
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

THE GOODS TRADiNG AUTOMATiON SYSTEM
USiNG DELPHi PROGRAMMiNG LANGUAGE

Graduation Project

COM-400

Student: Faz1I KARGIN (20011115)

Supervisor: Assist. Prof. Dr. Firudin Muradov

Nicosia - 2006

ACKNOWLEDGMENT

First of all, I would like to express my thanks to my supervisor Mr. Firudin

MURADOV for supervising my project. Under the guidance of him I successfully overcome

many difficulties. He welcomed me whenever i wanted to discuss something with him

without feeling shame or hesitation. Also I thank other instructors in Computer Engeenering

department for their help and guideness.

special thanks to my family, especially my parents for being patientfull during my

undergraduate degree study. I could never have completed my study without their

encouragement and endless support.

Finally, I want to thank all my friends and specially Muhammed S. ABDULLAH ,

metin ULAS, who supported and helped me all the time.

l

ABSTRACT

' Delphi is an object oriented , visual programming environment for rapid

application development. With Delphi you can write Windows programs more quickly

and more quickly and more easily than was ever possible before. Delphi Programming

Language and Paradox7 Data base system in building this program. Delphi is one of the

modem programming languages, it contains thousands of commands, components,

tools ... etc. it is easy to use too. The program stores every sale operation done by a user;

it also stores income and outcome payments, lists the activities and duties of all the

personals working in Market.

This project has as its goal to develop software, processing information about

activities of Dress market. Many forms used in building this project, the most important

form is Stock Detail form, using this form the program records the entrance of new

items to the stock, also while selling something it automatically decrease the stock

amount of that item Software developed in this project contains both employee

information, and information associated with sales and purchase . The project can be

developed by improving the s?ftware for processing all activities of the company.

II

TABLE OF CONTENTS

ACKNOWLEDGEMENT
ABSTRACT
TABLE OF CONTENTS
INTRODUCTION
CHAPTER 1. .BASIC CONCEPT OF DELPHI 7

1.1 Introduction
1.2 What is Delphi?

1.2.1 Developer Support Services and Web Site
1.3 A Tour of The Environment

1.3.1 Starting Delphi
1.3.2 Delphi(IDE)
1.3.3 The object inspector
1. 3. 4 The Del phi Workspace
1.3.5 The Menus and Toolbars
1.3.6 The Component Palette and Form Designer
1.3.7 The Object Tree View
1.3.8 The Object Repository
1.3.9 The Code Editor

1.3.9.1 Code Insight
1.3 .10 Class Completion
1.3 .11 Code Browsing
1.3 .12 The Diagram Page
1.3.13 Viewing Form Code
1.3 .14 The Code Explorer
1.3.15 The Project Manager
1.3.16 The Project Browser

1.4 Programming With Delphi
1.4.1 Creating a Project
1.4.2 Adding Data Modules
1.4.3 Building the user interface
1.4.4 Placing components on a form
1.4.5 Setting the properties of the component
1.4.6 Writing Code

1.4.6.1 Using The Component Library
1.4.7 Compiling and Debugging Projects

1.4. 7.1 Deploying Applications
1.4. 7 .2 Internationalizing Applications

1.4.8 Types of Projects
1.4.8. lDelphi (CLX Applications)
1.4.8.2 Delphi (Database Applications)

1.4.9 Administrator(BDE)

I
II
III
1
2
2
3
4
4
5
5
7
8
8
10
11
12
13
14
15
16
17
17
18
19
19
20
20
20
21
21
22
24
27
28
30
31
30
31
31
32

III

1.4.10 Database Explorer 32

1.4.11 Database Desktop 32
1.4.12 Data Dictionary 32
1.4.13 Components of custom 33

1.4.14 Dynamic-link libraries 33

l.4.15Delphi(COM and ActiveX) 33

1.4.16 Component Type Libraries 34

1.5 Work Area (iDE) 34

1.5.1 Arranging Menus and Toolbars 34

1.5.2 Tool Windows 35

1.5.3 Desktop Layouts 37

l.6The Component Palette 38

1.6.1 Creating Component Templates 39

CHAPTER 2 .. DATABASE CONCEPT OF DELPHI 7 40
2.1 About Dbase And Paradox 40

2.1.1 Architecture of database 40
2.1.2 Relational database consept 40
2.1.3 Accessing data in other database 41
2.1.4 dBASE IV Table Specification 41
2.1.5 Dbase V Table Specification 42
2.1.6 dBASE Field Types 42

2.2 Paradox Standard Table Specifications 44
2.2.1 Paradox4 table structure 44
2.2.2 Paradox 5 Table Specifications 45
2.2.3 Paradox 7 and Above Table Specifications 46
2.2.4 Paradox Field Types 47

CHAPTER 3 .. MAiN FORMS OF THE APLiCATiON PROGRAM 50
3.1 Database Design of The Program 50
3 .2 Relationships between tables 51
3 .3 Execution of the programs 51

CONCLUSION 68
REFERENCES 69
APPENDIX 1: Program Codes 70
APPENDIX 2: Database Tables 112

IV

INTRODUCTION

The Goods Trader Automation System is an important program for all markets, all

the operations done through this system. Delphi programming Language is used in this

project. The project consist of three chapters

Chapter 1 describes Delphi programming basic consept, such as menus and

toolbar,component palette, form designer, code editor, code explorer, project maneger and

project browser.it is also present information about programing with Delphi and work area.

same time this chapter explain Delphi's command and properties are available in menus,it
\

has many usable and wonderful ready commands. In the same time it has some

disadvantages, while writing Codes the program does not alert you when you write wrong

codes and does not show you the exact fault.

Chapter 2 Describe about database and paradox . it's table arrangement's are easier

than other database programs. Also it's Delphi's own program, while using delphi. Making

changes in the tables are more easier than other database programs. Specialists prefer using

this database than Microsoft Access.

In the thierd Chapter describe the forms and examples runs of the application

program.There are tables such as login form,main form,product entry form,stock listetc.

my own program that i made it by myself, it is a Stock Program, used for all the market's

not just Dress market, it is a useful program, do jobs of more than one person in a speedy

way without mistake, also it can be developed in the future by adding other properties to

the program.

Finally I promise myself to do a program much more better than this, because this

was my first program, maybe I made mistakes during programing it, but in the future I'll

made one better than this in appearance and properties.

CHAPTER!

1. BASIC CONCEPT OF DELPHI 7

1.1. Introduction

The name "Delphi" was never a term with which either Olaf Helmer or Norman Dalkey

(the founders of the method) were particular happy. Since many of the early Delphi studies

focused on utilizing the technique to make forecasts of future occurrences, the name was

first applied by some others at Rand as a joke. However, the name stuck. The resulting

image of a priestess, sitting on a stool over a crack in the earth, inhaling sulfur fumes, and

making vague and jumbled statements that could be interpreted in many different ways, did

not exactly inspire confidence in the method.

The straightforward nature of utilizing an iterative survey to gather information "sounds"

so easy to do that many people have done "one" Delphi, but never a second. Since the name

gives no obvious insight into the method and since the number of unsuccessful Delphi

studies probably exceeds the successful ones, there has been a long history of diverse

definitions and opinions about the method. Some of these misconceptions are expressed in

statements such as the following that one finds in the literature:

• It is a method for predicting future events.

• It is a method for generating a quick consensus by a group.

• It is the use of a survey to collect information.

• It is the use of anonymity on the part of the participants.

• It is the use of voting to reduce the need for long discussions.

• It is a method for quantifying human judgement in a group setting.

Some of these statements are sometimes true; a few (e.g. consensus) are actually contrary

to the purpose of a Delphi. Delphi is a communication structure aimed at producing

2

detailed critical examination and discussion, not at forcing a quick compromise. Certainly

quantification is a property, but only to serve the goal of quickly identifying agreement and

disagreement in order to focus attention. It is often very common, even today, for people to

come to a view of the Delphi method that reflects a particular application with which they

are familiar. In 197 5 Lin stone and Turoff proposed a view of the Delphi method that they

felt best summarized both the technique and its objective.

