
•

NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

CUSTOMER RELATIONSHIP MANAGEMENT

Graduation Project

COM 400

Student: Evrim KAKi

Supervisor : Assist.Prof.Dr. Elbus IMANOV

Nicosia - 2008

ACKNOWLEDGMENTS
•

"First, I would like to thank my supervisor Assis.prof Dr. Elbus lmanov for his invaluable

advice and belief in my work and myself over the course of this Graduation Project ..

Second, I would like to express my gratitude to Near East University for the scholarship that

made the work possible.

Third, I thank my family for their constant encouragement and support during the preparation

of this project.

Fourth, I would like to thank Neu Computer Engineering Department academicians for their

invaluable advice and support.

Finally, I would also like to thank my friend Alp SOYDAN for his advice and support."

TABLE OF CONTENTS ••

ACKNOWLEDGEMENT
TABLE OF CONTENTS
ABSTRACT
INTODUCTION
CHAPTER ONE - DELPHI PROGRAMMING LANGUAGE

1.1 A brief history of Borland's Delphi
1.2 Delphi For Beginners:
1.3 A Glossary of Delphi Programming Technical Terms
1.4 Understanding Delphi Project Files (.DPR)

1.4.1 New: Delphi Project
1.4.2 Project File
1.4.3 Project Unit
1.4.4 An Example: Hide Main Form I Hide Taskbar Button

1.5 Understanding the Birth, Life and Death of a Delphi Form
1.6 Understanding and Using Functions and Procedures
1. 7 Understanding and Using Loops
1.8 Understanding Typed Constants in Delphi
1.9 Running Delphi Applications With Parameters

ii
iii
1
2
2
4
6

20
20
20
21
22
23
26
33
37
40

CHAPTER TWO - MICROSOFT ACCESS DATABASE
2.1 Microsoft Access Database Fundamentals

2.2 Microsoft Access Reports Tutorial

2.3 Creating a Simple Query in Microsoft Access

2.4 Creating Forms in Microsoft Access
2.5 How do I encrypt an Access 2007 database?

CHAPTER THREE - USER'S MANUAL
CONCLUSION
REFERENCES
APPENDIX

43
43

46

51

56
59

60
72
73
74

ii

•
ABSTRACT

CRM, or Customer Relationship Management, is a company-wide business

strategy designed to reduce costs and increase profitability by solidifying customer

ovartv, True CRM brings together information from all data sources within an
ganization (and where appropriate, from outside the organization) to give one,

olistic view of each customer in real time. This allows customer facing employees in
such areas as sales, customer support, and marketing to make quick yet informed

decisions on everything from cross-selling and upselling opportunities to target

marketing strategies to competitive positioning tactics.

Once thought of as a type of software, CRM has evolved into a customer-centric

philosophy that must permeate an entire organization. There are three key elements
to a successful CRM initiative: people, process, and technology. The people

throughout a company-from the CEO to each and every customer service rep-need

to buy in to and support CRM. A company's business processes must be

reengineered to bolster its CRM initiative, often from the view of, How can this

process better serve the customer? Firms must select the right technology to drive

these improved processes, provide the best data to the employees, and be easy
enough to operate that users won't balk. If one of these three foundations is not

sound, the entire CRM structure will crumble.

It's a strategy used to learn more about customers' needs and behaviors in order to

develop stronger relationships with them. After all, good customer relationships are at

the heart of business success. There are many technological components to CRM,

but thinking about CRM in primarily technological terms is a mistake. The more useful

way to think about CRM is as a process that will help bring together lots of pieces of
information about customers, sales, marketing effectiveness, responsiveness and

market trends.

iii

INTRODUCTION •

Computer programming (often shortened to programming or coding) is the

process of writing, testing, debugging/troubleshooting, and maintaining the source

code of computer programs. This source code is written in a programming language.

The code may be a modification of an existing source or something completely new,

the purpose being to create a program that exhibits a certain desired behavior

(customization). The process of writing source codes requires expertise in many
different subjects, including knowledge of the application domain, specialized

algorithms, and formal logic.

There is an ongoing debate on the extent to which the writing of programs is

an art, a craft or an engineering discipline. Good programming is generally

considered to be the measured application of all three, with the goal of producing an

efficient and maintainable software solution (the criteria for "efficient" and

"maintainable" vary considerably). The discipline differs from many other technical

professions in that programmers generally do not need to be licensed or pass any

standardized (or governmentally regulated) certification tests in order to call

themselves "programmers" or even "software engineers".

The aim of this project is to develop a simple Customer Relationship
Management System for small companies. The project consists of introduction.three
chapters and conclusion.

Chapter One; describes the main lines of Borland Delphi Programming
Language such as reserved words, simple codes, methods and basic events.

Chapter Two; describes general terms of Microsoft Access Database and the
processes of creating a database.

Chapter Three; is the User's Manual of the program that gives information
about the system developed as Customer Relationship Management System.

1

CHAPTER ONE - DELPHI PROGRAMMING LANGUAGE •

A brief history of Borland's Delphi

Pascal
Delphi uses the language Pascal, a third generation structured language. It is what is

called a highly typed language. This promotes a clean, consistent programming style,

and, importantly, results in more reliable applications. Pascal has a considerable

eritage:

Beginnings

Pascal appeared relatively late in the history of programming languages. It probably

benefited from this, learning from Fortran, Cobol and IBM's PL/1 that appeared in the
early 1960's. Niklaus Wirth is claimed to have started developing Pascal in 1968, with a

first implementation appearing on a CDC 6000 series computer in 1970.

Curiously enough, the C language did not appear until 1972. C sought to serve quite

different needs to Pascal. C was designed as a high level language that still provided

e low level access that assembly languages gave. Pascal was designed for the

evelopment of structured, maintainable applications.

The 1970's
In 1975, Wirth teamed up with Jensen to produce the definitive Pascal reference book

"Pascal User Manual and Report". Wirth moved on from Pascal in 1977 to work on

Modula - the successor to Pascal.

The 1980's
In 1982 ISO Pascal appears. The big event is in November 1983, when Turbo Pascal
· released in a blaze of publicity. Turbo Pascal reaches release 4 by 1987. Turbo

ascal excelled on speed of compilation and execution, leaving the competition in its

e.

2

•
From Turbo Pascal to Delphi

Delphi, Borland's powerful Windows? and Linux? programming development tool first

appeared in 1995. It derived from the Turbo Pascal? product line.

As the opposition took heed of Turbo Pascal, and caught up, Borland took a gamble on

an Object Oriented version, mostly based on the Pascal object orientation extensions.

The risk paid off, with a lot of the success due to the thought underlying the design of the

IDE (Integrated Development Environment), and the retention of fast compilation and

execution.

This first version of Delphi was somewhat limited when compared to today's
heavyweights, but succeeded on the strength of what it did do. And speed was certainly

a key factor. Delphi went through rapid changes through the 1990's.

Delphi for Microsoft .Net

From that first version, Delphi went through 7 further iterations before Borland decided to

embrace the competition in the form of the Microsoft? .Net architecture with the
stepping stone Delphi 8 and then fully with Delphi 2005 and 2006. Delphi however still

remains, in the opinion of the author, the best development tool for stand alone Windows

and Linux applications. Pascal is a cleaner and much more disciplined language than

Basic, and adapted much better to Object Orientation than Basic.

3

A new direction

Delphi is now provided by a development tools only company.

Delphi For Beginners:

Your guide will try to explain exactly what is Delphi and what can it do for you.

Dateline: 1999

Preparations.
First of all, I will presume that you know what computers are, what can you do with them,

' and finally what does programming mean, in general. It would also be great if you

already have basic knowledge of programming (Pascal perhaps?).

If this is not true, you wouldn't be here anyway (am I right?). I'll be very glad if I'm not!

So sit back, relax and enjoy reading this article.

Delphi
Borland Delphi is a development tool for Microsoft Windows applications. Delphi is

powerful and easy to use tool for generating stand-alone graphical user interface (GUI)

programs or 32-bit console applications (programs that have no GUI presence but

instead run in what is commonly referred to as a "DOS box.")

When paired with Borland Kylix, Delphi users can build single-source applications for

both Windows and Linux, which opens new opportunities and increases the potential

return on development investments. Use the Cross-platform CLX component library and

visual designers to build high-performance portable applications for Windows that can be

easily re-compiled on Linux.

Delphi is the first programming language to shatter the barrier between high-level, easy

to-use rapid application development environments and low-level bits-and-bytes power

tools.

When creating GUI applications with Delphi, you have all the power of a true compiled

programming language (Object Pascal) wrapped up in a RAD environment. All the

common parts of the Windows graphical user interface, like forms, buttons and lists

4

objects, are included in Delphi as components. This mean~ that you don't have to write

any code when adding them to your application. You simply draw them onto your form

like in a paint program. You can also drop ActiveX controls on forms to create

specialized programs such as Web browsers in a matter of minutes. Delphi allows the

developer to design the entire interface visually, and quickly implement an event driven

code with the click of the mouse.

Delphi ships in a variety of configurations aimed at both departmental and enterprise

needs. With Delphi, you can write Windows programs more quickly and more easily than

was possible ever before.

Pascal
The best way of describing Delphi is an Object Pascal-based visual development

environment. Delphi's environment is based on Object Pascal, a language that is as

object oriented as C++, and in some cases, better. For developers with no Pascal
experience, its templates for Pascal program structures speed the process of learning

the language.

The compiler produces applications packaged in compact executable files, with no need

for bulky runtime libraries (DLL's)-a notable benefit, I must say.

VCL
Visual Component Library (self-contained binary piece of software that performs some
specific predefined function), or VCL, is Delphi's object-oriented framework. In this rich

library, you'll find classes for Windows objects such as windows, buttons, etc, and you'll

also find classes for custom controls such as gauge, timer and multimedia player, along

with non-visual objects such as string lists, database tables, and streams.

Databases
Delphi can access many types of databases. Using forms and reports that you create,

the BOE (Borland Database Engine) can access local databases, like Paradox and

DBase, network SQL server databases, like lnterBase, and SysBase, and any data

source accessible though ODBC (open database connectivity).

5

•

Hello World!
At the end let's see one of the smallest Delphi applications: the famous 'Hello World!'

program.

This example is not for beginners - there is no main form of application or something like

that. This is only a demonstration. In some of the future articles I will focus on topics like

Delphi for Beginners - How to get started .

. ,program HelloWorld;

uses dialogs;
begin

:I ShowMessage('Hello World!');
end.

HeHo \.II orld!

I[-"''" Ok- ~, - Tl

A Glossary of Delphi Programming Technical Terms
Definitions of terms having to do with Delphi programming, Pascal, OOP, BOE and

programming in general

"Self'
Definition: Within the implementation of a method, the identifier Self references the

object in which the method is called.

type
TCar = Class
color : TColor;
procedure ChangeColor(newColor: TColor);

end;

procedure TCar.ChangeColor(newColor: TColor);
begin
//self is "this" instance

6

Self.color := newColor;

end;
•

In class methods the identifier Self represents the class where the method is called.

"Constructor"
Definition: A constructor is a special method that creates and initializes instance

objects. The declaration of a constructor looks like a procedure declaration, but it

begins with the reserved word constructor.

A class can have more than one constructor, but most have only one. It is

conventional to call the constructor Create.

To create an object, call the constructor method on a class type.

type
TCar = Class
constructor Create;
end;

car:= Tear.Create;

"Reserved Word"
Definition: A special word reserved by a programming language or by a program.

You are not allowed to use reserved words as variable names.

A partial list of Delphi reserved words:

• and

• array

• as

• asm
• begin

7

• case •
• class

• con st

• constructor

• destructor

• dispinterface

• div

• do

• downto

• else

• end

• except

• exports

• file

• finalization

• finally

• for

• function

• goto

• if

• implementation

• in

• inherited

• initialization

• interface

• in

• is

• library

• nil

• not

• object

• of

• or

• out

8

• packed
•

• procedure

• program

• property

• raise

• record

• repeat

• re sou rcestri ng

• set

• string

• then

• to

• try

• type

• unit

• until

• uses

• var

• while

• with

In addition to the words above, private, protected, public, published, and automated

act as reserved words within object type declarations, but are otherwise treated as

directives.

"Class Method"
Definition: A class method is a method that operates on classes instead of objects.

The definition of a class method must begin with the reserved word class.

The most common used class method in Delphi language is the "Create" constructor.

In the defining declaration of a class method, the identifier Self represents the class

where the method is called (which could be a descendant of the class in which it is

9

defined). If the method is called in the class TCar, then Self is of the type class of
•

TCar.

"Method"
Definition: Procedure or function (routine) associated with a particular object.

Different classes may define methods with the same name (Car.Drive or

Scooter.Drive).

Most methods operate on objects that are instances of a certain class.

A class method is a method (other than a constructor) that operates on classes

instead of objects.

A call to a method specifies the object (or, if it is a class method, the class) that the

method should operate on.

Examples:

type
TCar = Class
I/method procedure

procedure Drive;
//method (function)

function ChangeGear(newGear : integer) ;

end;

"Object"
Definition: An object is a variable of class. More generally, a variable of any type.

