
•

Table of Contents

~CKNOWLEDGMENT

ii

TRODUCTION iii

1. ERROR CONTROL CODING 1

1.1. Introduction to Error Control Coding (ECC) 1

1.2. History of Error Control Coding 1

1.3. Digital Communication System Elements 2

1.4. Applications 3

t~
1.5. Briefly What Coding Can Do 4

1.6. How Error Control Codes Work 5

1.7. Popular Coding Techniques 5

1.7.1. Automatic Repeat Request 6

3. LINEAR BLOCK CODES 22

3.1. Introduction to Linear Block Codes 22

3.2. Channel Coding 22

3.3. Simple Parity Codes 25

3.4. The Generator Matrix and Systematic Codes 27

3.5. Weight and Distance Properties 28

3.6. Decoding Task 29

3.7. Error-Detecting and Error-Correcting Capability 30

3.8. A (6, 3) Linear Block Code Example 31

3.8.1. A Generator Matrix for (6, 3) Code 32

3.8.2. Error Detection and The Parity-Check Matrix 34

3.9. Towards Error Correction 34

3.9.1. The Standard Array and Error Correction 36

3.9.2. The Syndrome of a Coset 37

3.9.3. Locating the Error Pattern 38

3.9.4. Error Correction Decoding 39

3.9.5. Decoder Implementation 41

3.10. Hamming Codes

3.10.1. How to Get the Parity Bits

3.10.2. Parity Check Equations

3.10.3. Code Generator Matrix

RESULTS

CONCLUSION

REFERENCES-

43

45

47

48

50

56

57

•

ACKNOWLEDGMENT

First I would like to thank Dr. Ali Serener to be my advisor. He encouraged me to search
more to understand and overcome the difficulties I faced in learning Error Correction
Codes. His supporting was continuous all over the way.

I also want to thank the management of Near East University for supplying the university
library with precious books in all fields that helped me to find materials related to my
project.

Special thanks to Dr. Ozgur Ozerdem to be my academic advisor, also Dr. Adnan
Al-Khasman whom I learned from him how to hold responsibilities, and how to plan for
my future life.

I want to thank my friends: Munir, Ghyath, Ghazwan, Ahmad, Zaher, Somer and Basel to
be very supportive in hard and easy times.

Finally, I want to thank my family, specially my parents. Without their support and love I
wouldn't reach this position. Also, I want to thank my sister, brother and brother in law for
encouraging me. I am trying to let them be proud of me and my achievements.

ABSTRACT

Because of the importance of digital communication in our life, and in order to get the
best performance of it, error control coding helps technicians meet there goals which is
developing error free channels to increase the capacity and transmission rate.

Mathematicians and technicians related to the communication field tried to find the
codes that helps them to achieve the aimed results. They discovered various error correcting
codes that have the ability of detecting and/or correcting the errors that occurred in the
information received from the channel by the receiver.

In this report we first defined different types of codes that are used in different fields
according to there application. Then we concentrated later on linear block codes that are the
simplest in construction and usage, but that does not mean it is less efficient.

The aim of all the error correcting codes is to meet the Shannon's limit which is to use
the full capacity to get the maximum rate in transmitting and receiving data (information).

11

•

INTRODUCTION

A profusion and variety of communication systems, which carry massive amounts of digital
data between terminal and data users of many kinds, exist today. The data (message) that
entered to the communication channel may expose to different types of noise that will
effect on the transmitted data and increase the bit error rate. The communication system
must transmit its data with very high reliability and keep the bit error rate as small as
possible.

Scientists found out that in order to decrease the amount of error rate into a
negligible rate they came out with codes (Error Control Codes). Error control codes with its
several types have the ability of detecting and/or correcting errors happened in the received
message.

This report aims to give explanation about the most popular types of codes and
concentrate on linear block codes because of its generating simplicity and its efficiency in
correcting and detecting errors.

Chapter 1 starts by telling about the importance of error controlling codes. After
that we went back in time to find out historical information about how the idea started and
what obstacles faced the scientists and people related to the field. Then we give information
about some applications that error control codes serves. At the end of the first chapter we
include different error control techniques.

Chapter 2 is related to the types of codes which have two main types: Block codes
and Convolutional codes. Block codes have several types like Cyclic, Linear and Hamming
codes. Low Density Parity Check (LDPC) code is a convolutional. We will talk about
Turbo codes. There are two types of turbo codes, Block Turbo Code (BTC) and
Convolutional Turbo Code (CTC).we will explain basic properties of each type.

Chapter 3 will go in more details about Linear Block codes and Hamming codes.
These details are concerned of how to generate the generator and parity check matrices of
the both codes. Also some basic properties that are important for constructing Linear and
Hamming codes are given.

Chapter 4 is the results section. At the beginning of this chapter we will explain in
more details how detecting and correcting errors work by using an example of brute force
look-up method. Then we will show the way of designing a [7, 4] linear block code and
some possible code words that [7, 4] code contain.

Conclusion presents the newly applications in newly invented technologies that uses
error control codes.

iii

•

CHAPTERl

ERROR CONTROL CODING

1.1 Introduction to Error Control Coding (ECC)

Many of us have heard of the term error control coding communication systems, but

few of us understand what it is, what it does, and why we should be as technology seekers

concern about it. The field is growing rapidly and knowledge of the topic will be very

important and asked to be earned by anyone involved in the design of modem

communication systems.

1.2 History of Error Control Coding

In 1948 Claude Shannon [1] showed that every communication channel has a capacity,

C (measured in bits/sec), and as long as the transmission rate, R (bits/sec), is less than Cit

is possible to design a virtually error free communication system using error control codes.

His discover showed that channel noise limits the transmission rate, not the error

probability. Prior to this discovery it was thought that channel noise prevented error free

ommunications.

After the publication of Shannon's paper [1], which didn't included how to find the

error control codes, researchers scrambled to find codes that would produce the very small

robability of error that he predicted. In the 1950s the progress of finding good performing

odes didn't succeeded in finding one. In the 1960s, the field split between the algebraists

ho concentrated on a class of codes called block codes and the probabilists who were

oncerned with understanding encoding and decoding as a random process. Probabilists

eventually discovered a second class of codes, called convolutional codes, and designed

powerful decoders for them. In the 1970s, the two research paths merged and several

efficient decoding algorithms were developed. Finally in 1981, decoders became practical;

1

•

the entertainment industry adopted a very powerful error control scheme for the new

corripact disc (CD) players [2].

1.3 Digital Communication System Elements

Digital communication systems are often partitioned as in Figure 1.

- Encoder and Decoder: the encoder adds redundant (extra) bits to the sender's bit stream

to create a codeword. The decoder uses the redundant bits to detect and/or correct as many

errors as the particular error control code will allow.

- Modulator & Demodulator: the modulator transforms the output of the encoder, which is

digital, into a format suitable for the channel, which is usually analog. The demodulator

attempts to recover data that passed the channel and effected by noise.

Sender Encoder Decoder User

Modulator Demodulator

Channel

Noise

Figure 1 -The Digital Communication System

- Communication channel: is the medium the data travel through between the transmitter

d receiver, where errors is introduced.

2

- Error control code: a set of codewords used with an encoder to detect errors, correct

errors, or both.

1.4 Applications

Because the development of data-transmission codes was motivated primarily by

problems in communications, much of the terminology of the subject has been drawn from

the subject of communication theory. These codes, however, have many other

applications. Codes are used to protect data in computer memories and on digital tapes and

disks, and to protect against circuit malfunction or noise in digital logic circuits.

Applications to communication problems are diversified. Binary messages are

ommonly transmitted between computer terminals, in communication networks, between

aircraft, and from spacecraft. Codes can be used to achieve reliable communication even

when the received signal power is close to the thermal noise power. And, as the

electromagnetic spectrum becomes ever more crowded with man-made signals, data­

transmission codes will become even more important because they permit communica­

tion links to function reliably in the presence of interference. In military applications,

· often is essential to employ a data-transmission code to protect against intentional

enemy interference.

Many communication systems have limitations on transmitted power. For example,

power may be very expensive in communication relay satellites. Data-transmission codes

rovide an excellent tool with which to reduce power needs because, with the

aid of the code, the messages received weakly at their destinations can be recovered

orrectly.

Transmissions within computer systems usually are intolerant of even very low

error rates because a single error can destroy the validity of a computer program. Error­

ontrol coding is important in these applications. Bits can be packed more tightly into

some kinds of computer memories (magnetic or optical disks, for example) by using a

data transmission code.

Another kind of communication system structure is a multi-access system, in

rhich each of a number of users is preassigned an access slot for the channel. This access

3

•

may be a time slot or frequency slot, consisting of a time interval or frequency interval

during which transmission is permitted, or it may be a predetermined coded sequence

representing a particular symbol that the user is permitted to transmit. A long binary

message may be divided into packets with one packet transmitted within an assigned

access slot. Occasionally packets become lost because of collisions, synchronization

failure, or routing problems. A suitable data-transmission code protects against these

losses because missing packets can be deduced from known packets.

Communication is also important within a large system. In complex digital

systems, a large data flow may exist between subsystems. Digital autopilots, digital

rocess control systems, digital switching systems, and digital radar signal processing all

are systems that involve large amounts of digital data which must be shared by multiple

· terconnected subsystems. This data transfer might be either by dedicated lines or by a

more sophisticated, time-shared data-bus system. In either case, error-control techniques

are important to ensure proper performance.

Eventually, data-transmission codes and the circuits for encoding and decoding

rill reach the point where they can handle massive amounts of data. One may anticipate

t such techniques will play a central role in all communication systems of the future.

Phonograph records, tapes, and television waveforms of the near future will employ digital

essages protected by error-control codes. Scratches in a record, or interference in a

eived signal, will be completely suppressed by the coding as long as the errors are less

serious than the capability designed into the error-control code. [5]

1.5 Briefly What Coding Can Do

The traditional role for error control coding was to make a troublesome channel acceptable

_, lowering the frequency of error events. Coding's role has expanded tremendously and

y coding can do the following:

Reduce the occurrence of undetected errors.

Reduce the cost of communication systems.

4

•

Overcome jamming.