The essence of Delphi is structuring of the group communication process. Given that there

had been much earlier work on how to facilitate and structure face-to-face meetings, the

other important distinction was that Delphi was commonly applied utilizing a paper and

pencil communication process among groups in which the members were dispersed in

space and time. Also, Delphis were commonly applied to groups of a size (30 to 100

individuals) that could not function well in a face-to-face environment, even if they could

find a time when they all could get together.

The result, however, is not merely confusion due to different names to describe the same

things; but a basic lack of knowledge by many people working in these areas as to what

was learned in the studies of the Delphi Method about how to properly employ these

techniques and their impact on the communication process. There seems to be a great deal

of "rediscovery" and repeating of earlier misconceptions and difficulties.

Given this situation, the primary objective of this chapter is to review the specific

properties and methods employed in the design and execution of Delphi Exercises and to

examine how they may best be translated into a computer based environment.

1.2. What is Delphi?

Delphi is an object-oriented, visual programming environment for rapid application

development (RAD). With Delphi, you can write Windows programs more quickly and

more easily than was ever possible before. You can create Win32 console applications or

Win32 graphical user interface (GUI) programs. When creating Win32 GUI applications

with Delphi, you have all the power of a true compiled programming language (Object

3

Pascal) wrapped up in a RAD environment. What this means is that you can create the user

interface to a program (the user interface means the menus, dialog boxes, main window,

and so on) using drag-and-drop techniques for true rapid application development. You can

also drop ActiveX controls on forms to create specialized programs such as Web browsers

in a matter of minutes. Delphi gives you all this, and at virtually no cost: You don't

sacrifice program execution speed because Delphi generates fast compiled code.

Delphi provides all the tools you need to develop, test, and deploy applications,

including a large library of reusable components, a suite of design tools, application and

form templates, and programming wizards.

Delphi does a good job of hiding some of the low-level details that make up the guts of a

Windows program, but it cannot write programs for you. In the end, you must still be a

programmer, and that means you have to learn programming. That can be a long, uphill

journey some days. The good news is that Delphi can make your trek fairly painless and

even fun. Yes, you can work and have fun doing it!

1.2.lDeveloper Support Services and Web Site

Borland offers a variety of support options to meet the needs of its diverse developer

community. To find out about support, refer to http://www.borland.com/devsupport/. From

the Web site, you can access many newsgroups where Delphi developers exchange

information, tips, and techniques. From the Web site, you can access many newsgroups where

Delphi developers exchange information, tips, and techniques. The site also includes a list of

books about Delphi, additional Delphi technical documents, and Frequently Asked

Questions (FAQs).

1.2. A Tour of The Environment

This chapter explains how to start Delphi and gives you a quick tour of the main parts and

tools of the integrated development environment (IDE).

4

1.3.1. Starting Delphi

You can start Delphi in the following ways:

• Double-click the Delphi icon (if you've created a shortcut).

• Choose ProgramsjBorland Delphi 71Delphi 7 from the Windows Start menu.

• Choose Run from the Windows Start menu, then enter Delphi32.

• Double-click Delphi32.exe in the Delphi\Bin directory.

1.3.2Delphi (IDE)

When you first start Delphi, you'll see some of the major tools in the IDE. In Delphi, the

IDE includes the menus, toolbars, Component palette, Object Inspector, Object TreeView,

Code editor, Code Explorer, Project Manager, and many other tools. The particular features

and components available to you will depend on which edition of Delphi you've purchased.

FIGURE 1.1.'lne Delphi IDE and the initial blank form.

5

The Delphi IDE is divided into three parts. The top window can be considered the main

window. It contains the toolbars and the Component palette. The Delphi toolbars give you

one-click access to tasks such as opening, saving, and compiling projects. The Component

palette contains a wide array of components that you can drop onto your forms.

(Components are text labels, edit controls, list boxes, buttons, and the like.) For

convenience, the components are divided into groups. Did you notice the tabs along the top

of the Component palette? Go ahead and click on the tabs to explore the different

components available to you. To place a component on your form, you simply click the

component's button in the Component palette and then click on your form where you want

the component to appear. Don't worry about the fact that you don't yet know how to use

components. You'll get to that in due time. When you are done exploring, click on the tab

labeled Standard, because you'll need it in a moment.

The~p.tla
~ f~UJ'f•f!llldt

-~1oadd·10
lW'Jlt**·
~t<i-~
~t«>•atdd.

The C?.d« ~er ffl'JYM)'l,)\lthe ~1va1~, and.
,__in)'!.)\l(Untoot.iWt)'l,)\lfkW./.lllkW,,

Fig. 1.2 IDE

Delphi's development model is based on two-way tools. This means that you can move back

and forth between visual design tools and text-based code editing. For example, after using

6

the Form Designer to arrange buttons and other elements in a graphical interface, you can

immediately view the form file that contains the textual description of your form. You

can also manually edit any code generated by Delphi without losing access to the visual

programming environment.

From the IDE, all your programming tools are within easy reach. You can design

graphical interfaces, browse through class libraries, write code, and compile, test, debug,

and manage projects without leaving the IDE.

Delphi's development model is based on two-way tools. This means that you can move

back and forth between visual design tools and text-based code editing. For example, after

using the Form Designer to arrange buttons and other elements in a graphical interface, you

can immediately view the form file that contains the textual description of your form. You

can also manually edit any code generated by Delphi without losing access to the visual

programming environment.

From the IDE, all your programming tools are within easy reach. You can design graphical

interfaces, browse through class libraries, write code, and compile, test, debug, and manage

projects without leaving the IDE.

1.3.3 The Object Inspector

Fig. 1.3 object inspector

Below the main window and on the left side of the screen is the Object Inspector. It is

through the Object Inspector that you modify a component's properties and events. You

7

will use the Object Inspector constantly as you work with Delphi. The Object Inspector

has two tabs: the Properties tab and the Events tab. A component's properties control

how the component operates. For example, changing the Color property of a component

changes the background color of that component. The list of properties available varies

from component to component, although components usually have several common

elements (Width and Height properties, for instance).

The Events tab contains a list of events for a component. Events occur as the user

interacts with a component. For example, when a component is clicked, an event is

generated that tells you that the component was clicked. You can write code that

responds to these events, performing specific actions when an event occurs. As with

properties, the events that you can respond to vary from component to component.

1.3.4 The Delphi Workspace

The main part of the Delphi IDE is the workspace. The workspace initially displays the

Form Designer. It should come as no surprise that the Form Designer enables you to create

forms. In Delphi, a form represents a window in your program. The form might be the

program's main window, a dialog box, or any other type of window. You use the Form

Designer to place, move, and size components as part of the form creation process.

Hiding behind the Form Designer is the Code Editor. The Code Editor is where you type

code when writing your programs. The Object Inspector, Form Designer, Code Editor, and

Component palette work interactively as you build applications.

Now that you've had a look at what makes up the Delphi IDE, let's actually do something.

1.3.5 The Menus and Toolbars

The main window, which occupies the top of the screen, contains the main menu, toolbars,

and Component palette.

8

Fig. 1.4 Menus and Toolbars

31 Mainwlndow
in Its default
airangemoot

Delphi's toolbars provide quick access to frequently used operations and commands. Most

toolbar operations are duplicated in the drop-down menus.

Save .all Add file
toprojed

Debug toolbar
l.lstof projoom Trace
you can run into

lntemtt toolb•
New \VebSnap New WebSnap
~~tion Data Modi.de

NewWebSnap External
Page Modue Edlor

Fig. 1.5 Toolbars

Name of $.\Ved
desktop layout

Save current
desktop

SE!tdebug
desktop

To find outwhata button does,
to l for a moment until a

·SI'S,

Many operations have keyboard shortcuts as well as toolbar buttons. When a keyboard

shortcut is available, it is always shown next to the command on the dropdown menu. You

can right-click on many tools and icons to display a menu of commands appropriate to the

object you are working with. These are called context menus.The toolbars are also

customizable. You can add commands you want to them or move them to different

locations.

