conditionally on the values of the pixels in the neighborhood

under consideration, and they do not explicitly use coefficients in the sum-of-products

manner described in Equations (3.3) and (3.4). As shown in Section 3.4.2, for example,

noise reduction can be achieved effectively with a nonlinear filter whose basic function

is to compute the median gray-level value in the neighborhood in which the filter is

located. Computation of the median is a nonlinear operation, as is computation of the

variance. The Figure 3.4 gives another representation of a general 33× spatial filter

mask [19].

 48

Figure 3.4 Another Representation of a General 33× Spatial Filter Mask

An important consideration in implementing neighborhood operations for spatial

filtering is the issue of what happens when the center of the filter approaches the border

of the image. Consider for simplicity a square mask of size nn× . At least one edge of

such a mask will coincide with the border of the image when the center of the mask is at

a distance of () 21−n pixels away from the border of the image. If the center of the

mask moves any closer to the border, one or more rows or columns of the mask will be

located outside the image plane. There are several ways to handle this situation. The

simplest is to limit the excursions of the center of the mask to be at a distance no less

than () 21−n pixels from the border. The resulting filtered image will be smaller than

the original, but all the pixels in the filtered imaged will have been processed with the

full mask. If the result is required to be the same size as the original, then the approach

typically employed is to filter all pixels only with the section of the mask that is fully

contained in the image. With this approach, there will be bands of pixels near the border

that will have been processed with a partial filter mask. Other approaches include

“padding” the image by adding rows and columns of 0’s (or other constant gray level),

or padding by replicating rows or columns. The padding is then stripped off at the end

of the process. This keeps the size of the filtered image the same as the original, but the

values of the padding will have an effect near the edges that becomes more prevalent as

the size of the mask increases. The only way to obtain a perfectly filtered result is to

accept a somewhat smaller filtered image by limiting the excursions of the center of the

filter mask to a distance no less than () 21−n pixels from the border of the original

image [20].

1w 2w 3w

4w 5w 6w

7w 8w 9w

 49

3.4 Smoothing Spatial Filters

Smoothing filters are used for blurring and for noise reduction. Blurring is used in

preprocessing steps, such as removal of small details from an image prior to (large)

object extraction, and bridging of small gaps in lines or curves. Noise reduction can be

accomplished by blurring with a linear filter and also by nonlinear filtering [19].

3.4.1 Smoothing Linear Filters

The output (response) of a smoothing, linear spatial filter is simply the average of the

pixels contained in the neighborhood of the filter mask. These filters sometimes are

called averaging filters. They also are referred to a lowpass filters.

The idea behind smoothing filters is straightforward. By replacing the value of

every pixel in an image by the average of the gray levels in the neighborhood defined by

the filter mask, this process results in an image with reduced “sharp” transitions in gray

levels. Because random noise typically consists of sharp transitions in gray levels, the

most obvious application of smoothing is noise reduction. However, edges (which

almost always are desirable features of an image) also are characterized by sharp

transitions in gray levels, so averaging filters have the undesirable side effect that they

blur edges. Another application of this type of process includes the smoothing of false

contours that result from using an insufficient number of gray levels. A major use of

averaging filters is in the reduction of “irrelevant” detail in an image. By “irrelevant”

we mean pixel regions that are small with respect to the size of the filter mask [20].

Figure 3.5 Two 33× Smoothing (Averaging) Filter Masks

1

×
9
1

1 1

1 1 1

1 1 1

1

×
16
1

2 1

2 4 2

1 2 1

 (b) (a)

 50

Figure 3.5 shows two 33× smoothing filters. Use of the first filter yields the

standard average of the pixels under the mask. The constant multiplier in front of each

mask is equal to the sum of the values of its coefficients, as is required to compute an

average. This can best be seen by substituting the coefficients of the mask into

Equation. (3.5):

,
9
1 9

1
∑

=

=
i

izR

which is the average of the gray levels of the pixels in the 33× neighborhood defined

by the mask. Note that, instead of being 91 , the coefficients of the filter are all 1’s. The

idea here is that it is computationally more efficient to have coefficients valued 1. At the

end of the filtering process the entire image is divided by 9. An nm× mask would have

a normalizing constant equal to nm1 . A spatial averaging filter in which all

coefficients are equal is sometimes called a box filter [19].

The second mask shown in Figure 3.5 is a little more interesting. This mask

yields a so-called weighted average, terminology used to indicate that pixels are

multiplied by different coefficients, thus giving more importance (weight) to some

pixels at the expense of others. In the mask shown in Figure 3.5(b) the pixel at the

center of the mask is multiplied by a higher value than any other, thus giving this pixel

more importance in the calculation of the average. The other pixels are inversely

weighted as a function of their distance from the center of the mask. The diagonal terms

are further away from the center than the orthogonal neighbors (by a factor of 2) and,

thus, are weighed less than these immediate neighbors of the center pixel. The basic

strategy behind weighing the center point the highest and then reducing the value of the

coefficients as a function of increasing distance from the origin is simply an attempt to

reduce blurring in the smoothing process. It is possible to pick other weights to

accomplish the same general objective. However, the sum of all the coefficients in the

mask of Figure 3.5(b) is equal to 16, an attractive feature for computer implementation

because it has an integer power of 2. In practice, it is difficult in general to see

differences between images smoothed by using either of the masks in Figure 3.5, or

similar arrangements, because the area these masks span at any one location in an image

is so small.

 51

With reference to Equation (3.3), the general implementation for filtering an

NM × image with a weighted averaging filter of size nm× (m and n odd) is given by

the expression

()
() ()

()∑∑

∑∑

−=−=

−=−=

++
= b

bt

a

as

b

bs

a

as

tsw

tysxftsw
yxg

,

,,
, (3.6)

The parameters in this equation are as defined in Equation (3.3). As before, it is

understood that the complete filtered image is obtained by applying Equation (3.6) for

1,,2,1,0 −= Mx K and 1,,2,1,0 −= Ny K . The denominator in Equation (3.6) is

simply the sum of the mask coefficients and, therefore, it is a constant that needs to be

computed only once. Typically, this scale factor is applied to all the pixels of the output

image after the filtering process is completed [19].

3.4.2 Order-Statistics Filters

Order-statistics filters are nonlinear spatial filters whose response is based on ordering

(ranking) the pixels contained in the image area encompassed by the filter, and then

replacing the value of the center pixel with the value determined by the ranking result.

The best-known example in this category is the median filter, which, as its name

implies, replaces the value of a pixel by the median of the gray levels in the

neighborhood of that pixel (the original value of the pixel is included in the computation

of the median). Median filters are quite popular because, for certain types of random

noise, they provide excellent noise-reduction capabilities, with considerably less

blurring than linear smoothing filters of similar size. Median filters are particularly

effective in the presence of impulse noise, also called salt-and-pepper noise because of

its appearance as white and black dots superimposed on an image.

The median, ξ, of a set of values is such that half the values in the set are less

than or equal to ξ, and half are greater than or equal to ξ. In order to perform median

filtering at a point in an image, we first sort the values of the pixel in question and its

neighbors, determine their median, and assign this value to that pixel. For example, in a

33× neighborhood the median is the 5th largest value, in a 55× neighborhood the 13th

largest value, and so on. When several values in a neighborhood are the same, all equal

values are grouped. For example, suppose that a 33× neighborhood has values (10, 20,

 52

20, 20, 15, 20, 20, 25, 100). These values are sorted as (10, 15, 20, 20, 20, 20, 20, 25,

100), which results in a median of 20. Thus, the principal function of median filters is to

force points with distinct gray levels to be more like their neighbors. In fact, isolated

clusters of pixels that are light or dark with respect to their neighbors, and whose area is

less than 22n (one-half the filter area), are eliminated by an nn× median filter. In this

case “eliminated” means forced to the median intensity of the neighbors. Larger clusters

are affected considerably less [19].

Although the median filter is by far the most useful order-statistics filter in

image processing, it is by no means the only one. The median represents the 50th

percentile of a ranked set of numbers, but ranking lends itself to many other

possibilities. For example, using the 100th percentile results in the so-called max filter,

which is useful in finding the brightest points in an image. The response of a 33× max

filter is given by { }9,,2,1max K== kzR k . The 0th percentile filter is the min filter,

used for the opposite purpose. Median, max, and mean filters are considered in more

detail in section 3.7.2 [20].

3.5 A Model of the Image Degradation/Restoration Process

As Figure 3.6 shows, the degradation process is modeled in this chapter as a degradation

function that, together with an additive noise term, operates on an input image f(x, y) to

produce a degraded image g(x, y). Given g(x, y), some knowledge about the degradation

function H, and some knowledge about the additive noise term q(x, y), the objective of

restoration is to obtain an estimate f(x, y) of the original image. We want the estimate to

be as close as possible to the original input image and, in general the more we know

about H and η, the closer ()yxf ,ˆ will be to f(x, y). The approach used throughout most

of this chapter is based on various types of image restoration filters.

If H is a linear, position-invariant process, then the degraded image is given in

the spatial domain by

() () () ()yxyxfyxhyxg ,,*,, η+= (3.7)

where h(x, y) is the spatial representation of the degradation function and the symbol *

indicates convolution. The convolution in the spatial domain is equal to multiplication

in the frequency domain, so the model in Equation (3.7) might be written in an

equivalent frequency domain representation:

 53

() () () ()vuNvuFvuHvuG ,,,, += (3.8)

where the terms in capital letters are the Fourier transforms of the corresponding terms

in Equation (3.7).

Figure 3.6 A model of the Image Degradation/ Restoration Process.

In the following two sections, we assume that H is the identity operator, and we

deal only with degradations due to noise [20].

3.6 Noise Models

The principal sources of noise in digital images arise, during image acquisition

(digitization) and/or transmission. The performance of imaging sensors is affected by a

variety of factors, such as environmental conditions during image acquisition, and by

the quality of the sensing elements themselves. For instance, in acquiring images with

an camera, light levels and sensor temperature are major factors affecting the amount of

noise in the resulting image. Images are corrupted during transmission principally due

to interference in the channel used for transmission. For example, an image transmitted

using a wireless network might be corrupted as a result of lightning or other

atmospheric disturbance [19].

3.6.1 Spatial and Frequency Properties of Noise

Relevant to this discussion are parameters that define the spatial characteristics of noise,

and whether the noise is correlated with the image, Frequency properties refer to the

frequency content of noise in the Fourier sense (i.e., as opposed to the electromagnetic

spectrum). For example, when the Fourier spectrum of noise is constant, the noise

usually is called white noise. This terminology is a carry over from the physical

()yxf , ()yxf ,ˆ Degradation

 function

Restoration

 filter(s)

()yxg ,

Noise

()yx,η
DEGRADATION RESTORATION

 54

properties of white light, which contains nearly all frequencies in the visible spectrum in

equal proportions. It is not difficult to show that the Fourier spectrum of a function

containing all frequencies in equal proportions is a constant. With the exception of

spatially periodic noise, noise is independent of spatial coordinates, and that it is

uncorrelated with respect to the image itself (that is, there is no correlation between

pixel values and the values of noise components) [19].

3.6.2 Gaussian Noise

Gaussian noise is a very good approximation of noise that occurs in many practical

cases. Probability density of the random variable is given by the Gaussian curve. Based

on the assumptions in the previous section, the spatial noise descriptor with which it

shall be concerned is the statistical behavior of the gray-level values in the noise

component of the model in Figure 3.6. These may be considered random variables,

characterized by a probability density function (PDF).

