
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

WEB APPLICATIONS OF FAST - FOOD SALE AND
RESTAURANT SALE MANAGEMENT

Graduation Project
COM-400

Student: Engin Alan

Supervisor: Omit Soyer

Nicosia - 2006

ACKNOWLEDGEMENTS
•

. First, I would like to thank my supervisor Mr. Omit Sayer for his invaluable advice and

confidence to my working style. If my project is not same with the one I determined/our

months ago, but more developed, well-thought and constructed, it is cause of him.

Second, I would like to thank Assoc. Pr. Dr. Rahib Abiyev for teaching programming

methods in C languages, so it has been possible to work on the project via a widely used

programming language.

Third, I would like to thank my best friend Mr. Onder Tellioglu (Microsoft CRM

Software Professional) for his valuable advices and patience to my incessant questions.

Fourth, I would like to my family, especially to my mother for every day calling and

motivation.

Finally, I would also like to thank my homemates Goktug Atm; and Mesut Artk; also my

friends Suleyman Kerimoglu, Sinan Ozerenler, Ozan Akkoca and H Rauf Dilsiz for

their advice, support and enjoyable jokes to entertain me when I was very anxious.

ABSTRACT

•
Web applications are program structures which is working on the internet and

communicating with servers. They consist of two sections as client side interface and

server side database application.

Presented project is a web application which has two sections.

First section is a web page which is used to sale fast-food products on the

internet and support an advertisement interface for customer. In this section, customers

are provided to submit their information to have a membership for shopping and having

the products by using this membership. An ease to choose a popular product group is

presented to customers so, they have been able to shorten the shopping time. All orders

are hold on a server.
Second section is a web interfaced program for restaurants to enter the system by

using a special login name and password. Restaurants manage orders via this program.

In the project, code examples are shown from application. SQL Server 2000,

HTML 4.0 and VISUAL STUDIO .NET 2000 platform are included in the project with

their major attributes. ASP.NET is presented both in .NET platform and project structer

sections.

11

TABLE OF CONTENTS
•

ACKNOWLEDGEMENTS

ABSTRACT

TABLE OF CONTENTS

INTRODUCTION

i

II

iii

1

CHAPTER ONE: WORLD WIDE WEB AND HTML - XHTML 2

1.1 The Internet 2

1.4.1 What They Are

1.4.2 What They Aren't

1.4.3 Content Versus Appearance

1.4.4 Structure of HTML Document

1.4.5 What is CSS?

1.4.6 HTML Tags As Group Tables

2

3

4

4

4

- 5

5

7

8

1.2 Html And The Web

1.3 Clients, Servers, And Browsers

1.4 HTML And XHTML

CHAPTER TWO: DATABASE MANAGEMENT WITH SQL

SERVER 2000 DEVELOPER EDITION 11

2.1 Evolution of Database Management System 11

2.1.1 File - Processing System: 11

2.1.2 Database Management System: 12

2.2 Characteristics of Database And DBMS 13

2.2.1 Characteristics of Database 13

2.2.2 Characteristics of Database Management System 14

2.3 Database Application 15
2.3 .1 Client - Server Database Application 15

2.3.2 Database - Server Database Application 15

2.3.3 Database Using Internet Applications 15

2.3 .4 Distributed Database Processing 15

111

2.3.5 Object- Oriented DBMS (ODBMS)

2.4 The Entity Relationship Model (E-R Model) •

2.4.1 CASE Tools

2.4.2 The Most Important Elements of E-R Model

2.4.2.1 Entities

2.4.2.2 Attributes

2.4.3 Relationships

2.5 The SQL Server Default Databases

2.6 SQL Server Default Login ID

2.7 A Brief on SQL Server Program Group

2.8 Creating Database in Sql Server
2.8.1 Create Database Statement Syntax (Simplified One)

2.9 T-SQL
2.9.1 The Select Statement

2.9.2 Important Mathematical Functions

2.9.3 Important String Functions

2.9.4 Date Functions

2.9.5 System Functions

2.9.6 Comparison Operators

2.9.7 List Operators

2.9.8 Wildcards

2.9.9 Unknown Values

2.9 .10 Using Distinct To Eliminate Duplicate Information

2.9.11 Using ORDER BY Clause

2.9.12 Aggregate Functions

2.9.13 Group By and Having Clause

2.9.14 Implementing Joins

16

16

16

17

17

17

18

19

20

20

21

22

23

23

24

25

26

27

27

27

27

28

28

28

28

29

29

CHAPTER THREE: ASP .NETAND C# LANGUAGE ON VISUAL

STUDIO .NET 2000 PLATFORM 33

33

34

35

3 .1 What Is .NET?

3.1.1 Windows DNA and COM

3 .1.2 The Common Language Runtime

lV

3.1.3 Inside the Common Language Runtime

3 .1.4 Understanding the Common Language Specification

3 .1.5 Understanding the Common Type System

3.1.6 The .NET Framework Class Library

3 .1. 7 .NET Servers and the Future of .NET

3 .2 ASP .NET Applications

3.2.1 Hello ASP.NET!

3.2.2 Adding Controls to a Web Form

36

37

38

41

42

44

45

48

CHAPTER FOUR: WEB APPLICATIONS OF FAST-FOOD SALE

AND RESTAURANT SALE MANAGEMENT 50

4.1.1 Explanation of Fast - Food Sale Web Application

4.1.2 Explanation of Restaurant Sale Management Application

4.2 Examining Requirements

4.3 Examining of Fast- Food Sale Application

4.4 Examining of Restaurant Sale Management Application

50

50

51

52

52

57

4.1 Definition of the Work:

CHAPTER FIVE: CODE STRUCTURES AND PROGRAMMING

TECHNICS USED IN APPLICATIONS 62

5 .1 User Defined Classes in C# 62

5 .2 How to Validate a Control 63

5.3 Managing State in ASP.NET Web Applications 64

5.4 Errors and Exceptions 65

5 .4.1 Why Errors Happen 66

5.4.2 Understanding Exceptions in .NET 66

5.4.3 Handling Exceptions with Try/Catch/Finally 67

5.5 Connecting to the Database: 68

5.6 Problems I Faced on Project and Solutions 70

CONCLUSION 73

REFERENCES 74

V

INTRODUCTION
•

It is very difficult to serve people for their requirements nowadays. Food

industry is one of the way to provide a service. It has been increasing the number of

companies supporting products to meet the need of food on the world.

While the companies do their sale from their member shops and markets

directly, an alternative way known as e-commerce has been having importance

explicitly. Besides the existence of the internet, food industry has needed to change their

sale strategy and leave one side serving policy.
As an objective of providing companies support on internet sale and

management tools for their sale terminals, this project is prepared as two sections. Both

sections are web application programmed on .NET platform with ASP.NET and C#

code behind. Working on the server and new web technologies of present are the main

reasons to prepare this project as web application.

Project has been presented as four chapter:

Chapter One presents the existence of the web and internet shortly and includes

properties of HTML, the most famous markup language for web pages, and its tags.

Also, similarities and differences of HTML and XHTML are included.

Chapter Two presents database management system from the days in whics files

were used to hold data up to now that modem systems have been used shortly. This

chapter includes the properties of the SQL Server 2000 Database and the way to use it,

mostly. The program of database system and query language is differentiated in the

chapter and took up in different sections.

Chapter Three demonstrate Visual Studio .NET 2003 platform with general

structure and features of ASP.NET. Files that constituting a web application and their

attributes are denoted in this chapter.
Chapter Four presents the working principles of web applications of the project.

Requirements of the system and most used and important forms of applications are

investigated by using user interface parts of project.

Chapter Five presents the characteristics of the project and demonstrates the

code structure. Object oriented programming structure and predefined system classes

and functions are included via examples from the application.

1

CHAPTER ONE: WORLD WIDE WEB AND HTML - XHTML
•

1.1 The Internet
Though it began as a military experiment and spent its adolescence as a sandbox

for academics and eccentrics, in less than a decade the worldwide network of computer

networks - also known as the Internet - has matured into a highly diversified, financially

important community of computer users and information vendors.
In many ways, the Web - the open community of hypertext-enabled document

servers and readers on the Internet - is responsible for the meteoric rise in the network's

popularity. You, too, can become a valued member by contributing: writing HTML and

XHTML documents and then making them available to web surfers worldwide.

Although popular media accounts are often confused and confusing, the concept

of the Internet really is rather simple: it's a worldwide collection of computer networks -

a network of networks - sharing digital information via a common set of networking and

software protocols.
Networks are not new to computers. What makes the Internet unique is its

worldwide collection of digital telecommunication links that share a common set of

computer-network technologies, protocols, and applications. Whether you run Microsoft

Windows XP, Linux, Mac OS X, or even the now ancient Windows 3 .1, when

connected to the Internet, computers all speak the same networking language and use

functionally identical programs, so you can exchange information - even multimedia

pictures and sound - with someone next door or across the planet.

1.2 Html And The Web
It tocks another spark to light the Internet rocket. At about the same time the

Internet opened up for business, some physicists at CERN, the European Particle

Physics Laboratory, released an authoring language and distribution system they

developed for creating and sharing multimedia-enabled, integrated electronic documents

over the Internet. And so was born Hypertext Markup Language (HTML), browser

software, and the Web. No longer did authors have to distribute their work as

fragmented collections of pictures, sounds, and text. HTML unified those elements.

2

Moreover, the Web's systems enabled hypertext linking, whereby documents

automatically reference other documents located anywhere around the world: less

rummaging, more productive time online.

1.3 Clients, Servers, And Browsers
The Internet connects two kinds of computers: servers, which serve up

documents, and clients, which retrieve and display documents for us humans. Things

that happen on the server machine are said to be on the server side, while activities on

the client machine occur on the client side.
To access and display HTML documents, we run programs called browsers on

our client computers. These browser clients talk to special web servers over the Internet

to access and retrieve electronic documents.
Several web browsers are available (most for free), each offering a different set

of features. For example, browsers like Lynx run on character-based clients and display

documents only as text. Others run on clients with graphical displays and render

documents using proportional fonts and color graphics on a 1024 x 768, 24-bit-per-pixel

display. Others still - Netscape Navigator, Microsoft's Internet Explorer, and Opera, to

name the leading few - have special features that allow you to retrieve and display a

variety of electronic documents over the Internet, including audio and video

multimedia.
All web activity begins on the client side, when a user starts his or her browser.

The browser begins by loading a home page document, either from local storage or

from a server over some network, such as the Internet, a corporate intranet, or a town

extranet. In these latter cases, the client browser first consults a domain name system

· (DNS) server to translate the home page document server's name, such as

www.oreilly.com, into an IP address, before sending a request to that server over the

Internet. This request (and the server's reply) is formatted according to the dictates of

the Hypertext Transfer Protocol (HTTP) standard.
A server spends most of its time listening to the network, waiting for document

requests with the server's unique address stamped on them. Upon receipt of a request,

the server verifies that the requesting browser is allowed to retrieve documents from the

server and, if so, checks for the requested document. If found, the server sends

3

(downloads) the document to the browser. The server usually logs the request, the client

computer's name, the document requested, and the timer

Back on the browser, the document arrives. If it's a plain-vanilla ASCII text file,

most browsers display it in a common, plain-vanilla way. Document directories, too, are

treated like plain documents, although most graphical browsers display folder icons that

the user can select with the mouse to download the contents of subdirectories.

Browsers also retrieve context files from a server. Unless assisted by a helper

program or specially enabled by plug-in software or applets, which display an image or

video file or play an audio file, the browser usually stores downloaded binary files

directly on a local disk for later use.

For the most part, however, the browser retrieves a special document that

appears to be a plain text file but that contains both text and special markup codes called

tags. The browser processes these HTML or XHTML documents, formatting the text

based on the tags and downloading special accessory files, such as images.

The user reads the document, selects a hyperlink to another document, and the

entire process starts over.

1.4 HTML And XHTML
1.4.1 What They Are

HTML and XHTML are document-layout and hyperlink-specification

languages. They define the syntax and placement of special, embedded directions that

aren't displayed by the browser but tell it how to display the contents of the document,

including text, images, and other support media. The languages also tell you how to

make a document interactive through special hypertext links, which connect your

· document with other documents - on either your computer or someone else's - as well as

with other Internet resources.

1.4.2 What They Aren't
Despite all their new, multimedia-enabling page-layout features, and the hot

technologies that give life to HTML/XHTML documents over the Internet, it is also

important to understand the languages' limitations. They are not word-processing tools,

desktop-publishing solutions, or even programming languages. Their fundamental

purpose is to define the structure and appearance of documents and document families

4

so that they may be delivered quickly and easily to a user over a network for rendering

on a variety of display devices. Jack of all trades, but master of none, so to speak.

1.4.3 Content Versus Appearance

HTML and its progeny, XHTML, provide many different ways to let you define

the appearance of your documents: font specifications, line breaks, and multicolumn

text are all features of the language. Of course, appearance is important, since it can

have either detrimental or beneficial effects on how users access and use the

information in your documents.

Nonetheless, we believe that content is paramount; appearance is secondary,

particularly since it is less predictable, given the variety of browser graphics and text­

formatting capabilities. In fact, HTML and XHTML contain many ways for structuring

your document content without regard to the final appearance: section headers,

structured lists, paragraphs, rules, titles, and embedded images are all defined by the

standard languages without regard for how these elements might be rendered by a

browser. Consider, for example, a browser for the blind, wherein graphics on the page

come with audio descriptions and alternative rules for navigation. The HTML/XHTML

standards define such a thing: content over visual presentation.

If you treat HTML or XHTML as a document-generation tool, you will be sorely

disappointed in your ability to format your document in a specific way. There is simply

not enough capability built into the languages to allow you to create the kinds of

documents you might whip up with tools like FrameMaker or Microsoft Word.

Attempts to subvert the supplied structuring elements to achieve specific formatting

tricks seldom work across all browsers.

In short, don't waste your time trying to force HTML and XHTML to do things

they were never designed to do.

