
•

NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

PHARMACY AUTOMATION

Graduation Project
COM 400

Ahmad Watad
20002139

Supervisor: Mr. Omit llhan

Nicosia - 2005

ACKNOWLEDGEMENT

First of all, I feel proud to pay my special regards to my project adviser
"Mr. Omit Ilhan ". He never disappointed me in any affair. He delivered me too much

information and did his best of efforts to make me able to complete my project. He has

Devine place in my heart and I am less than the half without his help. I am really thanliful

to my teacher.

More over I want to pay special regards to my parents who are enduring these all expenses

and supporting me in all events. I am nothing without their prayers. They also encouraged

me in crises. I shall never forget their sacrifices for my education so that I can enjoy my

successful life as they are expecting. They may get peaceful life in Heaven. At the end I am

again thankful to those all persons who helped me or even encouraged me to complete my

project. My all efforts to complete this project might be fruitful.

To the best of my knowledge, I want to honor those all persons who have supported me or

helped me in my project. I also pay my special thanks to my all friends who have helped me

in my project and gave me their precious time to complete my project.

ABSTRACT

Nowadays everywhere computer automation programs are important, because every

job needs computer automation to perform multiple tasks, which make it easier to the users

to react with the jobs even they don't know all the information needed in that job.

On the other hand a good GUI (graphical user interface) must be implemented in such way

that it will help the user to use the program and understand the idea, also to make a good

connection between the user and the machine.

Visual Basic serves this purpose, it's an object oriented programming language

depends on GUI and events.

In all environments like hospital, hotels, airports, pharmacies automation process is very

important for arrangements and the speed of work, so I used Visual Basic to create

pharmacy automation program for controlling products in any pharmacy.

11

TABLE OF CONTENTS

ACKNOWLEDGMENT i

ABSTRACT ii

TABLE OF CONTENTS iii

INTRODUCTION 1

CHAPTER ONE: VISUAL BASIC PROGRAMMING 2

1.1 Introduction to Visual Basic 2

1.2 Brief History 4
1.3 The Basics of a Programming Language 4

1.4 Visual Basic is Windows Development Language 4

1.5 Developing an Application in VB 7

1.5.1 Building Applications with Visual Basic 7

1.5.2 Design VB Applications 8

1.5.3 Running Application 8

1.6 New Tools in data access 8

1.6.1 ADO (ActiveX Data Objects) 8

16.3 DataGrid Control 9

CHAPTER TWO: MICROSOFT ACCESS 10

2.1 Introduction to Microsoft Access 10

2.2 Data Definition of Access Databases 11
2.3 Defining Relationships and Referential Integrity Constraints 12

2.4 Data Manipulation in Access 12

2.5 Designing of the Databases 14

2.6 Naming Fields 16
2. 7 Assigning Field Data Types and Defining Properties 17

2.8 Specifying a Primary Key 18

2.9 Adding Records 18
2.10 Retrieving and Reporting Information 19

111

CHAPTER THREE: THE TOOLS USED IN PROGRAM 20

3.1 The ADO Data Control 20

3 .1.1 Possible Uses 20

3.2 The DataGrid Control 21

3.3 The ProgressBar 23

3.4 Using the ListView Control 23

3.4.1 Possible Uses 24
3.4.2 Set Column Text with the ListSubltems Collection 24

3.4.3 Subltems Depend on ColumnHeaders Presence 24

3.5 The Tag Property (ActiveX Controls) 25

3.6 The Combo Box Control 26
3.6.1 When to Use a Combo Box Instead of a List Box 26

3.6.2 Drop-down Combo Box 26

3.6.3 Accessing List Items with the List Property 26

3.6.4 Determining Position with the Listlndex Property 27

3. 7 The Masked Edit 27

3.8 The Timer Control 28

3 .8.1 Placing a Timer Control on a Form · 29

3.8.2 Initializing a Timer Control 30
3.9 Multiple-Document Interface (MDI) Applications 31

CHAPTAR FOUR: PROGRAM DESIGN PROCESS 32

4.1 Block Diagram of System 32

4.2 Main Menu 33

4.2.1 Main Menu Screen 33

4.3 Sell Menu 34

4.3.1 Sell Menu Screen 35

4.3.2 Sell Flowchart 36

4.4 Customers Menu 37

4.4.1 Customer Menu Screen 38

4.4.2 Customer Flowchart 39

4.5 Products Menu 40

4.5.1 Purchase Menu Screen 41

lV

4.5.2 Products Flowchart 42

4.6 Purchase Menu 43

4.6.1 Purchase Menu Screen 44

4.6.2 Purchase Flowchart 45

CONCLUSION 46

REFERENCES 47

APPENDIX A 48

APPENDIXB 55

APPENDIXC 57

V

INTRODUCTION

Now a day's, the computer science both hardware and software is being

developed over the past years, programming is always providing the scientists by a

systematic development, in my project I did construct special program related to

Pharmacy Automation, the pharmacy industry not be regarded as standing separate and

unrelated to other industries, it is within this :framework that the history of pharmacy

development should be examined, new concepts in pharmacy design have been

developed more recently in an effort to meet the changing preferences and new

characteristics.

The pharmacy consist of many departments like, sell, customers, products and purchase,

my project program resume that the briefly in a quick time in order to have quick and

economic services, on the other hand, the pharmacy development is suitable for

researchers and students in computer science, the development of pharmacy automation

programs is designed to help compute professionals who want to learn about this

exciting field and to serve as a basic reference.

The aim of my project how to create and to develop a project in a scientific method to

introduce the gab between scientific theoretical life and work normal life.

In my project, I did construct pharmacy automation program because the availability of

information is incrementally important in all over the world, how to make a cays

process in order to have a quick research, data process, analysis process.

Finally, full file enclosed full details about the project.

1

1. VISUAL BASIC PROGRAMMING

1.1 Introduction to Visual Basic

The "Visual" part refers to the method used to create the graphical user interface

(GUI). Rather than writing numerous lines of code to describe the appearance and location

of interface elements, you simply add rebuilt objects into place on screen. If you've ever

used a drawing program such as Paint, you already have most of the skills necessary to

create an effective user interface.
The "Basic" part refers to the BASIC (Beginners All-Purpose Symbolic Instruction Code)

language, a language used by more programmers than any other language in the history of

computing. Visual Basic has evolved from the original BASIC language and now contains

several hundred statements, functions, and keywords, many of which relate directly to the

Windows GUI. Beginners can create useful applications by learning just a few of the

keywords, yet the power of the language allows professionals to accomplish anything that

can be accomplished using any other Windows programming language.

Visual Basic is an Object-Oriented Programming (OOP) language and a Rapid Application

Development (RAD) environment from Microsoft. Visual Basic provides tools for Internet

programming, and helps developers quickly create and deploy enterprise client/server

applications, most often to access both local and remote databases.

It's evolved from the earlier DOS version called BASIC (Beginners' All-Purpose Symbolic

Instruction Code) in which programming is done in a text-only environment and the

program is executed sequentially. BASIC has advanced through many versions since it was

first created in 1964 at Dartmouth College. This initial version of BASIC allowed students

to write programs to run the Time-Sharing System, one of the first time-share computer

systems in the United States.

2

Visual Basic has diverged from BASIC into an Object-oriented Programming Language,

and even further into a visual and action, or events, driven language. It offers a GUI

(Graphical User Interface) to allow developers to choose and modify pre-selected sections

of code written in BASIC syntax. Utilizing a graphical environment, Visual Basic

developers can select and edit program objects independently. Consequently, a fully

functional VB Program is made up of many subprograms that can be executed

independently or grouped together.

The Visual Basic programming language is not unique to Visual Basic. The Visual Basic

system Edition included in Microsoft Excel, Microsoft Access, and many other Windows

applications uses the same language. The Visual Basic Scripting Edition (VBScript) is a

widely used scripting language and a subset of the Visual Basic language. The investment

you make in learning Visual Basic will carry over to these other areas.

Whether your goal is to create a small utility for yourself or your work group, a large

enterprise-wide system, or even distributed applications spanning the globe via the Internet,

Visual Basic has the tools you need.
Data access features allow you to create databases, front-end applications, and scalable

server-side components for most popular database formats, including Microsoft SQL

Server and other enterprise-level databases.
ActiveX™ technologies allow you to use the functionality provided by other applications,

such as Microsoft Word processor, Microsoft Excel spreadsheet, and other Windows

applications. You can even automate applications and objects created using the

Professional or Enterprise editions of Visual Basic.
Internet capabilities make it easy to provide access to documents and applications across

the Internet or intranet from within your application, or to create Internet server

applications.

Visual Basic is designed for simple, rapid application development, and can be used to

prototype an application that will later be written in a more difficult but efficient language.

Other object-oriented programming languages such as C++, Java, and Smalltalk, operate in

text-only environments, and do not employ a GUI to build programs.

3

1.2 Brief History

In 1988, Alan Cooper, the 'father' of Visual Basic, produced a drag-and-drop shell

prototype for the BASIC programming language. The shell prototype, named Tripod,

included a widget control box and a small language engine. After showing it to Bill Gates,

Microsoft negotiated to buy the concept and code-named it Ruby. Microsoft joined Ruby

with their current BASIC programming environment, QuickBasic, resulting in the first tool

that allowed developers to create Windows applications quickly, easily, and visually (code

named Thunder).
In 1991, Microsoft released Visual Basic 1.0. It was the first visual development tool from

Microsoft, and was designed to compete with C, C++, Pascal, and any other well- known

programming language at the time. However "when it came out, Visual Basic wasn't a

success. It wasn't until Microsoft released VB 2.0 in 1993 that people really started to

discover the power of the language, and when Microsoft released VB 3.0 it had become the

fastest growing programming language on the market.

1.3 The Basics of a Programming Language

Traditional program languages are composed of commands (often called

statements), operators, variables and data. Variables represent data and the statements and

operators operate on the data to produce the require output.

1.4 Visual Basic is Windows Development Language

The VB is Windows development language, that's why you must be familiar with

the Windows environment. Windows involves three key concepts:

4

1. Window

A window is a simply rectangular region with its own boundaries.

Examples of windows are:
An Explorer window in Windows operating system.

A document window in word processor.
Dialog box that pop up window and reminds you of an appointment.

A command button.

Icons.

Text boxes.
Option boxes.

Menu bars.

The Microsoft Windows Operating system manages all of these many windows by

assigning each one a unique id number. The system continually monitors each of these

windows for signs of activity or events.

2. Events

An event is an action recognized by a form or control. Events can occur through

user action (response) such as a mouse click or a key press using objects of window

(through programmatic control), or even as a result of another window's action.

Event-driven applications execute Basic code in response to an event. Each form and
control in VB has a predefined set of events. If one of these events occurs and there is a

user code in the associated event procedure, VB invokes that code.

For example most objects recognize a Click event. If a user clicks a form (object), code in

the form's Click event procedure is executed. If a user clicks a command button, code in

the button's click event procedure is executed.

5

Each time an event occurs, it causes a message to be sent to the O.S. The system processes

the message and broadcasts it to the other windows. Each window can take the appropriate

action based on its own instructions from dealing with that particular message.

Fortunately, VB insulates you from having to deal with all of the low-level message

handling. Many of the messages are handled automatically by VB.

This allows you to quickly create powerful applications without having to deal with

unnecessary details.

• Understanding the Event-Driven Model

Programs in conventional (traditional or procedural) programming languages run from the
top down. For older programming languages, execution starts from the first line and moves

with the flow of the program to different parts as needed.

A VB program usually works completely different. The code doesn't follow a predefined

path. It executes different code section in response to events.

The core of a VB program is a set of independent pieces of code that are activated by, and

so respond to, only the events they have been told to recognize.

The programming code in VB that tells your program how to respond to events (event

procedure). An event procedure is a body of code that is only executed in response to an

external event.

Your code can also trigger events during execution. It is for this reason that it is important

to understand the event-driven model and keep it in mind when designing applications in

windows environment.

6

1.5 Developing an Application in VB

As you develop an application, you work with a project to manage all the different

files that make up the application. A project consists of:

One project file that keeps track of all the components (.vbp).

One file for each form (.frm).
One binary data file for each form containing data for properties of controls on the form

(frx). These files are not editable and are automatically generated for any .frm file that

contains binary properties, such as Picture or Icon.

Optionally, one file for each class module (.els).

Optionally, one file for each standard module (.bas).

Optionally, one or more files containing ActiveX controls (.ocx).

Optionally, a single resource files (.res).

The project file is simply a list of all the files and objects associated with the project, as

well as information on the environment options you set. This information is updated every

time you save the project. All of the files and objects can be shared by other projects as

well.

1.5.1 Building Applications with Visual Basic

There are essentially 3 basic phases of building a computer application:

1. The Design phase, which is analogous to an architect designing a building before

it is built.
2. The programming phase, where sets of instructions in the form of functions and

subroutines are written to carry out the events of the application.

