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ABSTRACT 
 
 
 
Name and Surname: Seçkin Varol 
Supervisor: Assist. Prof. Dr. Evren Hınçal 
NEU Department of Mathematics 
  
          

 

           This work introduces a variety of mathematical models for biological systems, and 

presents the mathematical theory and techniques useful in analyzing those models. Material is 

organized according to the mathematical theory rather than the biological application. 

Undergraduate courses in calculus, linear algebra, and differential equations are assumed. 

             In this work, we are interested in predator-prey models. We first describe the 

predator-prey model and how differential equations relates to predator-prey. We consider 

Lotka-Volterra’s model, aggregated model and May’s model for predator-prey systems. 

Lotka-Volterra model as a classical application of mathematics in biology, models based on 

differential equations for interactions between species, thanks to analytical techniques and 

computerization, have become progressively more complex. Aggregated model, comprising a 

set of three ordinary differential equations governing the local dynamics present of prey and 

predator  densities.  These  dynamics  present  two  time  scales,  which  enables  us  to  use  of  

aggregation of variables method. To evaluate the impact of density dependence in general, our 

model also uses a general predator density-dependent function for prey migration. We then 

study this model and its equilibrium points and a find a simple criterion of stability for 

positive equilibrium, depending on various parameters and on the density-dependent 

migration function. May presented limit cycle models of prey-predator interaction. He has 

shown that balancing a stabilising effect (limited prey population) against a destabilising 

effect (such as  limited predator appetite) can lead to an unstable equilibrium point surrounded 

by a stable limit cycle. We discuss that a similar situation can be brought about when the 

destabilising effect is a time delay. Finally, we decide  the May’s model  is appropriate model 

for our country. 

 

Key words: Predator-prey model, Lotka-Volterra Model, Aggregated Model, May’s Model, 

time delay, limit prey population, limit predator appetite. 
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ÖZET 

 

Ad ve Soyad: Seçkin Varol 

Danışman: Yrd. Doc. Dr. Evren Hınçal 

NEU Matematik Bölümü 

 

 

          Bu çalışma, biyolojik sistemler için çeşitli matematiksel modelleri tanıtır ve 

matematiksel teori ve teknikler bu modellerin analizinde yararlı sunulur. Materyal, biyolojik 

uygulamadan ziyade matematiksel teoriye göre düzenlenmiştir. Lisans dersleri                

calculus, doğrusal cebir ve diferansiyel denklemler varsayılır. 

          Bu çalışmada av-avcı modellerine ilgi duyacağız. İlk olarak av-avcı modelini ve 

diferansiyel denklemlerin av-avcı modeliyle nasıl ilgili olduğunu tanımlıyoruz. Av-avcı 

sistemleri için Lotka-Volterra modelini, Kümelenmiş modeli ve May’s modelini göz önüne 

alıyoruz. Lotka-Volterra modeli, biyolojide klasik bir matematik uygulaması iken türler 

arasındaki etkileşimde diferansiyel denklemleri esas alır, analitik teknikler ve bilgisayara 

dayalı sistem olması sayesinde de  giderek daha karmaşık bir hale gelmiştir. Kümelenmiş 

model, av ve avcı yoğunluklarının yerel dinamiğinde bulunan düzenlemeyi gösteren üç 

diferansiyel denklemi kapsayan modeldir. Bu dinamik bize değişkenlerin toplama yöntemini 

kullanmamıza olanak sağlayacağı mevcut iki zaman ölçeği gösterir. Genel yoğunluğa bağlı 

etkisini değerlendirmek için modelimizde av göçü için genel avcı yoğunluğuna bağımlı işlevi 

kullanır. Daha sonra bu modele ve bu modelin denge noktalarına ve çeşitli parametrelere ve 

göç yoğunluğu fonksiyonuna bağlı olarak pozitif denge için  basit bir istikrar kriteri bulmak 

için çalışırız. May, av-avcı etkilşiminde sınırlı döngü modelleri sundu. O bir istikrar bozucu 

(dengeleme sınırlı yırtıcı iştah gibi) etkilerine karşı bir dengeleyici etkiye (sınırlı av nüfus), 

istikrarlı bir limit döngüsü tarafından çevrili kararsız bir denge noktasına yol göstermiştir. 

Benzer durumun istikrar bozucu etkiyi bir süre geciktirdiğimiz zaman ne gibi durum 

getirebileceğini tartışırız. Sonuç olarakda May’s modeli ülkemiz şartları için en uygun 

modeldir. 

 

Anahtar sözcükler: Av-avcı etkileşimi, Kümelenmiş  model, May modeli, Lotka-Volterra 

modeli, zaman geciktirme olayı. 
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CHAPTER 1 

 

INTRODUCTION 

 

In this chapter,  we first  learn some definitons dealing with the predator-prey models. 

Then we describe the what the predator-prey model is, how differential equations relates 

to predator-prey and a general predator-prey model. 

 

 

1.1 SOME  OF DEFINITIONS: 

 

i) Exponential  Growth  

Under simplified conditions, such as a constant environment (and with no migration), it 

can be shown that change in population size (ܰ) through time (ݐ) will depend on the 

difference between individual birth rate (ܾ) and death rate (݀), and given by: 

                                                    

                                                     ௗே
ௗ௧

= (బିௗబ)
ேబ

                                                                      (1) 

 

where:  

             ܾ = instantaneous birth rate, births per individual per time period (ݐ). 

              ݀ = instantaneous death rate, deaths per individual per time period, and                               

           ݀ ܰ = current population size.                                                                     

The difference between birth and death rates (ܾ − ݀) is  also  called  the intrinsic  ,ݎ  

rate of natural increase, or the Malthusian parameter. It is the theoretical maximum 

number of individuals added to the population per individual per time. By solving the 

differential equation (1) we get a formula to estimate a population size at any time: 

                                               

                                                ܰ = ܰ݁௧                                                                       (2) 
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where ݁ = 2.718 …  (base of natural logs). 