1.4.4 Structure of HTML Document

HTML and XHTML documents consist of text, which defines the content of the

document, and tags, which define the structure and appearance of the document. The

structure of an HTML document is simple, consisting of an outer <html> tag enclosing

the document head and body.

Each document has a head and a body, delimited by the <head> and <body>

tags. The head is where you give your document a title and where you indicate other

5

parameters the browser may use when displaying the document. The body is where you

put the actual contents of the document. This includes the text for display and

document-control markers (tags) that advise the browser how to display the text. Tags

also reference special-effects files, including graphics and sound, and indicate the hot

spots (hyperlinks and anchors) that link your document to other documents.

For the most part, tags - the markup elements of HTML and XHTML - are

simple to understand and use, since they are made up of common words, abbreviations,

and notations. For instance, the <i> and </i> tags respectively tell the browser to start

and stop italicizing the text characters that come between them. Accordingly, the

syllable "simp" in our barebones example above would appear italicized on a browser

display.

The HTML and XHTML standards and their various extensions define how and

where you place tags within a document. Let's take a closer look at that syntactic sugar

that holds together all documents.

Every tag consists of a tag name, sometimes followed by an optional list of tag

attributes, all placed between opening and closing brackets (< and >). The simplest tag

is nothing more than a name appropriately enclosed in brackets, such as <head> and

<i>. More complicated tags contain one or more attributes, which specify or modify the

behavior of the tag.

According to the HTML standard, tag and attribute names are not case-sensitive.

There's no difference in effect between <head>, <Head>, <HEAD>, or even <HeaD>;

they are all equivalent. With XHTML, case is important: all current standard tag and

attribute names are in lowercase. For both HTML and XHTML, the values that you

assign to a particular attribute may be case-sensitive, depending on your browser and

. server. In particular, file location and name references - or uniform resource locators

(URLs) - are case-sensitive.

Tag attributes, if any, belong after the tag name, each separated by one or more

tab, space, or return characters. Their order of appearance is not important. A tag

attribute's value, if any, follows an equals sign (=) after the attribute name. You may

include spaces around the equals sign, so that width=6, width = 6, width =6, and width=

6 all mean the same. For readability, however, we prefer not to include spaces. That

way, it's easier to pick out an attribute/value pair from a crowd of pairs in a lengthy tag.

With HTML, if an attribute's value is a single word or number (no spaces), you

may simply add it after the equals sign. All other values should be enclosed in single or

6

double quotation marks, especially those values that contain several words separated by

spaces. With XHTML, all attribute values must be enclosed in double quotes. The

length of the value is limited to 1,024 characters.

Comments are another type of textual content that appears in the source HTML

document but is not rendered by the user's browser. Comments fall between the special

<!--and--> markup elements. Browsers ignore the text between the comment character

sequences.
There must be a space after the initial <!-- and preceding the final -->, but

otherwise you can put nearly anything inside the comment. The biggest exception to

this rule is that the HTML standard doesn't let you nest comments.

1.4.5 What is CSS?

HTML or XHTML only divide a document up into paragraphs, lists, headings

and so on, but does not really say how these things should look. Rather, a browser

generally makes some assumptions about how things should look -- and we're then

stuck with those choices.

This could be changed given a way of controlling how different markup

elements (like headings, paragraphs, etc) look. This is the role of CSS. Cascading Style

Sheets, or CSS, is a language, separate from HTML or XHTML, designed for

specifying the layout or formatting properties of the various HTML elements in a

document. For example, a CSS statment like the following

Body

{ font-family: Arial,helvetica,sans-serif;

color: black;

background-color: white;

}

means that, inside the BODY of a document, the desired font is Arial, the desired text

color is black, and the desired background color for the page is white. More

complicated rules let you control underlining of links, the placement of background

images, the widths of margins, the colors of borders around paragraphs or headings, etc.

As an example, the page you are viewing has an "attached" style sheet to control how it

looks. This stylesheet is included into this document using a special link element of the

7

form: <link rel="stylesheet" href="stylesheet.css" > where stylesheet.css contains the

CSS document. •

1.4.6 HTML Tags As Group Tables

Table 1.1: Structure Tags

Function Start Attributes End Tag

Tag

HTML File <html> None </html>

File Header <head> None </head>

File Title <title> None </title>

Comments <!-- Your comments go between the start -->

and end tags. Put a space between the

-- and your comments.

Body <body> Background="filename" </body>

bgcolor="color value"

text="color value"

link="color value"

vlink="color value"

Division <div> align="right/left/center" </div>

style="property:value;"

class="classname"

Span (inline) style="property:value;"

class=" classname"

Figure 1.1: Explanation of Structure Tags

8

Table 1.2: Basic Text Tags

Function Start Tag Attributes End Tag

Line Break
 clear="left/right/all" </br> or

Paragraph <p> align=" center/right" <Ip>

Bold none <lb>

Italic <i> none <Ii>

Typewriter <tt> none </tt>

Text

Headline <hl-6> align="center/right" </hl-6>

Font face="name, name"

size="+/-value/fixed size"

color="color value"

Note: the font tag is being phased

out in favor of CSS styles.

Horizontal <hr> size="XX" </hr> or <hr />

Rule width=''XXIXX%''

no shade

Block Quote <blockquote> none </blockquote>

Figure 1.2: Explanation of Basic Text Tags

Table 1.3: Link Tags

Function Start Tag Attributes End Tag

Anchor Link <a> href=" filename"

target="windowname"

Anchor Mark <a> name="markname"

Figure 1.3: Explanation of Link Tags

9

Table 1.4: Image Text •

Function Start Tag Attributes End Tag

Insert Image src="filename"

align="left/right"

width="XXX"

height="XXX"

alt="text that desribes image"

IS MAP

USEMAP="#mapname''
I

Figure 1.4: Explanation of Image Tags

Table 1.5: Form Tags

Function Start Tag Attributes End Tag

Form <form> method=get/put </form>

action="programname"

Input Field <input> name="variablename" </input>

type=text/password/

checkbox/radio/submit/

reset/image

Selection List <select> name="variablename" </select>

size=XX

multiple

Selection <option> none </option>

Option

Scrolling Text <textarea> name="variablename" </textarea>

Field rows=XX

Figure 1.5: Explanation of Form Tags

10

CHAPTER TWO: DATABASE MANAGEMENT WITH SQL

SERVER 2000 DEVELOPER EDITION

2.1 Evolution of Database Management System

2.1.1 File - Processing System:
In early processing systems, an organization's information was stored as groups

of records in separate files. These file processing systems consisted of a few data files

and many application programs. Each file, called a flat file, contained and processed

information for one specific function, such as accounting or inventory. Programmers

used programming languages such as COBOL to write applications that directly

accessed flat files to perform data management services and provide information for

users.

APPLICATION I '
I PROGRAM ~

• Programmers wrote applications in 3rd generation languages, such as
COBOL, to directly access files.

• All processing, storage, retrieval, generation, and access functions were
coded into the application.

• The application program might access several files in order to compile
needed information for the user.

• If file structures were not consistent between files for similar fields,
programmers wrote conversions into the application program.

Figure 2.1: File Processing System

Although File processing system is a great improvement over manual record

keeping systems, they suffer from these limitations:
Separated and Isolated Data: To make a decision, a user might need data from

two separate files. First, the files were evaluated by analysts and programmers to

determine the specific data required from each file and the relationships between the

data. Then applications could be written in some language like COBOL to process and

extract the needed data.

11

Data Duplication: Often, the same information was stored in more than one file.

In addition to taking up more file space on the system, this replication of data caused

loss of data integrity. For instance, if a customer's address were stored in four different

files, an address change would have to be updated in each file separately. If a user was

not consistent in updating all files, no one would know which information was correct.

Application Program Dependency: In File processing system application

program depended on the file formats. In file processing system the physical formats of

the files and records are part of the application code. So any change in the records

require change of the application code and thus made things very complex.

Incompatible Files: File formats depend on the language of the product used to

generate them. So if one file is processed using C and other using VB, they cannot be

combined and processed. For getting information combined from them we need to

convert both files to a common structure
Information Providing as per users perspectives: In file processing system it is

difficult to represent data in Users perspective because it is difficult to readily join the

information between various files. So it was difficult to answer ad-hoc queries of

database users.

2.1.2 Database Management System:
DBMS able to take care of most of the limitations of File Processing System.

/ Fl
APPLICATION [:J ~
PROGRAM

••• <, Fl ~

• Programmers write application programs either in separate
languages or in the DBMS language.

• Files are accessed through the DBMS .

• The DBMS controls all processing, storage, retrieval, generation,
and physical access functions.

Figure 2.2: Database Management System

12

Separated and Isolated Data issue: In DBMS all the data is stored in a single

facility called the database. It's very easy and simple to combine the data in DBMS.

Programmer just need to tell DBMS that how are the data to be combined and the

DBMS performs the necessary action. Thus the Programmer does not need to write the

program to consolidate the files.
Reduce Data Duplication: Since all the data is integrated the information need to

be stored at just one place and unlike File Processing system it does not need to be kept

at more then one place.
Program/ Data Dependence: Database reduces the dependency of programs on

file formats. All record formats are stored in the database itself by the DBMS and not by

application Programs so there is no need for database application program to include

file format and records the process.
Allows for representation of data from the user's view: Relationships between

data· objects in a user's environment are stored in the DBMS. Data elements from any

number of files can be combined to create useful forms, reports, and other applications.

2.2 Characteristics of Database And DBMS

2.2.1 Characteristics of Database
It is self-describing: In addition to the users source data, a data dictionary or

metadata contain information about the database structure. In this sense database is

similar to Library. This characteristic is important as it promoted program- data

independence. So database structure can be assessed by looking at the database itself

and we do not need any documentation etc to know data structure. Also changes to

database are easy to be made.
It is a collection of integrated records: In addition to Meta data and user data

database contains Indexes, which represent relationship between among the data and

also improve the performance of database applications. Thus a database contains 4 types

of data:

• Users Data

• Meta Data

• Indexes

• Application Metadata

13

A Database is Model of Model: Its representation of the users world or users

model. Thus database is a model of users' model of their business activities.

Therefore based on the characteristics of the Database we can formulate the

definition as: A database is self-describing collection of integrated records.

2.2.2 Characteristics of Database Management System

• It is collection of databases

• It is a computerized record-keeping system

• It contains facilities that allow the user to:

• Add and delete files to the system

• Insert, retrieve, update, and delete data in existing files

• A DBMS may contain many databases that can be used for separate

purposes or combined to provide useful information

Therefore based on this we can define Database Management System as: A

database management system (DBMS) is a program that allows users to define,

manipulate, and process the data in a database in order to produce meaningful

information.
Functions of a database management system can be ordered as:

• To organize data

• To store data

• To control access to data

• To protect data

Usage of database management systems can be ordered as:

To provide decision support: Managers and analysts retrieve information

generated by the DBMS for inquiry, analysis, and decision-making.

To provide transaction processing: Users input, update, and process data with

transactions that generate information needed by managers and other users or by other

departments.

14

2.3 Database Application

2.3.1 Client - Server Database Application •

In 1980s the concept of Local Area Network (LAN) emerged to share computer

peripherals like Printer, Plotters etc. But soon people felt the need to share databases too

and this led to development of the multi user database applications on LAN. Eventually

this led to the new style of multi user database processing called the client server

architecture.
A client server application can be defined as one that has two parts: One part

runs on the server, and the other part runs on workstations. The server side of the

application provides security, fault tolerance, performance, concurrency, and reliable

backups.
The client side provides the user interface and can contain empty reports,

queries, and forms. In client/server computing, when a query is run, the server searches

the database and sends only the rows that are a match to the client.

2.3.2 Database - Server Database Application
It's a specialized process that manages the database itself. The applications are

clients to the database server and they never manipulate the database directly, but only

make requests for the server to perform these operations.
Access is a relational database but it is not a database server. MS SQL, SQL

Anywhere, DB2, Oracle, is both relational databases and database servers.

2.3.3 Database Using Internet Applications
Then come the database using Internet applications, which we see in majority of

web sites today. Almost all major stores have the online stores using their own

databases at the back end. Technologies like Active Server Pages, Cold Fusion and

XML in particular being used to make database available through Internet.

2.3.4 Distributed Database Processing
The distributed database processing is one of the emerging database technology

solutions and the essence of it is that all the Organizations data is spread over many

computers- PCs, LAN servers, and mainframe- that communicate with one another as

they process the database.

15

The goal of distributed database system is to make each user feel that he or she

is the only user of the Organizations database and' to provide same consistency,

accuracy and timeliness that one would be getting if that person is the only person using

the database.

However, the DBMS must periodically synchronize the scattered databases to

make sure that they all have consistent data. For this various .Replication Technologies

too are used.

2.3.5 Object- Oriented DBMS (ODBMS)

It is also one of the emerging concepts of data storage and at this point we can

only say that it is more complex way of storing data and more research on this concept

is being done before it comes up as an Industry accepted technology.

Moreover ODBMS are expensive to develop. When you integrate database

capabilities with object programming language capabilities, the result is an ODBMS.

An ODBMS makes database objects appear as programming language objects in one or

more existing programming languages.

The ODBMS extends the language with transparently persistent data,

concurrency control, data recovery, associative queries, and other database capabilities

2.4 The Entity Relationship Model (E-R Model)
Entity Relationship Model was introduced by Peter Chen in 1976. It's important

to note that Peter Chen set out the foundation of this model and over the period of time,

this model has undergone a comprehensive change. The change has been brought by

various people who worked on this model for all along this period. The E-R Model has

been made part of various CASE Tools.

2.4.1 CASE Tools
Known as Computer Aided Software Engineering (CASE) tools. These tools are

primarily used for design documentation and code generation. In simple layman terms,

CASE is a tool, which aids a software engineer to maintain and develop software, much

like a mechanic who uses the aid of his/her tools to maintain and develop vehicles, but

obviously using respective techniques.