An instance of a class or object, is a self-contained entity that consists of both

properties, events and methods to manipulate the data.

Each object has its own values for the instance variables of its class and can respond

to the methods as wel as raise events defined by its class.

10

Also Known As: Instance variable
•

"Canvas"
Definition: Canvas is the graphical drawing surface of an object. The canvas has a

brush, a pen, a font, and an array of pixels. The canvas encapsulates the Windows

device context.

In Delphi, the TCanvas class provides an abstract drawing space for objects that

must render their own images.

"Class"
Definition: A list of features representing data and associated code assembled into

single entity. A class includes not only features listed in its definition but also features

inherited from ancestors.

The terms class and type are usually (but not always) interchangeable; a class is a

slightly different concept that a type, in that it emphasizes the classifications of

structure and behavior.

Classes are related in a class hierarchy. One class may be a specialisation (a

"subclass") of another (one of its "superclasses"). A class may be an abstract class

or a concrete class.

The Visual Component Library (CVL) is a class hierarchy of Delphi components and

object types.

Also Known As: Object Type

Examples:

type
TCar = Class
Year: integer;

Color : TColor;

end;

11

"Run Time" •
Definition: Run time is any time you are actually running the application in the
operating system and interacting with the application as the user would.

In Delphi, "dynamically creating ... " means "creating at run-time".

"RTL"
Definition: The raw power of Delphi is based on a considerable amount of its Run

Time Library functions and procedures.

RTL is the collection of functions and procedures that are built into Delphi.

Also Known As: Run Time Library; VCL Routines

"Routine"
Definition: Self-contained statement blocks that can be called from different locations

in a program. In Delphi: function or procedure.

Also Known As: Subroutine

"Recursion "
Definition: Recursion is a very simple, yet useful and powerful programmer's tool. As

we know, routines can, and frequently do, call other routines.

A routine that activates/calls itself is called recursive. Recursion is a general method

of solving problems by reducing them to simpler problems of a similar type.

A recursive subroutine constantly calls itself, each time in a simpler situation, until it

gets to the trivial case, at which point it stops.

"Procedure"
Definition: A procedure is a routine that does not return a value (unlike a function).

Procedure header gives the name of a procedure followed by a list of formal

parameters.

12

In a unit, a routine may have a header declared in the interface part, and then again
•

in the implementation part. The second appearance of the header may be an exact
duplicate of the header in the interface part, or may be only the name of the routine.

Examples: [blockquote shade=yes] procedure TestMe(parameter: TCustomType[br]

begin[br] ... end; [/blockquote]_z_delphi_z_);

"Pointer"

Definition: A pointer is a variable that holds the address of another variable (or

routine) in memory.

A pointer can be used to indirectly manipulate the object.

"Parameter"

Definition: Represents one value that is supplied by one function (the calling function)

that wishes to make use of the services of another function (the called function).

In Delphi, every parameter is classified as value, variable, constant, or out.

Also Known As: Argument

Examples: [blockquote] "year" and "name" are parameters for the "TestMe" function

procedure TestMe(const year: integer; var name : string) ; [/blockquote]

"OLE"

Definition: OLE is a compound document standard developed by Microsoft

Corporation. It enables you to create objects with one application and then link or

embed them in a second application. Embedded objects retain their original format

and links to the application that created them.

With OLE, data from a server application is stored in a container application. The

data is stored in an OLE Object.

Also Known As: Object Linking and Embedding

13

"MDI" •
Definition: A Windows API that enables programmers to easily create applications

with multiple windows.

Each MDI application has a single main (frame) window, and any number of child

windows (documents). All child windows are displayed within the main window - this

is common in applications such as spreadsheets or word processors.
The child window's document title merges with the parent window's title bar when the

child window is maximized.

/ I Although many programmers still use MDI, Microsoft recommends using a newer API

called Single Document Interface (SDI).

Also Known As: Multiple Document Interface

"IDE"

Definition: IDE (Integrated Development Environment) is the user interface (GUI)

where you can design, compile and debug your Delphi projects.

Also Known As: Integrated Development Environment

"GUI"

Definition: A GUI (usually pronounced GOO-ee) is a graphical (rather than purely

textual) user interface to a computer.

Applications typically use the elements of the GUI that come with the operating

system and add their own graphical user interface elements and ideas. When

creating an application, Delphi facilitate writing a graphical user interface.

Each GUI element (for example a Button or an EditBox) is defined as a class from

which you can create object instances for your application.

Also Known As: Graphical User Interface

Alternate Spellings: goo-ee

14

"Function" •
Definition: A function is a routine that returns a value when it executes.

It can be passed and it can return a value. Functions that are part of a class are

usually called methods.

You can code your own functions or use built-in functions provided by Delphi RTL

(run time library).

Examples:

function YearsOld(const BirthYear:integer): integer;

var
Year, Month, Day: Word;

begin
DecodeDate(Date, Year, Month, Day);

Result:= Year - BirthYear;

end;

"Freeware"
Definition: Copyrighted software given away for free by the author. Although it is

available for free, the author retains the copyright, which means that you cannot do
anything with it that is not expressly allowed by the author. Usually, the author allows

people to use the software, but not sell it.

"Exception"
Definition: An event happening during execution of a program that disrupts the

normal flow of control. Exceptions are raised when a runtime error occurs in an

application, such as attempting to divide by zero.

Also, an exception is an object that contains information about what error occurred

and where it happened.

15

"Design Time"
•

Definition: We work with forms and controls, set their properties, and write code for

their events at design time, which is any time we're building an application in the

Delphi's I DE.

Design-time is when you use the IDE to design your application, using the form, the

Object Inspector, Component palette, Code editor, and so forth; as opposed to run

time, when the application you design is actually running.

"Compiler"
Definition: A compiler is a program that performs the process of compilation. When

you press F9 in Delphi IDE your current project gets compiled and run.

"Compilation"
Definition: Compilation is the process of translating source code into an object

program, which is composed of machine instructions along with the data needed by

those instructions. Virtually all of the software on your computer was created by this

process.

Compiled programs (Delphi applications for example) run faster then "interpreted" -

which is the line-by-line translation of source code to machine instructions (Visual

Basic applications for example).

"Comment"
Definition: The purpose of adding comments to Delphi code is to provide more

program readability using understandable description of what your code is doing.

A comment is a note to yourself or another programmer; it is ignored by the compiler.

There are several ways to construct comments:

{ Text between a left brace and a right brace constitutes a comment.}

(* Text between a left-parenthesis-plus-asterisk and an asterisk-plus-right

parenthesis also constitutes a comment. *)

16

II Any text between a double-slash and the end of the line constitutes a comment. ..

Also Known As: REM meaning "Remark in Basic"

"COM"

Definition: The Component Object Model (COM) enables programmers to develop

objects that can be accessed by any COM-compliant application. Both OLE and

ActiveX are based on COM.

The key aspect of COM is that it enables communication between clients and servers

through interfaces. Information about these interfaces is usually included in a type

library.

COM allows you to create COM objects that are not specific to any language, and in

some cases, even platforms. For instance, COM objects can be ported to a Unix

system. COM also allows you to create COM Objects that will be instantiated on a

different machine across the world if you so desired.

Although often associated with Microsoft, COM is an open standard that specifies

how components work together and interoperate.

Also Known As: Component Object Model

"Callback Routine"

Definition: A callback routine is a routine (function or procedure) in your program that

Windows calls. More generally, a callback is a means of sending a function as a

parameter into another function. When the callback function has completed, control is

passed back to the original function.

For example, EnumFonts is a Windows routine that calls a given callback function for

every font installed in the system.

"BDE"

Definition: The core database engine and connectivity software behind Borland

products, as well as Paradox for Windows and Visual dBASE for Windows. The

17

included set of database drivers enables consistent access to standard data sources:
•

Paradox, dBASE, FoxPro, Access, and text databases.

Many Delphi components use this database engine to access and deliver data. BOE

maintains information about your PC's environment in the BOE configuration file
(usually called IDAPI.CFG). Use the BOE Administrator to change the settings in this

configuration file.

Also Known As: Borland Database Engine, IDAPI
I

"Application"
Definition: An application is the executable file and all related files that a program

needs to function which serve a common purpose or purposes, as distinguished from

the design and source code of the project.

Software applications can be divided into two general classes: systems software and

applications software. Systems software consists of low-level programs that interact

with the computer at a very basic level. This includes operating systems, compilers,

and utilities for managing computer resources.

In contrast, applications software (also called end-user programs) includes database

programs, word processors, spreadsheets, etc. Figuratively speaking, applications

software sits on top of systems software because it is unable to run without the

operating system and system utilities.

In general we use Delphi to produce applications software.

"API"
Definition: A set of routines, protocols, and tools for building software applications.
A wide variety of software from operating systems to individual components are said

to have an API.

A good API makes it easier to develop a program by providing all the building blocks.

A programmer puts the blocks together.

Also Known As: Application Programming Interface

18

"Alias" •
Definition: A name that specifies the location of database tables accessed using the
BOE. The terms alias and database are *synonymous* when talking about the BOE.

An alias specifies driver parameters and database locations, such as Driver Type,

Server Name, User Name and others.

"Algorithm"
Definition: An algorithm is a set of precisely defined steps guaranteed to arrive at an

answer to a problem or set of problems. As this implies, a set of steps that might

never end is not an algorithm. In mathematics and computer science, an algorithm

usually means a small procedure that solves a recurrent problem.

"ActiveX"
Definition: A technology that allows various software components to communicate
and interact, even though they are not written in the same language. ActiveX controls

can be embedded in Web pages to produce animation and other multimedia effects,

interactive objects and sophisticated applications.

An ActiveX control is a COM-based software component that integrates into and

extends the functionality of any host application. ActiveX controls implement a set of

predefined COM interfaces.

The ActiveX page of the component palette includes several ActiveX controls. You

can use them like any standard VCL component, dropping them on forms and setting

their properties using the Object Inspector.

"ASCII"
Definition: ASCII assigns each English character and basic punctuation mark its own
number from Oto 127. Since the code is standard, every computer should be able to

translate it into serviceable, if unglamorous, copy. So, when you're unsure what

program - or what computer - is on the receiving end of a document, your safest bet

is to save your file as plain ASCII text.

Examples: The capital letter A has an ASCII value of 65. The ASCII code for a space

is 32.

You can reference a character by its ASCII code prefixed with a number sign (#).

Example: To put the symbol for American cents into a character C, for example, you

could code "c := #155;".

) Pronunciation: ask-ee

Also Known As: American Standard Code for Information Interchange

Understanding Delphi Project Files (.DPR)

New: Delphi Project

Since it is quite common for Delphi applications to share code or previously
customized forms, Delphi organizes applications into what is called projects.

A project is made up of the visual interface along with the code that activates the

interface. Each project can have multiple forms, allowing us to build applications that

have multiple windows. The code that is needed for a form in our project is stored in

a separate Unit file that Delphi automatically associates to the form. General code

that we want to be shared by all the forms in our application is placed in unit files as

well. Simply put, a Delphi project is a collection of files that make up an application.

What this means is that each project is made of one or more Form files (files with the

.dfm extension) and one or more Unit files (.pas extension).

We can also add resource files, and they are compiled into .RES files and linked

when we compile the project.

Project File

Each project is made up of a single project file (.dpr). Project files contain directions

for building an application. This is normally a set of simple routines which open the

main form and any other forms that are set to be opened automatically and then
starts the program by calling the Initialize, CreateForm and Run methods of the

20

global Application object (which is actually a form of zero width and height, so it never

actually appears on the screen).

)

Note: The global variable Application, of type TApplication, is in every Delphi

Windows application. Application encapsulates your application as well as provides

many functions that occur in the background of the program. For instance,

Application would handle how you would call a help file from the menu of your

program.

Project Unit

Use Project - View Source to display the project file for the current project.

Althogh you can look and edit the Project File, in most cases, you'll let Delphi

maintain the DPR file. The main reason to view the project file is so we can see the

units and forms that make up the project, and which form is specified as the

application's main form.

Another reason to work with the project file is when we are creating a DLL rather than

a stand-alone application or need some start-up code, such as a splash screen

before the main form is created by Delphi.

Here is the default project file for a new application (containing one form: "Form1 "):

program Project1;
uses
Forms,
Unit1 in 'Unit1 .pas' {Form1};

{$R *.RES}

begin
Application. Initialize;

Application.CreateForm(TForm1, Form1) ;

Application.Run;

end.

The program [link url=/od/delphiprogrammingglossary/g/reservedword.htm]keyword

identifies this unit as a program's main source unit. You can see that the unit name,

21

Project1, follows the program keyword (Delphi gives the project a default name until

you save the project with a more meaningful name). When we run a project file from

the IDE, Delphi uses the name of the Project file for the name of the EXE file that it

creates.

Delphi reads the uses clause of the project file to determine which units are part of a

project.

The .dpr file is linked with the .pas file with the compile directive {$R *.RES} (in this
case'*' represents the root of the .pas filename rather than "any file"). This compiler

directive tells Delphi to include this project's resource file. The project's resource file

contains such items as the project's icon image.

The begin .. end block is the main source-code block for the project.