This equation shows us that if birth and death rates are constant,  population size will 

grow exponentially. If you transform the equation to natural logarithms (݊ܫ), the 

exponential curve becomes linear, and the slope of that line can be shown to be  ݎ : 

                                  

                             

(ܰ)݊ܫ                           = )݊ܫ ܰ) +  (3)                                                               ݐݎ(݁)݊ܫ

 

                        and  

                                                                             

ݎ                            = (ܰ)݊ܫ] − [ ( 0_ܰ)݊ܫ ⁄ݐ                                                                (4) 

 

where ݊ܫ(݁) = 1.  The  population  growth  rate,  is a basic measure in population ,ݎ 

studies, and it can be used as a basis of comparison for different populations and 

species. 

 

ii) Logistic Growth 

We need  to  modify  the  basic   equation  (1)  so  that  birth  and  death  rates  are  no  longer  

constant through time, but decrease and increase respectively as population size 

increases : 

                           

                                 ௗே
ௗ௧

= ܰ[(ܾ − ݇ܰ) − (݀ + ݇ௗܰ)]                                                 (5) 

 

where  ݇  and ݇ௗ  are the density-dependent birth and death rate constant respectively. 

This equation predicts that a population will stop growing (zero population growth) 

when birth rate equals death rate, or: 

 

                                ܾ − ݇ܰ = ݀ + ݇ௗܰ                                                                   (6) 

 

This can be converted into an equation showing the size at which the population reaches 

a steady state: 
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                                   ܰ = (బିௗబ)
(್ା)

                                                                                  (7)    

   

The  value  of   ܰ  when  the  population  is  at  steady  state  is  the  carrying  capacity  of  the  

environment, or ܭ. This can be simplified: 

                                

ܭ                                 = 
(್ା)

                                                                                     (8) 

 

Since ܾ − ݀ =  If we combine this new form of the carrying capacity equation with .ݎ

(5) we get the familiar form of the logistic growth equation: 

 

                              ௗே
ௗ௧

= ܰݎ ቂ(ିே)


ቃ.                                                                               (9)   

        

(Toronto,1997) 

 

iii) Stable and unstable: 

Equilibrium is a state of a system which does not change. If the dynamics of a system is 

described by a differential equation (or a system of differential equations), then 

equilibria can be estimated by setting a derivative (all derivatives) to zero. 

 

An equilibrium is considered stable (for simplicity we will consider asymptotic stability 

only)  if  the  system  always  returns  to  it  after  small  disturbances.  If  the  system  moves  

away from the equilibrium after small disturbances, then the equilibrium is unstable. 

 

 

iv) Taylor Series: 

A  Taylor  series  is  a  series  expansion  of  a  function  about  a  point.  A  one  dimensional  

Taylor series expansion of a real function ݂(ݔ)  about a point ݔ = ܽ  is given by 

(ݔ)݂ = ݂(ܽ) + ݔ) − ܽ)݂ (ݔ)′ + ݔ) − ܽ)ଶ ݂ ′′(ܽ)
2! + ݔ) − ܽ)ଷ ݂(ଷ)(ܽ)

3! + ⋯ 

ݔ)+                              − ܽ) ()()
!

+ ⋯                                                                         (10) 
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v) Exponential Decay:  

A quantity is said to be subject to exponential decay if it decreases at a rate proportional 

to its value. Symbolically, this process can be modeled by the following differential 

equation, where N is the quantity and λ (lambda) is a positive number called the decay 

constant:   

                                          ௗே
ௗ௧

=                                                    (11)                                                                               .ܰߣ−

The solution to this equation is: 

(ݐ)ܰ                                      = ܰ݁ିఒ௧                                                                         (12)                                      

Here ܰ(ݐ)  is the quantity at time ݐ, and ܰ = ܰ(0) is the initial quantity, i.e the 

quantity at time ݐ = 0. 

 

vi) Delay Model: 

In general if we consider a population to be governed by 

                                              ௗே
 ௗ௧

= ݂(ܰ)                                                                       (13)                                                                                                                 

 

where typically ݂(ܰ) is a nonlinear function of ܰ.  

One of the deficiencies of single population models like (13) is that the birth rate is 

considered to act instantaneously whereas there may be a time delay to take account of 

the time to reach maturity, the finited gestation period and so on. We can incorporate 

such delays by considering delay differential equation models of the form 

 

                                              ௗே
ௗ௧

= ,(ݐ)ܰ)݂ ݐ)ܰ − ܶ)),                                                     (14)                                                         

 

where  ܶ > 0 , the delay, is a parameter . 

http://en.wikipedia.org/wiki/Differential_equation
http://en.wikipedia.org/wiki/Differential_equation
http://en.wikipedia.org/wiki/Negative_and_non-negative_numbers
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1.2 What is the  Predator-Prey Model ? 

There are many instances in nature where one species of animal feeds on another 

species of animal, which in turn feeds on other things. The first species is called the 

predator and the second is called the prey. 

Theoretically, the predator can destroy all the prey so that the latter become extinct. 

However, if this happens the predator will also become extinct since, as we assume, it 

depends on the prey for its existence.           

Predator-prey modelling is population modelling with two distinct populations, one of 

which is a food source for the other.  

  

          

1.3 Differential Equations and how it Relates  to Predator-Prey                             

The differential equations are very much helpful in many areas of science. But most of 

interesting real life problems involve more than one unknown function. Therefore, the 

use of system of differential equations is very useful.  

One  of  the  most  interesting  applications  of  sytems  of  differential  equations  is  the  

predator-prey problem. In this thesis without loss of generality, we will concentrate on 

sytems  of  two  differential  equations  and  we  will  consider  an  environment  containing  

two related populations a prey population, such as rabbits and a  predator population, 

such as foxes. Clearly, it is reasonable to expect  that the two populations react in such a 

way as to influence each other’s size (Casillas et al., 2002). 