16

It is believed that CASE tools reduces cost as well as development time, and

assures superior design consistency. Popular CASE toots are IEW, IEF, Visio, ER-Win

etc. E-R Model is primarily used to represents the overall logical structure of the

Database.

2.4.2 The most important elements of E-R Model

2.4.2.1 Entities
Entities are the principal data object about which information is to be collected.

Entity is something that can be identified in the user's environment. It's something that

the user wants to track. An entity is an object that exists and is distinguishable from

other objects. Entities are usually recognizable concepts, either concrete or abstract,

such as person, places, things, or events, which have relevance to the database. Some

specific examples of entities are Students, Instructors. An entity is analogous to a table

in the relational model.
Entities of a given type are clubbed into Entity class. Example All students

studying in an Institute attending various different classes. Thus the Students Entity

class is the collection of all student entities. Thus an Entity class is a collection of

entities and is described by the structure of the Entities in that class.

Whereas an Entity instance is representation of a particular Entity in the entity

class such as Student Joe. There are usually many instances of an Entity in an Entity

Class. Entity instance is analogous to a row in the relational table.

2.4.2.2 Attributes
Entities have Attributes. Attributes are also known as Entity properties or

Domain. Attributes describe the entity of which they are associated. Examples of

Attributes are Student Name, Student ID, and Class ID etc. Attributes is analogous to a

column in the relational table.
It's an important assumption of an E-R Model that all instances of a given class

have the same attributes.
Composite Attribute: Composite Attribute is one, which consists of group of

attributes. Example of Composite Attribute is Address, which consists of group of

attributes [Street, City, State, Zip]
Multi Value Attributes: When a particular Entity has more then one values.

Example can be anyone's E-mail ID as person may have more then one E-Mail ID.

17

There can be also multi value composite attribute like a student can give his

more then one phone number as a contact number. Now phone number is composite in

the sense that it contains Area Code and Telephone Number and multi value in the sense

that Student may provide more then one number as his or her Telephone number.

Identifiers Entity instances have identifiers, which are attributes that name or

identify entity class. Like in student entity class student instance can be identified by

student name or student id. Also faculty entity class instance can be identified by

Faculty name or FacultyID.

The identifier usually contains one or more of the entities attributes. An

identifier may either be unique or non unique. StudentID or FacultyID is most probably

unique identifier but Student name or faculty name usually may not be a unique

identifier as in an entity class more then one student or faculty have same name.

Identifiers having more then one attributes are called composite identifiers.

2.4.3 Relationships

A Relationship represents an association between two or more entities. An

example of a relationship would be:

• Students are assigned to projects

• Projects have subtasks

• Class manage one or more projects

• Relationships are classified in terms of degree, connectivity, cardinality, and

existence.

E-R Model takes care of both Entity class relationships and Entity instance

relationship. Like how STUDENT entity class related to INSTRUCTOR entity class

and how a student Joe related to Instructor Tim or fellow student Smith.

The connectivity of a relationship describes the mapping of associated entity

· instances in the relationship. The values of connectivity are "one" or "many". The

cardinality of a relationship is the actual number of related occurrences for each of the

two entities. The basic types of connectivity for relations are: one-to-one, one-to-many,

and many-to-many.

A one-to-one (1: 1) relationship is when at most one instance of an entity A is

associated with one instance of entity B. For example, "employees in the company are

18

each assigned their own cube. For each employee there exists a unique cube and for

each cube there exists a unique employee. Example: Student and Book (Hash on student

side and oval on book side)

A one-to-many (1 :N) relationships is when for one instance of entity A, there are

zero, one, or many instances of entity B, but for one instance of entity B, there is only

one instance of entity A. An example of 1 :N relationships is a department has many

employees and each employee is assigned to one department. Example: Student­

Instructor: Each Instructor has many students to teach but all students have only one

Instructor to learn from.

A many-to-many (M: N) relationship, sometimes called non-specific, is when

for one instance of entity A, there are zero, one, or many instances of entity B and for

one instance of entity B there are zero, one, or many instances of entity A. Example:

Student can be assigned to no more than two projects at the same time or projects must

be assigned to at least three students.

A single employee can be assigned to many projects; conversely, a single project

can have assigned to it many employees. Here the cardinality for the relationship

between employees and projects is two and the cardinality between project and

employee is three. Many-to-many relationships cannot be directly translated to

relational tables but instead must be transformed into two or more one-to-many

relationships using associative entities.

2.5 The SQL Server Default Databases
When SQL Server is initially loaded it loads following 6 (4 System and 2

Learning databases) databases by default.
The Master Database: It's 9MB in size after installation. Master database is the

key and most important database to run SQL Server. It contains pointer to the primary

data file for every other database installed on the system, as well as key server wide

· information. The server wide information is usually error messages, login information,

and system stored procedures etc.
The Model Database: It's 1.5 MB in size after installation. Model database is a

template database, means that each time a database is created actually a copy of Model

database is made. Subsequent changes of size etc are made in the template of Model

database copied. Remember everything created inside Model database will be created in

19

any new database created. Since Model is created to create each new database, no

database can be smaller than the Model database size, which is 1.5 MB.

The Tempdb Database: It's 2.5 MB in size after installation. Tempdb database is

where sorts, joins and other activities that require temporary space are performed.

Tempdb database is reinitialized each time SQL Server is restarted.
The MSDB Database: It's 2 MB in size after installation. MSDB database is one

that supports the SQL Server agent service, which includes storing information about

jobs, alerts, events and replication. A history about all backups and Restore are kept in

this database.
The PUBS Database: It's 2 MB in size after installation. PUBS database is a

learning and sample database. Books online installed with SQL Server use PUBS

database tables and other objects.
The North Wind Database: It's 4 MB in size after installation. The North wind

database is an alternative learning and sample database. This database is in MS Access

too

2.6 SQL Server Default Login ID
Default login for SQL Server is sa. Sa is a member of sysadmin fixed server

role. At this point one needs to understand that sysadmin fixed server role member can

do anything in SQL Server. This account can never be dropped.

2. 7 A Brief on SQL Server Program Group
The Readme.txt File: The readme.txt file contains important information one

should read before one install SQL Server, as well as the information that could not

make it to manuals before shipping of the product.
Books Online: SQL Server Books Online is the primary reference source for the

information on anything related to SQL Server. Books Online can be seen using IE 4.0

or later in SQL Server 7.0
Service Manager: Service Manager enables one to control the SQL Server

related services on the Computer. Service Manager runs from the Task Bar. The

services which can be controlled with SQL Service Manager are

• MSSQL Server Service

• SQL Server Agent Service

20

• MSDTC service

• MS Search Service •

Client Network Utility: From here one can control the network library to be used

when one try to connect to SQL Server using SQL Server client network utility. On Win

NT Named Pipes is the default network library while for Win 9x, the default library is

TCP/IP.
Server Network Utility: If client network utility is used to specify which network

library to use to connect to SQL Server from client application, server network utility is

used to specify which network libraries is SQL Server is listening on.

Query Analyze: It's the primary interface to run T-SQL queries or stored

procedures. It can also be run from command prompt using ISQL W.exe.

T-SQL Script: T-SQL script is any kind of SQL commands that are stored and

executed together. By default scripts have .SQL extension.

Enterprise Manager (EM): This is the primary graphical Administrative tool for

SQL Server. Almost all things can be done in EM, which can be done using T-SQL

commands. SQL Server is MMC snap-in. MMC is a common utility that MS and third

party vendors can use as the common administrative interface to their respect products.

MSDTC Administrative Console: This lets one control distributed transactions.

A transaction within a single SQL Server that spans two or more databases is actually a

distributed transaction.
Performance Monitor: This is primarily used to monitor the SQL Servers

performance.
Profiler: This utility enables one to monitor all the activity on the SQL Server.

Can also be used to perform performance-tuning activities, such as examining the

execution plan for SQL Server.

2.8 Creating Database in Sql Server
This can be accomplished using

• The SQL Server Enterprise Manager

• The Create Database statement

• The database creation Wizard

21

Since database needs file to physically store their data on the disk, so when

database is created one need to specify at least two files 'bne to store data and separate to

store Transaction logs.

2.8.1 Create Database Statement Syntax (Simplified One)

Create database Dbase name

[ON [PRIMARY]

([NAME= logical_file_name,]

FILENAME = 'os file name'

[, SIZE = size]

[, MAXSIZE = { max_size I UNLIMITED}]

[, FILEGROWTH = growth_increment]) [, ... n]]

[LOG ON

{ ([NAME= logical_file_name,]

FILENAME= 'os file name'

[, SIZE = size]

[, MAXSIZE = { max_ size I UNLIMITED }]

[, FILEGROWTH = growth_increment]) [, ... n]

[, ... n]}]

[FOR LOAD [FOR ATTACH]

• Dbase _ name- Is the name of the new database. Database names must be unique

within a server and conform to the rules for identifiers. dbase_name can be up to

128 characters.

• ON Primary- Specifies of which file group this database will be member.

Default file group is Primary.

• Name-This specifies the logical name to be used for reference within SQL

Server.

• FileName- Specifies the filename and pathname where the data will be stored on

the hard disk.

• Size- Specifies how big a database file should be. Can be expressed in MB or

KB. Default is MB.

• Maxsize- Specifies the maximum size to which a database can grow. Can be

expressed in MB or KB. This is an important feature as if one does not specify

22

then database keeps on growing dynamically and could fill the entire hard disk.

Default is :MB. •

• Filegrowth- Specifies the parameter used for the autogrowth of the database.

The FILEGROWTH setting for a file cannot exceed the MAXSIZE setting.

Default if not specified is l:MB.

• Log On-Specifies where the transaction Log files are located and what size they

are of

• For Load- This clause is supported for compatibility with earlier versions of

Microsoft SQL Server. This parameter makes the database for dbo use only.

Should be avoided in SQL Server 7.0.

• For Attach- Specifies that a database is attached from an existing set of

operating system files.

2.9 T-SQL
Now we will see how to write simple SQL queries. For understanding T-SQL

and to use examples below use Query Analyzer in SQL Server.

2.9.1 The Select Statement
One can use a SQL query to retrieve the data one wants from the database. A

query has three parts: SELECT, FROM, and WHERE.

• SELECT: Tells SQL Server which columns one want to see as the result.

• FROM: Specifies which table or tables you want to use in the query.

• WHERE: Limits which rows one want to see.

The syntax isn't case sensitive, but generally people use uppercase and lowercase

to distinguish the commands from the object names. A typical query looks like this:

SELECT coll, col2, col3 .

FROM table I

WHERE coll = search condition

23

2.9 .2 Important Mathematical Functions

Mathematical functions enable one to return mathematical data using the syntax.

Arithmetic operators can be used with data types: int, smallint, tinyint, numenc,

decimal, float, real, money and smallmoney.

With arithmetic operators two types of precedence exists:

• Datatype Precedence: Arithmetic precedence exists when arithmetic operations

are performed on different data types. In case of usage of different data types,

the smaller data type is converted to higher data type. Like if we multiply

smallint by an int, the result will be an int, but in case of money result will

always be of data type money

• Operator Precedence: Used when multiple operators are used. It uses same math

concept of BOD MAS.

Mathematical functions are used as: "Select function_name(parameters)".

• Abs (numeric_expr): Provides absolute value.

"Select Abs (-123)" gives [123]

• Ceiling (numeric_expr): Provides smallest integer greater than or equal to

specified value.

"Select ceiling(123.3), ceiling(-123.3)" gives [124,-123]

• Floor (numeric_expr): Provides largest integer less than or equal to specified

value.

"Select floor (123.3), floor(-123.3)" gives [123, -124]

• Round (numeric_expr, length): Provides numeric expression rounded to the

specified length in an integer value.

"Select Round (1234.56,1), Round ($123.67,1)" gives [1234.6,123.7]

• Square (float_expr): Provides square value.

"Select Square(9)" gives (81)

• SQRT (float_expr): Provides square root value.

"Select SQRT(9)" gives [3]

• POWER (numeric_expression, y): Provides value of numeric expression to the

power ofy.

"Select Power(2,3)" gives [8]

24

2.9.3 Important String Functions

String functions are used for manipulation of character data type

• + (expression, expression): Concatenates two or more strings.

"Select lname +','+ fname +'.' As Name from employee"

• ASCII (char_expr): Provides ASCII code for left-most character.

"Select ASCII ('A')" gives [65]

• Char (integer_expr): Provides character equivalent of ASCII code value.

"Select Char(97)" gives [a]

• PATINDEX('% pattern%', expression): Returns starting position of first

occurrence in expression.,

"Select PATINDEX ('%bv%','ronvcbvvbc')"

• Lower (char_expr): Converts to lower case.

"Select Lower ('ABCD')" gives [abed]

• Upper (char_expr): Converts to upper case.

"Select Upper ('abed')" gives [ABCD]

• Left (char_expr, integer_expr) : Provides character string starting from the left

and preceeding integer_ expr character.

"Select left('Seattle' ,2)" gives [se]

• Right (char_expr, integer_expr): Provides character string starting from the

integer_ expr character from Right.

"Select Right ('Seattle' ,2)" gives [le]

• LTRIM (char_expr): Returns data without leading blanks.

"Select Ltrim (' Computers')" gives [Computers]

• RTRIM (char_expr): Returns data without trailing blanks.

"Select Ltrim ('Computers ')" gives [Computers]

• REPLACE ('string_ expression I', 'string_ expression2', 'string_ expression3 '):

Replaces all occurrences of srting2 in string 1 with string3.

"Select Replace ('abcde', 'bc','oo')" gives [aoode]

• Reverse (char_expr) : Returns reverse of character expression.

"Select Reverse('ABCD')" gives [DCBA]

• SUBSTRING(expression, start, length): Returns part of character string.

"SELECT SUBSTRING('abcdef, 2, 3) as X" gives X =bed

25

2.9.4 Date Functions

Date functions are used for manipulation of date data type. They are used as:

Select date_ function(parameter).

