
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

Specialized School Information System

Graduation Project

COM-400

Student: Pelin BEZGİNSOY(200t0486)

\ Supervisor: Asst. Prof. Dr. Firudin Muradov

Nicosia - 2006

ACKNOWLEDGEMENTS

First of all, I wish to thank my supervisor, Assist.Prof.Dr. Firudin Muradov, for intellectual

support, encouragement, and enthusiasm, which made this project possible, and his

patience for correcting both my stylistic and scientific errors.

I would like to thank my family who gave their lasting encouragement in my studies and

enduring these all expenses and supporting me in all events, so that I could be successful in

my life time. I specially thank to my mother and my father who help me in joining this

prestigious university and helped me to make my future brighter.

All people who have contributed in the preparation of my project to complete it

successfully.

I would like to thank my sister Elif Bengi Bezginsoy, who supported and helped me all the

time.

I am also very much grateful to all my friends who gave their precious time to help me and

all valuable information which I really need to complete my project.

I

TABLE OF CONTENTS

ACKNOWLEDGEMENT

TABLE OF CONTENTS

ABSTRACT

INTRODUCTION

1. .BASIC CONCEPT OF DELPHI

1.1 What is DELPHI?

1.2 Starting to Delphi Programing

1.2.1 The Form

1.2.2 The Code Editor

1.2.3 The Speedbar

1.2.4 The Component Palette

1.2.5 The Object Inspector

1.2.6 Events

1.2.7 Exit Program

1.2.8 Boxes

1.2.9 Inputting Data

1.2.1O Additional Component Palette

1.2.11 System Palette

1.3 Standart VO Component

1.3 .1 Panel Component

1.3 .2 Group Box Component

1.3.3 Check Boxes

1.3.4 Group boxes, Radio buttons and Radio Group Boxes

1.3.5 Spin Dials

1.3.6 Tab Order

1.3.7 Dialog Boxes

1.3.7.1 ShowMesage Procedure

1.3.7.2 The MessageDlg Function

1.4 Input Forms

1.4.1 Input Box

1.4.2 CustomBoxes

I

II

V

1

2

2

3

3

4

5

5

6

7

7

8

8

10

13

14

14

14

15

15

16

17

17

17

17

18

18

19

II

1.4.3 Main Menu 19
/ ıi-c 1.5 Forms 20

1.5.1 Form Templates 20

1 .5.2 Multiple Documents 20

1 .5.3 Form Style Property 21

1 .5.4 Project Manager 21

1 .5.5 Units 21

1.5.6 Declarations 22

1.5.7 Comments 23

1.6 Loops 23

1.6.1 IL.Then 23

1.6.2 If...Then ... Else 24

1.6.3 The Case Statement 24

1.6.4 For ...To ... Do ... Statement 25

1.6.5 While ... Do ... Statement 26

1.6.6 Repeat...Until 26

1. 7 Procedures and Functions 27

1. 7 .1 Parameter Passing 27

1.7.2 Functions 28

1.7.3 Recursions 29

1.7.4 Variable Declarations 30

1 . 8 Debugging 30

1. 8 .1 Program Errors 30

1.8.2 Using The Debugger 30

1.8.3 Running The Program To A Breakpoint 31

1 .8.4 Setting Breakpoints 31

1 .8.5 Breajpoints Options 32

1.8.5.1 Viewing Breakpoints 32

1 .8.5.2 Conditional Breakpoints 32

1.9 File I/O 33

1.9.1 File Attributes 34

1 .9.2 File Operation 34

1.9.3 Typed Files 35

III

1.9.3 .1 Typed File Commands

1.9.4 Untyped Files

1.9.5 File Handling Components

2 .. DATABASE CONCEPT OF DELPHI 7

2.1 About Dbase And Paradox

2.1.1 dBASE IV Table Specification

2. 1 .2 dBase V Table Specifications

2. 1 .3 dBASE Field Types

2.2 Paradox Standard Table Specifications

2.2. 1 Paradox 5 Table Specifications

2.2.2 Paradox 7 and Above Table Specifications

2.2.2.1 Paradox Field Types

3 .. DATABASE DESIGN OF THE PROGRAM

3.1 Database Design of The Program

CONCLUSION

REFERENCES

APPENDIX A: Program Codes

APPENDIX B: Database Tables

35

35

36

38

38

38

38

39

40

42

42

43

46

46

66

67

68

88

IV

ı

ABSTRACT

Data, gathered around us as a collection of facts, is of no use unless it is organized and

represented in some meaningful form. Data represented in some meaningful form like,

tables, charts, or graphs become information, which can be easily processed.

The collection of data, usually refereed to as the database, contains information about one

particular enterprise. These days' databases are used by a variety of users and

organizations, which are important tools in processing DBMS, which are designed to

manage large amount of data.

This project has as its goal to develop software, processing information about activities of

a specialized schoool information system. Software developed in this project contains

both student and teacher information. The ideas of the project can be improved by adding

items for processing all activities of the specialized schoool information system.

f

V

L
INTRODUCTION

Nowadays the technology is developed a lot and started to use by anyone in the world

no matter who is he/she. Because of the technology is available at every platform of our

life human needs to combine both software and hardware. Without human direction,

hardware is a useless amalgam of metal and plastic. The computer science both

hardware and software is being developed over the previous years , programming is

always providing the science by a systematic development.

A DBMS is a computerized record-keeping system that stores, maintains and provides

access to information. A database system involves four major components data,

hardware, software, users. The objective of this project was to design software for a

specialized school information system, which include teacher and student information,

so fully qualified software has been made.The Software is fully capable to reach any

information about teacher and student with student or teacher name.

The project consists of introduction, three chapters, conclusion and references.

Chapter one describes the general information about deplhi programming that how to

use components, forms, procedures and functions, debugging to solve errors of

program.

Chapter two describes database concept of delphi 7 which contains dBase and paradox

table specifications and fields types.

Chapter three defines database design of the program, fields of tables ,relationships

f I between tables and some forms of programs with their explanations that how to use

forms.

1

1 CHAPTERl

1. BASIC CONCEPT OF DELPHI

1.1 What is DELPID ?

Borland Delphi 2006 is the latest Integrated Development Environment product release

from Borland Software Corporation. This is now the tenth version of Delphi, Borland' s

flag ship Rapid Application Development (RAD) environment, and this paper provides

an introductory look at what makes this release compelling.

What has always set Borland apart from other vendors has been its pragmatic approach

to providing developer tools that are right for the challenges that commercial developers

face today, while leading them into the emerging technologies of tomorrow with the

confidence that their development investments remain relevant, adaptable and

extendable in the future.

Delphi 2006 continues the tradition and has extended capabilities in significant areas

with considerable implications for software developers at every level. This document

focuses on the Delphi capabilities within this release and is not intended to cover what's

new for the CIC++ language specific capabilities.

2

1 1.2 Starting to Delphi Programing

Delphi is a programming language that easily lets you write Windows based

programs.The Integrated Development Environment IDE for Delphi enables you to

create, run and debug your program from a universal 'front-end' (user interface).The

screen that greets the programmer is similar to the following:

Speedbar Component palette

Foım
Obje.ct:
Inspectôr

Figure 1.1 Delphi screen

It has the usual Windows File, Edit, View menu controls, and consists of five parts

(clockwise from top left): The Speedbar, Component Palette(s), Form, Code Editor

(behind the form) and the Object Inspector.

1.2.1 The Form

This is the most important part of the development and final application. In

development, it is where the 'components' such as display boxes and buttons are

placed, and in the application it is what the user finally sees.

3

t

Figure 1.2 Form

The grid points are to help the user place components on the form, and do not appear at

runtime.

1.2.2 The Code Editor

use•
sysUtils, Ti1nTypes, 'iin.Procs, Mesıuı.ges, Clmu,e
Forms,.' Dia.logs;,

\D4!'
Tfo.ı::m1 • Cl.aH,(Tfo.ı::m)
privat,r

f .P.ı;.inte decJ:ua.t..ioM >
puıiıip,

Figure 1.3 Code Editor

Behind the form is the code editor. This can be brought to the front by clicking it, or it

will automatically appear. When an item placed on the form is 'double-clicked', thus

enabling the code to be written for that component. You will notice that some code is

already inserted for you, but you will still have to write the important parts!

4

ı
1.2.3 The Speedbar

The Speedbar contains a shortcut way of using some of Delphi's more commonly used

features.

The default speedbar contains three groups for

• Project Management

• File and Unit management

• Debugging

It can be configured to include any of the items in the menu.

Figure 1.4 Speedbar

1.2.4 The Component Palette

The Component Palette(s) contain all the expected features of the user interface, in

particular buttons, text boxes, list boxes, etc. In order to place a component on the

form, simply click on the component palette, then click on the form.

Figure 1.5 Component Palette

5

ı As you write Delphi applications, you will notice the layout as use of the components in

other applications. Clicking the tabs (e.g. 'Additional', 'Data Access' etc.) will bring up

further components.

1.2.5 The Object Inspector

This provides information about the 'objects' on the form and the 'events' that can

happen to an object (hence the two pictures below).

Figure 1.6 Object inspector

For instance an object such as a 'Label' will have a position on the form, a certain

height and width, a particularfont and size, a background colour, borders etc - these are

known as its properties.

Events happen to an object such as it being clicked or double-clicked, or when the

mouse moves over it etc.

The Object Inspector here shows information about the Form itself, i.e. it has the default

caption 'Forml' and anevent 'OnActivate' will run some code when the form is

activated

6

Clicking on an object on the form will bring up the relevant information on the object

inspector.

Help on properties can be obtained by clicking the property and pressing the Fl

function key.

For the Help function to work, you must copy the delphi.hdx file to their directory

1.2.6 Events

Delphi is an example of an Event driven program. The program responds to the user or

events that happen, rather than just proceeding through a sequence of instructions as

programs you have written in the past. However this can make programs difficult to

debug.

some examples

• OnClick

• OnKeyDown

• OnKeyPress

• OnEnter

• OnExit

• OnMouseDown

• OnMouseU

• OnMouseMove

1.2.7 Exit program

Create a button labelled 'Close' and add the code :

Close; orApplication.Terminate;

7

1.2.8 Boxes

Edit Box - one line of text can be displayed or entered.

Memo Box -display or enter manylines of text.

List Box -Scrollable list of items that can be selected, but not altered by the user

More Edit Box Properties:

• Name Default (Editl)

• Text

• BorderStyle

• Color

Position:

• Height

• Width

• Top

• Bottom

• Hint

• ShowHint

A List Box doesn't have a 'text' property - as it has a number of lines, it has 'Items (O,

1, 2etc.)'

Text is added using ListBoxl.Items.add(FloatToStr (Result));

1.2.9 Inputting data

All data in boxes is (are) treated as a string.To convert data to numbers, then conversion

routines must be used.

The basic ones are:
StrTolnt and StrToFloat , which convert the string to an integer or floating point

number andFloatToStr and IntToStr, which do the opposite.

8

components on the standard palette

Main Menu - this is used to design a main menu (e.g. File Edit View .. Help) for

application.

Pop-up Menu - similar to Main Menus, but do not have a menu bar - they appear

when the right mouse button is clicked.

: Al Label - used to display text that the user cannot change (but can be changed by the

program).

:~JEdit box - used to enter or display a single line of text.