Although Initialize is the first method called in the main project source code, it is not

the first code that is executed in an application. The application first executes the

"initialization" section of all the units used by the application.

The Application.CreateForm statement loads the form specified in its argument.

Delphi adds an Application.CreateForm statement to the project file for each form you

add to the project. This code's job is to first allocate memory for the form. The

statements are listed in the order the forms are added to the project. This is the order
that the forms will be created in memory at runtime. If you want to change this order,

do not edit the project source code. Use the Projectloptions menu command.

The Application.Run statement starts your application. This instruction tells the

predeclared object called Application to begin processing the events that occur

during the run of a program.

An Example: Hide Main Form I Hide Taskbar Button

The Application object's ShowMainForm property determines whether or not a form

will show at startup. The only condition of setting this property is that it has to be

called before the Application.Run line.

22

//Presume: Form1 is the MAIN FORM

Application.CreateForm(TForm1, Form1) ;

Application.ShowMainForm := False;

Application.Run;

Understanding the Birth, Life and Death of a Delphi Form

~
Life-Cycle of a Delphi Form

In Windows, most elements of the user interface are windows. In Delphi, every

project has at least one window - program's main window. All windows of a Delphi

application are based on TForm object.

Form

Form objects are the basic building blocks of a Delphi application, the actual windows
with which a user interacts when they run the application. Forms have their own

properties, events, and methods with which you can control their appearance and

behavior. A form is actually a Delphi component, but unlike other components, a form

doesn't appear on the component palette.

We normally create a form object by starting a new application (File I New
Application). This newly created form will be, by default, the application's main form -

the first form created at runtime.

Note: To add an additional form to Delphi project, we select FilelNew Form.

There are, of course, other ways to add a "new" form to a Delphi project.

Birth

On Create
The OnCreate event is fired when a TForm is first created, that is, only once. The

statement responsible for creating the form is in the project's source (if the form is set

to be automatically created by the project). When a form is being created and its

Visible property is True, the following events occur in the order listed: OnCreate,

OnShow, OnActivate, OnPaint.

23

You should use the OnCreate event handler to do, for example, initialization chores

e allocating string lists.

y objects created in the OnCreate event should be freed by the OnDestroy event.

On Create -> On Show-> OnActivate -> On Paint -> On Resize -> On Paint ...

On Show
This event indicates that the form is being displayed. OnShow is called just before a
form becomes visible. Besides main forms, this event happens when we set forms

Visible property to True, or call the Show or ShowModal method.

OnActivate
This event is called when the program activates the form - that is, when the form

receives the input focus. Use this event to change which control actually gets focus if

it is not the one desired.

OnPaint, OnResize
Events like OnPaint and OnResize are always called after the form is initially created,

but are also called repeatedly. OnPaint occurs before any controls on the form are

painted (use it for special painting on the form).

Life

As we have seen the birth of a form is not so interesting as the life and death can be.

When your form is created and all the controls are waiting for events to handle, the

program is running until someone tries to close the form!

Death

An event-driven application stops running when all its forms are closed and no code
is executing. If a hidden form still exists when the last visible form is closed, your

application will appear to have ended (because no forms are visible), but will in fact

continue to run until all the hidden forms are closed. Just think of a situation where

the main form gets hidden early and all other forms are closed .
... OnCloseQuery -> OnClose -> OnDeactivate -> OnHide -> OnDestroy

24

OnCloseQuery

When we try to close the form using the Close method or by other means (Alt+F4),
the OnCloseQuery event is called. Thus, event handler for this event is the place to

intercept a form's closing and prevent it. We use the OnCloseQuery to ask the users

if they are sure that they realy want the form to close.

procedure TForm1 .FormCloseQuery(Sender: TObject; var CanClose: Boolean) ;
begin
if MessageDlg('Really close this window?', mtConfirmation, [mbOk, mbCancel], 0) =

mrCancel then CanClose := False;
end;

An OnCloseQuery event handler contains a CanClose variable that determines

whether a form is allowed to close. The OnCloseQuery event handler may set the

value of CloseQuery to False (via the CanClose parameter), thus aborting the Close

method.

On Close
If OnCloseQuery indicates that the form should be closed, the OnClose event is

called.

The OnClose event gives us one last chance to prevent the form from closing. The

OnClose event handler has an Action parameter, with the following four possible

values:

• caNone. The form is not allowed to close. Just as if we have set the CanClose

to False in the OnCloseQuery.

• caHide. Instead of closing the form you hide it.

• caFree. The form is closed, so it's allocated memory is freed by Delphi.
• caMinimize. The form is minimized, rather than closed. This is the default

action for MDI child forms. Note: When a user shuts down Windows, the

OnCloseQuery event is activated, not the OnClose. If you want to prevent

Windows from shuting down, put your code in the OnCloseQuery event

handler, of course CanClose=False will not do the trick.

25

On Destroy

After the On Close method has been processed and the form is to be closed, the

OnDestroy event is called. Use this event for operations opposite to those in the

OnCreate event. OnDestroy is therefore used to deallocate objects related to the

\ II form and free the corresponding memory.

)
Of course, when the main form for a project closes, the application terminates.

Understanding and Using Functions and Procedures

Have you ever found yourself writing the same code over and over to perform some

common task within event handlers? Yes! It's time for you to learn about programs

within a program. Let's call those mini programs subroutines.

Intro to subroutines

Subroutines are an important part of any programming language, and Delphi is no

exception. In Delphi, there are generally two types of subroutines: a function and a

procedure. The usual difference between a function and a procedure is that a

function can return a value, and a procedure generally will not do so. A function

is normally called as a part of an expression.

Take a look at the following examples:

procedure SayHello(const sWhat:string) ;

begin
ShowMessage('Hello ' + sWhat) ;

end;

function YearsOld(const BirthYear:integer): integer;

var
Year, Month, Day: Word;

begin
DecodeDate(Date, Year, Month, Day);

Result:= Year - BirthYear;

end;

Once subroutines have been defined, we can call them one or more times:

) procedure TForm1 .Button1 Click(Sender: TObject) ;

begin
SayHello('Delphi User') ;

end;

procedure TForm1 .Button2Click(Sender: TObject) ;

begin
SayHello('Zarko Gajic') ;
ShowMessage('You are'+ lntToStr(YearsOld(1973)) +'years old!') ;

end;

Functions and Procedures

As we can see, both functions and procedures act like mini programs.

In particular, they can have their own type, constants and variable declarations inside

them.

Take a closer look at a (miscellaneous) SomeCalc function:

function SomeCalc

(const sStr: string;
const iYear, iMonth: integer;

var iDay:integer): boolean;
begin

end;

Every procedure or function begins with a header that identifies the procedure or

function and lists the parameters the routine uses, if any. The parameters are listed

within parentheses. Each parameter has an identifying name and usually has a type.

A semicolon separates parameters in a parameter list from one another.

27

sStr, iYear and iMonth are called constant parameters. Constant parameters cannot

be changed by the function (or procedure). The iDay is passed as a var parameter,

and we can make changes to it, inside the subroutine. \ I Functions, since they return values, must have a return type declared at the end of
J the header. The return value of a function is given by the (final) assignment to its

name. Since every function implicitly has a local variable Result of the same type as
the functions return value, assigning to Result has the same effect as assigning to

the name of the function.

Positioning and Calling Subroutines

Subroutines are always placed inside the implementation section of the unit. Such

subroutines can be called (used) by any event handler or subroutine in the same unit

that is defined after it.

Note: the uses clause of a unit tells you which units it can call. If we want a specific

subroutine in a Unit1 to be usable by the event handlers or subroutines in another

unit (say Unit2), we have to:

• Add Unit1 to the uses clause of Unit2
• Place a copy of the header of the subroutine in the interface section of the

Unit1.

This means that subroutines whose headers are given in the interface section are

global in scope.

When we call a function (or a procedure) inside its own unit, we use its name with

whatever parameters are needed. On other hand, if we call a global subroutine

(defined in some other unit, e.g. MyUnit) we use the name of the unit followed by a

period.

1/SayHello procedure is defined inside this unit

SayHello('Delphi User') ;
//YearsOld function is defined inside MyUnit unit

28

Dummy:= MyUnit.Years01d(1973) ;

Note: functions or procedures can have their own subroutines embedded inside
them. An embedded subroutine is localr\ the container subroutine and cannot be

used by other parts of the program. Something like:

procedure TForm1 .Button1 Click(Sender: TObject) ;

function lsSmall(const sStr:string):boolean;

begin
//lsSma/1 returns True if sStr is in lowercase, False otherwise

Result:=LowerCase(sStr)=sStr;

end;
begin
/Ifs Small can only be uses inside Button 1 OnC!ick event
if lsSmall(Edit1. Text) then

ShowMessage('AII small caps in Edit1 .Text')

else
ShowMessage('Not all small caps in Edit1 .Text') ;

end;

Understanding and Using Decisions
if language = Delphi then
begin

Use(language)

end

else

Skip(language);

Branching
If you want to control the flow of code execution depending on what the program

has already done or what it has just encountered you need to use one of the two

Delphi Pascal branching statements: if statements and case statements.

29

The IF THEN ELSE statement

The if statement is used to test for a condition and then execute sections of code
based on whether that condition is True or False. The condition is described with a

Boolean expression, If the condition is True, the code flow branches one way. If the

condition is False, the flow branches in another direction. Let'ssee this behavior on

an example:

var iNumber: Integer;

begin
/Isome value must be

I/assigned to iNumber here!

if iNumber = 0 then
ShowMessage('Zero value encountered!') ;

end;

If the number (assigned to iNumber variable) is 0, the expression iNumber = 0
evaluates to True and the message is displayed; otherwise, nothing is displayed.

If we want more than one thing to happen when the tested condition is True, we can

write multiple statements in a begin ... end block.
var iNumber: Integer;

begin
/Isome value must be

I/assigned to iNumber here!

if iNumber = 0 then
begin
ShowMessage('Zero value encountered!') ;

Exit; // exit from the current procedure

end;
//if iNumber is O the folowing
//code will never be executed
ShowMessage('Nobody likes 0, ha!') ;

end;
More often, we will want to process multiple statements if a condition is True or

False.

30

var iNumber: Integer;

begin
/Isome value must be

//assigned to iNumber here!

if iNumber < 0 then
begin
//statements ...
ShowMessage('Your number is negative!') ;

I/statements ...

end
else
begin
//statements ...
ShowMessage('Your number is positive or zero!');

//statements ...

end;
end;
Note: Each statement in the begin .. end block ends with a semicolon. We cannot have

a semicolon before or after the else keyword. The if-then-else statement, is a single

statement, therefore we cannot place a semicolon in the middle of it.

An if statement can be quite complex. The condition can be turned into a series of
conditions (using the and, or and not Boolean operators), or the if statement can nest

a second if statement.

var
iNumber : Integer;

begin
if iNumber = 0 then
begin
ShowMessage('Zero number not allowed!') ;

exit;

end
else

31

I/no need to use begin-end here

if iNumber < 0 then
ShowMessage('Your number is negative!')

else
ShowMessa{eCYour number is positive!') ;

end; \

Note: When you write nested if statements choose a consistent, clear indentation

style. This will help you and anyone else who reads your code see the logic of the if

statement and how the code flows when your application runs.

The CASE statement

Although, we can use the if statement for very complex (nested) condition testing, the

case statement is usually easier to read (debug!) and the code runs more quickly.

The case statement makes it clear that a program has reached a point with many

branches; multiple if-then statements do not.

var

iNumber: Integer;

begin
/Isome value must be

//assigned to iNumber here!

case iNumber of
0 : ShowMessage('Zero value') ;

1 .. 10 : ShowMessage('Less than 11, greater than O') ;

-1, -2, -3 : ShowMessage('Number is -1 or -2 or -3') ;

else
ShowMessage('I do not care') ;

end;

end;

What follows the case keyword is usually called the selector. The selector is a

variable or expression taken from either the char type or any integer type (an ordinal

type). String type are invalid!. However, the StringToCaseSelect custom function

enables you to use the Case statement with string type variables

~
As you can see, the individual case statements use a single constant, a group of

constants (separated by comma), or a range of constants (double dot separated). We

can even add an else keyword to take care of all the remaining cases at once.

Note 1: Only one case statement will be executed, we cannot have overlapping

conditions in the case statements.

Note 2: If you want to include more than one statement in the part following the colon

(:), place the begin and end keywords around the multiple statements.

Understanding and Using Loops

Repeating operations in Delphi Pascal

The loop is a common element in all programming languages. Object Pascal has

three control structures that execute blocks of code repeatedly: for, repeat ... until

and while ... do.

The FOR loop

Suppose we need to repeat an operation a fixed number of times.

II show 1,2,3,4,5 message boxes

var j: integer;
begin
for j := 1 to 5 do
begin
ShowMessage('Box: '+lntToStrU)) ;

end;
end;

The value of a control variable (j), which is really just a counter, determines how
man'j \.\mes a for statement runs. 1'he \<.e'1',Nord for sets up a counter. ln the preceding

example, the starting value for the counter is set to 1.

33

The ending valu~s-set to 5.