9

1.3.2. The Component Palette and Form Designer

The Component palette, Form Designer, Object Inspector, and Object TreeView work

together to help you build a user interface for your application. The Component palette

includes tabbed pages with groups of icons representing visual or nonvisual components.

The pages divide the components into various functional groups. For example, the

Standard, Additional, and Win32 pages include windows controls such as an edit box and

up/down button; the Dialogs page includes common dialog boxes to use for file operations

such as opening and saving files.

Click to vk!w
~pages

Fig. 1.6 Component Palatte

Each component has specific attributes properties, events, and methods that enable you to

control your application. After you place components on the form, or Form Designer, you

can arrange components the way they should look on your user interface. For the

components you place on the form, use the Object Inspector to set design time properties,

create event handlers, and filter visible properties and events, making the connection

between your application's visual appearance and the code that makes your application run.

10

Fig. 1.7 Changing Set of Properties in Object Inspector

1.3.7The Object Tree View

The Object TreeView displays a component's sibling and parent-child relationships in a

hierarchical, or tree diagram. The tree diagram is synchronized with the Object Inspector

and the Form Designer so that when you change focus in the Object TreeView, both the

Object Inspector and the form change focus.

You can use the Object TreeView to change related components' relationships to each

other. For example, if you add a panel and check box component to your form, the two

components are siblings. But in the Object Tree View, if you drag the check box on top of

the panel icon, the check box becomes the child of the panel.

If an object's properties have not been completed, the Object TreeView displays a red

question mark next to it. You can also double-click any object in the tree diagram to open

the Code editor to a place where you can write an event handler. If the Object Tree View

isn't displayed, choose View.Object TreeView.

11

TreeVIE!wand
lnspecior and vice versa.
PressAft.Shlt•F11 to focus
on the Object TreQVIQVI,

Fig. 1.8 Panel

The Object Tree View is especially useful for displaying the relationships between database

objects.

1.3.8The Object Repository

The Object Repository contains forms, dialog boxes, data modules, wizards, DLLs, sample ·

applications, and other items that can simplify development. Choose File! NewjOther to

display the New Items dialog box when you begin a project. The New Items dialog box is

the same as the Object Repository. Check the Repository to see if it contains an object that

resembles one you want to create.

Fig. 1.9 Object Repository

12

To edit or remove objects from the Object Repository, either choose Toolslkepository

or right-click in the New Items dialog box and choose Properties.

Mfttlxw
l~t;-Gl!Li.t
-~~~tiol
fd~•l.a$tl

Fig. 1.10 Adding project and form templates to the Object Repository

1.3.9The Code Editor

As you design the user interface for your application, Delphi generates the underlying

Delphi code. When you select and modify the properties of forms and objects, your

changes are automatically reflected in the source files.

You can add code to your source files directly using the built-in Code editor, which is a

full-featured ASCII editor. Delphi provides various aids to help you write code, including

the Code Insight tools, class completion, and code browsing.

13

Generated
code.

Fig. 1.11 Code Editor

1.3.9.lCode Insight

The Code Insight tools display context-sensitive pop-up windows.

Code templates

How it works
Type a class name followed by a dot(.) to display a list of
properties, methods, and events appropriate to the class, select
it, and press Enter. In the interface section of your code you
can select more than one item. Type the beginning of an
assignment statement and press Ctrl+space to display a list of
valid values for the variable. Type a procedure, function, or
method name to bring up a list of arguments.
Type a method name and an open parenthesis to display the
syntax for the method's arguments.
While your program has paused during debugging, point to
any variable to display its current value.
While editing code, point to any identifier to display its
declaration.
Press Ctrl+ Jto see a list of common programming statements
that you can insert into your code. You can create your own
templates in addition to the ones supplied with Delphi.

Tool

Code completion

Code parameters

Tooltip expression
evaluation

Tooltip symbol insight

To tum these tools on or off, choose Toolslliditor Options and click the Code Insight tab.

Check or uncheck the tools in the Automatic features section.

14

1.3.10 Class Completion

Class completion generates skeleton code for classes. Place the cursor anywhere within a

class declaration of the interface section of a unit and press Ctrl+Shift+C or right click and

choose Complete Class at Cursor. Delphi automatically adds private read and write

specifiers to the declarations for any properties that require them, then creates keleton code

for all the class's methods. You can also use class completion to fill in class declarations

for methods you've already implemented.

To tum on class completion, choose Toolsjlinvironment Options, click the Explorer tab,

and make sure Finish incomplete properties is checked.

1.3.llCode Browsing

While passing the mouse over the name of any class, variable, property, method, or other

identifier, the pop-up menu called Tooltip Symbol Insight displays where the identifier is

declared. Press Ctrl and the cursor turns into a hand, the identifier turns blue and is

underlined, and you can click to jump to the definition of the identifier. The Code editor

has forward and back buttons like the ones on Web browsers. As you jump to these

definitions, the Code editor keeps track of where you've been in the code. You can click the

drop-down arrows next to the Forward and Back buttons to ove forward and backward

through a history of these references.

Pr~ Ctiood emk: otridt-cick and click Fm
~·. ' o•m~•101tietJerricooott11t~.

/ ~C«lo mmanarGa li!ti:A.1he.delritmy.;,u
j~to.

Fig. 1.12 Code Editor

15

You can also move between the declaration of a procedure and its implementation by

pressing Ctrl+Shift+] or Ctrl+Shift+ [;

To customize your code editing environment, see "Customizing the Code Editor".

1.3.12 The Diagram Page

The bottom of the Code editor may contain one or more tabs, depending on which edition

of Delphi you have. The Code page, where you write all your code, appears in the

foreground by default. The Diagram page displays icons and connecting lines representing

the relationships between the components you place on a form or data module. These

relationships include siblings, parent to children, or components to properties.

To create a diagram, click the Diagram page. From the Object TreeView, simply drag one

or multiple icons to the Diagram page to arrange them vertically. To arrange them

horizontally, press Shift while dragging. When you drag icons with parentchildren or

component-property dependencies onto the page, the lines, or connectors, that display the

dependent relationships are automatically added. For example, if you add a dataset

component to a data module and drag the dataset icon plus its property icons to the

Diagram page, the property connector automatically connects the property icons to the

dataset icon.

For components that don't have dependent relationships but where you want to show one,

use the toolbar buttons at the top of the Diagram page to add one of four connector types,

including allude, property, master/detail, and lookup. You can also add comment blocks

that connect to each other or to a relevant icon.