Because of its mathematical tractability in both the spatial and frequency

domains, Gaussian (also called normal) noise models are used frequently in practice. In

fact, this tractability is so convenient that it often results in Gaussian models being used

in situations in which they are marginally applicable at best. The Figure 3.7 showing the

Gaussian probability density function.

Figure 3.7 Gaussian Probability Density Function

 55

The PDF of a Gaussian random variable, z is given by

() () 22 2

2
1 σμ

πσ
−−= zezp (3.9)

where z represents gray level, μ is the mean of average value of z, and σ is its standard

deviation. The standard deviation squared, 2σ , is called the variance of z. A plot of this

function is shown in Figure 3.7. When z is described by Equation (3.9), approximately

70% of its values will be in the range () ()[]σμσμ +− , , and about 95% will be in the

range () ()[]σμσμ 2,2 +− [20].

3.7 Restoration in the Presence of Noise Only-Spatial Filtering

When the only degradation present in an image is noise, Equations (3.7) and (3.8)

become

() () ()yxyxfyxg ,,, η+= (3.10)

and

() () ()vuNvuFvuG ,,, += (3.11)

The noise terms are unknown, so subtracting them from g(x, y) or G(u, v) is not a

realistic option. In the case of periodic noise, it usually is possible to estimate N(u, v)

from the spectrum of G(u, v). In this case N(u, v) can be subtracted from G(u, v) to

obtain an estimate of the original image. In general, however, this type of knowledge is

the exception, rather than the rule.

Spatial filtering is the method of choice in situations when only additive noise is

present. This topic was discussed in detail in Sections 3.3 and 3.4 in connection with

image enhancement. In fact, enhancement and restoration become almost

indistinguishable disciplines in this particular case [19]. With the exception of the

nature of the computation performed by a specific filter, the mechanics for

implementing all the filters that follow are exactly as discussed in Section 3.3.

3.7.1 Mean Filters

In this section, the noise-reduction spatial filters introduced in Section 3.4 are discussed

briefly including several other filters whose performances are in many cases superior to

the filters discussed in that section.

 56

3.7.1.1 Arithmetic Mean Filter

This is the simplest of the mean filters. Let xyS represent the set of coordinates in a

rectangular subimage window of size nm× , centered at point (x, y). The arithmetic

mean filtering process computes the average value of the corrupted image g(x, y) in the

area defined by xyS . The value of the restored image f̂ at any point (x, y) is simply the

arithmetic mean computed using the pixels in the region defined by xyS ,. In other

words,

() ()
()
∑

∈

=
yxSts

tsg
nm

yxf
,

,1,ˆ (3.12)

This operation can be implemented using a convolution mask in which all coefficients

have value nm1 . As discussed in Section 3.4.1, a mean filter simply smoothes local

variations in an image. Noise is reduced as a result of blurring.

3.7.1.2 Geometric Mean Filter

An image restored using a geometric mean filter is given by the expression

() ()
()

mn

Sts yx

tsgyxf

1

,

,,ˆ
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= ∏

∈

 (3.13)

Here, each restored pixel is given by the product of the pixels in the subimage window,

raised to the power mn1 . A geometric mean filter achieves smoothing comparable to

the arithmetic mean filter, but it tends to lose less image detail in the process [19].

3.7.1.3 Harmonic Mean Filter

The harmonic mean filtering operation is given by the expression

()

()()
∑

∈

=

yxSts tsg

mnyxf

, ,
1,ˆ (3.14)

The harmonic mean filter works well for salt noise, but fails for pepper noise. It does

well also with other types of noise like Gaussian noise [19].

3.7.1.4 Contraharmonic Mean Filter

The contraharmonic mean filtering operation yields a restored image based on the

expression

 57

()
()

()

()
()

∑

∑

∈

∈

+

=

yx

yx

Sts

Q
Sts

Q

tsg

tsg
yxf

,

,

1

,

,
,ˆ (3.15)

where Q is called the order of the filter. This filter is well suited for reducing or virtually

eliminating the effects of salt-and-pepper noise. For positive values of Q, the filter

eliminates pepper noise. For negative values of Q it eliminates salt noise. It cannot do

both simultaneously. Note that the contraharmonic filter reduces to the arithmetic mean

filter if 0=Q , and to the harmonic mean filter if 1−=Q [19].

3.7.2 Order-Statistics Filters

Order-statistics filters were introduced in Section 3.4.2. As noted in Section 3.4.2,

order-statistics filters are spatial filters whose response is based on ordering (ranking)

the pixels contained in the image area encompassed by the filter. The response of the

filter at any point is determined by the ranking result [19].

3.7.2.1 Median Filter

The best-known order-statistics filter is the median filter, which, as its name implies,

replaces the value of a pixel by the median of the gray levels in the neighborhood of that

pixel

()
()

(){ }tsgyxf
yxSts

,median,ˆ
, ∈

= (3.16)

The original value of the pixel is included in the computation of the median. Median

filters are quite popular because, for certain types of random noise, they provide

excellent noise-reduction capabilities, with considerably less blurring than linear

smoothing filters of similar size. Median filters are particularly effective in the presence

of both bipolar and unipolar impulse noise [19]. In fact, the median filter yields

excellent results for images corrupted by this type of noise. Computation of the median

and implementation of this filter are discussed in detail in Section 3.4.2.

3.7.2.2 Max and Min Filters

Although the median filter is by far the order-statistics filter most used in image

processing, it is by no means the only one. The median represents the 50th percentile of

a ranked set of numbers, but the reader will recall from basic statistics that ranking lends

 58

itself to many other possibilities. For example, using the 100th percentile results in the

so-called max filter, given by

()
()

(){ }tsgyxf
yxSts

,max,ˆ
, ∈

= (3.17)

This filter is useful for finding the brightest points in an image. Also, because pepper

noise has very low values, it is reduced by this filter as a result of the max selection

process in the subimage area xyS .

The 0th percentile filter is the min filter

()
()

(){ }tsgyxf
yxSts

,min,ˆ
, ∈

= (3.18)

This filter is useful for finding the darkest points in an image. Also, it reduces salt noise

as a result of the min operation [19].

3.7.2.3 Midpoint Filter

The midpoint filter simply computes the midpoint between the maximum and minimum

values in the area encompassed by the filter

()
()

(){ }
()

(){ }⎥⎦
⎤

⎢⎣
⎡ +=

∈∈
tsgtsgyxf

yxyx StsSts
,mix,max

2
1,ˆ

,,
 (3.19)

Note that this filter combines order statistics and averaging. This filter works best for

randomly distributed noise, like Gaussian or uniform noise [19].

3.7.2.4 Alpha-trimmed Mean Filter

Suppose that the 2d lowest and the 2d highest gray-level values of g(s, t) in the

neighborhood yxS are deleted. Let ()tsgr , represent the remaining dnm − pixels. A

filter formed by averaging these remaining pixels is called an alpha-trimmed mean filter

() ()
()

∑
∈−

=
yxSts
r tsg

dnm
yxf

,

,1,ˆ (3.20)

where the value of d can range from 0 to 1−nm . When 0=d , the alpha-trimmed filter

reduces to the arithmetic mean filter discussed in the previous section. If we choose

1−= nmd , the filter becomes a median filter. For other values of d, the alpha-trimmed

filter is useful in situations involving multiple types of noise, such as a combination of

salt-and-pepper and Gaussian noise [19].

 59

3.7.3 Adaptive Filters

Once selected, the filters discussed thus far are applied to an image without regard for

how image characteristics vary from one point to another. In this section, two simple

adaptive filters whose behavior changes based on statistical characteristics of the image

inside the filter region defined by the nm × rectangular window yxS . As shown in the

following discussion, adaptive filters are capable of performance superior to that of the

filters discussed thus far. The price paid for improved filtering power is an increase in

filter complexity [20].

3.7.3.1 Adaptive, Local Noise Reduction Filter

The simplest statistical measures of a random variable are its mean and variance. These

are reasonable parameters on which to base an adaptive filter because they are quantities

closely related to the appearance of an image. The mean gives a measure of average

gray level in the region over which the mean is computed, and the variance gives a

measure of average contrast in that region.

The filter is to operate on a local region, yxS . The response of the filter at any

point (x, y) on which the region is centered is to be based on four quantities: (a) g(x, y),

the value of the noisy image at (x, y) ; (b) 2
ησ , the variance of the noise corrupting f(x, y)

to form g(x, y); (c) Lm , the local mean of the pixels in yxS and (d) 2
Lσ . The local

variance of the pixels in yxS . The behavior of the filter should be as follows:

1. If 2
ησ is zero, the filter should return simply the value of g(x, y). This is the

trivial, zero-noise case in which g(x, y) is equal to f(x, y).

2. If the local variance is high relative to 2
ησ the filter should return a value close to

g(x, y). A high local variance typically is associated with edges, and these should

be preserved.

3. If the two variances are equal, we want the filter to return the arithmetic mean

value of the pixels in yxS . This condition occurs when the local area has the

same properties as the overall image, and local noise is to be reduced simply by

averaging.

 60

An adaptive expression for obtaining ()yxf ,ˆ based on these assumptions maybe written

as

() () ()[]L
L

myxgyxgyxf −−= ,,,ˆ
2

2

σ
ση (3.21)

The only quantity that needs to be known or estimated is the variance of the

overall noise, 2
ησ . The other parameters are computed from the pixels in yxS , at each

location (x, y) on which the filter window is centered. A tacit assumption in Equation

(3.20) is that 22
Lσση ≤ ,. The noise in our model is additive and position independent, so

this is a reasonable assumption to make because yxS is a subset of g(x, y). Therefore, it

is possible for this condition to be violated in practice. For that reason, a test should be

built into an implementation of Equation (3.21) so that the ratio is set to 1 if the

condition 22
Lσση > occurs. This makes this filter nonlinear. However, it prevents

nonsensical results (i.e., negative gray levels, depending on the value of Lm) due to a

potential lack of knowledge about the variance of the image noise. Another approach is

to allow the negative values to occur, and then rescale the gray level values at the end.

The result then would be a loss of dynamic range in the image [19].

3.7.3.2 Adaptive Median Filter

The median filter discussed in Section 3.7.2.1 performs well as long as the spatial

density of the impulse noise is not large (as a. It is shown in this section that adaptive

median filtering can handle impulse noise with probabilities even larger than these. An

additional benefit of the adaptive median filter is that it seeks to preserve detail while

smoothing nonimpulse noise, something that the traditional median filter does not do.

The adaptive median filter also works in a rectangular window area yxS . Unlike those

filters, however, the adaptive median filter changes (increases) the size of yxS during

filter operation, depending on certain conditions listed in this section. Keep in mind that

the output of the filter is a single value used to replace the value of the pixel at (x, y), the

particular point on which the window yxS , is centered at a given time.

Consider the following notation:

 =minz minimum gray level value in yxS

 61

 =maxz maximum gray level value in yxS

 =medz median gray levels in yxS

 =yxz gray level at coordinates (x, y)

 =maxS maximum allowed size of .yxS

The adaptive median filtering algorithm works in two levels, denoted level A and level

B, as follows:

 Level A: minmed1 zzA −=

manmed2 zzA −=

If ,02AND01 <> AA Go to level B

Else increase the window size

If window size ≤ maxS repeat level A

Else output .medz

 Level B: minyx1 zzB −=

maxyx1 zzB −=

If ,02AND01 <> BB output yxz

Else output .medz

The key to understanding the mechanics of this algorithm is to keep in mind that

it has three main purposes: to remove salt-and-pepper (impulse) noise, to provide

smoothing of other noise that may not be impulsive, and to reduce distortion, such as

excessive thinning or thickening of object boundaries. The values minz , and maxz are

considered statistically by the algorithm to be ‘‘impulselike’’ noise components, even if

these are not the lowest and highest possible pixel values in the image.