3. The final step, which actually never ends, is the de- bugging phase.

The last two phases are an iterative procedure, where the programmer should be

continuously evaluating potential errors that might arise, and writing code to handle

obvious errors. All programs have bugs, but good programs have fewer bugs.

7

1.5.2 Design VB Applications

Here is a summary of the steps you take to design a VB application:

• Customize the windows that the user sees.

• Decide what events the controls on the window should recognize.

• Write the event procedures for those events.

1.5.3 Running Application

Here is what happens when the application is running:

• The application starts and a form is loaded and displayed

• The form (or a control on the form) receives an event. The event might be caused by the

user(for example , a keystroke), by the system(for example , a timer event), or indirectly by

your code(for example, a Load event when your code loads a form)

• If you have written an event procedure, VB executes the code.

• The application waits for the next event.

1.6 New Tools in data access

1.6.1 ADO (ActiveX Data Objects)

in All Editions A new OLEDB-aware data source control that functions much like

the intrinsic Data and Remote Data controls, in that it allows you to create a database

application with minimum code.
Visual Database Tools Integration (Query Designer and Database Designer)

Enterprise Edition Visually create and modify database schemas and queries: Create SQL

Server and Oracle database tables drag and drop to create views, and automatically change

column data types.

8

Many data access applications created with earlier versions of Visual Basic store and

manage data using the Microsoft Jet database engine, the engine used by Microsoft Access.

These applications use Microsoft Data Access Objects (DAO) to access and manipulate

data.

When you have completed all the files for a project, you can convert the project into an

executable file (.exe): From the File menu, choose the Make project.exe command.

Interacting with Data in a Microsoft Jet/Microsoft Access Database

Now we can use Microsoft ActiveX Data Objects (ADO) to easily manipulate data in a

variety of database formats, including Microsoft Jet format. We may still be able to use

DAO to work with your local Microsoft Jet databases, but for new applications you'll

probably want to use ADO and the new data access features of Visual Basic.

1.6.2 DataGrid Control

All Editions An OLEDB-aware version of DBGrid, the control allows you to

quickly build an application to view and edit recordsets. It also supports the new ADO Data

contra.

9

2. MICROSOFT ACCESS

2.1 Introduction to Microsoft Access

Access is one of the well-known implementations of the relational data model on

the PC platform. It is considered as part of an integrated set of tools for creating and •
managing databases on the PC Windows platform. The database applications for Access

'-
may range from personal applications, such as maintaining an inventory of your personal

audio and video collection, to small business applications, such as maintaining business­

specific customer information. With compliance to the Microsoft Open Database

Connectivity (ODBC) standard and the prevalence of today's client-server architectures,

PC relational databases may be used as a front-end to databases stored on non-PC

platforms. For example, an end user can specify ad hoc queries graphically in Access

over an Oracle database stored on a UNIX server.

Access provides a database engine and a graphical user interface (GUI) for data

definition and manipulation, with the power of SQL. It also provides a programming

language called Access Basic. Users can quickly develop forms and reports for

input/output operations against the database through the use of Wizards, which are

interactive programs that guide the user through a series of questions in a dialog mode.

The definition of the forms and reports is interactively accomplished when the user

designs the layout and links the different fields on the form or report to items in the

database. Access 97 (the latest release of Access at the time of this writing) also provides

the database developer with hyperlinks as a native data type, extending the functionality

of the database with the ability to share information on the Internet.

Access is an RDBMS that has several components. One component is the underlying

database engine, called the Microsoft Jet engine which is responsible for managing the

data. Another component is the user interface, which calls the engine to provide data

services, such as storage and retrieval of data. The engine stores all the application data

(tables, indexes, forms, reports, macros, and modules) in a single Microsoft database file

(.mdb file). The engine also provides advanced capabilities, such as heterogeneous data

10

access through ODBC, data validation, concurrency control using locks, and query

optimization.

Access works like a complete application development environment, with the internal

engine serving to provide the user with RDBMS capabilities. The Access user interface

provides Wizards and Builders to aid the user in designing a database application.

Builders are interactive programs that help the user build syntactically correct

expressions. The programming model used by Access is event-driven. The user builds a

sequence of simple operations, called macros, to be performed in response to actions that

occur during the use of the database application. While some applications can be written

in their entirety using macros, others may require the extended capabilities of Access

Basic, the programming language provided by Access.

There are different ways in which an application with multiple components that includes

Access can be integrated. A component (in Microsoft terminology) is an application or

development tool that makes its objects available to other applications. Using automation

in Visual Basic, it is possible to work with objects from other components to construct a

seamless integrated application. Using the Object Linking and Embedding (OLE)

technology, a user can include documents created in another component on a report or

form within Access. Automation and OLE are distinct technologies, which are a part of

the Component Object Model (COM), a standard proposed by Microsoft.

2.2 Data Definition of Access Databases

Although Access provides a programmatic approach to data definition through

Access SQL, its dialect of SQL, the Access GUI provides a graphical approach to

defining tables and relationships among them. A table can be created directly in a design

view or it can be created interactively under the guidance of a table wizard. Table

definition contains not only the structure of the table but also the formatting of the field

layout and masks for field inputs, validation rules, captions, default values, indexing, and

so on. The data types for fields include text, number, date/time, currency, Yes/no

(boolean), hyperlink, and AutoNumber, which automatically generates sequential

11

numbers for new records. Access also provides the capability to import data from

external tables and to link to external tables.

Field Properties window for displaying the properties of the Fields. The format property

provides for a default display format. The input mask provides automatic formatting

characters for display during data input in order to validate the input data. For example,

the input mask for SSN displays the hyphen positions and indicates that the other

characters are digits. The caption property specifies the name to be used on forms and

reports for this field. A blank caption specifies the default, which is the field name itself.

A default value can be specified if appropriate for a particular field. Field validation

includes the specification of validation rules and validation text-the latter displayed

when a validation rule is violated. Other field properties include specifying whether the

field is required-that is, NULL is not allowed-and whether textual fields allow zero

length strings. Another field property includes the index specification, which allows for

three possibilities: (1) no index, (2) an index with duplicates, or (3) an index without

duplicates. In the case of primary key, the field is indexed with no duplicates allowed.

In addition to the Field Properties window, Access also provides a Table Properties

window. This is used to specify table validation rules, which are integrity constraints

across multiple columns of a table or across tables.

2.3 Defining Relationships and Referential Integrity Constraints

Access allows interactive definition of relationships between tables-which can

specify referential integrity constraints-via the Relationships window. To define a

relationship, the user first adds the two tables involved to the window display and then

selects the primary key of one table and drags it to where it appears as a foreign key in

the other table. This action pops up another window that prompts the user for further

information regarding the establishment of the relationship, the user checks the "Enforce

Referential Integrity" box if Access is to automatically enforce the referential integrity

specified by the relationship. The user may also specify the automatic cascading of

12

updates to related fields and deletions of related records by selecting the appropriate

boxes. The ''Relationship Type" is automatically determined by Access based on the

definition of the related fields. If only one of the related fields is a primary key or has a

unique index, then Access creates a one-to-many relationship, indicating that an instance

(value) of the primary key can appear many times as an instance of the foreign key in the

related table. If both fields are either keys or have unique indexes, then Access creates a

one-to-one relationship.

Although specifying a relationship is the mechanism used to specify referential integrity

between tables, the user need not choose the option to enforce referential integrity

because relationships are also used to specify implicit join conditions for queries. For

example, if no relationship is pre-specified during the graphical design of a query, then a

default join of the related fields is performed if related tables are selected for that query,

regardless of whether referential integrity is enforced or not. Access chooses an inner join

as the default join type but the user may choose a right or left outer join by clicking on

the "Join Type" box and selecting the appropriate join type.

2.4 Data Manipulation in Access

The data manipulation operations of the relational model are categorized into

retrieval queries and updates (insert, delete, and modify operations). Access provides for

query definition either graphically through a QBE interface or programmatically through

Access SQL. The user has the ability to design a graphical query and then switch to the

SQL view to examine the SQL query generated by Access. Access provides for update

operations through forms that are built by the application programmer, by direct

manipulation of the table data in Datasheet view, or through the Access Basic

programming language.

Retrieval operations are easily specified graphically in the Access QBE interface. in QBE

and SQL. To establish a join that had not been prespecified the user selects the join

attribute from one table and drags it over to the join attribute in the other table. To

include an attribute in the query, the user drags it from the top window to the bottom

13

window. For attributes to be displayed in the query result, the user checks the "Show"

box. To specify a selection condition on an attribute, the user can type an expression

directly in the "Criteria" grid or use the aid of an Expression Builder. To see the

e.quivalent query in Access SQL, the user switches from the QBE Design View to the

SQL View.

Update operations on the database are typically guided by the use of forms that

incorporate the business rules of the application. There is also a Datasheet view of a table

that the sophisticated end user can use to insert, delete, or modify data directly by

choosing "open table" from a database window. These updates are subject to the

constraints specified through the data definition process, including data types, input

masks, field and table validation rules, and relationships.

2.5 Designing of the Databases

A database is only useful if it is designed to meet the specific needs of its users. Good

database design requires careful planning to determine the fields, tables, and relationships

needed to satisfy the data input and output requirements. The following guidelines help to

insure that the database will be able to produce the needed results:

• Identify all of the fields needed to produce the required information. Consider the type of

information to be stored in the database and the type of reports that must be generated from

the data. Plan fields that will produce this information.

• Group related fields into tables. Look for logical grouping of field information. For

example, all information pertaining to students might be placed in one table. All information

pertaining to counselors might be placed in a second table.

• Determine each table's primary key field. Look for a field that uniquely identifies each

record. Such fields include social security numbers, identification codes, part numbers, or

14

product serial numbers. It might be necessary to assign a unique number to each record or to

allow Access to assign one automatically.

• Include a common field in related tables. The common field is used to connect one table

logically with another table. For example, each student record might include a counselor code

that matches the counselor code listed for each counselor in the counselor table.

• Avoid redundancy. Data redundancy occurs when the data is stored in more than one

place in the database. With the exception of the common field(s) to connect tables,

redundancy wastes storage space and can increase the likelihood that data will be entered

inconsistently.

• Determine the properties of each field. Field properties include field name, field type,

maximum number of characters, field description, and validity

Microsoft Access database mainly consists of: Database File, Table, Record, Field, Field

value, Data-type. Here is the Hierarchy that Microsoft Access uses in breaking down a

database

Database File: This is your main file that encompasses the entire database and that is

saved to your hard-drive or floppy disk, it's A collection of related tables. (Access is a

relational database).

Table: A table is a collection of data about a specific topic (A collection of records.).

There can be multiple tables in a database.

Field: Fields are the different categories within a Table. Tables usually contain multiple

fields, it's a single characteristic or attribute of a person, place, object, event or idea (a

column).

15

Field Value: The specific value, or content, of a field.

Primary Key - A field, or a collection of fields, whose values uniquely identify each record

(unique identifier).

Common Field: A field that appears in both tables. The common field is used to connect

tables.

Record: A set of field values that describe a person, place, object, event, or idea (a row).

Datatypes: Datatypes are the properties of each field. A field only has 1 datatype.

2.6 Naming Fields

Each field on a database must have a name (this is also true for anything in the

computer). The name held by a field allows you, the database developer, and the

operating system, to refer to that particular field.

It is best to choose a field name that describes the purpose of the field so that it is easy to

remember. In addition, the following rules apply to naming fields:

• Must not exceed 255 characters. You should limit the name of a variable to 30

characters

• A name can contain letters, numbers, spaces, and special characters except for a period,

exclamation mark, accent mark, and square brackets

• A name cannot begin with a space, Must begin with a letter (a-z or A-Z)

• A name must be unique within a table, but it can be used again in another table.

Experienced users of databases capitalize the first letter of each word in a field name, avoid

using long field names, use standard abbreviations, and avoid using spaces in field names.

16

2.7 Assigning Field Data Types and Defining Properties

After specifying a name of the field, you can decide what type of data can be

entered into that field. The data type determines the field values that can be entered in the

field. Access provides the following data types:

Text: Allows field values containing letters, digits, spaces and special characters. Field size:

0 - 255 characters.

Memo: Allows field values containing letters, digits, spaces and special characters that make

up long comments. Field size: 1-64,000 characters.

Number: Allows positive and negative numbers as field values. Field size: 1-15 digits.

Date/Time: Allows field values containing dates and times to December 31, 9999. Field size:

8 bytes.

Currency: Allows field values similar to number data type using the currency format Field

size: 15 digits on the left side of decimal and 4 digits on the right side.

AutoNumber: Integers controlled by Access. Access automatically inserts a value field and

numbers records as they are entered. Field size: 9 digits.

Yes/No: Limits values to yes and no, on and off, or true and false. Field size: 1 character.

Hyperlink: Consists of a hyperlink address. Field size: 1 gigabyte maximum.

17

lookup Wizard: Creates a field that lets you look up a field value in another table or in a

predefined list of values. Field size: Same as the primary key field used to perform the

kxlkup.