Eliminate interference.

1.6 How Error Control Codes Work

A foundation in modem algebra and probability theory is required to have a full

derstanding of the structure and performance of error control codes. As we mentioned

fore that error control codes have two classes, Block codes and Convolutional codes.

Block codes has several schemes: linear block code, Hamming code and cyclic

rode. The block encoder takes a block of k bits and replace it with an-bit codeword (n>k).

or a binary code, there are 2kpossible codewords. The channel introduces errors and the

received word can be anyone of 2n n-bit words of which only 2k are valid codewords. The

b of the decoder is to find the codeword that is closest to the received n-bit word.

Convolutional codes: differ from block codes in that there are no independent

ewords. The encoding process can be envisioned as a sliding window, Mblock wide,

rhich moves over the sequence of information symbols in steps of K symbols. Mis called

constraint length of the code. With each step of the sliding window, the encoding

ss generates N symbols based on the MK symbols visible in the window.

corivolutionalcode sci constructed is called an (N, K, M) code. Convolutional codes are

only used in applications that require relatively good performance with low

plementation cost.

.7 Popular Coding Techniques

this section we will give brief explanation about four of most popular error control

ing techniques, which are:

Automatic Repeat Request (ARQ)

Hybrid ARQ

Forward Error Correction (FEC)

5

1.7.1 Automatic Repeat Request

An error detection code by itself does not control errors, but it can be used to

request repeated transmission of errored codewords until they are received error free. In

terms of error performance, ARQ outperforms forward error correction because

codewords always delivered error free. The chief advantage of ARQ is that error

detection requires much simpler decoding equipment than error correction.

1.7.2 Hybrid ARQ

Hybrid ARQ schemes combine error detection and forward error correction to make

more efficient use of the channel. At the receiver, the decoder first attempts to correct

any errors present in the received codeword. If it cannot correct all the errors, it requests

retransmission of the message again. Using one of these techniques. Type 1 Hybrid

ARQ sends all the necessary parity bits for error detection and error correction with

each codeword. Type 2 hybrid ARQ, on the other hand, sends only the error detection

parity bits and reserves the correction parity bits. If the decoder detects errors, the

receiver requests the error correction parity bits and attempts to correct the errors with

these parity bits before requesting retransmission of the entire codeword;

1.7.3 Forward Error Correction (FEC)

Forward error correction is appropriate for applications where the user must get

the message right the first time. The one-way or broadcast channel is one example.

6

•

CHAPTER2

CODES

2.1 Introduction

Error-control coding techniques are used to detect and/or correct errors that occur

in the message transmission in a digital communication system. The transmitting side of the

error-control coding adds redundant bits or symbols to the original information signal

sequence. The receiving side of the error-control coding uses these redundant bits of

symbols to detect and/or correct the errors that occurred during transmission. The

transmission coding process is known as encoding, and the receiving coding process is

known as decoding.

2.2 Block Codes

In block coding[4], successive blocks of k information (message) symbols are

formed. The coding algoritl:!_m then transforms each block into a codeword consisting of n

symbols where n>k. This structure is called an (n, k) code. The ratio kin is called the code

rate. A key point is that each codeword is formed independently from other codewords.

Figure.2.1 shows the corrupted signal via an A WGN with variance 0.02 without

error-control coding. The bit error-rate is 0.015.

7

•

t.z tA t.e 1.8 2
.X 11f1

Figure 2.1 without error control coding

But when using different block code schemes the bit error- rate will be O (n=7, k=4),

such like: Linear block code, Hamming code and Cyclic code.

2.3 Convolutional Codes

Convolutional codes [4] differ from block codes in that there are no independent

odewords. The encoding process can be envisioned as a sliding window, Mblock wide,

.hich moves over the sequence of information symbols in steps of K symbols. Mis

called the constraint length of the code. With each step of the sliding window, the

encoding process generates N symbols based on the MxK symbols visible in the window.

A convolutional code so constructed is called an (N, K, A1) code. Convolutional codes are

mmonly used in applications that require relatively good performance with low

plementation cost.

The Viterbi method is used for decoding the convolutional codes. The Viterbi

gorithm is a maximum likelihood (ML) decoding procedure that takes advantage of the

ct that a convolutional encoder is afinite state machine. The criterion used for decision

8

-making is the metric for soft decision decoding and the Hamming distance for hard

decision coding.

Figure.2.2 shows the recovered signal via the same channel as Figure. I with

onvolutional coding. The bit error rate is 0.

U.2 DA 0.6 0,8 1.2 1A 1,6 1.S 2
4-

J(to

Figure 2.2 Convolutional coding

2.4 Linear Cyclic code

Cyclic code [3] is a subset of linear code which further has the cyclic property.

Linear Cyclic Code) A code is linear cyclic if

. The linear combination of any two codewords is also a codeword;

-· Any cyclic shift of a codeword is also a codeword.

In the definition, the first property is linearity and second cyclic.

9

•

2.4.1 Generator Polynomial and Parity Check Polynomial

Within the set of code polynomials of a linear cyclic code C, there is a unique

polynomial 1 g(x) with minimal degree r < n such that every code polynomial c(x) can be

expressed as c(x) = m(x)g(x), where m(x) is a polynomial of degree less than (n-r). The

order-r polynomial g(x) is called the generator polynomial of code C.

The existence of the generator polynomial suggests a convenient method for

mapping message words onto codewords of a linear cyclic code. For a k = n-r long message

word m= mn ... mi.), we can associate with it a message polynomial m(x) =ms+ ... m k-JXk-J.

Then, the m can be encoded through multiplication of m(x) by the generator

polynomial g(x).

The generator polynomial g(x) of an (n, k) linear cyclic code divides xn -1.

Reversely, any order-r factor polynomial of x" -1 can generate a linear cyclic code (n, n-r).

According to the theorem, there exist an order k polynomial h(x) such that

g(x)h(x) =xn -1. For a code polynomial, c(x) = m(x)h(x), we have c(x)h(x) = m(x)g(x)h(x)

= 0 modulo x" -1. Therefore, h(x) is called parity check polynomial.

2.4.2 Generator and Parity-Check Matrices

Cyclic codes also have generator and parity-check matrices, and these matrices are

related to the generator and parity check polynomials of the codes. Consider the encoding

procedure.

c(x) = m(x)g(x) = (!llo + ... + mk-1) g(x) = [mo .m, ... m k-d

g(x)
xgx)

(2.1)

xn----k-1g(x)

10

•

It provides a convenient matrix relation.

go g, ... g, 0

f =Ic«. ... ,c n-d = [mo, ... ,mk-d I go g, . .. g, I =mG (2.2)
go g, ... g,

0 go g, ... g,

The generator matrix G is a Toeplitz matrix composed of the coefficients of the generator

polynomial g(x). Similarly, we can obtain the parity check matrix.

hk s., ho 0

H= I hk hk-1 ho I (2.3)
hk «, ho

0 hk hk-1 ho

It is easy to verify that £Hr= 0. Similar to the discussion for linear code, if we use Has

generator matrix and G parity check matrix, we obtain an (n-k, k) code which is the dual

ode of the original one.

2.4.3 Systematic Linear Cyclic Code

Recall that a systematic code has the message word as part of the corresponding

odeword, i.e., c= b0 ... bn-k-I mo ... mk-I· Therefore, the code polynomial can be expressed

as

c(x) = b(x) + xn-k m(x) (2.4)

ince c(x) must be a multiple of the generator matrix g(x),

11

•

c(x) = a(x)g(x) = b(x) + xn-k m(x) (2.5)

This gives us the following systematic encoding algorithm for an (n, k) linear cyclic code.

Step 1 Multiply the message polynomial m(x) by xn-k.

Step 2 Divide the result from Step 1 by the generator polynomial g(x); let b(x) be the

remainder.

Step 3 Set the code polynomial c(x) = xn-k m(x) + b(x).

2.4.4 Syndrome Decoder for Linear Cyclic Code

In the discussion of linear block codes, the syndrome vector was used to implement

error correction. The basic idea is that every syndrome value corresponds to a coset of C in

the binary word space. The error pattern with the lowest weight within a given coset is the

most likely to occur, and is thus selected as the coset leader. Maximum likelihood error

correction is performed by computing the syndrome for a received binary word, looking up

the corresponding by coset leader, and subtracts the coset leader from the received word.

This procedure also applies the linear cyclic code. The received binary word can be

represented as a order-n polynomial.

r(x) = c(x) + e(x) (2.6)

where c(x) is the transmitted code polynomial and e(x) is the error pattern polynomial. The

syndrome polynomial s(x) is the remainder of dividing r(x) by g(x) (or the modulo e:'
multiplication of r(x) with h(x)). So, we can write

r(x) = q(x)g(x) + s(x) (2.7)

.here q(x) is the quotient polynomial of r(x) divided by g(x). Since c(x) must be a multiple

f g(x): c(x) = a(x)g(x),

12

•

s(x) = [q(x) + a(x)]g(x) + e(x) (2.8)

The syndrome decoder for linear cyclic block codes includes the following steps:

Step 1 Express the received binary word in polynomial form, r(x).

Step 2 Divide r(x) by g(x) and find the remainder s(x)

Step 3 If s(x) = 0, there is no error; if s(x) -:I- 0, find the corresponding coset leader e(x) to

correct the error according c(x) = r(x) + e(x).

Using the syndrome decoder, the receiver needs to store the syndrome table which contains

r: entries. For linear cyclic codes however, the size the syndrome table can be reduced to

1/n of its original size thanks to the cyclic structure. Figure.2.3 shows the performance of

cyclic codes on Additive White Gaussian Noise (A WGN) channel.

Q2 Q4 Q6 Q8 L2 1.4 1.6 i.a 2

Figure.2.3 Cyclic code n= 7, k= 4

13

•

2.5 Low-Density Parity Check Codes (LDPC)

LDPC codes [6] are conceptually very simple, and are defined in terms of a spars~

parity check matrix. The decoder uses the message passing algorithm. The message passing

algorithm is highly parallel and is ideally suited for high data rate applications. Careful

programming of the decoder results a surprisingly simple decoder.