 

 

1.4  A General Predator-Prey Model   

Consider two populations whose sizes at a reference time t  are  denote  by  x(t), y(t), 

respectively. The functions  x  and  y might denote population numbers or 

concentrations (number per  area) or some other scaled measure of the populations 

sizes, but are taken to be continuous functions. Changes in population size with time 

area described by the time derivatives ̇ݔ = ௗ௫
ௗ௧

  and ̇ݕ = ௗ௬
ௗ௧

 , respectively and a general 

model of interacting populations is written in terms of two autonomous differential 

equations: 
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ݔ̇                                                             = ,ݔ)݂ݔ  (ݕ

ݕ̇ = ,ݔ)݃ݕ  (ݕ

 

(i.e the time t does not appear explicitly in the functions ݔ)݂ݔ, ,ݔ)݃ݕ and (ݕ  The .((ݕ

functions f  and  g denote the respective “per capita growth rates of two species”. It is 

assumed that ௗ(௫,௬)
ௗ௬

< 0  and ௗ(௫,௬)
ௗ௫

> 0. This general model is often called 

Kolmogorov’s predator-prey model (Hoppensteadt, 2006). 
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CHAPTER 2 

 

MODELS 

 

In this section, we study the models of the  predator-prey model which are Lotka-

Volterra model and Aggregated model. Lotka-Volterra model looks at a predator-prey 

model  where two species are involved. Thus, the differential equations describing the 

population dynamics must have two unknown variables, creating a system of 

differential equations. We then describe the predator-prey model which is Aggregated 

model, comprising a set of three ordinary differential equations governing the local 

dynamics of prey and predator population densities. These dynamics  present two time 

scales, which enables us to use of aggregation of variables method. We then study this 

model and its equilibrium points and a find a simple criterion of stability for positive 

equilibrium, depending on various parameters and on the density-dependent migration 

function.   

 

 

2.1 Lotka Volterra  Model 

 

2.1.1 Lotka-Volterra Equation 

The Lotka-Volterra equations, also known as the predator-prey equations, are a pair of 

first-order, non-linear, differential equations frequently used to describe the dynamics of 

biological systems in which two species interact, one predator and one its prey. They 

were proposed independently by Alfred J. Lotka in 1925 and Vito Volterra in 1926. 

This model involves two equations 

1.Describe how the prey population changes 

2.Describe show the predator population changes. 

They evolve in time according to the pair of equations: 
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ݔ݀
ݐ݀ = ߙ)ݔ −  (ݕߚ

                                                                                                                                       (15)                                                                                                                     

   
ݕ݀
ݐ݀ = ߛ−)ݕ +  (ݔߜ

 

where     

              y  is the number of some predator (for example; sharks) 

              x  is the number of its preys (for example; fishes) 

             ௗ௬
ௗ௧

     and  ௗ௫
ௗ௧

   represents the growth of the two populations against time 

              t   represents the time    

and  

              α, β, γ and δ are parameters representing the interaction of the two species. 

 

2.1.2  Physical Meanings of the Equations  

When multiplied out, the equations take a form useful for physical interpretation. The 

origin should be considered from a more general framework,   

ݔ݀
ݐ݀ = ,ݔ)݂ݔ  (ݕ

 

ݕ݀
ݐ݀ = ,ݔ)݃ݕ  (ݕ

 

where  both   functions  represent  per  capita  growth  rates  of  the  prey  and  predator,  

respectively. 

These functions are too general, so a Taylor series approximation is performed to obtain 

linearized per capita rates, 

 

,ݔ)݂ (ݕ = ܣ − ݔଵܣ −  ݕଶܣ

 

,ݔ)݃ (ݕ = ܤ + ݔଵܤ −  ݕଶܤ

 



 

9 
 

The sign of the coeffients arise from assumptions of population regulation, and by 

choosing nonzero coefficients appopriately, an ecologist can obtain predator-prey, 

competition, disease and mutualism models that provide general insight into ecological 

systems. 

Assumptions: 

       1) The prey population finds ample food at all times 

       2) The food supply of the predator population depends entirely on the prey 

populations 

       3) The rate of change of population is proportional to its size 

       4) During the process, the environment does not change in favor one species and 

the genetic adaptation is sufficiently slow. 

 

 

2.1.2.1 Prey 

 The  prey equation becomes 

                                                               ௗ௫
ௗ௧

= ݔߙ −  (16)                                                      ݕݔߚ

 

The prey are assumed to have an unlimited food supply and to reproduce exponentially 

unless subject to predation; this exponential growth is represented in the equation above 

by the term ݔߙ. The rate of predation upon the prey is assumed to be proportional to the 

rate at which the predators and the prey meet; this is represented above by ݕݔߚ. If either 

 .is zero then there can be no predation ݕ or ݔ

With these two terms the equation above (16), can be interpreted as:the change in the 

prey’s numbers is given by its own growth minus the rate at which it is preyed upon. 

 

 

2.1.2.2 Predators 

 

The predator equation becomes 

 

                                                            ௗ௬
ௗ௧

= ݕݔߜ −    (17)                                                  ݕߛ

                                                                                                                                         



 

10 
 

In this equation, ݕݔߜ represents the growth of the predator population. (Note the 

similarity to the predation rate; however, a different constant is used as the rate at which 

the predator population grows is not necessarily equal to the rate at which it consumes 

the prey).  ݕߛ  represents the natural death of the predators: it is an exponential decay.  

Hence the equation represents the change in the predator population as the growth of the 

predator population, minus natural death.  

 

 

2.1.3 Dynamics of the System 

 

In the model system, the predators thrive when there are plentiful prey but, ultimately, 

outstrip their food supply and decline. As the predator population is low the prey 

population will increase again. These dynamics continue in a cycle of growth and 

decline. 

 

 

2.1.3.1 Equilibrium Analysis  

Population equilibrium occurs in the model when neither of the population levels is 

changing, i.e. when both of the derivatives are equal to 0. Thus, for the predator prey 

model above,  we set 

      
ௗ௫
ௗ௧

= 0              and              ௗ௬
ௗ௧

= 0. 

 

This results in a system of nonlinear algebraic equations to solve. If we let (ݔො,  ො) be theݕ

equilibrium solutions for the prey and predator populations respectively, then the 

system of algebraic equations that we need to solve is given by 

 

ߙ)ݔ − (ݕߚ = 0 

 

ߛ−)ݕ                                                            + (ݔߜ = 0 

 

When solved for x and y the above system of equations yields 
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ݕ} = ݔ , 0 = 0} 

 

and  

           

{ ݕ  = ఈ
ఉ

ݔ ,   = ఊ
ఋ
 }. 