With these observations in mind, the purpose of level A is to determine if the

median filter output, medz , is an impulse (black or white) or not. If the condition

maxmedmin zzz << holds, then medz cannot be an impulse for the reason mentioned in the

previous paragraph. In this case, go to level B and test to see if the point in the center of

the window, yxz , is itself an impulse (recall that yxz is the point being processed). If the

condition B1 > 0 AND B2 < 0 is true, then maxmin zzz yx << , and yxz cannot be an

impulse for the same reason that medz was not. In this case, the algorithm outputs the

 62

unchanged pixel value, yxz . By not changing these ‘‘intermediate-level’’ points,

distortion is reduced in the image. If the condition B1 > 0 AND B2 < 0 is false, then

either minzz yx = or maxzz yx = . In either case, the value of the pixel is an extreme value

and the algorithm outputs the median value medz , which we know from level A is not a

noise impulse. The last step is what the standard median filter does. The problem is that

the standard median filter replaces every point in the image by the median of the

corresponding neighborhood. This causes unnecessary loss of detail.

Continuing with the explanation, suppose that level A does find an impulse (i.e.,

it fails the test that would cause it to branch to level B). The algorithm then increases the

size of the window and repeats level A. This looping continues until the algorithm either

finds a median value that is not an impulse (and branches to level B), or the maximum

window size is reached. If the maximum window size is reached, the algorithm returns

the value of medz . Note that there is no guarantee that this value is not an impulse. The

smaller the noise probabilities ap and/or bp are, or the larger maxS is allowed to be, the

less likely it is that a premature exit condition will occur. This is plausible. As the

density of the impulses increases, it stands to reason that we would need a larger

window to ‘‘clean up’’ the noise spikes.

Every time the algorithm outputs a value, the window yxS is moved to the next

location in the image. The algorithm then is reinitialized and applied to the pixels in the

new location. The median value can be updated iteratively using only the new pixels,

thus reducing computational overhead [19].

3.8 Summary

As mentioned before, this chapter discussed most important image restoration

techniques in spatial domain and types of filters that is used for this case (deal with only

additive noise, when only degradation function is noise).

Next chapter will present the selected filters from spatial domain that described

as a good noise removal for Gaussian noise, and comparison criteria will be used to

compare between previous mentioned filters and LDPC system.

 63

 CHAPTER FOUR

CHAPTER 4 Methodology

4.1 Overview

This chapter presents a proposed system of digital image transmission and

restoration. It also discusses the details of criteria for the comparison of the proposed

LDPC system and other restoration methods.

4.2 Comparison Criteria

In order to compare between LDPC codes and image restoration techniques in spatial

domain, comparison criteria should first be defined. Visual inspection of reconstructed

images and analysis using the comparison criteria will help in deciding which

restoration method is superior.

The comparison criteria suggested include:

• PSNR Values

• Contrast

• Brightness

• Processing Time

• Visual Inspection

4.2.1 PSNR Values

One of the simple ways to measure the difference between an original image and a

reconstructed image is to measure the PSNR (Peak Signal to Noise Ratio) value [22]. A

higher value of PSNR means higher quality of reconstructed images. The PSNR value is

calculated according to the following form
()rmsbPSNR 10log20=

where b is the largest possible value of the signal (typically 255), and RMS is the root

mean square difference between two images. The PSNR is given in decibel units (dB),

which measures the ratio of the peak signal and the difference between two images. An

increase of 20 dB corresponds to a ten-fold decrease in the rms difference between two

images. There are many versions of signal-to-noise ratios, but the PSNR is very

 64

common in image processing, probably because it gives better-sounding numbers than

other measures. It is defined using the following formula

() ()()
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−∑

= ji
REC jixjix

PSNR ,

2
2 ,,

255
1

255

10log20 (4.1)

4.2.2 Contrast

Contrast adjustment increases or decreases the apparent difference in lightness between

lighter and darker pixels. Increasing or decreasing contrast is applicable to each pixel in

image. Increasing contrast, if gray value of pixel is greater 128 contrast changes the

value up to 255, if the pixel value is less than or equal to 128 contrast change the value

down to 0. In decreasing contrast, if gray value of pixel grater than 128 contrast change

the value down to 128, if the pixel value is less than or equal to 128 contrast changes the

value up to 128 according to the contrast adjustment level as shown in Figure 4.1.

It is better in the experiment if the total change in contrast between the original

image and the restored image is minimum [23].

Figure 4.1 Grayscale Palette

Image contrast is defined as the difference between the average of the ‘N’

brightest pixels present in the image and the average of the ‘M’ darkest pixels in the

image, as follow form.

Average of the ‘N’ Whitest Pixels - Average of the ‘M’ Blackest Pixels

Total change in contrast of an image will be calculated and compared with the total

change in contrast of a reconstructed image using the following equation.

 65

Contrast of an image ∑ −=
256

,
)(Re)(

ji
ijijijij yxcyxOrg (4.2)

4.2.3 Brightness

Brightness is used to increase or decrease the brightness of pixel. Low brightness will

result in dark tones while high brightness will result in higher, pastel tones.

Increasing or decreasing the brightness is applicable in same level to each pixel

in image. Increasing brightness changes the pixel values up to 255 while decreasing

brightness changes the pixel values down to 0 according to brightness adjustment level.

In experiments, brightness of original images will be compared with brightness

of the reconstructed images [23]. Reconstructed images that have a brightness level

most near to brightness level of an original image will be better. Brightness of an image

is calculated according to the following formula:

Brightness of an image
256256×

=
imageinpixeleachofValuesGrayTotal (4.3)

4.2.4 Processing Time

Processing time is the period of time that the Matlab program takes to restore an image

for each method.

4.2.5 Visual Inspection

This is based on visual inspection and observation of humans. The results of this visual

inspection form part of the comparison criteria which is then combined with the results

of the computed analysis in order to decide upon the ideal restoration technique [23].

4.3 System Structure and Design

As mentioned in chapter three, the system is dealing with additive white Gaussian noise

only. As the additive noise added to the original image, the system will de-noise the

original image according to the LDPC decoder and the other chosen filters, then

comparing the result of LDPC system with the image restoration techniques according

the comparison criteria listed in the previous section. Figure 4.2 shows the block

diagram of image restoration techniques.

 66

Figure 4.2 Block Diagram of the Image Restoration

Image restoration techniques used in the experiment will include three various filters;

namely Harmonic Mean filter, Alpha-trimmed Mean filter and Adaptive Median filter.

The only added noise is Gaussian noise. Figure 4.3 explains the stages of the system for

those filters and prerequisites steps to filtering an captured image.

Figure 4.3 Block Diagram of Image Restoration Filters

Resize Image
to Dimension
256×256 Pixels

Image with
Dimension

256×256 Pixels

 Convert
 Image to

 Grayscale Level

 Get the
Reconstructed
 Image

White Gaussian

 Noise

Harmonic mean
filter

Alpha-trimmed
mean filter

Adaptive
median filter

Insert an
Original Image

Original

 Image ()yxf ,

Restoration

 Filter

()yxg ,

White Gaussian

Noise ()yx,η

()yxf ,ˆ

 67

Figure 4.4 shows the block diagram of LDPC system including the steps of the

captured image that consist the grayscaling and resizing the dimension of the image and

preparing step of the codeword blocks (data blocks).

Figure 4.4 Block Diagram of the LDPC System

4.3.1 Data Representation

The third step in block diagram of LDPC system shows how the image data (pixels) is

coded to pass through the LDPC encoder. The data is prepared according to the

following steps:

1. An image of size []256256× contains 65536 pixels. This number is obtained by

multiplying the number of pixels in X axis (row) and the number of pixels in Y

axis (column) of the image.

2. According to the grayscale image format each pixel should have a value between

0 to 255, so eight digits are needed to implement these values in binary number.

3. The matrix passing through the LDPC encoder should have a size of

[]2562048× . This matrix is obtained by dividing the result of multiplying

number of pixels by the number of bits for each pixel to 256. Therefore, size of

matrix representing the number of blocks is 2048 and the block length is 256.

Resize Image
to Dimension
256×256 Pixels

Convert Each
Pixel to 8 Bits

Convert Each
8 Bits to Pixel

Image with
Dimension

256×256 Pixels

Convert
 Image to

Grayscale Level
65536
Pixels

2048 Blocks
of 256 Bits

2048 Blocks
of 256 Bits

65536
Pixels

 Get the
Reconstructed
 Image

White Gaussian
 Noise

2048 Blocks
of 512 Bits

2048 Blocks
of 512 Bits

LDPC
Encoder

LDPC
Decoder

 68

4. According to the block length is equal []2561× each block contain 32 pixels,

this number is obtained by dividing the block length (256) to number of bit for

each pixel (8).

5. The step after this data be noised after passing the encoder and passed form the

decoder it will be with same steps but with opposite direction.

4.3.2 Data Encoding

Considering that u is representing the data words or according the system is applied in

this thesis is the first block (matrix) of size [1×256], the encoding process of LDPC

encoder is performable according to the general steps of LDPC encoder as follow:

• []PuuGuC M== where G, as mentioned in chapter two is the generator

matrix, and C is the code words matrix.

• Since xPu = then []xuC M= .

• [
}

]
}

44 344 21

M

N

M

KM

M BAH
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= the NKG ×= and NMH ×= so they are related to

each other, where K is data word length and N is a code word length, KN >

and H is representing the low density parity check matrix.

• Since 0== TT HCCH then []⎡ ⎤
⎣ ⎦

0=+= xBuA
x
u

BAM , and uABx 1−= .

Therefore, the data is coded according to the equation []uABuC 1−= M (with

dimension []NN ×).

The above steps of encoding process of LDPC encoder are performed in this

thesis from the following

1. Data word matrix or in this case pixels matrix with size []2561×=u then

[]2562048×=u and 1−AB should equal the size of []256256× to perform the

code word matrix []uABuC 1−= M .

2. The matrix of uAB 1− should equal to size of []2562048× so it could be

performed by multiplication of 1−AB matrix by transpose of u matrix (Tu)

matrix to be as in form []TuAB ×−1 .the resulting matrix equal to size

[]2048256× .

 69

3. In this step taking of the transpose of the resulting matrix and putting it in the

code word order as in form [] [][]TuABuC 1−= M this arrangement gives request

code word matrix of size []5122048× .

4. Sending this size of matrix row by row to the decoder with adding the Gaussian

noise.

The Figure 4.5 shows the flowchart for encoding process of LDPC encoder in the

mentioned system.

4.3.3 Data Decoding

According to the explanations given in the previous section and the first and second

chapters H matrix is too important for decoding process and in this case it should have

the dimension of []512256× .

The H matrix consists mostly of ones as explained previously in first and second

chapters.

As will be mentioned later in experimental results, the experiment will be performed

using four different values of variance ()σ of Gaussian noise in each case.