An (n, k) block code C is a mapping between a k-bit message (row) vector m, and

an n length codeword vector c. The code C is linear if a k-dimensional subspace of an

n_dimensional binary vector space Vn. The code can also be viewed as a mapping of

k-space ton-space by a k x n generator matrix G, where c = mG. The rows of G constitute a

basis of the code subspace. The dual space, CT consists of all those vectors in Vn

orthogonal to C, namely for all c E C and all d E CT,< c, d >= 0. The rows of an (n-k x n)

parity check matrix H constitute a basis for CT. It follows that for all c E C, cHT = 0. A
code is completely specified by either G or H, but neither are unique.

A low density parity check code is one where the parity check matrix is binary and

sparse, where most of the entries are zero and only a small fraction are 1 's. In its simplest

form the parity check matrix is constructed at random subject to some rather weak

constraints on H. At-regular LDPC is one where the column weight (number of ones) for

each column is exactly t resulting in an average row weight of [n t /(n - k)].

One might fix the row weight to be exactly s = [n t /(n _ k)]. An (s, t)-regular LDPC is one
where both row and column weights are fixed. The following parity check matrix H is an

LDPC matrix with t = 2

H=

1 0 0 1 1 1 1

0 1 0 1 0 1 0

0 1 1 0 0 0 0

1 0 1 0 1 0 1

14

•

and for any valid codeword c

1 0 0 1 1 1 1
Co

H= IO 1 0 1 0 1 0
C1

0 1 1 0 0 0 0
I (2.9)

1 0 1 0 1 0 1 I I C5

c6

This expression serves as the starting point for constructing the decoder. The matrix/vector

multiplication in H defines a set of parity checks, which for the specific example are

(2.10)

Pl = CJ EB C3 EB C5 (2.11)

p2 = CJ EB C2 (2.12)

(2.13)

A complete discussion of the message passing decoder is given in the next section.

ext, we address encoding. By defining an LDPC code in terms ofH alone it is not obvious

what constitutes the set C of valid codewords. Furthermore we need to specify the

generator matrix G for the encoder. A straightforward way of doing this is to first reduce H

to systematic form Hsys = [In-k I P] : In principle this is simple using Gaussian elimination

and some column reordering. As long as H is full (row) rank, Hsys will have n _ k rows.

There is some probability, however, that some of the rows ofH are linearly dependent. In

15

that case H is not full rank and the resulting H wil] be in systematic form, albeit with fewer

rows. Once His in systematic form, it is easy to confirm that a valid (systematic) generator

matrix is Gsys = [PT, Ii] since GH T = 0, it is interesting to note that the Hsys no longer has
fixed column or row weight, and with high probability P is dense. The denseness of P can

make the encoder quite complex.

As an example the parity check matrix in (2.9) can be reduced to systematic form as

Hsysternatic =

1 0 0 0 1 0 1

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 1 0

(2.14)

2.6 Turbo Codes

The main goal of coding theory has always been to produce error-correcting codes

that come close to the Shannon limit performance. Aiming to achieve near the Shannon

limit performance, the research in coding theory has seen many powerful codes with large

codeword lengths (for block codes) or constraint lengths (for convolutional codes).

However, the decoding algorithms for many of these codes are complex or sometime

physically unrealizable due to the lengths of the codes. As a result, the complexity in

decoding powerful error-correcting codes has always been thought of as the real

difficulty in the field of channel coding.

One possible solution to this problem is to construct powerful codes with large

block or constraint lengths structured so as to permit the breaking of the decoding into

simpler partial decoding steps. Iterated codes, product codes, concatenated codes, and large

constraint length convolutional codes with suboptimal decoding strategies are some

examples of these attempts. The most recent successful attempt consists of the so-called

turbo codes, whose amazing performance has given rise to a large interest in the coding

community.

16

Turbo codes were introduced by Berrou [4] in 1993. Using turbo codes, Berrou

showed that it is possible to transmit data with a code rate above the channel cutoff rate.

He achieved an exceptional low BER with a signal to noise ratio (Eb/NO) close to the

Shannon's theoretical limit on a Gaussian channel. The turbo coding scheme consists of

two recursive systematic convolutional codes concatenated in parallel. The codewords

are decoded using iterative maximum-likelihood (ML) decoding (soft decoding) of the

component codes. Maximum a posteriori (MAP) algorithm is used to perform maximum

space likelihood bit estimation and thus yields reliability information (soft-output) for each

bit. This decoding algorithm is implemented using soft-input/soft-output decoders. By

cascading several of these decoders, an iterative ML decoding can be performed on the

component codes which are optimal at each decoding step.

Turbo codes have received much attention since 1993, and many papers related to

turbo codes have been published. The turbo code proposed by these papers can be

broadly divided into two major types: block turbo codes (BTC) and convolutional turbo

codes (CTC).

In BTC, the encoder is formed by concatenating two or more linear block

encoders to generate the codewords. In most cases, two dimensional product codes,

which can be thought of as serially concatenated block codes, are used, instead of codes

generated by concatenating linear block codes. To decode the product codes, iterative

soft-input/soft-output (SISO) decoding, which is also called turbo decoding, is used, in

place of the conventional hard decision decoding.

In CTC, the encoder is formed by concatenating two or more convolutional

encoders in parallel through the use of an interleaver. The input information bits enter the

first encoder and after having been scrambled by the interleaver, enter the second encoder.

The codeword of the CTC consists of the information bits followed by the parity

checkbits of both convolutional encoders. As was in the BTC, turbo decoding is used to

decodethe CTC codewords.

2.6.1 Block Turbo Codes (BTC)

In BTC, the encoder is formed by concatenating two or more block encoders to

17

•

generate the codewords. Most of the research works on BTC use product codes, which

can be thought of as serially concatenated block codes, to encode the information data

and very few have considered codes generated by concatenating linear block codes

such as Hamming code. The next section will present the BTC which uses product codes to

encode the information data.

2.6.1.1 Product codes

Product codes are serially concatenated codes which are widely used in practice due

to the simplicity of their implementation and their capability in fighting against bursts of

errors. They are generated by arranging the message bits in an array of k1 rows and k2

columns and then appending horizontal parity check bits to each row and vertical parity

check bits to each column (as shown in Figure. 2.4)

Inforrnaticn bits

Checks
on
rows

1

Checl(s on columns

Figure 2.3 construction of product code

An example of single-parity product codes is shown in Figure 2. The relationship between

the data and parity bits is as follows:

18

•

where EB denotes exclusive or addition. As shown in Figure 2.4, the data sequence di dz ds

d4 is made up of the binary digits 1 0 0 1. Using Equation 2.11, the parity sequence p 12 p 34

p 13 p 14 is found to be 1 1 1 1. Thus, the transmitted sequence is

(2.15)

the transmitted sequence is

+l-1-1+1+1+1+1+1

This example will be used in the subsequent sections to show the principles of block

turbo coding.

di=l ch=O

d3=0 dr=I p34=l

p13=l

Figure 2.4 Product code example

2.6.2 Convolutional Turbo Codes

In CTC, the encoder is formed by concatenating two or more convolutional

encoders in parallel through the use of an interleaver. The input information bits enter the

first encoder and after having been scrambled by the interleaver, enter the second encoder.

The codewords of the CTC consist of the information bits followed by the parity check

bits of both convolutional encoders.

19

•

2.6.2.1 Construction of CTC

Figure.2.5 shows the concatenated encoders proposed by Berrou , where recursive

systematic encoders (RSC) are used. The information data, di, goes directly to the first

elementary RSC encoder C1 and after interleaving, feeds the second elementary RSC

encoder C2. The information data, di, is systematically transmitted as symbol X, and
redundancies Ylkand Y2k produced by C1 and Ce respectively. In general, the two

component encoders need not be identical with regard to constraint length and rate.

Therefore, the two elementary coding rates R1 and R2 associated with C1 and C2 may be

different. For best decoding performance, the two elementary coding rates should satisfy

R1 :::; R2• The global rate R of the composite code is given by the following equation

(2.16)

In designing turbo codes, the main goal is to select the best component codes by

maximizing the effective free distance of the code. At large values of Eb/No, this is

equivalent to maximizing the minimum weight codeword. However, at low values of

Eb/No, optimizing the weight distribution of the codewords is more important than

maximizing the minimum weight.

Additional component codes can be added by parallel concatenating the component

encoder. The parallel concatenation enables the elementary encoders, and therefore the

associated elementary decoders, to run with the same clock. This provides an important

implification for the design of the associated circuits in a concatenated scheme.

2.6.3. Performance of BTC and CTC

Most of the research works on turbo codes are focused on the CTC and very few

have considered the BTC. However, it has been shown in that BTC performs better than

CTC for high-code-rate applications. The main reason is that the minimum distance of a

20

turbo code becomes critical when the interleaver size is small. While the minimum distance

of a CTC can be relatively small, a product code can provide a minimum distance of 16, 36

(or more).

BTC also performs better than CTC for high-data-rate systems. In high-data-rate

systems, the decoding speed of a BTC can be increased by using several elementary

decoders for the parallel decoding of the rows (or columns) of a product code since they

are independent.

The turbo codes have been shown to achieve exceptionally low BER with a signal to noise

ratio close to the Shannon theoretical limit.

The choice ofBTC and CTC depends on the code rate of the system. The

simulation results from different authors show that for a given BER, it is possible to define

a "threshold rate". For rates smaller than the threshold value, the CTC should be used, and

for rates greater than this rate it is better to use BTC.

Ci
Recursive
Systematic

Code
(37,21)

delay line

interleaving
Y2k

C2
Recursive
Systematic

Code
(37,21)

Figure 2.5. Berrou's Encoder for CTC

21

•

CHAPTER3

LINEAR BLOCK CODES

3.1 Introduction to Linear Block Codes

Channel coding is an error-control technique used for providing robust data

transmission through imperfect channels by adding redundancy to the data. There are two

important classes of such coding methods: block and convolutional. Forward error

correction (FEC) is the name used when the receiving equipment does most of the work. In

the case of block codes, the decoder looks for errors and, once detected, corrects them

(according to the capability of the code). The technique has become an important signal­

processing tool used in modem communication systems and in a wide variety of other

digital applications such as high-density memory and recording media. Such coding

provides system performance improvements at significantly lower cost than through the use

of other methods that increase signal-to-noise ratio (SNR) such as increased power or

antenna gain.

