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ABSTRACT 

Because of the importance of digital communication in our life, and in order to get the 
best performance of it, error control coding helps technicians meet there goals which is 
developing error free channels to increase the capacity and transmission rate. 

Mathematicians and technicians related to the communication field tried to find the 
codes that helps them to achieve the aimed results. They discovered various error correcting 
codes that have the ability of detecting and/or correcting the errors that occurred in the 
information received from the channel by the receiver. 

In this report we first defined different types of codes that are used in different fields 
according to there application. Then we concentrated later on linear block codes that are the 
simplest in construction and usage, but that does not mean it is less efficient. 

The aim of all the error correcting codes is to meet the Shannon's limit which is to use 
the full capacity to get the maximum rate in transmitting and receiving data (information). 
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INTRODUCTION 

A profusion and variety of communication systems, which carry massive amounts of digital 
data between terminal and data users of many kinds, exist today. The data (message) that 
entered to the communication channel may expose to different types of noise that will 
effect on the transmitted data and increase the bit error rate. The communication system 
must transmit its data with very high reliability and keep the bit error rate as small as 
possible. 

Scientists found out that in order to decrease the amount of error rate into a 
negligible rate they came out with codes (Error Control Codes). Error control codes with its 
several types have the ability of detecting and/or correcting errors happened in the received 
message. 

This report aims to give explanation about the most popular types of codes and 
concentrate on linear block codes because of its generating simplicity and its efficiency in 
correcting and detecting errors. 

Chapter 1 starts by telling about the importance of error controlling codes. After 
that we went back in time to find out historical information about how the idea started and 
what obstacles faced the scientists and people related to the field. Then we give information 
about some applications that error control codes serves. At the end of the first chapter we 
include different error control techniques. 

Chapter 2 is related to the types of codes which have two main types: Block codes 
and Convolutional codes. Block codes have several types like Cyclic, Linear and Hamming 
codes. Low Density Parity Check (LDPC) code is a convolutional. We will talk about 
Turbo codes. There are two types of turbo codes, Block Turbo Code (BTC) and 
Convolutional Turbo Code (CTC).we will explain basic properties of each type. 

Chapter 3 will go in more details about Linear Block codes and Hamming codes. 
These details are concerned of how to generate the generator and parity check matrices of 
the both codes. Also some basic properties that are important for constructing Linear and 
Hamming codes are given. 

Chapter 4 is the results section. At the beginning of this chapter we will explain in 
more details how detecting and correcting errors work by using an example of brute force 
look-up method. Then we will show the way of designing a [7, 4] linear block code and 
some possible code words that [7, 4] code contain. 

Conclusion presents the newly applications in newly invented technologies that uses 
error control codes. 
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CHAPTERl 

ERROR CONTROL CODING 

1.1 Introduction to Error Control Coding (ECC) 

Many of us have heard of the term error control coding communication systems, but 

few of us understand what it is, what it does, and why we should be as technology seekers 

concern about it. The field is growing rapidly and knowledge of the topic will be very 

important and asked to be earned by anyone involved in the design of modem 

communication systems. 

1.2 History of Error Control Coding 

In 1948 Claude Shannon [1] showed that every communication channel has a capacity, 

C (measured in bits/sec), and as long as the transmission rate, R (bits/sec), is less than Cit 

is possible to design a virtually error free communication system using error control codes. 

His discover showed that channel noise limits the transmission rate, not the error 

probability. Prior to this discovery it was thought that channel noise prevented error free 

ommunications. 

After the publication of Shannon's paper [1], which didn't included how to find the 

error control codes, researchers scrambled to find codes that would produce the very small 

robability of error that he predicted. In the 1950s the progress of finding good performing 

odes didn't succeeded in finding one. In the 1960s, the field split between the algebraists 

ho concentrated on a class of codes called block codes and the probabilists who were 

oncerned with understanding encoding and decoding as a random process. Probabilists 

eventually discovered a second class of codes, called convolutional codes, and designed 

powerful decoders for them. In the 1970s, the two research paths merged and several 

efficient decoding algorithms were developed. Finally in 1981, decoders became practical; 
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the entertainment industry adopted a very powerful error control scheme for the new 

corripact disc (CD) players [2]. 

1.3 Digital Communication System Elements 

Digital communication systems are often partitioned as in Figure 1. 

- Encoder and Decoder: the encoder adds redundant (extra) bits to the sender's bit stream 

to create a codeword. The decoder uses the redundant bits to detect and/or correct as many 

errors as the particular error control code will allow. 

- Modulator & Demodulator: the modulator transforms the output of the encoder, which is 

digital, into a format suitable for the channel, which is usually analog. The demodulator 

attempts to recover data that passed the channel and effected by noise. 

Sender Encoder Decoder User 

Modulator Demodulator 

Channel 

Noise 

Figure 1 -The Digital Communication System 

- Communication channel: is the medium the data travel through between the transmitter 

d receiver, where errors is introduced. 
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- Error control code: a set of codewords used with an encoder to detect errors, correct 

errors, or both. 

1.4 Applications 

Because the development of data-transmission codes was motivated primarily by 

problems in communications, much of the terminology of the subject has been drawn from 

the subject of communication theory. These codes, however, have many other 

applications. Codes are used to protect data in computer memories and on digital tapes and 

disks, and to protect against circuit malfunction or noise in digital logic circuits. 

Applications to communication problems are diversified. Binary messages are 

ommonly transmitted between computer terminals, in communication networks, between 

aircraft, and from spacecraft. Codes can be used to achieve reliable communication even 

when the received signal power is close to the thermal noise power. And, as the 

electromagnetic spectrum becomes ever more crowded with man-made signals, data 

transmission codes will become even more important because they permit communica 

tion links to function reliably in the presence of interference. In military applications, 

· often is essential to employ a data-transmission code to protect against intentional 

enemy interference. 

Many communication systems have limitations on transmitted power. For example, 

power may be very expensive in communication relay satellites. Data-transmission codes 

rovide an excellent tool with which to reduce power needs because, with the 

aid of the code, the messages received weakly at their destinations can be recovered 

orrectly. 

Transmissions within computer systems usually are intolerant of even very low 

error rates because a single error can destroy the validity of a computer program. Error 

ontrol coding is important in these applications. Bits can be packed more tightly into 

some kinds of computer memories (magnetic or optical disks, for example) by using a 

data transmission code. 

Another kind of communication system structure is a multi-access system, in 

rhich each of a number of users is preassigned an access slot for the channel. This access 
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may be a time slot or frequency slot, consisting of a time interval or frequency interval 

during which transmission is permitted, or it may be a predetermined coded sequence 

representing a particular symbol that the user is permitted to transmit. A long binary 

message may be divided into packets with one packet transmitted within an assigned 

access slot. Occasionally packets become lost because of collisions, synchronization 

failure, or routing problems. A suitable data-transmission code protects against these 

losses because missing packets can be deduced from known packets. 

Communication is also important within a large system. In complex digital 

systems, a large data flow may exist between subsystems. Digital autopilots, digital 

rocess control systems, digital switching systems, and digital radar signal processing all 

are systems that involve large amounts of digital data which must be shared by multiple 

· terconnected subsystems. This data transfer might be either by dedicated lines or by a 

more sophisticated, time-shared data-bus system. In either case, error-control techniques 

are important to ensure proper performance. 

Eventually, data-transmission codes and the circuits for encoding and decoding 

rill reach the point where they can handle massive amounts of data. One may anticipate 

t such techniques will play a central role in all communication systems of the future. 

Phonograph records, tapes, and television waveforms of the near future will employ digital 

essages protected by error-control codes. Scratches in a record, or interference in a 

eived signal, will be completely suppressed by the coding as long as the errors are less 

serious than the capability designed into the error-control code. [5] 

1.5 Briefly What Coding Can Do 

The traditional role for error control coding was to make a troublesome channel acceptable 

_, lowering the frequency of error events. Coding's role has expanded tremendously and 

y coding can do the following: 

Reduce the occurrence of undetected errors. 

Reduce the cost of communication systems. 
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Overcome jamming. 

Eliminate interference. 

1.6 How Error Control Codes Work 

A foundation in modem algebra and probability theory is required to have a full 

derstanding of the structure and performance of error control codes. As we mentioned 

fore that error control codes have two classes, Block codes and Convolutional codes. 

Block codes has several schemes: linear block code, Hamming code and cyclic 

rode. The block encoder takes a block of k bits and replace it with an-bit codeword (n>k). 

or a binary code, there are 2kpossible codewords. The channel introduces errors and the 

received word can be anyone of 2n n-bit words of which only 2k are valid codewords. The 

b of the decoder is to find the codeword that is closest to the received n-bit word. 

Convolutional codes: differ from block codes in that there are no independent 

ewords. The encoding process can be envisioned as a sliding window, Mblock wide, 

rhich moves over the sequence of information symbols in steps of K symbols. Mis called 

constraint length of the code. With each step of the sliding window, the encoding 

ss generates N symbols based on the MK symbols visible in the window. 

corivolutionalcode sci constructed is called an (N, K, M) code. Convolutional codes are 

only used in applications that require relatively good performance with low 

plementation cost. 