16

Fri:i1n 1he Obi~ TteeV'!ffl1dr~
1heoo00$of .
1heOlagra11 "*

b'«dltpd~hip.
Clckm~bkek

---·-· btltMto .:mdihe)
btltMtoaa~
~~~o~orleon. 

Fig. 1.13 Diagram Page Toolbar Button 

You can type a name and description for your diagram, save the diagram, and print it when 

you are finished 

1.3.13 Wiewing Form Code 

Forms are a very visible part of most Delphi projects they are where you design the user 

interface of an application. Normally, you design forms using Delphi's visual tools, and 

Delphi stores the forms in form files. Form files (.dfm, or .xfm for a CLX application) 

describe each component in your form, including the values of all persistent properties. To 

view and edit a form file in the Code editor, right-click the form and select View as Text. 

To return to the graphic view of your form, right-click and choose View as Form. 

Fig. 1.14 View 

as Text 

Description of 

Form 

17 



You can save form files in either text (the default) or binary format. Choose Tools] 

Environment Options, click the Designer page, and check or uncheck the New forms as text 

check box to designate which format to use for newly created forms. 

1.3.14 The Code Explorer 

When you open Delphi, the Code Explorer is docked to the left of the Code editor window, 

depending on whether the Code Explorer is available in the edition of Delphi you have. The 

Code Explorer displays the table of contents as a tree diagram for the source code open in 

the Code editor, listing the types, classes, properties, methods, global variables, and 

routines defined in your unit. It also shows the other units listed in the uses clause. 

You can use the Code Explorer to navigate in the Code editor. For example, if you double 

click a method in the Code Explorer, a cursor jumps to the definition in the class 

declaration in the interface part of the unit in the Code editor. 

~~ankemintti. ·Code 
E~5u~flt®r~~to 

Fig. 1.15 Code Explorer 

To configure how the Code Explorer displays its contents, choose Toolsjlinvironment 

Options and click the Explorer tab. 

18 



1.3.15The Project Manager 

When you first start Delphi, it automatically opens a new project. A project includes 

several files that make up the application or DLL you are going to develop. You can view 

and organize these files such as form, unit, resource, object, and library files in a project 

management tool called the Project Manager. To display the Project Manager, choose 

Viewjl'roject Manager. 

!,,,,-: - ,, - - "'*---,-x--wn,, ••• n-r;..-,,,, ,,,,,m1 "'w""--, '"'"'''""""'/\ Fig. 1.16 Project Manager 

You can use the Project Manager to combine and display information on related projects 

into a single project group. By organizing related projects into a group, such as multiple 

executables, you can compile them at the same time. To change project options, such as 

compiling a project, you can use Setting project options. 

1.3.16The Project Browser 
The Project Browser examines a project in detail. The Browser displays classes, units, and 

global symbols (types, properties, methods, variables, and routines) your project declares or 

uses in a tree diagram. Choose Viewllsrowser to display the Project Browser. 

J4.TO--""f>l'mM 
iili'4, Tlh!l;,i a,/Jr~ 

0.:1'4111®-l~~ 
!li41tm1nt!tl'-. 

1&'41~ ;,,.;1,,,_l 

Fig. 1.17 Project Browser 

19 



By default, the Project Browser displays the symbols from units in the current project only. 

You can change the scope to display all symbols available in Delphi. Choose 

ToolsEnvironment Options, and on the Explorer page, check All symbols. 

1.4 Programming With Delphi 

The following sections provide an overview of software development with Delphi, 

including creating a project, working with forms, writing code, and compiling, debugging, 

deploying, and internationalizing applications, and including the types of projects you can 

develop. 

1.4.1 Creating a Project 

A project is a collection of files that are either created at design time or generated when you 

compile the project source code. When you first start Delphi, a new project opens. It 

automatically generates a project file (Projectl.dpr), unit file (Unitl.pas), and resource file 

(Unitl.dfin; Unitl.xfm for CLX applications), among others. If a project is already open 
' 

but you want to open a new one, choose either Filelblew] Application or File[NewlOther and 

double-click the Application icon. Filell-lew] Other opens the Object Repository, which 

provides additional forms, modules, and frames as well as predesigned templates such as 

dialog boxes to add to your project. When you start a project, you have to know what you 

want to develop, such as an application or DLL. 

1.4.2 Adding Data Modules 

A data module is a type of form that contains nonvisual components only. Nonvisual 

components can be placed on ordinary forms alongside visual components. But if you plan 

on reusing groups of database and system objects, or if you want to isolate the parts of your 

20 



application that handle database connectivity and business rules, data modules provide a 

convenient organizational tool.To create a data module, choose FilellvewData Module. 

Delphi opens an empty data module, which displays an additional unit file for the module 

in the Code editor, and adds the module to the current project as a new unit. Add nonvisual 

components to a data module in the same way as you would to a form. 

Fig. 1.18 Adding Data Modules 

When you reopen an existing data module, Delphi displays its components. 

1.4.3 Building the user interface 

With Delphi, you first create a user interface (UI) by selecting components from the 

Component palette and placing them on the main form. 

1.4.4 Placing components on a form 

Clicka~~cntht!IC~~e. 
Fig. 1.19 Component Palette 

ig.1.20 Placing Component 

To place a Button on the form, click once on the Button component on the toolbar. Then 

move the mouse cursor over to the Form and click on the Form where you want the Button 

to be. Repeat the same procedure with the Label component. 

21 



Fig.1.21 Buton and Label 

It will look something like this. Actually you can run your application now. Simply press 

F9, click Ok to save your project and it's running. 

Fig.1.22.Run 

Try to click on the button. Nothing happens? Well, since we have not added any code 

yet, there are no instructions for what will happen when you press the button. This will 

be done later. For now, exit your application (click on the Iii). 

22 



1.4.5 Setting the properties of the components 

To change the text 'Buttonl' on the button, we change the value of its Caption property. 

Click on the Button once ('select' the Button), move to the Object Inspector and enter the 

new value on the Caption row. 

Fig.1.23.Properties Component 

To remove the text from the Label, we set the Caption property to " ( empty string). 

Select the Label and delete the text 'Labell' on the Caption row of the Object Inspector. 

Fig.1.24. Button (Say Hello) 

If we run our application now, we see that we have made some progress since the first 

step. Press F9 to run. 

23 



Fig.1.25.Run form 

The Button and the Label now show the messages we want them to do. However, it still 

doesn't happen anything ifwe press the Button. We will deal with this now. 

1.4.6 Writing Code 

An integral part of any application is the code behind each component. While Delphi's 

RAD environment provides most of the building blocks for you, such as preinstalled visual 

and nonvisual components, you will usually need to write event handlers, methods, and 

perhaps some of your own classes. To help you with this task, you can choose from 

thousands of objects in the class library. 

To specify what will happen if we press the button, we enter code for the OnClick 

event of the Button. Select the button, move over to the Object Inspector and click on the 

Events tab. 

24 



Fig.1.26.0nClick 

Double click on the OnClick row. The Code Editor will popup and a procedure for the 

OnClick event will be created. 

Fig.1.27.Unit.pas page 

You can fill this empty procedure with code that is going to be executed when you press 

the Button. The task of this application was to let the Label show the 'Hello World' 

message when we click on the button, remember? 

25 



:= 'Hello Uorld'; 

Fig.1.28. On Cick Operation 

This code should do the trick. It will be explained in the next lessons. Just type it in, run 

the application and press the Button. 

Fig.1.28.Run Aplication (say hello) 

Here we go! Hello World! 

As you have noticed by now, this is not a very useful application. However, by creating 

it you have learnt the three essential steps of creating any application in Borland Delphi. 

Creating applications in other 'visual' programming languages like Visual Basic or 

Borland C++ Builder is done in the same way, it is sort of a standard. But once you have 

26 