• Dateadd (datepart,number,date): Adds the number of dateparts to the date.

"Select Dateadd (mm, 6, '1/1/01 ')" gives [2001-07-01]

• Datediff (datepart,datel,date2): Number of dateparts between two dates.

"Select datediff (dd, '10/3/01', '10/9/01')"

• Getdate() :Returns current date and time in internal format.

"Select Getdate()"

• Datepart (datepart, date): Returns integer value for specified datepart for date

listed.

Table 2.1: Date Part Parameters
Datepart Abbreviation

Day DD,D

Day of year DY

Hour HH

Millisecond MS

Minute MI

Month MM,M

Quarter QQ

Second SS,S

Week WK

Weekday DW

Year YY, YYYY

Figure 2.4 Abbreviation of Date Part Parameters

26

2.9.5 System Functions

• Isdate (variable) :Checks for valid date. •

"Select Isdate('23 ')" Returns 1 if valid else returns O OR Select Isdate(' 12/1/01 ')

• IsNumeric: Checks for valid numeric format. Returns 1 if valid else 0.

"Select IsNumeric(12)"

• IsNull (expression, value): Returns specified value in place of NULL.

"Select Substring (title, 1, 15) AS Title, type AS Type, IsNull(price, 0.00) AS

Price From titles"

2.9.6 Comparison Operators

• One can use comparison operators like>,<,>=,=<,=,<>,!=,!>,!<,().

"SELECT emp_id,lname, fname FROM employee WHERE pub_id='0877"'

• One can retrieve rows based on a range of value using the BETWEEN keyword

"Select lname, emp_if FROM Employee WHERE hire_date between '10/1/92'

AND '12/31/92"'

Smaller value must come first in BETWEEN clause. Also one must enclose

range in quotes if its character data types or date data types.

2.9.7 List Operators

• IN: One can use IN Keyword to match rows in a list.

SELECT Column_list FROM table_name WHERE column_name [NOT] IN

(value_list)

"SELECT emp_id, lname, fname FROM employee where pub_id

IN('0877','9990')"

• LIKE: It is used with character and date data.

"SELECT column name FROM table name WHERE column_name [NOT]

Like 'string"'

2.9.8 Wildcards

• % : String of zero or more characters

• _ : Single Character

• [] : Single character within specified range

• [/\] : Single character not within specified range

27

"SELECT title _id, title FROM titles WHERE title LIKE '%computers%'"

Wildcard characters when used with Like keyword are enclosed in a single

quotation mark.

2.9.9 Unknown Values

Null is equivalent to value "unknown". IS NULL and IS NOT NULL operators

are used. Syntax is: SELECT column_list FROM table_list WHERE column_name IS

[NOT] NULL. An example is shown below:

"SELECT title_id, title FROM titles WHERE title id IS NOT NULL"

2.9.10 Using Distinct To Eliminate Duplicate Information

One can eliminate duplicates using Distinct keyword in the SELECT clause.

Syntax is: SELECT DISTINCT column list FROM table Name Where

search_condition. An example is shown below:

"SELECT DISTINCT city FROM authors"

2.9.11 Using ORDER BY Clause

ORDER BY clause is used in SELECT statement to sort data. Syntax is:

SELECT column_name From Table_List [order by column_name[ASCIDESC]]. An

example is shown below:

"SELECT title_id, au_id FROM titleauthor ORDER BY title_id, au_id"

Default Order is ascending. Since sort order being used by SQL Server can make

difference in the ORDER BY clause, one should check default sort order of SQL Server

using sp_helpsort. ORDER BY clause can not be used on text or image columns.

2.9.12 Aggregate Functions

Aggregate functions can return summary values for an entire table or for group

.of rows in a table. Aggregate functions are usually used in conjunction with the GROUP

BY clause and are used in HAVING Clause or in the column list.

• AVG: Returns average of the values in the numeric expression.

"SELECT AVG(ytd_sales) FROM Titles"

• COUNT(*): Returns number of selected rows.

"SELECT Count(*) from employee" Returns total number of rows in a table.

• MAX: Returns highest value in the expression.

28

"SELECT MAX(ytd_sales) FROM titles"

• MIN: Returns lowest value in the expression.

"SELECT MIN (ytd_sales) FROM titles"

• SUM: Returns total of values in the numeric expression.

•

"SELECT SUM(qty) FROM sales"

2.9.13 Group By and Having Clause
The group by clause summary data that meets the WHERE clause criteria to be

returned as single row. The HA YING clause set the criteria to determine which rows

will be returned by the GROUP BY clause.
"SELECT title _id, count (title _id) as Number of Authors From Titleauthor

GROUP BY title _id Having count (title _id)> l"

OR
"SELECT title_id,ytd_sales FROM Titles WHERE (ytd_sales>=4000) GROUP

BY title_id,ytd_sales"
HAVING clause has same effect on the GROUP BY clause as the WHERE

clause has on the SELECT statement. GROUP BY clause must contain all nonaggregate

columns from the SELECT column list. HAVING clause criteria columns must return

only one value.

2.9.14 Implementing Joins
Joins are used to retrieve data from two or more tables. The results appear as a

single table with columns from the entire table specified in the SELECT column_list

and meeting the search criteria. In nutshell Joins connect two or more tables based on a

join condition and produce results as new table with the rows that satisfy the join

condition. We will probe Joins using both SQL Server syntax and ANSI syntax.

Inner Join: There can be two types of Inner Joins. One is Equi-Join and other is

Natural Join. Using Pubs consider tables:

• Publishers (pub_id, pub_name, city, state, country) Primary Key (pub_id)

• Pub _info(pub _id, logo, pr _info) Primary Key (pub _id)

• Authors (au_id, au_lname, au_fname, phone, address, city, state, zip, contact)

Primary Key (au_id)

29

Equi-Join: In Equi-Join Column values are compared for equality and redundant

columns are displayed as columns in the result set.

SQL Server syntax:
"SELECT* FROM publishers, pub_info

WHERE publishers.pub _id=pub _info. pub _id"

ANSI syntax:
"SELECT* FROM Publishers INNER JOIN pub_info

•

ON publishers.pub_id = pub_info.pub_id"

Natural Join: In Natural Joins redundant columns are not displayed twice.

SQL Server syntax:
"SELECT p. *, pl.logo, pl.pr_info FROM publishers p, pub_info pl

Where p.pub_id = pl.pub_id"

ANSI syntax:
"SELECT p. *, p 1.logo, p l.pr _info FROM publishers p

INNER JOIN pub_info pl ON p.pub_id = pl.pub_id"

Cross Join or Unrestricted Join: Returns combination of all rows of all tables in

join as the result set. Each row of one table is joined with each row of another table.

SQL Server syntax:
"SELECT p.pub_name, pl.pr_info FROM publishers p, pub_info pl"

ANSI syntax:
"SELECT p.pub_name, pl.pr_info

FROM publishers p CROSS JOIN pub _info p 1"

Outer Join: Restricts rows from one table while allowing all rows from another

table as a result set. Usually used for orphan records. Outer joins can be a left, right, or

.full outer join. Outer joins are specified with one of the following sets of keywords

when they are specified in the FROM clause: LEFT JOIN or LEFT OUTER JOIN.

The result set of a left outer join includes all the rows from the left table

specified in the LEFT OUTER clause, not just the ones in which the joined columns

match. When a row in the left table has no matching rows in the right table, the

associated result set row contains null values for all select list columns coming from the

right table.

30

"SELECT a.au_fname, a.au_lname, p.pub_name FROM authors a

LEFT OUTER JOIN publishers p ON a.city = p.city

ORDER BYp.pub_name ASC, a.au_lname ASC, a.au_fname ASC"

If Inner Join were used in above query then we would have got only the results

of authors name whose city was same as publishers and not those authors who lived in

city to which no publisher belonged to. In this case we got name of all the authors

Self Join: Correlates rows of a table with other rows in the same table. A table

can be joined to itself in a Self Join. For example, you can use a Self Join to find out the

authors in Oakland, California who live in the same zip code area. Because this query

involves a Join of the authors table with itself.
"SELECT aul.au_fname, aul.au_lname, au2.au_fname, au2.au_lname

FROM authors aul INNER join authors au2 ON aul.zip = au2.zip

WHERE aul.city='Oakland' AND aul.state = 'CA' AND aul.au_id < au2.au_id"

2.9.15 Data Modification with Queries
Inserting Records: The basic Insert statement adds one row at a time to a table.

Variations of Basic Insert statement allows one to add more than one row at a time by

selecting data from another table or by executing a stored procedure, but in that case

one need to know the structure of the table.

While Inserting data in a table its useful to know:

• Number of columns in a table

• The data type of each column,

• Column names,

• Column properties like Identity or timestamp [A database-wide unique number

in a table. There can be only one unique timestamp column in a table.

Using the INSERT statement syntax is: INSERT INTO Table Name(Column

.Names) VALUES (Column Names). All character values are to be enclosed in

quotation marks and numeric without quotations. But if one need to supply values in a

different order, or if one do not want to supply an explicit value for a column one can

use INSERT statement that has a list of column names before the VALUES clause. An

example shown below:
"INSERT INTO mypublishers (state, pub_id) VALUES ('WA','9999')"

31

Deleting Records: This data modification statement allows one to remove one or

more rows from a table. Syntax is: Delete From TableName Where Condition. An

example shown below:
"Delete mypublishers Where pub_name='New Moon Books'"

Updating Records: Update is used to change the values within an existing row.

Syntax is: Update Table Name Set Column Name Where Condition. An example shown

below:
"Update publishers SET city='seattle'

WHERE pub_name= 'Five Lakes Publishing'"

32

CHAPTER THREE: ASP .NET AND C# LANGUAGE ON VISUAL
• STUDIO .NET 2000 PLATFORM

3 .1 What Is .NET?
When .NET was announced in late 1999, Microsoft positioned the technology as

a platform for building and consuming Extensible Markup Language (XML) Web

services. XML Web services allow any type of application, be it a Windows- or

browser-based application running on any type of computer system, to consume data

from any type of server over the Internet. The reason this idea is so great is the way in

which the XML messages are transferred: over established standard protocols that exist

today. Using protocols such as SOAP, HTTP, and SMTP, XML Web services make it

possible to expose data over the wire with little or no modifications to your existing

code. Figure 3.1 presents a high-level overview of the .NET Framework and how XML

Web services are positioned.

Pocket PC ~

~
Thin Clients

~
==1f!;,.,
r.:::=:::=:=,­ =· ~

.NET Server exposing
XML Web Services to
remote disconnected

devices

Internet

Smart Phones

Laptop computer

Figure 3.1: Stateless XML Web services model.

Since the initial announcement of the .NET Framework, it's taken on many new

and different meanings to different people. To a developer, .NET means a great

environment for creating robust distributed applications. To an IT manager, .NET

means simpler deployment of applications to end users, tighter security, and simpler

33

management. To a CTO or CIO, .NET means happier developers using state-of-the-art

development technologies and a smaller bottom line. "To understand why all these

statements are true, you need to get a grip on what the .NET Framework consists of, and

how it's truly a revolutionary step forward for application architecture, development,

and deployment.

3.1.1 Windows DNA and COM

Writing distributed Internet applications became easier as the model of COM

services that Windows servers could provide became more stable and widespread. You

could write an Active Server Pages (ASP) application and access methods, properties,

and events through the object model of components running inside of COM+ services

on remote machines.

-
~

~ = =

Desktop PCs

Internet or LAN
connections

Windows 2000 Server
running COM+ and IIS
serving up ASP pages Laptop computer

Figure 3.2: DNA and COM in action.

Windows DNA became more accepted because of the ease with which a Visual

Basic 6 developer could write components that could be accessed from any other type

of application, as long as he had access to the Windows 2000 server that the COM+

services were running on. This is where the problems begin.
If you provide data to outside vendors in an application, you must write the user

interface and code to allow them access to what they need. There's no simple way to

expose methods, or allow other applications to call methods, on your servers. You have

to open up security and give them the keys to the farm, which isn't what IT managers

are likely to do. If you want to maintain multiple versions of a component, you are in a

very bad way with-COM. Because COM makes heavy use of the Registry and doesn't

allow for a simple versioning policy, you're essentially maintaining the same component

34

forever. You're constantly adding new features to it, but leaving the old stuff in. This is

one of the big rules of COM: Thou shall not change any'interfaces to your components.

Doing so makes for a huge headache in deployment. If you change an in or out

parameter on a method, you've broken the functionality of the component. That means

all the components must be recompiled to restore the correct interfaces that the caller

expects. After a component is deployed, how do you easily scale it across machines

while maintaining any state data that the code expects? This isn't a trivial problem, and

companies have spent millions of dollars writing state machines to handle the scalability

problems that come with COM.

All these issues are solved with the .NET Framework. The services provided by

the .NET Framework enable us to expose methods over HTTP and SOAP through XML

Web services. The Windows Registry is not used in .NET, which eliminates the DLL

Hell of the past and gives us a strong versioning policy. There are many ways to

maintain state data, so we can scale applications across processors and· across servers

with no worry about crashing the applications running on those servers. This all starts

with the common language runtime and the base class libraries.