.7 Popular Coding Techniques 

this section we will give brief explanation about four of most popular error control 

ing techniques, which are: 

Automatic Repeat Request (ARQ) 

Hybrid ARQ 

Forward Error Correction (FEC) 
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1.7.1 Automatic Repeat Request 

An error detection code by itself does not control errors, but it can be used to 

request repeated transmission of errored codewords until they are received error free. In 

terms of error performance, ARQ outperforms forward error correction because 

codewords always delivered error free. The chief advantage of ARQ is that error 

detection requires much simpler decoding equipment than error correction. 

1.7.2 Hybrid ARQ 

Hybrid ARQ schemes combine error detection and forward error correction to make 

more efficient use of the channel. At the receiver, the decoder first attempts to correct 

any errors present in the received codeword. If it cannot correct all the errors, it requests 

retransmission of the message again. Using one of these techniques. Type 1 Hybrid 

ARQ sends all the necessary parity bits for error detection and error correction with 

each codeword. Type 2 hybrid ARQ, on the other hand, sends only the error detection 

parity bits and reserves the correction parity bits. If the decoder detects errors, the 

receiver requests the error correction parity bits and attempts to correct the errors with 

these parity bits before requesting retransmission of the entire codeword; 

1.7.3 Forward Error Correction (FEC) 

Forward error correction is appropriate for applications where the user must get 

the message right the first time. The one-way or broadcast channel is one example. 
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CHAPTER2 

CODES 

2.1 Introduction 

Error-control coding techniques are used to detect and/or correct errors that occur 

in the message transmission in a digital communication system. The transmitting side of the 

error-control coding adds redundant bits or symbols to the original information signal 

sequence. The receiving side of the error-control coding uses these redundant bits of 

symbols to detect and/or correct the errors that occurred during transmission. The 

transmission coding process is known as encoding, and the receiving coding process is 

known as decoding. 

2.2 Block Codes 

In block coding[4], successive blocks of k information (message) symbols are 

formed. The coding algoritl:!_m then transforms each block into a codeword consisting of n 

symbols where n>k. This structure is called an (n, k) code. The ratio kin is called the code 

rate. A key point is that each codeword is formed independently from other codewords. 

Figure.2.1 shows the corrupted signal via an A WGN with variance 0.02 without 

error-control coding. The bit error-rate is 0.015. 
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t.z tA t.e 1.8 2 
.X 11f1 

Figure 2.1 without error control coding 

But when using different block code schemes the bit error- rate will be O (n=7, k=4), 

such like: Linear block code, Hamming code and Cyclic code. 

2.3 Convolutional Codes 

Convolutional codes [4] differ from block codes in that there are no independent 

odewords. The encoding process can be envisioned as a sliding window, Mblock wide, 

.hich moves over the sequence of information symbols in steps of K symbols. Mis 

called the constraint length of the code. With each step of the sliding window, the 

encoding process generates N symbols based on the MxK symbols visible in the window. 

A convolutional code so constructed is called an (N, K, A1) code. Convolutional codes are 

mmonly used in applications that require relatively good performance with low 

plementation cost. 

The Viterbi method is used for decoding the convolutional codes. The Viterbi 

gorithm is a maximum likelihood (ML) decoding procedure that takes advantage of the 

ct that a convolutional encoder is afinite state machine. The criterion used for decision 
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-making is the metric for soft decision decoding and the Hamming distance for hard 

decision coding. 

Figure.2.2 shows the recovered signal via the same channel as Figure. I with 

onvolutional coding. The bit error rate is 0. 

U.2 DA 0.6 0,8 1.2 1A 1,6 1.S 2 
4- 

J( to 

Figure 2.2 Convolutional coding 

2.4 Linear Cyclic code 

Cyclic code [3] is a subset of linear code which further has the cyclic property. 

Linear Cyclic Code) A code is linear cyclic if 

. The linear combination of any two codewords is also a codeword; 

-· Any cyclic shift of a codeword is also a codeword. 

In the definition, the first property is linearity and second cyclic. 
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2.4.1 Generator Polynomial and Parity Check Polynomial 

Within the set of code polynomials of a linear cyclic code C, there is a unique 

polynomial 1 g(x) with minimal degree r < n such that every code polynomial c(x) can be 

expressed as c(x) = m(x)g(x), where m(x) is a polynomial of degree less than (n-r). The 

order-r polynomial g(x) is called the generator polynomial of code C. 

The existence of the generator polynomial suggests a convenient method for 

mapping message words onto codewords of a linear cyclic code. For a k = n-r long message 

word m= mn ... mi.), we can associate with it a message polynomial m(x) =ms+ ... m k-JXk-J. 

Then, the m can be encoded through multiplication of m(x) by the generator 

polynomial g(x). 

The generator polynomial g(x) of an (n, k) linear cyclic code divides xn -1. 

Reversely, any order-r factor polynomial of x" -1 can generate a linear cyclic code (n, n-r). 

According to the theorem, there exist an order k polynomial h(x) such that 

g(x)h(x) =xn -1. For a code polynomial, c(x) = m(x)h(x), we have c(x)h(x) = m(x)g(x)h(x) 

= 0 modulo x" -1. Therefore, h(x) is called parity check polynomial. 

2.4.2 Generator and Parity-Check Matrices 

Cyclic codes also have generator and parity-check matrices, and these matrices are 

related to the generator and parity check polynomials of the codes. Consider the encoding 

procedure. 

c(x) = m(x)g(x) = ( !llo + ... + mk-1) g(x) = [ mo .m, ... m k-d 

g(x) 
xgx) 

(2.1) 

xn----k-1g(x) 
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It provides a convenient matrix relation. 

go g, ... g, 0 

f =Ic«. ... ,c n-d = [mo, ... ,mk-d I go g, . .. g, I =mG (2.2) 
go g, ... g, 

0 go g, ... g, 

The generator matrix G is a Toeplitz matrix composed of the coefficients of the generator 

polynomial g(x). Similarly, we can obtain the parity check matrix. 

hk s., ho 0 

H= I hk hk-1 ho I (2.3) 
hk «, ho 

0 hk hk-1 ho 

It is easy to verify that £Hr= 0. Similar to the discussion for linear code, if we use Has 

generator matrix and G parity check matrix, we obtain an (n-k, k) code which is the dual 

ode of the original one. 

2.4.3 Systematic Linear Cyclic Code 

Recall that a systematic code has the message word as part of the corresponding 

odeword, i.e., c= b0 ... bn-k-I mo ... mk-I· Therefore, the code polynomial can be expressed 

as 

c(x) = b(x) + xn-k m(x) (2.4) 

ince c(x) must be a multiple of the generator matrix g(x), 
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c(x) = a(x)g(x) = b(x) + xn-k m(x) (2.5) 

This gives us the following systematic encoding algorithm for an (n, k) linear cyclic code. 

Step 1 Multiply the message polynomial m(x) by xn-k. 

Step 2 Divide the result from Step 1 by the generator polynomial g(x); let b(x) be the 

remainder. 

Step 3 Set the code polynomial c(x) = xn-k m(x) + b(x). 

2.4.4 Syndrome Decoder for Linear Cyclic Code 

In the discussion of linear block codes, the syndrome vector was used to implement 

error correction. The basic idea is that every syndrome value corresponds to a coset of C in 

the binary word space. The error pattern with the lowest weight within a given coset is the 

most likely to occur, and is thus selected as the coset leader. Maximum likelihood error 

correction is performed by computing the syndrome for a received binary word, looking up 

the corresponding by coset leader, and subtracts the coset leader from the received word. 

This procedure also applies the linear cyclic code. The received binary word can be 

represented as a order-n polynomial. 

r(x) = c(x) + e(x) (2.6) 

where c(x) is the transmitted code polynomial and e(x) is the error pattern polynomial. The 

syndrome polynomial s(x) is the remainder of dividing r(x) by g(x) (or the modulo e:' 
multiplication of r(x) with h(x)). So, we can write 

r(x) = q(x)g(x) + s(x) (2.7) 

.here q(x) is the quotient polynomial of r(x) divided by g(x). Since c(x) must be a multiple 

f g(x): c(x) = a(x)g(x), 
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s(x) = [q(x) + a(x)]g(x) + e(x) (2.8) 

The syndrome decoder for linear cyclic block codes includes the following steps: 

Step 1 Express the received binary word in polynomial form, r(x). 

Step 2 Divide r(x) by g(x) and find the remainder s(x) 

Step 3 If s(x) = 0, there is no error; if s(x) -:I- 0, find the corresponding coset leader e(x) to 

correct the error according c(x) = r(x) + e(x). 

Using the syndrome decoder, the receiver needs to store the syndrome table which contains 

r: entries. For linear cyclic codes however, the size the syndrome table can be reduced to 

1/n of its original size thanks to the cyclic structure. Figure.2.3 shows the performance of 

cyclic codes on Additive White Gaussian Noise (A WGN) channel. 

Q2 Q4 Q6 Q8 L2 1.4 1.6 i.a 2 

Figure.2.3 Cyclic code n= 7, k= 4 
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2.5 Low-Density Parity Check Codes (LDPC) 

LDPC codes [6] are conceptually very simple, and are defined in terms of a spars~ 

parity check matrix. The decoder uses the message passing algorithm. The message passing 

algorithm is highly parallel and is ideally suited for high data rate applications. Careful 

programming of the decoder results a surprisingly simple decoder. 