learnt some more Delphi, you will probably not change to another programming 

language unless you have to. Delphi has all the features you will ever need. 

Select the component and drag it to wherever you want on the form. 

Fig. 1.30 Component List 

1.4.6.lUsing The Component Library 

Delphi comes with a component library made up of objects, some of which are also 

components or controls, that you use when writing code. You can use VCL components for 

Windows applications and CLX components for Windows and Linux applications. The 

component library includes objects that are visible at Runtime such as edit controls, 

buttons, and other user interface elements as well-as non visual controls like datasets and 

timers. The following diagram shows some of the principal classes that make up the VCL 

hierarchy. The CLX hierarchy is similar. 

27 



E I . ,,~ I iroeptton , Str61lm 

T" ~L.,,,... . Tl" lh. u:rap11~Ject ,,;,rap , » 

TOhject 

I 
1 TStrmgs 

TF~kl 
Mast vis.ua/eont.rols inherit 

TGraphfoControl TVfmC'ontrol from TWfuGontro/ or in I . CV<, l'Widge~trol. 

TSorollrngW~Control TCus~Control 

TCuatclmForm 

TPer:&istent TCoJ,Qbjeci 

Tjponent TGoll~ciion 

rcolol TComwbnDialog I Thlen11 

Fig. 1.31 Component Library 

Objects descended from TComponent have properties and methods that allow them to be 

installed on the Component palette and added to Delphi forms and data modules Because 

the components are hooked into the IDE, you can use tools like the Form Designer to 

develop applications quickly.Components are highly encapsulated. For example, buttons 

are preprogrammed to respond to mouse clicks by firing OnClick events. If you use a 

button control, you don't have to write code to handle generated events when the button is 

clicked; you are responsible only for the application logic that executes in response to the 

click itself. Most editions of Delphi come with the component library source code and 

examples of Delphi programming techniques. 

1.4.7Compiling and Debugging Projects 

After you have written your code, you will need to compile and debug your project. With 

Delphi, you can either compile your project first and then separately debug it, or you can 

compile and debug in one step using the integrated debugger. To compile your program 

with debug information, choose Projectlfiptions, click the Compiler page, and make sure 

Debug information is checked. 

Delphi uses an integrated debugger so that you can control program execution, watch 

variables, and modify data values. You can step through your code line by line, examining 

the state of the program at each breakpoint. To use the integrated debugger, choose 

28 



Tools.Debugger Options, click the General page, and make sure Integrated debugging is 

checked. 

You can begin a debugging session in the IDE by clicking the Run button on the Debug 

tool bar, choosing Runlkun, or pressing F9. 

Fig. 1.32 Compiling and Debugging 

Choose any of the debugging 
commands from the Run 
menu. Some commands are 
also available on the tool bar. 

Run button 

With the integrated debugger, many debugging windows are available, including 

Breakpoints, Call Stack, Watches, Local Variables, Threads, Modules, CPU, and Event 

Log. Display them by choosing Viewlfrebug Windows. Not all debugger views are 

available in all editions of Delphi. 

Once you set up your desktop as you like it for debugging, you can save the settings as the 

debugging or runtime desktop. This desktop layout will be used whenever you are 

debugging any application. 

29 



1.4.7.1 Deploying Applications 

You can make your application available for others to install and run by deploying it When 

you deploy an application, you will need all the required and supporting files, such as the 

executables, DLLs, package files, and helper applications. Delphi comes bundled with a 

setup toolkit called InstallShield Express that helps you create an installation program with 

these files. To install InstallShield Express, from the Delphi setup screen, choose 

InstallShield Express Custom Edition for Delphi. 

1.4. 7 .2Internationalizing Applications 

Delphi offers several features for internationalizing and localizing applications. The IDE 

and the VCL support input method editors (IMEs) and extended character sets to 

internationalize your project. Delphi includes a translation suite, not available in all editions 

of Delphi, for software localization and simultaneous development for different locales. 

With the translation suite, you can manage multiple localized versions of an application as 

part of a single project. 

The translation suite includes three integrated tools: 

• Resource DLL wizard, a DLL wizard that generates and manage resource DLLs. 

• Translation Manager, a table for viewing and editing translated resources. 

• Translation Repository, a shared database to store translations. 

To open the Resource DLL wizard, choose FilelNewlOther and double-click the Resource 

DLL Wizard icon. To configure the translation tools, choose Tools] Translation Tools 

Options. 

1.4.8Types of Projects 

All editions of Delphi support general-purpose 32-bit Windows programming, DLLs, 

packages, custom components, multithreading, COM (Component Object Model) and 

automation controllers, and multiprocess debugging. Some editions support server 

30 



applications such as Web server applications, database applications, COM servers, multi 

tiered applications, CORBA, and decision-support systems. 

1.4.8.lDelphi (CLX Applications) 

You can use Delphi, to develop cross-platform 32-bit applications that run on both the 

Windows and Linux operating systems. To develop a CLX application, choose File] 

NewlCLX Application. The IDE is similar to that of a regular Delphi application, except 

that only the components and items you can use in a CLX application appear on the 

Component palette and in the Object Repository. Windows-specific features supported on 

Delphi will not port directly to Linux environments. 

1.4.8.2 Delphi (Database Applications) 

Delphi offers a variety of database and connectivity tools to simplify the development of 

database applications. To create a database application, first design your interface on a form 

using the Data Controls page components. Second, add a data source to a data module 

using the Data Access page. Third, to connect to various database servers, add a dataset and 

data connection component to the data module from the previous or corresponding pages of 

the following connectivity tools: 

• dbExpress is a collection of database drivers for cross-platform applications that provide 

fast access to SQL database servers, including DB2, Informix, InterBase, MSSQL, 

MySQL, and Oracle. With a dbExpress driver, you . can access databases using 

unidirectional datasets. 

• The Borland Database Engine (BDE) is a collection of drivers that support many popular 

database formats, including dBASE, Paradox, FoxPro, Microsoft Access, and any ODBC 

data source. ActiveX Data Objects (ADO) is Microsoft's high-level interface to any data 

source, including relational and nonrelational databases, e-mail and file systems, text and 

graphics, and custom business objects. 

31 



• InterBase Express (IBX) components are based on the custom data access Delphi 

component architectures. IBX applications provide access to advanced InterBase features 

and offer the highest performance component interface for InterBase 5.5 and later. IBX is 

compatible with Delphi's library of data-aware components. Certain database connectivity 

tools are not available in all editions of Delphi. 

1.4.9Administrator (BDE) 

Use the BDE Administrator (BDEAdmin.exe) to configure BDE drivers and set up the 

aliases used by data-aware VCL controls to connect to databases. 

1.4.10 Database Explorer 

The SQL Explorer (DBExplor.exe) lets you browse and edit databases. You can use it to 

create database aliases, view schema information, execute SQL queries, and maintain data 

dictionaries and attribute sets. 

1.4.1 lDatabase Desktop 

The Database Desktop (DBD32.exe) lets you create, view, and edit Paradox and dBase 

database tables in a variety of formats. 

1.4.12Data Dictionary 

When you use the BDE, the Data Dictionary provides a customizable storage area, 

independent of your applications, where you can create extended field attribute sets that 

describe the content and appearance of data. The Data Dictionary can reside on a remote 

server to share additional information. 

32 



1.4.13 Components of custom 

The components that come with Delphi are preinstalled on the Component palette and offer 

a range of functionality that should be sufficient for most of your development needs. You 

could program with Delphi for years without installing a new component, but you may 

sometimes want to solve special problems or display particular kinds of behavior that 