 

Hence, there are two equilibria.The first solution effectively represents the extinction of 

both species. If both populations are at 0, then they will continue to be so indefinitely. 

The second solution represents a fixed point at which both populations sustain their 

current,  non-zero numbers,  and, in the simplified model,  do so indefinitely.  The levels 

of population at which this equilibrium is achieved depend on the chosen values of the 

parameters ߙ, ,ߚ  .ߜ and ߛ

 

 

2.1.3.2 Stability of the Fixed Points 

 

The stability of the fixed point at the origin can be determined by performing a 

linearization using partial derivatives, while the other fixed point requires a slightly 

more sophisticated method. 

The Jacobian matrix of the predator-prey model is 

 

,ݔ)ܬ (ݕ = 
డ
డ௫

డ
డ௬

డ
డ௫

డ
డ௬

 = ߙ − ݕߚ ݔߚ−
ݕߜ ߛ− +  .൨ݔߜ

First fixed point; 

When evaluated at the steady state of   (, ),   the Jacobian matrix J  becomes 

 

(0,0)ܬ = ߙ 0
0  .൨ߛ−

 

http://en.wikipedia.org/wiki/Linearization
http://en.wikipedia.org/wiki/Partial_derivative
http://en.wikipedia.org/wiki/Jacobian_matrix
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The eigenvalues of this matrix are ߣଵ = and  ߙ ଶߣ   =  are ߛ and  ߙ In the model . ߛ−

always  greater  than  zero,  and  as  such  the  sign  of  the  eigenvalues  above  will  always  

different. Hence the fixed point at the origin is a saddle point. 

The stability of this fixed point is of importance. If it were stable, non-zero populations 

might be attracted towards it, and as such the dynamics of the system might lead 

towards the extinction of both species for many cases of initial population levels. 

However, as the fixed point at the origin is a saddle point, and hence unstable, we find 

that the extinction of both species is difficult in the model. (In fact, this can only occur 

if the prey are artificially completely eradicated, causing the predators to die of 

starvation. If the predators are eradicated, the prey population grows without bound in 

this simple model). 

Second fixed point; 

  

Evaluating J at the second fixed point we get 

 

ܬ ൬
ߛ
ߜ ,

ߙ
൰ߚ =

⎣
⎢
⎢
⎡ 0 −

ߛߚ
ߜ

ߜߙ
ߚ 0 ⎦

⎥
⎥
⎤
 

 

which yields the two complex conjugate eigenvalues ߣଵ = and   ߛߙ√݅ ଶߣ   =  .ߛߙ√݅−

The real parts of these two eigenvalues are both equal to 0. The linear stability analysis 

is thus inconclusive. It turns out that the equilibrium is neutral stable and this system of 

equations exhibits neutral oscillations (Wiens, 2010). 

 

 

2.1.4 Nonlinear Systems of Differential Equations - Consumer-Resource   Models 

 

 Nonlinear, autonomous systems of ordinary differential equations are of the form 

 

ଵݔ݀

ݐ݀ = ଵ݂(ݔଵ, ,ଶݔ …  (ݔ

 

  ௗ௫మ
ௗ௧

= ଶ݂(ݔଵ, , ଶݔ … ,  (ݔ

http://en.wikipedia.org/wiki/Saddle_point
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⋮ 
ݔ݀

ݐ݀ = ݂(ݔଵ, ,ଶݔ … ,  (ݔ

 

where each of the functions ݂    (i=1,2,3,...,n) on the right-hand side are real-valued 

functions in n variables. Most of the time, we will restrict the analysis to sytems of two 

variables. We will focus on equilibria and stability. 

  

 

2.1.4.1 Equilibria and Stability 

 

Consider the system of two autonomous differential equations 

 

ݔ݀
ݐ݀ = ,ݔ)݂  (ݕ

                                                                                                                                       (18)                                                                                                                     

ݕ݀
ݐ݀ = ,ݔ)݃  (ݕ

 

The first step is to find the equations of the zero isoclines (for finding the equilibrium 

point), which are defined as the set of points that satisfy 

 

0 = ,ݔ)݂  (ݕ

 

0 = ,ݔ)݃  (ݕ

Each equation results in a curve in the x-y space. Point equilibria  occur where the two 

isoclines intersect (Figure 2.1). A point equilibrium (ݔො,  ො) of (18)  thereforeݕ

simultaneously satisfies the two  equations 

 

,ොݔ)݂ (ොݕ = 0   and    ݃(ݔො, (ොݕ = 0 

 

We will call the equilibria simply “equilibria”.  
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Figure 2.1: Zero isoclines correspondig to the two differential equations. Equilibria 

occur where  the isoclines intersect. 

 

The analytical approach to stability relies on analyzing the effects of small 

perturbations. We say that the equilirium (ݔො,   ො) is locally stable if the system returns toݕ

,ොݔ)  ො) after a small perturbation, and unstable otherwise. Mathematically, this can beݕ

analyzed through linearizing the right-hand side of each the two differential equations in 

(18)  about the equilibrium. 

The system (18)  can be written in matrix form 

 
݀
ݐ݀ (ݐ)ݔ

൨(ݐ)ݕ = ݂(ݔ, (ݕ
,ݔ)݃  ൨(ݕ

 

where the right-hand side is a vector-valued function that maps a point in ܀ (the two-

dimensional real plane) into a point in ܀. To linearize a vector-valued function, we 

need to linearize each component separately. Linearizing a function of two variables 

about a specific point means to find the tangent plane at this point (this, of course, is not 

always possible). The equation of a tangent plane of  f(x,y) about (ݔො,  ො) is given byݕ

 

,ݔ)ߙ (ݕ = ,ොݔ)݂ (ොݕ +
,ොݔ)݂߲ (ොݕ

ݔ߲
ݔ) − (ොݔ +

,ොݔ)݂߲  (ොݕ
ݕ߲

ݕ) −  (ොݕ

 

x 

y 

0),( =yxg

0),( =yxf

Equilibrium 
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We thus find for the linearization of the vector-valued function ݂(ݔ, (ݕ
,ݔ)݃  ൨(ݕ