Each data type allows for a set of properties that help to insure that the data is entered

accurately. Such properties include making fields required, selecting default values, entering

captions, and specifying data validation rules and text.

2.8 Specifying a Primary Key

A primary key uniquely identifies each record in the table. Access does not allow for

duplicate values in the primary key field. Once a primary key field is selected, every record

must have a value in the primary key field. Access stores the records on the disk in the order

they are entered but displays them in order by the field values of the primary key. In addition,

Access responds faster to requests for specific records based on the primary key.

2.9 Adding Records

Records are added to tables by using the table datasheet or by creating a form. A table

datasheet provides a simple way to add records. A table datasheet displays records in rows

and columns. Each row is a separate record in the table, and each field is a separate column.

When a table contains many fields, it is useful to create a form to maintain the records. While

forms can be customized, Access provides a wizard that automatically creates a form for data

entry.

18

2.10 Retrieving and Reporting Information

The process of retrieving information from a database is known as querying. Access

provides powerful query capabilities that allow the user to display selected fields and records

from a table, sort records, perform calculations, find and display information from two or

more tables, and generate professionally designed reports ..

19

3. THE TOOLS USED IN PROGRAM

3.1 The ADO Data Control

The ADO Data control uses Microsoft ActiveX Data Objects (ADO) to quickly

create connections between data-bound controls and data providers. Data-bound controls

are any controls that feature a DataSource property. Data providers can be any source

written to the OLE DB specification. You can also easily create your own data provider

using Visual Basie's class module.

Although you can use the ActiveX Data Objects directly in your applications, the ADO

Data control has the advantage of being a graphic control (with Back and Forward buttons)

and an easy-to-use interface that allows you to create database applications with a

minimum of code.

Several of the controls found in Visual Basie's Toolbox can be data-bound, including the

Check.Box, ComboBox, Image, Label, ListBox, PictureBox, and TextBox controls.

Additionally, Visual Basic includes several data-bound ActiveX controls such as the

DataGrid, DataCombo, Chart, and DataList controls. You can also create your own data­

bound ActiveX controls, or purchase controls from other vendors.

' Previous versions of Visual Basic featured the intrinsic Data control and the Remote Data

control (RDC) for data access. Both controls are still included with Visual Basic for

backward compatibility. However, because of the flexibility of ADO, it's recommended

that new database applications be created using the ADO Data Control

3.1.1 Possible Uses

• Connect to a local or remote database.

20

• Open a specified database table or define a set of records based on a Structured

Query Language (SQL) query or stored procedure or view of the tables in that

database.

• Pass data field values to data-bound controls, where you can display or change the

values.

• Add new records or update a database based on any changes you make to data

displayed in the bound controls.

To create a client, or front-end database application, add the ADO Data control to your

forms just as you would any other Visual Basic control. You can have as many ADO Data

controls on your form as you need. Be aware, however, that the control is a comparatively

"expensive" method of creating connections, using at least two connections for the first

control, and one more for each subsequent control.

3.2 The DataGrid Control

Displays and enables data manipulation of a series of rows and columns

representing records and fields from a Recordset object.

The data-aware DataGrid control appears similar to the Grid control; however, you can set

the DataGrid control's DataSource property to a Data control so that the control is

automatically filled and its column headers set automatically from a Data control's

Recordset object. The DataGrid control is really a fixed collection of columns, each with an

indeterminate number of rows.

Each cell of a DataGrid control can hold text values, but not linked or embedded objects.

You can specify the current cell in code, or the user can change it at run time using the

mouse or the arrow keys. Cells can be edited interactively, by typing into the cell, or

programmatically. Cells can be selected individually or by row.

If a cell's text is too long to be displayed in the cell, the text wraps to the next line within

the same cell. To display the wrapped text, you must increase the cell's Column object's

21

Width property and/or the DataGrid control's RowHeight property'. At design time, you can

change the column width interactively by resizing the column or by changing the column's

width in the Column object's property page.

Use the DataGrid control's Columns collection's Count Property and the Recordset object's

RecordCount property to determine the number of columns and rows in the control. A

DataGrid control can have as many rows as the system resources can support and up to

32767 columns.

When you select a cell, the Collndex property is set, thus selecting one of the Column

objects in the DataGrid object's Columns collection. The Text and Value properties of the

Column object reference the contents of the current cell. The data in the current row can be

accessed using the Bookmark property, which provides access to the underlying Recordset

object's record. Each column of the DataGrid control has its own font, border, word wrap,

and other attributes that can be set without regard to other columns. At design time, you can

set the column width and row height and establish columns that are not visible to the user.

You can also prevent users from changing the formatting at run time.

Note If you set any of the DataGrid column properties at design time, you will need to set

all of them in order to maintain the current settings.

Note If you use the Move method to position the DataGrid control, you may need to use

the Refresh method to force it to repaint.

The DataGrid control functions similarly to the DBGrid control except that it doesn't

support an unbound mode.

22

3.3 The ProgressBar

The ProgressBar control shows the progress of a lengthy operation by filling a

rectangle with chunks from left to right; it monitors an operation's progress toward

completion.
It has a range and a current position. The range represents the entire duration of the

operation. The current position represents the _erogress the application has made toward

completing the operation. The Max and Min properties set the limits of the range. The

Value property specifies the current position within that range. Because chunks are used to

fill in the control, the amount filled in only approximates the Value property's current

setting. Based on the control's size, the Value property determines when to display the next

chunk.

The ProgressBar control's Height and Width properties determine the number and size of

the chunks that fill the control. The more chunks, the more accurately the control portrays

an operation's progress. To increase the number of chunks displayed, decrease the control's

Height or increase its Width. The BorderStyle property setting also affects the number and

size of the chunks. To accommodate a border, the chunk size becomes smaller.

In my project the progressBar is used to make sure that the user enters his password within

an interval of time, so if the progressBas is full the program will be terminated even the

user enters the correct password.

3.4 The Using the ListView Control

The ListView control displays data as Listltem objects. Each Listltem object can

have an optional icon associated with the label of the object. The control excels at

representing subsets of data (such as members of a database) or discrete objects (such as

document templates).

23

3.4.1 Possible Uses

To display the results of a query on a database.

To display all the records in a database table.

In tandem- with a Treeview control, to give users an expanded view of a TreeView control

node.

3.4.2 Set Column Text with the ListSubltems Collection

Notice that in any of the views except Report view, the Listltem object displays

only one label the Text property. But in Report view, every Listltem object can have

several other text items. For example, the "Hitchhiker's Guide to Visual Basic ... " also has

an author ("Vaughn, William R."), year (1996), and ISBN number associated with it. Each

of these text items are members of the ListSubltems collection. To create a ListSubltem

object, use the Add method for the Listsubltems collection. Thus, to set the author, year

and ISBN number of a Listltem object.

3.4.3 Subltems Depend on ColumnHeaders Presence

Both the presence and number of ListSubltem objects depends on the presence and

number of ColumnHeader objects. That is, you cannot create any ListSubltem objects if

there are no ColumnHeader objects present. Further, the number of ColumnHeader objects

determines the number of ListSubltem objects you can set for the Listltem object. And the

number of ListSubltems is always one less than the number of ColumnHeader objects. This

is because the first ColumnHeader object is always associated with the Text property of the

Listltem object

24

3.5 The Tag Property (ActiveX Controls)

Returns or sets an expression that stores any extra data needed for your program.

Unlike other properties, the value of the Tag property isn't used by Visual Basic; you can

use this property to identify objects.

Syntax

object. Tag [= expression]

The Tag property syntax has these parts:

Part =. ;

- - - - -- - -·
i

object An object expression that evaluates to an object in the Applies

I To list.
i

" - - .. - " - " - -··
I ' expression A string expression identifying the object. The default is a zero-

I

I length string ("").
I - " .~- - -

You can use this property to assign an identification string to an object without affecting

any of its other property settings or causing side effects. The Tag property is useful when

you need to check the identity of a control or MDIForm object that is passed as a variable

to a procedure.

Tip When you create a new instance of a form, assign a unique value to the Tag property.

Note The Tag property is of type Variant for ActiveX control collections such as Toolbar

Button objects, TreeView Node objects, ListView Listltem and ColumnHeader objects,

ImageList Listlmage objects, TabStrip Tab objects, and StatusBar Panel objects. You can

use the Tag property to pass values, but it does not allow you to pass objects

25

3.6 The Combo Box Control

A combo box control combines the features of a text box and a list box. This control

allows the user to select an item either by typing text into the combo box, or by selecting it

from the list.

3.6.1 When to Use a Combo Box Instead of a List Box

Generally, a combo box is appropriate when there is a list of suggested choices, and

a list box is appropriate when you want to limit input to what is on the list. A combo box

contains an edit field, so choices not on the list can be typed in this field.

In addition, combo boxes save space on a form. Because the full list is not displayed until

the user clicks the down arrow (except for Style 1, which is always dropped down), a

combo box can easily fit in a small space where a list box would not fit.

3.6.2 Drop-down Combo Box

The user can either enter text directly (as in a text box) or click the detached arrow

at the right of the combo box to open a list of choices. Selecting one of the choices inserts it

into the text portion at the top of the combo box. The user also can open the list by pressing

ALT+ DOWN ARROW when the control has the focus.

3.6.3 Accessing List Items with the List Property

The List property provides access to all items in the list. This property contains an

array in which each item in the list is an element of the array. Each item is represented in

string form. To refer to an item in the list, use this syntax:

box.List(index)

The box argument is a reference to a combo box, and index is the position of the item.

26

3.6.4 Determining Position with the Listlndex Property

If you want to know the position of the selected item in a list in a combo box, use

the Listlndex property. This property sets or returns the index of the currently selected item

in the control and is available only at run time. Setting the Listlndex property for a combo

box also generates a Click event for the control.

The value of this property is O if the first (top) item is selected, 1 if the next item down is

selected, and so on. Listlndex is - 1 if no item is selected or if a user enters a choice in a

combo box (Style O or 1) instead of selecting an existing item in the list.

Note The Newlndex property allows you to keep track of the index of the last item added

to the list. This can be useful when inserting an item into a sorted list.

In the sell process I used the combobox to dropdown the names of customers included

In my database so I can choose the customer that I want to sell the product to.

3. 7 The Masked Edit

The Masked Edit control provides restricted data input as well as formatted data

output. This control supplies visual cues about the type of data being entered or displayed.

This is what the control looks like as an icon in the Toolbox:

The Masked Edit control generally behaves as a standard text box control with

enhancements for optional masked input and formatted output. If you don't use an input

mask, the Masked Edit control behaves much like a standard text box, except for its

dynamic data exchange (DDE) capability.

27

If you defme an input mask using the Mask property, each character position in the Masked

Edit control maps to either a placeholder of a specified type or a literal character. Literal

characters, or literals, can give visual cues about the type of data being used. For example,

the parentheses surrounding the area code of a telephone number are literals: (206).

If you attempt to enter a character that conflicts with the input mask, the control generates a

ValidationError event. The input mask prevents you from entering invalid characters into

the control.

The Masked Edit control has three bound properties: DataChanged, DataField, and

DataSource. This means that it can be linked to a data control and display field values for

the current record in the recordset. The Masked Edit control can also write out values to the

records et.

When the value of the field referenced by the DataField property is read, it is converted to a

Text property string, if possible. If the recordset is updatable, the string is converted to the

data type of the field.

ln my project I used the maskedit as a user control with a label. Its behaves as a simple

Textbox I used it just for simplicity.

3.8 The Timer Control

Timer controls respond to the passage of time. They are independent of the user,

and you can program them to take actions at regular intervals. A typical response is

checking the system clock to see if it is time to perform some task. Timers also are useful

for other kinds of background processing.

Each timer control has an lnterval property that specifies the number of milliseconds that

pass between one timer events to the next. Unless it is disabled, a timer continues to receive

an event (appropriately named the Timer event) at roughly equal intervals of time.

28

The Interval property has a few limitations to consider when you're programming a timer

control:

If your application or another application is making heavy demands on the system - such

as long loops, intensive calculations, or drive, network, or port access your application may

not get timer events as often as the Interval property specifies.

The interval can be between O and 64,767, inclusive, which means that even the longest

interval can't be much longer than one minute (about 64.8 seconds).

The interval is not guaranteed to elapse exactly on time. To ensure accuracy, the timer

should check the system clock when it needs to, rather than try to keep track of

accumulated time internally.

The system generates 18 clock ticks per second so even though the Interval property is

measured in milliseconds, the true precision of an interval is no more than one-eighteenth

ofa second.

Every timer control must be associated with a· form. Therefore, to create a timer

application, you must create at least one form (though you don't have to make the form

visible if you don't need it for any other purpose).

Note The word "timer" is used in several ways in Visual Basic, each closely related to the

workings of the timer control. In addition to the control name and control type, "timer" is

used in the Timer event and the Timer function.