[iJJ Memo - used to display or edit many lines of text.

~Button - used to initiate an action, they can only have one line of text. Main events

are OnClick and OnDbleClick, and the text on the button is held in the Caption

property.

: ll!Dcheck button - used to select items (true or false - true if checked). The checked

property indicates if checked or not, and it can be made unavailable to the user with the

enabled property

I ..flRadio button -similar to the Check button, but usually grouped in a radio group,

scroll or panel box, where only one item in that group is selected (e.g. AM/FM/SW

radio buttons)

9

List box - used to display a list from which the user can select (but not modify).

The list can be modified by the program only, and will automatically scroll if the box is

not large enough.

Combo box - similar to a list box, but allows the user to select from a list or type in

their own text. The Items property contains the text in a string list

:31lscroll - used to control the screen display (for example if text is too big for the

screen), or used to select values from a range. (In this case max and min values are

defined properties)

Group - Used to group items, so that they are treated together as a single group.

Radio Group - provides an easy way of creating a set of radio buttons, in one

action, rather than creating the buttons, and then grouping using Group.

Panel - Used to combine previous components onto their own area, e.g.. used for

creating tool bars or palettes. The panel appearance can be changed with bevel and

border properties.

1.2.1 O Additional Component Palette

The Additional component palette looks like:

Figure 1. 7 Additional component palette

10

The components of the Additional palette perform the following functions:

The BitBtn component acts like an ordinary button but has an icon, also called a

glyph, on the button face. The Kind property provides some common glyphs, or a

custom one may be defined. There is a Caption property and if this is blank, then the

glyph only will be displayed.

The SpeedButton are button components without captions, and used to create tool

bars are tool palettes. Speed buttons can have up to four images associated with them

depending on the state of the button: Up: unselected; Down: Selected; Disabled: the

button is not available and the image is greyed out; StayDown: the button is

permanently selected.

lol} The TabSet component presents horizontal tabs users can click to initiate actions,

like the palette set themselves. Tab set controls are commonly used with TNotebook

controls to display pages within the same dialog box.

The Notebook component is a component that can display multiple pages, each

with its own set of controls. Notebook components are frequently used with tab set

ontrols to let the user select pages in the notebook by clicking a tab.

ISJJThe TabbedNotebook component contains multiple pages, each with its own set

of controls. The user selects a page by clicking the page's tab.

l:!JllThe MaskEdit component is used to format data entry and check for proper data

input. The EditMask

property defines common inputs such as: telephone numbers '(415)555-1212', dates

06/27/94' and time '09:05:15PM' . Custom input formats and number ranges can be

defined.

11

l'®J The Outline component is used to display multilevel outlines of data ın a

hierarchical tree.

lfifl
~ The StringGrid component is a subset of the DrawGrid component and provides

a table for displaying string information

I~ The DrawGrid component displays text or graphic information in a cell. . The

ell selected is found in the Selection property; cells can be filled at run-time using the

OnDraw Cell event and the MouseToCell event determines which cell the mouse is

:urrentlyover.

11 iJThe Image component displays a graphical image on a form. The image can

contain an icon, metafile, or bitmap graphic. The stretch property will resize the image

o fit the component, and the Autosize property resizes the image control to fit the

ımage.

~The Shape component is used to draw simple shapes on the form.

he Bevel component puts beveled lines, shapes and boxes on the form by using

its Shape property. The Style property determines if the bevel is raised or lowered.

The Header component is a sectioned visual control that displays text and allows

each section to be resized with the mouse.

The ScrollBox component is used to contain a larger area which can be scrolled

horizontally or vertically.

12

1.2.11 System Palette

More sophisticated Delphi programs use a dialog box to select and open the desired

files. This is easily done in Delphi using components from the System Palette.

Figure 1.8 System pelette

From left to right the components are:

Timer. This component causes an OnTimer event after a specific period of time

depending on the Interval property.

Paint Box. This provides its own 'canvas' to paint on, rather than painting on the form.

FileListBox. This provides a list box which displays files in the currently selected

directory.

DirectoryListBox. This provides a list box which displays directories in the currently

selected drive.

DriveComboBox. Provides a list box that shows the current drive.

FilterComboBox. Provides a list of filters (e.g. *.doc) which can be selected to limit the

display of files.

MediaPlayer. This can be used to control devices which have a Media Control Interface

(MCI)

OLE. The Object Link and Exchange component provides the ability to link and embed

objects.

13

1.3 Standard 1/0 Components.

• Panel Component.

• Group Box Component.

• Radio Buttons.

• Check Boxes.

• Spin dials.

• An extension, Gauges.

1.3.1. Panel Component

The Panel component is used to contain components or other containers such as Group

boxes. The appearance of the panel component can be changed by altering the Bevel

inner, outer and width parameters, and Border Style and Width items.

The Panel Component is :

1.3.2 Group Box Component

Delphi components can be grouped together on the form to make the user interface

more obvious and easy to use. The Group Box border cannot be altered like the Panel

Component, but has a Caption.

The Group Box Component is :

14

1.3.3. Check Boxes
\

Check boxes are used to select items, e.g. items from a list:

does your computer have a) a hard disk, b) a CD ROM, c) a sound card, d) TV card etc

The Check Box icon is:

Check Boxes can be checked, unchecked or disabled and 'greyed' out by changing their

properties:

Figure 1.9 Check boxes

1.3.4 Group boxes, Radio buttons and Radio Group Boxes

Group boxes can be used to group items together, but as radio buttons are often grouped

together, a Radio Group Box is a special component designed for this purpose. Radio

buttons in Delphi, are just like those on your radio. Only one of a group can be selected,

and pushing one, makes the others 'pop up', or be deselected. They are used for
st nd rd

selecting only one item of a group e.g. male/female, 1 year/2 year/ 3 year, Age

groups, Country of origin etc.
\

An application may have more than one group of radio buttons however, so they can be

grouped using a Radio Group Box'.

The radio button ıcon ıs: and the radio group box ıcon ıs:

15

'Items' property from theObject inspector, and click the box with the dots in it :
L

ı Object Inspector 1!1111 £1
~"·••.·~• ,..,-,m mm•m.e,mA.,·.·.·.·.·.·,d.-,, •.. ,a;,'m,m,,~sw,,..,,w.,-·.·,C·;,"=;,,,V.,sW,..,,-,_,,_,,._.~O '-~---.·.·C·C· .. "~-'.-S,,. m,,~', ,,,,.)'S'·''

Figure 1.10 Items

This displays a dialog box where you simply type the names of the boxes.

Type in the names :FM, AM, LW, SW, on individual lines.Change a few of the Radio

group box properties, in particular the align and see what happens to the radiobuttons.

Captions are placed to the right of the buttons. With individual radio buttons, captions

can be on theleft or right of the buttons.

1.3.5 Spin Dials

A frequency has to be chosen for the radio station. This could be done using an Edit

Box, but sometimes it ismore useful to use 'Up' and 'Down' arrows to select from a

range. Spin Edit boxes are used to do this.

The spin edit boxes have some useful properties including minimum and maximum

values. For example, the FMrange can be limited between 88 and 108 MHz.

The Spin edit box is found in the SAMPLE component Tab.The SAMPLE component

tab consists of: gauges, colour grid, spin button, spin edit, directory outline and calendar

Figure 1.11 Spin dials

and Spinedit box is fouth item and looks like:

16

1.}6 Tab Order

The tab order tells the program how to move between the boxes when the tab key is

pressed when the program is running, (If Tab stop is TRUE).

1.3. 7 Dialog Boxes

These are not components, but appear when the program runs. Dialog boxes are used to

display information and messages, and accept limited input. You can use standard

dialog boxes or create your own.

1.3.7.1 ShowMessage Procedure

The simplest way to display a message is to use the ShowMessage procedure

ShowMessage('This message is displayed with an OK button');

1.3. 7 .2 The Message Dig Function

If you want to accept input from a selection of buttons (e.g. Yes, No, Cancel), the

MessageDlg Function is used. The MessageDlg function returns a value indicating

which button has been clicked. An example Warning Message Dialog box is shown:

Figure 1.12 Warning Message Dialog Box

17

1.4 Input Forms

1
Dialog boxes can also be used to prompt for input, using the two function InputBox and

putQuery.

The InputBox displays and edit box prompting for input, along with OK and Cancel

uttons. It returns the valuein the box if the OK button is pressed, or the default string,

if cancel button or escape key pressed.The function is called with : InputBox

A.Caption,, APrompt, ADefault: string) :string;

The function returns a string and the parameters (strings) passed to the function are:

Table 1 function Parameters

Parameter Description Example

ACaption the caption of the box 'Input Box Title'

APrompt the prompt at the side of 'Enter text here'

the box

ADefault the initial text in the box 'Default text'

1.4.1 InputBox

('Input Box Title', 'Prompt', 'Default string');

Figure 1.13 Input box

18

1.4.2 Custom Boxes

1
The dialog boxes provided by Delphi cover a wide range of requirements, but

programmers may like to create their own boxes. This is accomplished through the use

of forms.

1.4.3 Main Menu

Delphi provides Dialog boxes to Open, Save and Print files. These can be displayed

using a button, or more professionally by a Main Menu. Place a Main Menu on a form,

click it to start a menu list, then right-click the list. The following appears:

Figure 1.14 View Main Menu

Selecting 'Insert from Template' displays a number of common templates, including

File and Edit. Selecting the File template adds the following File Menu.

\

Figure 1.15 Insert from Template

19

1.5 Forms
l

Most application will use more than one form. There are several different types of

forms, and some default forms are provided by Delphi. Forms can be added to

applications by using File I New form or File I New I New Items I Forms (Delphi 2.0 +)

1.5.1 Form Templates

Some of the available forms are:

Standard dialog box - with OK and Cancel buttons, or its alternative with the buttons on

the right.

About Box - dialog box with help

Password - dialog box with a password edit box

Tabbed Notebook - a form with Tabs, like the Object Inspector or Project I Options

Figure 1.14 Example of forms .

1.5.2 Multiple Documents

In some applications you want forms or windows to be opened within other forms,

rather than in their own right.

20

"'This is known as multi document interface, or MDI. In this case the forms are opened as

'child' forms of the 'parent' form. There can only be one parent form, but as many child

forms as required. Single document interface, or SDI, forms have only a single parent

window.

1.5.3 Form Style Property

The FormStyle property has four possible values:

fsNormal - The form is a Single Document interface (SDI)

fsMDIform - The form is an MDI parent form

fsMDIChild - The form is an MDI child form

fsStayOnTop - The form id SDI and stays on top of other forms

1.5.4 Project Manager

You may have found that if you inadvertently create a form that you no longer require,

you cannot delete it. The Project Manager lets you do this. It displays the forms and

unit files associated with your project which are listed in the uses clause of your .DPR

file. It also lets you navigate between files..

You can access the Project Manager by choosing Viewll'roject Manager. The Project

Manager can be opened when you open any project by setting the desktop settings.

If you have a lot of files, possibly in different projects, use the Project Manager. It will

show you the location of each file in the project. This will help you when you create

backups that include all files in the project.

1.5.5 Units

You will have noticed by now that you save your project as a unit, and the Delphi

program uses other code which in fact are also units such as

21

SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls, Forms

Units enable the programmers to write and compile their code and save them as an

individual, stand-alone library items. The unit can be distributed and because it is

compiled, other users are unable to see the code.