An (n, k) block code C is a mapping between a k-bit message (row) vector m, and 

an n length codeword vector c. The code C is linear if a k-dimensional subspace of an 

n_dimensional binary vector space Vn. The code can also be viewed as a mapping of 

k-space ton-space by a k x n generator matrix G, where c = mG. The rows of G constitute a 

basis of the code subspace. The dual space, CT consists of all those vectors in Vn 

orthogonal to C, namely for all c E C and all d E CT,< c, d >= 0. The rows of an (n-k x n) 

parity check matrix H constitute a basis for CT. It follows that for all c E C, cHT = 0. A 
code is completely specified by either G or H, but neither are unique. 

A low density parity check code is one where the parity check matrix is binary and 

sparse, where most of the entries are zero and only a small fraction are 1 's. In its simplest 

form the parity check matrix is constructed at random subject to some rather weak 

constraints on H. At-regular LDPC is one where the column weight (number of ones) for 

each column is exactly t resulting in an average row weight of [ n t /(n - k)]. 

One might fix the row weight to be exactly s = [ n t /(n _ k)]. An (s, t)-regular LDPC is one 
where both row and column weights are fixed. The following parity check matrix H is an 

LDPC matrix with t = 2 

H= 

1 0 0 1 1 1 1 

0 1 0 1 0 1 0 

0 1 1 0 0 0 0 

1 0 1 0 1 0 1 

14 
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and for any valid codeword c 

1 0 0 1 1 1 1 
Co 

H= IO 1 0 1 0 1 0 
C1 

0 1 1 0 0 0 0 
I (2.9) 

1 0 1 0 1 0 1 I I C5 

c6 

This expression serves as the starting point for constructing the decoder. The matrix/vector 

multiplication in H defines a set of parity checks, which for the specific example are 

(2.10) 

Pl = CJ EB C3 EB C5 (2.11) 

p2 = CJ EB C2 (2.12) 

(2.13) 

A complete discussion of the message passing decoder is given in the next section. 

ext, we address encoding. By defining an LDPC code in terms ofH alone it is not obvious 

what constitutes the set C of valid codewords. Furthermore we need to specify the 

generator matrix G for the encoder. A straightforward way of doing this is to first reduce H 

to systematic form Hsys = [In-k I P] : In principle this is simple using Gaussian elimination 

and some column reordering. As long as H is full (row) rank, Hsys will have n _ k rows. 

There is some probability, however, that some of the rows ofH are linearly dependent. In 

15 



that case H is not full rank and the resulting H wil] be in systematic form, albeit with fewer 

rows. Once His in systematic form, it is easy to confirm that a valid (systematic) generator 

matrix is Gsys = [ PT, Ii ] since GH T = 0, it is interesting to note that the Hsys no longer has 
fixed column or row weight, and with high probability P is dense. The denseness of P can 

make the encoder quite complex. 

As an example the parity check matrix in (2.9) can be reduced to systematic form as 

Hsysternatic = 

1 0 0 0 1 0 1 

0 1 0 0 0 0 0 

0 0 1 0 0 0 0 

0 0 0 1 0 1 0 

(2.14) 

2.6 Turbo Codes 

The main goal of coding theory has always been to produce error-correcting codes 

that come close to the Shannon limit performance. Aiming to achieve near the Shannon 

limit performance, the research in coding theory has seen many powerful codes with large 

codeword lengths (for block codes) or constraint lengths (for convolutional codes). 

However, the decoding algorithms for many of these codes are complex or sometime 

physically unrealizable due to the lengths of the codes. As a result, the complexity in 

decoding powerful error-correcting codes has always been thought of as the real 

difficulty in the field of channel coding. 

One possible solution to this problem is to construct powerful codes with large 

block or constraint lengths structured so as to permit the breaking of the decoding into 

simpler partial decoding steps. Iterated codes, product codes, concatenated codes, and large 

constraint length convolutional codes with suboptimal decoding strategies are some 

examples of these attempts. The most recent successful attempt consists of the so-called 

turbo codes, whose amazing performance has given rise to a large interest in the coding 

community. 
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Turbo codes were introduced by Berrou [4] in 1993. Using turbo codes, Berrou 

showed that it is possible to transmit data with a code rate above the channel cutoff rate. 

He achieved an exceptional low BER with a signal to noise ratio (Eb/NO) close to the 

Shannon's theoretical limit on a Gaussian channel. The turbo coding scheme consists of 

two recursive systematic convolutional codes concatenated in parallel. The codewords 

are decoded using iterative maximum-likelihood (ML) decoding (soft decoding) of the 

component codes. Maximum a posteriori (MAP) algorithm is used to perform maximum 

space likelihood bit estimation and thus yields reliability information (soft-output) for each 

bit. This decoding algorithm is implemented using soft-input/soft-output decoders. By 

cascading several of these decoders, an iterative ML decoding can be performed on the 

component codes which are optimal at each decoding step. 

Turbo codes have received much attention since 1993, and many papers related to 

turbo codes have been published. The turbo code proposed by these papers can be 

broadly divided into two major types: block turbo codes (BTC) and convolutional turbo 

codes (CTC). 

In BTC, the encoder is formed by concatenating two or more linear block 

encoders to generate the codewords. In most cases, two dimensional product codes, 

which can be thought of as serially concatenated block codes, are used, instead of codes 

generated by concatenating linear block codes. To decode the product codes, iterative 

soft-input/soft-output (SISO) decoding, which is also called turbo decoding, is used, in 

place of the conventional hard decision decoding. 

In CTC, the encoder is formed by concatenating two or more convolutional 

encoders in parallel through the use of an interleaver. The input information bits enter the 

first encoder and after having been scrambled by the interleaver, enter the second encoder. 

The codeword of the CTC consists of the information bits followed by the parity 

checkbits of both convolutional encoders. As was in the BTC, turbo decoding is used to 

decodethe CTC codewords. 

2.6.1 Block Turbo Codes (BTC) 

In BTC, the encoder is formed by concatenating two or more block encoders to 
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generate the codewords. Most of the research works on BTC use product codes, which 

can be thought of as serially concatenated block codes, to encode the information data 

and very few have considered codes generated by concatenating linear block codes 

such as Hamming code. The next section will present the BTC which uses product codes to 

encode the information data. 

2.6.1.1 Product codes 

Product codes are serially concatenated codes which are widely used in practice due 

to the simplicity of their implementation and their capability in fighting against bursts of 

errors. They are generated by arranging the message bits in an array of k1 rows and k2 

columns and then appending horizontal parity check bits to each row and vertical parity 

check bits to each column (as shown in Figure. 2.4) 

Inforrnaticn bits 

Checks 
on 
rows 

1 

Checl(s on columns 

Figure 2.3 construction of product code 

An example of single-parity product codes is shown in Figure 2. The relationship between 

the data and parity bits is as follows: 
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where EB denotes exclusive or addition. As shown in Figure 2.4, the data sequence di dz ds 

d4 is made up of the binary digits 1 0 0 1. Using Equation 2.11, the parity sequence p 12 p 34 

p 13 p 14 is found to be 1 1 1 1. Thus, the transmitted sequence is 

(2.15) 

the transmitted sequence is 

+l-1-1+1+1+1+1+1 

This example will be used in the subsequent sections to show the principles of block 

turbo coding. 

di=l ch=O 

d3=0 dr=I p34=l 

p13=l 

Figure 2.4 Product code example 

2.6.2 Convolutional Turbo Codes 

In CTC, the encoder is formed by concatenating two or more convolutional 

encoders in parallel through the use of an interleaver. The input information bits enter the 

first encoder and after having been scrambled by the interleaver, enter the second encoder. 

The codewords of the CTC consist of the information bits followed by the parity check 

bits of both convolutional encoders. 
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2.6.2.1 Construction of CTC 

Figure.2.5 shows the concatenated encoders proposed by Berrou , where recursive 

systematic encoders (RSC) are used. The information data, di, goes directly to the first 

elementary RSC encoder C1 and after interleaving, feeds the second elementary RSC 

encoder C2. The information data, di, is systematically transmitted as symbol X, and 
redundancies Ylkand Y2k produced by C1 and Ce respectively. In general, the two 

component encoders need not be identical with regard to constraint length and rate. 

Therefore, the two elementary coding rates R1 and R2 associated with C1 and C2 may be 

different. For best decoding performance, the two elementary coding rates should satisfy 

R1 :::; R2• The global rate R of the composite code is given by the following equation 

(2.16) 

In designing turbo codes, the main goal is to select the best component codes by 

maximizing the effective free distance of the code. At large values of Eb/No, this is 

equivalent to maximizing the minimum weight codeword. However, at low values of 

Eb/No, optimizing the weight distribution of the codewords is more important than 

maximizing the minimum weight. 

Additional component codes can be added by parallel concatenating the component 

encoder. The parallel concatenation enables the elementary encoders, and therefore the 

associated elementary decoders, to run with the same clock. This provides an important 

implification for the design of the associated circuits in a concatenated scheme. 