require custom components. Custom components promote code reuse and consistency 

across applications. You can either install custom components from third-party vendors or 

create your own. To create a new component, choose Componentjr[ew Component to 

display the New Component wizard. 

1.4.14 Dynamic-link libraries 

Dynamic-link libraries (DLLs) are compiled modules containing routines that can be called 

by applications and by other DLLs. A DLL contains code or resources typically used by 

more than one application. 

1.4.15 Delphi (COM and ActiveX) 

Delphi supports Microsoft's COM standard and provides wizards for creating ActiveX 

controls. Choose FilelNewlOther and click the ActiveX tab to access the wizards. Sample 

ActiveX controls are installed on the ActiveX page of the Component palette. Numerous 

COM server components are provided on the Servers tab of the Component palette. You 

can use these components as if they were VCL components. For example, you can place 

one of the Microsoft Word components onto a form to bring up an instance of Microsoft 

Word within an application interface. 

33 



1.4.16Cmponent Type Libraries 

Type libraries are files that include information about data types, interfaces, member 

functions, and object classes exposed by an ActiveX control or server. By including a type 

library with your COM application or ActiveX library, you make information about these 

entities available to other applications and programming tools. Delphi provides a Type 

Library editor for creating and maintaining type libraries. 

1.5Work Area (iDE) 

The IDE provides many tools to support development, so you'll want to reorganize your 

work area for maximum convenience. You can rearrange menus and toolbars, combine tool 

windows, and save your new desktop layout. 

1.5.lArranging Menus and Toolbars 

In the main-window, you can reorganize the menu, toolbars, and Component palette by 

clicking the grabber on the left-hand side of each one and dragging it to another location. 

Fig. 1.33 Arranging Menus and Toolbars 

You can separate parts from the main window and place them elsewhere on the screen or 

remove them from the desktop altogether. This is useful if you have a dual monitor setup. 

34 



Fig. 1.34 Main Window 

You can add or delete tools from the toolbars by choosing Viewl'I'oolbars.Customize. Click 

the Commands page, select a category, select a command, and drag it to the toolbar where 

you want to place it. 

On the Oomma.nds 
p~. eeloot any 
commaoo and drag It 
onto any toooo. 
On the Option& page, 
click Show t~ to 
make st.re the hilts for 
conpnents and 
toobar loons appear. 

Fig. 1.35 Customize Command 

1.5.2 Tool Windows 

You can open and close individual tool windows and arrange them on the desktop as you 

wish. Many windows can also be docked to one another for easy management. Docking 

which means attaching windows to each other so that they move Together helps you use 

screen space efficiently while maintaining fast access to tools. From the View menu, you 

can bring up any tool window and then dock it directly to another. For example, when you 

first open Delphi in its default configuration, the Code Explorer is docked to the left of the 

35 



Code editor. You can add the Project Manager to the first two to create three docked 

windows. 

Here the Project Manager and Code 
Explorer are docked to the Code editor. 
You can combine, or II · ~ 
"dock" windows with either grabbers, 
as on the right, or tabs, as on page 5-4. 

tl::n(k):.m,,.. n,,,,.,aw,: . .J1 ~:tl•.t v«::t:.a"•' t:1p:•••, 'V:'~:1t4.t.e•, r.ro1;;:t:: 
t>:t~.lU$tt ~t.tf!3·t 

'Wit· 
7t'On<I. '" 4l.Ul!fD'O!Qll) 
.Utt,;,tM,h '0,, 
~et:-U ~it6'1"1 
~uh.at; 'l'Liill<i1t 

J1iliHU 
t !lrJ.,,.,1,,,. nmi •• -u.- ! 

IWJllU> 
t $,:lol::.,: ·i#e<:J-s>f.i- > _, 

Fig. 1.36 Docking Tool Windows 

To dock a window, click its title bar and drag it over the other window. When the drag 

outline narrows into a rectangle and it snaps into a corner, release the mouse. The two 

windows snap together. 

To get docked windows with 
grabbers, release the 
mouse when the drag ______., 

outline snaps to the ----- 
window's comer. 

Fig. 1.37 Two Windows Snap Togethe 

You can also dock tools to form tabbed windows. 

36 



To get docked windows that are 
tabbed, release the mouse before 
the drag outline snaps to the other 
window's comer. 

Fig. 1.38 Docking Tools to Form 

To undock a window, double click its grabber or tab, or click and drag the tab outside of 

the docking area. To tum off automatic docking, either press the Ctrl key while moving 

windows around the screen, or choose Toolsjfinvironment Options, click the references 

page, and uncheck the Auto drag docking check box. 

1.5.3 Desktop Layouts 

You can customize and save your desktop layout. The Desktops toolbar in the IDE includes 

a pick list of the available desktop layouts and two icons to make it easy to customize the 

desktop. 

Save current 
desktop 

Named desktop 
settings are t:istoo here. 

Set debug 
des!klop 

Fig. 139 Saving Desktop Layouts 

37 



Arrange the desktop as you want, including displaying, sizing, and docking particular 

windows. On the Desktops toolbar, click the Save current desktop icon or choose 

Viewlfresktopslsave Desktop, and enter a name for your new layout. 

1.4.5 The Component Palette 

To add, delete, rearrange, or rename pages, or to hide or rearrange components, use the 

Palette Properties dialog box. You can open this dialog box in several ways: 

• Choose Componentlf'onfigure Palette. 

• Choose Toolsjlinvironment Options and click the Palette tab. 

• Right-click the Component palette and choose Properties. 

You can rearrange the palette 
and add new pages. 

Fig. 1.40 Palette Properties Dialog Box 



1.4.6 Creating Component Templates 

Component templates are groups of components that you add to a form in a single 

operation. Templates allow you to configure components on one form, then save their 

arrangement, default properties, and event handlers on the Component palette to reuse on 

other forms. 

To create a component template, simply arrange one or more components on a form and 

set their properties in the Object Inspector, and select all of the components by dragging the 

mouse over them. Then choose Componentlf.reate Component Template. When the 

Component Template Information dialog box opens, select a name for the template, the 

palette page on which you want it to appear, and an icon to represent the template on the 

palette. 

After placing a template on a form, you can reposition the components independently, 

reset their properties, and create or modify event handlers for them just as if you had 

placed each component in a separate operation. 

39 



CHAPTER2 

DATABASE CONCEPT OF DELPHI 7 

2.1 About Dbase And Paradox 

2.1.1 Architecture of database 

• Relational database concepts 

• The pieces of a database system 

• How the pieces fit together 

• Multi-tier computing architecture 

• Using multiple databases 

• About dbase 

• 
2.1.2 Relational database concepts 

A relational database-management system (RDBMS) is a system for storing and 

retrieving data, in which the data is organized into interrelated tables. 

SQL Anywhere Studio provides two relational database systems. Adaptive Server 

Anywhere is the primary, full featured RDBMS, with a multitude of uses, from a 

network database server hosting many clients to a compact embedded database. UltraLite 

is a small-footprint relational database. The UltraLite deployment technology allows you 

to use Adaptive Server Anywhere features on even the smallest of devices. 

• Database tables 

• Relations between tables 

• Other database objects 

40 



2.1.3Accessing data in other databases 

You can access databases on multiple database servers, or even on the same server, using 

the Adaptive Server Anywhere Remote Data Access features. The application is still 

connected to a single database as in the architecture diagrams above, but by defining 

remote servers, you can use proxy tables that exist on the remote database as if they were 

in the database to which you are connected. 

ODBC 
or JDBC 

Sybese ASE, 
Sybese AS IQ, 
Oracle, 
MS SQL Server, 
D82, or 
ODBC date source 

Fig. 2.1 Relation Diagram 

2.1.4dBASE IV Table Specification 

The dBASE IV table format was introduced in dBASE IV for DOS. Following are the 

specifications for dBASE IV tables: 

• 2GB file size. 

• Two billion records per file. 

• A maximum of 255 fields per record. 

Maintained indexes can have up to 4 7 indexes per file. Each index can be created using 

field expressions of virtually any combination, including conditional expressions of up to 

41 



255 characters per expression that result in an index of up to 100 bytes. Unlimited 

nonmaintained indexes can be stored on disk. You can use up to 47 of them simultaneously. 