3.1.2 The Common Language Runtime

At the heart of the .NET Framework is the common language runtime. The common

language runtime is responsible for providing the execution environment that code

written in a .NET language runs under. The common language runtime can be compared

to the Visual Basic 6 runtime, except that the common language runtime is designed to

handle all .NET languages, not just one, as the Visual Basic 6 runtime did for Visual

Basic 6. The following list describes some of the benefits the common language runtime

gives you:

• Automatic memory management

• Cross-language debugging

• Cross-language exception handling

• Full support for component versioning

• Access to legacy COM components

• XCOPY deployment

• Robust security model

35

Figure 3.3: Common Language Scheme

3.1.3 Inside the Common Language Runtime
The common language runtime enables code running in its execution

environment to have features such as security, versioning, memory management, and

exception handling because of the way .NET code actually executes. When you

compiled Visual Basic 6 forms applications, you had the ability to compile down to

native node or p-code.
When you compile your applications in .NET, you aren't creating anything in

native code. When you compile in .NET, you're converting your code-no matter what

.NET language you're using-into an assembly made up of an intermediate language

called Microsoft Intermediate Language (MSIL or just IL, for short). The IL contains all

the information about your application, including methods, properties, events, types,

exceptions, security objects, and so on, and it also includes metadata about what types

in your code can or cannot be exposed to other applications. This was called a type

library in Visual Basic 6 or an IDL (interface definition language) file in C++. In .NET,

· it's simply the metadata that the IL contains about your assembly.
Understanding the process of compilation in .NET is very important because it

makes clear how features such as cross-language debugging and exception handling are

possible. You're not actually compiling to any machine-specific code-you're simply

compiling down to an intermediate language that's the same for all .NET languages. The

IL produced by J# .NET and C# looks just like the IL created by the Visual Basic .NET

36

compiler. These instructions are the same, only how you type them in Visual Studio

.NET is different, and the power of the common language runtime is apparent.

When the IL code is JITted into machine-specific language, it does so on an as­

needed basis. If your assembly is 10MB and the user is only using a fraction of that

10MB, only the required IL and its dependencies are compiled to machine language.

This makes for a very efficient execution process. But during this execution, how does

the common language runtime make sure that the IL is correct? Because the compiler

for each language creates its own IL, there must be a process that makes sure what's

compiling won't corrupt the system. The process that validates the IL is known as

verification.

Compilation

Execution

Figure 3.4: The JIT process and verification.

3 .1.4 Understanding the Common Language Specification

The CLS describes the concrete guidelines that make a .NET language

compliant with the common language runtime. That doesn't mean a .NET language can't

have language-specific features, but it does indicate that to be considered a .NET

language, the language must comply with the set of requirements set forth in the CLS.

· All features added to a .NET language and that aren't part of the CLS won't be exposed

to other .NET languages at runtime.

If your code is fully CLS compliant, it's guaranteed to interoperate with all other

components written in any .NET language. Certain languages, such as C#, attempt to

accommodate developers moving from C and C++ with the similarity of their syntaxes.

Because C# attracts such developers, it includes functionality familiar from their native

37

languages, such as pointers and code access to unsafe memory blocks. This

functionality is not CLS compliant and won't be accessible by other .NET languages,

but it's allowed by the common language runtime and the language-specific compilers.

To make sure that your code is CLS compliant, compilers such as C# include checks for

non-CLS-compliant code through the use of attributes. If you apply the

CLSCompliantAttribute attribute to a class or method in your code and the code isn't

CLS compliant, an error occurs and the compile fails. The following code demonstrates

how to apply the CLSCompliantAttribute attribute in your code:

using System;

[assembly: CLSCompliantAttribute(true)]

[CLSCompliantAttribute(true)]

public class Class 1

{

public void x(Uint32 x){}

public static void Main()

{

}

}

In this case, the code won't compile because unsigned integers aren't part of the

CLS. The second part of the verification process that the JIT compiler goes through to

make sure that your code executes correctly is the verification of types. All types used

in .NET must conform to the CTS.

3.1.5 Understanding the Common Type System

The CTS sets forth the guidelines for data type safety in .NET. In the past, there

were no rules for type safety across execution runtimes, hence the general protection

fault (GPF) and blue screen of death errors that could occur when running applications.

The culprit behind those meltdowns was the overlapping of memory by data types. This

was a common occurrence in Windows 3.1, Windows 95, and Windows 98. When a

Visual Basic developer deployed a new application, fingers had to be crossed to make

sure that the data types and memory access between the newly installed DLLs and the

existing ones on the system mingled happily. Most of the time they did, but when they

didn't, errors occurred.

38

In .NET, the CTS defines types and how they can act within the bounds of the

common language runtime. There are two type classifications in .NET: value types and

reference types.

Value Types: Value types directly contain the data you assign them. They're built

into the common language runtime and derive directly from the base System.Object

type. Examples of value types are primitive types, structures, and enumerations.

Primitive types can be further broken down into numbers, such as Boolean, byte, short,

integer, long, single, double, decimal, date, and char.
Reference Types: Reference types don't directly contain any data; rather, they

point to a memory location that contains the actual data. Reference types are built into

the common language runtime and derive directly from the base System.Object type.

Some examples of reference types are strings, classes, arrays, delegates, and modules.

Type

I

Value Types Ref erence Types

seH-OeAf;rlbing : Pointer Types Interlace Types
Types

H Buill·fa Value •
· Types

--1 User-Defined
Value Types

I : I
I

.J l
Enumerat1-0ns

r Glass Types 11 Arrays

L . J :........ . ,.... . .

~
I

I

I Us.e·r·D .. e. fined
Classes

Boxed Value
Types

Del agates

Figure3.5: Data types in .NET

39

C# Code Example

using System;

namespace cSharp_ ValueReference

{

class Class 1

{

static public int x;

[STAThread]

static void Main(string[] args)

{

x=4;

int y;

y=x;

x=O;
II Since each Value type contains its own data,

II modifying the variable X after setting Y to the value

II of X does not affect either variable

Console. WriteLine(x);

Console. WriteLine(y);

II Create an instance of Class2

Class2 refl = new Class2();

II Set the refValue of this instance to 5

refl .refV alue=5;

II Create an object reference to the refl class

Class2 ref2 = refl;

II Set the refValue of the object

ref2.reN alue= 1 O;

II Notice how the results are the same, even

II though you set rel .refV alue to 5, the reference

II to this memory was overridden by the value of 10

Console.WriteLine(refl .reN alue);

40

Console. WriteLine(ref2.refV alue);

Console.ReadLine(); •

}

}

class Class2

{

public int refV alue;

}

}
In example, the values of the value type variables X and Y are O and 4, whereas

the values of the reference types refl and ref2 are both 10. Because the reference type

points to the same memory allocation for the initial object refl, the value for all

variables set to an instance of that object is always the last value assigned.

3 .1.6 The .NET Framework Class Library

The second most important piece of the .NET Framework is the .NET

Framework class library (FCL). As you've seen, the common language runtime handles

the dirty work of actually running the code you write. But to write the code, you need a

foundation of available classes to access the resources of the operating system, database

server, or file server. The FCL is made up of a hierarchy of namespaces that expose

classes, structures, interfaces, enumerations, and delegates that give you access to these

resources.
The namespaces are logically defined by functionality. For example, the

System.Data namespace contains all the functionality available to accessing databases.

This namespace is further broken down into System.Data.SqlClient, which exposes

functionality specific to SQL Server, and System.Data.OleDb, which exposes specific

functionality for accessing OLEDB data sources. The bounds of a namespace aren't

necessarily defined by specific assemblies within the FCL; rather, they're focused on

functionality and logical grouping. In total, there are more than 20,000 classes in the

FCL, all logically grouped in a hierarchical manner.

41

System.pa~ (JJi,C>Q .NET)
.. ,,,----··-~<¥,,· ... -... .

OLEOS SQLCU:ent
--,,,, .. ,, ·.·,·y ,.,.,-·¥¥., '-"··-,--.v.·>-c;...:,ccc,,e-,»>C•.;,,,,,,,.~,o.·,·

Common SQLTypas

Figure 3.6: The .NET Framework class library grouped by namespaces logically.

To use an FCL class in your application, you use the Imports statement in Visual

Basic .NET or the using statement in C#. When you reference a namespace in Visual

Basic .NET or C#, you also get the convenience of auto-complete and auto-list members

when you access the objects' types using Visual Studio .NET. This makes it very easy to

determine what types are available for each class in the namespace you're using. As

you'll see over the next several weeks, it's very easy to start coding in Visual Studio

.NET. The following code adds a reference to the data classes in both Visual Basic

.NET and C#.

3 .1. 7 .NET Servers and the Future of .NET
The designers of the .NET Framework put much thought into how distributed

. computing should work. It seems that .NET is the next killer app, but to make the .NET

Framework a widespread success, actual servers must be built using the .NET

Framework. Currently, there are no true .NET servers. There are servers that take

advantage of the common language runtime and its managed execution environment,

but most servers from Microsoft today still run under COM and unmanaged code.

Commerce Server 2002 is positioned as a .NET server for e-commerce, and

applications you design with it can be completely written using Visual Basic .NET or

42

C#, but the underlying infrastructure of Commerce Server is still based on COM.

Because rewriting server applications is a truly mdnumental task, the move to

completely .NET servers could take several years. Along the way, there'll be servers

such as Commerce Server 2002 that are half managed code and half unmanaged code.

From a developer's viewpoint that's fine, because you don't want to write ASP and

Visual Basic 6 code for server products while the rest of your distributed application

development is in a .NET language.

Currently, Microsoft seems to be positioning server products as .NET Enterprise

Servers if they can integrate XML Web services into their existing infrastructure. For

example, SQL Server 2000 certainly isn't written in managed code, but there are add­

ons to SQL. Server 2000 that enable you to expose stored procedures as XML Web

services. The SQL Server Notification Service is a .NET add-on that allows notification

to .NET applications if certain events trigger in SQL. BizTalk server's purpose in life is

the orchestration and automation of complex business processes, and it's positioned as a

.NET server because of its capability to consume XML Web services. The following

Microsoft server products are considered .NET Enterprise Servers because of their

capability to at least interact with a distributed environment such as the Internet and

have some relationship with the .NET Framework concepts:

• Internet Security and Acceleration Server

• Application Center 2000

• Commerce Server 2000 and Commerce Server 2002

• BizTalk Server 2000 and BizTalk Server 2002

• SQL Server 2000

• Exchange Server 2000

• Host Integration Server 2000

In my opinion, the fact that a .NET server is truly running under the common

language runtime is not a deal breaker. For .NET to get to the next step, it must run on

other operating systems, not just the Windows family of desktop and server operating

systems. Currently, the Mono project is a grass-roots move to port the .NET Framework

class library to the Linux operating system. That means the code you're writing now for

Windows will also eventually run under Linux and, hopefully, Unix as well. You can

learn more about the Mono project and where it currently is in the development process

at http://www.go-mono.org. It would be a huge step forward if .NET were ported to the

43

Macintosh operating system also. Although the Mac is still a small percentage of the

overall market in desktop PCs, its incompatibility with Windows creates headaches for

application developers. There needs to be consistency across platforms eventually.

Moving into the future with .NET, the sky seems to be the limit. This isn't

necessarily because Microsoft is going to think of some great new thing to add to the

.NET Framework, even though it most likely will, but it has to do with computing in

general and the general infrastructure of our daily lives. As every household and

business installs high-speed data access, and as computers become faster and cheaper,

the applications you write will have a greater influence on how people look at what

computer programs can do. You aren't bound to single servers anymore. Writing truly

distributed and scalable applications is very easy because of the groundwork laid out by

the .NET Framework. You can begin to look at the code you write not as blocks of

modules running on a Windows 2000 Server, but as distributed objects that you can

reuse in multiple applications across an enterprise simply by plugging them into an

XML Web service. The future of .NET is the concept of a true distributed environment.

3 .2 ASP .NET Applications
ASP.NET is an object-oriented, event-driven development platform for writing

Web-based applications. Before .NET, Active Server Pages was the core Microsoft

technology for developing applications that ran through the browser. ASP was a great

platform, and it truly revolutionized the way Web applications were written, but it had

lots of room for improvement. With ASP.NET, the gap between writing Windows­

based applications and Web-based applications has been closed.

Because ASP .NET is based on the .NET Framework, the same classes in the

Framework class library (FCL) are available to all .NET-based applications. That means

the same coding model that you use to write Windows Forms applications is used to

write ASP.NET applications. It also means you can write ASP.NET applications in any

.NET language.
One of the drawbacks to writing ASP applications is the scalability issue.

Because ASP pages are written in script, the code must be interpreted each time a page

is accessed. To improve performance, developers write complex caching schemes, use

different session state handling optimizations to improve page throughput, and move

code into compiled COM components to increase performance-that all changes with

44

.NET. All ASP.NET applications are compiled. There's no interpreted script of server­

side code, and the ASP .NET runtime is a multi threaded asynchronous application, so

the core infrastructure is more scalable than ASP. The following bullets highlight some

of the major improvements and benefits that ASP.NET gives you, and should also serve

as a list of why ASP.NET is so much better than ASP:

• Using the various caching methods in ASP.NET, you can drastically improve

application performance with a simple page directive-not any complex code.

• Using the Web.Config configuration file, you can implement robust page- and

directory-level security without writing code for each page.

• Using Visual Studio .NET, you have the same Code Editor features that

Windows Forms applications have, including auto-complete and auto-list

members.

• Debugging ASP.NET applications is just like debugging Windows applications.

All the great debugging features come from Visual Studio .NET, not the

language or type of application you're writing.

• The event-driven model familiar to Visual Basic 6 developers and Windows

Forms development is the same in ASP.NET, which makes application

development more logical and very rapid.

• Visual Studio .NET provides a vast array of controls, including validation

controls, grid controls, and list controls-all of which support data binding.

• ASP.NET provides several ways to implement session state, including page

level, session level, and application level. The state data can be stored in

memory, in cookies, in a Windows Service process, or in a SQL Server

database, giving you great options for designing scalable applications.

• ASP.NET separates the visual pages from the page logic, giving you increased

flexibility in how you design and develop applications.

• ASP.NET applications are 100% compiled.

3.2.1 Hello ASP.NET!

To create your first ASP.NET application, start Visual Studio .NET. At the Start

Page, click the New Project button. In the New Project dialog, select either Visual Basic

Project or C# Project, depending on what language you're writing in. From the Template

pane, select the ASP.NET Web Application template. Change the name of the

45

application to http ://localhost/Hello Web_ vb or http://localhost/Hello Web_ cs, depending

on what language you're coding in. Click the OK button'to create the application.

j · til Visu.al: C# Projects
;.tg Visual: c++Projects
'··· Cfril· Setup and Depk;ymentProjeds
[*l'·tiil Other Projects
"··12iJ YISl..lal: Studio Smufloos -•··· !&te, .