2.6.3. Performance of BTC and CTC 

Most of the research works on turbo codes are focused on the CTC and very few 

have considered the BTC. However, it has been shown in that BTC performs better than 

CTC for high-code-rate applications. The main reason is that the minimum distance of a 
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turbo code becomes critical when the interleaver size is small. While the minimum distance 

of a CTC can be relatively small, a product code can provide a minimum distance of 16, 36 

(or more). 

BTC also performs better than CTC for high-data-rate systems. In high-data-rate 

systems, the decoding speed of a BTC can be increased by using several elementary 

decoders for the parallel decoding of the rows (or columns) of a product code since they 

are independent. 

The turbo codes have been shown to achieve exceptionally low BER with a signal to noise 

ratio close to the Shannon theoretical limit. 

The choice ofBTC and CTC depends on the code rate of the system. The 

simulation results from different authors show that for a given BER, it is possible to define 

a "threshold rate". For rates smaller than the threshold value, the CTC should be used, and 

for rates greater than this rate it is better to use BTC. 

Ci 
Recursive 
Systematic 

Code 
(37,21) 

delay line 

interleaving 
Y2k 

C2 
Recursive 
Systematic 

Code 
(37,21) 

Figure 2.5. Berrou's Encoder for CTC 
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CHAPTER3 

LINEAR BLOCK CODES 

3.1 Introduction to Linear Block Codes 

Channel coding is an error-control technique used for providing robust data 

transmission through imperfect channels by adding redundancy to the data. There are two 

important classes of such coding methods: block and convolutional. Forward error 

correction (FEC) is the name used when the receiving equipment does most of the work. In 

the case of block codes, the decoder looks for errors and, once detected, corrects them 

(according to the capability of the code). The technique has become an important signal 

processing tool used in modem communication systems and in a wide variety of other 

digital applications such as high-density memory and recording media. Such coding 

provides system performance improvements at significantly lower cost than through the use 

of other methods that increase signal-to-noise ratio (SNR) such as increased power or 

antenna gain. 

3.2 Channel Coding 

Channel coding involves data transformations that are used for improving a 

system's error performance by enabling a transmitted message to better withstand the 

effects of channel impairments such as noise, interference, and fading. For applications that 

use simplex channels (one-way channels such as compact disk recordings), the coding 

techniques must support FEC since the receiver must detect and correct errors without the 

use of a reverse channel (for retransmission requests). Such FEC techniques can be thought 

of as vehicles for accomplishing desirable tradeoffs that can reduce bit error rate (BER) at a 

fixed power level or allow a specified error rate at a reduced power level at the cost of 

increased bandwidth (or transmission delay) and a processing burden. A data or message 
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vector m = mi .mz. ... .me containing k message elements from an alphabet is transformed 

by the block code into a longer code vector or code word U = ui, us. ... , Un containing n 

code elements constructed from the same alphabet. The elements in the alphabet have a one 

to one correspondence with elements drawn from a finite field. 

Finite fields are referred to as Galois fields, after the French mathematician 

Evariste Galois (1811-1832). A Galois field containing q elements is denoted GF(q), with 

the simplest such finite field being GF(2), the binary field with elements (1, 0), which have 

the obvious connection to the logical symbols (1, 0) called bits. When we deal with fields 

that contain more than two elements, these nonbinary elements are encoded as binary m 

tuples (m-bit sequences). Then the elements are processed as binary words according to the 

rules of the field in much the same way that decimal integers were encoded as binary-coded 

decimal (BCD) symbols in early computers. and in contemporary calculators. 

The number of output elements n ( code bits) and input elements k ( data bits) 

characterizing a block code are denoted by the ordered pair (n, k). Often, the designation (n, 

k, t) is used to indicate that the code is capable of correcting t-errors in then-element code 

word. For transmitting the code bits (comprising U) with waveforms, a common practice is 

to use bipolar pulses with values ( + 1, -1) to represent the binary logic levels (1, 0), 
respectively. For a radio system, such pulses are modulated on to a carrier wave, typically 

denoted s (t). 

Channel impairments are responsible for transforming a transmitted waveforms (t) 

into a corrupted waveform r(t) = s (t) + n(t) , which is received and processed by a 
demodulator/ detector. The demodulator recovers samples of the corrupted waveform, and 

the detector interprets the digital meaning of that waveform. A commonly used model for 

n(t) is that of an additive white Gaussian noise (A WGN) process. Noise, interference, and 

channel distortion mechanisms account for the detector making errors. Consequently, 

instead of accurately reproducing the bipolar pulse values or logic levels (representing U), 

the detector might instead output a corrupted version r, written as 

r=U+e(l) (3.1) 
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where r = rt, rs. ... , r« represents a received block of n elements, and e = ei, es ... , en 

represents the corruption, referred to as the error sequence or error pattern. 

3.2.1 Hard Decisions and Soft Decisions 

In Figure.3.1, each detected element r, of the received vector r can be described as a 

quantized-amplitude decision. 

Message 
Vector 

Figure.3.1 channel encoding/decoding 

The decision may simply answer the question "Is the amplitude greater or less than 

zero?" yielding a binary decision of 1 or 0. Such a decision is called a hard decision 

because the detector firmly selects one of two levels. Sometimes the detector's decision 

may answer multiple questions such as "Is the amplitude greater or less than zero, and is it 

greater or less than some reference level?" For binary signaling, such multipart decisions 

are called soft decisions; they offer the decoder side information about the SNR of the 
' 

corrupted analog waveform. 
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A soft decision might tell the decoder, "this signal has a positive amplitude, but it is 

not very far from the zero amplitude" or "this signal has a positive amplitude, and it is quite 

far from the zero amplitude." The most popular soft-decision format entails eight-level 

signal quantization, which can be interpreted as a hard decision plus a measure of 

confidence. The figure-of-merit for the error performance of a digital communication 

system is usually expressed as a normalized SNR, known as the ratio of bit energy to noise 

power spectral density, Eb IN0• The coding gain or benefit provided by an error-correcting 

code to a system can be defined as the "relief' or reduction in required Eb IN0 that can be 

realized due to the code. For an A WGN channel, when the detector presents the decoder 

with such soft decisions, the system can typically manifest an improvement in coding gain 

of about 2 dB compared to hard-decision processing. For the majority of block-code 

applications, hard-decision decoding is used. A received vector rout of the detector is 

made up of hard-decision components, designated by pulses(+ 1, -1) or by logic levels (1, 

0). Soft decisions are also of great value for systems using iterative decoding techniques 

that operate close to theoretical limitations. Examples of such techniques are turbo codes 

and low density parity check (LDPC) codes. 

3.3 Simple Parity Codes 

At the transmitter, the encoder adds redundancy with a set of constraints that must 

be satisfied by the set of all code words. Error detection occurs when a received vector does 

not satisfy the constraints. The simplest approach to error detection modifies a binary data 

sequence into a code word by appending an extra bit called a parity bit. When using the 

constraint that a code word must contain an even number of ones, the scheme is referred to 

as even parity (the constraint of an odd number of ones is called odd parity). To establish 

the even-parity condition, the parity bit pis formed, as the modulo-2 sum of the message 

bits, as 

(3.2) 
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where the symbol EB indicates modulo-2 addition. The test (even-parity check) conducted by 

the receiver verifies that the modulo-2 sum of the parity plus message bits in the received 

sequencer is zero. If the sequence fails the test, an error 'has been detected. We refer to the 

test result as the syndrome S, written as 

(3.3) 

The syndrome in (3.3) can be modeled as the modulo-2 sum of the transmitted sequence 

and the error sequence, as 

(3.4) 

S = (m, EB m2 EB • • ·EBmk EB p) EB (e J EBe2 EB • • ·EBek EBek+J) 

= 0 EB (e1 EBe2 EB •• ·EBek EBek+J). (3.5) 

When factored into separate message and error sequences as seen in (3.5), we 

recognize that the syndrome tests both the transmitted sequence and the error sequence, but 

since the syndrome of the transmitted sequence is zero, the syndrome is only responding to 

the error sequence. For the case of a single parity bit, as in (3.5), only an odd number of 

errors can be detected, since an even number of errors will yield the syndrome S = 0. 
A single parity bit can only be used for error detection. To perform error correction, 

we require additional information to locate the error positions; the code word needs to be 

embedded with more than a single parity bit. A simple example of a code that appends 

additional parity bits to the message sequence is shown in (3.6. Here, a set of eight message 

elements is packed into a two-dimensional array from which we form parity for each row 

and parity for each column. 

The appended array can be rearranged into a code word sequence U as 

U = m 1 m2 m3 m4 m5 m6 m7 1118 p 1 p2 p3 p4 p5 p6. (3.6) 
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When U is received, it can be mapped back to the same two-dimensional array, and 

a set of syndromes can be calculated corresponding to each row and each column. A single 

error located anywhere in the message positions will cause a nonzero syndrome in a row 

and in a column, and thus the intersection of the row and column corresponding to the 

parity failure contains the single error. One should conclude that a block code capable of 

detecting and correcting error sequences needs to have multiple parity symbols appended to 

the data message and multiple syndromes generated during the parity checks at the receiver. 