2.1.5 dBase V Table Specifications 

The dBASE V table format was introduced in dBASE V for Windows. Following are the 

specifications for dBASEA V tables. 

• Up to one billion records per file. 

A maximum of 1,024 fields per record. 

• Up to 32,767 bytes per record. 

• Unlimited nonmaintained indexes can be stored on disk. You can use up to 47 of them 

simultaneously. 

• Up to 10 master index files open per database. Each master index can have up to 4 7 

indexes. 

• Maintained indexes can have up to 4 7 indexes per file. Each index can be created using 

field expressions of virtually any combination, including conditional expressions of up 

to 255 characters per expression that result in an index ofup to 100 bytes. 

2.1.6 dBASE Field Types 

Character (C) 

dBASE III+, IV, and V field type that can contain up to 254 characters (including blank 

spaces). This field is similar to the Paradox Alpha field type. 

Date (D) 

Paradox 3.5, 4, 5, and 7 as well as dBASE III+, IV, and V. dBASE tables can store dates 

from January 1, 100, to December 31, 9999. Paradox 5 tables can store from 12/31 /9999 

B.C. to 12/31/9999 A.D. 

42 



Float (F)dBASE IV, and V floating-point numeric field type provides up to 20 significant 

digits. 

Logical (L) 

Paradox 5 and 7 and dBASE III+, IV, and V field type can store values representing True 

or False (yes or no). By default, valid entries include T and F (case is not important). 

Memo (M) 

Paradox 4, 5, and 7 as well as dBASE III+, IV, and V field. A Paradox field type is an 

Alpha variable-length field up to 256MB per field. dBASE Memo fields can contain binary 

as well as memo data. 

OLE (0) 

Paradox 1, 5, and 7 as well as dBASE V field type that can store OLE data. 

Number (N) 

Paradox 3.5, 4, 5, and 7 as well as dBASE III+, IV, and V field type can store up to 15 

significant digits -10307 to + 10308 with up to 15 significant digits. 
dBASE number fields contain numeric data in a Binary Coded Decimal (BCD) format. Use 

number fields when you need to perform precise calculations on the field data. Calculations 

on number fields are performed more slowly but with greater precision than are 

calculations on float number fields. The size of a dBASE number field can be from 1 to 20. 

Remember, however, that BCD is in Paradox 5 and 7 only for compatibility and is mapped 

directly to the Number field type. 

Short (S) 

Paradox 3.5, 4, 5, and 7 field type that can contain integers from -- 32,767 through 32,767 

(no decimal) 

43 



2.2Paradox Standard Table Specifications- 

Fig. 2.2 Paradox Standart Table 

2.2.1 Paradox 4 table structure. 
The Paradox standard table format was introduced in Paradox for DOS version 4. Other 

products that use the standard format include Paradox for DOS version 4.5, ObjectVision 

2.1, and Paradox for Windows versions 1.0 and 4.5. 

Earlier versions of the Paradox table type are referred to as the Compatible table type. In 

the BDE Configuration Utility, the level option for the Paradox driver dictates what default 

table type is created by Paradox for Windows. Use 3 for Compatible tables, 4 for Standard 

tables (the default). Following are the specifications for standard Paradox tables: 

• 

256MB file size limit if the table is in Paradox format and using a 4K block size . 

Up to 255 fields per record . 

Up to 64 validity checks per table . 

A primary index can have up to 16 fields . 

Tables can have up to 127 secondary indexes . 

• 
• 

• 
• 

44 



• Up to two billion records per file. 

Because of the 256MB file size limit and other factors such as block size, however, the 

limit is much smaller. Tables of 190,000 records are easily achievable (and you can have 

more if you don't use up the 1,350-bytes-per-record limit for a keyed table). Tables with 

close to a million records are common. 

Block size can be 1024, 2048, 3072, or 4096. Paradox stores data in fixed records. Even if 

part or all of the record is empty, the space is claimed. Knowing the interworkings can save 

you disk space. Paradox stores records in fixed blocks of 1024, 2048, 3072, 4096 in size. 

After a block size is set for a table, that size is fixed, and all blocks in the table will be of 

that size. To conserve disk space, you want to try to get your record size as close to a 

multiple of block size as possible (minus 6 bytes, which are used by Paradox to manage the 

table). 

Record size. 1,350 for keyed tables and 4,000 for unkeyed tables. When figuring out the 

size (the number of bytes or characters) of a table, remember that Alpha fields take up their 

size (for example, an AlO = 10 bytes), numeric field types take up 8 bytes, short number 

field types take up 2 bytes, money takes up 8, and dates take up 4 bytes. 

Memos, BLOBs, and so on take 10 bytes plus however much of the memo is stored in the 

.DB. For example, M15 takes 25 bytes. 

2.2.2Paradox 5 Table Specifications 

The Paradox 5 table format was introduced in Paradox for Windows version 5. 

Following are the specifications for Paradox 5 tables: 

• Up to two billion records per file. 

• File size is limited to two gigabytes. 

• Up to 255 fields per record. 

45 



Record size: Up to 10,800 bytes per record for indexed tables and 32,750 bytes per record 

for nonindexed tables. When figuring out the size (the number of bytes or characters) of a 

table, remember that Alpha fields take up their size (for example, an AlO = 10 bytes), 
numeric field types take up 8 bytes, short number field types take up 2 bytes, money takes 

up 8, and dates take up 4 bytes. 
Memos, BLOBs, and so on take 10 bytes plus however much of the memo is stored in the 

.DB. For example, M15 takes 25 bytes. 

Up to 64 validity checks per table for Paradox for Windows tables. 

A primary index can have up to 16 fields. 

Tables can have up to 127 secondary indexes. 

Block size can be from lK to 32K in steps of lK. For example, 1024, 2048, 3072, 4096, 

5120 ... 32768. 

2.2.3Paradox 7 and Above Table Specifications 

The Paradox 7 table format was introduced in Paradox version 7 for Windows 95/NT. The 

Paradox 7 table format has all the same specifications as the Paradox 5 table format with 

two additions. Following are the specification additions for the Paradox 7 table format: 

• Added descending secondary indexes. 

• Added unique secondary indexes 

Fig. 2.3 Paradox Create Table 

46 



2.2.2.lParadox Field Types 

Alpha (A) 

Paradox 3.5, 4, 5, and 7 field type that can contain up to 255 letters and numbers. This field 

type was called Alphanumeric in versions of Paradox before version 5. It is similar to the 

Character field type in dBASE. 

Autoincrement (+) 

Field type introduced in the Paradox 5 table format that adds one to the highest number 

in the table whenever a record is inserted. The starting range can from -2,147,483,647 

to 2,147,483,647. Deleting a record does not change the field values of other records. 

BCD(#) 

Paradox 5 and 7 field type which is provided only for compatibility with other applications 

that use BCD data. Paradox correctly interprets BCD data from other applications that use 

the BCD type. When Paradox performs calculations on BCD data, it converts the data to 

47 



the numeric float type, then converts the result back to BCD. When this field type is fully 

supported, it will support up to 32 significant digits. 

Binary (B) 

Paradox 1, 5, and 7 field type that can store binary data up to 256MB per field. 

Bytes (Y) 

Paradox 5 and 7 field type for storing binary data up to 255 bytes. Unlike binary fields, 

bytes fields are stored in the Paradox table (rather than in the separate .MB file), allowing 

for faster access. 

Date (D) 

Paradox 3.5, 4, 5, and 7 as well as dBASE III+, IV, and V. dBASE tables can store dates 

from January 1, 100, to December 31, 9999. Paradox 5 tables can store from 12/31/9999 

B.C. to 12/31/9999 A.D. 

Formatted Memo (F) 

Paradox 1, 4.5, 5, and 7 field type is like a memo field except that you can format the text. 

You can alter and store the text attributes of typeface, style, color, and size. This rich text 

document has a variable-length up to 256MB per field. 

Graphic (G) 

Paradox 1, 5, and 7 field type can contain pictures in .BMP (up to 24 bit), .TIF (up to 256 

color), .GIF (up to 256 color), .PCX, and .EPS file formats. Not all graphic variations are 

available. For example, currently you cannot store a 24-bit .TIF graphic. When you paste a 

graphic into a graphic field, Paradox converts the graphic into the .BMP format. 

Logical (L) 

Paradox 5 and 7 and dBASE III+, IV, and V field type can store values representing True 

or False (yes or no). By default, valid entries include T and F (case is not important). 

Memo (M) 

Paradox 4, 5, and 7 as well as dBASE III+, IV, and V field. A Paradox field type is an 

Alpha variable-length field up to 256MB per field. dBASE Memo fields can contain binary 