 

ݔ)ߙ, (ݕ
,ݔ)ߚ ൨(ݕ = ݂(ݔ, (ݕ

,ݔ)݃ ൨(ݕ +

⎣
⎢
⎢
⎢
⎡ ,ොݔ)݂߲ (ොݕ

ݔ߲
,ොݔ)݂߲  (ොݕ

ݕ߲
,ොݔ)߲݃  (ොݕ

ݔ߲
,ොݔ)߲݃  (ොݕ

ݕ߲ ⎦
⎥
⎥
⎥
⎤

(ݔ − (ොݔ
ݕ) −  ො)൨ݕ

 

Now, considering ߞ = ݔ − ߟ  ො  andݔ = ݕ − ,ොݔ)݂ ො  the perturbations, then withݕ (ොݕ = 0   

and ݃(ݔො, (ොݕ = 0, we find  

 

                                             
ௗ
ௗ௧
ௗఎ
ௗ௧

 = 
డ(௫ො,௬ො)

డ௫
 డ(௫ො,௬ො)

డ௬
 డ(௫ො,௬ො)

డ௫
 డ(௫ො,௬ො)

డ௬

 ߞ
                                                                                         ൨                                                (19)ߟ

 

The matrix 

,ݔ)ܬ (ݕ =

⎣
⎢
⎢
⎢
⎡ ,ݔ)݂߲ (ݕ

ݔ߲
,ݔ)݂߲  (ݕ

ݕ߲
,ݔ)߲݃  (ݕ

ݔ߲
,ݔ)߲݃  (ݕ

ݕ߲ ⎦
⎥
⎥
⎥
⎤
 

 

is called the Jacobi matrix. 

The system (19)  is a linear system of two equations, and we can use the results from 

linear systems of two differential equations to determine the stability of the equilibria. 

Namely, 

 ∎ The equilibrium is a node if  both  eigenvalues  of  the  Jacobian  evaluated  at  the  

equilibrium are real, distinct, nonzero, and are of the same sign. The node is locally 

stable if the eigenvalues are negative, and unstable if the eigenvalues are positive. 

 ∎ The equilibrium is a saddle  if both eigenvalues of the Jacobian evaluated at the 

equilibrium are real and nonzero but have opposite signs. A saddle is unstable.  

 ∎ The  equilibrium is a spiral  if both eigenvalues of the Jacobian evaluated at the 

equilibrium are complex conjugates with nonzero real parts. The spiral is locally stable 

if the real parts of the eigenvalues are negative, and unstable if the real parts of the 

eigenvalues are positive. 
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2.1.4.2 Consumer-Resource Models 

 

 

Model 1: Lotka-Volterra Predator-Prey Model  

 

There are a large number of models that deal with consumer and resource interactions. 

The oldest such model is the Lotka-Volterra model, which describes the interaction 

betwen a predator and its prey. If  x denotes the abundance of the prey and y the 

abundance of the predator, then the model is given by the following set of differential 

equations: 

ݔ݀
ݐ݀ = ݔܾ −  ݕݔܿ

                                                                                                                                       (20)                                                                                                                         

ݕ݀
ݐ݀ = ݕݔܿ݁ −  ݕ݀

 

where the parameters  b, c, d  and  e on the right-hand side are positive constants. The 

parameter b is the prey birth rate, c  is the consumption rate, e is the conversion fraction 

of prey into new predators, and d is the predator death rate. The equilibria can be 

obtained algebraically by setting the right-hand sides equal to 0 and solving for x and  y. 

We find the trivial equilibrium (0,0) and a nontrivial equilibrium (ݔො, (ොݕ = ቀ ௗ


, 

ቁ.  The 

corresponding Jacobi matrix is given by 

 

,ݔ)ܬ (ݕ = ܾ − ݕܿ ݔܿ−
ݕܿ݁ ݔܿ݁ − ݀൨ 

  

If we evaluate this at the trivial equilibrium (0,0) we find  

(0,0)ܬ = ቂܾ 0
0 −݀ቃ 

 

Therefore, the two eigenvalues are ߣଵ = ܾ  and ߣଶ = −݀. Both eigenvalues are real. 

Since one eigenvalue is positive and the other is negative, we conclude that the trivial 

equilibrium is a saddle and thus unstable. 

If we evaluate the Jacobi matrix at the nontrivial equilibrium (ݔො, (ොݕ = ቀ ௗ


, 

ቁ, we find 
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ܬ ൬
݀
݁ܿ ,

ܾ
ܿ൰ = ൦

0 −ܿ
݀
݁ܿ

݁ܿ
ܾ
ܿ 0

൪ =  0 −
݀
݁

ܾ݁ 0
൩ 

 

To compute the eigenvalues, we solve 

 

ݐ݁݀ ܬ ൬
݀
݁ܿ ,

ܾ
ܿ൰ − І൨ߣ = ݐ݁݀ 0 − ߣ −

݀
݁

ܾ݁ 0 − ߣ
൩ 

                                                                        = (0 − 0)(ߣ − (ߣ − ܾ݁ ቀ− ௗ


ቁ 

                                                                         = ଶߣ + ܾ݀ = 0 

 

which yields the two complex conjugate eigenvalues ߣଵ = ݅√ܾ݀ and ߣଶ = −݅√ܾ݀. The 

real parts of these two eigenvalues are both equal to 0. The linear stability analysis is 

thus inconclusive. 

It turns out that the equilibrium is neutral and this system of equations exhibits neutral 

oscillations. 

 

 

Model 2: Density – Dependent Growth of the Prey 

 

It is possible to stabilize the predator-prey model by including density-dependent 

growth of the prey in the form of logistic growth. This takes the form 

 

 

            
ݔ݀
ݐ݀  = ݔܾ ቀ1 −

ݔ
ቁܭ −  ݕݔܿ

                                                                                                                                       (21) 

                                                                                                                                          

ݕ݀
ݐ݀ = ݕݔܿ݁ −  ݕ݀
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where all parameters are positive. In the absence of the predator, the prey dynamics 

reduce to logistic growth in (21). Namely,  if we set ݕ = 0 ,  then  

 

ݔ݀
ݐ݀ = ݔܾ ቀ1 −

ݔ
 ቁܭ

 

The system of equations (21)  has the nontrivial equilibrium (0,0), which is always 

unstable. In addition, it has the prey only equilibrium (ܭ, 0), which is locally stable 

provided  ܭ < ௗ


 . If  ܭ >  ௗ


 , an additional nontrivial equilibrium in the first quadrant 

appears, which is locally stable. If ܭ > ௗ


 , the prey only equilibrium is unstable. 