3.2 Channel Coding

Channel coding involves data transformations that are used for improving a

system's error performance by enabling a transmitted message to better withstand the

effects of channel impairments such as noise, interference, and fading. For applications that

use simplex channels (one-way channels such as compact disk recordings), the coding

techniques must support FEC since the receiver must detect and correct errors without the

use of a reverse channel (for retransmission requests). Such FEC techniques can be thought

of as vehicles for accomplishing desirable tradeoffs that can reduce bit error rate (BER) at a

fixed power level or allow a specified error rate at a reduced power level at the cost of

increased bandwidth (or transmission delay) and a processing burden. A data or message

22

•

vector m = mi .mz.me containing k message elements from an alphabet is transformed

by the block code into a longer code vector or code word U = ui, us. ... , Un containing n

code elements constructed from the same alphabet. The elements in the alphabet have a one

to one correspondence with elements drawn from a finite field.

Finite fields are referred to as Galois fields, after the French mathematician

Evariste Galois (1811-1832). A Galois field containing q elements is denoted GF(q), with

the simplest such finite field being GF(2), the binary field with elements (1, 0), which have

the obvious connection to the logical symbols (1, 0) called bits. When we deal with fields

that contain more than two elements, these nonbinary elements are encoded as binary m­

tuples (m-bit sequences). Then the elements are processed as binary words according to the

rules of the field in much the same way that decimal integers were encoded as binary-coded

decimal (BCD) symbols in early computers. and in contemporary calculators.

The number of output elements n (code bits) and input elements k (data bits)

characterizing a block code are denoted by the ordered pair (n, k). Often, the designation (n,

k, t) is used to indicate that the code is capable of correcting t-errors in then-element code

word. For transmitting the code bits (comprising U) with waveforms, a common practice is

to use bipolar pulses with values (+ 1, -1) to represent the binary logic levels (1, 0),
respectively. For a radio system, such pulses are modulated on to a carrier wave, typically

denoted s (t).

Channel impairments are responsible for transforming a transmitted waveforms (t)

into a corrupted waveform r(t) = s (t) + n(t) , which is received and processed by a
demodulator/ detector. The demodulator recovers samples of the corrupted waveform, and

the detector interprets the digital meaning of that waveform. A commonly used model for

n(t) is that of an additive white Gaussian noise (A WGN) process. Noise, interference, and

channel distortion mechanisms account for the detector making errors. Consequently,

instead of accurately reproducing the bipolar pulse values or logic levels (representing U),

the detector might instead output a corrupted version r, written as

r=U+e(l) (3.1)

23

•

where r = rt, rs. ... , r« represents a received block of n elements, and e = ei, es ... , en

represents the corruption, referred to as the error sequence or error pattern.

3.2.1 Hard Decisions and Soft Decisions

In Figure.3.1, each detected element r, of the received vector r can be described as a

quantized-amplitude decision.

Message
Vector

Figure.3.1 channel encoding/decoding

The decision may simply answer the question "Is the amplitude greater or less than

zero?" yielding a binary decision of 1 or 0. Such a decision is called a hard decision

because the detector firmly selects one of two levels. Sometimes the detector's decision

may answer multiple questions such as "Is the amplitude greater or less than zero, and is it

greater or less than some reference level?" For binary signaling, such multipart decisions

are called soft decisions; they offer the decoder side information about the SNR of the
'

corrupted analog waveform.

24

•

A soft decision might tell the decoder, "this signal has a positive amplitude, but it is

not very far from the zero amplitude" or "this signal has a positive amplitude, and it is quite

far from the zero amplitude." The most popular soft-decision format entails eight-level

signal quantization, which can be interpreted as a hard decision plus a measure of

confidence. The figure-of-merit for the error performance of a digital communication

system is usually expressed as a normalized SNR, known as the ratio of bit energy to noise

power spectral density, Eb IN0• The coding gain or benefit provided by an error-correcting

code to a system can be defined as the "relief' or reduction in required Eb IN0 that can be

realized due to the code. For an A WGN channel, when the detector presents the decoder

with such soft decisions, the system can typically manifest an improvement in coding gain

of about 2 dB compared to hard-decision processing. For the majority of block-code

applications, hard-decision decoding is used. A received vector rout of the detector is

made up of hard-decision components, designated by pulses(+ 1, -1) or by logic levels (1,

0). Soft decisions are also of great value for systems using iterative decoding techniques

that operate close to theoretical limitations. Examples of such techniques are turbo codes

and low density parity check (LDPC) codes.

3.3 Simple Parity Codes

At the transmitter, the encoder adds redundancy with a set of constraints that must

be satisfied by the set of all code words. Error detection occurs when a received vector does

not satisfy the constraints. The simplest approach to error detection modifies a binary data

sequence into a code word by appending an extra bit called a parity bit. When using the

constraint that a code word must contain an even number of ones, the scheme is referred to

as even parity (the constraint of an odd number of ones is called odd parity). To establish

the even-parity condition, the parity bit pis formed, as the modulo-2 sum of the message

bits, as

(3.2)

25

•

where the symbol EB indicates modulo-2 addition. The test (even-parity check) conducted by

the receiver verifies that the modulo-2 sum of the parity plus message bits in the received

sequencer is zero. If the sequence fails the test, an error 'has been detected. We refer to the

test result as the syndrome S, written as

(3.3)

The syndrome in (3.3) can be modeled as the modulo-2 sum of the transmitted sequence

and the error sequence, as

(3.4)

S = (m, EB m2 EB • • ·EBmk EB p) EB (e J EBe2 EB • • ·EBek EBek+J)

= 0 EB (e1 EBe2 EB •• ·EBek EBek+J). (3.5)

When factored into separate message and error sequences as seen in (3.5), we

recognize that the syndrome tests both the transmitted sequence and the error sequence, but

since the syndrome of the transmitted sequence is zero, the syndrome is only responding to

the error sequence. For the case of a single parity bit, as in (3.5), only an odd number of

errors can be detected, since an even number of errors will yield the syndrome S = 0.
A single parity bit can only be used for error detection. To perform error correction,

we require additional information to locate the error positions; the code word needs to be

embedded with more than a single parity bit. A simple example of a code that appends

additional parity bits to the message sequence is shown in (3.6. Here, a set of eight message

elements is packed into a two-dimensional array from which we form parity for each row

and parity for each column.

The appended array can be rearranged into a code word sequence U as

U = m 1 m2 m3 m4 m5 m6 m7 1118 p 1 p2 p3 p4 p5 p6. (3.6)

26

•

When U is received, it can be mapped back to the same two-dimensional array, and

a set of syndromes can be calculated corresponding to each row and each column. A single

error located anywhere in the message positions will cause a nonzero syndrome in a row

and in a column, and thus the intersection of the row and column corresponding to the

parity failure contains the single error. One should conclude that a block code capable of

detecting and correcting error sequences needs to have multiple parity symbols appended to

the data message and multiple syndromes generated during the parity checks at the receiver.

3.4 The Generator Matrix and Systematic Codes

The most general form of the parity generation process, in which each code element

u, of the code word U is a weighted sum of message elements, can be written in the form of

a vector matrix equation as

U=mG (3.7)

[it1 »a «s · · · Un] = [n2:1 1·n2 lf'.l:3 • • · tn k]
g1,1 .il,2 .il,3
.f/2,l .tJ2,2 .i2,3

X I g3,l 93,2 93,3

.[/1, 1J
g2,n
93,n

where the entries of the matrix G, called the generator matrix, represent weights (field­

element coefficients), and the multiplication operation follows the usual rules of matrix

multiplication. The product of a message row-vector m with the ith column-vector of G

forms ui a weighted sum of message elements representing the ith element of the code word

row-vector U. For a binary code, the data elements as well as the matrix weights are ls and

Os.

A useful variant of the code word U is one in which the vector of message elements

is embedded, without change, in the code word along with an appended vector of parity

27

•

elements. When the code word is constrained in this manner, the code is called a systematic

code. To form a systematic code the generator matrix G can be modified

in terms of submatrices P and Ik as follows:

U = rnG = 111 [Pllk] (3.8)

U;;• [-u1 it2 'tt-3 · • ,, tt,i] = [1n1 1n2 tn3 · · · 1n;.J
g1,k+l gi,n 1 0 0 0
lf2, k+l ' · · 92, n O 1 0 · · · 0
g3,k+l 93,n O O 1 0

X

lJk,k+l •.. tJk, n 0 0 0 1

p

where P is the parity portion of G, and Ik is a k-by-k identity sub matrix (ones on the main

diagonal, and zeros elsewhere).

3.5 Weight and Distance Properties

The Hamming weight w(U) of a code word U is defined as the number of nonzero

elements in U. For a binary vector (or a nonbinary vector with field elements represented in

binary form), this is equivalent to the number of ones in the vector. For example, if U = 1 0
0 101 1 0 1, then w(U) = 5. The Hamming distance d(V, V) between two binary code

words U and Vis defined as the number of bit positions in which they differ. For example

if U=100101101

and V = 0 1 1 1 1 0 1 0 0

then d(U, VJ = 6.

28

•

By the properties of linear block codes, we say that the sum of two different codeword is a

third codeword.

W = V+ V = 1 1 1 0 1 1 0 0 1

Thus, we observe that the Hamming distance between two code words is equal to

the Hamming weight of the summed vectors: that is, d(U, V) = w(U+ V). Also, note that the

Hamming weight of a code word is equal to its Hamming distance from the all-zeros

vector.