1.5.6 Declarations

All variables and constant names used and their type have to be declared. This is done at

the beginningof the code, before the procedure declaration.Constants are declared using

the word const, and variables are declared using the word var.

Variables have the following basic data types:

Table2 Variable data types

Data type Number of bytes used Description

Byte 1 O to 255 unsigned integers

Word 2 O to 65535 unsigned integer

Shortlnt 1 -128 to+ 127

Integer 2 -32768 to +32767

Longint 4 -2147483648 to +2147483647

Single 4 floating point numbers

Double 8

Extended 10

Real 6 for compatibility - do not use

Boolean 1 TRUE or FALSE

Char \. 1 letters of the alphabet: 'A' or'*'

String O to 255

Pointer 2

PChar 2 pointer to a character

Variant -

22

1.5. 7 Comments

{this is a comment- it is contained within curly brackets}

1.6 Loops

1.6.1 If .. Then

The simplest decision making construct is the if .. then command.

It takes the form of:

If <condition> then <statement>;

The <condition> is a logical comparison which produces a true or false (boolean)

answer. The logical comparisons take the following forms:

For example:

If salary> 1000000 then Editl.text := 'I"m a millionaire'; {notethe use of quotes}

Table 3 Example of operator

Operator English Example

ıs equal to is not (2+2) = 4

equal to is less than (1+2) <> 4

is less than or equal X<2Y

to is greater than is <= 3 X >

= <> < greater than or equal y (X+Y)

<=>>= to >=Z

23

These are also known as relational operators. Note that the colon-equals sign(:=) is for

assignment in expressions, and equals sign alone (=) is used for comparison. The

<condition> test does not have to be simple.

1.6.2 If .. Then .. Else

A more useful version is the if .. then .. else , which takes the form of:

If <condition> then <statementI> else <statement2>

If expenditure> income then Editl.text := 'Miserable' else Editl.text := 'Happy';

If .. then statements can be nested (i.e. included within other if .. then statements) and so

can else statements, but this can lead to very confusing programs.

1.6.3. The Case Statement

There will come a time when there will be multiple if.. then statements, e.g.

If (age= 12) then editl.text := 'you are nearly a teenager';

If (age= 13) then editl.text := 'you are a teenager';

If (age= 18) then editl.text := 'you can vote';

The case statement makes programming this easier. The format is

Case <variable> of list else <statement> The above code would become:

Case age of

12: editl.text := 'you are nearly a teenager';

13: editl.text := 'you are a teenager';

18: editl.text := 'you can vote';

else

editl.text := 'You are not 12,13 or 18';

end;

24

The case variable can only be of type an integer, char or an enumerated type. An

enumerated type lists all the possible values that a variable of that type can have, e.g. a

type 'day' could be defined (consisting of Sunday to Saturday).

1.6.4 For .. To .. Do Statement

It is a common requirement in programming to perform some instructions a set number

of times, i.e. to loop. Delphi provides a for .. to .. do loop construct'for this, it takes the

form of:

For <variable> := <start value> to <final value> do statement

An example will make this clearer.

Suppose the sum of the first 1 O numbers needs to be found, the loop can be used to

simply do it.

For count := 1 to 1 O do

Points to note

• The loop variable can only be an integer.

• The loop variable does not have to be initialized before entering the loop, the

compiler will do that for you.

• The loop variable does not need to start with '1' , it can start with any integer

number.

• The loop variable is automatically incremented. There is no need for a line that

says : count := count + 1.

• DO NOT alter the loop variable within the loop. This is a common error.

• The terminal count does not have to be a number, it can be a variable, say N, as

long as it is defined before entering the loop!

• The loop variable may be decremented by one if downto is used instead of to in

the for loop.

25

1.6.5 While .. Do .. Statement

When the loop variable has to be changed by an amount other than one, or a test occurs

within the loop, it is better to use the while .. do or repeat .. until statements.

As seen the for .. to .. do loop will execute a loop a set number of times. However, there

are cases when the number of times around the loop is unknown, and another method of

looping is needed. The While .. do loop can be used for this.

The format of the While .. do is: While <condition> do <statement>

While the condition is true, the statement (or statements within begin .. end) is executed.

An example will make this clearer.

while month= December do SingCarols;

1.6.6 Repeat .. Until

The final looping command is the repeat .. until.

The format of the command is: Repeat <statement> until <expression>

This is similar to the while do loop, except that the test is performed at the end of the

loop. i.e. it will always perform the statement(s) once, before testing.

There are five methods for changing program flow and looping:

(if .. then .. else; case .. of ; for .. to .. do ; while .. do .. else ; and repeat .. until). Be

careful of the use of semicolons in if .. then .. else statements. Do not change a variable

in a loop.

26

1. 7 Procedures and Functions

It will have been noticed by now that the events such as Buttonl.Click are called

procedures. Functions provided by Delphi language such as sqrt(x), StrTolnt(x) and

round(x) have also been encountered.

Procedures and functions are ways of breaking down programs into smaller and hence

more manageable parts. Breaking the program up into smaller parts is good

programming practice and not only helps in debugging the program, but also makes

subsequent changes easier. This is known as 'modular' design. The smaller

(debugging and working) procedures can be used in other programs, making those

quicker and easier to write.

A procedure takes the form of:

Procedure name (parameters); declarations;

begin
{procedurecode goes here}

end;

It is executed from another part of the program by using its name including any

parameters in brackets.

1.7.1 Parameter Passing

The parameters can have a different name within the procedure.This makes procedures

more versatile, the calling program can use the same routine with different parameters.

The variables declared in the procedure only exist while the procedure is being

executed, and the memory used by the procedures is freed up when the procedure

finishes.

27

Consider a procedure 'Getnumber' which requests a number from an edit box both

passed as parameters. It can be called for a variety of purposes, for example to ask for

age, date of birth, and salary, and may be used as follows:

Procedure Getnumber(var Number : integer; Editl :TEdit);

begin

Number:= StrTolnt (editl.text);end;

procedure TForml .Buttonl Click(Sender: TObject);

var salary, age, YearOfBirth : integer;

begin

Getnumber (salary, editl);

Getnumber (YearOfBirth, edit3);

Editl.text := 'You were bom in '+ IntToStr(YearOfBirth) +, you earn '+
IntToStr(salary) + ';
end;

The procedure performs the same task every time (gets a number from an edit box) but

returns the value into a different variable.

1. 7.2 Functions

A function is a procedure that returns a single variable and when called is used on the

right hand side of an expression. Consider the SQRT() function used in the following

program:

Procedure TForml .Buttonl Click(Sender: TObject);

var

x:single;

begin

x:= strtofloat(editl.text);

editl .text:= floattostr(sqrt (x)); { sqrt function used here }

end;

28

The value x is passed to the sqrt function, returning the square root of x, which is

converted (by the floattostr function) and placed in the edit box.

The following procedure 'Getnumber' returns a single value, and it can be coded as a

function,

1. 7 .3 Recursion

Functions and procedures can call themselves, in which case the are known as

recursive.

As an example of recursion, consider the a function which works out the factorial of a

number. The factorial of a number is written as N! , and defined as O! =1, N! = N x (N-

1)! for N>O. A function to perform this is shown below.

Function Factorial(number: integer):integer;

{variable ' number' is declared in the function declaration.}

{ The function returns an integer value }

begin

if number= O then factorial := 1 else

factorial := number * factorial(number-1);

{ if number <>O , call the function again }

end;

procedure TForml .Buttonl Click(Sender: TObject);

var num , factor: integer;

begin

num := StrTolnt(editl.text);

factor := factorial (num);

editl.text := IntToStr (factor);

end;

29

1.7.4 Variable Declarations

The constants and variables used in the procedures have to be declared. If they are

declared within the procedure, they only exist within that procedure and are known as

local variables. If they are declared as part of the main program they are known as

global variables. Functions return a single result, but could also alter global variables

1.8 Debugging

1.8.1 Program Errors

Sooner or later your programs will have a bug and either produce a run-time error, hang

the computer, or just fail to work.

The compiler will detect any syntax and anything else it can't understand, but your

program may compile but still fail due to a run-time error or a logic error. Typical run­

time errors are divide by zero, edit box conversion error, or opening a non-existent file.

A dialog box is displayed when a run-time error occurs, with the line ın error

highlighted. The error can be examined in more detail using the debugger.

1.8.2 Using The Debugger

The debugger provides options to:

Run the program to a single point (Run To Cursor)

Run the program to specified points (known as a breakpoints).

30

To view, disable, enable and delete breakpoints

To set conditions on breakpoint operation.

To pause the program.

To restart after meeting a breakpoint or pause.

To view data either when stopped or as the program runs.

To evaluate and modify variables.

1.8.3 Running The Program To A Breakpoint

The simplest way of running the program to a specific point is to select the line of code

where the breakpoint is desired (place the cursor on it) and then choose Run I Run to

Cursor or use the F4 function key, or use the Speed Menu.

Traceiııto

Pame

Step over

Figure 1.15 Breakpoint buttons

1.8.4 Setting Breakpoints

If more than one breakpoint is needed, then breakpoints must be set. To set the

breakpoint click on the left of the line of code. The line will be highlighted in red. To

display a SpeedMenu, either right-click the mouse in the desired window, or press

Alt+FlO when the cursor is in the window.

The breakpoints must be on executable code; the breakpoint will not be met if set on a

comment as they are not executed. Breakpoints can be set before or at run-time

31

1.8.5 Breakpoint Options

1.8.5.1 Viewing Breakpoints

A complicated debugging session may generate a lot of Breakpoints. When a

Breakpoint is set, it is highlighted in the code editor, in addition to this if View I
Breakpoint is chosen, a list ofbreakpoints is displayed.

Figure 1.16 Break point view

1.8.5.2 Conditional Breakpoints

There will be times when it is not required to break every time a breakpoint is met. In

particular if the breakpoint is in a loop, the breakpoint may only be needed at a certain

value of loop counter. It is possible to put a condition on a breakpoint so that the

program stops only when the condition is met.

It is also possible to put a pass count on the line of execution so that it executes that

line that number of times before stopping. Both conditions can be set, in which case the

break occurs only if both conditions are met. In the following example, the break

occurs only when number = 34 and pass count =2; i.e. the second time this line is

encountered with number= 34.

32

pro:ı:ıednrt!!. TTorJiı1.Bıit£on1CHek(S1l!ndeı:'lTôbjeet);
• ar nUll'lber: integer:
Jıe!Jin
nuıitıer : = Getnwııber (Edıt.1) t
edit2\text := IntTo5tr(nuıtt>erı·:0

>

Figure 1.17 Example of conditional break point

Having created the breakpoint, the condition and pass counts are set in the Edit

Breakpoint dialog box.

Figure 1.18 Breakpoint dialog box

The Edit Breakpoint box is displayed by using the Speed Menu from the Breakpoint

List as above, or by double-clicking the required breakpoint in the list.

1.9 File 1/0

Sooner or later, information will have to be read from or written to disk. A typical

application is that of a database, but files have other uses as well; they can be used to

hold hardware set-up information, or to store temporary data to relieve the pressure on

memory. Data logging applications can easily collect a large amount of data and may

have to be saved on disk before analyzed or transmitted elsewhere.