The decoding process of LDPC decoder is applied by the message passing -

algorithm in probability domain perform looping below ji ,∀ for which 1=jih

according the following steps.

1. Initialize:

() 221
110

σiYiji
e

pq
−+

=−=

() 221
11

σiYiji
e

pq
−

==

2. Calculate:

() ()()∏
∈′

′−+=
iRi

jiij
j

qr
\

121
2
1

2
10

() ()011 ijij rr −=

3. Update the values of ()0jiq and ()1jiq according to the following equations to

perform the iterations until finding the correct message word:

() () ()010
\

∏
∈′

′−=
jCj

ijijiji
i

rpKq

 70

() ()11
\

∏
∈′

′=
jCj

ijijiji
i

rpKq

where the constants jiK are chosen to ensure () () 110 =+ jiji qq .

4. Compute i∀ :

() () ()010 ∏
∈

−=
iCj

ijiii rpKQ

() ()11 ∏
∈

=
iCj

ijiii rpKQ

where the constants jiK are chosen to ensure () () 110 =+ ii QQ .

5. Apply following two conditions:

• i∀ ,

()
⎩
⎨
⎧ >

=
else

Qif
C i

i 0
5.011ˆ

• () or0ˆif =THC

 ()iterations maximumiterationsof# =

then stop, else go to step 2.

Figure 4.6 shows the flowchart decoding process of LDPC decodes in the system.

 71

Figure 4.5 Flowchart of the LDPC Encoder

START

Read the block matrix u
of size [2048×256]

Read the block matrix u
of size [1×256] row by row

Read the matrix BA 1−
of size [256×256] Multiply BA 1− by

the S transpose Tu

Divide each element of the
resulting matrix of size [256×1] by 2

Form the symbol code matrix, C,
using the reminders of previous step

 Construct the initial codeword matrix
 using the original blocks using []uC M′

Replace the value 1’s in the
previous matrix by -1 and 0’s by 1

Re-sort the previous
 matrix according to

 the codeword order

Send to channel and
Display the # of Blocks

Check the # of
blocks if =2048

END
Yes

No

 72

Figure 4.6 Flowchart of the LDPC Decoder

START

Received the messages
block by block

Using probability decoding
algorithms initialize () ()1,0 jiji qq

Initialize values of () ()1,0 ijij rr

using values of () ()1,0 jiji qq

Compute values of
() ()1,0 ii QQ

Form the codeword as if the value
of () 15.01 =>iQ otherwise 0

Display # of iterations
and # of errors

Valid codeword if ()0=TCH
or maximum iterations

END

Yes

No

Calculate the variance σ in
the communication channel

Calculate values of () ()1,0 jiji qq

using values of () ()1,0 ijij rr

Compute values of
() ()1,0 ii QQ

Re-sort matrix according to
 the codeword order

 73

4.4 Prerequisites of the System

The system mentioned in this research needs some prerequisites to work properly. The

prerequisites have many effects on the algorithm that is used in the assembled system. If

they are not insuring satisfactory conditions, then the system will be not usable.

These conditions are used in different processing steps and are considered as

insured by the following sections.

4.4.1 Image Acquisition

This stage does the capturing of the images using peripheral capturing devices. The

image can be obtained from many sources. There are obvious ways to obtain digitized

images: scanning a photo camera made picture, saving web-cam generated static or

dynamic images, capturing with high quality video camera, or using other sources (e.g.

manual scratches, painted images and results of other digital image processing

procedures).

4.4.2 Initial Parameters

The initial parameters of the system are set as follows:

1. This system is accomplished to denoise the images noised with Gaussian noise

with mean equal to zero, and the value of variance randomly selected, or as

selected in the section of analysis the system.

2. The accomplished system set to process the images in grayscale level with

dimensions of pixels equal []256256× .

3. The dimension of 1−AB matrix should be []256256× .

4. The dimension of H matrix should be []512256 × .

5. In order to increase the dimensions of the input images the values of the other

matrices respectively should be changed according to the explanations of data

encoding and data decoding. Number of iteration in decoding process is set to be

100 iterations.

6. The size of window for Harmonic mean filter and Alpha-trimmed filter is set to

be with size []33× . For Adaptive median filter maximum allowable size

7max =S .

 74

4.4.3 Database Collection

The database of images which are used in the experiments only contains images of

dimensions []256256× . The database contains 5 normal images in the same resolution

but with different backgrounds. The developed system is implemented using

miscellaneous famous pictures database [21].

4.5 Software Tools (MATLAB)

This section contains a simple description of the tools that were used. The software

implementation has been done using Matlab version 7.0, Image Processing Toolbox.

Matlab is a simulation environment for doing numerical computations with

matrices and vectors. It handles a wide range of computing tasks in engineering and

science, and has several built-in interfaces. In addition there are several toolboxes

available to expand the capabilities of Matlab one such toolbox is image processing

toolbox, which extends the Matlab computing environment to provide functions and

interactive tools for enhancing and analyzing digital images and developing image

processing algorithms.

4.6 Summary

A comparison criterion has been created to help select the ideal restoration method. The

criteria includes: PSNR Values, Contrast, Brightness and Processing Time.

To make a decision upon which method is ideal, various images and criteria

must be considered. An overall sufficient and good quality reconstructed image, with

the highest value of variance and lowest PSNR is sought after.

This chapter explained in detail developed image restoration system and the

experimental results will be discussed in the next chapter.

 75

 CHAPTER FIVE

CHAPTER 5 Results and Analysis

5.1 Overview

This chapter will present a real life application of digital image restoration. Different

restoration methods as well as low-density parity-check LDPC coding will be applied to

different images and all the resulting reconstructed images will be analyzed using the

comparison criteria in order to decide upon the optimum restoration method.

Additionally, the application software using Matlab to restore an image by

different methods which are, LDPC encoding and decoding system, Harmonic mean

filter, Alpha-trimmed mean filter, and Adaptive median filter, will be covered.

5.2 Experimental Results

In this section, various amounts of white Gaussian noise will be added to the selected

images and comparison tables will be made based on some chosen criteria and visual

inspection of the reconstructed images. All results will then be analyzed.

5.2.1 Images Database

To provide a real-life application, five images are chosen for analysis. These images are

from a database of experimental work, and contain images of various contrasts and

patterns. The five images are: Lena, Moon Surface, Clock and Moon, as shown in

Figure 5.1.

The following sections of visual inspection could be dividing to three types of

show.

The first block figures shows the original test images; and the second block figures will

contain four block figures of images, every one consist from five images, the original

image with four value of white Gaussian noise added to original image, shown with

each other to help the viewer to understanding how the selected values of noise effect

the images.

The Third section will contain sixteen block figures of images, every one consist from

six images, the original one and the filtering results of that image.

As well as it is easy to observe that figures shows the best restored image is

obtained by LDPC coding system.

 76

50 100 150 200 250

50

100

150

200

250

Original Lena Image

50 100 150 200 250

50

100

150

200

250

Original Moon Surface Image

50 100 150 200 250

50

100

150

200

250

Original Clock Image
50 100 150 200 250

50

100

150

200

250

Original Moon Image

Figure 5.1 Original Test Images

From the images that are chosen, it could be easily observed that two of them

opposite to each other one is too bright and the other is almost darkly image. The other

two are chosen to symbolize the humans’ life and there need to photo capturing, and the

other one is symbolize the modern communications and science investigations and

researches.

 77

Figure 5.2 shows the original Lena image and four noise added Lena images with

different values of Gaussian noise.

Original Lena Image

Image with 20 dB SNR

Image with 15 dB SNR

Image with 5 dB SNR

Image with 2 dB SNR

Figure 5.2 Lena Image and Noise Added Images with SNR = 2, 5, 15 and 20 dB

 78

Figure 5.3 shows the original Moon surface image and four noise added Moon surface

images with different values of Gaussian noise.

Original Moon Surface Image

Image with 20 dB SNR

Image with 15 dB SNR

Image with 5 dB SNR

Image with 2 dB SNR

Figure 5.3 Moon Surface Image and Noise Added Images with SNR = 2, 5, 15 and 20

dB

 79

Figure 5.4 shows the original Clock image and four noise added Clock images with

different values of Gaussian noise.

Original Clock Image

Image with 20 dB SNR

Image with 15 dB SNR

Image with 5 dB SNR

Image with 2 dB SNR

Figure 5.4 Clock Image and Noise Added Images with SNR = 2, 5, 15 and 20 dB

 80

Figure 5.5 shows the original Moon image and four noise added Moon images with

different values of Gaussian noise.

Original Moon Image

Image with 20 dB SNR

Image with 15 dB SNR

Image with 5 dB SNR

Image with 2 dB SNR

Figure 5.5 Moon Image and Noise Added Images with SNR = 2, 5, 15 and 20 dB

 81

Figure 5.6 shows the original Lena image and the noise added Lena image with 2 dB

SNR. Subsequent images are the results of image restoration by various methods

including LDPC coding.

Original Lena Image

Image with 2 dB SNR

Image Restored By Harmonic Mean Filter

Image Restored By Adapt. Median Filter

Image Restored By Alpha-trimmed Filter

Image Restored By LDPC Coding

Figure 5.6 Lena Image, Noise Added Image with 2 dB SNR and Restored Images

 82

Figure 5.7 shows the original Lena image and the noise added Lena image with 5 dB

SNR. Subsequent images are the results of image restoration by various methods

including LDPC coding.

Original Lena Image

Image with 5 dB SNR

Image Restored By Harmonic Mean Filter

Image Restored By Adapt. Median Filter

Image Restored By Alpha-trimmed Filter

Image Restored By LDPC Coding

Figure 5.7 Lena Image, Noise Added Image with 5 dB SNR and Restored Images

 83

Figure 5.8 shows the original Lena image and the noise added Lena image with 15 dB

SNR. Subsequent images are the results of image restoration by various methods

including LDPC coding.

Original Lena Image

Image with 15 dB SNR

Image Restored By Harmonic Mean Filter

Image Restored By Adapt. Median Filter

Image Restored By Alpha-trimmed Filter

Image Restored By LDPC Coding

Figure 5.8 Lena Image, Noise Added Image with 15 dB SNR and Restored Images

 84

Figure 5.9 shows the original Lena image and the noise added Lena image with 20 dB

SNR. Subsequent images are the results of image restoration by various methods

including LDPC coding.

Original Lena Image

Image with 20 dB SNR

Image Restored By Harmonic Mean Filter

Image Restored By Adapt. Median Filter

Image Restored By Alpha-trimmed Filter

Image Restored By LDPC Coding

Figure 5.9 Lena Image, Noise Added Image with 20 dB SNR and Restored Images

 85

Figure 5.10 shows the original Moon surface image and the noise added Moon surface

image with 2 dB SNR. Subsequent images are the results of image restoration by

various methods including LDPC coding.

Original Moon Surface Image

Image with 2 dB SNR

Image Restored By Harmonic Mean Filter

Image Restored By Adapt. Median Filter

Image Restored By Alpha-trimmed Filter

Image Restored By LDPC Coding

Figure 5.10 Moon Surface Image, Noise Added Image with 2 dB SNR and Restored

Images

 86

Figure 5.11 shows the original Moon surface image and the noise added Moon surface

image with 5 dB SNR. Subsequent images are the results of image restoration by

various methods including LDPC coding.