3.8.1 Placing a Timer Control on a Form

Placing a timer control on a form is like drawing any other control: Click the timer

button in the toolbox and drag it onto a form.

The timer appears on the form at design time only so you can select it, view its properties,

and write an event procedure for it. At run time, a timer is invisible and its position and size

are irrelevant.

29

3.8.2 Initializing a Timer Control

A timer control has two key properties.

[Setting
L -

Property

Enabled , If you want the timer to start working as soon as the form loads, ·

11 set it to True. Otherwise, leave this property set to False. You
I

,1 might choose to have an outside event (such as a click of a

command button) start operation of the timer.

I Interval
L----· ····- ---~--- ---·

! Number of milliseconds between timer events.
- -...J - - - - ·- -

Note that the Enabled property for the timer is different from the Enabled property for other

objects. With most objects, the Enabled property determines whether the object can

respond to an event caused by the user. With the Timer control, setting Enabled to False

suspends timer operation.

Remember that the Timer event is periodic. The Interval property doesn't determine "how

long" as much as it determines ''how often." The length of the interval should depend on

how much precision you want. Because there is some built-in potential for error, make the

interval one-half the desired amount of precision.

Note The more often a timer event is generated, the more processor time is used in

responding to the event. This can slow down overall performance. Don't set a particularly

small interval unless you need it.

30

3.9 Multiple-Document Interface (MDI) Applications

The multiple-document interface (MDI) allows you to create an application that

maintains multiple forms within a single container form. Applications such as Microsoft

Excel and Microsoft Word for Windows have multiple-document interfaces.

An MDI application allows the user to display multiple documents at the same time, with

each document displayed in its own window. Documents or child windows are contained in

a parent window, which provides a workspace for all the child windows in the application.

For example, Microsoft Excel allows you to create and display multiple-document

windows of different types. Each individual window is confined to the area of the Excel

parent window. When you minimize Excel, all of the document windows are minimized as

well; only the parent window's icon appears in the task bar.

A child form is an ordinary form that has its MDI Child property set to true. Your

application can include many MDI child forms of similar or different types.

At run time, child forms are displayed within the workspace of the MDI parent form (the

area inside the form's borders and below the title and menu bars). When a child form is

minimized, its icon appears within the workspace of the MDI form instead of on the

taskbar.

The application can also include standard, non-MDI forms that are not contained in the

MDI form. A typical use of a standard form in an MDI application is to display a modal

dialog box.

An MDI form is similar to an ordinary form with one restriction. Its not allowed to place a

control directly on a MDI form unless that control has an Align property (such as a picture

box control) or has no visible interface (such as a timer control).

In my program the customers and products forms are MDI Childs for the Main form.

31

4. PROGRAM DESIGN PROCESS

4.1 Block Diagram of System

Add New Customer

Details of Customer

Delete Customer

New Purchase

Remove Purchase

Add New Sell

Remove Sell

Pharmacy

Products

Add New Products

Replacement

Stock

Delete Products

32

4.2 Main Menu

The aim of the main menu is to use the program easily. faster and use all

process screens or necessary program at the same time.
In the main menu consists of four departments, under each department there is some

information about it, as the following:

Main Menu of Pharmacy

1. Sell

2. Customers

3. Products

4. Purchase

4.2.1 Main Menu Screen

SELL

PRODUCTS

CUSTOMERS

PURCHASE

33

4.3 Sell Menu

In sell process the program allow the user to sell a product from the products In

the database ,so the user is going to select this product and add it to the List view (which

is described in the tools),the list view will show the quantity That will be sold and the

price for each piece and the total price for all pieces and we can select a current

customer to sell this product to him so if the customer Didn't pay all the price his dept

will be increased and the screen and the flowchart Shows the whole process :

Sell Menu

1. Add New Sell

2. Remove Sell

When the add new sell option is selected then the following file has to fill.

New Sell File

1. Product Name••.....

2. Quantify .

3. Price .

4. Total .

5. Grand Total .

6. Customer Name .

7. Paid .

34

4.3.1 Sell Menu Screen

Product I Otv I. Price I Total
· 1

t- - -- t - f- ... - r
. ---· --·· - 1- i - - -l I I r - --t-·--- -~- -~ '-~ J
f i f - T t . .

t ! . . --· -· ---- - ;- - - ---1·- I I r . - -t

Add Grand total Remove

Customer

L11d

g
===~·

OK

35

4.3.2 Sell Flowchart

Enter Product Name

Products
data base

No

No
Enter customer
name

Amount Paid

Update
customer
data base

Yes

Enter Pieces

Update
Stock data
base

Display Sell File

Yes

36

End

4.4 Customers Menu

The customers form shows the customers details, where we can add a new

customer and change the details for any customer and deleting any customer also the

screen and the flowchart shows the whole process:

New Customer Menu

1. Add New Customer

2. Details of Customer

3. Delete Customer

When the responsible of pharmacy want to open new file for customer he has to fill in

the database related to that customer the following information:

New Customer File

1. Customer Name•.....

2. Phone No .

3. Suffers .

4. Address .

37

When the responsible of pharmacy want to view the customer file database this details

for the customer should be shows as the following:

Details of Customer

1. Customer Name•

2. Phone No .

3. Suffers .

4. Address .

5. Dept .

4.4.1 Customer Menu Screen

Search: J __

Add [Fl] Detatts [F2] J ![::::0eiete)F3fJI Close

38

4.4.2 Customer Flowchart

Start

Display Customer
Menu

Enter Customer Type

Read Customer Type

No

No Yes

Enter customer
name

Yes
r--

No

Display customer
details

Enter name, address,
etc.

No

Open customer
new file

End

39

4.5 Products Menu

The products form shows products details, where we can add, delete a new

product and it's also shows the replacements for. each product (the product that the user

can use instead of the medicine that he wants to buy). The screen and the flowchart

Shows the whole process:

Products Menu

1. Add New Products

2. Replacement

3. Stock

4. Delete Products

When the responsible of pharmacy want to open new file for product he has to fill in the

database related to that product the following information:

Product File

1. Product Name .

2. Brand .

3. Category ~ .

4. Price (bought) .

5. Retail Price .

6. Barcode .

Replacements:

this is a very interesting process where we can find a replacement medicine for

each product .in the database there is replacements table which include a common id for

each product and the replacement for it, the SQL statement that I used makes an inner

join between the table of replacements and the product, produt_ 1 tables to select the

replacement for the product that we choose from the products form.

40

Selecting the Stocks:

In this process we selects stocks from the stock table after making inner join

between the products and stocks tables, in here we can search for the stocks using

product name or product barcode or product category.

Stock File

1. Product Name•....

2. Amount .

1 products Menu Screen

; Products~,.,----, -,--,~~-~-------,---,--- - ---- -tEJ

Sea-ch: ~- ~tock [F4] -
Nm Br nd Cate or Price Barco de
profeen jap.lTD mosaken alam $17.50 111

fopopdd headick $ 16.50 [3655~55 ----1
sult-jordan ""'"'"""'· - - ~$ 25.00

- 113

theadeack $ 7.00
- ---,

*omowawa 1114
okyo-jaban _ mosaken alam $ 17. 00 115 - __ -__ I

Add [Fl] Replacements [F2]] Delete [F3] Close

41

.1 Products Flowchart

Enter Product
Name

Yes
Display amount
Quantity

Start

Display Products
Menu

Enter Products Type

Read Products Type

Enter Product
Name

No

Yes

Replace Product

Yes

Enter Name, Brand,
etc.

No

Open Product
New File

End

42

4.6 Purchase Menu

In Purchase process the program allow the user to purchase a product after

selecting it from the products list and how many he wants to purchase so the list view

will show the quantity purchased and the price for each and the total price. The screen

and the flowchart Shows the whole process:

Purchase Menu

1. New Purchase

2. Remove Purchase

When the responsible of pharmacy want to purchase a new product he has to fill in the

database related the product information as following:

Purchase File

1. Product Name .

2. Brand .

3. Category .

4. Price .

43

4.6.1 Purchase Menu Screen

Product Total ~ Price

T

- ~- l I
+- I. _r

I
4 - - ---· .. -- L_ - ~

J -..,;;;;

j Grand Total fio.oo __ Add Remove

I .. Cancel

44

4.6.2 Purchase Flowchart

Start

Enter Product Name

No
Yes

Enter the Pieces to Purchase

Update Stock
File

Display Product Details
After Purchased

45

CONCLUSION

As a result, the aim is to present a system serves as a knowledge base for

automation programs that does multiple tasks. All the chapters which is construct my

project covering pharmacy automation program, including all the aspects and steps that
must be taken in the planning and development in pharmacy design, so the programmer

he/she construct a program in order to serve such institutions like pharmacy,.

The main focus of this project is giving basic definitions and concepts in automation

programs that almost every one interested.

46

REFERENCES

[l] Visual Basic 6.0 How to Program deitel & deitel

[2] Fundamental of Database by Addison wisely

[3] Microsoft MSDN Library

[4] www.planet-source-code.com

[5] www.vbdiamond.com

[6] www.freevbcode.com

47

APPENDIX A

Main Menu Screen

SELL

PRODUCTS

CUSTOMERS

PURCHASE

48

Sell Screens

Price Total

I '-l
'-1 fi Select a Product ,,;~ -·· ,;;.Q;

How m,eny pieces],IOU want to purchase? OK

Cancel

3

OK Cancel

Product Total Price t
betaval 3 r- $ 6.00

1---

+

--t- ·--

t --- t · j_ -L- -- -- --r - ~ ~ -
I r-~~----r

- - - .j.
-

Add] Remove I Grand total J $ 1s.oq
Customer igusai Ci]
Paid l1iiL.

r
OK I , Cancel

49

Customer Screen

$0.00
]$ 0.00 annas 'enfelawanza

t~ Add Customer ;: ,.},,_.<>),~,::Jlifmr:_J:3:
Name ~Sais;:
Phone {054288?546 - -~
Suffers [~-I .d

~~ ..ci
Address ltropol ~ ;]

~ - ·------ --- - --- --...-- - -..,- - ---·· ------.-. - ---·-- -

Add [Fl] I
F = l Close

....••
-- -

Add [Fl] I Details [F2] I Delete [F3] I Close

Customer Details Screen

Suffers rn~•~·· ~

-- ~-- ~ 1~,~ .::;J

--- - - ..!.I

Address

Debt [$ D,;00

IC :: Adc([F 1 f::JI Delete [F3]

Change [F2] Close

50

Product Screen

Search: S.tock [F4]

~
•. [betevel

para-cetamol

BJ.and
betamethasone
cetamolthises-

Bar cooe
111111
[111112

.Price
[$ ~.00
L$ 4.oo

.Cateaorv
skin diseases
painful,feverish

Name i

Brand J,,cetamolthises

Categor~ ~fu~ feverish

Price (bough~ $ 6.00 _

Retail Prte I$ 8.00
Bar code J 111113[

-, -A-dd-[F-1]--.I

~-
Close

Add [Fl] dose Repla:ements [F5) 11 Delete [F3]

51

Replacements Screen

~

~tock [F4]]

j111113

t~ Replacements ,;;,::;,'-"';'.:;,.·;,·;;EJ!
1-···-·-·····-········-"''"'"'''"' ll L Add JF 1 lJ

Delete [F3] I
Close J

Add [Fl] Delete [F3]

52

Close

Stock Screen

Search: fJI·

Close

53

Purchase Screen

Price Total

Search: fpar

-JI w·Narrie I Br
~paracetamol cetamolthlses --- - - ·-

How many pieces you want to purchase? OK

Cancel

30

1·········'"· i ·····oi< ,I
"····· ~ !

Cancel

Product I gt~ I Price I' Total
paracetai:nol 30 $ 4.00 1 $ 120.00
cetamol 115 I$ 8.00 : $ 120.00 - --t
betaval- 5-0- - ; $ 6.00

- - _,_J._.: - ·--

. $ 300.00

L

t
l -J

1- ~ ~,
.r..· Add l Remove I Grand Total ($ 540.00

OK] Cancel

54

APPENDIXB

Customer Table

Debt

f+,1
f:f'

,1 mofdi 1 0533877 4532 . skin deseas lefkosha
-IIIJ!lll!III'~-- -- ---~ . - ~ -

_1:tj a~n_D_aJ _ iQ_f,i3~~7-5.§.§.21 ~~tela_yy~nza _ gocmenkoy
. _l§_t qusai ~ 0542887546 skin diseases metropol

_Q;_QQ_TL,
0.00 TL
8.00 TL

Product Table

16. betaval betamethasone skin diseases
~JL~
8.00 TL +

- 1J paracetam_ol
19 cetamol

· cetamolthises . painful.feverish 1

~~ta;olthises ·, painful Jeverish i

Replacement Table

tffi Replacements : Table

• I id 1 Product1 I Product2

I 21 _9...; 7
I-

-
7, 19 17

55

.--

Stock Table

Uses Table

lffl stock : Table

id I Product I Amount
2: 7 10 - --- - -
3, 9 84
4: 10 7 --
5 14 9

6'. 12, 52 - r· -· - --+-- -- -

13 10 - -
8; 17 30
9; -

19 15
10' 16 47

ml Uses : Table

id I Customer I Product
•. , JI~ -- ji- 7 -

17 _4I 9 -;
18, 3 9

.