33

1.9.1 File Attributes

A file can have several attributes. The main file attributes are :

• Read-only

• Hidden

• System

• Archive

The attributes of a file are stored in a byte which can be read and written using

FileGetAttr and FileSetAttr commands. The individual file attribute bits are available

as: faReadonly, faHidden, faSysFile, faArchive.

File Types

Text Files
Text files simply contain ASCII characters (those that can be typed from the keyboard)

with lines terminated with Carriage Return (CR) and Line Feed characters (LF), the

ASCII codes $OD and $0A. These files are normally created by simple editors. Most

applications can use text files, and it is a good way of transferring data between

applications.

1.9.2 File Operation

Table4 Common procedures for using typed, text files

AssignFile Assigns a filename to a file variable before use.

Reset Opens an existing file. Text files are read only.

Rewrite
Creates and opens a new file. Existing files with the same name will be

overwritten.

Append Opens an existing file for write only, so that new text can be added.

Readln Reads a line ending with CR/LF from the file

Writeln Writes text to the file and terminates with CR/LF.

CloseFile Updates file,closes it.All files hould be closed on terminating program.

34

1.9 .3 Typed Files

Not all files contain text, or want to be read and amended in a sequential method. In

this case they can be accessed in a random rather than sequential method. Such files

consist of types such as integer or char, but may also be arrays or records.

1.9.3.1 Typed file commands

Tables Typed file commans

Procedure Description

AssignFile Assigns a filename to a file variable before use.

Reset Opens an existing and assigned file.

Rewrite
Creates and opens a new file. Existing files with the

same name will be overwritten.

Read Reads record(s) from the file

Write Writes record(s) to the file.

Seek Moves the file's pointer to a specific record

Eof Tests if current file position is at the end-of-file.

Closefile
Updates file and closes it. All files should be closed on

terminating the program.

1.9.4. Untyped Files

Untyped files provide more flexibility in working with files, blocks of data rather than

records are read from the disk into a memory area known as a buffer. The desired

operations are then performed on the data, and the blocks are then written back to disk

from the buffer. Pointers are used to determine the position within the file.

35

The procedures used are BlockRead, BlockWrite and FilePos:

The BlockRead command reads a number of bytes from the file assigned to 'Filename'

into a buffer. Thenumber of bytes read is reported in BytesRead, which will be the size

of the buffer, unless eof is met.

BlockRead (Filename, Buffer, Sizeüf(Buffer), BytesRead);

The position of the pointer is found using the FilePos command:

File_position := FilePos (Filename);

Data is written from the buffer to the file using the BlockWrite command:

BlockWrite (Filename, Buffer, NoüfBytesWritten);

1.9.5. File Handling Components

Delphi provides components to select files. These are the file handling components and

are found on the System Palette. To see them in action, start a new project, and add a

file list box, a drive combo box, a directory list box, and a filter combo box on the

form.Following code for the OnChange event for the last three components.

procedure TForml .DriveComboBox 1 Change(Sender: TObject);

begin

DirectoryListBox 1 .Drive := DriveComboBox 1.Drive;

end;

Figure 1.19 View of file componenet

36

The FilterComboBox only has the default filter 'All files (*. *). . Change the filter

properties so that .TXT and .DOC files alone can be selected. Click the three dots by

the Filter property of the FilterComboBox to bring .up a dialog box where the required

files can be added. Add .TXT and .DOC to the list so that it looks like

Figure 1.20 Filter editor

The FileType property of the FileListBox can be used to determine which files are

displayed in the file list box based on the attributes of the files. Double-clicking

FileType property in the Object Inspector displays the individual attributes to be

displayed which can be set True or False.

37

CHAPTER2

2. DATABASE CONCEPT OF DELPHI 7

2.1 About Dbase And Paradox

2.1.1 dBASE IV Table Specification

The dBASE IV table format was introduced in dBASE IV for DOS. Following are the

specifications for dBASE IV tables:

• 2GB file size.

• Two billion records per file.

• A maximum of255 fields per record.

Maintained indexes can have up to 47 indexes per file. Each index can be created using

field expressions of virtually any combination, including conditional expressions of up

to 255 characters per expression that result in an index of up to 100 bytes. Unlimited

nonmaintained indexes can be stored on disk. You can use up to 47 of them

simultaneously.

2.1.2. dBase V Table Specifications

The dBASE V table format was introduced in dBASE V for Windows. Following are

the specifications for dBASEA V tables.

• Up to one billion records per file.

• A maximum of 1,024 fields per record.

• Up to 32,767 bytes per record.

• Unlimited nonmaintained indexes can be stored on disk. You can use up to 47 of

them simultaneously.

38

• Up to 10 master index files open per database. Each master index can have up to 47

indexes.

• Maintained indexes can have up to 4 7 indexes per file. Each index can be created

using field expressions of virtually any combination, including conditional

expressions of up to 255 characters per expression that result in an index of up to

100 bytes.

2.1.3. dBASE Field Types

Character (C)

dBASE III+, IV, and V field type that can contain up to 254 characters (including blank

spaces). This field is similar to the Paradox Alpha field type.

Date (D)
Paradox 3.5, 4, 5, and 7 as well as dBASE III+, IV, and V. dBASE tables can store

dates from January 1, 100, to December 31, 9999. Paradox 5 tables can store from

12/31/9999 B.C. to 12/31/9999 A.D.

Float (F)
dBASE IV, and V floating-point numeric field type provides up to 20 significant digits.

Logical (L)
Paradox 5 and 7 and dBASE III+, IV, and V field type can store values representing

True or False (yes or no). By default, valid entries include T and F (case is not

important).

Memo (M)
Paradox 4, 5, and 7 as well as dBASE III+, IV, and V field. A Paradox field type is an

Alpha variable-length field up to 256MB per field. dBASE Memo fields can contain

binary as well as memo data.

39

OLE (O)
Paradox 1, 5, and 7 as well as dBASE V field type that can store OLE data.

Number (N)
Paradox 3.5, 4, 5, and 7 as well as dBASE III+, IV, and V field type can store up to 15

significant digits -10307 to+ 10308 with up to 15 significant digits.
dBASE number fields contain numeric data in a Binary Coded Decimal (BCD) format.

Use number fields when you need to perform precise calculations on the field data.

Calculations on number fields are performed more slowly but with greater precision

than are calculations on float number fields. The size of a dBASE number field can be

from 1 to 20. Remember, however, that BCD is in Paradox 5 and 7 only for

compatibility and is mapped directly to the Number field type.

Short (S)
Paradox 3.5, 4, 5, and 7 field type that can contain integers from -- 32,767 through

32,767 (no decimal).

2.2. Paradox Standard Table Specifications

Also known as Paradox 4 table structure.

The Paradox standard table format was introduced in Paradox for DOS version 4. Other

products that use the standard format include Paradox for DOS version 4.5,

ObjectVision 2.1, and Paradox for Windows versions 1.0 and 4.5.

Earlier versions of the Paradox table type are referred to as the Compatible table type.

In the BDE Configuration Utility, the level option for the Paradox driver dictates what

default table type is created by Paradox for Windows. Use 3 for Compatible tables, 4 for

Standard tables (the default).

40

Following are the specifications for standard Paradox tables:

• 256MB file size limit if the table is in Paradox format and using a 4K block size.

• Up to 255 fields per record.

• Up to 64 validity checks per table.

• A primary index can have up to 16 fields.

• Tables can have up to 127 secondary indexes.

• Up to two billion records per file.

Because of the 256MB file size limit and other factors such as block size, however, the

limit is much smaller. Tables of 190,000 records are easily achievable (and you can

have more if you don't use up the 1,350-bytes-per-record limit for a keyed table). Tables

with close to a million records are common.

Block size can be 1024, 2048, 3072, or 4096. Paradox stores data in fixed records. Even

if part or all of the record is empty, the space is claimed. Knowing the interworkings

can save you disk space. Paradox stores records in fixed blocks of 1024, 2048, 3072,

4096 in size. After a block size is set for a table, that size is fixed, and all blocks in the

table will be of that size. To conserve disk space, you want to try to get your record size

as close to a multiple of block size as possible (minus 6 bytes, which are used by

Paradox to manage the table).

Record size. 1,350 for keyed tables and 4,000 for unkeyed tables. When figuring out the

size (the number of bytes or characters) of a table, remember that Alpha fields take up

their size (for example, an AlO = 10 bytes), numeric field types take up 8 bytes, short

number field types take up 2 bytes, money takes up 8, and dates take up 4 bytes.

Memos, BLOBs, and so on take 10 bytes plus however much of the memo is stored in

the .DB. For example, Ml 5 takes 25 bytes.

41

2.2.1. Paradox 5 Table Specifications

The Paradox 5 table format was introduced in Paradox for Windows version 5.

Following are the specifications for Paradox 5 tables:

• Up to two billion records per file.

• File size is limited to two gigabytes.

• Up to 255 fields per record.

Record size: Up to 10,800 bytes per record for indexed tables and 32,750 bytes per

record for nonindexed tables. When figuring out the size (the number of bytes or

characters) of a table, remember that Alpha fields take up their size (for example, an

Al O= 10 bytes), numeric field types take up 8 bytes, short number field types take up 2

bytes, money takes up 8, and dates take up 4 bytes.
Memos, BLOBs, and so on take 1 O bytes plus however much of the memo is stored in

the .DB. For example, M15 takes 25 bytes.
Up to 64 validity checks per table for Paradox for Windows tables.

A primary index can have up to 16 fields.

Tables can have up to 127 secondary indexes.
Block size can be from lK to 32K in steps of lK. For example, 1024, 2048, 3072, 4096,

5120...32768.

2.2.2. Paradox 7 and Above Table Specifications

The Paradox 7 table format was introduced in Paradox version 7 for Windows 95/NT.
The Paradox 7 table format has all the same specifications as the Paradox 5 table format
with two additions.

Following are the specification additions for the Paradox 7 table format:

• Added descending secondary indexes.

• Added unique secondary indexes

42

2.2.2.1. Paradox Field Types

Alpha (A)

Paradox 3.5, 4, 5, and 7 field type that can contain up to 255 letters and numbers. This

field type was called Alphanumeric in versions of Paradox before version 5. It is similar

to the Character field type in dBASE.

Autoincrement (+)

Field type introduced in the Paradox 5 table format that adds one to the highest number

in the table whenever a record is inserted. The starting range can from -2,147,483,647

to 2,147,483,647. Deleting a record does not change the field values of other records.

BCD(#)

Paradox 5 and 7 field type which is provided only for compatibility with other

applications that use BCD data. Paradox correctly interprets BCD data from other

applications that use the BCD type. When Paradox performs calculations on BCD data,

it converts the data to the numeric float type, then converts the result back to BCD.

When this field type is fully supported, it will support up to 32 significant digits.

Binary (B)

Paradox 1, 5, and 7 field type that can store binary data up to 256MB per field.

Bytes (Y)

Paradox 5 and 7 field type for storing binary data up to 255 bytes. Unlike binary fields,

bytes fields are stored in the Paradox table (rather than in the separate .MB file),

allowing for faster access.

Date (D)

Paradox 3.5, 4, 5, and 7 as well as dBASE III+, IV, and V. dBASE tables can store

dates from January 1, 100, to December 31, 9999. Paradox 5 tables can store from

12/31/9999 B.C. to 12/31/9999 A.D.