3.6 Decoding Task

The decoding task can be stated as follows: Having received the vector r, find the best

estimate of the particular code word Vi that was transmitted. The optimal decoder strategy

is to minimize the decoder error probability, which is the same as maximizing the

probability P(U = Vi Ir). If all code words are equally likely and the channel is memoryless,

this is equivalent to maximizing P(rlVi), the conditional probability density function (pdf)

of r, expressed as

p(rlU 1) = max p(riUf)
over all U1 (3.9)

where the pdf, conditioned on having sent V , is called the likelihood of V1 . Equation (3 .9),

known as the maximum likelihood (ML) criterion , can be used for finding the "most

likely" V1 that was transmitted. For algorithms using Hamming distances, the likelihood of

V1 with respect tor is inversely proportional to the distance between rand V1, denoted

d(r, V;). Therefore, we can express the decoder decision rule as: Decide in

favor of V1 if

29

d(r, U.,) = min d(r, U1)
over all U1. (3.10)

3.7 Error-Detecting and Error-Correcting Capability

The smallest member of the set is called the minimum distance of the code and is

denoted dmin· To find dmin, we need not search the set of code words in a pairwise fashion.

Because of the closure property, we need only find the nonzero code word having the

minimum weight. The minimum distance, like the weakest link in a chain, gives us a

measure of the code's capability (indicates the smallest number of channel errors that can

lead to decoding errors). Figure 3.2 illustrates the distance between two code words U and

V using a number line calibrated in Hamming distance, where each black dot represents a

corrupted code word. In this example, let the distance d(U, V) be the minimum distance

dmin = 5. Figure 3.2(a) illustrates the reception of a vector r1, which is distance 1 from U

and distance 4 from V. An error-correcting decoder, following the ML strategy, will select

U upon receiving r 1• If r 1 had been the result of a 1-b corruption to the transmitted code

word U, the decoder has successfully corrected the error. But if r1 had been the result of a

4-b corruption to the transmitted code word V, the result is a decoding error. Similarly a

double error in transmission of U might result in the received vector r2, which is distance 2

from U and distance 3 from V, as shown in Figure 3.2(b). Here too, the decoder will select

U upon receiving r2. A triple error in transmission of U might result in a received vector r3

that is distance 3 from U and distance 2 from V, as shown in Figure 3.2(c). Here the

decoder will select V upon receiving r3 and, given that U was transmitted, will have made a

decoding error. From Figure 3.2, one can see that if the task is error detection (and not

correction), then as many as 4-b errors can be detected. But, if the task is error-correction,

the decision to choose U if r falls in region 1, and V if r falls in region 2, illustrates that this

code (with dmin = 5) can correct as many as 2-b errors. We can generalize a linear block

code's error-detection capability e and error-correction capability t as

30

•

8=dm111-l

t = li .. ' dnnn = 1 J.• 2
(3.11)

where the notation _x _, called the floor of x, means the largest integer not to exceed x (in

other words, round down if not an integer).

D.ecision
Line

Region 1 Region2

u V

(a)

u r2: V

(b)

u V

(c)

Figure 3.2. Error correction and detection capability

3.8 A (6, 3) Linear Block Code Example

Table.3.1 describes a code word-to-message assignment for a (6, 3) code, where the

rightmost bit represents the earliest (and most-significant) bit. For each code word, the

rightmost k = 3 bits represent the message (hence, the code is in systematic form).

31

..

Since k = 3, there are 2k = 23 = 8 message vectors, and therefore there are eight code

words. Since n = 6, then within the vector space Vn = V6 there are a total of 2n = 26 = 64 6-
tuples. It is easy to verify that the eight code words shown in Table.3.1 form a subspace of

V6 (the all-zeros vector is one of the code words, and the sum of any two code words is

also a code word). Note that for a particular (n, k) code, a unique assignment does not exist;

however, neither is there complete freedom of choice.

Table 3.1 Assignment of message to code word for the (6, 3) code

3.8.1 A Generator Matrix for the (6, 3) Code

For short codes, the message-to-code-word mapping in Table 3.2 can be accomplished via a

lookup table, but if k is large, such an implementation would require a prohibitive amount

of memory. Fortunately, by using a generator matrix G. It is possible to reduce complexity

by generating the required code words as needed instead of storing them. Since the set of

code words is a k-dimensional subspace of the n-dimensional vector space, it is always

possible to find a set of n-tuples (row-vectors of the matrix G), fewer than 2k that can

generate all the 2k code words of the subspace. The generating set of vectors is said to span

32

•

the subspace. The smallest linearly independent set that spans the subspace is called a basis

of the subspace, and the number of vectors in this basis set is the dimension of the

subspace. Any basis set of k linearly independent n-tuples V 1, V 2, ... , V k (that spans the

subspace) can be used to form a generator matrix G. This matrix can then be used to

generate the required code words, since each code word is a linear combination of

V1, V2, ... ,Vk. That is, each code word U within the set of2k code words can be

described by

(3.12)

where each mi= (1 or 0) is a message bit and the index i = 1, ... , k represents its position.

In general, we describe this code generation in terms of multiplying a message vector m by

a generator matrix G. For the (6, 3) code introduced earlier, we can fashion a

generator matrix G in systematic form, as

[

·\11]
G == ;~

l 1 0
0 1 1
1 0 1 .._,_.

p

1 0 0
0 1 0
0 0 1 ._,_,

Ik
(3.13)

where P and h represent the parity and identity sub-matrices, respectively, and Vi, V2, and

V3 are three linearly independent vectors (a subset of the eight code vectors) that can

generate all the code words, made up of the weights {giJ }. Note also that the sum of any

two generating vectors does not yield any of the other generating vectors since linear

independence is, in effect, the opposite of closure. The generator matrix G completely

defines the code and represents a-compact way of describing a block code. If the encoding

operation utilizes storage, then the encoder only needs to store the k rows of G instead of

33

•

all 2k code words of the code. For systematic codes, the encoder only stores the P sub­

matrix; it doesn't need to store the identity portion of G.

3.8.2 Error Detection and the Parity-Check Matrix

At the decoder, a method of verifying the correctness of a received vector is needed. Let us

define a matrix H, called the parity-check matrix, that will help us decode the received

vectors. For each (k x n) generator matrix G, one can construct an (n - k) x n matrix H,

such that the rows of G are orthogonal to the rows of H. Another way to express this

orthogonality is to say that GHT = 0, where HT is the transpose of H, and O is a
k x (n - k) all-zeros matrix. HT is an n x (n - k) matrix (whose rows are the columns ofH).

To fulfill the orthogonality requirements of a systematic code, the H matrix can be written

as H = [In-k IPT], where In-k represents an (n - k) x (n - k) identity submatrix and P

represents the parity submatrix defined in (3.13). Since by this definition of H, we see that

GHT = 0, and since each U is a linear combination of the rows of G, then any vector r is a

code word generated by the matrix G, if and only if

(3.14)

Equation (3 .14) is the basis for verifying whether a received vector r is a valid code word.

3.9 Towards Error Correction: Syndrome Testing

We can model the received word r as a summation r = c + e, where c is the
transmitted codeword and e is the error pattern induced by the channel noise. If we could

know e then the codeword is given as c = r + e. But, how can we get e from r?

Consider

(3.15)

34

•

The length-(n - k) words is called the syndrome [4] of the received word r. Though the

syndrome s depends only on the error patter e, there are many error patterns which can

yield the same syndrome. Indeed, for any codeword c0 other than c, c0 + e is an error
pattern having the same syndrome s. The collection of all the error patterns that give the

same syndrome is called a coset of the code. Any two error patterns in a coset are different

by a codeword, so each coset contains 2k different error patterns. Since there are 2n possible

error patterns, there must be 2n=2k = 2n-k different cosets corresponding to the 2n _ k

different syndromes. In other word, for each syndrome, there is a coset of 2k error patterns

which can generate it. Then, which one is the right one?

The minimum Hamming distance decoder picks up a codeword cO such that

r = cO + eO where eO has the smallest possible weight. Therefore, for a given syndrome, the

decoder should choose among the corresponding coset the lowest-weight error patter. The

error pattern with lowest weight in a coset is called the coset leader.

As a summary, the minimum Hamming distance decoder for linear block codes

works this way:

When receiving a word r,

1. Compute the syndrome s = rH T ;

2. Ifs = 0, choose codeword c0 = r and go to step 4; if ss= 0, find the coset leader e'

corresponding to s;

3. Choose the codec'= r + e;
4. Mapping c' back to the message word.

At step 2, if there are more than one candidate coset leader, the decoding fails. This

decoding procedure is called syndrome decoding. Syndrome decoder only needs to store

the parity check matrix H and the 2n-k coset leaders, requiring less memory than simple

minimum Hamming distance decoder which needs to store all 2k codewords. In addition,

the syndrome decoder only involves simple matrix computation and Figure(3.3) looking up

which can be implemented easily using digital processors or circuits.

35

•

syndrome 0000000 1000111 0101011 0011101 1101100 1011010 0110110 1110001
0001 0000001 1000110 0101010 0011100 1101101 1011011 0110111 1110000
0010 0000010 1000101 0101001 0011111 1101110 1011000 0110100 1110011
0100 0000100 1000011 0101111 0011001 1101000 1011110 0110010 1110101
1000 0001000 1001111 0100011 0010101 1100100 1010010 0111110 1111001
1101 0010000 1010111 0111011 0001101 1111100 1001010 0100110 1100001
1011 0100000 1100111 0001011 0111101 1001100 1111010 0010110 1100001
0111 1000000 0000111 1101011 1011101 0101100 0011010 1110110 0110001
0011 0000011 1000100 0101000 0011110 1101111 1011001 0110101 1110010
0110 0000110 1000001 0101101 0011011 1101010 1011100 0110000 1110111
1100 0001100 1001011 0100111 0010001 1100000 1010110 0111010 1111101
0101 0011000 1011111 0110011 0000101 1110100 1000010 0101110 1101001
1010 0001010 1001101 0100001 0010111 1100110 1010000 0111100 1111011
1001 0010100 1010011 0111111 0001001 1111000 1001110 0100010 1100101
1111 0010010 1010101 0111001 0001111 1111110 1001000 0100100 1100011
1110 0111000 1111111 0010011 0100101 1010100 1100010 0001110 1001001

Figure 3.3 The syndrome table

3.9.1 The Standard Array and Error Correction

The syndrome test gives us the ability to detect errors and to correct some of them. Let us

arrange the 2n n-tuples that represent possible received vectors in an array, called the

standard array. This array can be thought of as an organizational tool or a filing cabinet

that contains all of the possible vectors in the space, nothing missing, and nothing

replicated. The first row contains the set of all the 2k code words U 1, U2, ... , U2k starting

with the all-zeros code word designated U1• In this array, each row, called a coset, consists

of an error pattern in the leftmost position, called a coset leader, followed by corrupted

code words (corrupted by that error pattern). Thus the first column, made up of coset

leaders, displays all of the correctable error patterns. The structure of the standard array for

an (n, k) code, is

36

•

U1 U2
e:2 U2+e2
e3 U2 + e3

u,
U, +e2
U1+e:,

U2•
U2t + e2
U2• + e3

ui+ej

Note that code word U1 plays two roles. It is one of the code words (the all-zeros code

word), as well as the error pattern er, that is the pattern that introduces no errors so that

r = U+ e1 = U. Since the array contains all the 2n n-tuples in the space, each n-tuple
appearing only once, and each coset or row contains 2n n-tuples, we can compute the

number of rows in the array by dividing the total number of entries by the number of

columns. Thus, in any standard array, there are 2n;2k = 2n-k cosets. At first glance, the
benefits of this tool seem limited to small block codes, because for code lengths beyond n =

I

20 there are millions of ntuples in Vn. Even for large codes, however, the standard array

concept allows visualization of important performance issues, such as bounds on error­

correction capability, as well as possible tradeoffs between error correction and detection.