When the for statement begins running the counter variable is set to the starting

value. Delphi than checks whether the value for the counter is less than the ending

value. If the value is greater, nothing is done (program execution jumps to the line of

code immediately following the for loop code block). If the starting value is less than

the ending value, the body of the loop is executed (here: the message box is

displayed). Finally, Delphi adds 1 to the counter and starts the process again.

Sometimes it is necessary to count backward. The downto keyword specifies that
the value of a counter should be decremented by one each time the loop executes (it

is not possible to specify an increment I decrement other than one). An example of a

for loop that counts backward.

var j: integer;

begin
for j := 5 downto 1 do
begin
ShowMessage('T minus'+ lntToStrU) + 'seconds') ;

end;
ShowMessage('For sequence executed!') ;

end;

Note: it's important that you never change the value of the control variable in the

middle of the loop. Doing so will cause errors.

Nested FOR loops

Writing a for loop within another for loop (nesting loops) is very useful when you want

to fill/ display data in a table or a grid.

var k,j: integer;

begin
I/this double loop is executed 4x4=16 times

for k:= 1 to 4 do
for j:= 4 downto 1 do
ShowMessage('Box: '+ lntToStr(k)+ ',' + lntToStrU)) ;

end;

34

The rule for nesting for-next loops is simple: the inner loop q counter) must be

completed before the next statement for the outer loop is encountered (k counter).

We can have triply or quadruply nested loops, or even more.

Note: Generally, the begin and end keywords are not strictly required, as you can

see. If begin and end are not used, the statement immediately following the for

statement is considered the body of the loop.

The FOR-IN loop

If you have Delphi 2005 or any newer version, you can use the "new" for-element-in

collection style iteration over containers. The following example demonstrates

iteration over string expressions: for each char in string check if the character is

either 'a' or 'e' or 'i'.

const

s = 'About Delphi Programming';

var
c: char;

begin

for c ins do
begin

if c in ['a','e','i'] then

begin

II do something
end;

end;

end;

The WHILE and REPEAT loops

Sometimes we won't know exactly how many times a loop should cycle. What if we

want to repeat an operation until we reach a specific goal?

The most important difference between the while-do loop and the repeat-until loop is

that the code of the repeat statement is always executed at least once.

35

The general pattern when we write a repeat (and while) type of loop in Delphi is as

follows:

repeat

begin

statements;

end;

until condition = true
while condition = true do
begin

statements;

end;

Here is the code to show 5 successive message boxes using repeat-until:

var

j: integer;

begin

j:=O;

repeat

begin

j:=j+1;

ShowMessage('Box:'+lntToStrU)) ;

end;

until j > 5;

end;

As you can see, the repeat statement evaluates a condition at the end of the loop

(therefore repeat loop is executed for sure at least once).

The while statement, on the other hand, evaluates a condition at the beginning of the

loop. Since the test is being done at the top, we will usually need to make sure that

the condition makes sense before the loop is processed, if this is not true the

compiler may decide to remove the loop from the code.

var j: integer;

begin

36

j:=O;
while j < 5 do
begin
j:=j+1;
ShowMessage('Box:'+lntToStrU)) ;

end;
end;

Break and Continue

The Break and Continue procedures can be used to control the flow of repetitive

statements: The Break procedure causes the flow of control to exit a for, while, or

repeat statement and continue at the next statement following the loop statement.

Continue allows the flow of control to proceed to the next iteration of repeating

operation.

Understanding Typed Constants in Delphi

How to implement persistent values between function calls.

When Delphi invokes an event handler, the old values of local variables are wiped

out. What if we want to keep track of how many times a button has been clicked? We
could have the values persist by using a unit-level variable, but it is generally a good

idea to reserve unit-level variables only for sharing information. What we need are

usually called static variables or typed constants in Delphi.

Variable or constant?

Typed constants can be compared to initialized variables-variables whose values are

defined on entry to their block (usually event handler). Such a variable is initialized

only when the program starts running. After that, the value of a typed constant

persists between successive calls to their procedures.

Using typed constants is a very clean way of implementing automatically initialized

variables.

37

To implement these variables without typed constants, we'll ,need to create an

initialization section that sets the value of each initialized variable.

Variable typed constants

Although we declare typed constants in the const section of a procedure, it is

important to remember that they are not constants. At any point in your application, if

you have access to the identifier for a typed constant you'll be able to modify its

value.

To see typed constants at work, put a button on a blank form, and assign the

following code to the OnClick event handler:

procedure TForm1 .Button1 Click(Sender: TObject) ;

const
clicks : Integer= 1; /!not a true constant

begin
Form1 .Caption := lntToStr(clicks) ;

clicks := clicks + 1;

end;

Notice that every time you click on the button, forms caption increments steadily.

Now try the following code:
procedure TForm1 .Button1 Click(Sender: TObject) ;

var
clicks : Integer;

begin
Form1 .Caption := lntToStr(clicks) ;

clicks :=clicks+ 1;

end;
We are now using uninitialized variable for the clicks counter. Notice that weird value

in the forms caption after you click on the button.

38

Constant typed constants

You have to agree that idea of modifiable constants sound a bit strange. In 32 bit

versions of Delphi Borland decided to discourage their use, but support them for

Delphi 1 legacy code.

We can enable or disable Assignable typed constants on the Compiler page of the

Project Options dialog box.

If you've disabled Assignable typed constants for a given project, when you attempt

to compile previous code Delphi will give you 'Left side cannot be assigned to' error
upon compilation. You can, however, create assignable typed constant by declaring:

{$J+}

const clicks: Integer= 1;
{$J-}

Therefore, the first example code looks like:

procedure TForm1 .Button1 Click(Sender: TObject) ;

const
{$J+}
clicks : Integer= 1; I/not a true constant

{$J-}

begin
Form1 .Caption := lntToStr(clicks) ;

clicks := clicks + 1;
end;

39

Running Delphi Applications With Parameters

How to pass command-line parameters to your application and how to handle

them.

In the days of DOS it was a common practice run applications (command line

programs) with some kind of parameters that will specify want we want to do. Even

now, in the world of Windows, we can go to MS-Dos prompt and run MS-DOS based
program like DIR /?. That '/?' after program name (DIR) will give us some help

regarding the usage of the DIR command.

In this article, we will find out how to respond to command line parameters passed to

a Delphi application.

Parameters

We can pass the parameter from the command line in Windows or from the

development environment in Delphi under Run-Parameters menu option.

We will use Parameters dialog box to pass command-line parameters to an

application when we run it (for testing purposes - from within Delphi), just as if we

were running the application from the Windows Explorer.

ParamCount, ParamStr()

Simply put, the ParamCount function returns the number of parameters passed to the

program on the command line, and ParamStr returns a specified parameter from the

command-line.

While application is running, the parameters are available to us so we can retrieve

them within a specific section of the application (usually from the OnActivate event

handler of the main form).

Note: In a program, the CmdLine variable contains a string with command-line

arguments specified when the application was started. We can use Cmdline to

access the entire paramstring passed to an application.

40

We'll start with a simple application. Start up a new project and place a Button

component on Form. In the button's OnClick event handler, write the following code:

Procedure

TForm1 .Button1 Click(Sender: TObject) ;

begin
ShowMessage(ParamStr(O)) ;

end;

When you run the program and click the button, a message box appears with the

path and file name of the executing program.

We can see, that even if we haven't passed any parameters to our application

ParamStr function "works", the reason is that the array value O stores the file name of

the executable application including path information.

Now, choose Parameters from the Run Menu and add 'Delphi Programming' to the

drop down list (without apostrophes).

Note: when you pass parameters to your application separate them with spaces or

tabs. Use double quotes to wrap multiple words as one parameter (such as long file

names containing spaces).

We will be looping through the amount of parameters using ParamCount() to get the

value of parameters passed, with ParamStr(i).

Change the button's OnClick event handler to:

procedure TForm1 .Button1 Click(Sender: TObject) ;

var

j:integer;

begin
for j := 1 to ParamCount do
ShowMessage(ParamStrU));

end;

41

When you run the program and click the button, a message box appears displaying

'Delphi' (first parameter) and 'Programming' (second parameter).

Note: Working with parameters passed to the console mode application is the same.

That's it, simple as only Delphi can be!

CHAPTER TWO - MICROSOFT ACCESS DATABASE

Microsoft Access Database Fundamentals

Are you overwhelmed by the large quantities of data that need to be tracked in your

organization? Perhaps you're currently using a paper filing system, text documents or

a spreadsheet to keep track of your critical information. If you're searching for a more
flexible data management system, a database might be just the salvation you're

looking for.

What is a database? Quite simply, it's an organized collection of data. A database

management system (DBMS) such as Access, FileMaker Pro, Oracle or SQL Server

provides you with the software tools you need to organize that data in a flexible

manner. It includes facilities to add, modify or delete data from the database, ask

questions (or queries) about the data stored in the database and produce reports

summarizing selected contents.

Microsoft Access provides users with one of the simplest and most flexible DBMS

solutions on the market today. Regular users of Microsoft products will enjoy the

familiar Windows "look and feel" as well as the tight integration with other Microsoft

Office family products. An abundance of wizards lessen the complexity of

administrative tasks and the ever-present Microsoft Office Helper (you know ... the

paper clip!) is available for those who care to use it. Before purchasing Access, be
sure that your system meets Microsoft's minimum system requirements. To further

our discussion, let's first examine three of the major components of Access that most

database users will encounter - tables, queries, forms. Once we've completed that

we'll look at the added benefits of reports, web integration and SQL Server

integration.

Tables comprise the fundamental building blocks of any database. If you're familiar

with spreadsheets, you'll find database tables extremely similar.

43

The table above contains the employee information for our organization -

characteristics like name, date of birth and title. Examine the construction of the table

and you'll find that each column of the table corresponds to a specific employee

characteristic (or attribute in database terms). Each row corresponds to one

particular employee and contains his or her information. That's all there is to it! If it

helps, think of each one of these tables as a spreadsheet-style listing of information.

IObere Str. 57 -------- -----------1
L------------------------' ~:~~~----J L__ J [12209 _J

Obere Str. 57

Berlin 12209

l:, uyama, Michael El ---7{

rF1'
064~ .Qrder Date: p5-Aug-1997j 122-Sep-19971 ~02-Sep-19971

ProiJuct: [llnifPiice: -g uanllty: -Discount: . -Extenaea Pnce: II
Ii!. Spegesild $12.00 2 25% $18.00 •
II Chartreuse verte $18.00 21 25% $283.50 :
II Rossie Sauerkraut $45.60 15 25% $513.00 ;
II* 0% -

~ermany l . . !Germany I
----------- f-Sh1pY'.1a. ----------------- . -· ·-.J

. 1:71 c~---.1.. r, 11-;,-.1 n c:-.1~,~1

Display products of the month .Erint Invoice
r·'"subtotal: .. r=·-·-=-·-$81~ -·-1
I freight [$29.46] j I Total: r -----· .. la~:ss·1 I

"1 Record: llf4JTi

Reports provide the capability to quickly produce attractively formatted summaries of

the data contained in one or more tables and/or queries. Through the use of wizards,

database users can create reports in literally a matter of minutes. As an example,

let's return to our Northwind database. In this case, suppose that our company

wishes to produce a catalog to share our product information with current and

prospective clients. In previous sections, we learned that this sort of information

could be retrieved from our database through the judicious use of queries. However,

recall that this information was presented in a tabular form -- not exactly the most

attractive marketing material! Reports allow the inclusion of graphics, attractive

formatting and pagination. Take a look at the sample report in the illustration below:

Beverages
Soft drinks, c<!f ees,
teas, beers, and al es

roduct Name: Proila.ct ID: QlUlntizy PerUn'it:

Chai 1 1 0 box es x 20 bags

Chang 2 24 - 12 oz bottles

Chartreuse v erte 39 7.50 cc per bottle

Cote de Blaye 38 12 - 75 cl bottles

Guarana Fantastica 24 12 - 3.5.5 ml cans

Ip oh Coffee 43 16-.500gtins

LakkalildHhi 76 .500 ml

Laughing LumberjackLager 67 24 - 12 oz bottles

Unit Price:

$18.00

$19.00

$18.00

$263..50

$4 . .50

$46.00

$18.00

$14.00

Microsoft Access also provides native support for the World Wide Web. Posting data

to the web is a breeze. If you have a formatted report that you would like to share

with Internet or Intranet users, you can simply export it to an HTML file and publish it
to your organization's web server. For those with more complex tastes, the

advanced features of Access 2000 provide interactive data manipulation capabilities

to web users.

Finally, no discussion of Microsoft Access is complete without mentioning it's
capability to tightly integrate with SQL Server, Microsoft's professional database

server product. If you're in an organization that utilizes SQL Server, you'll be pleased

to learn that you can retrieve, manipulate and work with the data stored on your

organization's database server within the Microsoft Access environment. For more

on this, view Microsoft's page on SQL Server/Office integration.

45

Microsoft Access Reports Tutorial

Part 1: Getting Started

In our previous tutorials, you've learned a good deal about Microsoft Access.

Together, we created a query, modified the query to make it more complex, and

created a data entry form. We've learned the skills necessary to put information into
a database and selectively remove the exact information we're seeking. In this

tutorial, we're going to go a step further and learn how to create professionally

formatted reports automatically from our database information. Returning to our

familiar Northwind Company, we're going to design a nicely-formatted listing of

employee home telephone numbers for the use of management.