 

 

Model 3: Saturating Functional Response 

 

The functional response of a predator is defined as the per predator predation rate. In 

this case, the functional response is simply cx, a linear function of prey density. In 

nature, one often observes functional response curves that saturate with increasing prey 

density. This happens, for instance, if predators need to spend time handling prey. 

A common form for a saturating functional response is 

 

ݔ݀
ݐ݀ = ݔܾ ቀ1 −

ݔ
ቁܭ −

ݔܿ
ܽ + ݔ  ݕ

 

                                                                                                                                       (22)                                                                                                                

ݕ݀
ݐ݀ = ݁

ݔܿ
ܽ + ݔ ݕ −  ݕ݀

 

This model is known as Rosenzweig’s model. It has the trivial equilibrium (0,0) and the 

prey only equilibrium (ܭ, 0). If  0 < ௗ
ିௗ

<  there is an additional equilibrium in the ,ܭ

first quadrant, which may be  locally stable  or unstable. The interesting property of this 

model is that when increasing the carrying capacity  K, the equilibrium becomes 

unstable. This is known as Rosenzweig’s paradox of enrichment (Neuhauser). 
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2.2 Aggregated Model 

 

2.2.1 Use of Aggregation Method to Model a Prey-Predator System in a 

Heterogeneous Environment 

The model can be thought for prey-predator systems in a two patches environment. On a 

first patch, preys can grow but are vulnerable because of an easy attack by the predators 

hunting on that patch;on the second patch, preys are safe from predation(or mostly 

safe). Hence, preys can go on the second patch considered as a refuge, but migrate also 

on the first patch where food and water are available. 

 

 

 

 

 

 

 

 

Figure 2.2: Flowchart of the model of prey’s patch selection induced by predators. 

 

 

2.2.2 Information of the Complete Model 

Let us denote  ݊(ݐ)  as the density of the prey at time ݐ  on patch ݅  (݅ = 1,2) and ଵ(ݐ) 

the density of the predator at time ݐ on patch 1. Predators are present in patch 1 only, 

while preys can move and migrate from patch 1 to patch 2 and conversely.  Preys  are 

assumed to grow according to a logistic law on each patch characterised by a carrying 

capacity ‘ܭ’ and a growth rate ‘ݎ’ on patch ݅. We assume a Lotka-Volterra functional 

response for the predation relationship on patch 1, and we denote ‘ܽ’ the predation rate 

(/  predator/  prey/  time  unit).  We  call  ‘ܿ’  the  conversion  rate  of  prey  biomass  into  

predator biomass,  and ‘ߤ’ is the natural death rate of predators. The model also takes 

into account the migration of preys between the two patches, according to the rule 

shown in Figure 2.2.  Finally, we make the hypothesis that migrations go faster than 
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growth and predation processed on each pacth. Two time scales are thus involved in the 

model, a fast one for prey migration (each day for example) and a slow one for growth 

and predation. 

The complete model, composed of a set of three ordinary differential equations, is 

described as follows: 

 

݀݊ଵ

ݐ݀ = ൫݇݊ଶ − ത݇݊ଵ൯ + ߝ ݎଵ݊ଵ ൬1 −
݊ଵ

ଵܭ
൰ − ܽ݊ଵଵ൨ 

 

                                ௗమ
ௗ௧

= ൫ത݇ ݊ଵ − ݇݊ଶ൯ + ଶ݊ଶ(1ݎߝ − మ
మ

)                                          (23) 

 

                                   ௗభ
ௗ௧

= ଵߤ−)ߝ + ܿܽ݊ଵଵ) 

 

where  ߝ is a small parameter. The parameter ‘݇’ represents the prey migration rate from 

patch 2 to patch 1;  and the  another parameter  ‘ ത݇’  represents  the prey migration rate 

from patch 1 to patch 2. The analysis of the model showed that only two cases, might 

occur according to parameter values: 

       case 1: The predator population becomes extinct, while the prey population tends to 

a constant  density; 

       case 2: The prey and the predator populations coexist at constant densities. 

 In a further contribution (Chiorino et al.,1999), was considered the case of a prey 

migration rate, ത݇  from patch 1 to patch 2, which depends on the predator density on 

patch 1. Hence, it was assumed that ത݇ =  ଵ with α, a positive constant. Preys are thenߙ

supposed to leave patch 1 at a rate increasing with the number of predators on that 

patch. Such an assumption is equivalent to a repulsive effect exerted by predators on 

preys.  The  mathematical  analysis  of  the  aggregated  model  has  shown  that  the  two  

previous cases may also occur, but that a new situation can arise: 

      case 3: Extinction of the predator population and coexistence of preys and predators 

can occur at the same time. There is a separatrix in the phase portrait, and according to 

the  initial  conditions  on  both  sides  of  this  separatrix,  either  the  predator  goes  to  

extinction or both the prey and the predator coexist. 
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In the present work, we shall assume a reinforced repulsion effect of the predator on the 

prey, that is ത݇ = ଵߙ
ଶ. Instead of leaving pacth 1 with a rate simply proportional to the 

predator density as in Chiorino et  al.,  the rate is  now proportional to the square of the 

predator density. With this assumption, the complete model now  reads: 

  

                  ௗభ
ௗ௧

= (݇݊ଶ − ଵߙ
ଶ݊ଵ) + ߝ ቂݎଵ݊ଵ ቀ1 − భ

భ
ቁ − ܽ݊ଵଵቃ 

 

                                 ௗమ
ௗ௧

= ଵߙ )
ଶ݊ଵ − ݇݊ଶ) + ଶ݊ଶ(1ݎߝ − మ

మ
)                                  (24)                          

 