19, 8 14
-;- -- gl - - -
20, 12

-·I ·-
21 i 8 13 ___ •.... - --~ --•~ - - - -·---l

_211 8 14 - -t- --- --
231 16 161

56

APPENDIXC

Main Form Codes

Private Sub cmdCustomers _ Click()

frmCustomers.Show

End Sub

Private Sub cmdExit_ Click()

End

End Sub

Private Sub cmdProds _ Click()

frmProds.Show

End Sub

Private Sub cmdPurchase _ Click()

frmPurchase.Show 1, Me

End Sub

Private Sub cmdSell_ Click()

frmSell.Show 1, Me

End Sub

57

Sell Form Codes

Private Sub cmbCust_ Click()

If cmbCust.ItemData(cmbCust.Listlndex) = -1 Then

txtPaid.Enabled = False

Else

txtPaid.Enabled = True

End If

End Sub

Private Sub cmdAdd _ Click()

frmSelectProd.Show 1, frmMain

If frmSelectProd.Tag > -1 Then

adoProd.Recordset. Close

adoProd.Recordset.Open "select name,bought from product where id=" &

frmSelectProd. Tag

num = lnputBox("How many pieces you want to purchase?", "Pruchase", 1)

If num = "" Then Exit Sub

'removing duplicates

For i = 1 To lstProducts.Listltems.Count

lflstProducts.Listltems(i).Tag = frmSelectProd.Tag Then

lstProducts.Listltems.Remove i

End If

Next

With lstProducts.Listltems.Add(,, adoProd.Recordset!Name)

.Subltems(l) = num

.Subltems(2) = Format(adoProd.Recordset!bought, "$ #,##0.00")

.Subltems(3) = Format(adoProd.Recordset!bought * num, "$ #,##0.00")

.Tag= frmSelectProd.Tag

End With

End If

ado Prod.Refresh

Sum=O

58

For i = 1 To lstProducts.Listltems.Count

adoProd.Recordset. Close

adoProd.Recordset.Open "select bought from product where id=" &

lstProducts.Listltems(i). Tag

Sum= Sum+ adoProd.Recordset!bought * lstProducts.Listltems(i).Subitems(l)

Next

txtPrice = Sum

End Sub

Private Sub cmdCancel_ Click()

Unload Me

End Sub

Private Sub cmdOK_Click()

On Error Resume Next

ado Prod.Refresh

suff= True

For i = 1 To lstProducts.Listltems.Count

adoProd.Recordset. Close

adoProd.Recordset.Open "select id from stock where product=" &

lstProducts.Listltems(i).Tag & "and amount>=" & lstProducts.Listltems(i).Subltems(l)

If adoProd.Recordset.RecordCount = 0 Then

suff= False

Exit For

End If

Next

If suffThen

ado Prod.Refresh

For i = 1 To lstProducts.Listltems.Count

adoProd.Recordset.Close
adoProd.Recordset.Open "select id from stock where product=" &

lstProducts.Listitems(i). Tag

id= adoProd.Recordset!id

59

adoProd.Recordset. Close

adoProd.Recordset.Open "update stock set amount=amount-" &

lstProducts.Listltems(i).Subltems(l) & "where id=" & id

Next

If txtPaid <> txtPrice Then

adoProd.Recordset. Close
adoProd.Recordset.Open "update customer set debt=debt+" & txtPrice.Text - txtPaid

& " where id=" & cmbCust.ItemData(cmbCust.Listlndex)

End If
MsgBox "Your purchase is made!", vblnformation, "Sale"

Unload Me

Else
MsgBox "Not enough products! Sale cannot be made.", vbCritical, "Sale"

End If

End Sub

Private Sub cmdRemove _ Click()

On Error Resume Next
lstProducts.Listltems.Remove lstProducts.Selecteditem.Index

ado Prod.Refresh

Sum=O
For i = 1 To lstProducts.Listltems.Count

adoProd.Recordset. Close
adoProd.Recordset.Open "select bought from product where id=" &

lstProducts.Listltems(i). Tag
Sum= Sum+ adoProd.Recordset!bought * lstProducts.Listltems(i).Subltems(l)

Next

txtPrice = Sum

End Sub

Private Sub Form_Load()
adoProd.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" &

App.Path & "\pharmacy.mdb;Persist Security Info=False"

60

ado Prod.Refresh

lstProducts.ColumnHeaders.Add,, "Product"

lstProducts.ColumnHeaders.Add , , "Qty"

lstProducts.ColumnHeaders.Add , , "Price"

lstProducts.ColumnHeaders.Add , , "Total"

cmbCust.Addltem "[None]"

cmbCust.ItemData(O) = -1

adoProd.Recordset. Close

adoProd.Recordset.Open "select id,name from customer"

If adoProd.Recordset.RecordCount > 0 Then adoProd.Recordset.MoveFirst

For i = 0 To adoProd.Recordset.RecordCount - 1

cmbCust.Addltem adoProd.Recordset!Name

cmbCust.ItemData(i + 1) = adoProd.Recordset!id
adoProd.Recordset.MoveNext

Next

cmbCust.Listlndex = 0
End Sub

Private Sub txtPrice _ Change()

txtPaid = txtPrice

End Sub

61

Customers Form Code

Private Sub cmdAdd _ Click()

frmAddCustomer.Show 1, :frmMain

adoCust.Refresh

End Sub

Private Sub cmdClose _ CH'ck()

Unload Me

End Sub

Private Sub cmd.Del_ Click()

id= adoCust.Recordset!id

adoCust.Recordset. Close

adoCust.Recordset.Open "delete from customer where id=" & id

adoCust.Refresh

End Sub

Private Sub cmdDetails Click()

frmCustomerDet.adoUses.RecordSource = "select uses.id,Name,Brand,cat as Category

from uses inner join product on (uses.product=product.id) where uses.customer=" &

adoCust.Recordset !id

frmCustomerDet.ado Uses.Refresh

frm.CustomerDet.adoCust.RecordSource ="select* from customer where id=" &

adoCust.Recordset !id

frmCustomerDet.adoCust.Refresh

frmCustomerDet. Change

frmCustomerDet.Show 1, :frmMain

adoCust.Refresh

DataGridl .Refresh

End Sub

62

Private Sub Form_KeyUp(KeyCode As Integer, Shift As Integer)

Select Case KeyCode

Case vbKeyFl

cmdAdd Click

Case vbKeyF2

cmdDetails Click

Case vbKeyF3

cmdDeJ_ Click

End Select

End Sub

Private Sub Form_Load()

adoCust.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" &

App.Path & "\pharmacy.mdb;Persist Security Info=False"

adoCust.Refresh

End Sub

Private Sub txtSrc _ Change()
adoCust.RecordSource = "select id,Name,Phone,Suffers,Debt from customer where

name like"' & txtSrc.Text & "%' or suffers like'%" & txtSrc.Text & "%"'

adoCust.Refresh

End Sub

Add Customer Form Code

Private Sub cmdAdd _ Click()

adoCust.Recordset. Close
adoCust.Recordset.Open "insert into customer (name,phone,suffers,address) values("' &

txtName & "''" & txtPhone & "'"' & txtSuffer & "'"' & txtAddr & "')" , , ,

Unload Me

End Sub

63

Private Sub cmdClose _ Click()

Unload Me

End Sub

Private Sub Form_KeyUp(KeyCode As Integer, Shift As Integer)

Select Case KeyCode

Case vbKeyF 1

cmdAdd Click

End Select

End Sub

Private Sub Form_Load()

adoCust.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" &

App.Path & "\pharmacy.mdb;Persist Security Info=False"

adoCust.Refresh

End Sub

Customer Details Form Code

Public Sub Change()

txtName = adoCust.Recordset!Name

txtPhone = adoCust.Recordset!phone

txtSuffer = adoCust.Recordset!suffers

txtAddr = adoCust.Recordset!address

txtDebt = adoCust.Recordset!debt

End Sub

Private Sub cmdAdd _ Click()

frmSelectProd.Show 1, frmMain

If frmSelectProd. Tag > -1 Then

adoU ses.Recordset. Close

adoUses.Recordset.Open "insert into uses (customer,product) values(" &

adoCust.Recordset!id & "," & frmSelectProd.Tag & ")"

adoU ses.Refresh

64

End If

End Sub

Private Sub cmdChange _ Click()

id = adoCust.Recordset!id

adoCust.Recordset. Close

adoCust.Recordset.Open "update customer set name="' & txtName & '",phone="' &

txtPhone & "',suffers="' & txtSuffer & "',address="' & txtAddr & "',debt=" & txtDebt &

" where id=" & id

Unload Me

End Sub

Private Sub cmdClose _ Click()

Unload Me

End Sub

Private Sub cmdDelete _ Click()

On Error GoTo ErrH

id= adoUses.Recordset!id

adoU ses.Recordset. Close

adoUses.Recordset.Open "delete from uses where id=" & id

adoUses.Refresh

ErrH:

End Sub

Private Sub Form_KeyUp(KeyCode As Integer, Shift As Integer)

Select Case KeyCode

Case vbKeyFl

cmdAdd Click'

Case vbKeyF2

cmdChange _ Click

Case vbKeyF3

cmdDelete Click

End Select

65

End Sub

Private Sub Form_Load()

adoCust.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" &

App.Path & "\pharmacy.mdb;Persist Security Info=False"

adoCust.Refresh

adoUses.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" &

App.Path & "\pharmacy.mdb;Persist Security Info=False"

adoU ses.Refresh

End Sub

66

Products Form Code

Private Sub cmdAdd _ Click()

frmAddProd.Show 1, frmMain

ado Prod.Refresh

End Sub

Private Sub cmdClose _ Click()

Unload Me

End Sub

Private Sub cmdDel_ Click()

id= adoProd.Recordset!id

adoProd.Recordset. Close
adoProd.Recordset.Open "delete from product where id=" & id

ado Prod.Refresh

End Sub

Private Sub cmdCats _ Click()

:frmStock.Show

End Sub

Private Sub cmdSub _ Click()
frmRepl.adoProd.RecordSource = "(select replacements.id,Name,Brand from

Replacements inner join Product on (replacements.productl =product.id) where

product2=" & adoProd.Recordset!id & ") union (select replacements.id,Name,Brand

from Replacements inner join Product on (replacements.product2=product.id) where

productl=" & adoProd.Recordset!id & ")"

:frmRepl.adoProd.Refresh
:frmRepl.Tag = adoProd.Recordset!id

:frmRepl.Show 1, frmMain

67

adoProd.Refresh

End Sub

Private Sub Form_KeyUp(KeyCode As Integer, Shift As Integer)

Select Case KeyCode

Case vbKeyFl

cmdAdd Click

Case vbKeyF3

cmdDel Click

Case vbKeyF4

cmdCats Click

Case vbKeyF3

cmdSub Click

End Select

End Sub

Private Sub Form_Load()
adoProd.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" &

App.Path & "\pharmacy.mdb;Persist Security Info=False"

ado Prod. Refresh

End Sub

Private Sub txtSrc _ Change()
adoProd.RecordSource = "select Product.id as ID,Name,Brand,Cat as