In the sections that follow, we show how the decoding algorithm replaces a received

corrupted code word r = U+ e with an estimate_ U of the valid code word

U. If code word U, is transmitted over a noisy channel, and the corrupting error pattern is a

coset leader, then the received vectorwill be decoded correctly into the transmitted code

word U, . If the error pattern is not a coset leader, an erroneous decoding will result.

3.9~2 The Syndrome of a Coset

The name coset is short for "a set of numbers having a common feature." What do the

members of a coset have in common? Each member has the same syndrome. We confirm

this as follows: If ej is the coset leader or error pattern of the /h coset, then Vi+ e1 is
an n-tuple in this coset. From (3.15), the syndrome of this n-tuple can be written as

37

•

S ·HT······ r U : ... ·)Hr · U H····.r ·... H· r = r •.... · = (i + e1 . . = · i .. · + er · . (3.16)

Since U; is a valid transmitted code word, then U;HT = 0, since the parity check matrix H

was constructed with this feature in mind. We can therefore express (3.16) as

T . T S,.;.;.; rH = e1H . (3.17)

Thus, the syndrome test, performed on either a corrupted code vector or on the error

pattern that caused it, yields the same syndrome. Equation (3 .17) establishes that the

syndrome is in fact only responding to the error pattern, which was similarly shown in (3.5)

for a simple parity code. An important property of linear block codes, fundamental to the

decoding process, is that the mapping between correctable error patterns and syndromes is

one to one. The syndrome for each coset is different from that of any other coset in the

code; it is the syndrome that is used to estimate the error pattern, which then allows for the

errors to be corrected.

3.9.3 Locating the Error Pattern

Returning to the (6, 3) code example, we arrange the 26 = 64 6-tuples in a standard

array. The valid code words are the eight vectors in the first row, and the correctable error
y

patterns are the seven nonzero coset leaders in the first column. Note that all 1-b error

patterns are correctable. Also note that after exhausting all 1-b error patterns, there remains

some error-correcting capability since we have not yet accounted for all 64 6-tuples. There

is still one unassigned coset leader; therefore, there remains the capability of correcting one

additional error pattern. We have the flexibility of choosing this error pattern to be any of

the n-tuples in the remaining coset. This final correctable error pattern was chosen,

somewhat arbitrarily, to be the 2-b error pattern 010001. The error-correcting task

performed by the decoder can be implemented to yield correct messages if, and only if, the

error pattern caused by the channel is one of the coset leaders. For the (6, 3) code example,

38

•

we now use Equation 3.17 to determine the syndrome (symptom) corresponding to each

correctable error pattern (ailment), by computing e1 HT for each coset leader, as follows:

S = CJ

1 0 0
0 1 0
0 0 1
1 1 0
0 1 1
1 0 1 (3.18)

The results are listed in Figure 3.3. Since each syndrome in the table has a one-to-one

relationship with the listed error patterns, solving for a syndrome earmarks the particular

error pattern corresponding to that syndrome .

3.9.4 Error Correction Decoding

Given a received vector rat the input of the decoder, we summarize the procedure for

deciding on U and finally on _mas follows: 1) calculate the syndrome

of r using S = rHT and 2) use Table 3 to locate the coset leader (error pattern) e1, whose

syndrome equals rHT . This error pattern is assumed to be the corruption caused by the

channel and will be our estimate "e of the error, estimate of the code word_ U is identified

as __ U = r + "e. We can say that the decoder obtains an estimate of the transmitted code

word by removing an estimate of the error "e (in modulo-2 arithmetic, the act ofremoval is

effected via addition). This step can be written as

U-· ·· · + ··· ·········· c .. U +). + ~-- ·· ·u· +' (+· A) = r······ e = ... ·•· e ········· e = · .. , e : e (3.19)

If the estimated error pattern is the same as the actual error pattern, that is, if "e = e, then the
estimate _U is equal to thetransmitted code word U. However, if the error estimate is

incorrect, the decoder will choose a code word that was not transmitted, resulting in a

39

•

decoding error. As an example from the (6, 3) code, assume that code word U = 101110
corresponding to m = 110 (see Table 2) is transmitted and that the vector r = 001110 is
received. From 3.17 we compute the syndrome as

S = [O O 111 O] HT = 100 (3.20)

From Table 3.2, we can verify that the error pattern is e = 100000. Then, using (3.19), the

corrected vector is estimated as

~
U = r + e = 001110 + 100000=101110 (3.21)

,,,''.0([0000'
mt

nr"ilA' ,. !J!JJ':\:J, \;/,
·--,/<·,···_:-<h,: .

n,(U(JOlOCl)j •' ,",i'.,~,, "' r. __ v "./~

,;',, ?()'0:1:000)
"'o,"'1· ·· o'··· "t:l'·o·· \\ ,,,.,,-.,,,A,,,
._._-_,: ... "'··~U,·'.,,-:·

00:0:
61
l '-,

l FO'
oot
flFO'
1 cro
\l L l

Table 3.2 Syndrome lookup table

Since in this example, the estimated error pattern is the actual error pattern, the error

correction procedure yields _ U = U, which means that the output_ m will correspond

to the actual message 110. Note that the process of decoding a corrupted code word by first

detecting and then correcting an error can be compared to a familiar medical analogy. A

patient r (potentially corrupted code word) enters a medical facility (decoder). The

examining physician performs a diagnostic test (multiplies r by HT) to find a symptom

40

(syndrome). Imagine that the physician finds characteristic spots on the patient's X rays.

An experienced physician would immediately recognize the correspondence between the

symptom and the ailment, for example tuberculosis. A novice physician might have to refer

to a medical handbook (Table 3.2) to associate the symptom (syndrome) with the ailment

(error pattern). The final step is to provide medication _e. If _e is the proper medication

(if _e = e), then the ailment is removed, as seen in Equation 3.19. In the context of binary

codes and the medical analogy, (3.19) and (3.21) reveal an unusual type of medicine

practiced here. The patient is cured by reapplying the original ailment, a process that works

because in the binary field 1 + 1 = 0 ..

OO~'H:l1

Table 3.3 Standard array for a (6, 3) code

3.9.5 Decoder Implementation

When the code is short as in the case of the (6, 3) code, the decoder can be implemented

with simple circuitry. The steps that such a circuit must take are: 1) calculate the syndrome,

2) locate the error pattern corresponding to that syndrome, and 3) modulo-2 add the

estimated error pattern to the received vector to yield an estimate of the corrected vector.

Consider the circuit in Figure 3.4, made up of exclusive-OR gates and AND gates that can

accomplish these decoder steps for any single-error pattern in the (6, 3) code. From

Table 3.2 and (3.17), we can write an. expression for the syndrome bits si, ss. s3 in

terms of the received code word bits r.. ... , r6 as

41

S=rHT

and

s1 = 1"1 + r4 + 1~0

s2 = r2 + r4 + 1'"5
s3 :;;;;;.;; r,; + rs + 1·6.

1 0 0
0 1 0
0 0 1
1 1 0
0 1 1
1 0 1

•

(3.22)

We use these syndrome expressions for wiring up the circuit in Figure 3.4. The exclusive­

OR gate provides the same operation as modulo-2 arithmetic and hence uses the same

symbol. A small circle at the termination of any line entering the AND gate indicates the

logic complement of the signal. The corrupted signal r enters the decoder at two places

simultaneously. At the upper part of the circuit, the syndrome Sis computed, and at the

lower part that syndrome is transformed to its corresponding error pattern e. The error is

removed by adding it back to the received vector yielding the corrected code word U. Note

that, Figure 3.4 has been drawn to emphasize the algebraic decoding steps, calculation of

syndrome, error pattern, and corrected output. For real circuitry, the decoder would not

need to deliver the entire code word; its output would consist of the message bits only.

Hence, the Figure 6 circuitry becomes simplified by eliminating the gates that are shown

with shading. For longer codes such an implementation is very complex, and the preferred

decoding techniques conserve circuitry by using a sequential approach instead of this

parallel method . It is important to emphasize that Figure 3.4 has been configured to detect

and correct only single-error patterns for the (6, 3) code. Error control for a double-error

pattern would require additional circuitry.