3.4 The Generator Matrix and Systematic Codes 

The most general form of the parity generation process, in which each code element 

u, of the code word U is a weighted sum of message elements, can be written in the form of 

a vector matrix equation as 

U=mG (3.7) 

[ it1 »a «s · · · Un] = [ n2:1 1·n2 lf'.l:3 • • · tn k] 
g1,1 .il,2 .il,3 
.f/2,l .tJ2,2 .i2,3 

X I g3,l 93,2 93,3 

.[/1, 1J 
g2,n 
93,n 

where the entries of the matrix G, called the generator matrix, represent weights (field 

element coefficients), and the multiplication operation follows the usual rules of matrix 

multiplication. The product of a message row-vector m with the ith column-vector of G 

forms ui a weighted sum of message elements representing the ith element of the code word 

row-vector U. For a binary code, the data elements as well as the matrix weights are ls and 

Os. 

A useful variant of the code word U is one in which the vector of message elements 

is embedded, without change, in the code word along with an appended vector of parity 
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elements. When the code word is constrained in this manner, the code is called a systematic 

code. To form a systematic code the generator matrix G can be modified 

in terms of submatrices P and Ik as follows: 

U = rnG = 111 [Pllk] (3.8) 

U .......;;• [ -u1 it2 'tt-3 · • ,, tt,i] = [ 1n1 1n2 tn3 · · · 1n;.J 
g1,k+l gi,n 1 0 0 0 
lf2, k+l ' · · 92, n O 1 0 · · · 0 
g3,k+l 93,n O O 1 0 

X 

lJk,k+l •.. tJk, n 0 0 0 1 

p 

where P is the parity portion of G, and Ik is a k-by-k identity sub matrix ( ones on the main 

diagonal, and zeros elsewhere). 

3.5 Weight and Distance Properties 

The Hamming weight w(U) of a code word U is defined as the number of nonzero 

elements in U. For a binary vector (or a nonbinary vector with field elements represented in 

binary form), this is equivalent to the number of ones in the vector. For example, if U = 1 0 
0 101 1 0 1, then w(U) = 5. The Hamming distance d(V, V) between two binary code 

words U and Vis defined as the number of bit positions in which they differ. For example 

if U=100101101 

and V = 0 1 1 1 1 0 1 0 0 

then d(U, VJ = 6. 
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By the properties of linear block codes, we say that the sum of two different codeword is a 

third codeword. 

W = V+ V = 1 1 1 0 1 1 0 0 1 

Thus, we observe that the Hamming distance between two code words is equal to 

the Hamming weight of the summed vectors: that is, d(U, V) = w(U+ V). Also, note that the 

Hamming weight of a code word is equal to its Hamming distance from the all-zeros 

vector. 

3.6 Decoding Task 

The decoding task can be stated as follows: Having received the vector r, find the best 

estimate of the particular code word Vi that was transmitted. The optimal decoder strategy 

is to minimize the decoder error probability, which is the same as maximizing the 

probability P(U = Vi Ir). If all code words are equally likely and the channel is memoryless, 

this is equivalent to maximizing P(rlVi ), the conditional probability density function (pdf) 

of r, expressed as 

p(rlU 1) = max p(riUf) 
over all U1 (3.9) 

where the pdf, conditioned on having sent V , is called the likelihood of V1 . Equation (3 .9), 

known as the maximum likelihood (ML) criterion , can be used for finding the "most 

likely" V1 that was transmitted. For algorithms using Hamming distances, the likelihood of 

V1 with respect tor is inversely proportional to the distance between rand V1, denoted 

d(r, V; ). Therefore, we can express the decoder decision rule as: Decide in 

favor of V1 if 
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d(r, U.,) = min d(r, U1) 
over all U1. (3.10) 

3.7 Error-Detecting and Error-Correcting Capability 

The smallest member of the set is called the minimum distance of the code and is 

denoted dmin· To find dmin, we need not search the set of code words in a pairwise fashion. 

Because of the closure property, we need only find the nonzero code word having the 

minimum weight. The minimum distance, like the weakest link in a chain, gives us a 

measure of the code's capability (indicates the smallest number of channel errors that can 

lead to decoding errors). Figure 3.2 illustrates the distance between two code words U and 

V using a number line calibrated in Hamming distance, where each black dot represents a 

corrupted code word. In this example, let the distance d(U, V) be the minimum distance 

dmin = 5. Figure 3.2(a) illustrates the reception of a vector r1, which is distance 1 from U 

and distance 4 from V. An error-correcting decoder, following the ML strategy, will select 

U upon receiving r 1• If r 1 had been the result of a 1-b corruption to the transmitted code 

word U, the decoder has successfully corrected the error. But if r1 had been the result of a 

4-b corruption to the transmitted code word V, the result is a decoding error. Similarly a 

double error in transmission of U might result in the received vector r2, which is distance 2 

from U and distance 3 from V, as shown in Figure 3.2(b). Here too, the decoder will select 

U upon receiving r2. A triple error in transmission of U might result in a received vector r3 

that is distance 3 from U and distance 2 from V, as shown in Figure 3.2(c). Here the 

decoder will select V upon receiving r3 and, given that U was transmitted, will have made a 

decoding error. From Figure 3.2, one can see that if the task is error detection (and not 

correction), then as many as 4-b errors can be detected. But, if the task is error-correction, 

the decision to choose U if r falls in region 1, and V if r falls in region 2, illustrates that this 

code (with dmin = 5) can correct as many as 2-b errors. We can generalize a linear block 

code's error-detection capability e and error-correction capability t as 
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8=dm111-l 

t = li .. ' dnnn = 1 J.• 2 
(3.11) 

where the notation _x _, called the floor of x, means the largest integer not to exceed x (in 

other words, round down if not an integer). 

D.ecision 
Line 

Region 1 Region2 

u V 

(a) 

u r2: V 

(b) 

u V 

(c) 

Figure 3.2. Error correction and detection capability 

3.8 A (6, 3) Linear Block Code Example 

Table.3.1 describes a code word-to-message assignment for a (6, 3) code, where the 

rightmost bit represents the earliest (and most-significant) bit. For each code word, the 

rightmost k = 3 bits represent the message (hence, the code is in systematic form). 
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Since k = 3, there are 2k = 23 = 8 message vectors, and therefore there are eight code 

words. Since n = 6, then within the vector space Vn = V6 there are a total of 2n = 26 = 64 6- 
tuples. It is easy to verify that the eight code words shown in Table.3.1 form a subspace of 

V6 (the all-zeros vector is one of the code words, and the sum of any two code words is 

also a code word). Note that for a particular (n, k) code, a unique assignment does not exist; 

however, neither is there complete freedom of choice. 

Table 3.1 Assignment of message to code word for the (6, 3) code 

3.8.1 A Generator Matrix for the (6, 3) Code 

For short codes, the message-to-code-word mapping in Table 3.2 can be accomplished via a 

lookup table, but if k is large, such an implementation would require a prohibitive amount 

of memory. Fortunately, by using a generator matrix G. It is possible to reduce complexity 

by generating the required code words as needed instead of storing them. Since the set of 

code words is a k-dimensional subspace of the n-dimensional vector space, it is always 

possible to find a set of n-tuples (row-vectors of the matrix G), fewer than 2k that can 

generate all the 2k code words of the subspace. The generating set of vectors is said to span 
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the subspace. The smallest linearly independent set that spans the subspace is called a basis 

of the subspace, and the number of vectors in this basis set is the dimension of the 

subspace. Any basis set of k linearly independent n-tuples V 1, V 2, ... , V k (that spans the 

subspace) can be used to form a generator matrix G. This matrix can then be used to 

generate the required code words, since each code word is a linear combination of 

V1, V2, ... ,Vk. That is, each code word U within the set of2k code words can be 

described by 

(3.12) 

where each mi= (1 or 0) is a message bit and the index i = 1, ... , k represents its position. 

In general, we describe this code generation in terms of multiplying a message vector m by 

a generator matrix G. For the (6, 3) code introduced earlier, we can fashion a 

generator matrix G in systematic form, as 

[

·\11] 
G == ;~ 

l 1 0 
0 1 1 
1 0 1 .._,_. 

p 

1 0 0 
0 1 0 
0 0 1 ._,_, 

Ik 
(3.13) 

where P and h represent the parity and identity sub-matrices, respectively, and Vi, V2, and 

V3 are three linearly independent vectors (a subset of the eight code vectors) that can 

generate all the code words, made up of the weights {giJ }. Note also that the sum of any 

two generating vectors does not yield any of the other generating vectors since linear 

independence is, in effect, the opposite of closure. The generator matrix G completely 

defines the code and represents a-compact way of describing a block code. If the encoding 

operation utilizes storage, then the encoder only needs to store the k rows of G instead of 
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all 2k code words of the code. For systematic codes, the encoder only stores the P sub 

matrix; it doesn't need to store the identity portion of G. 

3.8.2 Error Detection and the Parity-Check Matrix 

At the decoder, a method of verifying the correctness of a received vector is needed. Let us 

define a matrix H, called the parity-check matrix, that will help us decode the received 

vectors. For each (k x n) generator matrix G, one can construct an (n - k) x n matrix H, 

such that the rows of G are orthogonal to the rows of H. Another way to express this 

orthogonality is to say that GHT = 0, where HT is the transpose of H, and O is a 
k x (n - k) all-zeros matrix. HT is an n x (n - k) matrix (whose rows are the columns ofH). 