Category,Price,Barcode from Product where brand like'" & txtSrc.Text & "%' or name

like"' & txtSrc.Text & "%' or cat like"' & txtSrc.Text & "%' or barcode="' &

txtSrc.Text & "'"

ado Prod.Refresh

End Sub

68

~~~---------------------111111111111111111111111111111111• 



Add Product Form Code 

Private Sub cmdAdd _ Click() 

adoProd.Recordset. Close 
adoProd.Recordset.Open "insert into product (name,brand,cat,price,bought,barcode) 

values("' & txtName & "' "' & txtBrand & '" "' & txtCat & "' " & txtRetail & " " & ' ' ' ' 
txtRetail & ", "' & txtBarcode & "')" 

adoProd.Refresh 

Unload Me 

End Sub 

Private Sub cmdClose _ Click() 

Unload Me 

End Sub 

Private Sub Form_KeyUp(KeyCode As Integer, Shift As Integer) 

Select Case KeyCode 

Case vbKeyFl 

cmdAdd Click 

End Select 

End Sub 

Private Sub Form_Load() 
adoProd.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" & 

App.Path & "\pharmacy.mdb;Persist Security Info=False" 

adoProd.Refresh 

End Sub 

Replacement Form Code 

Private Sub cmdAdd _ Click() 

frmSelectProd. Show 1, frmMain 

IffrmSelectProd.Tag > -1 Then 

adoProd.Recordset. Close 

69 



adoProd.Recordset.Open "insert into replacements (productl ,product2) values(" & 

frmSelectProd.Tag & "," & Me.Tag & ")" 

adoProd.Refresh 

End If 

End Sub 
Private Sub cmdClose _ Click() 

Unload Me 

End Sub 

Private Sub cmdDel_ Click() 

id= adoProd.Recordset!id 

adoProd.Recordset. Close 
adoProd.Recordset.Open "delete from replacements where id=" & id 

ado Prod.Refresh 

End Sub 

Private Sub Form_Load() 
adoProd.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" & 

App.Path & "\pharmacy.mdb;Persist Security Info=False" 

ado Prod.Refresh 

End Sub 

Stock Form Code 

Private Sub cmdClose _ Click() 

Unload Me 

End Sub 

Private Sub txtSrc _ Change() 
adoStock.RecordSource = "select stock.id as ID, product.name as Product,Amount from 

stock inner join product on (stock.product=product.id) where product.name like 111 & 

txtSrc & 11%1 or product.barcode="' & txtSrc & "'or product.cat like 111 & txtSrc & 
11%111 

adoStock.Refresh 

End Sub 

70 



Select Product Form Code 

Private Sub cmdCancel_ Clickl) 

Me.Tag= -1 

Me.Hide 

End Sub 

Private Sub cmdOK _ Clickt) 

On Error Resume Next 

Me.Tag= adoProd.Recordset!id 

If Err Then Exit Sub 

Me.Hide 

End Sub 

Private Sub Form Loadt) 

adoProd.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" & 

App.Path & "\pharmacy.mdb;Persist Security Info=False" 

ado Prod.Refresh 

Me.Tag= -1 

End Sub 

Private Sub txtSrc _ Changer) 

adoProd.RecordSource = "select Product.id as ID,Name,Brand,Cat as Category from 

Product where brand like"' & txtSrc.Text & "%' or name like"' & txtSrc.Text & "%' or 

cat like"' & txtSrc.Text & "%' or barcode="' & txtSrc.Text & ""' 

adoProd.Refresh 

End Sub 

71 



Purchase Form Code 

Private Sub cmdAdd _ Click() 

frmSelectProd.Show 1, frmMain 

IffrmSelectProd.Tag > -1 Then 

adoProd.Recordset. Close 

adoProd.Recordset.Open "select name,bought from product where id=" & 

frmSelectProd. Tag 

num = lnputBox("How many pieces you want to purchase?", "Pruchase", 1) 

Ifnum =""Then Exit Sub 

With lstProducts.Listltems.Add(, , adoProd.Recordset!N ame) 

.Subltems(l) = num 

.Subltems(2) = Format(adoProd.RecordseHbought, "$ #,##0.00") 

.Subltems(3) = Format(adoProd.Recordset!bought * num, "$ #,##0.00") 

. Tag = frmSelectProd. Tag 

End With 

End If 

ado Prod.Refresh 

Sum=O 

For i = 1 To lstProducts.Listltems.Count 

adoProd.Recordset. Close 

adoProd.Recordset.Open "select bought from product where id=" & 

lstProducts.Listltems(i). Tag 

Sum= Sum+ adoProd.Recordset!bought * lstProducts.Listltems(i).Subltems(l) 

Next 

txtPrice = Format(Sum, "$ #,##0.00") 

End Sub 

Private Sub cmdCancel_ Click() 

Unload Me 

End Sub 

Private Sub cmdOK_Click() 

72 



On Error Resume Next 

adoProd.Refresh 

For i = 1 To lstProducts.Listltems.Count 

adoProd.Recordset. Close 

adoProd.Recordset.Open "select id from stock where product=" & 

lstProducts.Listltems(i). Tag 

If adoProd.Recordset.RecordCount = 0 Then 

adoProd.Recordset. Close 

adoProd.Recordset.Open "insert into stock (product,amount) values(" & 

lstProducts.Listltems(i).Tag & "," & lstProducts.Listltems(i).Subltems(l) & ")" 

Else 

id= adoProd.Recordset!id 
h 

adoProd.Recordset. Close 

adoProd.Recordset.Open "update stock set amount=amount+" & 

lstProducts.Listltems(i).Subltems(l) & "where id=" & id 

End If 

Next 

MsgBox "Your purchase is made!", vblnformation, "Purchase" 

Unload Me 

End Sub 

Private Sub cmdRemove _ Click() 

On Error Resume Next 

lstProducts.Listltems.Remove lstProducts.Selectedltem.Index 

adoProd.Refresh 

Sum=O 

For i = J To lstProducts.Listltems.Count 

adoProd.Recordset. Close 

adoProd.Recordset.Open "select bought from product where id=" & 

lstProducts.Listltems(i). Tag 

Sum= Sum+ adoProd.Recordset!bought * lstProducts.Listltems(i).Subltems(l) 

Next 

txtPrice = Format(Sum, "$ #,##0.00") 

73 



End Sub 

Private Sub Form_Load() 

adoProd.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" & 

App.Path & "\pharmacy.mdb;Persist Security Info=False" 

ado Prod.Refresh 

lstProducts.ColumnHeaders.Add , , "Product" 

lstProducts.ColumnHeaders.Add , , "Qty" 

lstProducts.ColumnHeaders.Add,, "Price" 

lstProducts.ColumnHeaders.Add, , "Total" 

End Sub 

74 



Login Form Code 

Di.ma 

Private Sub Commandl_Click() 

IfTextl.Text =""And text2.Text =""Then 

MsgBox "Please Enter User or password" 

Beep 

Exit Sub 

End If 

Ifa>= 3 Then 

MsgBox" Sorry Only Three Attempts" 

End 

End If 

IfTextl.Text = "watad" And text2.Text = "2000" Then 

Unload Me 

frmMain.Show 

Else 

a=a+l 

MsgBox "Sorry .. Who are you .. ?" 

text2.SetFocus 

text2.Text = "" 

End If 

End Sub 

Private Sub text2_KeyPress(KeyAscii As Integer) 

IfKeyAscii = 13 Then Commandl_Click 

End Sub 

Private Sub Timerl_Timer() 

If picl.Visible = True Then 

pie.Visible= True 

picl.Visible = False 

75 



Else 

If pie.Visible= True Then 

picl.Visible = True 

pie.Visible= False 

End If 

End If 

End Sub 

Private Sub Timer2 _ Timer() 

If bar.Value= 100 Then 

Unload Me 

End 

End If 

bar.Value= bar.Value+ 10 

Label3.Caption = bar.Value 

End Sub 

Splash Form Code 

Private Sub Timerl _ Timer() 

Unload Me 

Load Form IO 

Form.IO.Show 

End Sub 

76 



User Control Code (maskedit and label) 

'Default Property Values: 

Const m def ColName = "" 

Const m_def_ VAlign = 1 

Const m def HideSelection = True 

Const m def LabelWidth = 1200 

Const m def AutoSize = 0 

'Const m def LabelWidth = 1500 

Const m def Text="" 

'Property Variables: 

Dim m_ColName As String 

Dim m _ V Align As Integer 

Dim m HideSelection As Boolean 

Dim m BorderStyle As Integer 

Dim m _ LabelWidth As Integer 

Dim m AutoSize As Boolean 

'Dim m _ Label Width As Integer 

Dim m_Text As String 

'Event Declarations: 

Event Click() 'Mappinglnfo=lbl,lbl,-1,Click 

Event Change() 'Mappinginfo=mask,mask,-1,Change' 

Event DblClick() 'Mappinginfo=lbl,lbl,-1,DblClick 

Event KeyDown(KeyCode As Integer, Shift As Integer) 'Mappinginfo=mask,mask,- 

1,KeyDown 

Event KeyPress(Key Ase ii As Integer) 'Mappinginfo=mask,mask,-1,KeyPress 

Event KeyUp(KeyCode As Integer, Shift As Integer) 'Mappinginfo=mask,mask,- 
.)- 

1,KeyUp 

Event MouseDown(Button As Integer, Shift As Integer, X As Single, Y As Single) 

'Mappinglnfo=lbl,lbl,-1,MouseDown 

Event MouseMove(Button As Integer, Shift As Integer, X As Single, Y As Single) 

'Mappinglnfo=lbl,lbl,-1,MouseMove 

Event MouseUp(Button As Integer, Shift As Integer, X As Single, Y As Single) 

'Mappinginfo=lbl,lbl,-1,MouseUp 

77 



Public Enum BStyle 

[No Border]= 0 

[Single]= 1 

[Thin Raised] = 2 

[Thick Raised] = 3 

[Thin Inset] = 4 

[Thick Inset] = 5 

[Etched]= 6 

[Bump]= 7 

End Enurn 

Public Enum BordStyle 

BS None= 0 

BS_Single = 1 

End Enurn 

Public Enum V Align 

VA_Top=O 

VA Center= 1 

VA Bottom = 2 

End Enurn 

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED 

LINES! 
'Mappinglnfo=rnask,rnask,-1,AllowPrornpt 

Public Property Get AllowPrornpt() As Boolean 

AllowPrornpt = rnask.AllowPrornpt 

End Property 

Public Property Let AllowPrornpt(ByVal New_ AllowPrornpt As Boolean) 

rnask.AllowPrornpt() = New _AllowPrornpt 

PropertyChanged "AllowPrornpt" 

End Property 

78 



'WARNING{ DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED 

LINES! 

'Mappinglnfo=mask,mask,-1,Auto Tab 

Public Property Get AutoTab() As Boolean 

AutoTab = mask.AutoTab 

End Property 

Public Property Let AutoTab(ByVal New_AutoTab As Boolean) 

mask.Auto Tab() =New_ Auto Tab 

PropertyChanged "AutoTab" 

End Property 

Private Sub lbl_ Click() 

RaiseEvent Click 

End Sub 

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED 

LINES! 
'Mappinglnfo=lbl,lbl,-1,Caption 

Public Property Get Caption() As String 

Caption= lbl.Caption 

End Property 

Public Property Let Caption(ByVal New_ Caption As String) 

lbl.Caption() = New_Caption 

lfMe.AutoSize Then 

Me.Label Width = lbl. Width 

End If 

PropertyChanged "Caption" 

End Property 

Private Sub mask_ Change() 

RaiseEvent Change 

79 



End Sub 

Private Sub lbl_ DblClick() 

RaiseEvent DblClick 

End Sub 

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED 

LINES! 

'Mappinglnfo=lbl,lbl,-1,F ont 

Public Property Get Font() As Font 

Set Font= lbl.Font 

End Property 

Public Property Set Font(ByVal New_Font As Font) 

Set lbl.Font = New Font 

PropertyChanged "Font" 

End Property 

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED 

LINES! 

'Mappinglnfo=lbl,lbl,-1,ForeColor 

Public Property Get ForeColor() As OLE_COLOR 

ForeColor = lbl.ForeColor 

End Property 

Public Property Let ForeColor(ByVal New_ForeColor As OLE_COLOR) 

lbl.ForeColor() = New_ForeColor 

PropertyChanged "F oreColor" 

End Property 

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED 

LINES! 

'Mappinglnfo=mask,mask,-1,F ormat 

Public Property Get Format() As String 

80 



Format = mask.Format 

End Property 

Public Property Let Format(ByVal New_Format As String) 

mask.Format()= New_Format 

mask. Text = mask. Text 

PropertyChanged "Format" 

End Property 

Private Sub mask_GotFocus() 

mask.SelStart = 0 

mask.SelLength = Len(mask.Text) 

End Sub 

Private Sub mask_KeyDown(KeyCode As Integer, Shift As Integer) 

RaiseEvent KeyDown(KeyCode, Shift) 

End Sub 

Private Sub mask_KeyPress(KeyAscii As Integer) 

Raise Event KeyPress(Key Ascii) 

End Sub 

Private Sub mask_KeyUp(KeyCode As Integer, Shift As Integer) 

RaiseEvent KeyUp(KeyCode, Shift) 

End Sub 

"WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED 

LINES! 
', 

"Mappinglnfo=mask,mask,-1,Mask 

'Public Property Get mask() As String 

' mask = mask.mask 

'End Property 

'Public Property Let mask(ByVal New_Mask As String) 

81 



' mask.mask()= NewMask 

' PropertyChanged "Mask" 