Original Moon Surface Image

Image with 5 dB SNR

Image Restored By Harmonic Mean Filter

Image Restored By Adapt. Median Filter

Image Restored By Alpha-trimmed Filter

Image Restored By LDPC Coding

Figure 5.11 Moon Surface Image, Noise Added Image with 5 dB SNR and Restored

Images

 87

Figure 5.12 shows the original Moon surface image and the noise added Moon surface

image with 15 dB SNR. Subsequent images are the results of image restoration by

various methods including LDPC coding.

Original Moon Surface Image

Image with 15 dB SNR

Image Restored By Harmonic Mean Filter

Image Restored By Adapt. Median Filter

Image Restored By Alpha-trimmed Filter

Image Restored By LDPC Coding

Figure 5.12 Moon Surface Image, Noise Added Image with 15 dB SNR and Restored

Images

 88

Figure 5.13 shows the original Moon surface image and the noise added Moon surface

image with 20 dB SNR. Subsequent images are the results of image restoration by

various methods including LDPC coding.

Original Moon Surface Image

Image with 20 dB SNR

Image Restored By Harmonic Mean Filter

Image Restored By Adapt. Median Filter

Image Restored By Alpha-trimmed Filter

Image Restored By LDPC Coding

Figure 5.13 Moon Surface Image, Noise Added Image with 20 dB SNR and Restored

Images

 89

Figure 5.14 shows the original Clock image and the noise added Clock image with 2 dB

SNR. Subsequent images are the results of image restoration by various methods

including LDPC coding.

Original Clock Image

Image with 2 dB SNR

Image Restored By Harmonic Mean Filter

Image Restored By Adapt. Median Filter

Image Restored By Alpha-trimmed Filter

Image Restored By LDPC Coding

Figure 5.14 Clock Image, Noise Added Image with 2 dB SNR and Restored Images

 90

Figure 5.15 shows the original Clock image and the noise added Clock image with 5 dB

SNR. Subsequent images are the results of image restoration by various methods

including LDPC coding.

Original Clock Image

Image with 5 dB SNR

Image Restored By Harmonic Mean Filter

Image Restored By Adapt. Median Filter

Image Restored By Alpha-trimmed Filter

Image Restored By LDPC Coding

Figure 5.15 Clock Image, Noise Added Image with 5 dB SNR and Restored Images

 91

Figure 5.16 shows the original Clock image and the noise added Clock image with 15

dB SNR. Subsequent images are the results of image restoration by various methods

including LDPC coding.

Original Clock Image

Image with 15 dB SNR

Image Restored By Harmonic Mean Filter

Image Restored By Adapt. Median Filter

Image Restored By Alpha-trimmed Filter

Image Restored By LDPC Coding

Figure 5.16 Clock Image, Noise Added Image with 15 dB SNR and Restored Images

 92

Figure 5.17 shows the original Clock image and the noise added Clock image with 20

dB SNR. Subsequent images are the results of image restoration by various methods

including LDPC coding.

Original Clock Image

Image with 20 dB SNR

Image Restored By Harmonic Mean Filter

Image Restored By Adapt. Median Filter

Image Restored By Alpha-trimmed Filter

Image Restored By LDPC Coding

Figure 5.17 Clock Image, Noise Added Image with 20 dB SNR and Restored Images

 93

Figure 5.18 shows the original Moon image and the noise added Moon image with 2 dB

SNR. Subsequent images are the results of image restoration by various methods

including LDPC coding.

Original Moon Image

Image with 2 dB SNR

Image Restored By Harmonic Mean Filter

Image Restored By Adapt. Median Filter

Image Restored By Alpha-trimmed Filter

Image Restored By LDPC Coding

Figure 5.18 Moon Image, Noise Added Image with 2 dB SNR and Restored Images

 94

Figure 5.19 shows the original Moon image and the noise added Moon image with 5 dB

SNR. Subsequent images are the results of image restoration by various methods

including LDPC coding.

Original Moon Image

Image with 5 dB SNR

Image Restored By Harmonic Mean Filter

Image Restored By Adapt. Median Filter

Image Restored By Alpha-trimmed Filter

Image Restored By LDPC Coding

Figure 5.19 Moon Image, Noise Added Image with 5 dB SNR and Restored Images

 95

Figure 5.20 shows the original Moon image and the noise added Moon image with 15

dB SNR. Subsequent images are the results of image restoration by various methods

including LDPC coding.

Original Moon Image

Image with 15 dB SNR

Image Restored By Harmonic Mean Filter

Image Restored By Adapt. Median Filter

Image Restored By Alpha-trimmed Filter

Image Restored By LDPC Coding

Figure 5.20 Moon Image, Noise Added Image with 15 dB SNR and Restored Images

 96

Figure 5.21 shows the original Moon image and the noise added Moon image with 20

dB SNR. Subsequent images are the results of image restoration by various methods

including LDPC coding.

Original Moon Image

Image with 20 dB SNR

Image Restored By Harmonic Mean Filter

Image Restored By Adapt. Median Filter

Image Restored By Alpha-trimmed Filter

Image Restored By LDPC Coding

Figure 5.21 Moon Image, Noise Added Image with 20 dB SNR and Restored Images

 97

5.2.2 Comparison of Methods Using PSNR Values

The PSNR results were classified as Super Quality, Ultra Low Loss, Low Loss, Medium

Loss and High Loss as shown in Table 5.1.

Table 5.1 Classification Values for PSNR Comparison

PSNR Value Classification

0↔20 High Loss

20↔30 Medium Loss

30↔40 Low Loss

40↔60 Ultra Low Loss

>60 Super Quality

The aim of this classification is to help in determining the performance of the

restoration methods.

When analyzing the PSNR values of each restoration method some of the

following should be noted:

• The amount of noise added in this analysis was high because of good

performance of LDPC error correction codes.

• While setting the noise amount, the SNR is calculated in two different ways

depending on if coding has been used.

coding 22
1

σ××
=

R
SNR

no coding 22
1
σ×

=SNR

 where 2σ is the noise variance, and R is the coding rate.

Table 5.2 shows the standard deviation of noise for various SNR values which are used

in the simulation.

Table 5.2 Standard Deviation of Noise for Various SNR Values

SNR Values 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR
σ 0.79435 0.56237 0.17783 0.1

 98

The PSNR values for four restoration methods with different noise values presented in

Table 5.3.

Table 5.3 PSNR Result in (dB) Using 2, 5, 15 and 20 dB SNR

 Harmonic Mean Filter

 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR

Lena 10.2177 8.6169 7.2291 7.1209
Moon Surface 9.2662 7.4223 6.1334 6.0151

Clock 10.8885 7.1732 3.4579 3.0543
Moon 14.0616 11.3902 8.5559 8.2528

 Alpha-trimmed Mean Filter

 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR

Lena 19.4802 17.5582 14.6097 13.9625
Moon Surface 19.3203 17.5313 15.1494 14.6104

Clock 19.6093 17.6169 13.6254 12.7253
Moon 19.3792 17.0033 12.7517 11.7322

 Adaptive Median Filter

 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR

Lena 14.4235 12.8148 11.1175 10.8159
Moon Surface 14.1549 12.8543 11.4681 11.2681

Clock 14.9256 13.0376 10.5405 10.1413
Moon 15.2513 13.1911 10.3217 9.8438

 LDPC Coding

 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR

Lena No Noise No Noise No Noise 44.8750
Moon Surface No Noise No Noise No Noise 44.8580

Clock No Noise No Noise No Noise 44.9227
Moon No Noise No Noise No Noise 48.2415

Noise ratio and the quality of the reconstructed image are important factors. When an

image data is being sent through the communication channel, the quality of the restored

 99

image is as important as the rate of transmission. In this section, the PSNR values of the

reconstructed images are compared with each other. The results show that, LDPC codes

should be preferred when restorating images corrupted by Gaussian noise. Table 5.4

shows the quality comparison of PSNR values given in Table 5.1.

Table 5.4 Quality Comparison of PSNR Results

 Harmonic Mean Filter

 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR

Lena High Loss High Loss High Loss High Loss
Moon Surface High Loss High Loss High Loss High Loss

Clock High Loss High Loss High Loss High Loss
Moon High Loss High Loss High Loss High Loss

 Alpha-trimmed Mean Filter

 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR

Lena High Loss High Loss High Loss High Loss
Moon Surface High Loss High Loss High Loss High Loss

Clock High Loss High Loss High Loss High Loss
Moon High Loss High Loss High Loss High Loss

 Adaptive Median Filter

 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR

Lena High Loss High Loss High Loss High Loss
Moon Surface High Loss High Loss High Loss High Loss

Clock High Loss High Loss High Loss High Loss
Moon High Loss High Loss High Loss High Loss

 LDPC Coding

 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR

Lena Super Quality Super Quality Super Quality U. Low Loss
Moon Surface Super Quality Super Quality Super Quality U. Low Loss

Clock Super Quality Super Quality Super Quality U. Low Loss
Moon Super Quality Super Quality Super Quality U. Low Loss

 100

5.2.3 Comparison of Methods Using Contrast Criteria

Contrast is widely used in image processing when analyzing images. It could also be

used to see if a restored image has lost too much detail with respect to the original

image. If the contrast of the restored image is very different, then the method of

restoration is not satisfactory. Table 5.5 presents the results of the reconstruction

method according to the contrast criteria. It can be observed that the results are too

perfect for LDPC codes. The second best results are for Alpha-trimmed filter but they

are still not good enough.

5.2.4 Comparison of Methods Using Brightness

Brightness, just like contrast, can be used to analyze the restored images. Table 5.5

presents the results of the reconstruction methods according to the brightness criteria.

The brightness of the images restored using LDPC codes are almost the same as the

brightness of the original images. The results were too perfect for LDPC codes. Table

5.7 shows anlysis of brightness values given in Table 5.6 which represent the

differences between the brightness of original images and brightness of reconstructed

images.

5.2.5 Comparison of Methods Using Processing Time

Many factors affect the processing time in communication system such as data

processing software and hardware structure. The time of processing should be as

minimum as possible. Table 5.8 presents a comparison of restoration methods according

to the processing time. It is observed that the highest processing time is for the LDPC

codes. The reasons for this are discussed in the analysis and discussion (section 5.3).