ASP.NEfWeb

Figure 3.7: Selecting the ASP.NET Web Application template.

When you create an ASP.NET application, Visual Studio creates the virtual Web

directory at the location you specify in the name of the project. In this case, the

application was created at localhost, which is the default name for the local Web server

running on your machine. If you want to create an application on another server, you

specify the Web address and project name, and the application is created there.

You're now in the Visual Studio .NET designer for ASP.NET applications.

You'll notice the same look and feel you saw when you were designing Windows Forms

applications. The Solution Explorer displays the components of your project, the

Properties window, and the Toolbox. All the windows you learned about over the last

few days are available. The design environment is the same no matter what type of

application you're developing. To understand where the files are created, navigate to the

\inetpub\wwwroot\helloweb _ cs or \inetpub\wwwroot\helloweb _ vb directory.

When you create new applications in ASP.NET, all the core application files are

created directly on the Web server. This is different from writing ASP applications

using Visual Inter Dev, which creates a local copy of files and then creates a copy on the

46

Web server. You use the tools in Visual InterDev to release and refresh copies of files

from the Web server. It's extremely important to understand that in ASP.NET and

Visual Studio .NET, files are created directly on the Web server and there's no local

copy.

If you navigate to the Visual Studio Projects folder under My Documents, you'll

see a HelloWeb_vb or HelloWeb_cs directory, containing only the solution file (with

the .sln extension). The solution file contains information about where the actual project

files are located, so if you're ever having trouble opening a Web project that you didn't

create, you can edit the .sln file to determine where the project files are located.

In the Solution Explorer, the files displayed in the hierarchical tree view are only

the top-level files in the inheritance hierarchy for each class. That's why more files are

listed in the wwwroot directory than you see in the Solution Explorer. If you click the

Show All Files button on the Solution Explorer toolbar, you can drill into the file

hierarchy.

All the server events for an ASPX page are handled in the code-behind files,

whereas the user interface is contained in the ASPX file itself. Each ASPX page

contains page directive attributes that set processing information on the page and

indicate the inheritance hierarchy for the page. If you click the HTML button in the

lower left of the Web Forms Designer, you're switched to the HTML for the ASPX file.

Notice the page directives highlighted across the top of the page.

The CodeBehind attribute contains the WebForml.aspx.vb file, which is the

class file under Webf'orm l .aspx in the Solution Explorer. The Inherits attribute

specifies the Page class for WebForml to inherit. This is different from Windows

Forms, where a single class file inherits a class that contains the designer information. A

WebForm has a class file that's physically separated from the designer file, which is

actually the ASPX page. The ASPX page has information about what class file it should

use to handle its events. The hierarchy of the files in the Solution Explorer is defined by

the Page directive attributes for each file in the Solution Explorer.

If you click the Design button in the lower-left comer of the HTML designer,

you're taken back to the design surface for the ASPX page. To get to the code-behind

file, you can double-click the ASPX page (as you do for a Windows Form), you can

press the F7 key, or you can double-click the class file in the Solution Explorer. When

you get to the code-behind class.

47

The class file inherits the System. Web.Ul.Page class. By inheriting this class for

the page, all the Web-related methods, properties, and events are available to the code­

behind class file.

When an ASP.NET application is compiled, the code-behind files for each

ASPX page are compiled into a single assembly with a DLL extension and are placed in

the Bin directory. Each time an ASPX page is called, the ASP.NET runtime on the

server creates a class for the ASPX page. The created DLL uses the information in its

Page directive attributes to determine where to get its events. The combination of the

ASPX page's DLL and the solution's DLL make up the HTML that's outputted to the

end user's Web browser.

Before we go on to the next section and begin adding controls and code to the

WebForml .aspx page, the files that make up a solution will be shown below:

Webforml.aspx: The visual part of the Web Form. You can modify the HTML

to pass the user interface of a Web form or drag controls from the Toolbox onto the

Web Form.

WebForml.aspx.cs: Code-behind class file that the ASPX file inherits its

functionality from.

Web. Config: XML-based configuration file for the project. You can set

properties on security, caching, state, and tracing information in the Web.Config file.

Global.asax: Similar to the Global.asa file from ASP, the Global.asax file

contains application-level events for an ASP.NET project.

Styles. css: Default style sheet for a project. You can double-click .css files to

edit them in the Style Sheet Designer.

Assembly!nfo: Class file that contains assembly-specific information for the

project's assembly output.

. vdisco: Discovery file for XML Web services in the application. You learn

more about discovery files on "XML Web Service in .NET," when you learn about Web

services.

3.2.2 Adding Controls to a Web Form

Adding controls to a Web Form is exactly like adding controls to a Windows

Form. You visually design a page by dragging predefined controls from the Toolbox

onto the Web Form. Server controls and Web controls are equivalent terms. The term

48

server controls is more common in referring to controls that provide server-side event

functionality. •

When programming in ASP.NET, you have a choice of what types of controls

you can use on a Web Form. There are HTML controls and server controls. HTML

controls are the same HTML-tag-based controls you use in ASP or a regular HTML

page. Server controls offer a richer user interface, and have an object model that you

can access in the code-behind class files for an ASPX page.

To get an idea of the controls you can use, click the HTML Controls tab on the

Toolbox, and then click the Web Form Controls tab on the Toolbox.

CHAPTER FOUR: WEB APPLICATIONS OF FAST- FOOD SALE
• AND RESTAURANT SALE MANAGEMENT

4.1 Definition of the Work:
Shopping on internet mentioned as e-commerce is very popular way to buy-sell

products. Most of the companies are provided to come into contact with their customers

via internet nowadays and the rate of internet sales over total one increasing day by day.

This project is prepared to cover up the need of food shopping on internet and

managing the sales from restaurants. So, it contains two sections, one for internet

shopping and another for restaurants. Two sections are investigated in different titles

along the chapter.

f,'lcrosoft SOL Server

www.graduation.com

._~:p' > . .,. !&!'" .
>/ . :· •-' !-,. ; \~,/~.-

Customers

Operatnrs

Figure 4.1: Working Scheme of the System

4.1.1 Explanation of Fast - Food Sale Web Application

Customer should have an membership to the system and then would be able to

request their choices on the internet. This is the main part of idea but it is more complex

than it seems.
At first, system must determine the restaurant which will serve to customer

whenever a new membership entry exists. Important point on determining restaurant is

50

the address of customer. Most of restaurants serve to customers who live

in the same county, not country or district. So, I would nave taken county

point to choose restaurant. ----=-
Secondly, every member of the system should have a unique member name and

a password to confirm the membership.
Customers should change their own information in the system and choose a

group of product as mentioned favourite choices so, they can select it when they come

to system for shopping and go ahead fast.
The system does not accept a payment directly, only the instant payment type of

customer should be taken on internet and solution of payment type must be provided

while delivering process. Problems occuring via credit card usage on internet is

exceeded by this method.
All product entries from the customer would be hold in a basket which is a

database table containing some important information about customer and products that

is choosen by customer to give it as an order.

(,'\
- ... l,
I'

4.1.2 Explanation of Restaurant Sale Management Application

This is the application for restaurants in chain. Whenever a customer gives an

order, system will hold the needed information in database and use it for restaurants.

Every restaurant which has a membership to system will have a uruque

restaurant name a password to confirm it. Restaurants are not allowed to have a

membership from the application.
In the sale management application, all orders whose the restaurant that is sign

into its application, will be listed. Thus, restaurant will be able to manage orders

whether they should be sent, they are delivered or returned.

This application has an obligation to enter the operator name to avoid not to be

able to give responsibility to operators when a problem occurs. So, application must

have some ability to add or remove operators for restaurant and there is.

Manager of the restaurant would add or remove operator using the name and

SSN (Social Security Number) of the operator. A confirm part for password is included

at this stage to avoid people that is not responsible make an action.

A change password part included also for managers.

System holds the closing time for every restaurant so, when it is the time, first

application does not allow to customer whom the restaurant is closed. Because of a

51

confirm mechanism that checks the closing times, every restaurant manager has an

ability to enter the closing time. •

4.2 Examining Requirements
It is very important to exammmg the requirements of the system. Both

applications will use the same database and the database will be used by many

restaurant at the same time. So, to have a simple database will slow down the

application.
At this point, a server which has multi user support is needed. This server will

contain a database which includes the needed tables. And I choose MS SQL Server

2000 to work.
The database would have different tables for every unique information used to

differentiate entities. For example, an address information contains different parts like

city, county, district... To avoid complexity and unproductive usage of the storage,

different parts of address information must be hold in different tables.

4.3 Examining of Fast- Food Sale Application
Fast - Food Sale application is a web application because of it will be published

on internet. Customers who visit the web site will see an home page including some

advertisement of the company and a sign in hyperlink to the sign in page.

When they come to the sign in page they will see a form as below:

Figure 4.2: Signln.aspx view

52

At this page, customer will enter its e-mail address and password to enter the

system. E-mail addresses are unique for everyone so, I accept it as customer definer for

both applications.

When you use ASP .NET to create a web application three important file to write

code into are created. Extensions for the files are .html, .aspx, .aspx.cs. This files are

used to creation of the web side of the page, user interface and functional code behind,

respectively.

Whenever you add a component to the page, html code for it added to the file

automatically. And we can write the code to code behind part by clicking on any

component we want or form. Code behind part will automatically loaded with event

function depending on component we click.

If customer is a new customer and haven't got any information in the system

database, he/she must register. So, New User link must be clicked to enter the

N ewU ser.aspx.

Figure 4.3: NewUser.aspx view

At this page, new customer has to fill every information, otherwise the

validation controls will work and required field pointers make actions. A correct e-mail

format validator is included also to check whether the entry is an e-mail or not.

At the page load County, District, Road/Street fields are disabled but in the case

of choosing city and the other ones, every item will be enabled, respectively.

53

When a user signs in with his/her e-mail address and own password, Welcome

page appears with the name of the restaurant. •

Figure 4.4: Welcome.aspx view

This page also contains Change Password, Change Personal Info and Create My

Favourite Choice links.
Change Password page enables the user to change his/her password to enter

system. Old password is requested at this stage to confirm the user is our real customer.

Change Personal Info page enables the user to change his/her personal

informations. At this point, two sections presented. One is for changing telephone

number and the other is for changing address information.

Create My Favourite Choice page is the most important one who has link at this

stage I believe. Because, it enables customers to choose a group of product. So,

whenever customer come to submit an order (shopping), he/she can go ahead fast by

only clicking a button to add this choice of products. The view of this page is not too

different from the shopping page, so it is not shown here.

"Sign Out" button provides customer a sign out from the system in safe.

When a customer click on "Go for shopping" link, he/she is directed to the

shopping.aspx page shown in Figure 4.5.
In this page customer can choose any product which is chategorized into four

groups and add it into the basket. When a new entry of product is added to the basket, it

is also added to the list at the bottom of the page. This table is a view of the basket and

includes every important information of the order. For every product quantity value

must be entered between 1 and 20. And customer is provided to choose sauces and its

quantity cannot exceed 3.

54

Page includes an pre-defined entry as "Promotion of the day". Every day one or

more product is promoted by company so, in the case ·of choosing promoted product,

customer is provided to have this product cheaper than other days.

Figure 4.5: Welcome.aspx view

There is a button named as "Somewhere else just for now!" and it is used to send

these products to another address different from one hold in database. In such a case,

system choose a different restaurant if the given address is not served by the restaurant.

To send order to the system after choosing payment type, customer can click

"Order It" button.
But before going to the payment page, I want to mention about the button next to

drop down lists. Every category of product has a button named as category name. When

a customer choose a product, enter its quantity and click the category-named button, a

pop-up window appears with picture of the choosen product. Figure 4.6 is shown below.

In this page customer can see the picture of product and what product includes.

Page also includes some extra choices for the customer depending of the product. For

example when you choose a drink, patato choices do not appear in the pop-up. In this

project extra choices for drink and potato have an static payment difference (couldn't be

changed). For instance, when you middle potato 1 YTL difference you pay.

55

Figure 4.6: PopUp.aspx view

Because of PopUp.aspx is a pop-up window, it appears in a different window

and when customer hit the OK button, it is closed. While closing changes on the choices

transmit to the shopping page via some components which every page contains.

When customer hit the "Order It" button on the shopping page, a new page come

across the user with payment types. Figure 4.7 is shown below.

Figure 4.7: Orderlt.aspx view

In "Orderlt" page, customer can see every product in the basket. If he/she clicks

on the "Back" button, shopping page appears again, but in such a case the basket of the

customer is discharged and products are deleted.

At the bottom of the page total price and estimated time is shown. And at the

right side of the page customer choose the payment type that he/she wants to use.

In the case of submit button is clicked a "registered successfully" page appears.

56

4.4 Examining of Restaurant Sale Management Application
•

Restaurant Sale Management is a web application used for managing orders that

is in responsility of the each restaurant. It is prepared as a web application so, it is not

needed to setup it onto a computer before using and can be used from anywhere via

internet.
Manager of the restaurant must start the program (enter the system) using the

restaurant name and password. There is not a "New Restaurant" part of the application,

it is an action that only the administrator of the system can make. Signln.aspx is shown

as Figure 4.8.

Figure 4.8: Signln.aspx view

Page includes validations for required field (in this manner, both restaurant name

and password) incorrect password. When there is not a problem about pasword or

empty fields, if "Sign In" button is clicked, "Welcome" page appears. It is shown in

Figure 4.9 below.

Figure 4.9: Welcome.aspx view

57

Page comes with the some information, eg. name and closing hour of the

restaurant. A sign out button is there in the page to sign-out in safe, too.

Firstly, I would like to mention about operator drop down list. Some restaurants

have a potential to sell their products on the internet much more than other sale ways.