43

Formatted Memo (F)

Paradox 1, 4.5, 5, and 7 field type is like a memo field except that you can format the

text. You can alter and store the text attributes of typeface, style, color, and size. This

rich text document has a variable-length up to 256MB per field.

Graphic (G)
Paradox 1, 5, and 7 field type can contain pictures in .BMP (up to 24 bit), .TIF (up to

256 color), .GIF (up to 256 color), .PCX, and .EPS file formats. Not all graphic

variations are available. For example, currently you cannot store a 24-bit .TIF graphic.

When you paste a graphic into a graphic field, Paradox converts the graphic into the

.BMP format.

Logical (L)
Paradox 5 and 7 and dBASE Ill+, IV, and V field type can store values representing

True or False (yes or no). By default, valid entries include T and F (case is not

important).

Memo (M)
Paradox 4, 5, and 7 as well as dBASE Ill+, IV, and V field. A Paradox field type is an

Alpha variable-length field up to 256MB per field. dBASE Memo fields can contain

binary as well as memo data.
For Paradox tables, the file is divided into blocks of 512 characters. Each block is

referenced by a sequential number, beginning at zero. Block O begins with a 4-byte

number in hexadecimal format, in which the least significant byte comes first. This

number specifies the number of the next available block. It is, in effect, a pointer to the

end of the memo file. The remainder of Block O isn't used.

Money($)
Paradox 3.5, 4, 5, and 7 field type, like number fields, can contain only numbers. They

can hold positive or negative values. Paradox recognizes up to six decimal places when

performing internal calculations on money fields. This field type was called Currency in

previous versions of Paradox.

44

OLE (O)

Paradox 1, 5, and 7 as well as dBASE V field type that can store OLE data.

Number (N)
Paradox 3.5, 4, 5, and 7 as well as dBASE III+, IV, and V field type can store up to 15
significant digits -10307 to+ 10308 with up to 15 significant digits.
dBASE number fields contain numeric data in a Binary Coded Decimal (BCD) format.

Use number fields when you need to perform precise calculations on the field data.

Calculations on number fields are performed more slowly but with greater precision

than are calculations on float number fields. The size of a dBASE number field can be

from 1 to 20. Remember, however, that BCD is in Paradox 5 and 7 only for

compatibility and is mapped directly to the Number field type.

Short (S)

Paradox 3.5, 4, 5, and 7 field type that can contain integers from -- 32,767 through

32,767 (no decimal).

Time (T)
Paradox 5 and 7 field type that can contain time times of day, stored in milliseconds

since midnight and limited to 24 hours.
This field type does not store duration which is the difference between two times. For

example, if you need to store the duration of a song, use an Alpha field. Whenever you

need to store time, make a distinction between clock time and duration. The Time field

type is perfect for clock time. Duration can be stored in an Alpha field and manipulated

with code.

TimeStamp (@)

Paradox 5 field type comprised of both date and time values. Rules for this field type

are the same as those for date fields and time fields.

45

CHAPTER3

3. DATABASE DESIGN OF THE PROGRAM

3.1 Database Design of The Program

The specialized school info system database consists of five tables those are Student

table, Teacher table, Login table, Payrnent_Plan table,Student_Attendance table.

Student contains ten fields :

• St number

• St name

• St surname

• Birthdate

• Parent name

• Class

• Department

• Address

• Tel number

• Reg_date

Attendance table contains five fields :

• St number

• St name

• St surname

• Absence_day

• Absence lesson

46

Login table contains four fields :

• User Id

• Uname

• Upassword

• Upass[Re]

Payment_ Plan table contains eleven fields :

• St number

• St name

• St surname

• Total_pay

• Num ınstalment

• Instalment

• Day_payment

• September

• December

• March

• May

Teacher table contains nine fields :

• Teacher Id

• T name

• T surname

• Social Id

• Branch

• Sex

• Address

47

The relationships between tables will as follows:

In Student Table St_number field is a primary key.

In Student Table St_name field is a primary key.

In Teacher Table Teacher _Id is a primary key.

In Teacher Table T_name is a primary key.

In Login Table Uname is a primary key.

In Login Table Upassword is a primary key.

In Payment_Plan St_number field is a primary key.

In Payment_Plan St_name field is a primary key.

In Attendance St_number field is a primary key.

In Attendance St_name field is a primary key.

48

When you execute the program Login Form opens, then it will ask you username,

password and password[Re]. You can see it in Fig 3 .1.

Fig 3.1 Login Form

If you do not know username, password and password[Re] you can not login this

program. In fig3.1 write username, password and password[Re] then Click Login

Button or Press Enter Key to login this program.

In this program there is File, Edit, Search, Report, Help, Manage, Calendar menus and

for other applications Student, Teacher, Report, Exit buttons. (shown in Fig 3.2)

Figure 3.2 Main Menu

49

When you select Edit Submenu then Student/Teacher add form is appeared

Figure 3.3 Student and Teacher Mangement form

In this form we can add new Student\Teacher to the database then it is shown in the Fig

3.3 on the form. And also we can search, list all student, student attendance ,close for

turning before form and exit program to finish program.

50

When you select Search button then Search Student form is appeared.

Figure 3.4 Student Search form

We can search by number or by name of student . Also we can go next and prior by

pressing next and previous button of the navigator. If we want to delete or update the

Student which was added before after select on the table. Moreover we can delete or

update student by pressing delete or update buttons which we want to do delete or

update student.And when we press the Main menu it returns main menu form that is

figure 3.2. and close for turning before form and exit program to finish program.

51

When you select Update button then Update Student form appeared.

Figure 3.5 Update_Student form

If we press UPDATE button we can save updated record of Student which was added

before after select on the table.

52

When you select Delete button then Delete Student form appeared

Figure 3.6 Delete Student form

53

We can delete record of Student which was added before after select on the table.When

you press the "DELETE" button you will see such as a "Please Confirm Deletion"

message:

Fig 3.7 Confirm Deletion Message

If you press "Yes" button you will get such as a "Deleted Successfully" message. Then

the record is deleted from the database table.

If you press "No" button the deletion is cancelled

Fig 3.8 Deletion Cancelled Message

54

When you select List All Student button then Search Student form appeared

Figure 3.9 Student Search form

We can go next and prior by pressing next and previous button of the navigator. If we

want to reach one student informations we can search by number or name of student.

55

When you select Payment Plan button then Student Payment Plan form appeared

Figure 3.10 Student Payment Plan form

In this form we can add new Student Payment Plan to the database then it is shown in

the Fig 3.10 on the form. And also we can search, or record paid month of student

payment plan.

56

..,. s
\~

When you select Search button then Update or Delete Payment Plan form appea

Figure 3.11 Update or Delete Payment Plan form

With this form we can change paid or must to pay month by using checkboxes then if

we press update button we can save updated record of Student Payment Plan which was

added before after select on the table.

57

When you select Record Paid Month button then Record Paid Month form appeared

Figure 3.12 Record Paid Month form

If we press UPDATE button we can save updated record which is changed of paid

month text instalment to paid or any information of student which was added before

after select on the table.

58

When you select Attendance button then Student Attendance form appeared

Figure 3.13 Student Attendance form

In this form we can add new Attendance for student to the database then it is shown in

the Fig 3. 13 on the form. And also we can search by student number or name and

update or delete the attendance information of student.

59

Also we can Add ,Delete, Update Teacher and List all teacher with other forms.

When you select Time Table button that is located at Figure 3.3 Student and Teacher

Mangement form on the teacher caption then Techer Time Table form appeared

Figure 3.14 Teacher Time Table Form

With Teacher Time Table Form we can learn time table of teachers and also we can

save changed or new time table of teachers using the save button and we can look time

tables of teacher by pressing open button.

60

When you select Salary Chart button that is located at Figure 3.3 Student and Teacher

Mangement form on the teacher caption then Teacher Salary Chart form appeared

Figure 3.15 Teacher Salary Chart Form

With Teacher Salary Chart Form we can learn Salaries of teachers and also we can save

changed or new Salaries of teachers using the save button and we can look Salary Chart

of teacher by pressing open button. Behind this operations we can learn total payment of

teacher which the specialiazed school mıust to pay the teachers by looking the'SUM'

caption.

61

In main menu form that is figure 3.2. if we choose report tab then we can select buutons

which we want to see report of student, teacher, report of student payment plan or

student attendance report.

,,..

If we select report of student in fugure 3.2 in main menu or figure 3.3 student

management form the report of student form appeared.

Figure 3.16 Report of Student form

62

When we select Show Report button the print preview form appeared.

REPORT OF STUDENT

$!_Number St_Name St_sumame Department Class Tel.Jslumber

20010486 pelin bezginsoy Science and Mathematic Graduated (342):321-2096

20010712 ayse haskolo{ıu Science and Mathematic Graduated (34:3)456-9876

20020001 gizem bezginsoy Scisnca and Mathematic Third Year (324)745-7656

20021627 hani!& ifjney Turkish and Social Graduated (344)289-0451

200:30002 seçil belerı Turkish and Social First Year (342)456-1235

20040001 elif bezginsoy Science and Mathematic Third Year (342)251-4221

20050001 basak bezginsoy Science and Mathematic Second Year (342)312-2093

7 gizmo bexgin Science and Mathematic Second Year (212)641-0011

Figure 3.17 Print Preview form

If we select manage tab in fugure 3 .2 in main menu the manage user form appeared.

Figure 3.18 Manage Users form

In "Manage User Form" we can add user, update user and delete user.

63

Ifwe select Calendar tab in fugure 3.2 in main menu the Calendar form appeared.

4 5 6 7 a 6 6 7 a 9 10 11 12 10 6 7
11 12 13 14 15 7 13 14 15 16 17 18 19 11 13 14
ts 19 20 21 22 8 20 21 22 23 24 25 26 12 20 21
25 26 27 .28 29 9 27 28 13 27 28

Mayıs 2006

18
3 4 5 6 7 8 9 19
10 11 12 13 14 15 16 20
17 18 19 20 21 22 23 21
24 25 26 27 28 29 30 22

Pıt Sal Car Per Cum Cmı Paz
1 2 3 4 5 6 1
a s 10 11 12 13 l4
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31

Ağustos 2006

Pıt Sal Caı: Pet Cum Cmı Paz
31 1 2 3 4 5 6

4 5 6 7 a 9 32 7 a 9 10 11 12 13 36 4 5 6 7
11 12 13 14 15 16 33 14 15 16 17 18 19 20 37 11 12 13 14
18 19 20 21 22 23 34 21 22 23 24 25 26 27 3B 18 19. 20 21
25 26 27 28 29 30 35 28 29 3D 31 as 25 26 21 28

Kasım 2006

44
4 5 6 7 B 45
11 12 13 14 15 46
18 19 20 21 22 47
25 26 27 28 29 411

Pıt Sal Car Per Cum Cmt Paz
1 2 3 4 5

s 1 a 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30

4 5 6 7
11 12 13 l4
18 19 20 21
25 26 27 28
1 :;; ..ı h

Figure 3.19 Calendar

In Calendar Form there is shown the Calendar as we see above Fig 3.19. We can see the

date or specific date which we want to learn.