'End Property 

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED 

LINES! 

'Mappinginfo=mask,mask,-1,MaxLength 

Public Property Get MaxLength() As Integer 

MaxLength = mask.MaxLength 

End Property 

Public Property Let MaxLength(ByVal New_MaxLength As Integer) 

mask.MaxLength() = New_ MaxLength 

PropertyChanged "MaxLength" 

End Property 

Private Sub lbl_MouseDown(Button As Integer, Shift As Integer, X As Single, Y As 

Single) 

RaiseEvent MouseDown(Button, Shift, X, Y) 

End Sub 

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED 

LINES! 

'Mappinginfo=lbl,lbl,-1,Mouseicon 

Public Property Get Mouselcon() As Picture 

Set Mouselcon = lbl.Mouselcon 

End Property 

Public Property Set Mouseicon(ByVal New_Mouselcon As Picture) 

Set lbl.Mouselcon = New Mouselcon 

PropertyChanged "Mouselcon" 

End Property 

82 



Private Sub lbl_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As 

Single) 

RaiseEvent MouseMove(Button, Shift, X, Y) 

End Sub 

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED 

LINES! 

'Mappinglnfo=lbl,lbl,-1,MousePointer 

Public Property Get MousePointer() As MousePointerConstants 

MousePointer = lbl.MousePointer 

End Property · 

Public Property Let MousePointer(ByVal New_MousePointer As 

MousePointerConstants) 

lbl.MousePointer() =New_ MousePointer 

PropertyChanged "MousePointer" 

End Property 

Private Sub lbl_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As 

Single) 

RaiseEvent MouseUp(Button, Shift, X, Y) 

End Sub 

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED 

LINES! 

'Mappinginfo=mask,mask,-1,PromptChar 

Public Property Get PromptChar() As String 

PromptChar = mask.PromptChar 

End Property 

Public Property Let PromptChar(ByVal New_PromptChar As String) 

mask.PromptChar() = New _PromptChar 

PropertyChanged "PromptChar" 

End Property 

83 



'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED 

LINES! 

'Mappinginfo=mask,mask,-1,Promptinclude 

Public Property Get Promptlncludet) As Boolean 

Promptlnclude = mask.Promptlnclude 

End Property 

Public Property Let Promptinclude(ByVal New_Promptlnclude As Boolean) 

mask.Promptlncludet) = New _Promptlnclude 

PropertyChanged "Promptlnclude" 

End Property 

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED 

LINES! 

'Mappinginfo=UserControl,UserControl,-1,TextHeight 

Public Function TextHeight(ByVal Str As String) As Single 

TextHeight = UserControl.TextHeight(Str) 

End Function 

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED 

LINES! 

'Mappinginfo=U serControl, U serControl,-1, Text Width 

Public Function TextWidth(ByVal Str As String) As Single 

TextWidth = UserControl.TextWidth(Str) 

End Function 

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED 

LINES! 

'Mappinginfo=mask,mask,-1, Tool Tip Text 

Public Property Get ToolTipTextO As String 

ToolTipText = mask.ToolTipText 

End Property 

84 



Public Property Let ToolTipText(ByVal New_ToolTipText As String) 

mask.ToolTipText() = New_ToolTipText 

PropertyChanged "ToolTipText" 

End Property 

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED 

LINES! 

'Mappinglnf o= lbl,lbl, -1, U seMnemonic 

Public Property Get UseMnemonic() As Boolean 

UseMnemonic = lbl.UseMnemonic 

End Property 

Public Property Let UseMnemonic(ByVal New_UseMnemonic As Boolean) 

lbl.UseMnemonic() =New_ UseMnemonic 

PropertyChanged "U seMnemonic" 

End Property 

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED 

LINES! 

'Mappinglnfo=mask,mask,-1,F oreColor 

Public Property Get ForeColorText() As OLE_COLOR 

ForeColorText = mask.ForeColor 

End Property 

Public Property Let ForeColorText(ByVal New_ForeColorText As OLE_COLOR) 

mask.ForeColor() = New_ForeColorText 

PropertyChanged "ForeColorText" 

End Property 

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED 

LINES! 

'Mappinglnfo=mask,mask,-1,BackColor 

Public Property Get BackColorText() As OLE_COLOR 

BackColorText = mask.BackColor 

85 



End Property 

Public Property Let BackColorText(ByVal New_BackColorText As OLE_COLOR) 

mask.BackColor() =New_ BackColorText 

PropertyChanged "BackColorText" 

End Property 

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED 

LINES! 

'Mappinglnfo=mask,mask,-1,F ont 

Public Property Get FontText() As Font 

Set FontText = mask.Font 

End Property 

Public Property Set FontText(ByVal New_FontText As Font) 

Set mask.Font= New FontText 

PropertyChanged "FontText" 

End Property 

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED 

LINES! 

'Memberlnfo= 13 ,0,0, 
Public Property Get Text() As String 

Text = mask. Text 

End Property 

Public Property Let Text(ByVal New_Text As String) 

mask.Text= New Text 

PropertyChang~d "Text" 

End Property 

'Initialize Properties for User Control 

Private Sub UserControl_InitProperties() 

m Text='"' 

86 



m AutoSize = m def AutoSize - - - 

m LabelWidth = m def LabelWidth - - - 
m_BorderStyle = m_def_BorderStyle 

Me.Caption= Extender.Name 

m_ VAlign = m_def_ V Align 

m ColName = m def ColName 

End Sub 

Private Sub UserControl_Paint() 

Dim di As Long 

Dim re As RECT 

Dim xTwips As Integer, yTwips As Integer 

xTwips = Screen. TwipsPerPixelX 

yTwips = Screen. TwipsPerPixelY 

di= GetClientRect(UserControl.hwnd, re) 

Select Case m _BorderStyle 

Case [No Border] 
di= DrawEdge(UserControl.hdc, re, BDR_RAISEDOUTER, BF _MONO) 

Case [Single] 
di= DrawEdge(UserControl.hdc, re, BDR_RAISEDOUTER, BF _RECT Or 

BF_MONO) 

Case [Thin Raised] 
di= DrawEdge(UserControl.hdc, re, BDR_RAISEDINNER, BF _TOPLEFT) 

di= DrawEdge(UserControl.hdc, re, BDR_RAISEDOUTER, 

BF BOTTOMRIGHT) 

Case [Thick Raised] 

di= DrawEdge(UserControl.hdc, re, EDGE_RAISED, BF_TOPLEFT) 

di= DrawEdge(UserControl.hdc, re, EDGE_RAISED, BF _BOTTOMRIGHT) 

Case [Thin Inset] 
di= DrawEdge(UserControl.hdc, re, BDR_SUNKENINNER, BF _TOPLEFT) 

di= DrawEdge(UserControl.hdc, re, BDR_SUNKENOUTER, 

BF _BOTTOMRIGHT) 

Case [Thick Inset] 
di= DrawEdge(UserControl.hdc, re, EDGE_SUNKEN, BF _TOPLEFT) 

87 



di= DrawEdge(UserControl.hdc, re, EDGE_SUNKEN, BF_BOTTOMRIGHT) 

Case [Etched] 

di = DrawEdge(UserControl.hdc, re, EDGE_ ETCHED, BF_ TOPLEFT) 

di = DrawEdge(UserControl.hdc, re, EDGE_ ETCHED, BF_ BOTTOMRIGHT) 

Case [Bump] 

di= DrawEdge(UserControl.hdc, re, EDGE_BUMP, BF _TOPLEFT) 

di= DrawEdge(UserControl.hdc, re, EDGE_BUMP, BF _BOTTOMRIGHT) 

End Select 

End Sub 

'Load property values from storage 

Private Sub UserControl_ReadProperties(PropBag As PropertyBag) 

On Error Resume Next 

' lbl.Alignment = PropBag.ReadProperty("Alignment", 0) 

mask.AllowPrompt = PropBag.ReadProperty("AllowPrompt", False) 

' lbl.AutoSize = PropBag.ReadProperty("AutoSize", False) 

mask.AutoTab = PropBag.ReadProperty("AutoTab", False) 

U serControl.BackColor = PropBag.ReadProperty("BackColor", &H8000000F) 

' UserControl.BorderStyle = PropBag.ReadProperty("BorderStyle", 0) 

lbl.Caption= PropBag.ReadProperty("Caption", "") 

Set lbl.Font= PropBag.ReadProperty("Font", Ambient.Font) 

lbl.ForeColor = PropBag.ReadProperty("ForeColor", &H80000012) 

mask.Format= PropBag.ReadProperty("Format", "") 

' mask.mask= PropBag.ReadProperty("Mask", "") 

mask.MaxLength = PropBag.ReadProperty("MaxLength", 64) 

Set Mouselcon = PropBag.ReadProperty("Mouseicon", Nothing) 

lbl.MousePointer = PropBag.ReadProperty("MousePointer", 0) 

mask.PromptChar = PropBag.ReadProperty("PromptChar", "_") 

mask.Promptlnclude = PropBag.ReadProperty("Promptinclude", True) 

mask.ToolTipText = PropBag.ReadProperty("ToolTipText", "") 
\ 

lbl.UseMnemonic = PropBag.ReadProperty("UseMnemonic", True) 

mask.ForeColor = PropBag.ReadProperty("ForeColorText", &H80000008) 

mask.BackColor = PropBag.ReadProperty("BackColorText", &H80000005) 

Set mask.Font= PropBag.ReadProperty("FontText", Ambient.Font) 

88 



mask.Text= PropBag.ReadProperty("Text", m_def_Text) 

mask.mask= PropBag.ReadProperty("MaskStr", "") 

lbl. Width = PropBag.ReadProperty("LabelWidth", m _def_ LabelWidth) 

m_AutoSize = PropBag.ReadProperty("AutoSize", m_def_AutoSize) 

m_LabelWidth = PropBag.ReadProperty("LabelWidth", m_def_LabelWidth) 

m _BorderStyle = PropBag.ReadProperty("BorderStyle", m _ def_BorderStyle) 

mask.HideSelection = PropBag.ReadProperty("HideSelection", m _def_ HideSelection) 

mask.BorderStyle = PropBag.ReadProperty("BorderStyleText", 1) 

mask.Appearance= PropBag.ReadProperty("ApperanceText", 1) 

m_ VAlign = PropBag.ReadProperty("VAlign", m_def_ V Align) 

Set DataSource = PropBag.ReadProperty("DataSource", Nothing) 

lbl.Enabled = PropBag.ReadProperty("Enabled", True) 

mask.Enabled= PropBag.ReadProperty("Enabled", True) 

m_ColName = PropBag.ReadProperty("ColName", m_def_ColName) 

End Sub 

Private Sub UserControl_ResizeO 

On Error Resume Next 

mask.Height= UserControl.ScaleHeight - 60 

mask.Left= Me.LabelWidth + 150 
mask.Width= UserControl.ScaleWidth- (Me.LabelWidth + 180) 
Select Case V Align 

Case 0 

lbl.Top = 30 

Case 1 
lbl.Top = (UserControl.ScaleH~ight - lbl.Height) I 2 

Case2 
lbl.Top = (UserControl.ScaleHeight - lbl.Height) - 30 

End Select 

IfUserControl.Height < 300 Then UserControl.Height = 300 

IfUserControl.Width < 300 Then UserControl.Width = 300 

End Sub 

89 



Private Sub UserControl_Show() 

Me.AutoSize = Me.AutoSize 

Me.Text = Me.Text 

End Sub 

'Write property values to storage 
Private Sub UserControl_ WriteProperties(PropBag As PropertyBag) 

' Call PropBag.WriteProperty("Alignment", lbl.Alignment, 0) 

Call PropBag.WriteProperty("AllowPrompt", mask.AllowPrompt, False) 

' Call PropBag.WriteProperty("AutoSize", lbl.AutoSize, False) 

Call PropBag.WriteProperty("AutoTab", mask.AutoTab, False) 

Call Prop Bag. WriteProperty("BackColor", UserControl.BackColor, &H8000000F) 

' Call PropBag.WriteProperty("BorderStyle", UserControl.BorderStyle, 0) 

Call PropBag.WriteProperty("Caption", lbl.Caption.?") 

Call PropBag.WriteProperty("Font", lbl.Font, Ambient.Font) 

Call PropBag.WriteProperty("ForeColor", lbl.ForeColor, &H80000012) 

Call PropBag.WriteProperty("Format", mask.Format,"") 

' Call PropBag.WriteProperty("Mask", mask.mask,"") 

Call PropBag.WriteProperty("MaxLength", mask.MaxLength, 64) 

Call PropBag.WriteProperty("Mouseicon", Mouselcon, Nothing) 

Call Prop Bag. WriteProperty("MousePointer", lbl.MousePointer, 0) 

Call PropBag.WriteProperty("PromptChar", mask.PromptChar, "_") 

Call Prop Bag. WriteProperty("Promptlnclude", mask.Promptlnclude, True) 

Call PropBag.WriteProperty("ToolTipText", mask.ToolTipText, "") 
r 

Call Prop Bag. WriteProperty("U seMnemonic", lbl. U seMnemonic, True) 

Call Prop Bag. WriteProperty("F oreColorText", mask.F oreColor, &H80000008) 

Call PropBag.WriteProperty("BackColorText", mask.BackColor, &H80000005) 

Call PropBag.WriteProperty("FontText", mask.Font, Ambient.Font) 

Call PropBag.WriteProperty("Text", mask.Text, m_def_Text) 

Call PropBag.WriteProperty("MaskStr", mask.mask,"") 