                                  ௗభ
ௗ௧

= ଵߤ−)ߝ + ܿܽ݊ଵଵ) 

 

 

2.2.3 The  Aggregated Model 

 

Let us define : 

 

ܰ = ݊ଵ + ݊ଶ   and    ܲ =  ଵ

 

be the aggregated variables, which is the total prey and predator densities and added on 

both patches. The first step of aggregation consists of looking for the fast equilibrium of 

the model that is for the prey migrations. This fast equilibrium is obtained when the two 

migration flows are equal   ݇݊ଶ = ത݇݊ଵ =  .ଶ݊ଵܲߙ

As migration is conservative (the total prey density ܰ is a constant of motion for 

migrations), one can substitute ܰ − ݊ଵ for ݊ଶ in the previous equation. After some 

algebra, we obtain the prey density at the fast equilibrium in terms of the total prey and 

predator densities: 

 

 

                                                                ݊ଵ
∗ = ே

ାఈమ                                                        (25) 
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                   ݊ଶ
∗ =

ଶܰܲߙ
݇ +  ଶܲߙ

 

where   ݊ଵ
∗ and ݊ଶ

∗  represent the fast equilibrium. 

At high density of predators, preys avoid patch 1 and concentrate on patch 2. It can be 

easily shown that this fast equilibrium is asymptotically stable, that is, a condition 

needed  in order to proceed to aggregation (Auger & Roussarie, 1994; Poggiale, 1994) 

holds. 

The aggregated system is obtained by adding the two prey equations and by substituting 

the previous fast equilibrium (25) in the prey and predator equations: 

 

݀ܰ
ݐ݀ =

ܰ
݇ + ଶܲߙ ݎଵ݇ ൬1 −

ܰ
ଵܭ

݇
݇ + ଶ൰ܲߙ + ଶܲߙଶݎ ൬1 −

ܰ
ଶܭ

݇
݇ + ଶ൰ܲߙ − ܽ݇ܲ൨ 

                                                                                                                                             

                                                                                                                                       (26) 

 

݀ܲ
ݐ݀ = ܲ(ܿܽ

݇
݇ + ଶܲߙ ܰ −  (ߤ

 

This aggregated system is an approximation of the complete system. It is valid when ε is 

small enough (typically 0.1 or less) and when the aggregated model is structurally 

stable. This model is very different from the local model on each patch, which assumes 

a logistic growth  of the prey, a constant mortality of the predator and a Lotka-Volterra 

functional response. It shows how the density-dependent fast migrations, at the 

individual level, emerge at the population level. 

 

 

2.2.4 Dynamics of the Aggregated Model  

 

In this section, we shall consider the phase portrait in the (ܲ, ܰ) plane. Equilibrium 

points of the aggregated model can be obtained by looking to the nullclines of the 

system. 

The ܰ-nullclines are given by the next two functions: 
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ܰ = 0                 and                      ܰ = భమ൫ାఈమ൯(మఈమିାభ)
భమఈమరିమభమ                            (27) 

 

 The ܲ-nullclines are given by the next two functions: 

   

ܲ = 0                    and                           ܰ = ఓఈ


ܲଶ + ఓ


                                            (28) 

 

The positive quadrant is positively invariant, and the equilibrium points are found at the 

intersections between the N-nullclines and P-nullclines. 

(0,0) and (0, ଵܭ ଵ)  are equilibrium points in the four cases, and ifܭ < ఓ


, situations of 

Figure 2.3  can occur, while those of  Figure 2.4   are  possible when ܭଵ > ఓ


. 

 

            
 

Figure 2.3: Nullclines and flow directions corresponding to model (26) in the case 

ࡷ < ࣆ
ࢉࢇ

  in the plane (ܲ, ܰ). (a) Two steady states; (b) Four steady states. 
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 Figure 2.4: Nullclines and flow directions corresponding to model (26)  in the case 

ࡷ   > ࣆ
ࢉࢇ

  in the plane (ܲ, ܰ). (a)Three steady states; (b) Five steady states.  

 

 

 

 
 

Figure 2.5: Phase portrait corresponding to the case of Figure 2.4b. 

 • When ࡷ < ࣆ
ࢉࢇ

 , two or four equilibrium points can exist in the phase portrait: 

     ° In the case of Fig.2.3a, (0,0) and (0,  ଵ) are the only equilibrium points. Asܭ

indicated by the flow directions on the nullclines, the origin (0,0) is unstable and the 

prey population tends to its carrying capacity of patch 1, while the predator is excluded. 

     ° In the case of Fig.2.3b, two more equilibrium points exist in the positive quadrant. 

As indicated by the flow directions on the nullclines,  (0,0) is unstable and  (0,        (ଵܭ
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is stable. Among the two other equilibrium points, the one at high density is stable and 

the one at low density is a saddle point. Thus, there is a separatrix and according to the 

initial  condition,  either  the  predator  population  goes  to  extinction  or  the  prey  and  

predator population coexist. 

• When ࡷ > ࣆ
ࢉࢇ

  ,  three or five equilibrium points can exist in the phase portrait and 

(0,0) and  (0,  :ଵ) are always unstable(saddle points). Two types of situation can occurܭ

 ° In the case of Fig.2.4a, there is only one stable equilibrium point in the positive 

quadrant, which corresponds to preys and predators coexisting at constant densities.  

° In the case of Fig.2.4b, there are three equilibrium points in the positive quadrant, two 

stable ones and a saddle point between them. According to the initial densities and with 

respect to the separatrix shown on Fig. 2.5, the prey and the predator coexist either at 

low densities or at high densities. 

 The dynamics is very interesting on a biological point of view: 

  • If the system is initially at the high-density equilibrium, capture of prey can push the 

population state through the separatrix and then to the low-density equilibrium. 

  • If the system is initially at the low-density equilibrium, a flow of migrants, coming 

from outside, can again push the population state through the separatrix and switch to 

the high- density  equilibrium.  

This situation of switching between two stable equilibrium points has interesting 

consequences in terms of management of the populations (Auger et al, 1999). 
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CHAPTER 3 

 

 

MAY’S MODEL 

 

 

This section model looks at a predator-prey model  where two species are involved. 