For such restaurants, this application is getting more importance and in some cases only

one copy of application may not be enough to meet orders. In such a case, more than

one entry should be entered to the system and this means more than one computer and

operator for a restaurant. So, to avoid confusion in the restaurant, operator choosing is

an obligation to see and manage orders. Here, the confusion makes sense if a problem

exist in the records of orders. In such a case, responsible operator can be determined

taken an precaution easily.

Welcome page also includes there important link for administrator of the

restaurant: Change Password, Add/Remove Operator, Set Closing Hour.

Change Password page enables the administrator to change restaurant password

to enter system. Old password is requested at this stage to confirm the administrator is

our real member.
Add/Remove Operator page provides the administrator to make action as adding

or removing an operator using the operator name an SSN (Social Security Number) as

shown in Figure 4.10.

Figure 4.10: Operator.aspx view

To make an action as adding or removing operator, password entry is needed.

58

Administrator must choose operation type. If add operationis choosen SSN and

full name of operator must be entered. If remove operation is choosen name of the

operator must be selected from the drop down list. For both of the process, "Submit"

button must be clicked.

In the case of adding a new operator, SSN is the primary key for operator so, it

must be unique. Validation component of the page is registered to check whether there

is an operator in database and is tried to enter the same one or not. So, it is impossible to

add an existed operator to the system.

Set Closing Hour link enables the administrator to set the closing hour of the

restaurant. If admin does not do an set operation, closing hour will stay the last set and

the default value is 23:30.

Figure 4.10~ Operator.aspx view

Closing Time must be entered as determined in the format label otherwise,

validation process will not accept the time.
When an operator choose the name and click on "See Orders" button, page

shown in Figure 4.11 appears. This page includes (top to bottom) a label which shows

the number of the active (waiting to be served), a back button, a table that show the

active orders, another table that shows sent orders (waiting to be registered database as

delivered succcess fully or returned) and some input components.
Tables used in the page are very special. They allow to choose entries by using

the column of e-mail addresses. Selected Active Order and Selected Sent Order labels

takes the name and surname of the customer when their e-mail address is choosen from

the table.

59

Table information are grouped by order date ascending format so, shopping

orders are listed as the time they come and served as FIFO logic.

Figure 4.11: SeeOrders.aspx view

Any component on the page can post back the page automatically. This means

that, any click event on any component will refresh the page so, it is not needed to make

another action.
Another very important attribute of the page is the validation message of "There

are still customers to be served!". If some customers send any orders before closing

time of the restaurant, they should be served. Hence, a validation is created to check

whether waiting customer(s) existed or not. If exists, validation does not allow the

operator sign out so, either every customer should be called and orders should be

canceled one by one (on the AcceptOrder.aspx) or every order should be delivered.

Both of the lists have page numbers after the last row of tables. This page

numbers are very important being as the visual part of application. To provide a

easy-to-use page operators, every component on the page fits into the page. So, tables

can carry only five of first rows in order. Next "fives" take a part in different pages.

And every table carries the page number which it has. Operator doesn't care the page

numbers, because every entry takes place in first page as accepting the orders.

When operator choose a name from the sent orders list, choosen order can be

registered to database delivered by clicking "Change Status" button. If order is returned,

reason of the return must be entered and same button should be clicked again.

60

If operator want to accept an order, he/she should choose it from active orders

list and "Accept Order" should be clicked. The page ":i\cceptOrders.aspx" will appears

in the case of action.

"AcceptOrder" page includes the personal information of the selected customer

and his/her order information. If the customer choose a different address to send order,

it is shown in the alternative address box.

Figure 4.11: SeeOrders.aspx view

In this page, operator can choose any product and cancel it or add a new product.

It may seem meanless but, in the case of any product is not in the stock, customer

should be called and took an opinion to operate on the order. Order may be cancelled by

canceling every item in list. "Selected Product" label shows the name of the selected

product.
If the order is registered to database by clicking "Order Form" button, it takes

place in the See Order page as a sent order and waits answer from the customer to be

registered database as delivered or returned.
I will not mention about "Add New Product" page, because it is very similar to

the shopping and my favourite choice pages in first application.

CHAPTER FIVE: CODE STRUCTURES AND PROGRAMMING

TECHNICS USED IN APPLICATIONS

In this chapter, general code structure of C# will be explained using code

examples from project. The main reason of writing these explanation to help students

who think to prepare a web application in ASP.NET as graduation project.

5 .1 User Defined Classes in C#
In C#, most of object definition, class methods and syntax has been taken from

C and C++. So, to create a class in C# we use "class" keyword and a class name. Public,

private or protected attributes of the class determined via these keywords. To write

methods for variable's get and set operations are implemented very easily. The

keywords "get" and "set" can be used to create this method. An example from procejt is

shown below:

using System;

namespace Graduation2

{

public class Customer

{

private string sUserEMail;

private int iRestaurantID;

public string UserEMail

{

get{retum sUserEMail;}

set{sUserEMail = value;}

}

public Customer() {}

}

}
In the example code above, "using" keyword is used as "include" in C. System

header file is the main one for creating a class. The keyword "namespace" is used to

62

determine the solution name we use class in. The method Customer() is the constructor

of the class. It is called automatically when a component from this class is created.

5 .2 How to Validate a Control
Visual Studio .NET comes with built-in validation controls for use in ASPX

pages. When you validate a control, you're checking whether a control has data in it and

conforms to a specific pattern, (such as an email address), or you're checking the range

of data that has been entered.
In ASP, you either had to process the validation on the server and send the page

back to the browser if data wasn't correctly entered, or you had to write complex

JavaScript to check the validity of control data. ASP.NET has five built-in validation

controls in the Toolbox that you can simply drag to a form and associate with a control.

RequiredFieldValidator: Forces the user to enter value into the specified control.

Compare Validator: Compares a user's entry against a constant value, or against

a property value of another control, using a comparison operator.

Range Validator: Checks that a user's entry is between specified lower and upper

boundaries. You can check ranges within pairs of numbers, alphabetic characters, and

dates.
RegularExpressionValidator: Checks that the entry matches a pattern defined by

a regular expression.
Custom Validator: Checks the user's entry using validation logic that you write

yourself. This type of validation allows you to check for values derived at runtime.

Each validation control has properties specific to the functionality the control

provides. For example, the RequiredFieldValidator has a ControlTo Validate property

and an Error Message property. The Control To Validate property takes the ID of a valid

control on the form. The Regular Expression Validator uses the regular expression syntax

of .NET to validate the data entered in a control against a regular expression pattern.

Each validation control has a Text property and an ErrorMessage property. The

Text property is like the Text property of a Label control - it simply displays text. This

could be used to display Required or an * for a RequiredFieldValidator control. The
Error Message property displays if an error occurs in the validation.

A custom validator example from project is shown below:

63

private void CustomValidatorl_ServerValidate
(object source, System.Web.UI.WebControls.ServerValidateEventArgs args)
{

if (IsThereRestaurant(txtN ame. Text, txtPassword. Text))
Response.Redirect('1Welcome.aspx11);

else
args.Is Valid =false;

}

In the example, there is a user-defined method as:

bool IsThereRestaurant (string a, string b)

This method has a return type of boolean. This method takes name and

password, if there is a corresponding user in database return a true, if not returns false.

So, in the case of returning false, "args", the parameter of the custom validator, will be

invalid (using IsValid attribute). That is, custom validator sends to customer an error

message that is predefined.

5 .3 Managing State in ASP .NET Web Applications

The Internet is a stateless application. That means every call to the server is

separate from the next or the previous call. Unlike Windows Forms applications in

which you can set global variables and have a bunch of hidden forms open to maintain

the state of the data, the Web doesn't afford you that luxury. For internet applications

this is done by maintaining state.
State can be maintained in several ways, and some ways are better than others.

Where you maintain state can be broken down into two categories: on the client and on

the server.
Session and Application are "on server state" and I only use session and

application states in my project. Because it is enouh to save any data and share between

the pages so, I will explain only the session application.

Using Session State: Using session-level state enables you to track variable data

for a user throughout his visit to your Web site. Using the HttpSessionState class, you

can use the same key-value pair syntax for Session objects that you use for ViewState.

Each time a browser hits your site, IIS creates a unique session ID for the browser

session if you access the Session object in code. If you don't reference the Session

object in code, IIS doesn't create a unique ID for the end user's session on your site.

64

Session information is useful to save data between multiple page calls. For

example, when I visit my bank's Web site, I must enter my username and password

every time I visit, which means the bank isn't storing such high-security data in a

cookie. But after I log in to the site, each page I navigate knows who I am, so the data is

being passed to all pages for my session through the use of session state. To set or

retrieve values for session state, you use this syntax:

If Session["UserID"] = "Engin"
Response. Write(Session["U serID"]);

After the browser window is closed or the end user navigates to another site, the

session data is lost. When the end user returns to the site, you must create new session

information based on the user's current session.
Using Application State: Application-level state is the top level in the state

management hierarchy. The first time someone accesses your Web site, the Application

object for the site is created.
The Application object is alive until the server is rebooted, IIS is restarted, or a

new copy of the Web site is deployed. In the Global.asax file, there are

Application_ OnStart and Application_ OnEnd events that you can write code to respond

to; they're similar to the Session_ OnStart and Session_ OnEnd events.

The difference is that application-level variables are global for all sessions for

your Web site, not for individual users.

5 .4 Errors and Exceptions

If you want to manage exception handling:

• Understand why errors occur in applications.

• Learn about structured exception handling in .NET and how the common

language runtime implements exceptions.

• Use Try, Catch, and Finally blocks to avoid runtime errors.

• Learn how to use all the debugging features available in Visual Studio .NET

for ASP.NET applications.

65

5 .4.1 Why Errors Happen
In the course of writing any type of computer program, three types of errors can

occur:

• Syntax errors

• Logic errors

• Runtime errors
How to Avoid Syntax Errors: Syntax errors occur when you misspell a variable

name, object name, or reference an object incorrectly. Syntax errors are the easiest

errors to avoid, because Visual Studio .NET lets you know if a keyword or variable is

misspelled. You're notified of syntax errors in both C# and Visual Basic .NET by

squiggly lines that appear under code that isn't correct after you type a line of code.

When a squiggly line appears under your code, you can hover your mouse over the

squiggly line and a tooltip lets you know what error is occurring.
How to Avoid Logic Errors: Logic errors are the hardest errors to avoid. A logic

error is a flaw in the way you designed a function, or group of functions, to perform a

specific task. Logic errors aren't normally discovered until an application is out in

production and being used by end users. This types of error is unavoidable. The only

real way to minimize logic errors is to write your applications based on specifications

that have been well thought out and clearly defined.
How to Avoid Runtime Errors: Runtime errors are errors that occur at runtime,

but aren't handled by an error handler in your code. Runtime errors are the worst type of

error that can occur because they directly affect the end user of your application.

Runtime errors can also be called laziness errors, because they can be completely

avoided simply by implementing some sort of error handling in your code. When an

unexpected error occurs and there's no error-handling routine in your application, the

application notifies the end user of the error with a very offensive message and crashes

immediately.

5.4.2 Understanding Exceptions in .NET
To make your code compliant with the Common Language Specification (CLS),

you must use the exception object from the System.Exception class in the Framework

Class Library (FCL) in C#.
The Exception object contains the information you need about the last error that

· occurred in your application. When an error occurs, an Exception object is created. So,

66

when a block of code causes an error, an exception is thrown and the first block of code

in the stack that has an exception handler takes care of that exception. If there's no

exception-handling code, a runtime error occurs, and your application terminates.

5.4.3 Handling Exceptions with Try/Catch/Finally

The syntax for Try/Catch/Finally blocks can be explained with this rule:

• In C#, each try statement must end with a curly brace, and include at least one

catch statement or one finally statement.

Algorithm in one sentence to handle an exception is that you're trying to execute

some code, catching an error if one occurs, and finally doing something when the code

succeeds or fails. The following C# syntax will give you an idea of what a

Try/Catch/Finally block might look like:

C# Code structure:

try

{

II This is code you are attempting to execute

}

catch

{
II This is code that executes if an exception occurs

}

finally

{
II This is code that runs after the Try or Catch statements

}

An example from the project:

try
{

string x = SystemDate();
string sql = "INSERT INTO Users Values(...)";
con.Open();
SqlCommand da = new SqlCommand(sql,con);
da. ExecuteN on Query();
Response.Redirect(" Saved.aspx");
con.Dispose();

}

67

catch(SqlException exp)
{ •

exc = exp.Message;
Session["errormessage"]= exc ;
Response.Redirect('1 Error. aspx 11);

}

In this example an sql inserting database operation is made. If server is not

opened or if a problem exists about connection, error message will be sent to another

page and it is shown there.
Understanding the Catch Statement: The Catch statement filters exceptions

based on the code executed in the Try statement. There are a few ways to handle Catch

statements:

• Catch a generic error

• Catch a specific error, using Catch As, based on the type of exception that

occurred
In C#, you can specify a specific error in parentheses immediately following the

catch statement. Catch specific errors using Catch As or Catch When and then Catch a

fallback generic error.
In C#, you get a compiler error if you attempt to catch a specific exception after

having specified a generic Catch statement.

5.5 Connecting to the Database:
There are several ways to setup a connection to database but, I used the most

effective one in my graduation project. To show how to connect a database and transfer

data to a grid control, I will explain every step by using example codes from the project.

For example, I have used a grid component to show customer what he/she has

choosen as products in the first application. All the steps are presented below:

As the first action of explanation, we need a database table to transfer data into

grid. I created a table named as "Sales'Temporary" which is used as a holder for the

products in basket.

68

Figure 5.1: SalesTemporary table in database

After creating table, we need to add a grid component to show data on. Grid

component is a html table to show and edit data on and it is the easiest to use and

complex data component in .NET platform.

Figure 5.2: Products in Basket grid

This is the grid which is connected to database so, it is full of data shown. Now,

we will see the code behind part of project and investigate code lines to have this full of

data grid after adding it onto form by drag and dropping.