 101

Table 5.5 Comparison of Contrast Criteria (Original Image – Reconstructed Image)

 Harmonic Mean Filter

 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR

Lena -55.2126 -67.3664 -87.455 -94.8218
Moon Surface -68.6651 -92.0029 -122.5304 -127.6989

Clock -17.4452 -21.717 -42.6385 -49.0335
Moon 5.7861 3.6764 -2.0364 -9.684

 Alpha-trimmed Mean Filter

 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR

Lena -3.9068 -4.9526 -4.5595 -3.8746
Moon Surface -16.3054 -22.1165 -33.0279 -35.2813

Clock 11.519 17.2594 33.6314 36.8755
Moon 22.3022 30.6731 56.2493 62.6678

 Adaptive Median Filter

 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR

Lena -24.618 -32.4542 -43.4593 -45.7405
Moon Surface -47.7852 -58.3736 -74.979 -76.7486

Clock 4.9307 3.6022 -3.0668 -5.4142
Moon 16.7232 19.7787 22.2429 20.9369

 LDPC Coding

 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR

Lena 0 0 0 -1.4750
Moon Surface 0 0 0 -1.4943

Clock 0 0 0 -0.1635
Moon 0 0 0 0.6932

 102

Table 5.6 Brightness Results of HMF, AMF, AdMF and LDPC codes under different

level of noise (2, 5, 15 and 20 dB SNR)

Harmonic Mean Filter

 Original
Brightness 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR

Lena 105.7428 41.5529 24.5973 6.3508 5.0125
Moon Surface 127.7600 57.6814 32.2889 8.6162 5.8828

Clock 185.9803 131.7579 96.9836 31.5073 21.3196
Moon 64.5697 37.8661 26.4056 7.7747 5.2794

 Alpha-trimmed Mean Filter

 Original
Brightness 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR

Lena 105.7428 107.5943 109.8575 113.5447 116.7933
Moon Surface 127.7600 128.5522 127.5453 127.4515 127.8204

Clock 185.9803 178.6808 174.3141 162.1475 157.5082
Moon 64.5697 76.7516 80.4172 92.2404 96.6608

 Adaptive Median Filter

 Original
Brightness 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR

Lena 105.7428 109.4716 112.3919 114.9577 117.1010
Moon Surface 127.7600 128.4747 127.4939 127.5040 127.0630

Clock 185.9803 174.4797 169.0919 160.3359 158.0781
Moon 64.5697 77.2850 80.6674 90.4823 93.2432

 LDPC Codes

 Original
Brightness 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR

Lena 105.7428 105.7428 105.7428 105.7428 105.7586
Moon Surface 127.7600 127.7600 127.7600 127.7600 127.7770

Clock 185.9803 185.9803 185.9803 185.9803 185.6151
Moon 64.5697 64.5697 64.5697 64.5697 65.0228

 103

Table 5.7 Brightness Analysis of HMF, AMF, AdMF and LDPC codes under different

level of noise (Original Image – Reconstructed Image)

 Harmonic Mean Filter

 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR

Lena 64.1899 81.1455 99.392 100.73
Moon Surface 70.0786 95.4711 119.144 121.877

Clock 54.2224 88.9967 154.473 164.661
Moon 26.7036 38.1641 56.795 59.2903

 Alpha-trimmed Mean Filter

 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR

Lena -1.8515 -4.1147 -7.8019 -11.051
Moon Surface -0.7922 0.2147 0.3085 -0.0604

Clock 7.2995 11.6662 23.8328 28.4721
Moon -12.182 -15.848 -27.671 -32.091

 Adaptive Median Filter

 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR

Lena -3.7288 -6.6491 -9.2149 -11.358
Moon Surface -0.7147 0.2661 0.256 0.697

Clock 11.5006 16.8884 25.6444 27.9022
Moon -12.715 -16.098 -25.913 -28.674

 LDPC Coding

 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR

Lena 0 0 0 -0.0158
Moon Surface 0 0 0 -0.017

Clock 0 0 0 0.3652
Moon 0 0 0 -0.4531

 104

Table 5.8 Processing Time (in seconds)

 Harmonic Mean Filter

 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR

Lena 1.2969 1.2344 1.2344 1.2969
Moon Surface 1.2813 1.2500 1.2188 1.2031

Clock 1.2500 1.2500 1.2344 1.2031
Moon 1.2500 1.2500 1.2344 1.2344

 Alpha-trimmed Mean Filter

 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR

Lena 1.2344 1.2656 1.2344 1.2656
Moon Surface 1.2500 1.2656 1.2188 1.2500

Clock 1.2656 1.2656 1.2813 1.2500
Moon 1.2813 1.2656 1.2969 1.2656

 Adaptive Median Filter

 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR

Lena 1.4688 1.3906 1.4063 1.4375
Moon Surface 1.4688 1.4531 1.4063 1.4375

Clock 1.5000 1.4375 1.4063 1.4375
Moon 1.4375 1.4531 1.4531 1.4375

 LDPC Coding

 20 dB SNR 15 dB SNR 5 dB SNR 2 dB SNR

Lena 13728.5166 13672.4119 13992.4844 19982.5469
Moon Surface 13699.4176 13534.6314 12541.5466 19708.6719

Clock 13427.2348 13536.7516 13708.6729 17541.1563
Moon 13285.6543 13525.9719 13982.1521 18436.1719

Time results were obtained using Matlab 7 on a 3.01 GHz PC with 512 Mb of RAM, running Windows

XP

 105

5.3 Analysis and Discussion

It is shown that LDPC coding removes the additive white Gaussian noise successfully in

most of the images.

In image restoration high accuracy of restoration is very important. In coding,

this is determined by various parameters such as parity check matrix H, G matrix, and

number of iterations, and for other restoration techniques by the window size, and

maximum allowable value maxS , and also by the amount of noise.

The PSNR criteria shows that the highest value is obtained when LDPC coding

is used, (classified as super quality) while the result of the Alpha-trimmed filter is the

second best among the three filters.

The contrast criteria shows that there is almost no change in contrast value

between the restored images and the original images for LDPC coding while some

change has been occurred for the restoration methods. The change in contrast is

increased by increasing the amount of noise but this increase is the last for LDPC

coding.

The brightness criteria also shows that LDPC coding is successful in the removal

of white Gaussian noise as for all set test images in all amounts of noise, the brightness

of restored images and the original images are almost the same. The second best result

is again using Alpha-trimmed filter in most cases. Note that sometimes the result of the

other two methods are too close to the brightness of the original image, not because they

have good quality of filtering but because the number of black pixels are too many as in

the moon image.

LDPC codes are slow compared to the other restoration methods. The reason is

the number of steps that the data has to go through for restoration, such as converting

the image data from decimal to binary numbers and then restoring them to the suitable

form that the encoder can use and restoring the restored data. It is believed those

simulation could be done in C language in much less time compared to Matlab

language. The efficiency of the written program could be improved for faster processing

time. (Note that no Matlab toolbox commands are used for the LDPC encoder and

decoder). A final factor affecting the LDPC codes is the amount of iterations needed for

decoding.

 106

Experimental results have shown that for LDPC coding, the presence of details

in the images never effected from white Gaussian noise and the accuracy of restoration

was 100% in the selected values of noise even when the other methods in most cases did

not perform well to the LDPC codes. The second best result in most comparison criteria

was for the Alpha-trimmed filter.

The performance of the system has been illustrated by the implementation using

the other database such as Lena image and Moon image observing that they are famous

for the researchers on topic of image processing field, which contains images with small

variations in illumination and orientation.

The efficiency of the method suggested in this thesis has been shown to have

100% filtering accuracy with high value of noise added.

5.4 Summary

The software application which was developed has been presented and demonstration of

applying the restoration methods has been shown.

Different restoration methods are applied to different images and all the

reconstructed images are analyzed using the comparison criteria in order to decide upon

the optimum restoration method.

Based on the work and analysis, the LDPC decoder is found to be the ideal

restoration method in this work.

The experimental results were also discussed in this chapter, which

demonstrated the successful implementation of the developed method.

 107

CONCLUSION

LDPC codes provide coding gains when used in communication systems. Due to their

iterative decoding structure, coding gains could be increased by increasing the number

of iterations of each block of data in the decoder, although the amount of noise

decreases by each of iterations. The LDPC decoder performance is also affected by the

size of the G and H matrices. Larger H sizes provide larger coding gains, but also

increase the latency of the overall system. For power-limited communication systems

where latency is a critical issue, it is desirable to have moderate good H and G size for

the encoder and decoder of LDPC codes with a reasonable number of decoder iterations.

LDPC codes are also known to provide significant gains for AWGN channels. LDPC

codes are currently being considered as part of a standard for future communication

systems such as in medical imaging, deep-space and multimedia.

Removing or eliminating the noise from image data is one of the difficult

problems. This thesis presents a system that corrects data in spatial domain using LDPC

error correction codes. The white Gaussian noise is removed from images without

affecting the pixel values. In order to analyze the accuracy and efficiency of this system,

the results are compared using various criteria to some of the well-known filters used

for image restoration.

The analysis criteria introduced can be used for the application of LDPC codes

to image transmission and restoration. The criteria consist of visual inspection as well as

theoretical computation. The results show better restoration of images using LDPC

codes. However, the delay introduced is substantially larger as compared to other

filtering techniques utilized.

The idea of future work for the presented work is to make the system dealing

with the 3 D images (colored) not only with images in grayscale dimension. Also, for

more flexibility, make the system work with bigger sizes of images.

The idea of future work also on LDPC error control codes is to give the

flexibility of the structure algorithms of LDPC codes to can be usable or dealing with all

kind of noise. Because they show efficient performance to correct the data corrupted as

the results of this work is shown.

 108

REFERENCES

[1] Couch II Leon W. (2007). Digital and Analog Communication Systems.

Seventh Edition. New Jersey, Prentice-Hall International.

[2] Barry, J. Lee, E. and Messerschmitt, D. (2003). Digital Communication. Third

Edition. Boston Kluwer Academic Publishers.

[3] Proakis J. and Salehi M. (2002). Communication Systems Engineering. New

Jersey, Prentice-Hall.

[4] Hendrix H. (2002). Viterbi Decoding Techniques. Application Report, Texas

Instruments.

[5] Pietrobon S.S. and Giles T. (1998). “Improving the constituent codes of turbo

encoders”. IEEE Global Telecommunications Conference, Sydney, Australia,

Vol. 6, pp. 3525-3529.

[6] Fan J. L. (2001). Constrained Coding and Soft Iterative Decoding. Boston

Kluwer Academic Publishers.

[7] Wicker S. B. (1995). Error Control Systems for Digital communication and

Storage. New Jersey, Prentice-Hall.

[8] Proakis J. Digital Communications. Third Edition. New York, McGraw-Hill.

[9] Berrou C., Glavieux A. and Thitimajshima P. (May 1993) “Near Shannon

Limit Error-Correcting Coding and Decoding: Turbo-Codes,” Proceedings of

ICC 1993, Geneva, Switzerland, pp. 1064-1070.

[10] Barry J. R., Lee E. A., and Messerschmitt D. G. (2003). Digital

Communication. Third Edition. Boston Kluwer Academic Publishers.

[11] Kim Jin Young, Poor H. Vincent (2001). “Turbo-Coded Optical Direct-

Detection CDMA System with PPM Modulation”. Journal of LightWave

Technology. VOL. 19, NO. 3, pp.312-323.

[12] Haykin S. (2001). Communication Systems. Fourth Edition. New York, John

Wiley & Sons.

[13] Gallager R. (1963). Low-Density Parity-Check Codes. Cambridge,

Massachusetts, MIT Press.

[14] Ryan W. (April 2001). An introduction to Low-Density Parity Check codes,

Lecture notes. University of Arizona.

 109

[15] Tanner R. M. (1981). “A recursive approach to low complexity codes”. IEEE

Trans. Inform. Theory, pp. 533-547.

[16] MacKay D. J. C. (1999). “Good error-correcting codes based on very sparse

matrices”. IEEE Trans. Inform. Theory. Vol. 45, pp. 399-431.

[17] Luby M. G., Mitzenmacher M., Shokrollahi M. A., and Spielman D. A. (1998).

“Analysis of low density codes and improved designs using irregular graphs”.

In Proc. of the 30th Annual ACM Symposium on the Theory of Computing,

pp. 249-258.

[18] Wiberg N. (1996). “Codes and decoding on general graphs”. Ph.D. dissertation,

University of Linköping, Sweden.

[19] Gonzalez Rafael C. and Woods Richard E. (2002). Digital Image Processing.

Second Edition. New Jersey, Prentice-Hall.

[20] Gonzalez Rafael C., Woods Richard E. and Eddins Steven L. (2004). Digital

Image Processing Using MATLAB. New Jersey, Prentice-Hall.