42

•

Received -
vector r

Exclusive.QR
Gates

Syndrome S

Error
Pattern e

AND gates

Received z,· A, Vector r r1 ~T/V'

Corrected
Output U u,

Figure.3.4 Implementation of (6, 3) code

3.10 Hamming Codes

Hamming found the first error control code, now known as [7, 4] hamming code, trying to

extend the concept of parity checks to correcting errors. The [7, 4] hamming code is

composed of the binary codewords of length 7, fulfilling the following parity check

equations

.X4 + X5 + X6 + X7 = 0
X2 + ::c3 + ~:C6 + X7 = 0

0 (3.22)

43

•

Where the(+) sign relates to XOR arithmetic relation shown in Table 3.4. This leaves only

4 free choices among the seven binary symbols, these choices are arbitrary and are the

information bits.

b1 b2 XOR

0 0 0

0 1 1

1 0 1

1 1 0

Table 3.4 modulo-2 adder(XOR)

The three parity bits (1,2,4) which are the extra information (redundant) are related

to the data bits (3,5,6,7) as show in Figure.3.5 below. In this diagram, each overlapping

circle corresponds to one parity bit and defines the four bits contributing to that parity

computation. For example, data bit 3 contributes to parity bits 1 and 2. Each circle (parity

bit) encompasses a total of four bits, and each circle must have EVEN parity. Given four

data bits, the three parity bits can easily be chosen to ensure this condition. The 3 redundant

bits (parity bits) are decided by using mathematical equations related to the information

data bits using the modulo-2 (XOR) arithmetic relation.

44

•

0
,I

Figure 3.5 relation between bits in a codeword

3.10.1 How to get the Parity Bits

Just in this section we will say that the Hamming code 7-bits are

x = [po,P1, Xo,P2, X1, X2, X3]

~=~+~+~

~=~+~+~

~=~+~+~

This operation happen in the encoderof the hamming code and (see Figure 3.6)
- ~ aO
L--

al al
L--

a2 a2
~ L--

al al
~ ~

I
po

I modulo-2 L--

I I
Pl

I L--
P2

I I
L--

I modulo-Z
I I I

modulo-Z I I
I I

Figure 3.6 Hamming code encoder

45

(3.23)

"

'----··
We choose xs. x5, x6 and x7 as the information bits. If x is transmitted and received as y, the

code can tolerate a single bit to be in error and still retrieve the information bits X3, xs, X6,X1.

This is done in the following simple way: let

~+~+~+~=a
~+m+~+~=fi
~+m+~+~=1 (3.24)

The vector (a, P, 1l gives the location of the error in binary forms, i.e., (I, 0, 1) means the

fifth symbol is in error. We can notice that hamming codes has 2" information messages,

but that is not true. There are specific number of information messages, lets take the [7, 4]

code as an example.

7 6 5 4 3 2 1

0 0 0 0 0 0 0 0

1 0 0 0 0 1 1 1

2 0 0 1 1 0 0 1

3 0 0 1 1 1 1 0

4 0 1 0 1 0 1 0

5 0 1 0 1 1 0 1

6 0 1 1 0 0 1 1

7 0 1 1 0 1 0 0

8 1 0 0 1 0 1 1

9 1 0 0 1 1 0 0

A 1 0 1 0 0 1 0

B 1 0 1 0 1 0 1

C 1 1 0 0 0 0 1

D 1 1 0 0 1 1 0

46

•

Table 3.5 Hamming [7, 4] , dmin = 3

3~10.2 Parity Check Equations

The parity check equations are conveniently expressed in the linear algebraic equation

Hx=O (3.25)

where His parity check matrix containing a one in position (i, j) if Xj is check in

equation i.

[

0 0 0 1 1 1 1 l
H[7,4J = 0 1 1 0 0 1 1 _ = [h1, h2, h3, lu, h5, h5, h1]

1 0 1 0 1 0 1 (3.26)

This linear algebraic immediately formulation immediately reveals some fundamental

principles:

The code is linear, i.e., Hx1 = 0, Hx1 = 0 which gives H(x1, x1) = 0, and
X3 = (Xi, xs) is also a codeword.

Theorem: the hamming codes are single error correcting.

Proof: A single error is identified by hj, where j is the location of error and all hj are

unique. Conversely, double errors in positions i andj are not identifiable since h; + hj = hk
look like a single error in position k.

Hamming codes have the ability of detecting two errors but it can only correct one.

47

•

Hamming Bound: A t-error correcting code with M codewords must fulfill the inequality

(3.27)

Where n is the code.length and Mis the number of codewords.

Proof: there are 2° possible binary vectors of length n. each of the M codewords needs a

sphere of distance t around itself which cannot contain another codeword in order to

tolerate t errors and still be uniquely identifiable.

A code which fulfills the Hamming bound with equality is called a perfect code.

3.10.3 Code Generator Matrix

We begin by rearranging the columns ofH17,41 into

[·.~ ~ ~ ~ ~ ~ ~].
1 0 1 1 0 0 1

By replacing each column by some linear combination of columns of H17, 4J. This does not

change the code, since Hx = 0 is unaffected.
This new arrangement has the form

(3.28)

Rearranging as follows and calling [xi, ••• , Xk]T = [u1, ••• , uk]T the information bits, we

obtain

48

•

The Code Generator Matrix is now given by:

(3.30)

The matrix G = [h, -A7] is the Generator Matrix for the [7, 4]-Hamming code

1 O O O 1 1 1
O 1 o, 0 1 1 0

G [7,4] == I O O 1 0 1 0 1
0001011.

(3.31)

49

•

CHAPTER4

RESULTS

4.1. Error Detection and/or Correction

We have mentioned before briefly how error-control codes work, but now after explaining

the types of codes and how they are generated, we can go deeper in telling the manners and

different uses of error-control codes. We will take the linear block code as an example, and

we will show how its encoder and decoder work.

The block encoder takes a block of k bits and replaces it with n-bit codeword. For a

binary code, there are 2k possible codewords in the codebook. The channel introduces errors

and the received word can be any one of 2n n-bit words of which only 2k are valid

codewords. The job of the decoder is to find the codeword that is closest to the received n­

bit word.

The examples will use a brute force look-up method. The decoding spheres of

Figure 4.1 will be used to illustrate the decoding progress. In Figure 4.1, each valid

codeword is represented by a point surrounded by a sphere of radius t, where t is the

number of errors that the code can correct. Note that codewords A and B of Figure. I are

separated by a distanced min, called the minimum distance of the code. Usually, codes with

large minimum distance are preferred because they can detect and correct more codes. First

lets consider a decoder that can only detect errors, not .correct them.

50

Arbirraryn-bit words

l ·.
X •

Codewords

.. Figure 4.1 Decoding Spheres of Radius t

4.1.1 Error Detection Only

The minimum distance of a code gives a measure of its error detection capability. An error

control code can be used to detect all patterns of u errors in any codeword as long as

d min = u + 1. the code may also detect many error patterns with more than u errors, but it

is guaranteed to detect all patterns of u errors or less. We'll assume that the error detection

decoder comprises ·a look-up table with all 2k valid codewords stored. When an n-bit word

is received by the decoder, it checks the look-up table and if this word is one of the

allowable codewords, it flags the n-bit word as error free and sends the corresponding

information bits to the user. We'll use Figure 1 to illustrate three cases: no errors, a

detectable error pattern, and an undetectable error pattern.

Case #1: No errors, Lets assume that the encoder sends codeword C and the

channel introduces no errors, Then codeword C will also be received, the decoder will find

it in the look-up table, and decoding will be successful.

51

•

Case #2: Detectable error pattern. This time we send codeword C and the channel

introduces errors such that the n-bit word Y is received. Because Y is not a valid codeword,

the decoder will not find it in the look-up table and will therefore flag the receiver n-bit

word as an errored codeword. The decoder does not necessarily know the number or

location of the errors, but that's acceptable because we only asked the decoder to detect

errors. Since the decoder properly detected an errored codeword, decoding is successful.

Case #3: Undetectable error pattern. We send a codeword C for the third time and

this time the introduces the unHkely (but certainly possible) error pattern that converts

codeword C into codeword D. the decoder can't know that codeword C was sent and must

assume that codeword D was sent instead. Because codeword D is a valid codeword, the

decoder declares the received n-bit word error-free and passes the corresponding

information bits to the user. This is an example of decoder failure.

Naturally, we want the decoder to fail rarely, so we choose codes that have a small

probability of undetected error.

4.1.2 Forward Error Correction (FEC)

Comparing the spheres surrounding codewords A and Bin Figure 4.1, we see that the error

correcting capability of a code is given by d min = 2t + 1 (this is the minimum separation

that prevents overlapping spheres). Or in other words, a code with d min= 3 can correct all

patterns of 1 error, one with d min = 5 can correct all patterns of 2 errors, and so on. A code

can correct t errors and detect v additional errors as long as (d min 2 2t + v + 1). Now refer

to Figure. I and consider three error decoding cases for the error correction decoder: correct

decoding, decoding failure, and error detection without correction.

Case # 1: Correct decoding. Assume that codeword C is sent and the n-bit word Y is

received. Because Y is inside C's sphere, the decoder will correct all errors and error

correction decoding will be-successful.

Case #2: Decoding failure: this time we send the codeword C and the channel will

give us n-bit word Z. the decoder has no way of knowing that the codeword C was sent and

must decode to D since Z is in D's sphere. This is an example of error correction decoder

failure.

52

Case #3: Error detection without correction. This case shows one way that an error

correction can be used to also to detect errors. We send the codeword C and receive n-bit

word X. Since Xis not inside any sphere, we won't try to correct it. We do, however,

recognize that it is an errored codeword and report this information to the user.

We could try to correct n-bit word X to the nearest valid codeword, even though X was not

inside any codeword's sphere. A decoder that attempts to correct all received n-bit words

whether they are in a decoding sphere or not is called complete decoder. On the other hand,

a decoder that attempts to correct only n-bit words that lie inside a decoding sphere is

called incomplete or bounded distance decoder.

4.2. Designing the [7, 4] Code

A natural question to ask is, "For a linear code, how does one select codewords out

of the space of 27 7-tuples?" There is no single solution, but there are constraints in

how chokes are made. Here are the elements that help point to a solution.

1- The number of codewords is 2k = 24 = 16.

2- The property oflinearity must apply. This property dictates that the sum of

any two codewords must yield a valid codeword.

3- The all-zeros vector.must be one of the codewords. Since any codeword that is

added (modulo-Z) to itself yield an all-zeros vector.

4- Each codeword is 7 bits long.

5- Since dmin = 3, the weight of each codeword (except for the all-zeros codeword)

must also be at least 3. (this code has the ability of correcting 1 errors t=l).

6- Assume that the code is systematic, so the rightmost 4 bits of each codeword are the

corresponding message bits.