The sample images in this tutorial were created using Access 2000. If you are

running an earlier version of Access, your screen images may appear slightly

different. However, the same general principles still apply and you should be able to

follow along. If you need a quick-start on the basics of Access before getting started,

take a look at the article "Microsoft Access Fundamentals."

Once again, we're going to use the Northwind sample database. Before we get

started, open up Microsoft Access and then open the Northwind database. If you

need help with this step, please read the article "How to Install the Northwind Sample
Database."

1. Choose the Reports menu. Once you've opened Northwind, you'll be presented

with the main database menu shown below. Go ahead and click on the "Reports"

selection and you'll see a list of the various reports Microsoft included in the sample

database. If you'd like, feel free to double-click on a few of these and get a feel for
what reports look like and the various types of information that they contain.

2. Create a new report. After you've satisfied your curiosity, go ahead and click on
the "New" button and we'll begin the process of creating a report from scratch.

• Sales Totals by Amount

• Summary of Sales by Quarter

8 Summary of Sales by Vear
rt by using wizard

AlphalDetical List of Products

Catalog
Catalog Subreport
Customer Labels
Employee Sales by Country
Invoice
Proclucts by Category
Sales by Category
Sales by Category Subreport
Sales by Vear
Sales by Vear Subreport

Create a new report

3. Select the Report Wizard. The next screen that appears will ask you to select the
method you wish to use to create the report. We're going to use the Report Wizard

which will walk us through the creation process step-by-step. After you've mastered

the wizard, you might want to return to this step and explore the flexibility provided by

the other creation methods.

4. Choose a table or query. Before leaving this screen, we want to choose the
source of data for our report. If you want to retrieve information from a single table,

you can select it from the drop-down box below. Alternatively, for more complex

reports, we can choose to base our report on the output of a query that we previously

designed. For our example, all of the data we need is contained within the

Employees table, so choose this table and click on OK.

47

~\ l:!;Jll
This vo/izard automaticaUy
creates your report, based
on the fields you select.

~I' .cancel

Select a creation method

Next, we'll select exactly which table data to include in the report and learn how to

apply formatting to our finished product. Read on!

Microsoft Access Reports Tutorial Part 2: Selecting the Data

5. Select the fields to include. Use the '>' button to move over the desired fields.

Note that the order you place the fields in the right column determines the default

order they will appear in your report. Remember that we're creating an employee

telephone directory for our senior management. Let's keep the information contained

in it simple -- the first and last name of each employee, their title and their home

telephone number. Go ahead and select these fields. When you are satisfied, click

the Next button.

6. Select the grouping levels. At this stage, you can select one or more grouping

levels to refine the order in which our report data is presented. For example, we may
wish to break down our telephone directory by department so that all of the members

of each department are listed separately. However, due to the small number of
employees in our database, this is not necessary for our report. Go ahead and

simply click on the Next button to bypass this step. You may wish to return here later

and experiment with grouping levels.

48

Which fields do you want on your report?

You can choose from more than one table or query.

Tables/Queries

Table: Employees •

8,vailable Fields: ~lected Fields:

BirthDate
HireDate
Address
City
Region
PostalCode

Cancel Next> E,inish

Select the fields to include

Report Wizard ',

Do you want to add any grouping
levels? IFirstName, LastName, Title, HomePhone

LastName
Title
HomePhone

Cancel < e_ack Einish

Choose the grouping levels

49

7. Choose your sorting options. In order to make reports useful, we often want to

sort our results by one or more attributes. In the case of our telephone directory, the
logical choice is to sort by the last name of each employee. Select this attribute from
the first drop-down box and then click the Next button to continue.

What sort order do you wart for your records?

You can sort records by up to four fields, In either
ascending or descending order.

1 z
2

3

Cancel < §.ack finish

Choose the sorting options

Microsoft Access Reports Tutorial Part 3: Finishing Touches

Ill Create report m Desi,;in vie1N • Sales by Year Subreport
LfJJ Create report by using wizard ill Sales Totals by Amount • Alphabetical List of Products ill Summary of Sales by Quarter • Catalog ill Summary of Sales by Year
ill Catalog Subreport • Customer Labels • Employee Home Phone List • Employee Sales by Country • Invoice • Products by Category • Sales by Catefjjory

Ill. Sales by Category Subreport • Sales by Year

50

Creating a Simple Query in Microsoft Access

Have you ever wanted to combine information from multiple tables in your database
in an efficient manner? Microsoft Access offers a powerful query function with an

easy-to-learn interface that makes it a snap to extract exactly the information you

need from your database. In this tutorial we'll explore the creation of a simple query.

In this example, as with all of our Access tutorials, we will use Access 2000 and the

Northwind sample database included on the installation CD-ROM. If you're using an
earlier version of Access, you may find that some of the menu choices and wizard

screens are slightly different. However, the same basic principles apply to all
versions of Access (as well as most database systems).

Let's explore the process step-by-step. Our goal in this tutorial is to create a query

listing the names of all of our company's products, current inventory levels and the
name and phone number of each product's supplier.

1. Open your database. If you haven't already installed the Northwind sample

database, these instructions will assist you. Otherwise, go to the File tab, select

Open and locate the Northwind database on your computer.

2. Select the queries tab. This will bring up a listing of the existing queries that
Microsoft included in the sample database along with two options to create new
queries.

3. Double-click on "create query by using wizard". The query wizard simplifies

the creation of new queries. We'll use it in this tutorial to introduce the concept of

query creation. In later tutorials we'll examine the Design view which facilitates the
creation of more sophisticated queries.

51

roducts Query

Current Product list

Customers and Suppliers by City

Employee Sales by Ceuntry

Employees Query

Invoices

Invoices Filter

Order Details Extended

Order Subtotals

r,iJ Orders Qry
r,iJ Prodwct Sales for 1997
r,il Products Above Average Price
r,il Products by Category
r,iJ Quarterly Orders
ID Quarterly Orders my Product
r,iJ Sales by Cate(Jlory
r,iJ Sales by Year
r,iJ Ten Most Expensive Products

4. Select the appropriate table from the pull-down menu. When you select the
pull-down menu, you'll be presented with a listing of all the tables and queries

currently stored in your Access database. These are the valid data sources for your

new query. In this example, we want to first select the Products table which contains

information about the products we keep in our inventory.

Which fields do you want In your query?

You can choose from more than one table or query.

Tables/Queries

Tamie: Cate;orles
Table: Customers
Table: Empleyees
Table: Order Details
Table: Orders

S.elected Fields:

Table: Shipll)ers
Table: Suppliers
Query: Alphabetical list of Praducts
uerv: Category Sales flllr 1997

Cancel I Next> Einish

52

5. Choose the fields you wish to appear in the query reeults, by either double
clicking on them or by single clicking first on the field name and then on the">" icon.
As you do this, the fields will move from the Available Fields listing to the Selected

Fields listing. Notice that there are three other icons offered. The ">>" icon will

select all available fields. The "<" icon allows you to remove the highlighted field

from the Selected Fields list while the "<<" icon removes all selected fields. In this

example, we want to select the ProductName, UnitslnStock, and UnitsOnOrder from

the Product table.

Which fields do you want In your query?

You can choose from more than one table or query.

B,vaHable Fields: S,elected Fields:

ProductName ii Product ID
Supplier ID
Category ID
QuantityPerUnit
UnitPrice

Reorderlevel
Discontinued

Cancel E.inish f:iext >

6. Repeat steps 4 and 5 to add information from additional tables, as desired.
In our example, we wanted to include information about the supplier. That

information wasn't included in the Products table -- it's in the Suppliers table. Here's

the power of a query! You can combine information from multiple tables and easily

show relationships. In this example, we want to include the CompanyName and

Phone fields from the Suppliers table. All you have to do is select the fields -- Access

will line up the fields for you!

Note that this works because the Northwind database has predefined relationships

between tables. If you're creating a new database, you'll need to establish these

53

relationships yourself. Read the article "Defining Relationships in Microsoft Access"
)

for more information on this topic.

7. Click on Next.

8. Choose the type of results you would like to produce. We want to produce a

full listing of products and their suppliers, so choose the Detail option here.

Would you Ike a detad or summary query?

~~tail (shows every field of every record)) • _ •
21Jmmary

<~ack Next> finish Cancel

9. Click on Next.

10. Give your query a title. You're almost done! On the next screen you can give

your query a title. Select something descriptive that will help you recognize this

query later. We'll call this query "Product Supplier Listing."

54

That's aft the information the wizard needs to create your
query.

Do you want to open the query or modify the query's design?

'fj) Qpen the query to view Information.

Cl Modify the query design.

Cancel <aack finish

11. Click on Finish. You'll be presented with the two windows below. The first
window is the Query tab that we started with. Notice that there's one additional listing

now -- the Product Supplier Listing we created. The second window contains our

results -- a list of our company products, inventory levels and the supplier's name and

telephone number!

Create query in Design view
Create query by using wizard

Alphabetical List of Products
Alphabetical List of Products Query
Category Sales for 1997
Current Product List
Customers and Suppliers by City
Employee Sales by C©untry
Emplbyees Query
Invoices
Invoices Filter
Order Details Extendelll

Order Subtotals

55

nil Orders Qry
oil Product Sales for 1997

•• oil Products Above Average Price
Ill Products by Category
Ill Quarterly Orders
Ell) Quarterly Orders by Product
nil Sales by Category
Ill Sales by Vear
oil Ten Most Expensive Products

Product Supplier L1st1n,;i

Units In Stock IIUnits On Order
39
17
13

Chef Anton's Caiun Seas,! 53
Chef Anton's Gumbo Mix l 0

76
4

Grandma's Bovsenberry 1 120
Uncle Bob's Organic Drie 15
Northwoods Cranberry Sc 6
Mishi Kobe Niku 29

31
4 _,_ .

of 77

Congratulations! You've successfully created your first query using Microsoft

Access! Now you're armed with a powerful tool to apply to your database needs.

Creating Forms in Microsoft Access

Open your database
Microsoft Access forms provide a quick and easy way to modify and insert records

into your databases. They offer an intuitive, graphical environment easily navigated

by anyone familiar with standard computer techniques. Creating a form is a quite

simple, pleasant experience. In this example, as with all of our Access tutorials, we
will use Access 2003 and the Northwind sample database included on the installation

CD-ROM. If you're using an earlier version of Access, you may find that some of the

menu choices and wizard screens are slightly different. However, the same basic

principles apply to all versions of Access (as well as most database systems). Let's

begin! Our goal for this tutorial is to create a simple form that will allow data entry

operators in our company to easily add new customers to our sales database.

If you haven't already installed the Northwind sample database, these instructions will

assist you. Otherwise, go to the Help menu, then choose Sample Databases and

Northwind Sample Databases.

56

Click on the Forms tab under Objects

This will bring up a list of the form objects currently stored in your database. Notice
that there are a large number of pre-defined forms in this sample database. After you

complete this tutorial, you might want to return to this screen and explore some of the

more advanced features included in these forms.

Click on the New icon to create a new form
Click on the New icon to create a new form

Select the creation method you wish to use
Next, we're presented with a variety of different methods we can use to create a

form. The AutoForm options quickly create a form based upon a table or query.

Design View allows for the creation and formatting of elaborate forms using Access'

form editing interface. The Chart Wizard and PivotTable Wizard create forms

revolving around those two Microsoft formats. In this tutorial, we'll use the Form

Wizard to walk through the process step-by-step.

Select the data source and click OK.
You can choose from any of the queries and tables in your database. If you recall our

scenario, we wish to create a form to facilitate the addition of customers to our

database. In order to accomplish this, we're going to select the Customers table from

the pull-down menu.

Select the form fields to be used and click Next.
Next, you'll be presented with the screen below. Use this form to select the

table/query fields you wish to appear on your form. To add fields one at a time, either

double-click the field name or single-click the field name and single click the ">"

button. To add all the fields at once, simply click the ">>" button. The "<" and "<<"

buttons work in a similar manner to remove fields from the form. For our example, we

will add all of the table's fields to the form.

Select the form layout and click Next
You can choose from either a columnar, tabular, datasheet or justified form layout.

We'll use the justified layout to produce an organized form with a clean layout. You

may wish to come back to this step later and explore the various layouts available.

57

Select the form style and click Next.

Microsoft Access includes a number of built-in styles to give your forms an attractive
appearance. Click on each of the style names to see a preview of your form and

choose the one you find most appealing.

Provide a title for your form
Select something easily recognizable -- this is how your form will appear in the

database menu. Let's call our form "Customers" in this case. Select the next action
and click Finish. You may open the form as a user will see it and begin viewing,

modifying and/or entering new data. Alternatively, you may open the form in design

view to make modifications to the form's appearance and properties. Let's do the

latter and explore some of the options available to us.

Edit Properties
Click the Properties icon. This will bring up a menu of user-definable attributes that
apply to our form. Edit the properties as necessary. Recall that our original goal was

to create a form for data entry purposes. Most likely, we don't want to grant data

entry employees full access to view or edit customer records. Setting the "Data Entry"

property to Yes will only allow users to insert new records and modify records created

during that session.