Call Prop Bag. WriteProperty("LabelWidth", lbl. Width, m _ def_ Label Width) 

Call PropBag.WriteProperty("AutoSize", m_AutoSize, m_def_AutoSize) 

Call PropBag.WriteProperty("LabelWidth", !bl.Width, m_def_LabelWidth) 

90 



Call PropBag.WriteProperty("BorderStyle", m _ BorderStyle, m _ def_ BorderStyle) 

Call Prop Bag. WriteProperty("HideSelection", mask.HideSelection, 

m _ def_ HideSelection) 

Call PropBag.WriteProperty("BorderStyleText", mask.BorderStyle, 1) 

Call PropBag.WriteProperty("ApperanceText", mask.Appearance, 1) 

Call PropBag.WriteProperty("VAlign", m_ VAlign, m_def_ VAlign) 

Call PropBag.WriteProperty("DataSource", DataSource, Nothing) 

Call PropBag.WriteProperty("Enabled", mask.Enabled, True) 

Call PropBag.WriteProperty("Enabled", mask.Enabled, True) 

Call PropBag.WriteProperty("ColName", m_ColName, m_def_ColName) 

End Sub 

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED 

LINES! 

'Mappinglnfo=mask,mask,-1,Mask 

Public Property Get MaskStrO As String 

MaskStr = mask.mask 

End Property 

Public Property Let MaskStr(ByVal New_MaskStr As String) 

mask.maskl) = New_ MaskStr 

PropertyChanged "MaskStr" 

End Property 

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED 

LINES! 

'Memberlnfo=0,0,0,0 

Public Property Get AutoSize() As Boolean 

AutoSize = m AutoSize 

End Property 

Public Property Let AutoSize(ByVal New_AutoSize As Boolean) 

IfNew AutoSize Then 

Me.Label Width = lbl. Width 

91 



End If 

m AutoSize = New AutoSize - - 
PropertyChanged "AutoSize" 

End Property 

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED 

LINES! 

'Memberlnfo=7 ,0,0, 1000 

Public Property Get LabelWidth() As Integer 

LabelWidth = !bl.Width 

End Property 

Public Property Let LabelWidth(ByVal New_LabelWidth As Integer) 

!bl.Width= New LabelWidth 

mask.Left= New LabelWidth + 150 
mask.Width= UserControl.ScaleWidth- (New_LabelWidth + 180) 

PropertyChanged "LabelWidth" 

End Property 

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED 

LINES! 
'Mappinglnfo=U serControl,U serControl,-1,BackColor 

Public Property Get BackColor() As OLE_COLOR 

BackColor = UserControl.BackColor 

End Property 

Public Property Let BackColor(newv As OLE_COLOR) 

UserControl.BackColor ""'newv 

PropertyChanged "BackColor" 

End Property 

92 



'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED 

LINES! 

'Memberlnfo=? ,0,0, 

Public Property Get BorderStyle() As BStyle 

BorderStyle =:== m _ BorderStyle 

End Property 

Public Property Let BorderStyle(ByVal New_BorderStyle As BStyle) 

m_BorderStyle = New_BorderStyle 

UserControl Paint 

PropertyChanged "BorderStyle" 

End Property 

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED 

LINES! 

'Memberlnfo=Gfl.O, True 

Public Property Get HideSelection() As Boolean 

HideSelection = mask.HideSelection 

End Property 

Public Property Let HideSelection(ByVal New_ HideSelection As Boolean) 

mask.HideSelection = New HideSelection 

PropertyChanged "HideSelection" 

End Property 

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED 

LINES! 

'Mappinginfo=mask,mask,-1,BorderSty le 

Public Property Get BorderStyleText() As BordStyle 

BorderStyleText = mask.BorderStyle 

End Property 

Public Property Let Borc\erStyle1ext(By'v a\ "New _Borc\erSty\e1ext As ~cmlSty\e) 

mask.BorderStyle() =New_ BorderStyleText 

93 



PropertyChanged "BorderStyleText" 

End Property 

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED 

LINES! 

'Mappinglnf o=rnask,mask,-1,Appearance 

Public Property Get ApperanceText() As AppearanceConstants 

ApperanceText = mask.Appearance 

End Property 

Public Property Let ApperanceText(ByVal New_ApperanceText As 

AppearanceConstants) 

mask.Appearance() = New_ ApperanceText 

PropertyChanged "ApperanceText" 

End Property 

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED 

LINES! 

'Memberlnfo=? ,0,0, 1 

Public Property Get V Align() As V Align 

V Align = m _ V Align 

End Property 

Public Property Let VAlign(ByVal New_ VAlign As V Align) 

m_ VAlign = New_ VAlign 

UserControl Resize 

PropertyChanged "V Align" 

End Property 

" 
"'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED 

LINES! 
"'Mappinglnfo=mask,mask,-1,DataSource 

"Public Property Get DataSourceO As DataSource 

" Set DataSource = mask.DataSource 

94 



"End Property 
II 

"Public Property Set DataSource(ByVal New_DataSource As DataSource) 

" Set mask.DataSource = New DataSource 

" PropertyChanged "DataSource" 

"End Property 
II 

"WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED 

LINES! 

"Mappinglnfo=U serControl, U serControl,-1,Enabled 

'Public Property Get Enabled() As Boolean 

' Enabled= UserControl.Enabled 

'End Property 

'Public Property Let Enabled(ByVal New_Enabled As Boolean) 

' UserControl.Enabled() = New_Enabled 

' lbl.Enabled = New Enabled 

' mask.Enabled = New Enabled 

' PropertyChanged "Enabled" 

'End Property 

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED 

LINES! 

'Mappinglnfo=mask,mask,-1,Enabled 

Public Property Get Enabled() As Boolean 

Enabled = mask.Enabled 

End Property 

Public Property Let Enabled(ByVal New_Enabled As Boolean) 

mask.Enabled()= New_Enabled 

lbl.Enabled = New Enabled 

PropertyChanged "Enabled" 

End Property 

95 



'WARNING! DO NOT REMOVE OR MODIFY. THE FOLLOWING COMMENTED 

LINES! 

'Memberlnfo=l 3,0,0, 

Public Property Get ColName() As String 

ColName = m ColName 

End Property 

Public Property Let ColName(ByVal New_ColName As String) 

m ColName = New ColName - - 

PropertyChanged "ColName" 

End Property 

96 


	Page 1
	Titles
	NEAR EAST UNIVERSITY 
	Faculty of Engineering 
	Ł 

	Images
	Image 1


	Page 1
	Titles
	ACKNOWLEDGEMENT 

	Images
	Image 1


	Page 2
	Titles
	ABSTRACT 


	Page 3
	Titles
	TABLE OF CONTENTS 
	ACKNOWLEDGMENT i 
	ABSTRACT ii 
	TABLE OF CONTENTS iii 
	INTRODUCTION 1 
	CHAPTER ONE: VISUAL BASIC PROGRAMMING 2 
	CHAPTER TWO: MICROSOFT ACCESS 10 


	Page 4
	Titles
	CHAPTER THREE: THE TOOLS USED IN PROGRAM 20 
	CHAPTAR FOUR: PROGRAM DESIGN PROCESS 32 


	Page 5
	Tables
	Table 1


	Page 6
	Titles
	INTRODUCTION 


	Page 7
	Titles
	1. VISUAL BASIC PROGRAMMING 
	1.1 Introduction to Visual Basic 


	Page 8
	Page 9
	Titles
	1.2 Brief History 
	1.3 The Basics of a Programming Language 
	1.4 Visual Basic is Windows Development Language 


	Page 10
	Page 11
	Images
	Image 1


	Page 12
	Titles
	1.5 Developing an Application in VB 


	Page 13
	Titles
	1.6 New Tools in data access 


	Page 14
	Page 15
	Titles
	2. MICROSOFT ACCESS 
	2.1 Introduction to Microsoft Access 
	Ł 

	Images
	Image 1


	Page 16
	Titles
	2.2 Data Definition of Access Databases 


	Page 17
	Titles
	2.3 Defining Relationships and Referential Integrity Constraints 


	Page 18
	Titles
	2.4 Data Manipulation in Access 


	Page 19
	Titles
	2.5 Designing of the Databases 

	Images
	Image 1
	Image 2


	Page 20
	Page 21
	Titles
	2.6 Naming Fields 


	Page 22
	Titles
	2.7 Assigning Field Data Types and Defining Properties 


	Page 23
	Titles
	kxlkup. 
	2.8 Specifying a Primary Key 
	2.9 Adding Records 


	Page 24
	Titles
	2.10 Retrieving and Reporting Information 

	Images
	Image 1


	Page 25
	Titles
	3. THE TOOLS USED IN PROGRAM 
	3.1 The ADO Data Control 


	Page 26
	Titles
	3.2 The DataGrid Control 

	Images
	Image 1
	Image 2


	Page 27
	Images
	Image 1


	Page 28
	Titles
	3.3 The ProgressBar 
	3.4 The Using the ListView Control 


	Page 29
	Images
	Image 1


	Page 30
	Titles
	3.5 The Tag Property (ActiveX Controls) 
	=. 

	Tables
	Table 1


	Page 31
	Titles
	3.6 The Combo Box Control 


	Page 32
	Titles
	3. 7 The Masked Edit 

	Images
	Image 1
	Image 2


	Page 33
	Titles
	3.8 The Timer Control 
	28 

	Images
	Image 1


	Page 34
	Page 35
	Images
	Image 1
	Image 2


	Page 1
	Titles
	3.9 Multiple-Document Interface (MDI) Applications 


	Page 2
	Titles
	4. PROGRAM DESIGN PROCESS 
	4.1 Block Diagram of System 

	Images
	Image 1
	Image 2
	Image 3


	Page 3
	Titles
	4.2 Main Menu 
	SELL 
	PRODUCTS 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 4
	Titles
	4.3 Sell Menu 


	Page 5
	Titles
	g 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Tables
	Table 1


	Page 6
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6


	Page 7
	Titles
	4.4 Customers Menu 


	Page 8
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 9
	Titles
	End 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 10
	Titles
	4.5 Products Menu 


	Page 11
	Titles
	1 products Menu Screen 

	Images
	Image 1

	Tables
	Table 1


	Page 12
	Titles
	42 
	End 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6


	Page 13
	Titles
	4.6 Purchase Menu 


	Page 14
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Tables
	Table 1


	Page 15
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 16
	Titles
	CONCLUSION 


	Page 17
	Titles
	REFERENCES 


	Page 18
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 19
	Titles
	Sell Screens 
	49 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10

	Tables
	Table 1


	Page 20
	Titles
	Customer Screen 
	t~ Add Customer ;: ,.},,_.<> ),~,::Jlifmr:_J:3: 
	Customer Details Screen 
	50 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Tables
	Table 1
	Table 2


	Page 21
	Titles
	Product Screen 
	S.tock [F4] 
	~ 
	.Cateaorv 
	Bar code 
	Name i 
	Brand J,,cetamolthises 
	Categor~ ~fu~ feverish 
	Retail Prte I$ 8.00 
	J 111113[ 
	~- 
	Repla:ements [F5) 11 Delete [F3] 
	51 
	Close 
	dose 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 22
	Titles
	Replacements Screen 
	t~ Replacements ,;;,::;,'-"';'.:;,.·;,·;;EJ! 
	L ..... Add JF 1 l .... ..J 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 23
	Images
	Image 1
	Image 2


	Page 24
	Titles
	Purchase Screen 
	--- - - ·- 
	i ·····oi< ,I 
	L 
	-J 
	t 
	l 
	1- ~ ~, 
	.r..· Add l 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9

	Tables
	Table 1


	Page 25
	Titles
	APPENDIXB 
	- 

	Images
	Image 1
	Image 2

	Tables
	Table 1


	Page 26
	Tables
	Table 1
	Table 2


	Page 27
	Titles
	APPENDIXC 


	Page 28
	Images
	Image 1


	Page 29
	Page 30
	Page 31
	Images
	Image 1


	Page 32
	Page 33
	Titles
	, , , 

	Images
	Image 1


	Page 34
	Titles
	64 


	Page 35
	Page 36
	Page 37
	Page 38
	Titles
	~~~---------------------111111111111111111111111111111111Ł 


	Page 39
	Titles
	' ' ' '

	Page 40
	Page 41
	Page 42
	Page 43
	Images
	Image 1

	Page 44
	Images
	Image 1

	Page 45
	Images
	Image 1

	Page 46
	Page 47
	Page 48
	Titles
	78

	Images
	Image 1

	Page 49
	Page 50
	Images
	Image 1

	Page 1
	Images
	Image 1

	Page 2
	Images
	Image 1

	Page 3
	Images
	Image 1

	Page 4
	Titles
	84

	Page 5
	Images
	Image 1

	Page 6
	Images
	Image 1

	Page 7
	Images
	Image 1

	Page 8
	Images
	Image 1
	Image 2
	Image 3

	Page 9
	Page 10
	Images
	Image 1

	Page 11
	Images
	Image 1

	Page 12
	Images
	Image 1

	Page 13
	Images
	Image 1

	Page 14
	Titles
	"

	Images
	Image 1
	Image 2

	Page 15
	Page 16