If we select Help tab in fugure 3.2 in main menu the Help form appeared. We can learn

information about program that is how we can use program

64

"iffltjy· th9 Main Mewııı,.ı come:s ~ then V(:MA cee #eM'Ct button ot~ ot
n ttııetab, ,e,dl caption ttM,ı-t ~ .eııdd. delete o, ~ ırh.derıt11f· y,au c:.:an

s,e4ect any ot thi-s button the St.udent ,and Te-.echoeor M~ fOfm..Then _y,oı,..ı can
olow buıttcns to m.eke applircat:ion ks student:
f y,ou want to cHit: ~ progr.oro y,o,u mt.ıU pıre.s tho EXIT PROGRAM bul:ton..

*"1e Main Menu cıı:w:nes,&eroen then _you can select ~ ol toachaı" ot"
tM:J. t!W:lil: c.ı,pôıon then sfflı!'tci add.. dıMete or updıı.ı,te t&aııı:::tww..ff you r..an
mı:Yol this button the s~ and Teaıcher M~ form. Thıet'\ you can.
bıt..ıttona: to mak.e- ~ fcır te.achııM.
woı:ıt to fflGit """"~ s.:;,e-OQl!art\yoıt.ı mud ı.xea t:tte EX:ıTPROGRAM bul:ton

or T 4ke Report: For Sb..ııdent ot"T~ lnformaııtion

ff.şl\, the, M.ain Mer,ıu comet .a:c,een then yco c.ı,n seleıd: button ol ,:eport Of"
.:~~ report caıptioo then ~ Jtom dudent caption folıtwııino

rep:ırl ol student.. n,pori d -~ ~ plsı.. ıe,pod. oıf =t:wdent
,Mt~ Of report ot te,e,cher intonnotion.if Vol-A c.-ı sffle:d any ol this button
he 5~ ı,,nd Tııe3Cher M~ form.Then you c....-ı foaı:- butiDnS to nv.ıık.e­
~Q"l fOf ~.
f yıou want to~ whıo&a pıogram ~ mu~ ı:ı,es &,reEXIT PROGRAM bı.ıtton.

o.ch ;you c.w,: $0«ch fcx ştucıont m anıy thing about the cxoor.aım
elete:Deiete the information
pdat«U~e teh "°'rn.at,on
k:mce:Ooztethe tftble

;.Kit :.Quit the praorGım
3.tıYeı'.S.ııve re,c-;o.-dsto table

I~ R,e,ccrd; ~ teMt and malc.,ı, ready to .t~ f°' the adding nffl4t record
. ' al StudenVT eaıeh!M:Shoıı.oıf al ~ı..dent' °' teaıchıet

Figure 3.20Help form

If we select Help tab in fugure 3 .2 in main menu then from sub menu if we select about

then sub menu of about we can select program or programmer the Help form appeared.

Figure 3.21 About form

Gives the user a brief description about the programmer.

65

CONCLUSION

A DBMS is computerized record keeping system that stores, maintains and provides

access to the information. A Database system consists of four major components that

are Data, Hardware, Software, and Users. DBMS are used by any reasonably self

contained commercial, scientific, technical or other organization for a single individual

to a large company. Practically implementation of software for business though it is

related to any field needs a devoted and complete life cycle.

The software created after a deep analysis, so that all-important requirements to the

specialized school information system with student and teacher information can be

accomplished. Student and teacher, name and ID have been included in the program to

overcome the errors, which can occur. Reports are also generated with the help of the

Queries for the update purpose.

66

REFERENCES

Reference to Book:

[1] Turkmen Kitabevi, Borland Delphi 7

Reference to Electronic-Book:

[1] Manchester Metropolitan University Advance Software Engineering Delphi .PDF

Reference to Electronic Source- Online source from Web:
[1] http://www.Delphi Basics Object Orientation .com

Reference to Book:

[1] Seçkin Kitabevi, Borland Delphi 8

67

APPENDIX A: PROGRAM CODES

FORM 1. STUDENT AND TEACHER MANAGEMENT FORM
unit Unitl;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, StdCtrls, Buttons, ComCtrls, ExtCtrls, Mask, DBCtrls, Grids,

DBGrids, DB, DBTables, Menus;

type

TStudent_Teacher_Management = class(TForm)

PageControl1: TPageControl;

TabSheetl: TTabSheet;

TabSheet2: TTabSheet;

TabSheet3: TTabSheet;

Labell: TLabel;

Label2: TLabel;

Label3: TLabel;

Label4: TLabel;

Label5: TLabel;

Label6: TLabel;

Label7: TLabel;

Label8: TLabel;

Label9: TLabel;

Labell O: TLabel;

BitBtnl: TBitBtn;

Label12: TLabel;

Label13: TLabel;

Labell 4: TLabel;

Label15: TLabel;

Label16: TLabel;

Label1 7: TLabel;

68

Label 18: TLabel;

Label19: TLabel;

Label20: TLabel;

BitBtn5: TBitBtn;

MainMenu 1: TMainMenu;

Studentl: TMenultem;

LSTALLSTUDENTl: TMenultem;

PAYMENTPLANl: TMenultem;

ATTENDANCE!: TMenultem;

EXITl: TMenultem;

EACHERl: TMenultem;

IMETABLEl: TMenultem;

SALARYCHARTl: TMenultem;

REPORTl: TMenultem;

BitBtn12: TBitBtn;

BitBtnl 3: TBitBtn;

BitBtn14: TBitBtn;

BitBtn15: TBitBtn;

REPORTOFSTUDENTl: TMenultem;

REPORTOFTEACHERl: TMenultem;

REPORTOFSTUDENT ATTENDANCE 1: TMenultem;

REPORTOFSTUDENTPAYMENTl: TMenultem;

HELP 1: TMenultem;

ABOUTl: TMenultem;

PROGRAMI: TMenultem;

PROGRAM2: TMenultem;

Panel 1: TPanel;

SpeedButton3: TSpeedButton;

BitBtn3: TBitBtn;

BitBtn4: TBitBtn;

BitBtn2: TBitBtn;

BitBtn9: TBitBtn;

BitBtn8: TBitBtn;

69

Panel2: TPanel;

BitBtn16: TBitBtn;

BitBtn7: TBitBtn;

BitBtn6: TBitBtn;

BitBtnl 7: TBitBtn;

BitBtnl 8: TBitBtn;

DataSourcel: TDataSource;

Student: TTable;

Table2: TTable;

DataSource2: TDataSource;

MaskEditl: TMaskEdit;

MaskEdit2: TMaskEdit;

MaskEdit3: TMaskEdit;

MaskEdit4: TMaskEdit;

MaskEdit5: TMaskEdit;

MaskEdit6: TMaskEdit;

MaskEdit7: TMaskEdit;

Editl: TEdit;

Combo Box 1 : TComboBox;

ComboBox2: TComboBox;

Edit2: TEdit;

Edit3: TEdit;

Edit4: TEdit;

Memol: TMemo;

ComboBox3: TComboBox;

ComboBox4: TComboBox;

Memo2: TMemo;

Edit5: TEdit;

Edit6: TEdit;

procedure BitBtn8Click(Sender: Tübject);

procedure BitBtn9Click(Sender: Tübject);

procedure BitBtn5Click(Sender: Tübject);

procedure BitBtn 1 Click(Sender: Tübject);

70

procedure EXITlClick(Sender: TObject);

procedure DBEditlKeyPress(Sender: TObject; var Key: Char);

procedure LSTALLSTUDENTl Click(Sender: TObject);

procedure BitBtn6Click(Sender: TObjJct);

procedure BitBtn7Click(Sender: TObject);

procedure PROGRAMI Click(Sender: TObject);

procedure PROGRAM2Click(Sender: TObject);

procedure IMETABLE 1 Click(Sender: Tübject);

procedure SALARYCHARTlClick(Sender: Tübject);

procedure BitBtn12Click(Sender: Tübject);

procedure BitBtn13Click(Sender: TObject);

procedure SpeedButton3Click(Sender: TObject);

procedure BitBtn2Click(Sender: TObject);

procedure BitBtnl 6Click(Sender: Tübject);

procedure BitBtnl 7Click(Sender: Tübject);

procedure BitBtnl 8Click(Sender: Tübject);

procedure BitBtn4Click(Sender: TObject);

procedure FormCreate(Sender: Tübject);

procedure FormClose(Sender: TObject; var Action: TCloseAction);

procedure BitBtn3Click(Sender: Tübject);

procedure ATTENDANCE IClick(Sender: Tübject);

procedure BitBtn14Click(Sender: Tübject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

Student_Teacher_Management: TStudent_Teacher_Management;

implementation

71

uses st_list, Unit3, Unit9, UnitlO, Unitl 1, Unitl2, Unit14, Unit15, Unit19,

Unit18;

{$R *.dfm} 1

procedure TStudent_ Teacher_ Management.BitBtn8Click(Sender: TObject);

begin

application.Terminate;

end;

procedure TStudent_ Teacher_ Management.BitBtn9Click(Sender: TObject);

begin

Student.Close;

close;

end;

procedure TStudent_ Teacher_ Management.BitBtn5Click(Sender: TObject);

begin

Table2.insert;

Table2.FieldValues['Teacher_ID']:=MaskEdit5.Text;

Table2.FieldValues['T _name'] :=Edit5.Text;

Table2.FieldValues['T _surname']:= Edit6.Text;

Table2 .FieldValues['Social _ID']:= MaskEdit4. Text;

Table2.FieldValues['Branch'] :=Combobox3. Text;

Table2.FieldValues['Sex'] :=Combo box 4. Text;

Table2.FieldValues['Address'] :=Memo 1. Text;

Table2.FieldValues['Mobile _phone'] :=MaskEdit6. Text;

Table2.FieldValues['Home _phone'] :=MaskEdit7 .Text;

Table2.Post;

Edit5.Clear;

Edit6.Clear;

Memo I.Clear;

MaskEdit4.Clear;

MaskEdi t5.Clear;

72

MaskEdit6.Clear;

MaskEdit7.Clear;

MaskEdi t5. SetFocus;

end;

l

procedure TStudent_ Teacher_ Management.BitBtnl Click(Sender: Tübject);

begin

Student.insert;

Student.FieldValues['St_ number']:= Edit 1.Text;

Student.FieldValues['St_ name'] :=Edit2.Text;

Student.FieldValues['St_ surname'] :=Edit3 .Text;

Student.FieldValues['Birthdate'J:=MaskEditl.Text;

Student.FieldValues['Parent_ name'] :=Edit4.Text;

~ Student.FieldValues['Class'] :=Comboboxl .Text;

Student.FieldValues['Department'] :=Combobox2. Text;

Student.FieldValues['Address'] :=Memo I.Text;

Student.FieldValues['Tel_number'J:=MaskEdit2.Text;

Student.FieldValues['Reg_ date'] :=MaskEdit3. Text;

Student.Post;

MaskEditl .Clear;

MaskEdit2.Clear;

MaskEdit3 .Clear;

Editl .Clear;

Edit2.Clear;

Edit3.Clear;

Edit4.Clear;

Memol.Clear;

Editl .SetFocus;

end;

procedure TStudent_ Teacher_ Management.EXITl Click(Sender: Tübject);

73

begin

Student.Close;

table2.Close;

close;

end;

procedure TStudent_ Teacher_ Management.DBEditl KeyPress(Sender: TObject; var

Key: Char);

begin

if(key<'O')or(key>'9')then

begin

key:=#0;

beep;

end;

end;

procedure TStudent_ Teacher_ Management.LSTALLSTUDENTl Click(Sender:

TObject);

begin

Src_Student.Show;

end;

procedure TStudent_ Teacher_ Management.BitBtn6Click(Sender: TObject);

begin

Src_Teacher.show;

end;

procedure TStudent_ Teacher_ Management.BitBtn7Click(Sender: TObject);

begin

Teacher_ Time_ Table.show;

end;

74

procedure TStudent_ Teacher _Management.PROGRAM 1 Click(Sender: Tübject);

begin

About_p.show;

end;
.,,,

procedure TStudent_ Teacher_ Management.PROGRAM2Click(Sender: Tübject);

begin

About_p.show;

end;

procedure TStudent_ Teacher_ Management.IMET ABLE 1 Click(Sender: TObject);

begin

Teacher_ Time_ Table.show;

end;

procedure TStudent_ Teacher _Management. SALARY CHAR Tl Click(Sender: Tübject);

begin

Teacher_ Salary_ Chart.show;

end;

procedure TStudent_Teacher_Management.BitBtn12Click(Sender: Tübject);

begin

Report_ Student.show;

end;

procedure TStudent_ Teacher _Management.BitBtnl 3Click(Sender: TObject);

begin

Report_ Teacher.show;

end;

procedure TStudent_ Teacher_ Management.SpeedButton3Click(Sender: Tübject);

begin

Src_Student.Show;

end;

75

procedure TStudent_ Teacher _Management.BitBtn2Click(Sender: TObject);

begin

Src_Student.Show;

Student_ Teacher_ Management.Hide;

end;

procedure TStudent_ Teacher_ Management.BitBtn 16Click(Sender: TObject);

begin

Teacher_ Salary_ Chart.show;

end;

procedure TStudent_ Teacher_ Management.BitBtnl 7Click(Sender: TObject);

begin

application. Terminate;

end;

procedure TStudent_ Teacher_ Management.BitBtnl 8Click(Sender: TObject);

begin

application.Terminate;

end;

procedure TStudent_ Teacher _Management.BitBtn4Click(Sender: TObject);

begin

Student_Payrnent_Plan.show;

end;

procedure TStudent _Teach er_Management.Form Create(Sender: TObj ect);

begin

Student_Payrnent_Plan.show;

end;

76

procedure TStudent_ Teacher_ Management.FormClose(Sender: TObject; var Action:

CloseAction);

begin

Student.Close;

table2.Close;

action:=cafree;

end;

procedure TStudent_ Teacher_ Management.BitBtn3Click(Sender: TObject);

begin

Student_ Attendance.show;

end;

procedure TStudent_Teacher_Management.ATTENDANCElClick(Sender: TObject);

begin

Student_Attendance.show;

end;

procedure TStudent_ Teacher_ Management.BitBtn 14Click(Sender: TObject);

begin

Report_Student_Payment_Plan.show;

end;

end.

FORM 6. DELETE STUDENT FORM
unit Unit6;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, DB, DBTables, StdCtrls, Buttons, DBCtrls, Mask, ExtCtrls;

type

TDelete_Student = class(TForm)

Label 1: TLabel;

77

Label2: TLabel;

Label3: TLabel;

Label4: TLabel;

Label5: TLabel;

L11bel6: TLabel;

Label?: TLabel;

Label8: TLabel;

Label9: TLabel;

Label 1 O: TLabel;

DBEditl: TDBEdit;

DBEdit2: TDBEdit;

DBEdit3: TDBEdit;

DBEdit4: TDBEdit;

DBEdit5: TDBEdit;

DBEdit6: TDBEdit;

DBEdit7: TDBEdit;

DBMemo 1: TDBMemo;

DBComboBoxl: TDBComboBox;

DBComboBox2: TDBComboBox;

Group Box 1: TGroupBox;

Label21: TLabel;

BitBtn16: TBitBtn;

Editl: TEdit;

BitBtnl: TBitBtn;

BitBtn2: TBitBtn;

GroupBox2: TGroupBox;

Label 11: TLabel;

Edit2: TEdit;

BitBtn4: TBitBtn;

SpeedButtonl: TSpeedButton;

SpeedButton3: TSpeedButton;

DataSource 1: TDataSource;

Tablel: TTable;

78

procedure FormKeyPress(Sender: TObject; var Key: Char);

procedure BitBtn16Click(Sender: TObject);

procedure BitBtnl Click(Sender: TObject);

procedure BitBtn2Click(Sender: TObject);

procedure BitBtn4Click(Sender: TObject);

procedure SpeedlsuttonlClick(Sender: TObject);

procedure SpeedButton3Click(Sender: TObject);

procedure FormClose(Sender: TObject; var Action: TCloseAction);

procedure FormCreate(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

vend;

var

Delete Student: TDelete _Student;

implementation

uses Unitl, Unit5;

{$R *.dfm}

procedure TDelete _Student.FormKeyPress(Sender: TObject; var Key: Char);

begin

dbeditl .Clear;

dbedit2.Clear;

dbedit3. Clear;

dbedit4.Clear;

dbedit5.Clear;

dbedit6.Clear;

dbedit7.Clear;

dbmemo 1. Clear;

end;

79

procedure TDelete _Student.BitBtnl 6Click(Sender: TObject);

begin

tablel .fılter:='St_ number='+ quotedstr(Editl .Text);

tablel .Filtered:=true;

if table 1.RecordCount =O then

/ showmessage('No Record Found')

else

Table! .GotoKey;

Editl .Clear;

Editl .SetFocus;

end;

procedure TDelete _Student.BitBtnl Click(Sender: TObject);

begin

Delete_ Student.Hide;

Main_ Menu.show;

end;

procedure TDelete _Student.BitBtn2Click(Sender: TObject);

begin

table! .Close;

close;

end;

procedure TDelete _Student.BitBtn4Click(Sender: TObject);

begin

tablel .fılter:='St_ name='+ quotedstr(Edit2.Text);

table l .Filtered:=true;

if table l .RecordCount =O then

showmessage('No Record Found')

else

Tablel .GotoKey;

Edit2.Clear;

80

Edit2.SetFocus;

end;

procedure TDelete _Student.SpeedButtonl Click(Sender: TObject);

begin

iy Messagedlg('Please Confirm Deletion',mtwaming, [mbYes, mbNo,mbCancel],0)=6

then

begin

//if accepts delete record

tablel .Delete;

//list and refresh the product comboboxes

dbcombobox 1. OnClick(sender);

dbcombobox2.0nClick(sender);

tablel .Close;

table I.Open;

dbeditl .Clear;

dbedit2.Clear;

dbedit3.Clear;

dbedit4.Clear;

dbedit5.Clear;

dbedit6.Clear;

dbedit7. Clear;

Showmessage('Deletion is successfull');

end

else

Showmessage('Deletion is Cancelled');

end;

procedure TDelete _Student.SpeedButton3Click(Sender: TObject);

begin

application.Terminate;

end;

81

procedure TDelete _Student.FormClose(Sender: TObject; var Action: TCloseAction);

begin

tablel .Close;

action:=cafree;

end;

end.

FORM 16. RECORD THE PAID MONTH FORM
unit Unit16;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, Grids, DBGrids, StdCtrls, ExtCtrls, DBCtrls, DB, DBTables, Mask,

Buttons;

type

TRecord_Payed_Month = class(TForm)

Label 1: TLabel;

Label2: TLabel;

Label3: TLabel;

Label4: TLabel;

Label5: TLabel;

Label6: TLabel;

DBEditl: TDBEdit;

DBEdit2: TDBEdit;

DBEdit3: TDBEdit;

DBEdit4: TDBEdit;

DBEdit5: TDBEdit;

DBEdit6: TDBEdit;

DataSource 1: TDataSource;

Tablel: TTable;

DBGridl: TDBGrid;

BitBtnl: TBitBtn;

Group Box 1 : TGroupBox;

82

GroupBox2: TGroupBox;

DBEdit7: TDBEdit;

DBEdit8: TDBEdit;

Label7: TLabel;

Label8: TLabel;

/ BitBtn2: TBitBtn;

BitBtn3: TBitBtn;

BitBtn4: TBitBtn;

GroupBox3: TGroupBox;

DBCheckBox 1: TDBCheckBox;

DBCheckBox2: TDBCheckBox;

DBCheckBox3: TDBCheckBox;

DBCheckBox4: TDBCheckBox;

procedure BitBtn2Click(Sender: TObject);

procedure BitBtn3Click(Sender: TObject);

procedure BitBtn4Click(Sender: TObject);

procedure FormClose(Sender: TObject; var Action: TCloseAction);

procedure FormCreate(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

Record _Payed_ Month: TRecord _Payed_ Month;

implementation

{$R *.dfin}

procedure TRecord _Payed_ Month.BitBtn2Click(Sender: TObject);

begin

tablel .IndexFieldNames:='ST _NUMBER';

tablel .SetKey;

tablel .IndexFields[O].AsString:=DbEditl .Text;

83

tablel .GotoKey;

if not tablel .GotoKey then

showmessage('The Record is not Found');

end;

procedure TRecord _Payed_ Month.BitBtn3Click(Sender: Tübject);

begin

tablel .IndexFieldNames:='ST _NAME';

tablel .SetKey;

tablel .lndexFields[O].AsString:=DbEditl .Text;

tablel .GotoKey;

if not tablel .GotoKey then

showmessage('The Record is not Found');

end;

procedure TRecord _Payed_ Month.BitBtn4Click(Sender: TObject);

begin

application.Terminate;

end;

procedureTRecord _Payed_ Month.FormClose(Sender:TObject;varAction:TCloseActio);

begin

tablel .Close;

action:=cafree;

end;

end.