Encrypting an Access Database

Security-conscious database users have long called for the ability to use strong

encryption in Microsoft Access. With the release of Access 2007, Microsoft answered

these pleas and introduced a robust encryption feature that allows for the simple

addition of a great deal of security to Access databases.

What is encryption?

Encryption provides you with the ability to protect your database file from prying eyes.

It transforms the way data is stored on your disk so that individuals who do not know

the database password can not open the database or use other techniques to view

the file contents. Security professionals recommend the use of encryption to protect

sensitive information.

58

How do I encrypt an Access 2007 database?

Access 2007 users may encrypt databases stored in ACCDB format by password

protecting them.

Note that this feature is not available for database stored in the older MOB format.

You may find the following articles useful when attempting to encrypt an Access

database:

• Password-protecting an Access 2007 Database, Step-by-Step

• ACCDB Database Format
• Convert older Access databases to Access 2007

How do I decrypt an Access 2007 database?

If you want to open an encrypted database for use and then reencrypt it when you
are finished, Microsoft Access will handle the mechanics for you. Simply open the

database as you normally would and enter the database password when prompted.

Access will decrypt the database for your use and then save a new encrypted copy

when you make changes.

If you want to remove encryption from an encrypted Access database, open the

database in exclusive mode and then click "Decrypt Database" in the Database Tools

group.

What type of encryption does Access 2007 use?

Access 2007 uses the Microsoft Cryptographic API. This means that it will support

any cryptographic algorithm available within Windows as a Cryptographic Service

Provider (CSP). This is a great improvement over earlier versions of Access, which

only supported a built-in, weak encryption algorithm.

59

CHAPTER THREE

USER'S MANUAL

this is main window of program.On the right top of the program there is a login
form.

Figure 3.1 (main view)

You have to enter the correct username matches the corect password.

60

If you entered your correct username and password the following view appears

Figure 3.2 (login succesful)

After that the system confirms if the password matching the username. if you saw the

"login successful" message you can navigate the system.

61

In order to run a customer relationship system first you have.to register some

customers in to system.

Figure 3.3 (Register Customer)

In this page you can register your customers by entering the detailed information and

the navigator at the bottom of the window.

62

You can search any customers by selecting the search criteria and entering the

search keywords.

Figure 3.4 (Search Customer)

After you click search button the system gives you information about if the record

found.

63

You can preview and print the customer card selected.

Customer Details
Customer_lD 1
Name
ID_Number
GSM
Address
City

Total 1 Customers

Mehmet
2131313
5338601010
karaciglanoglu
Gime

Surname Alp
Gender Male
Home_Phone 3928157770

Date ofBirth 01.01.1980
Business_Phone 3928159201

Country KKTC Postal_Code 90000

Figure 3.5 (customer card)

Printing is available for this page as seen on the screen.

If you want to see the list of all customers you can use the list customer window.

Figure 3.6 (Customers List)

This is the list of all your registered customer.

64

Preview and print the customers list

Customers
Customer ID Name Surname ID Number Gender GSM City Country

Moh met Alp 2131313 Male 5338601010 Gimt KKTC
Fahriye Ertekin 1232131 Female 5338693337 letkoJ• KKTC
Evrim ·Kaki 231313 Male asd asda 21313

Total 3 Customers

Figure 3. 7 (Customers list preview)

You can print this page as seen on the screen.

The next step to keep the customer process records you have to record the products

in your stocks.

Figure 3.8 (Record and Edit Stocks)

In this page you can record your stocks by entering the detailed information and

using the navigator at the bottom of the window.

65

Search of a product is very easy if you are using the search & report window under

stocks.

241 21:1.300
:1.9[[500
121 [480

Figure 3.9 (Search Products)

This can be achieved by selecting the search criteria and entering the search

keywords.

After search you can preview and print only the selected stock in a report to prevent

the usage of more paper.

Report
Stock_lD Stock_Name Quantity Reorder_Level Price Vat_Leve,I

5 Nokia 1200 99 80 16

Figure 3.10 (Print Selected Product)

66

To see a list of all stocks in one report you have to use the list & report tab under
stocks window.

Figure 3.11 (List Stocks)

On the demand of a detailed list of all stocks you can generate a report that should
be like below.

Stocks
Stoc~_IO Std<:k_tlame Quantify Reorder_Level Price VaLLevel

Nolda 6300 1 2 390 16
2 Nokia N 95 2A 2 1300 16
J s~rnsu119 U600 19 500 16
4 LG Shine 12 460 16
s Nokia 1200 99 80 16
Total 155 Product(s}

Figure 3.12 (Print All products)

This report is printable.

67

The last step to complete the CRM you have to record your invoices.

Figure 3.13 (new invoice)

The invoice recording process is quite simple. First you have to select the customer

and the invoice date. After that this information must be confirmed to start to add

products to card. After the confirmation of the card the invoice is directly printed.

68

After the invoice is completed you can list, preview and cancel invoices.

Figure 3.14 (List invoices)

To cancel the invoice click the "Cancel" invoice button, to reprint the invoice click

"print invoice" button.

REPORTS

Figure 3.15 (Report main window)

69

Stocks List
Stock_lD Stock_Name Quantity Reorder_Level Price Vat_Level
1 Nokia 6300 1 2 390 YTL 16 %
2 Nokia N 95 24 2 1300 YTL 16 %
3 -Samsung U600 19 500 YTL 16 %
4 LG Shine 12 460 YTL 16 %
5 Nokia 1200 9~ 80 YTL 16%
Total 155 pieces of products in 5 different types

Figure 3.16 (Stocks Report)

Customers Detailed List
Customer_lD 1
Name Mehmet Surname Alp
ID_Number 2131313 Gender Male Date of Birth 01-01.1980
.Home_Phone 3928157770 Business_Phone 3928159201 GSM 5338601010

Address karaoglanoglu
City Girne Country ~KTC Pesta I_ Code 90000
Customer_lD 2
Name Fahriye Surname Ertekin
ID_Number 1232131 Gender Female Date of Birth 01.01.1969
Home_Phone 3922291451 Buslness Phone 3922291451 GSM 5338693337
Address Yenisehir
City Lefko§a Country KKTC Postal_Code 90000

Customer_lD 3
Name Evrim Surname Kaki
ID_Number 231313 Gender Male Date of Birth 0101.1985
Home_Phone 1231312 Business_Phone 12313 GSM asd
Address dasd
City as da Country 21313 PostalCode 90000

Figure 3.17 (Customers Report)

70

Stocks under minimum level
Stock 10 Stock Name Qu!:lntity Reorder] .. evel Price Vat_Level

1 Nokia 6300 1 2 390 16
2 pieces of stock must be reordered

Figure 3.18 (Products under minimum reorder level)

Popular Stocks
Stock_lO Stock_Name Totaf Sold

3 $amsung U600
4 LG Shine
5 Nokia 1200

2
2
1

Figure 3.19 (Popular Stocks)

When you want to quit systems needs a

confirmation.

::le
? Are you sure you want to ex~ ?

After confirmation the program is terminated.

71

CONCLUSION

Delphi has many components that are allows us to write windows programs more

quickly and more easily . I have used businessskin and fastreport components to

have better vision in CRM (customer relationship management) software program

which I have designed . CRM program will facilitate the service of employees who are

face to face with customers in businesses such as customer support and

marketting.the aim of CRM Software to obtain facilitiy in working of user and to

give the best service to customer. That's why the program allows user to check all

done works.with more detailed information about customers and their products. Using

the detailes of customers registered in CRM program, company can contact with

customer directly in emergency situations and you can see any changing in stocks

quickly.

This program desinged for smaller size business companies however it can be

developed for larger business areas on demand .

72

REFERENCES

[1] Mastering Borland Delphi 2005 (Mastering) by Marco Cantu' (Paperback - Aug 19,
2005)

[2] Inside Delphi 2006 (Wordware Delphi Developer's Library) by Ivan Hladni
(Paperback - Nov 25, 2005)

[3] Introducing Delphi Programming: Theory through Practice by John Barrow, Linda
Miller, Katherine Malan, and Helene Gelderblom

[4] www.delphiturk.com

[5] http://www.torry.net

[6] www.about.com

73

APPENDIX

PROGRAM CODE

program CRM· '

uses

Forms,

main in 'main.pas' {Form1};

{$R *.res}

begin

Application.Initialize;

Application.CreateForm(TForm1, Form1);

Application.Run;

end.

74

unit main;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, bsSkinData, BusinessSkinForm, ToolWin, ComCtrls, bsSkinCtrls,

bsCategoryButtons, bsButtonGroup, StdCtrls, ExtCtrls, lmglist,

bsSkinBoxCtrls, Mask, DB, ADODB, bsMessages, bsdbctrls,

bsSkinTabs, bsSkinGrids, bsDBGrids, frxClass, frxDBSet, OleCtrls,

ShockwaveFlashObjects_ TLB, jpeg ;

type

TForm1 = class(TForm)

bsBusinessSkinForm1: TbsBusinessSkinForm;

bsSkinData1: TbsSkinData;

bsCompressedStoredSkin1: TbsCompressedStoredSkin;

bsSkinPanel1: TbsSkinPanel;

bsSkinButton1: TbsSkinButton;

bsSkinButton2: TbsSkinButton;

bsSkinButton3: TbsSkinButton;

bsSkinButton4: TbsSkinButton;

bsSkinButtonS: TbsSkinButton;

bsSkinStdlabel1: TbsSkinStdlabel;

Panel1: TPanel;

bsSkinPanel2: TbsSkinPanel;

bsSkinPanel3: TbsSkinPanel;

75

bsSkinStatusPanel1: TbsSkinStatusPanel;

bsSkinStdlabel2: TbsSkinStdlabel;

bsSkinStdlabel3: TbsSkinStdlabel;

bsSkinEdit1: TbsSkinEdit;

bsSkinMaskEdit1: TbsSkinMaskEdit;

bsSkinButton6: TbsSkinButton;

DataSource1: TDataSource;

AD0Connection1: TADOConnection;

AD0Query1: TADOQuery;

bsSkinMessage1: TbsSkinMessage;

bsSkinButton7: TbsSkinButton;

bsSkinButton8: TbsSkinButton;

DataSource2: TDataSource;

AD0Table1: TADOTable;

frxReport1: TfrxReport;

frxD8Dataset1: TfrxDBDataset;

frxD8Dataset2: TfrxDBDataset;

frxReport2: TfrxReport;

bsSkinPageControl1: TbsSkinPageControl;

bsSkinTabSheet2: TbsSkinTabSheet;

bsSkinD8Grid1: TbsSkinDBGrid;

bsSkinButton9: TbsSkinButton;

bsSkinButton10: TbsSkinButton;

bsSkinTabSheet3: TbsSkinTabSheet;

bsSkinD8Grid2: TbsSkinDBGrid;

bsSkinComboBox1: TbsSkinComboBox;

bsSkinEdit2: TbsSkinEdit;

76

bsSkinButton11: TbsSkinButton;

bsSkinButton12: TbsSkinButton;

bsSkinButton13: TbsSkinButton;

bsSkinTabSheet1: TbsSkinTabSheet;

bsSkinTextlabel1: TbsSkinTextlabel;

bsSkinD8Text1: TbsSkinDBText;

bsSkinStdlabel4: TbsSkinStdlabel;

bsSkinTextlabel2: TbsSkinTextlabel;

Shape1: TShape;

bsSkinTextlabel3: TbsSkinTextlabel;

bsSkinD8Edit2: TbsSkinDBEdit;

bsSkinD8Edit1: TbsSkinDBEdit;

bsSkinD8DateEdit1: TbsSkinDBDateEdit;

bsSkinD8Edit3: TbsSkinDBEdit;

bsSkinD8Combo8ox1: TbsSkinDBComboBox;

bsSkinD8Edit4: TbsSkinDBEdit;

bsSkinD8Edit5: TbsSkinDBEdit;

bsSkinD8Edit6: TbsSkinDBEdit;

bsSkinD8Memo1: TbsSkinDBMemo;

bsSkinD8Edit7: TbsSkinDBEdit;

bsSkinD8Edit8: TbsSkinDBEdit;

bsSkinD8Edit9: TbsSkinDBEdit;

bsSkinDBNavigator1: TbsSkinDBNavigator;

bsSki n PageControl2: Tbs Skin PageControl;

bsSkinTabSheet4: TbsSkinTabSheet;

bsSkinD8Grid3: TbsSkinDBGrid;

bsSkinButton14: TbsSkinButton;

77

bsSkinButton15: TbsSkinButton;

bsSkinTabSheet5: TbsSkinTabSheet;

bsSkinD8Grid4: TbsSkinDBGrid;

bsSkinComboBox2: TbsSkinComboBox;

bsSkinEdit3: TbsSkinEdit;

bsSkinButton16: TbsSkinButton;

bsSkinButton17: TbsSkinButton;

bsSkinButton18: TbsSkinButton;

bsSkinTabSheet6: TbsSkinTabSheet;

bsSkinTextlabel4: TbsSkinTextlabel;

bsSkinD8Text2: TbsSkinDBText;

bsSkinStdlabel5: TbsSkinStdlabel;

bsSkinD8Edit11: TbsSkinDBEdit;

bsSkinD8Navigator2: TbsSkinDBNavigator;