To fulfill the orthogonality requirements of a systematic code, the H matrix can be written 

as H = [In-k IPT ], where In-k represents an (n - k) x (n - k) identity submatrix and P 

represents the parity submatrix defined in (3.13). Since by this definition of H, we see that 

GHT = 0, and since each U is a linear combination of the rows of G, then any vector r is a 

code word generated by the matrix G, if and only if 

(3.14) 

Equation (3 .14) is the basis for verifying whether a received vector r is a valid code word. 

3.9 Towards Error Correction: Syndrome Testing 

We can model the received word r as a summation r = c + e, where c is the 
transmitted codeword and e is the error pattern induced by the channel noise. If we could 

know e then the codeword is given as c = r + e. But, how can we get e from r? 

Consider 

(3.15) 
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The length-(n - k) words is called the syndrome [4] of the received word r. Though the 

syndrome s depends only on the error patter e, there are many error patterns which can 

yield the same syndrome. Indeed, for any codeword c0 other than c, c0 + e is an error 
pattern having the same syndrome s. The collection of all the error patterns that give the 

same syndrome is called a coset of the code. Any two error patterns in a coset are different 

by a codeword, so each coset contains 2k different error patterns. Since there are 2n possible 

error patterns, there must be 2n=2k = 2n-k different cosets corresponding to the 2n _ k 

different syndromes. In other word, for each syndrome, there is a coset of 2k error patterns 

which can generate it. Then, which one is the right one? 

The minimum Hamming distance decoder picks up a codeword cO such that 

r = cO + eO where eO has the smallest possible weight. Therefore, for a given syndrome, the 

decoder should choose among the corresponding coset the lowest-weight error patter. The 

error pattern with lowest weight in a coset is called the coset leader. 

As a summary, the minimum Hamming distance decoder for linear block codes 

works this way: 

When receiving a word r, 

1. Compute the syndrome s = rH T ; 

2. Ifs = 0, choose codeword c0 = r and go to step 4; if ss= 0, find the coset leader e' 

corresponding to s; 

3. Choose the codec'= r + e; 
4. Mapping c' back to the message word. 

At step 2, if there are more than one candidate coset leader, the decoding fails. This 

decoding procedure is called syndrome decoding. Syndrome decoder only needs to store 

the parity check matrix H and the 2n-k coset leaders, requiring less memory than simple 

minimum Hamming distance decoder which needs to store all 2k codewords. In addition, 

the syndrome decoder only involves simple matrix computation and Figure(3.3) looking up 

which can be implemented easily using digital processors or circuits. 
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syndrome 0000000 1000111 0101011 0011101 1101100 1011010 0110110 1110001 
0001 0000001 1000110 0101010 0011100 1101101 1011011 0110111 1110000 
0010 0000010 1000101 0101001 0011111 1101110 1011000 0110100 1110011 
0100 0000100 1000011 0101111 0011001 1101000 1011110 0110010 1110101 
1000 0001000 1001111 0100011 0010101 1100100 1010010 0111110 1111001 
1101 0010000 1010111 0111011 0001101 1111100 1001010 0100110 1100001 
1011 0100000 1100111 0001011 0111101 1001100 1111010 0010110 1100001 
0111 1000000 0000111 1101011 1011101 0101100 0011010 1110110 0110001 
0011 0000011 1000100 0101000 0011110 1101111 1011001 0110101 1110010 
0110 0000110 1000001 0101101 0011011 1101010 1011100 0110000 1110111 
1100 0001100 1001011 0100111 0010001 1100000 1010110 0111010 1111101 
0101 0011000 1011111 0110011 0000101 1110100 1000010 0101110 1101001 
1010 0001010 1001101 0100001 0010111 1100110 1010000 0111100 1111011 
1001 0010100 1010011 0111111 0001001 1111000 1001110 0100010 1100101 
1111 0010010 1010101 0111001 0001111 1111110 1001000 0100100 1100011 
1110 0111000 1111111 0010011 0100101 1010100 1100010 0001110 1001001 

Figure 3.3 The syndrome table 

3.9.1 The Standard Array and Error Correction 

The syndrome test gives us the ability to detect errors and to correct some of them. Let us 

arrange the 2n n-tuples that represent possible received vectors in an array, called the 

standard array. This array can be thought of as an organizational tool or a filing cabinet 

that contains all of the possible vectors in the space, nothing missing, and nothing 

replicated. The first row contains the set of all the 2k code words U 1, U2, ... , U2k starting 

with the all-zeros code word designated U1• In this array, each row, called a coset, consists 

of an error pattern in the leftmost position, called a coset leader, followed by corrupted 

code words (corrupted by that error pattern). Thus the first column, made up of coset 

leaders, displays all of the correctable error patterns. The structure of the standard array for 

an (n, k) code, is 
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U1 U2 
e:2 U2+e2 
e3 U2 + e3 

u, 
U, +e2 
U1+e:, 

U2• 
U2t + e2 
U2• + e3 

ui+ej 

Note that code word U1 plays two roles. It is one of the code words (the all-zeros code 

word), as well as the error pattern er, that is the pattern that introduces no errors so that 

r = U+ e1 = U. Since the array contains all the 2n n-tuples in the space, each n-tuple 
appearing only once, and each coset or row contains 2n n-tuples, we can compute the 

number of rows in the array by dividing the total number of entries by the number of 

columns. Thus, in any standard array, there are 2n;2k = 2n-k cosets. At first glance, the 
benefits of this tool seem limited to small block codes, because for code lengths beyond n = 

I 

20 there are millions of ntuples in Vn. Even for large codes, however, the standard array 

concept allows visualization of important performance issues, such as bounds on error 

correction capability, as well as possible tradeoffs between error correction and detection. 

In the sections that follow, we show how the decoding algorithm replaces a received 

corrupted code word r = U+ e with an estimate_ U of the valid code word 

U. If code word U, is transmitted over a noisy channel, and the corrupting error pattern is a 

coset leader, then the received vectorwill be decoded correctly into the transmitted code 

word U, . If the error pattern is not a coset leader, an erroneous decoding will result. 

3.9~2 The Syndrome of a Coset 

The name coset is short for "a set of numbers having a common feature." What do the 

members of a coset have in common? Each member has the same syndrome. We confirm 

this as follows: If ej is the coset leader or error pattern of the /h coset, then Vi+ e1 is 
an n-tuple in this coset. From (3.15), the syndrome of this n-tuple can be written as 
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S ·HT······ r U : ... ·)Hr · U H····.r ..... ·... H· r = r •.... · = ( i + e1 . . = · i .. · + er · . (3.16) 

Since U; is a valid transmitted code word, then U;HT = 0, since the parity check matrix H 

was constructed with this feature in mind. We can therefore express (3.16) as 

T . T S,.;.;.; rH = e1H . (3.17) 

Thus, the syndrome test, performed on either a corrupted code vector or on the error 

pattern that caused it, yields the same syndrome. Equation (3 .17) establishes that the 

syndrome is in fact only responding to the error pattern, which was similarly shown in (3.5) 

for a simple parity code. An important property of linear block codes, fundamental to the 

decoding process, is that the mapping between correctable error patterns and syndromes is 

one to one. The syndrome for each coset is different from that of any other coset in the 

code; it is the syndrome that is used to estimate the error pattern, which then allows for the 

errors to be corrected. 

3.9.3 Locating the Error Pattern 

Returning to the (6, 3) code example, we arrange the 26 = 64 6-tuples in a standard 

array. The valid code words are the eight vectors in the first row, and the correctable error 
y 

patterns are the seven nonzero coset leaders in the first column. Note that all 1-b error 

patterns are correctable. Also note that after exhausting all 1-b error patterns, there remains 

some error-correcting capability since we have not yet accounted for all 64 6-tuples. There 

is still one unassigned coset leader; therefore, there remains the capability of correcting one 

additional error pattern. We have the flexibility of choosing this error pattern to be any of 

the n-tuples in the remaining coset. This final correctable error pattern was chosen, 

somewhat arbitrarily, to be the 2-b error pattern 010001. The error-correcting task 

performed by the decoder can be implemented to yield correct messages if, and only if, the 

error pattern caused by the channel is one of the coset leaders. For the (6, 3) code example, 
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we now use Equation 3.17 to determine the syndrome (symptom) corresponding to each 

correctable error pattern (ailment), by computing e1 HT for each coset leader, as follows: 

S = CJ 

1 0 0 
0 1 0 
0 0 1 
1 1 0 
0 1 1 
1 0 1 (3.18) 

The results are listed in Figure 3.3. Since each syndrome in the table has a one-to-one 

relationship with the listed error patterns, solving for a syndrome earmarks the particular 

error pattern corresponding to that syndrome . 