[21] University of Southern California, Signal and Image Processing Institute,

“Volume 3: Miscellaneous”, “http://sipi.usc.edu/database”, Retrieved

September 3, 2006.

[22] Christophe E., Leger D. And Mailhes C. (2005). “Comparison and Evaluation

of Quality Criteria for Hyperspectral Imagery”. In Proc. of the SPIE 17th

Annual Symposium of Electronic Imaging, pp.1-9.

[23] Khashman A. and Dimililer K. (2005), “Comparison Criteria for Optimum

Image Compression”, In Proc. of IEEE International Conference on 'Computer

as a Tool' (EUROCON'05), Serbia & Montenegro

http://www.eurocon2005.org.yu/�

 I-1

APPENDICES

Appendix I Matlab Source Code of AWGN Channel Simulation

%%%%%%%%% SIMULATION OF LDPC CODES OVER AWGN CHANNEL %%%%%%%%%%

% VARIABLES

clear all;clc; %Clean the previous results
m=256; %Number of rows
n=512; %Number of columns
max_iterations=100; %Maximum number of iterations
rate=(n-m)/n; %Rate of decoder

%LOADING OF CODING MATRICES

load ldpc256_512_gen.txt; %Load of A inverse B
load ldpc256_512_pchk.txt; %Load of H matrix
AinvB_256_256=ldpc256_512_gen; %
H_256_512=ldpc256_512_pchk; %
load codeword_order.txt; %Load of codeword order
cnt=1;
for i=1:26
 for j=1:20;

new_codeword_order(cnt)=codeword_order(i,j);%Sorting of codeword
 cnt=cnt+1;
 end
end
codeword_order_1_512=new_codeword_order(1:512);

%RANGE OF THE SIMULATION FOR NOISE VALUES

 SNR_db=0:0.5:2; %SNR range
for o=1:length(SNR_db) %Calculating of SNR
 disp('SNR');SNR_db(o) %
 SNR=10^(SNR_db(o)/10); %
 variance=1/(2*SNR*rate) %Calculating of Variance
 err=0; %
 DATA_SUM=0; %Initial value of errors
 while (err<1000) %Number of errors

 for i=1:(n-m) %
 original_data(i)=rand; %Random generate of data

 if (original_data(i)>0.5) %Normalizing the data
 original_data(i)=1; %
 else %
 original_data(i)=0; %
 end %
 end %

%ACTIVATION OF THE ENCODER

yi=ldpc_encoder(m,n,AinvB_256_256,codeword_order_1_512,original_data);

%CONSIDERATION OF AWGN CHANNEL
 DATA_SUM=DATA_SUM+256;
 for i=1:n

 I-2

 yi(i)=yi(i)+(sqrt(variance)*randn);%Function of AWGN channel
 end

%ACTIVATION OF THE DECODER

est_data=ldpc_decoder1(m,n,max_iterations,variance,yi,codeword_order_1
_512,H_256_512);

%ELIMINATING THE EXTRA MESSAGE BITS ADDED BY ENCODER

 for i=1:(n-m)
 if(original_data(i)~=est_data(codeword_order_1_512(m+i)+1))
 err=err+1;
 end
 end

 err
 end

 %CALCULATING OF BER

 ber(o)=err/DATA_SUM
 q(o)=0.5*erfc(sqrt(SNR));
end

%VARIABLES FOR PLOTING GRAPH

semilogy(SNR_db,ber,'-',SNR_db,q,'--')
title('AWGN channel')
xlabel('S/N(dB)'),ylabel('BER')
legend('AWGN','LDPC AWGN')
grid
set(gca,'XTick',[0;0.5;1;1.5;2])
axis([0 2 10e-5 1])

%%%%%%%%%%%%%%%%%%%%% LDPC ENCODER %%%%%%%%%%%%%%%%%%%%

%FUNCTION TO CALL THE ENCODER

function codeword=ldpc_encoder(m,n,AinvB,codeword_order,s_tx)
%MULTIBLICATION OF ORIGINAL DATA BY AINV B
c_tx=rem(AinvB*s_tx',2); % Applying the binary mult.for c_tx
x_tx=[c_tx' s_tx]; % putting the x_tx in a new form

%NORMALIZING OF NEW MATRIX

for (i=1:n) %
 if (x_tx(i)==1) %
 x_tx(i)=-1; % converting the c_tx to 1 or -1
 else %
 x_tx(i)=1; %
 end %
end %

%ARRANGING THE DATA ACCORDING TO CODEWORD

for i=1:n %
 for j=1:n %
 if (codeword_order(j)==(i-1)) % Arranging the data
 codeword(i)=x_tx(j); %

 I-3

 end %
 end %
end %

%%%%%%%%%%%%%%%%%%%%%% LDPC DECODER %%%%%%%%%%%%%%%%%%%

%FUNCTION FOR CALLING LDPC DECODER

Function c_est=ldpc_decoder1(n,z,max_iterations,d,yi,codeword_order,
H)
% LDPC matrix
 H1= H'; % transpose of LDPC matrix

%VARIABLES

 qr=1; %initial value for qij(1)needed to calculate rji(0)
 rji=1; %initial value for rji(0)needed to calculate qij(0)
 excl=1;
 coun=0; %initial value for a counter needed to verify that c*H'=0
 c1=[];
 k=[];
 L=[];
 qs=[];
 iteration=0;

% FIRST STEP: TO FIND INITIALIZED CODE qij(0)

 x=1+exp(2*yi./d);
 qij=x.^(-1); %initialized code
 for i=1:z
 qs=[qs;qij]; %loop to put qij(1)in zxn matrix so that
rji(0)can be obtained
 end
 qu=qs; %initial value for qo1(Ki)
 for i=1:n
 c1=[c1,1]; %initial value of c*H'
 end
while iteration~=max_iterations %program's loop

% SECOND STEP: TO FIND rji(0)

 for i=1:n
 a=[];
 x=0;
 for j=1:z
 if H(i,j)==1
 m=[i,j];
 k=[k;m];%finding how many ones and their coordinates in H matrix
 a=[a,j];%columns number of each element equals to one in a certain row
 x=x+1; %number of elements equal to one in a certain row
 end
 end
 excl=1; %excluding operation
 for t=1:x %
 s=zeros(1,x); %
 index=1; %
 for m=1:x %
 qr=1;
 if (m~=excl) %
 s(index)=m; %

 I-4

 index=index+1; %
 end %
 if index==x
 for g=1:(x-1)
 qr=qr*(1-2*qu(i,a(s(g)))); %qij(1)used in an iteration
 end
 r(i,a(t))=0.5+0.5*qr; %rji(0)
 wes=isinf (r(i,a(t)));
 mur=isnan (r(i,a(t)));
 if r(i,a(t))<1e-15
 r(i,a(t));
 %disp zero1
 else if (mur==1)
 r(i,a(t));
 %disp Not-a-Number1
 else if (wes==1)
 r(i,a(t))=0.9999;
 %disp infinty1
 else if r(i,a(t))==1
 r(i,a(t))=0.9999;
 %disp one1
 end
 end
 end
 end
 if r(i,a(t))<=(1e-15)
 r1(i,a(t))=0.9999;
 else
 r1(i,a(t))=1-r(i,a(t)); %rji(1)
 end
 end
 end

 s;
 excl=excl+1;
 end
 end
 k=[]; %re initializing k

% THIRD STEP: TO FIND qij(0) BY USING rji(0)

 for i=1:z
 a=[];
 x=0;
 for j=1:n
 if H1(i,j)==1
 m= [i,j];
 L=[L;m];%finding how many ones and their coordinates in H' matrix
 a=[a,j];%rows number of each element equals to one in a certain column
 x=x+1; %number of elements equal to one in a certain row
 end
 end
 excl=1; %excluding operation
 for t=1:x %
 s=zeros(1,x); %
 index=1; %
 for m=1:x %
 rji=1;
 rji1=1;
 if (m~=excl) %

 I-5

 s(index)=m; %
 index=index+1; %
 end %

 if index==x
 for g=1:(x-1)
 rji=rji*r(a(s(g)),i); %rji(0)
 rji1=rji1*r1(a(s(g)),i); %rji(1)
 end
 if rji==1
 q(i,a(t))=(1-qs(a(t),i)); %qij(0)
 else
 q(i,a(t))=(1-qs(a(t),i))*(rji); %qij(0)
 end
 wes=isinf (q(i,a(t)));
 mur=isnan (q(i,a(t)));
 if q(i,a(t))<1e-15
 q(i,a(t));
 %disp zero2
 %q(i,a(t))
 else if (mur==1)
 q(i,a(t));
 %disp Not-a-Number2
 else if (wes==1)
 q(i,a(t))=0.9999;
 %disp infinty2
 else if q(i,a(t))==1
 q(i,a(t))=0.9999;
 %disp one2
 end
 end
 end
 end
 if rji1==1
 q1(i,a(t))=qs(a(t),i); %qij(1)
 else
 q1(i,a(t))=qs(a(t),i)*(rji1); %qij(1)
 end
 wes=isinf (q1(i,a(t)));
 mur=isnan (q1(i,a(t)));
 if q1(i,a(t))<1e-15
 q1(i,a(t));
 %disp zero3
 %q1(i,a(t))
 else if (mur==1)
 q1(i,a(t));
 %disp Not-a-Number3
 else if (wes==1)
 q1(i,a(t))=0.9999;
 %disp infinty3
 else if q1(i,a(t))==1
 q1(i,a(t))=0.9999;
 %disp one3
 end
 end
 end
 end
 qo0(i,a(t))=q(i,a(t))/(q(i,a(t))+q1(i,a(t))); %Ki for qij(0)
 qo1(i,a(t))=q1(i,a(t))/(q(i,a(t))+q1(i,a(t))); %Ki for qij(1)
 end

 I-6

 end
 s;
 excl=excl+1;
 end
end
L=[]; %re initializing L

%FORTH STEP DETERMINING Qi(0)

 for i=1:z
 rji=1;
 rji1=1;
 for j=1:n
 if r(j,i)~=0
 rji=rji*r(j,i); %rji(0)
 rji1=rji1*r1(j,i); %rji(1)
 end
 end
 Q(i)=(1-qs(j,i))*rji; %Qi(0)
 Q1(i)=qs(j,i)*rji1; %Qi(1)
 Qo0(i)=Q(i)/(Q(i)+Q1(i)); %Ki of Qi(0)
 Qo1(i)=Q1(i)/(Q(i)+Q1(i)); %Ki of Qi(1)
 end

%FIFTH STEP THE ORIGINAL CODE

 for i=1:z
 if Qo1(i)>0.5
 c(i)=1;
 else
 c(i)=0;
 end
 end
 qu=qo1';
 iteration=iteration+1;
 c1=rem(c*H1,2); %cxH'
 coun=[0];
 for j=1:n %
 if c1(j)==0 %check if c*H'=0
 coun=coun+1; %
 end %
 end %
 if coun==n %
 iteration=max_iterations; %
 end
end
c_est=c;