AD0Table2: TADOTable;

DataSource3: TDataSource;

bsSkinD8NumericEdit1: TbsSkinDBNumericEdit;

bsSkinD8NumericEdit2: TbsSkinDBNumericEdit;

bsSkinD8CurrencyEdit1: TbsSkinDBCurrencyEdit;

bsSkinDBNumericEdit3: TbsSkinDBNumericEdit;

bsSkinStdlabel6: TbsSkinStdlabel;

frxReport3: TfrxReport;

frxReport4: TfrxReport;

frxD8Dataset3: TfrxDBDataset;

frxDBDataset4: TfrxDBDataset;

bsSkinPageControl3: TbsSkinPageControl;

bsSkinTabSheet9: TbsSkinTabSheet;

78

bsSkin T extlabel5: TbsSkin T extlabel;

bsSkinDBText3: TbsSkinDBText;

bsSkinStdlabel7: TbsSkinStdlabel;

bsSkinDBEdit10: TbsSkinDBEdit;

bsSkinDBNavigator3: TbsSkinDBNavigator;

AD0Table3: TADOTable;

DataSource4: TDataSource;

bsSkinDBPasswordEdit1: TbsSkinDBPasswordEdit;

bsSkinDBEdit12: TbsSkinDBEdit;

bsSkinDBGrid5: TbsSkinDBGrid;

bsSkinPageControl4: Tbs Skin PageControl;

bsSkinTabSheet7: TbsSkinTabSheet;

ADOTable4: TADOTable;

DataSource5: TDataSource;

bsSkinStdlabel11: TbsSkinStdlabel;

ADOTable5: TADOTable;

bsSkinStdlabel17: TbsSkinStdlabel;

bsSkinDBText5: TbsSkinDBText;

ADOQuery2: TADOQuery;

frxReport5: TfrxReport;

frxDBDataset5: TfrxDBDataset;

AD0Query3: TADOQuery;

bsSkinPanel4: TbsSkinPanel;

bsSkinStdlabel12: TbsSkinStdlabel;

bsSkinDBLookupComboBox1: TbsSkinDBLookupComboBox;

bsSkinStdlabel13: TbsSkinStdlabel;

bsSkinCurrencyEdit1: TbsSkinCurrencyEdit;

79

bsSkinStdLabel14: TbsSkinStdLabel;

bsSkinNumericEdit1: TbsSkinNumericEdit;

bsSkinStd Label 15: TbsSkinStd Label;

bsSkinDBText4: TbsSkinDBText;

bsSkinStdLabel 16: TbsSkinStd Label;

bsSkinStdLabel18: TbsSkinStdLabel;

bsSkinButton20: TbsSkinButton;

bsSkinDBGrid6: TbsSkinDBGrid;

bsSkinButton23: TbsSkinButton;

bsSkinStdLabel20: TbsSkinStdLabel;

bsSkinComboBox3: TbsSkinComboBox;

bsSkinStdLabel21: TbsSkinStdLabel;

bsSkinButton22: TbsSkinButton;

bsSkinPanel5: TbsSkinPanel;

bsSkinButton21: TbsSkinButton;

bsSkinDateEdit1: TbsSkinDateEdit;

bsSkinStdLabel10: TbsSkinStdLabel;

bsSkinButton19: TbsSkinButton;

bsSkinDBNumericEdit4: TbsSkinDBNumericEdit;

bsSkinStdLabel9: TbsSkinStdLabel;

bsSkinStdLabel8: TbsSkinStdLabel;

bsSkinStdLabel19: TbsSkinStdLabel;

bsSkinTabSheet8: TbsSkinTabSheet;

bsSkinDBGrid7: TbsSkinDBGrid;

DataSource6: TDataSource;

bsSkinDBGrid8: TbsSkinDBGrid;

bsSkinDateEdit2: TbsSkinDateEdit;

80

bsSkinStdlabel22: TbsSkinStdlabel;

ADOTable6: TADOTable;

DataSource7: TDataSource;

ADOTable?: TADOTable;

DataSource8: TDataSource;

bsSkinButton24: TbsSkinButton;

ADOQuery4: TADOQuery;

bsSkinButton25: TbsSkinButton;

bsSkinPageControl5: TbsSkinPageControl;

bsSkinTabSheet10: TbsSkinTabSheet;

bsSkinButton26: TbsSkinButton;

bsSkin Button27: TbsSkin Button;

bsSkinButton29: TbsSkinButton;

bsSkin Button28: Tbs Skin Button;

ADOQuery5: TADOQuery;

DataSource9: TDataSource;

bsSkinDBGrid9: TbsSkinDBGrid;

bsSkinButton31: TbsSkinButton;

frxReport6: TfrxReport;

frxDBDataset6: TfrxDBDataset;

frxReport?: TfrxReport;

frxDBDataset?: TfrxDBDataset;

frxReport8: TfrxReport;

frxDBDataset8: TfrxDBDataset;

frxReport9: TfrxReport;

frxDBDataset9: TfrxDBDataset;

procedure bsSkinButton8Click(Sender: TObject);

81

procedure bsSkinButton7Click(Sender: TObject);

procedure bsSkinButton6Click(Sender: TObject);

procedure bsSkinButton9Click(Sender: TObject);

procedure bsSkinButton1 OClick(Sender: TObject);

procedure bsSkinButton11 Click(Sender: TObject);

procedure bsSkinButton1 Click(Sender: TObject);

procedure bsSkinButton5Click(Sender: TObject);

procedure bsSkinButton3Click(Sender: TObject);

procedure bsSkin Button 16Click(Sender: TObject);

procedure bsSkinButton17Click(Sender: TObject);

procedure bsSkinButton18Click(Sender: TObject);

procedure FormCreate(Sender: TObject);

procedure bsSkinButton4Click(Sender: TObject);

procedure bsSkinButton2Click(Sender: TObject);

procedure bsSkinButton19Click(Sender: TObject);

procedure bsSkinButton21 Click(Sender: TObject);

procedure bsSkinDBCurrencyEdit2Change(Sender: TObject);

procedure bsSkinDBLookupComboBox1 Change(Sender: TObject);

procedure bsSkinButton20Click(Sender: TObject);

procedure bsSkinButton22Click(Sender: TObject);

procedure bsSkinButton23Click(Sender: TObject);

procedure bsSkinDateEdit2Change(Sender: TObject);

procedure DataSource?DataChange(Sender: TObject; Field: TField);

procedure bsSkinButton24Click(Sender: TObject);

procedure bsSkinButton25Click(Sender: TObject);

procedure bsSkinButton26Click(Sender: TObject);

procedure bsSkinButton27Click(Sender: TObject);

82

procedure bsSkinButton29Click(Sender: TObject);

procedure bsSkinButton28Click(Sender: TObject);

procedure bsSkinButton31 Click(Sender: TObject);

private

{ Private declarations}

public

{ Public declarations }

end;

var

Form1: TForm1;

implementation

var

curinvid:integer;

rep id: integer;

{$R *.dfm}

procedure TForm1 .bsSkinButton8Click(Sender: TObject);

begin

if bsskinmessage1 .MessageDlg('Are you sure you want to exit
?',mtconfirmation,[mbyes,mbno],O)=mryes then

application. Terminate;

end;

procedure TForm1 .bsSkinButton7Click(Sender: TObject);

begin

83

application.minimize;

end;

procedure TForm1 .bsSkinButton6Click(Sender: TObject);

begin

with adoquery1 do begin

close;

sq I.Clear;

sql.Add('Select * from Users where Username='+#39+bsskinedit1 .Text+#39+' and
Password='+#39+bsskinmaskedit1 .Text+#39);

open;

end;

if adoquery1 .RecordCount=O then

bsskinmessage1 .MessageDlg('lnvalid username or password',mtwarning,[mbok],O)

else begin

bsskinmessage1 .MessageDlg('Login Succesful',mtconfirmation,[mbok],O);

bsski nstd label2. Caption: ='Welcome
'+adoquery1 .fieldbyname('Name_Surname').AsString;

bsskinstdlabel3.Caption:='Your login time is :'+timetostr(now);

bsskinedit1 .Visible:=false;

bsskinmaskedit1 .Visible:=false;

bsskinbutton6.Visible:=false;

bsskinpanel2.Visible:=true;

end;

end;

procedure TForm1 .bsSkinButton9Click(Sender: TObject);

begin

frxreport2.ShowReport;

84

end;

procedure TForm1 .bsSkinButton1 OClick(Sender: TObject);

begin

frxreport1 .ShowReport;

end;

procedure TForm1 .bsSkinButton11 Click(Sender: TObject);

var

a,b:string;

c:boolean;

begin

b:=bsskinedit2.Text;

if b<>" then begin

if bsskincombobox1 .ltemlndex=O then a:='Cname';

if bsskincombobox1 .ltemlndex=1 then a:='CSurname';

if bsskincombobox1 .ltemlndex=2 then a:='ID_Number';

c:=adotable1 .Locate(a,b,[loPartialKey, loCaselnsensitive]);

if c=false then bsskinmessage1 .MessageDlg('Record not found',mtwarning,[mbok],O);

end;

end;

procedure TForm1 .bsSkinButton1 Click(Sender: TObject);

begin

if bsskinpanel2.Visible=true then begin

if bsskinpagecontrol1.Visible=true then

bsskinpagecontrol1.Visible:=false

85

else

bsskinpagecontrol1.Visible:=true;

end;

bsskinpagecontrol1.BringToFront;

end;

procedure TForm1 .bsSkinButton5Click(Sender: TObject);

begin

if bsskinpanel2.Visible=true then begin

if bsskinpagecontrol5.Visible=true then

bsskinpagecontrol5.Visible:=false

else

bsski n pagecontrol5. Visible: =true;

end;

bsskinpagecontrol5.BringToFront;

end;

procedure TForm1 .bsSkinButton3Click(Sender: TObject);

begin

if bsskinpanel2.Visible=true then begin

if bsskinpagecontrol2.Visible=true then

bsskinpagecontrol2.Visible:=false

else

bsskinpagecontrol2.Visible:=true;

end;

bsskinpagecontrol2.BringToFront;

end;

86

procedure TForm1 .bsSkinButton16Click(Sender: TObject);

var

a,b:string;

c:boolean;

begin

b:=bsskinedit3.Text;

if b<>" then begin

if bsskincombobox2.ltemlndex=O then a:='Stock_lD';

if bsskincombobox2.ltemlndex=1 then a:='Stock_Name';

c:=adotable2.Locate(a,b,[loPartialKey, loCaselnsensitive]);

if c=false then bsskinmessage1 .MessageDlg('Record not found',mtwarning,[mbok],O);

end;

end;

procedure TForm1.bsSkinButton17Click(Sender: TObject);

begin

frxreport4.ShowReport;

end;

procedure TForm1.bsSkinButton18Click(Sender: TObject);

begin

frxreport3.ShowReport;

end;

procedure TForm1 .FormCreate(Sender: TObject);

87

begin

bsskindbgrid5.Columns[2].Visible:=false;

adotable4.Filtered:=false;

adotable4.Filter:='invoice_lD='+inttostr(curinvid);

adotable4.Filtered:=true;

bsskindbgrid6.Columns[O].Visible:=false;

bsskindbgrid6.Columns[1].Visible:=false;

bsskindbgrid6.Columns[2].Visible:=false;

bsskindbgrid7.Columns[O].Visible:=false;

bsskindbgrid7.Columns[1].Visible:=false;

bsskindbgrid7.Columns[2].Visible:=false;

end;

procedure TForm1 .bsSkinButton4Click(Sender: TObject);

begin

if bsskinpanel2.Visible=true then begin

if bsskinpagecontrol3.Visible=true then

bsskinpagecontrol3.Visible:=false

else

bsskinpagecontrol3.Visible:=true;

end;

bsskinpagecontrol3. BringT oF rant;

end;

procedure TForm1 .bsSkinButton2Click(Sender: TObject);

begin

88

if bsskinpanel2.Visible=true then begin

if bsskinpagecontrol4.Visible=true then

bsskinpagecontrol4.Visible:=false

else

bsskinpagecontrol4.Visible:=true;

end;

bsskinpagecontrol4.BringToFront;

end;

procedure TForm1.bsSkinButton19Click(Sender: TObject);

begin

bsskinpagecontrol1.BringToFront;

bsskinpagecontrol1.ActivePagelndex:=1;

end;

procedure TForm1 .bsSkinButton21 Click(Sender: TObject);

begin

adotable5 .Append;

adotable5.FieldByName('Customer_lD').AsString:=bsskindbnumericedit4.text;

adotable5. Field ByName('invoice _Date') .As Date Time:=bsskindateed it1. Date;

adotable5. Post;

curinvid:=adotable5.fieldbyname('invoice_lD').Aslnteger;

adotable4.Filtered:=false;

adotable4. Filter: ='invoice _I D='+inttostr(cu rinvid);

adotable4.Filtered:=true;

bsskinpanel5.Enabled:=false;