3.9.4 Error Correction Decoding 

Given a received vector rat the input of the decoder, we summarize the procedure for 

deciding on U and finally on _mas follows: 1) calculate the syndrome 

of r using S = rHT and 2) use Table 3 to locate the coset leader (error pattern) e1, whose 

syndrome equals rHT . This error pattern is assumed to be the corruption caused by the 

channel and will be our estimate "e of the error, estimate of the code word_ U is identified 

as __ U = r + "e. We can say that the decoder obtains an estimate of the transmitted code 

word by removing an estimate of the error "e (in modulo-2 arithmetic, the act ofremoval is 

effected via addition). This step can be written as 

U-· ·· · + ··· ·········· c .. U + ). + ~-- ·· ·u· +' ( +· A) = r······ e = ... ·•· e ········· e = · .. , e : e (3.19) 

If the estimated error pattern is the same as the actual error pattern, that is, if "e = e, then the 
estimate _U is equal to thetransmitted code word U. However, if the error estimate is 

incorrect, the decoder will choose a code word that was not transmitted, resulting in a 
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decoding error. As an example from the (6, 3) code, assume that code word U = 101110 
corresponding to m = 110 (see Table 2) is transmitted and that the vector r = 001110 is 
received. From 3.17 we compute the syndrome as 

S = [O O 111 O] HT = 100 (3.20) 

From Table 3.2, we can verify that the error pattern is e = 100000. Then, using (3.19), the 

corrected vector is estimated as 

~ 
U = r + e = 001110 + 100000=101110 (3.21) 
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Table 3.2 Syndrome lookup table 

Since in this example, the estimated error pattern is the actual error pattern, the error 

correction procedure yields _ U = U, which means that the output_ m will correspond 

to the actual message 110. Note that the process of decoding a corrupted code word by first 

detecting and then correcting an error can be compared to a familiar medical analogy. A 

patient r (potentially corrupted code word) enters a medical facility ( decoder). The 

examining physician performs a diagnostic test (multiplies r by HT ) to find a symptom 
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(syndrome). Imagine that the physician finds characteristic spots on the patient's X rays. 

An experienced physician would immediately recognize the correspondence between the 

symptom and the ailment, for example tuberculosis. A novice physician might have to refer 

to a medical handbook (Table 3.2) to associate the symptom (syndrome) with the ailment 

(error pattern). The final step is to provide medication _e. If _e is the proper medication 

(if _e = e), then the ailment is removed, as seen in Equation 3.19. In the context of binary 

codes and the medical analogy, (3.19) and (3.21) reveal an unusual type of medicine 

practiced here. The patient is cured by reapplying the original ailment, a process that works 

because in the binary field 1 + 1 = 0 .. 

OO~'H:l1 

Table 3.3 Standard array for a (6, 3) code 

3.9.5 Decoder Implementation 

When the code is short as in the case of the (6, 3) code, the decoder can be implemented 

with simple circuitry. The steps that such a circuit must take are: 1) calculate the syndrome, 

2) locate the error pattern corresponding to that syndrome, and 3) modulo-2 add the 

estimated error pattern to the received vector to yield an estimate of the corrected vector. 

Consider the circuit in Figure 3.4, made up of exclusive-OR gates and AND gates that can 

accomplish these decoder steps for any single-error pattern in the (6, 3) code. From 

Table 3.2 and (3.17), we can write an. expression for the syndrome bits si, ss. s3 in 

terms of the received code word bits r.. ... , r6 as 
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S=rHT 

and 

s1 = 1"1 + r4 + 1~0 

s2 = r2 + r4 + 1'"5 
s3 :;;;;;.;; r,; + rs + 1·6. 

1 0 0 
0 1 0 
0 0 1 
1 1 0 
0 1 1 
1 0 1 

• 

(3.22) 

We use these syndrome expressions for wiring up the circuit in Figure 3.4. The exclusive 

OR gate provides the same operation as modulo-2 arithmetic and hence uses the same 

symbol. A small circle at the termination of any line entering the AND gate indicates the 

logic complement of the signal. The corrupted signal r enters the decoder at two places 

simultaneously. At the upper part of the circuit, the syndrome Sis computed, and at the 

lower part that syndrome is transformed to its corresponding error pattern e. The error is 

removed by adding it back to the received vector yielding the corrected code word U. Note 

that, Figure 3.4 has been drawn to emphasize the algebraic decoding steps, calculation of 

syndrome, error pattern, and corrected output. For real circuitry, the decoder would not 

need to deliver the entire code word; its output would consist of the message bits only. 

Hence, the Figure 6 circuitry becomes simplified by eliminating the gates that are shown 

with shading. For longer codes such an implementation is very complex, and the preferred 

decoding techniques conserve circuitry by using a sequential approach instead of this 

parallel method . It is important to emphasize that Figure 3.4 has been configured to detect 

and correct only single-error patterns for the (6, 3) code. Error control for a double-error 

pattern would require additional circuitry. 
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Figure.3.4 Implementation of (6, 3) code 

3.10 Hamming Codes 

Hamming found the first error control code, now known as [7, 4] hamming code, trying to 

extend the concept of parity checks to correcting errors. The [7, 4] hamming code is 

composed of the binary codewords of length 7, fulfilling the following parity check 

equations 

.X4 + X5 + X6 + X7 = 0 
X2 + ::c3 + ~:C6 + X7 = 0 

0 (3.22) 
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Where the(+) sign relates to XOR arithmetic relation shown in Table 3.4. This leaves only 

4 free choices among the seven binary symbols, these choices are arbitrary and are the 

information bits. 

b1 b2 XOR 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

Table 3.4 modulo-2 adder(XOR) 

The three parity bits (1,2,4) which are the extra information (redundant) are related 

to the data bits (3,5,6,7) as show in Figure.3.5 below. In this diagram, each overlapping 

circle corresponds to one parity bit and defines the four bits contributing to that parity 

computation. For example, data bit 3 contributes to parity bits 1 and 2. Each circle (parity 

bit) encompasses a total of four bits, and each circle must have EVEN parity. Given four 

data bits, the three parity bits can easily be chosen to ensure this condition. The 3 redundant 

bits (parity bits) are decided by using mathematical equations related to the information 

data bits using the modulo-2 (XOR) arithmetic relation. 
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0 
,I 

Figure 3.5 relation between bits in a codeword 

3.10.1 How to get the Parity Bits 

Just in this section we will say that the Hamming code 7-bits are 

x = [po,P1, Xo,P2, X1, X2, X3] 

~=~+~+~ 

~=~+~+~ 

~=~+~+~ 

This operation happen in the encoderof the hamming code and (see Figure 3.6) 
- ~ aO 
L-- 

al al 
L-- 

a2 a2 
~ L-- 

al al 
~ ~ 

I 
po 

I modulo-2 L-- 

I I 
Pl 

I L-- 
P2 

I I 
L-- 

I modulo-Z 
I I I 

modulo-Z I I 
I I 

Figure 3.6 Hamming code encoder 
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We choose xs. x5, x6 and x7 as the information bits. If x is transmitted and received as y, the 

code can tolerate a single bit to be in error and still retrieve the information bits X3, xs, X6,X1. 

This is done in the following simple way: let 

~+~+~+~=a 
~+m+~+~=fi 
~+m+~+~=1 (3.24) 

The vector (a, P, 1l gives the location of the error in binary forms, i.e., (I, 0, 1) means the 

fifth symbol is in error. We can notice that hamming codes has 2" information messages, 

but that is not true. There are specific number of information messages, lets take the [7, 4] 

code as an example. 

7 6 5 4 3 2 1 

0 0 0 0 0 0 0 0 

1 0 0 0 0 1 1 1 

2 0 0 1 1 0 0 1 

3 0 0 1 1 1 1 0 

4 0 1 0 1 0 1 0 

5 0 1 0 1 1 0 1 

6 0 1 1 0 0 1 1 

7 0 1 1 0 1 0 0 

8 1 0 0 1 0 1 1 

9 1 0 0 1 1 0 0 

A 1 0 1 0 0 1 0 

B 1 0 1 0 1 0 1 

C 1 1 0 0 0 0 1 

D 1 1 0 0 1 1 0 
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Table 3.5 Hamming [7, 4] , dmin = 3 

3~10.2 Parity Check Equations 

The parity check equations are conveniently expressed in the linear algebraic equation 

Hx=O (3.25) 

where His parity check matrix containing a one in position (i, j) if Xj is check in 

equation i. 

[ 

0 0 0 1 1 1 1 l 
H[7,4J = 0 1 1 0 0 1 1 _ = [h1, h2, h3, lu, h5, h5, h1] 

1 0 1 0 1 0 1 (3.26) 

This linear algebraic immediately formulation immediately reveals some fundamental 

principles: 

The code is linear, i.e., Hx1 = 0, Hx1 = 0 which gives H(x1, x1) = 0, and 
X3 = ( Xi, xs) is also a codeword. 

Theorem: the hamming codes are single error correcting. 

Proof: A single error is identified by hj, where j is the location of error and all hj are 

unique. Conversely, double errors in positions i andj are not identifiable since h; + hj = hk 
look like a single error in position k. 

Hamming codes have the ability of detecting two errors but it can only correct one. 
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Hamming Bound: A t-error correcting code with M codewords must fulfill the inequality 

(3.27) 

Where n is the code.length and Mis the number of codewords. 