53

7 6 5 m m m m

0 0 0 0 0 0 0 0

1 0 0 0 0 1 1 1

2 0 0 1 1 0 0 1

3 0 0 1 1 1 1 0
·- 4· 0 1 0 1 0 1 0

5 0 1 0 1 1 0 1

6 0 1 1 0 0 1 1

7 0 1 1 0 1 0 0

8 1 0 0 1 0 1 1

9 1 0 0 1 1 0 0

A 1 0 1 0 0 1 0

B 1 0 1 0 1 0 1

C 1 1 0 0 0 0 1

D 1 1 0 0 1 1 0

E 1 1 1 1 0 0 0

F 1 1 1 1 1 1 1

.Figure 4.2 Possible codewords for [7, 4] code

4.3~ Error DetectionVersus Error Correction Tradeoffs

Using the codeword set in Figure.d.Z, Error-detection a~d error-correction capabilities can
be traded, provided that the following distance relationship prevails

d~nin> a+(3+1

where a represents the number of bit errors to be corrected, ~ represents the

number of bit errors to be detected, and ~ 2: a. The tradeoff choices available for

the (7, 4) code example are as follows:

54

Detection p Correction a

1 1

2 0

Figure.4.3 ·~ and a tradeoffs
'

4.4. Performance of [7, 4]code

We found that d min= 3 for the [7, 41 code, so if the errors that occurred in the received

codeword was more than 2, the code will only detect a single error and correct one, or it

will detect 2 errors and correct none. Figure 4.4 will show the performance of different

types of linear block codes.
I

AWGN Channd

W'

t
,\
\
\
\
\
\
\~
\
I
I
\
\

Uncoded

(127, 64)

(15, 7)

(7, 4) 16'

10··~-~~~~-~-~-~-~
2 10 12 14 16

SNR(dB)

Figure 4.4 Performance of linear block codes

55

CONCLUSION

In the present scenario of telecommunication applications, wireless systems play a

prominent role. Compared to the competing wired systems, they offer a number of practical

advantages, like easy installation and maintenance, flexibility and reconfigure ability,

mobility, low cost components, and others. On the other hand, the performance required to

new wireless systems are very high, they must guarantee extremely low error rates, to face

the poor error resilience of commercial source coding schemes, and large spectral

efficiencies, to allow transmission rates as great as possible. The achievement of these

objectives implies the adoption of very efficient error correcting schemes. Following the

invention of the "turbo principle" in 1993, a number of turbo-like codes have been

proposed, able to approach the theoretical Shannon limit. These codes include block and

convolutional codes.

Low Density Parity Check (LDPC) codes also belong to this class: even if their

origin is different, their decoding is based on "message passing" methods, whose rationale

is identical to that of turbo codes. All these codes are potentially suitable for application in

the wireless framework.

Block codes still having its position in error controlling. That is because of its

simplicity of designing. Hamming codes which are another type of block codes are

classified under the perfect codes group. Perfect codes can detect and correct all error bits

that occurs in the codeword transmitted.

56

References

[1] C. E. Shannon, "A mathematical Theory Of Communication," Bell System technical

journal,vol. 27, pp.379-423, 1948.

[2] F. Guterl, "Compact Disc," IEEE Spectrum, vol. 25, No. 11, pp. 102-108, 1988.

[3] Stephen G. Wilson, Digital Modulation and Coding, Prentice Hall, Inc. 1996.

[:4] Simon Haykin, Communication Systems, John Wiley & Sons, Inc. 1994

[5] Robert E. Peile" The Application of Error Control to Communications", IEEE

Communication Magazine, vol.25, No.4, April 1987.

[6] Tom Richardson." Low Density Parity Check Codes". IEEE Communication

Magazine. August 2003

57

	Page 1
	Titles
	Table of Contents
	~CKNOWLEDGMENT

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 2
	Tables
	Table 1

	Page 3
	Images
	Image 1

	Page 4
	Titles
	ACKNOWLEDGMENT

	Page 5
	Titles
	ABSTRACT

	Page 6
	Titles
	INTRODUCTION

	Page 7
	Titles
	CHAPTERl
	ERROR CONTROL CODING
	1.1 Introduction to Error Control Coding (ECC)
	1.2 History of Error Control Coding

	Page 8
	Titles
	1.3 Digital Communication System Elements
	Noise

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 9
	Titles
	1.4 Applications

	Page 10
	Titles
	�
	1.5 Briefly What Coding Can Do

	Page 11
	Titles
	�
	1.6 How Error Control Codes Work
	.7 Popular Coding Techniques

	Images
	Image 1
	Image 2

	Page 12
	Page 13
	Titles
	CHAPTER2
	CODES
	2.1 Introduction
	2.2 Block Codes

	Images
	Image 1

	Page 14
	Titles
	�
	2.3 Convolutional Codes

	Images
	Image 1

	Page 15
	Titles
	2.4 Linear Cyclic code

	Images
	Image 1

	Page 16
	Titles
	2.4.1 Generator Polynomial and Parity Check Polynomial
	2.4.2 Generator and Parity-Check Matrices

	Page 17
	Titles
	�
	2.4.3 Systematic Linear Cyclic Code

	Tables
	Table 1
	Table 2

	Page 18
	Titles
	2.4.4 Syndrome Decoder for Linear Cyclic Code

	Page 19
	Images
	Image 1

	Page 20
	Titles
	2.5 Low-Density Parity Check Codes (LDPC)

	Page 21
	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 22
	Titles
	2.6 Turbo Codes

	Page 23
	Titles
	2.6.1 Block Turbo Codes (BTC)

	Page 24
	Titles
	2.6.1.1 Product codes

	Images
	Image 1

	Page 25
	Titles
	�
	di=l
	ch=O
	dr=I
	2.6.2 Convolutional Turbo Codes

	Images
	Image 1
	Image 2

	Page 26
	Titles
	2.6.2.1 Construction of CTC
	2.6.3. Performance of BTC and CTC

	Images
	Image 1
	Image 2

	Page 27
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 28
	Titles
	CHAPTER3
	LINEAR BLOCK CODES
	3.1 Introduction to Linear Block Codes
	3.2 Channel Coding

	Page 29
	Titles
	�

	Page 30
	Images
	Image 1

	Page 31
	Titles
	3.3 Simple Parity Codes

	Images
	Image 1

	Page 32
	Images
	Image 1
	Image 2

	Page 33
	Titles
	�
	3.4 The Generator Matrix and Systematic Codes

	Images
	Image 1
	Image 2
	Image 3

	Page 34
	Titles
	U = rnG = 111 [Pllk]
	lJk,k+l
	p
	0 0 0
	1
	3.5 Weight and Distance Properties

	Page 35
	Titles
	3.6 Decoding Task
	p(rlU 1) = max p(riUf)

	Page 36
	Titles
	d(r, U.,) = min d(r, U1)
	3.7 Error-Detecting and Error-Correcting Capability

	Page 37
	Titles
	8=dm111-l
	2
	u
	3.8 A (6, 3) Linear Block Code Example

	Images
	Image 1
	Image 2

	Page 38
	Titles
	..
	3.8.1 A Generator Matrix for the (6, 3) Code

	Images
	Image 1
	Image 2

	Page 39
	Titles
	G == ;~
	.._,_.
	p
	._,_,
	Ik

	Images
	Image 1

	Page 40
	Titles
	3.8.2 Error Detection and the Parity-Check Matrix
	3.9 Towards Error Correction: Syndrome Testing

	Images
	Image 1
	Image 2

	Page 41
	Titles
	�

	Page 42
	Tables
	Table 1

	Page 43
	Titles
	�
	3.9~2 The Syndrome of a Coset

	Images
	Image 1
	Image 2
	Image 3

	Page 44
	Titles
	S ·HT······ r U : ... ·)Hr · U H····.r ·... H· r
	= r �.... · = (i + e1 . . = · i .. · + er · .
	T . T
	3.9.3 Locating the Error Pattern

	Page 45
	Titles
	S = CJ
	3.9.4 Error Correction Decoding
	U-· ·· · + ··· ·········· c .. U +). + ~-- ·· ·u· +' (+· A)
	= r······ e = ... ·�· e ········· e = · .. , e : e

	Page 46
	Titles
	�
	S = [O O 111 O] HT = 100
	U = r + e = 001110 + 100000=101110
	,,,''.0([0000'
	n,(U(JOlOCl
	,;',, ?()'0:1:000)

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 47
	Titles
	3.9.5 Decoder Implementation

	Images
	Image 1
	Image 2

	Page 48
	Images
	Image 1

	Page 49
	Titles
	3.10 Hamming Codes
	.X4 + X5 + X6 + X7 = 0
	0

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9

	Page 50
	Images
	Image 1

	Tables
	Table 1

	Page 51
	Titles
	0
	3.10.1 How to get the Parity Bits

	Images
	Image 1

	Tables
	Table 1

	Page 52
	Titles
	"

	Tables
	Table 1

	Page 53
	Titles
	3~10.2 Parity Check Equations
	Hx=O
	[0 0 0 1 1 1 1 l
	H[7,4J = 0 1 1 0 0 1 1 _ = [h1, h2, h3, lu, h5, h5, h1]

	Images
	Image 1

	Page 54
	Titles
	3.10.3 Code Generator Matrix
	1 0 1 1 0 0 1

	Images
	Image 1
	Image 2
	Image 3

	Page 55
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 56
	Titles
	CHAPTER4
	RESULTS
	4.1. Error Detection and/or Correction

	Page 57
	Titles
	l ·.

	Images
	Image 1
	Image 2
	Image 3

	Page 58
	Titles
	4.1.2 Forward Error Correction (FEC)

	Page 59
	Titles
	4.2. Designing the [7, 4] Code

	Page 60
	Titles
	4.3~ Error DetectionVersus Error Correction Tradeoffs
	d~nin> a+(3+1

	Images
	Image 1

	Tables
	Table 1

	Page 61
	Titles
	4.4. Performance of [7, 4]code
	55

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 62
	Titles
	CONCLUSION

	Page 63
	Titles
	References

	Images
	Image 1
	Image 2