• using System.Data.SqlClient;

This is the first code line we write. It transfers header file to use data components in our
project. So, we can use SqlConnection, SqlDataAdapter and DataSet components.

SqlConnection is the one of database connection in ASP.NET and used for
connection to SQL Server database. The other object is the OleDbconnection which is
used for connecting other databases such as Access, Oracle but, I will not mention about
it because, I have not needed to use.

SqlConnection con;
string connection= "server=localhost;uid=sa;pwd=;database=Graduation";
con= new SqlConnection(connection);

69

This code lines may seem you meanless at first but I will explain everything.
The object "con" is a SqlConnection object that is used/or connection. I define a string
variable "connection" to hold the parameters which are used to connect database.

• server: It takes the server name which is localhost here.
• uid: It is the abbraviation of user id, and "sa", the default user in sql, is the user

id of my connection.
• pwd: It is the abbraviation of password that user of the system has.
• database: It is the database name of the project.

So, con object is constructed with the parameter holder string and we can use it on
application.

string GetOrder = "SELECT Product.Product, Product.ProductPrice," +
"SalesTemporary.Quantity, SalesTemporary.Productlnfo, "+
"SalesTemporary.TotalPrice FROM SalesTemporary" +
"Product ON Sales'Temporary.Productlf' = Product.ProductID" +
"WHERE (SalesTemporary.UserEMail ="'+email+"')";

SqlDataAdapter da = new SqlDataAdapter(GetOrder,con);
DataSet ds = new DataSet();
da.Fill(ds);
DataGridl .DataSource = ds;
DataGrid l .DataBind();

Here, GetOrder is holding the select string to transfer data from database table.

SqlDataAdapter is very useful Asp.NET component to filter data using sql-select string

and a connection. Dataset is used to hold data filtered by the data adapter component.

At the end, DataSource method of DataGrid object is used to point data to grid

component but it just points. To transfer data columns into grid component, we use

DataBind method with no parameter after pointing process.

5.6 Problems I Faced on Project and Solutions

Authentication Mode Error: Whether you write a code or not, when you create

an web application on ASP.NET and debug it, if you face with an error about

Authentication Mode=Windows and Server"/" Application error, you should apply this

steps:

• Open the Control Panel

• Find Administrative Tools and open it.

• Double click on the IIS icon.

• Right-click on your application directory and click properties

• Click on the create button to creat a virtual directory for IIS.

70

Integrated Windows Authentication Is Not Enabled: If you use a connection to

SQL database and your connection properties is chooseri as windows autentication, you

must construct your project as integrated windows autentication.

• Open the Control Panel

• Find Administrative Tools and open it.

• Right-click on Web Sites directory and click properties

• From the Directory security tab, click edit button.

• Choose Integrated Windows Security option click Apply

• Choose every option in coming window.

Not Viewing System Objects in SQL Server: To show only the tables and objects

you create, not the system has

• Right-click on LOCAL

• Click SQL Server Registration Properties.

• Uncheck the Show System Databases and Objects.

Drop Down List Not Working: If you add some lines of code to

Selected_Index_Changed method of the drop down list component, you are probably

using a server control and it is needed to post back the page to make an action to the

server and refresh page. Solution is to changing AutoPostBack property of drop down

li'st component to true value. It is a common solution for other type of input

components.

Problem About Sending E-Mail: You need to have a virtual mail server to send

mails in ASP.NET, so you should

• Open the Control Panel

• Find Administrative Tools and open it.

• Double click on the IIS icon.

• Right-click on the Default SMTP Virtual Server and click properties

• On the Access tab, you should click Relay button

• On the page coming, click Add button and enter the value "127.0.0.1" which is

your local IP address.

• Click OK button to finish work.

71

ASP.NET Not Working (Opening Problem): If you cannot open ASP.NET
~

solutions or not able to create a new solution, check the Inetpub\ WWWroot directory

whether you have "asp_client_script" directory or not. If you haven't got it, you should

• From Start \ Programs \ Microsoft Visual Studio .Net 2003 \ Visual Studio

Tools, run the "Visual Studio .NET 2003 Command Prompt"

• Enter the command "aspnet_regiss -i" and hit the enter key.

This command will copy the needed files to your computer.

Validation Problem of Text Box: When you add some text boxes to your web

page and relate them with validation controls, it is wished that validation will work

when the page is posted back. But, if the validation control works without post back,

just with tab steps on components, you should change the EnableClientScript property

of text box (another input components in different cases) to false.

72

CONCLUSION
•

Web applications are not the newest idea in programming but, their importance

is getting increased day by day with new technology of ASP.NET. Very useful features

of .NET platform and development of coding in secure for applications can be observed

at first glance.

Although most of programming structure and techniques haven't been able to

use in, applications working on the internet are the most popular way to develop

software for companies. Because, when you develope a web application, you do not

need to setup it on computers to work with. Just putting the needed files on server and

publishing it to internet, you can reach your program whereever you are.

I think this project can be used as a real world application by companies. Most

of ideas used in application are examined by investigating working principles for sale

on internet of big companies such as Mc Donalds and Burger King.

Becase of the importance of development in web based applications, I decided to

prepare my project as such an application. I got lots of experience about subject through

developing the project. It is not the first experiment for me, but is the most important

one. I feel proud of seeing my project to work efficiently.

I would like to add new technologies into my project and develope it in future,

may be it is the best way to get a big step into my job.

73

REFERENCES
•

[1] Walther S., ASP.NET Kick Start, Sams Publishing, December 16, 2002.

[2] Onion F., Essential ASP.NET with Examples in C#, Addison Wesley, February 11,

2003.

[3] Beres J., Sams Teach Yourself Visual Studio .NET 2003 in 21 Days, Sams

Publishing, January 14, 2003.

[4] Kennedy B., Musciano C., HTML & XHTML: The Definitive Guide, 5th Edition,

O'Reilly Publishing, August 2002.

[6] Watkins D., Hammond M., Abrams B., Programming in the .NET Environment,

Addison Wesley Publishing, November 06, 2002.

[7] Terence J.J., Payet R.N., ADO .NET Programming, Wordware Publishing, 2003.

[8] Shepherd G., "DataList vs. DataGrid in ASP.NET",

"http ://msdn.microsoft.corn/msdnmag/issues/01 /12/asp/"

[9] Salman A., "DataSet Made Simple",

"http://www.csharpfriends. corn/ Articles/ getArticle.aspx?articleID=2"

[10] Mitchell S., "Deciding When to Use the DataGrid, DataList or Repeater", 2003.

[11] GotDotNet Message Boards, SQL Server Failure,

"http://www. gotdotnet. corn/Community /MessageBoard/Thread.aspx?id=2 7 0 5 85"

Retrieved: 10/11/2004

[12] Manoj R., "Session Management", Retrieved: 03 Mar, 2004

"http ://www.dotnetspider.com/kb/ Article 118 .aspx"

74

	Page 1
	Titles
	NEAR EAST UNIVERSITY
	Faculty of Engineering

	Images
	Image 1

	Page 2
	Titles
	ACKNOWLEDGEMENTS
	Ł

	Images
	Image 1

	Page 3
	Titles
	Ł

	Images
	Image 1

	Page 4
	Titles
	TABLE OF CONTENTS
	Ł
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	i
	II
	1
	CHAPTER ONE: WORLD WIDE WEB AND HTML - XHTML 2
	CHAPTER TWO: DATABASE MANAGEMENT WITH SQL
	SERVER 2000 DEVELOPER EDITION 11

	Images
	Image 1

	Page 5
	Titles
	2.4 The Entity Relationship Model (E-R Model) Ł
	2.5 The SQL Server Default Databases
	2.6 SQL Server Default Login ID
	2.7 A Brief on SQL Server Program Group
	2.9 T-SQL
	CHAPTER THREE: ASP .NETAND C# LANGUAGE ON VISUAL
	STUDIO .NET 2000 PLATFORM
	3 .1 What Is .NET?

	Images
	Image 1

	Page 6
	Titles
	CHAPTER FOUR: WEB APPLICATIONS OF FAST-FOOD SALE
	CHAPTER FIVE: CODE STRUCTURES AND PROGRAMMING
	TECHNICS USED IN APPLICATIONS 62
	CONCLUSION 73
	REFERENCES 74

	Images
	Image 1

	Page 7
	Titles
	INTRODUCTION
	Ł

	Images
	Image 1

	Page 8
	Titles
	CHAPTER ONE: WORLD WIDE WEB AND HTML - XHTML
	Ł
	1.1 The Internet
	1.2 Html And The Web

	Images
	Image 1

	Page 9
	Titles
	1.3 Clients, Servers, And Browsers

	Images
	Image 1
	Image 2

	Page 10
	Images
	Image 1
	Image 2

	Page 11
	Images
	Image 1
	Image 2

	Page 12
	Images
	Image 1
	Image 2

	Page 13
	Images
	Image 1
	Image 2
	Image 3

	Page 14
	Titles
	Ł

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 15
	Images
	Image 1
	Image 2

	Tables
	Table 1
	Table 2

	Page 16
	Images
	Image 1

	Tables
	Table 1
	Table 2

	Page 17
	Titles
	CHAPTER TWO: DATABASE MANAGEMENT WITH SQL
	2.1 Evolution of Database Management System

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 18
	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 19
	Titles
	2.2 Characteristics of Database And DBMS

	Images
	Image 1
	Image 2
	Image 3

	Page 20
	Images
	Image 1
	Image 2

	Page 21
	Titles
	2.3 Database Application
	Ł

	Images
	Image 1
	Image 2

	Page 22
	Titles
	2.4 The Entity Relationship Model (E-R Model)

	Images
	Image 1
	Image 2

	Page 23
	Images
	Image 1

	Page 24
	Images
	Image 1
	Image 2

	Page 25
	Titles
	2.5 The SQL Server Default Databases

	Images
	Image 1

	Page 26
	Titles
	2.6 SQL Server Default Login ID
	2. 7 A Brief on SQL Server Program Group

	Images
	Image 1

	Page 1
	Titles
	2.8 Creating Database in Sql Server
	Ł

	Images
	Image 1

	Page 2
	Images
	Image 1
	Image 2

	Page 3
	Titles
	2.9 T-SQL

	Images
	Image 1

	Page 4
	Images
	Image 1
	Image 2

	Page 5
	Images
	Image 1

	Page 6
	Images
	Image 1

	Tables
	Table 1

	Page 7
	Images
	Image 1
	Image 2

	Page 8
	Images
	Image 1

	Page 9
	Titles
	Ł

	Images
	Image 1

	Page 10
	Titles
	Ł

	Images
	Image 1

	Page 11
	Images
	Image 1
	Image 2

	Page 12
	Images
	Image 1

	Page 13
	Titles
	CHAPTER THREE: ASP .NET AND C# LANGUAGE ON VISUAL
	Ł
	STUDIO .NET 2000 PLATFORM
	3 .1 What Is .NET?

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 14
	Titles
	-
	=

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 15
	Images
	Image 1

	Tables
	Table 1

	Page 16
	Images
	Image 1
	Image 2

	Page 17
	Titles
	Compilation
	Execution

	Images
	Image 1
	Image 2

	Page 18
	Titles
	}

	Images
	Image 1

	Page 19
	Titles
	L . J
	I
	I : I
	.J l

	Images
	Image 1
	Image 2

	Page 20
	Titles
	{
	{

	Images
	Image 1

	Page 21
	Titles
	}
	{
	}
	Ł

	Images
	Image 1

	Page 22
	Images
	Image 1
	Image 2
	Image 3

	Page 23
	Images
	Image 1

	Page 24
	Images
	Image 1

	Page 25
	Images
	Image 1

	Page 26
	Images
	Image 1
	Image 2

	Page 27
	Images
	Image 1
	Image 2

	Page 28
	Images
	Image 1

	Page 29
	Images
	Image 1

	Page 30
	Titles
	CHAPTER FOUR: WEB APPLICATIONS OF FAST- FOOD SALE
	Ł
	AND RESTAURANT SALE MANAGEMENT
	4.1 Definition of the Work:

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10

	Page 1
	Titles
	----=-

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 2
	Titles
	4.2 Examining Requirements
	4.3 Examining of Fast- Food Sale Application

	Images
	Image 1
	Image 2
	Image 3

	Page 3
	Images
	Image 1
	Image 2

	Page 4
	Images
	Image 1
	Image 2

	Page 5
	Images
	Image 1
	Image 2
	Image 3

	Page 6
	Images
	Image 1
	Image 2
	Image 3

	Page 7
	Titles
	4.4 Examining of Restaurant Sale Management Application
	Ł

	Images
	Image 1
	Image 2
	Image 3

	Page 8
	Images
	Image 1
	Image 2

	Page 9
	Images
	Image 1
	Image 2

	Page 10
	Images
	Image 1
	Image 2

	Page 11
	Images
	Image 1
	Image 2

	Page 12
	Titles
	CHAPTER FIVE: CODE STRUCTURES AND PROGRAMMING
	5 .1 User Defined Classes in C#

	Images
	Image 1
	Image 2

	Page 13
	Titles
	5 .2 How to Validate a Control

	Images
	Image 1

	Page 14
	Titles
	}
	5 .3 Managing State in ASP .NET Web Applications

	Images
	Image 1
	Image 2

	Page 15
	Titles
	5 .4 Errors and Exceptions

	Images
	Image 1

	Page 16
	Images
	Image 1
	Image 2

	Page 17
	Titles
	{

	Images
	Image 1

	Page 18
	Titles
	5.5 Connecting to the Database:
	Ł
	}

	Images
	Image 1

	Page 19
	Images
	Image 1
	Image 2

	Page 20
	Titles
	5.6 Problems I Faced on Project and Solutions

	Images
	Image 1

	Page 21
	Images
	Image 1
	Image 2

	Page 22
	Images
	Image 1
	Image 2
	Image 3

	Page 23
	Titles
	CONCLUSION
	Ł

	Images
	Image 1

	Page 24
	Titles
	REFERENCES
	Ł

	Images
	Image 1
	Image 2