Proof: there are 2° possible binary vectors of length n. each of the M codewords needs a 

sphere of distance t around itself which cannot contain another codeword in order to 

tolerate t errors and still be uniquely identifiable. 

A code which fulfills the Hamming bound with equality is called a perfect code. 

3.10.3 Code Generator Matrix 

We begin by rearranging the columns ofH17,41 into 

[ ·.~ ~ ~ ~ ~ ~ ~ ]. 
1 0 1 1 0 0 1 

By replacing each column by some linear combination of columns of H17, 4J. This does not 

change the code, since Hx = 0 is unaffected. 
This new arrangement has the form 

(3.28) 

Rearranging as follows and calling [xi, ••• , Xk]T = [u1, ••• , uk]T the information bits, we 

obtain 
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The Code Generator Matrix is now given by: 

(3.30) 

The matrix G = [ h, -A7] is the Generator Matrix for the [7, 4]-Hamming code 

1 O O O 1 1 1 
O 1 o, 0 1 1 0 

G [7,4] == I O O 1 0 1 0 1 
0001011. 

(3.31) 
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CHAPTER4 

RESULTS 

4.1. Error Detection and/or Correction 

We have mentioned before briefly how error-control codes work, but now after explaining 

the types of codes and how they are generated, we can go deeper in telling the manners and 

different uses of error-control codes. We will take the linear block code as an example, and 

we will show how its encoder and decoder work. 

The block encoder takes a block of k bits and replaces it with n-bit codeword. For a 

binary code, there are 2k possible codewords in the codebook. The channel introduces errors 

and the received word can be any one of 2n n-bit words of which only 2k are valid 

codewords. The job of the decoder is to find the codeword that is closest to the received n 

bit word. 

The examples will use a brute force look-up method. The decoding spheres of 

Figure 4.1 will be used to illustrate the decoding progress. In Figure 4.1, each valid 

codeword is represented by a point surrounded by a sphere of radius t, where t is the 

number of errors that the code can correct. Note that codewords A and B of Figure. I are 

separated by a distanced min, called the minimum distance of the code. Usually, codes with 

large minimum distance are preferred because they can detect and correct more codes. First 

lets consider a decoder that can only detect errors, not .correct them. 
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4.1.1 Error Detection Only 

The minimum distance of a code gives a measure of its error detection capability. An error 

control code can be used to detect all patterns of u errors in any codeword as long as 

d min = u + 1. the code may also detect many error patterns with more than u errors, but it 

is guaranteed to detect all patterns of u errors or less. We'll assume that the error detection 

decoder comprises ·a look-up table with all 2k valid codewords stored. When an n-bit word 

is received by the decoder, it checks the look-up table and if this word is one of the 

allowable codewords, it flags the n-bit word as error free and sends the corresponding 

information bits to the user. We'll use Figure 1 to illustrate three cases: no errors, a 

detectable error pattern, and an undetectable error pattern. 

Case #1: No errors, Lets assume that the encoder sends codeword C and the 

channel introduces no errors, Then codeword C will also be received, the decoder will find 

it in the look-up table, and decoding will be successful. 
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Case #2: Detectable error pattern. This time we send codeword C and the channel 

introduces errors such that the n-bit word Y is received. Because Y is not a valid codeword, 

the decoder will not find it in the look-up table and will therefore flag the receiver n-bit 

word as an errored codeword. The decoder does not necessarily know the number or 

location of the errors, but that's acceptable because we only asked the decoder to detect 

errors. Since the decoder properly detected an errored codeword, decoding is successful. 

Case #3: Undetectable error pattern. We send a codeword C for the third time and 

this time the introduces the unHkely (but certainly possible) error pattern that converts 

codeword C into codeword D. the decoder can't know that codeword C was sent and must 

assume that codeword D was sent instead. Because codeword D is a valid codeword, the 

decoder declares the received n-bit word error-free and passes the corresponding 

information bits to the user. This is an example of decoder failure. 

Naturally, we want the decoder to fail rarely, so we choose codes that have a small 

probability of undetected error. 

4.1.2 Forward Error Correction (FEC) 

Comparing the spheres surrounding codewords A and Bin Figure 4.1, we see that the error 

correcting capability of a code is given by d min = 2t + 1 ( this is the minimum separation 

that prevents overlapping spheres). Or in other words, a code with d min= 3 can correct all 

patterns of 1 error, one with d min = 5 can correct all patterns of 2 errors, and so on. A code 

can correct t errors and detect v additional errors as long as ( d min 2 2t + v + 1 ). Now refer 

to Figure. I and consider three error decoding cases for the error correction decoder: correct 

decoding, decoding failure, and error detection without correction. 

Case # 1: Correct decoding. Assume that codeword C is sent and the n-bit word Y is 

received. Because Y is inside C's sphere, the decoder will correct all errors and error 

correction decoding will be-successful. 

Case #2: Decoding failure: this time we send the codeword C and the channel will 

give us n-bit word Z. the decoder has no way of knowing that the codeword C was sent and 

must decode to D since Z is in D's sphere. This is an example of error correction decoder 

failure. 
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Case #3: Error detection without correction. This case shows one way that an error 

correction can be used to also to detect errors. We send the codeword C and receive n-bit 

word X. Since Xis not inside any sphere, we won't try to correct it. We do, however, 

recognize that it is an errored codeword and report this information to the user. 

We could try to correct n-bit word X to the nearest valid codeword, even though X was not 

inside any codeword's sphere. A decoder that attempts to correct all received n-bit words 

whether they are in a decoding sphere or not is called complete decoder. On the other hand, 

a decoder that attempts to correct only n-bit words that lie inside a decoding sphere is 

called incomplete or bounded distance decoder. 

4.2. Designing the [7, 4] Code 

A natural question to ask is, "For a linear code, how does one select codewords out 

of the space of 27 7-tuples?" There is no single solution, but there are constraints in 

how chokes are made. Here are the elements that help point to a solution. 

1- The number of codewords is 2k = 24 = 16. 

2- The property oflinearity must apply. This property dictates that the sum of 

any two codewords must yield a valid codeword. 

3- The all-zeros vector.must be one of the codewords. Since any codeword that is 

added (modulo-Z) to itself yield an all-zeros vector. 

4- Each codeword is 7 bits long. 

5- Since dmin = 3, the weight of each codeword (except for the all-zeros codeword) 

must also be at least 3. (this code has the ability of correcting 1 errors t=l). 

6- Assume that the code is systematic, so the rightmost 4 bits of each codeword are the 

corresponding message bits. 
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7 6 5 m m m m 

0 0 0 0 0 0 0 0 

1 0 0 0 0 1 1 1 

2 0 0 1 1 0 0 1 

3 0 0 1 1 1 1 0 
·- 4· 0 1 0 1 0 1 0 

5 0 1 0 1 1 0 1 

6 0 1 1 0 0 1 1 

7 0 1 1 0 1 0 0 

8 1 0 0 1 0 1 1 

9 1 0 0 1 1 0 0 

A 1 0 1 0 0 1 0 

B 1 0 1 0 1 0 1 

C 1 1 0 0 0 0 1 

D 1 1 0 0 1 1 0 

E 1 1 1 1 0 0 0 

F 1 1 1 1 1 1 1 

.Figure 4.2 Possible codewords for [7, 4] code 

4.3~ Error DetectionVersus Error Correction Tradeoffs 

Using the codeword set in Figure.d.Z, Error-detection a~d error-correction capabilities can 
be traded, provided that the following distance relationship prevails 

d~nin> a+(3+1 

where a represents the number of bit errors to be corrected, ~ represents the 

number of bit errors to be detected, and ~ 2: a. The tradeoff choices available for 

the (7, 4) code example are as follows: 
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4.4. Performance of [7, 4]code 

We found that d min= 3 for the [7, 41 code, so if the errors that occurred in the received 

codeword was more than 2, the code will only detect a single error and correct one, or it 

will detect 2 errors and correct none. Figure 4.4 will show the performance of different 

types of linear block codes. 
I 
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Figure 4.4 Performance of linear block codes 
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CONCLUSION 

In the present scenario of telecommunication applications, wireless systems play a 

prominent role. Compared to the competing wired systems, they offer a number of practical 

advantages, like easy installation and maintenance, flexibility and reconfigure ability, 

mobility, low cost components, and others. On the other hand, the performance required to 

new wireless systems are very high, they must guarantee extremely low error rates, to face 

the poor error resilience of commercial source coding schemes, and large spectral 

efficiencies, to allow transmission rates as great as possible. The achievement of these 

objectives implies the adoption of very efficient error correcting schemes. Following the 

invention of the "turbo principle" in 1993, a number of turbo-like codes have been 

proposed, able to approach the theoretical Shannon limit. These codes include block and 

convolutional codes. 

Low Density Parity Check (LDPC) codes also belong to this class: even if their 

origin is different, their decoding is based on "message passing" methods, whose rationale 

is identical to that of turbo codes. All these codes are potentially suitable for application in 

the wireless framework. 

Block codes still having its position in error controlling. That is because of its 

simplicity of designing. Hamming codes which are another type of block codes are 

classified under the perfect codes group. Perfect codes can detect and correct all error bits 

that occurs in the codeword transmitted. 
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