 II-1

Appendix II Matlab Source Code of Image Filtering Simulation

%%%%%% PROGARM FOR PRESENTING THE IMAGE DATA TO LDPC ENCODER %%%%%%

function TOTAL_BLOCKS=PreEncodingProcess(A)
TOTAL_BLOCKS=[]; %INITIAL VALUE OF BLOCKS MATRIX
x=0; %
y=0; %INITIAL VALUES
z=32; %
Data =de2bi(double(A),8);%CONVERSION IMAGE DATA FROM DECIMAL TO BINARY
for i=1:2048 %NUMBER OF BLOCKS
 Block=[]; %
 x=y+1; %
 y=y+z; %
 for j=x:y %
 for n=1:8 %
 B=Data(j,(9-n)); %
 Block=[Block B]; %CONSTRUCTED BLOCK
 end %
 end %
 TOTAL_BLOCKS=[TOTAL_BLOCKS; Block]; %ALL BLOCKS MATRIX
end %ENDING PROCESS

%%%%%% % PROGRAM TO APPLAYING THE WGN OVER PIXELS OF IMAGES %%%%%%%

%VARIABLES

clear all,clc;
starttime = cputime;
m=256; %number of rows
n=512; %number of columns
max_iterations=100; %maximum number of iterations
rate=(n-m)/n;
variance=1;

%LOADING THE MATRICES

load ldpc256_512_gen.txt;
load ldpc256_512_pchk.txt;
AinvB_256_256=ldpc256_512_gen;
H_256_512=ldpc256_512_pchk;
%SORTING OF CODE WORD
load codeword_order.txt;
cnt=1;
for i=1:26
 for j=1:20;
 new_codeword_order(cnt)=codeword_order(i,j);
 cnt=cnt+1;
 end
end

codeword_order_1_512=new_codeword_order(1:512);

%CALCULATION VALUE OF SNR

SNR_db=5;
 disp('SNR');
 SNR=10^(SNR_db/10);
 variance=1/(2*SNR*rate)

 II-2

load ldpc256_512_gen.txt;
load ldpc256_512_pchk.txt;

AinvB_256_256=ldpc256_512_gen;
H_256_512=ldpc256_512_pchk;

%INSERTING THE IMAGE

A = imread('Lena_','tiff'); %IMAGE AQUISITION
%CALLING DATA PREPERING PROGRAM
Blocks=PreEncodingProcess(A);
for i=1:2048
 original_data = Blocks(i,:);

%CALLING THE LDPC ENCODER

yi=ldpc_encoder(m,n,AinvB_256_256,codeword_order_1_512,original_data);
%APPLAYING WGN NOISE
 for j=1:n
 yi(j)=yi(j) + (sqrt(variance)*randn);
 end

%CALLING THE LDPC DECODER

est_data=ldpc_decoder1(m,n,max_iterations,variance,yi,
codeword_order_1_512,H_256_512);
final_est=est_data(codeword_order_1_512(m+(1:(n-m)))+1);
TOTAL_BLOCKS(i,:)=final_est;
end

%CALLING THE PROGRAM FOR CONVERTING THE FILTERED DATA TO PIXEL VALUES

Reconstructed_Image=AfterDecodingProcess(TOTAL_BLOCKS)
%SHOWING THE RECONSTRUCTED IMAGE BY LDPC SYSTEM
figure,imshow(Reconstructed_Image),title('Reconstructed Lena Image')%
Test_time =cputime - starttime;
disp(sprintf('CPU PROCESSING TIME = %5.4f Second',Test_time))

%%%%%%%%%%%% PROGRAM TO RECONSTRUCT DECODED IMAGE %%%%%%%%%%%

function Reconstructed_Image= AfterDecodingProcess(TOTAL_BLOCKS)
%VARIABLES
decoded_matrix=[]; %
for i=1:2048 %
x=1; %
y=8; %
z=8; %
 while x<257 %
 decoded_row=[]; %
 for j=x:y %
 decoded_element=TOTAL_BLOCKS(i,j); %
 decoded_row=[decoded_row decoded_element]; %Converting the data
from binary to decimal
 end %
 decoded_matrix=[decoded_matrix; decoded_row]; %
 x=y+1; %
 y=y+z; %
 end %
end %

 II-3

Pixels=bi2de(decoded_matrix,'left-msb'); %
Primary_Result=[]; %
x=0; %
y=0; %
z=256; %
for i=1:256 %Sorting the data in image size
 Image_row=[]; %
 x=y+1; %
 y=y+z; %
 for j=x:y %
 pixel=Pixels(j); %
 Image_row=[Image_row pixel]; %
 end %
 Primary_Result=[Primary_Result; Image_row]; %
end %
Img=Primary_Result'; %
Reconstructed_Image = uint8(Img); %

%%%%%% PROGRAM FOR IMPLIMENTING CHOSEN OTHER THREE FILTERS %%%%%%%%

clear all,clc;
 starttime = cputime;
 I = imread('Moon Image','tiff');
 J = imnoise(I,'gaussian',0,0.09);

 figure, IMshow(I)
 image([],[],I),title('Original Moon Image')
 figure, IMshow(J)
 image([],[],J),title('Noisily Image with Gaussian Variance=0.09')

 Test_time =cputime - starttime;
 disp(sprintf('CPU PROCESSING TIME = %5.4f Second',Test_time))

%%%%%%%%%%%%%%%%%%% HARMONIC MEAN FILTER %%%%%%%%%%%%%%%%
 starttime = cputime;
 A = SPFILT(J,'hmean',3,3);
 figure, IMshow(A)
 image([],[],A),title('Filtered Image by Harmonic Mean Filter')
 Test_time =cputime - starttime;
 disp(sprintf('CPU PROCESSING TIME = %5.4f Second',Test_time))

%%%%%%%%%%%%%%%%%%% ALPHA-TRIMMED FILTER %%%%%%%%%%%%%%%%%
 starttime = cputime;
 B = SPFILT(J,'atrimmed',3,3,2);
 figure, IMshow(B)
 image([],[],B),title('Filtered Image by Alpha-trimmed Filter')
 Test_time =cputime - starttime;
 disp(sprintf('CPU PROCESSING TIME = %5.4f Second',Test_time))

%%%%%%%%%%%%%%%%%%% ADAPTIVE MEDIAN FILTER %%%%%%%%%%%%%%%
 starttime = cputime;
 C = adpmedian(J,7);
 figure, IMshow(C)
 image([],[],C),title('Filtered Image by Adaptive Median Filter')
 Test_time =cputime - starttime;
 disp(sprintf('CPU PROCESSING TIME = %5.4f Second',Test_time))
%%%%%%%%% CALCULATING PSNR FOR OUTPUT IMAGE FOR EACH FILTER %%%%%%%

 %error = I - A;
 error = double(I) - double(A);
 decibels = 20*(log10(255./(sqrt((1/256^2)*(sum(sum(error.^2)))))));
 disp(sprintf('PSNR = +%5.4f dB',decibels))

 %error = I - B;
 error = double(I) - double(B);

 II-4

decibels = 20*(log10(255./(sqrt((1/256^2)*(sum(sum(error.^2)))))));
disp(sprintf('PSNR = +%5.4f dB',decibels))

%error = I - C;
error = double(I) - double(C);
decibels = 20*(log10(255./(sqrt((1/256^2)*(sum(sum(error.^2)))))));
disp(sprintf('PSNR = +%5.4f dB',decibels))

%%%%%%% PROGRAM FOR CALCULATING BRIGHTNESS AND CONTRAST %%%%%%

FIL = A;
FILB= double(FIL);
k=0;
N=0;
b=0;
M=0;
for i=1:256
 for j=1:256
 if FILB(i,j)>128
 FILB(i,j);
 k=k + FILB(i,j);
 N=N+1;
 else
 b=b+FILB(i,j);
 M=M+1;
 end
 end
end
whitest=k/N;
Darkest=b/M;
Contrast_A=whitest-Darkest
Brightness_A=mean(mean(FIL))

	CHAPTER 1 Communication System Overview
	1.1 Overview
	1.2 Digital Communication Systems
	1.2.1 Channel Encoder
	1.2.2 Modulator
	1.2.3 Communication Channels
	1.2.4 Demodulator
	1.2.5 Channel Decoder

	1.3 Error Control Codes
	1.3.1 Linear Block Codes
	1.3.1.1 Generator and Parity Check Matrices:
	1.3.1.2 Hamming Codes

	1.3.2 Convolutional Codes
	1.3.2.1 Convolutional Encoder
	1.3.2.2 Convolutional Decoder
	1.3.2.3 The Viterbi Algorithm

	1.3.3 Turbo Codes
	1.3.3.1 Turbo Encoder and Decoder

	1.3.4 Cyclic Codes

	1.4 Summary

	CHAPTER 2 Low–Density Parity–Check Codes and Decoding Algorithms
	2.1 Overview
	2.2 Introduction to LDPC Codes
	2.3 Graph Theory
	2.4 LDPC
	2.5 Code Design
	2.5.1 Gallager Codes
	2.5.2 MacKay Codes

	2.6 Encoding
	2.6.1 Generic Encoding

	2.7 Decoding Algorithms
	2.7.1 Message-Passing Decoding Algorithms
	2.7.2 Probability Decoding Algorithm
	2.7.3 Logarithmic Probability Decoding Algorithm
	2.7.4 Other Decoding Algorithms

	2.8 LDPC Code Performance in AWGN Channel Model
	2.9 Summary

	CHAPTER 3 Image Restoration Techniques
	3.1 Overview
	3.2 Background
	3.3 Spatial Filtering
	3.4 Smoothing Spatial Filters
	3.4.1 Smoothing Linear Filters
	3.4.2 Order-Statistics Filters

	3.5 A Model of the Image Degradation/Restoration Process
	3.6 Noise Models
	3.6.1 Spatial and Frequency Properties of Noise
	3.6.2 Gaussian Noise

	3.7 Restoration in the Presence of Noise Only-Spatial Filtering
	3.7.1 Mean Filters
	3.7.1.1 Arithmetic Mean Filter
	3.7.1.2 Geometric Mean Filter
	3.7.1.3 Harmonic Mean Filter
	3.7.1.4 Contraharmonic Mean Filter

	3.7.2 Order-Statistics Filters
	3.7.2.1 Median Filter
	3.7.2.2 Max and Min Filters
	3.7.2.3 Midpoint Filter
	3.7.2.4 Alpha-trimmed Mean Filter

	3.7.3 Adaptive Filters
	3.7.3.1 Adaptive, Local Noise Reduction Filter
	3.7.3.2 Adaptive Median Filter

	3.8 Summary

	CHAPTER 4 Methodology
	4.1 Overview
	4.2 Comparison Criteria
	4.2.1 PSNR Values
	4.2.2 Contrast
	4.2.3 Brightness
	4.2.4 Processing Time
	4.2.5 Visual Inspection

	4.3 System Structure and Design
	4.3.1 Data Representation
	4.3.2 Data Encoding
	4.3.3 Data Decoding

	4.4 Prerequisites of the System
	4.4.1 Image Acquisition
	4.4.2 Initial Parameters
	4.4.3 Database Collection

	4.5 Software Tools (MATLAB)
	4.6 Summary

	CHAPTER 5 Results and Analysis
	5.1 Overview
	5.2 Experimental Results
	5.2.1 Images Database
	5.2.2 Comparison of Methods Using PSNR Values
	5.2.3 Comparison of Methods Using Contrast Criteria
	5.2.4 Comparison of Methods Using Brightness
	5.2.5 Comparison of Methods Using Processing Time

	5.3 Analysis and Discussion
	5.4 Summary
	Appendix I Matlab Source Code of AWGN Channel Simulation
	Appendix II Matlab Source Code of Image Filtering Simulation