May has shown that balancing a stabilising effect (limited prey population) against a 

destabilising effect (such as  limited predator appetite) can lead to an unstable 

equilibrium point surrounded by a stable limit cycle. We discuss that a similar situation 

can be brought about when the destabilising effect is a time delay. 

 

 

3.1 Analytical Results 

 

The model proposed by May has limited prey population and limited predator appetite.   

 

݀ ଵܰ

ݐ݀ = ଵߝ ଵܰ ൜1 − ଵܰ

݇
ൠ −

ܣ ଵܰ ଶܰ

( ଵܰ +  (ܤ

                                                                                                                                     (29)                                                                                  

                                                                                                                                          

݀ ଶܰ

ݐ݀ = ଶߝ ଶܰ ൜1 − ଶܰ

ܥ ଵܰ
ൠ 

 

In the appendix of May’s book, he showed that the equilibrium point can be both stable 

and unstable. 

The secular equation corresponding to (29) has the form 

 

ଶߣ                                     − ଵଵܣ) + ߣ(ଶଶܣ + ଶଶܣଵଵܣ) − (ଶଵܣଵଶܣ = 0                            (30)                                                        

 

where, as described in detail in May’s reference. 

 

ଵଶܣ    < 0, ଶଵܣ > 0, ଶଶܣ < 0 



 

27 
 

 and 

ଶଶܣଵଵܣ − ଶଵܣଵଶܣ > 0 

  

So the equilibrium point is stable if and only if  

                                

ଵଵܣ                                                  + ଶଶܣ < 0 

 

With exponential time delay the second equation of (29)  is replaced by      

          
݀ ଶܰ

ݐ݀ = ଶߝ ଶܰ ൜1 − ଶܰ
ଷܰ

ܥ
ൠ 

                                                                                                                             

                                                                                                                                       (31) 

݀ ଷܰ

ݐ݀ = ܽ ൜
1

ଵܰ
− ଷܰൠ 

 

From (31) one finds the secular equation. 

 

ଷߣ  − ଵଵܣ)ଶߣ + ଶଶܣ − ܽ) + ଶଶܣଵଵܣ൫ߣ − ଵଵܣ)ܽ + ଶଶ)൯ܣ + ଶଶܣଵଵܣ)ܽ − (ଶଵܣଵଶܣ = 0    

                                                                                                                                       (32)   

As ܽ → ∞, (32) goes over to (30). As ܽ → 0 ,  (32) goes over to (33) 

 

ଶߣ                          − ଵଵܣ)ߣ + (ଶଶܣ + ଶଶܣଵଵܣ = 0                                                          (33)         

 

This implies stability if  

ଵଵܣ + ଶଶܣ < 0 

  

and 

ଵଵܣ           + ଶଶܣ > 0 

 

which in this model requires ܣଵଵ < 0.  

The Routh-Hurwitz conditions applied to (32) yields a quadratic equation in ‘ܽ’, at the 

roots of which changes of stability occur. The following cases occur. 
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1. Unstable at ܽ = ∞ implies unstable at ܽ = 0. There are no real roots of the quadratic , 

so this case is unstable for all values of ‘ܽ’. 

2. Stable at ܽ = ∞ ,  with ଵଵܣ  > 0 implies unstable at ܽ = 0. There  is  one  real  root.  

Hence, time delay induces instability. 

3. Stable at ܽ = ∞ with ܣଵଵ < 0 implies stable at ܽ = 0. If |ܣଵଵ| is small enough there 

are two real roots. So that as ‘ܽ’ decreases instability appears and then vanishes. For 

larger (negative) ܣଵଵ there are no real roots and the equilibrium point is stable for any 

value of ‘ܽ’. 

We may summarize as follows: 

ଵଵܣ              >  ࢁ                                                       |ଶଶܣ|

          0 < ଵଵܣ < ࡿ                                             |ଶଶܣ| →  ࢁ

ଵଵܣ              < ࡿ                                                     0 → ࢁ →  ࡿ

      ࡿ                                                                                      

The possibility of two transitions is not merely a consequence of using the exponential 

delay. Even more complicated sequences occur with a peaked decay function (Hınçal, 

1997). 
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CHAPTER 4 

 

 

CONCLUSIONS 

 

 

Lotka-Volterra Predator-Prey Model is a rudimentary model of the complex ecology of 

this world. It assumes just one prey for the predator, and vice versa. It also assumes no 

outside influences like disease, changing conditions,pollution and so on. However, the 

model can be expanded to include other variables, and we have Lotka-Volterra 

Competition Model, which models two competing species and the resources that they 

need to survive. 

We can polish the equations by adding more variables and get a better picture of the 

ecology. But with more variables, the model becomes more complex and would require 

more brains or computer resources. 

This model is an excellent tool to teach the principles involved in ecology, and to show 

some  rather  counter-initiative  results.  It  also  shows  a  special  relationship  between  

biology and mathematics. 

 

 The aggregation method is a convenient tool to study complex systems composed of a 

larger number of elements and presenting a hierarchical structure. This method was 

applied to prey-predator models in a heterogeneous environment. In particular, the 

effect of density-dependent migration decisions of preys and predators on the structure 

of the global prey-predator model was studied. The method was also used to study the 

effects of different individual tactics hawk, and dove at the fast time scale, on the global 

growth of a cat population. And it is possible to implement aggregation methods in 

order to simplify community graphs. Finally, the method was developed in the case of 

discrete models. 

Future developments are necessary to incorporate individual behaviour into population 

dynamics  as  well  as  the  structure  of  the  community.  This  could  be  carried  out  by  

considering three time scales or more. Stochastic processes should also be added in the 

models. Recent developments have been carried out along this line in stochastic discrete 

time models. 
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The May model the essential question is whether reasonable values of ‘a’ lead to a limit 

cycle of reasonable dimensions. In our exact calculations this is the case. The  effect of 

time delay is to increase the amplitude of the population oscillation. Where these exist 

in the instantaneous version, when the instantaneous version has stable equilibrium, 

time delay can lead to oscillations either for all ‘a’ less than some critical ‘a’ or for ‘a’ 

between critical values ܽଵ   and ܽଶ. 
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