FORM 10. TEACHER SALARY CHART FORM

unit Unitl O;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

84

Dialogs, Grids, StdCtrls, Buttons;

type

TTeacher _Salary_ Chart = class(TForm)

StringGridl: TStringGrid;

Labell: TLabel;

Label2: TLabel;

BitBtnl: TBitBtn;

BitBtn2: TBitBtn;

BitBtn3: TBitBtn;

BitBtn4: TBitBtn;

procedure FormCreate(Sender: TObject);

procedure StringGridlSetEditText(Sender: TObject; ACol, ARow: Integer;

const Value: String);

procedure BitBtnl Click(Sender: TObject);

procedure BitBtn2Click(Sender: TObj ect);

procedure BitBtn3Click(Sender: TObject);

procedure BitBtn4Click(Sender: Tübject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

Teacher_ Salary_ Chart: TTeacher _Salary_ Chart;

implementation

uses Unit5;

{$R *.dfm}

procedure TTeacher _Salary_ Chart.FormCreate(Sender: TObject);

begin

with stringGrid 1 do

begin

85

options :=options+[goedi ting];

cells[O,O]:='Teacher Name';

cells[l ,O]:='Daily Wage';

cells[2,0]:='Day Count';

cells[3,0] :='Salary';

end;

end;

procedure TTeacher _Salary_ Chart.StringGridl SetEditText(Sender: Tübject; ACol,

ARow: Integer; const Value: String);

var

dwage,day,i,sum:integer;

begin

dwage:=strtointdef(stringGrid 1. Cells[1,ARow],O);

day:=strtointdef(stringGrid l .Cells[2,ARow] ,O);

stringGrid 1.Cells[3 ,ARow] :=inttostr(dwage*day);

sum:=O;

for i:=1 to stringGridl .RowCount do

sum:=sum+strtointdef(stringGrid 1. Cells [3 ,i],O);

label2.Caption:='SUM:'+inttostr(sum);

end;

procedure TTeacher _Salary_ Chart.BitBtnl Click(Sender: Tübject);

var f:textfıle;

t,x,y:integer;

tstr: string;

begin

assignfıle(f,'salary.dat');

reset(f);

readln(f, t);

stringGrid 1. ColCount:=t;

readln(f,t);

stringGrid 1.RowCount:=t;

86

for x:=O to stringGridl.ColCount-1 do

for y:=O to stringGridl.RowCount-1 do

begin

readln(F,tstr);

stringGrid 1. Cells[x,y] :=tstr;

..,,,end;

closefile(f);

end;

procedure TTeacher _Salary_ Chart.BitBtn2Click(Sender: TObject);

var f:textfile;

x,y:integer;

begin

assignfile(f, 'salary.dat');

rewrite(f);

writeln(f,stringGridl .colcount);

writeln(f,stringGridl .rowcount);

for x:=O to stringGridl.ColCount-1 do

for y:=O to stringGridl.RowCount-1 do

writeln(F,stringGridl .cells[x,y]);

closefile(f);

end;

procedure TTeacher _Salary_ Chart.BitBtn3Click(Sender: TObject);

begin

Teacher_ Salary_ Chart.Hide;

Main_ Menu.show;

end;

procedure TTeacher _Salary_ Chart.BitBtn4Click(Sender: TObject);

begin

application. Terminate;

end;

end.

87

APPENDIX B: DATABASE TABLES

Fig. 4.1 Login Table

Reg_jj'.,
:Bilimi
ızmzrs
1301m
1211i2ü

'01 (lj2JE
03(lj:!f!:
2~G42If

1 03032:IE

Fig. 4.2 Student Table

88

Fig. 4.3 Teacher Table

Fig. 4.4 Student Payment Plan Table

89

Fig. 4.5 Student Attendance

90

	Page 1
	Titles
	NEAR EAST UNIVERSITY
	Faculty of Engineering

	Images
	Image 1

	Page 2
	Titles
	ACKNOWLEDGEMENTS
	I

	Images
	Image 1

	Page 3
	Titles
	II

	Images
	Image 1

	Page 4
	Images
	Image 1

	Tables
	Table 1

	Page 5
	Images
	Image 1

	Page 6
	Titles
	ı
	ABSTRACT
	f

	Images
	Image 1

	Page 7
	Titles
	INTRODUCTION

	Images
	Image 1

	Page 8
	Titles
	1
	CHAPTERl
	1. BASIC CONCEPT OF DELPHI
	1.1 What is DELPID ?

	Images
	Image 1

	Page 9
	Titles
	1
	1.2 Starting to Delphi Programing
	1.2.1 The Form

	Images
	Image 1
	Image 2
	Image 3

	Page 10
	Titles
	t
	1.2.2 The Code Editor

	Images
	Image 1
	Image 2
	Image 3

	Page 11
	Titles
	ı
	1.2.3 The Speedbar
	1.2.4 The Component Palette

	Images
	Image 1
	Image 2
	Image 3

	Page 12
	Titles
	ı
	1.2.5 The Object Inspector

	Images
	Image 1
	Image 2

	Page 13
	Titles
	1.2.6 Events
	1.2.7 Exit program

	Images
	Image 1

	Tables
	Table 1

	Page 14
	Titles
	1.2.8 Boxes
	1.2.9 Inputting data

	Images
	Image 1

	Tables
	Table 1

	Page 15
	Images
	Image 1

	Page 16
	Titles
	1.2.1 O Additional Component Palette

	Images
	Image 1
	Image 2

	Page 17
	Images
	Image 1
	Image 2

	Page 1
	Titles
	lfifl

	Images
	Image 1

	Page 2
	Titles
	1.2.11 System Palette

	Images
	Image 1
	Image 2

	Page 3
	Titles
	1.3 Standard 1/0 Components.
	1.3.1. Panel Component
	1.3.2 Group Box Component

	Images
	Image 1

	Tables
	Table 1

	Page 4
	Titles
	1.3.3. Check Boxes
	1.3.4 Group boxes, Radio buttons and Radio Group Boxes

	Images
	Image 1
	Image 2

	Page 5
	Titles
	L
	1.3.5 Spin Dials

	Images
	Image 1
	Image 2

	Page 6
	Titles
	1.}6 Tab Order
	1.3. 7 Dialog Boxes
	1.3.7.1 ShowMessage Procedure
	1.3. 7 .2 The Message Dig Function

	Images
	Image 1
	Image 2

	Page 7
	Titles
	1.4 Input Forms
	1
	1.4.1 InputBox

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 8
	Titles
	1.4.2 Custom Boxes
	1
	1.4.3 Main Menu

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 9
	Titles
	l
	1.5.2 Multiple Documents
	1.5.1 Form Templates
	1.5 Forms

	Images
	Image 1
	Image 2

	Page 10
	Titles
	"'
	1.5.3 Form Style Property
	1.5.4 Project Manager
	1.5.5 Units

	Images
	Image 1

	Page 11
	Titles
	1.5.6 Declarations

	Images
	Image 1

	Tables
	Table 1

	Page 12
	Titles
	1.5. 7 Comments
	1.6 Loops
	1.6.1 If .. Then

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 13
	Titles
	1.6.2 If .. Then .. Else
	1.6.3. The Case Statement

	Images
	Image 1

	Page 14
	Titles
	1.6.4 For .. To .. Do Statement

	Images
	Image 1

	Page 15
	Titles
	1.6.5 While .. Do .. Statement
	1.6.6 Repeat .. Until

	Images
	Image 1

	Page 16
	Titles
	1. 7 Procedures and Functions
	1.7.1 Parameter Passing

	Images
	Image 1

	Page 1
	Titles
	1. 7 .2 Functions

	Images
	Image 1

	Page 2
	Titles
	1. 7 .3 Recursion

	Images
	Image 1

	Page 3
	Titles
	1.7.4 Variable Declarations
	1.8 Debugging
	1.8.1 Program Errors
	1.8.2 Using The Debugger

	Images
	Image 1

	Page 4
	Titles
	1.8.4 Setting Breakpoints
	1.8.3 Running The Program To A Breakpoint

	Images
	Image 1
	Image 2

	Page 5
	Titles
	1.8.5 Breakpoint Options
	1.8.5.1 Viewing Breakpoints
	1.8.5.2 Conditional Breakpoints

	Images
	Image 1
	Image 2

	Page 6
	Titles
	>
	1.9 File 1/0

	Images
	Image 1
	Image 2
	Image 3

	Page 7
	Titles
	1.9.1 File Attributes
	1.9.2 File Operation

	Images
	Image 1

	Tables
	Table 1

	Page 8
	Titles
	1.9 .3 Typed Files
	1.9.3.1 Typed file commands
	1.9.4. Untyped Files

	Images
	Image 1

	Tables
	Table 1

	Page 9
	Titles
	1.9.5. File Handling Components

	Images
	Image 1
	Image 2

	Page 10
	Images
	Image 1
	Image 2

	Page 11
	Titles
	CHAPTER2
	2. DATABASE CONCEPT OF DELPHI 7
	2.1 About Dbase And Paradox
	2.1.1 dBASE IV Table Specification
	2.1.2. dBase V Table Specifications

	Images
	Image 1

	Page 12
	Titles
	2.1.3. dBASE Field Types

	Images
	Image 1

	Page 13
	Titles
	2.2. Paradox Standard Table Specifications

	Images
	Image 1

	Page 14
	Images
	Image 1

	Page 15
	Titles
	2.2.1. Paradox 5 Table Specifications
	2.2.2. Paradox 7 and Above Table Specifications

	Images
	Image 1

	Page 16
	Titles
	2.2.2.1. Paradox Field Types

	Images
	Image 1

	Page 1
	Images
	Image 1

	Page 2
	Images
	Image 1

	Page 3
	Titles
	CHAPTER3
	3. DATABASE DESIGN OF THE PROGRAM
	3.1 Database Design of The Program

	Images
	Image 1

	Tables
	Table 1
	Table 2

	Page 4
	Images
	Image 1

	Tables
	Table 1
	Table 2

	Page 5
	Images
	Image 1

	Page 6
	Images
	Image 1
	Image 2
	Image 3

	Page 7
	Images
	Image 1
	Image 2

	Page 8
	Images
	Image 1
	Image 2

	Page 9
	Images
	Image 1
	Image 2

	Page 10
	Images
	Image 1
	Image 2

	Page 11
	Images
	Image 1
	Image 2
	Image 3

	Page 12
	Images
	Image 1
	Image 2

	Page 13
	Images
	Image 1
	Image 2
	Image 3

	Page 14
	Titles
	..,.
	s

	Images
	Image 1
	Image 2
	Image 3

	Page 15
	Images
	Image 1
	Image 2

	Page 16
	Images
	Image 1
	Image 2

	Page 17
	Images
	Image 1
	Image 2

	Page 18
	Images
	Image 1
	Image 2

	Page 1
	Images
	Image 1
	Image 2
	Image 3

	Page 2
	Titles
	63
	Figure 3.18 Manage Users form
	Figure 3.17 Print Preview form
	In "Manage User Form" we can add user, update user and delete user.
	If we select manage tab in fugure 3 .2 in main menu the manage user form appeared.
	When we select Show Report button the print preview form appeared.

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1

	Page 3
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5

	Page 4
	Images
	Image 1
	Image 2

	Page 5
	Titles
	CONCLUSION

	Images
	Image 1

	Page 6
	Titles
	REFERENCES
	Reference to Book:
	Reference to Electronic-Book:
	Reference to Electronic Source- Online source from Web:
	Reference to Book:

	Images
	Image 1

	Page 7
	Titles
	APPENDIX A: PROGRAM CODES
	FORM 1. STUDENT AND TEACHER MANAGEMENT FORM

	Images
	Image 1

	Page 8
	Images
	Image 1

	Page 9
	Images
	Image 1

	Page 10
	Images
	Image 1

	Page 11
	Titles
	1

	Images
	Image 1

	Page 12
	Images
	Image 1

	Page 13
	Images
	Image 1

	Page 14
	Titles
	.,,,

	Images
	Image 1

	Page 15
	Images
	Image 1

	Page 16
	Titles
	FORM 6. DELETE STUDENT FORM

	Images
	Image 1

	Page 17
	Images
	Image 1

	Page 1
	Images
	Image 1
	Image 2

	Page 2
	Images
	Image 1

	Page 3
	Images
	Image 1

	Page 4
	Titles
	FORM 16. RECORD THE PAID MONTH FORM

	Images
	Image 1

	Page 5
	Images
	Image 1

	Page 6
	Titles
	FORM 10. TEACHER SALARY CHART FORM

	Images
	Image 1
	Image 2

	Page 7
	Images
	Image 1
	Image 2

	Page 8
	Images
	Image 1
	Image 2

	Page 9
	Images
	Image 1
	Image 2

	Page 10
	Images
	Image 1
	Image 2
	Image 3

	Page 11
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 12
	Images
	Image 1
	Image 2
	Image 3
	Image 4