89

bsskinpanelc.Enabled=true:

end;

procedure TForm1 .bsSkinDBCurrencyEdit2Change(Sender: TObject);

begin

if bsskinnumericedit1 .Value>O then begin

bsskinstdlabel19.Caption:=floattostr((bsskincurrencyedit1 .Value*bsskinnumericedit1.
Value)+(bsskincurrencyedit1 .Value*bsskinnumericedit1 .Value*strtofloat(bsskindbtext
4.Caption)/100));

end;

end;

procedure TForm1 .bsSkinDBLookupComboBox1 Change(Sender: TObject);

begin

bsskincurrencyedit1 .Value:=adotable2.fieldbyname('Price').AsFloat;

end;

procedure TForm1 .bsSkinButton20Click(Sender: TObject);

var

a:integer;

begin

if curinvid>O then begin

adotable4.Append;

adotable4.FieldByName('invoice_lD').Aslnteger:=curinvid;

adotable4.FieldByName('Stock_lD').Aslnteger:=adotable2.FieldByName('Stock_lD').
- Aslnteger;

adotable4.FieldByName('Stock_Name').AsString:=bsskindblookupcombobox1 .Text;

adotable4.FieldByName('Quantity').asfloat:=bsskinnumericedit1 .value;

90

adotable4. FieldByName('VA T').AsString :=bsskindbtext4. CapUon+'%';

adotable4.FieldByName('Sale_Price').AsFloat:=bsskincurrencyedit1 .Value;

adotable4.FieldByName('Total_Price').AsFloat:=strtofloat(bsskinstdlabel19.caption);

adotable4. Post;

a:=adotable2.fieldbyname('quantity').Aslnteger;

a:=a-strtoint(bsskinnumericedit1 .text);

adotable2.Edit;

adotable2.fieldbyname('quantity').Aslnteger:=a;

adotable2. Post;

with adoquery2 do begin

close;

sq I.Clear;

sql.Add('Select SUM(Total_Price) As total from invoice_Details where
invoice _I D='+i nttostr(curi nvid));

open;

end;

bsskinstd label21. Caption :='invoice Total is '+adoquery2 .fieldbyname('total').AsString;

end

else

bsskinmessage1 .MessageDlg('You have to confirm the Customer
ID',mtwarning,[mbok],O);

end;

procedure TForm1 .bsSkinButton22Click(Sender: TObject);

begin

adotable5.Edit;

adotable5. Field ByName('Payment_ Type').AsString :=bsskincombobox3. Text;

91

adotable5.FieldByName('invoice_ Total').AsString:=adoquery2.fieldbyname('total').As
String;

adotable5.Post;

//showmessage(inttostr(curinvid));

with adoquery3 do begin

close;

sq I.Clear;

sql.Add('SELECT Customers.Cname, Customers.CSurname,
Customers.lD_Number, Customers.Address, Customers.City, Customers.Country,
Customers.Postal_Code, invoice_Details.Stock_Name, invoice_Details.Quantity,
invoice_Details.Sale_Price,');

sql.Add('invoice_Details.VAT, invoice_Details.Total_Price, invoices.invoice_ Total,
invoices.Payment_ Type, invoices.invoice_Date, invoices.invoice_lD');

sql.Add('FROM (Customers INNER JOIN invoices ON Customers.[Customer_lD] =
invoices.[Customer_lD]) INNER JOIN invoice_Details ON invoices.[invoice_lD] =
invoice_Details.[invoice_lD]');

sql.Add('Where invoices.invoice_lD='+inttostr(curinvid));

open;

end;

frxreport5.ShowReport;

bsskinpanel4.Enabled:=false;

bsskinpanel5.Enabled:=true;

end;

procedure TForm1 .bsSkinButton23Click(Sender: TObject);

var

b,c,d:integer;

begin

b:=adotable4.fieldbyname('quantity').Aslnteger;

c:=adotable4.fieldbyname('stock_lD').Aslnteger;

92

adotable2. Locate('stock _ID', c, [loPartial Key, loCase I nsensltlvel):

d: =adotable2. Field ByName('q uantity') .As Integer;

adotable2.Edit;

adotable2.fieldbyname('quantity').Aslnteger:=b+d;

adotable2.Post;

adotable4.Delete;

with adoquery2 do begin

close;

sq I.Clear;

sql.Add('Select SUM(Total_Price) As total from invoice_Details where
invoice_lD='+inttostr(curinvid));

open;

end;

bsskinstdlabel21. Caption :='invoice Total is '+adoquery2. fieldbyname('total') .As String;

end;

procedure TForm1 .bsSkinDateEdit2Change(Sender: TObject);

begin

adotable6.Close;

adotable6.0pen;

adotable7.Close;

adotable7.0pen;

adotable6.Filtered:=false;

adotable6.Filter:='invoice_Date='+bsskindateedit2.Text;

adotable6. Filtered :=true;

end;

93

procedure TForm1 .DataSource?DataChange(Sender: TObject; Field: TField);

begin

if adotable6.fieldbyname('invoice_lD').AsString<>" then begin

adotable7. Filtered:=false;

adotable7.Filter:='invoice_lD='+adotable6.fieldbyname('invoice_lD').AsString;

adotable?.Filtered:=true;

end

else begin

adotable 7. Filtered :=false;

adotable7.Filter:='invoice_lD=O';

adotable?.Filtered:=true;

end;

end;

procedure TForm1 .bsSkinButton24Click(Sender: TObject);

var

s:integer;

begin

s:=adotable6.fieldbyname('invoice_lD').Aslnteger;

if s>O then begin

if bsskinmessage1 .MessageDlg('are you sure you want to cancel this
invoice?',mtconfirmation,[mbyes,mbno],O)=mryes then begin

adotable 7. First;

adotable?.Delete;

while not adotable?.Eof do begin

adotable7.Delete;

end;

94

adotable6.Close;

adotable?.Close;

adotable6.open;

adotable?.open;

adotable6.Delete;

end;

end;

end;

procedure TForm1 .bsSkinButton25Click(Sender: TObject);

begin

with adoquery3 do begin

close;

sq I.Clear;

sql.Add('SELECT Customers.Cname, Customers.CSurname,
Customers.lD_Number, Customers.Address, Customers.City, Customers.Country,
Customers.Postal_Code, invoice_Details.Stock_Name, invoice_Details.Quantity,
invoice_Details.Sale_Price,');

sql.Add('invoice_Details.VAT, invoice_Details.Total_Price, invoices.invoice_Total,
invoices.Payment_ Type, invoices.invoice_Date, invoices.invoice_lD');

sql.Add('FROM (Customers INNER JOIN invoices ON Customers.[Customer_lD] =
invoices.[Customer_lD]) INNER JOIN invoice_Details ON invoices.[invoice_lD] =
invoice_Details.[invoice_lD]');

sql.Add('Where invoices.invoice_lD='+adotable6.fieldbyname('invoice_lD').AsString);

open;

end;

frxreport5. ShowReport;

end;

95

procedure TForm1 .bsSkinButton26Click(Sender: TObject);

begin

with adoquery5 do begin

close;

sq I.Clear;

sql.Add('Select * from Stocks');

open;

repid:=1;

end;

end;

procedure TForm1 .bsSkinButton27Click(Sender: TObject);

begin

with adoquery5 do begin

close;

sq I.Clear;

sql.Add('Select * from Customers');

open;

repid:=2;

end;

end;

procedure TForm1 .bsSkinButton29Click(Sender: TObject);

begin

with adoquery5 do begin

close;

sq I.Clear;

96

sql.Add('Select * from Stocks');

sql.Add('Where quantity<=Reorder_Level');

open;

repid:=3;

end;

end;

procedure TForm1 .bsSkinButton28Click(Sender: TObject);

begin

with adoquery5 do begin

close;

sql.Clear;

sql.Add('Select * from Stocks1 ');

open;

repid:=4;

end;

end;

procedure TForm1 .bsSkinButton31 Click(Sender: TObject);

begin

if repid=1 then

frxreport6. ShowReport;

if repid=2 then

frxreport7 .ShowReport;

if repid=3 then

frxreport8.ShowReport;

if repid=4 then

97

frxreport9. ShowReport;

end;

end.

98

	Page 1
	Titles
	NEAR EAST UNIVERSITY
	Faculty of Engineering

	Images
	Image 1

	Page 2
	Images
	Image 1

	Page 3
	Titles
	TABLE OF CONTENTS

	Images
	Image 1

	Page 4
	Images
	Image 1

	Page 5
	Titles
	Ł

	Images
	Image 1

	Page 6
	Images
	Image 1

	Page 7
	Images
	Image 1

	Page 8
	Images
	Image 1

	Page 9
	Images
	Image 1

	Page 10
	Images
	Image 1
	Image 2

	Page 11
	Images
	Image 1

	Page 12
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 13
	Images
	Image 1

	Tables
	Table 1

	Page 14
	Images
	Image 1

	Page 15
	Images
	Image 1

	Page 16
	Images
	Image 1
	Image 2

	Page 17
	Titles
	Ł

	Images
	Image 1

	Page 18
	Images
	Image 1

	Page 19
	Images
	Image 1

	Page 20
	Titles
	Ł

	Images
	Image 1

	Page 21
	Titles
	..

	Images
	Image 1

	Page 22
	Images
	Image 1

	Page 23
	Titles
	Ł

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 24
	Titles
)

	Images
	Image 1

	Page 25
	Titles
)

	Images
	Image 1

	Page 26
	Images
	Image 1
	Image 2

	Page 27
	Images
	Image 1

	Page 28
	Images
	Image 1

	Page 29
	Images
	Image 1

	Page 30
	Titles
)

	Images
	Image 1

	Page 31
	Titles
)

	Images
	Image 1

	Page 32
	Images
	Image 1

	Page 33
	Images
	Image 1

	Page 34
	Images
	Image 1

	Page 1
	Images
	Image 1

	Page 2
	Images
	Image 1
	Image 2

	Page 3
	Images
	Image 1

	Page 4
	Images
	Image 1

	Page 5
	Images
	Image 1

	Page 6
	Images
	Image 1
	Image 2

	Page 7
	Images
	Image 1

	Page 8
	Images
	Image 1
	Image 2

	Page 9
	Images
	Image 1

	Page 10
	Images
	Image 1

	Page 11
	Images
	Image 1

	Page 12
	Images
	Image 1
	Image 2

	Page 13
	Images
	Image 1

	Page 14
	Titles
	~:~~~----J L__ J [12209 _J
	I Total: r -----· .. la~:ss·1 I

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1

	Page 15
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 16
	Images
	Image 1
	Image 2
	Image 3

	Page 17
	Images
	Image 1
	Image 2

	Page 18
	Titles
	~\

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 19
	Titles
	Ł
	Select the fields to include
	Choose the grouping levels

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Page 20
	Titles
	1
	Choose the sorting options
	Microsoft Access Reports Tutorial Part 3: Finishing Touches

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Tables
	Table 1

	Page 21
	Images
	Image 1

	Page 22
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 23
	Titles
	ii

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 24
	Images
	Image 1
	Image 2
	Image 3

	Page 25
	Titles
	ŁŁ

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 26
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 27
	Images
	Image 1

	Page 28
	Images
	Image 1

	Page 29
	Images
	Image 1

	Page 30
	Images
	Image 1
	Image 2

	Page 31
	Images
	Image 1
	Image 2

	Page 32
	Images
	Image 1
	Image 2

	Page 33
	Images
	Image 1
	Image 2

	Page 34
	Images
	Image 1
	Image 2

	Page 1
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 2
	Images
	Image 1
	Image 2
	Image 3

	Page 3
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 4
	Images
	Image 1
	Image 2

	Page 5
	Images
	Image 1
	Image 2
	Image 3

	Page 6
	Titles
	Stocks List
	Figure 3.16 (Stocks Report)
	Figure 3.17 (Customers Report)
	70

	Images
	Image 1

	Tables
	Table 1
	Table 2

	Page 7
	Titles
	::le

	Images
	Image 1
	Image 2
	Image 3

	Page 8
	Images
	Image 1

	Page 9
	Images
	Image 1

	Page 10
	Images
	Image 1

	Page 11
	Images
	Image 1

	Page 12
	Images
	Image 1

	Page 13
	Images
	Image 1

	Page 14
	Images
	Image 1

	Page 15
	Images
	Image 1

	Page 16
	Images
	Image 1

	Page 17
	Images
	Image 1
	Image 2

	Page 18
	Images
	Image 1

	Page 19
	Images
	Image 1

	Page 20
	Images
	Image 1

	Page 21
	Images
	Image 1
	Image 2

	Page 22
	Images
	Image 1
	Image 2

	Page 23
	Images
	Image 1
	Image 2

	Page 24
	Images
	Image 1

	Page 25
	Images
	Image 1
	Image 2

	Page 26
	Images
	Image 1
	Image 2

	Page 27
	Images
	Image 1

	Page 28
	Images
	Image 1
	Image 2

	Page 29
	Images
	Image 1

	Page 30
	Images
	Image 1

	Page 31
	Images
	Image 1

	Page 32
	Images
	Image 1

	Page 33
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 34
	Images
	Image 1
	Image 2