as well as memo data. 

For Paradox tables, the file is divided into blocks of 512 characters. Each block is 

referenced by a sequential number, beginning at zero. Block O begins with a 4-byte number 

in hexadecimal format, in which the least significant byte comes first. This number 

48 



specifies the number of the next available block. It is, in effect, a pointer to the end of the 

memo file. The remainder of Block O isn't used. 

Money($) 

Paradox 3.5, 4, 5, and 7 field type, like number fields, can contain only numbers. They can 

hold positive or negative values. Paradox recognizes up to six decimal places when 

performing internal calculations on money fields. This field type was called Currency in 

previous versions of Paradox. 

OLE (0) 

Paradox 1, 5, and 7 as well as dBASE V field type that can store OLE data. 

Number (N) 

Paradox 3.5, 4, 5, and 7 as well as dBASE III+, IV, and V field type can store up to 15 

significant digits -10307 to + 10308 with up to 15 significant digits. 

dBASE number fields contain numeric data in a Binary Coded Decimal (BCD) format. Use 

number fields when you need to perform precise calculations on the field data. Calculations 

on number fields are performed more slowly but with greater precision than are 

calculations on float number fields. The size of a dBASE number field can be from 1 to 20. 

Remember, however, that BCD is in Paradox 5 and 7 only for compatibility and is mapped 

directly to the Number field type. 

Short (S) 

Paradox 3.5, 4, 5, and 7 field type that can contain integers from -- 32,767 through 32,767 

(no decimal). 

Time (T) 

Paradox 5 and 7 field type that can contain time times of day, stored in milliseconds since 

midnight and limited to 24 hours.This field type does not store duration which is the 

difference between two times. For example, if you need to store the duration of a song, use 

an Alpha field. Whenever you need to store time, make a distinction between clock time 

and duration. The Time field type is perfect for clock time. Duration can be stored in an 

Alpha field and manipulated with code. 

TimeStamp (@) 

Paradox 5 field type comprised of both date and time values. Rules for this field type are 

the same as those for date fields and time fields. 

49 



CHAPTER3 

MAiN FORMS OF THE APLICA TION PROGRAM 

3.1 Database Design of The Program 

The stock database consists of seven tables those are stock list table, company table, 

customer table, personel table, order table, sale table, login table. 

Stock List table contains nine fields : 

• Stock Id , Stock Code , Stock Name , Purchase Price , Selling Price 

• Company , Size , Color, Quantity , Date , Guarantee 

Company table contains six fields : 

• Company Id , Name , Phone 

• Fax , Address , Web 

Customer table contains seven fields : 

• Customer Id , Name, Surname , Fax 

• Phone , E-mail , Address 

Customer table contains ten fields : 

• Personel No , First Name , Last Name, Duty , Department 

• Salary , Address , Phone , E-mail , Hire Date 

Sale table contains six fields : 

• Sale Id , Customer Id , Product Id 

• Date , Price , Quantity 

50 



Order table contains eight fields : 

• Order Id , Order Name , Properties , Quantity , 

• Company , Price Arrival Date , Order Date 

Login table contains threefields : 

• User Id , User Name, User Password 

3.2 The relationships between tables will as follows: 
In Company Table Company Id field is a primary key. 

In Order Table Order Id is a primary key. 

In Stock List Table Stock Id is a primary key. 

In Customer Table Customer Id is a primary key. 

In Sale Table Sale Id is a primary key. 

In Login Table User Id is a primary key. 

In Personel No is a primary key. 

3.3Exeqution of the program 

When you execute the program Login Form opens, then it will ask you usemame and 

password. You can see it in Fig 3 .1. 

Fig 3.1 Login Form 



If you do not know usemame and password you can not login this program. In fig3 .1 write 

usemame and password then Click Login Button or Press Enter Key to login this program. 

In this program there is Product , Customer, Worker, Order, Firm, Report, Users, 

About and Exit menus (shown in Fig 3.2) 

Fig 3.2 Main Form 

In Stock Menu there are two submenus. These are Stock Entry Submenu and product List 

Submenu. 



Fig 3.3 Product Entry Submenu 

When you select Product Entry Submenu then Stock Entry form is appeared. 

Fig 3.4 Product Entry Form 

53 



In this form we can add new product to the database then it is shown in the Fig 3.4 on the 

form. And also we can delete the product which was added before after select on the table. 

Moreover we can delete the product which we have added before. And when we press the 

clean button it clears all the texts. Also we can go next and prior by pressing next and 

previous button of the navigator. If the product exists in the stock, then we can select 

"Product in the stock" radio button and select in the table as well, then we can update its 

details as well. 

When you select Stock List Submenu then Stock List form is appeared. 

Fig 3.5 Stock List 

54 



In this form we can see all the product details by Stock_Id, Stock_Code, Stock_Name, 

Purchase_Price, Selling_Price, Company ,Size,Color,Quantity, Guarantee and Date. And 

we can search the product by Company Name , search by Product Name and search by 

Product Code as well. 

Fig 3.6 Customer Form 

Here Customer details are held in this form. We can add customer, delete customer, update 

customer in this form. Moreover we can search customer by Id and by First Name and 

Surname in the same form. Also there is sale button in the same form which are Retail Sale 

and Whole Sale. When you select one customer then click one of the sale button the sale 

form appears. To sell retail product you should click the "Retail Sale" button and to sell 

55 



wholesale product should click the "Wholesale" button. After that there will appear sale 

form to do sale process. 

Fig 3.7 WhokSale Form 

In Wholesale form at the first clicked checkboxes then Comboboxes, Quantities, Prices, 

Guarantees will be activated. Then we can select the products in the Comboboxes and 

determine the quantity. Then when it is clicked the "CALCULATE" button "Total Price" 

and "With VAT (8%)" are calculated and displayed on the form. When you press the 

"SELL" button you will see such as a "Please Confirm Sale" message: 

Fig 3.8 Confirm Sale Message 

56 



If you press "No" button the sale is cancelled and, If you press "Yes" button you will get 

such as a "Product Sold Successfully" message. Then the sale process is added to the sale 

database table. 

Fig 3.9 Sale is Successful Message 

If there is not enough quantity in the stock you will get "Not Enough Product Quantity" 

message. 

Fig 3.10 Quantity Message 

Fig 3.11 Retail Form 

57 



a~~t; ·-· ' ,\ 
'¢ ···- r.a:; .-4 

J '·1 rn .. -n. ;.); 
\ f. ~ .•.• 
'0 -< '" 

In retail sale form the customer select one of the products which is sho\,J-?tn Combo:H~ 
~ A.I.-\~ 

then customer determines the quantity. After that the price and guarante~~ppeared 

automatically. Then when it is clicked the "Calculate" button then "Total Price" and "With 

VAT (8%)" are calculated and displayed on the form. When you press the "SELL" button 

you will see such as a "Please Confirm Sale" message: 

Fig 3.12 Confirm Sale Message 

If you press "No" or "Cancel" button the sale is cancelled and, If you press "Yes" button 

you will get such as a "Product Sold Successfully" message. And then sale process is added 

to the sale database table. 

Fig 3.13 Sale is Successful Message 

If there is not enough quantity in the stock you will get message "Not Enough Product 

Quantity" . 

Fig 3.14 Warning About Quantity 

58 



Fig 3.15 Personnel Form 

Here Personnel details are held in this form. We can add personel, delete personel, 

update personel in this form. Moreover we can search personel by No and by First Name 

and Surname in the same form in Fig 3.7. And the personnel can send e-mail to each other 

by selecting a person in the table. 

59 



Fig 3.16 New Order Form 

In "New Order Form" there is being kept the information about order. They are Ordered 

Product Name, Properties, Quantity, Company, Price, Order Date and Arrival Date as it is 

shown above in Fig 3.14. After all the informations filled in the form then should be 

pressed ADD button to add these information to the table. When you press clear button all 

the boxes are cleared as well. 

Fig 3.17 List of Order Form 

60 



In "List of Order Form" we can see all the ordered product information in the database 

table. Order Id, Order Name, Product Properties, Quantity, Company, Price, Order Date, 

Arrival Date fidelds. 

To update the order information, we have to press the update button after we correct the 

information in the EditBox and ComboBox shown above in Fig. 3.17. 

To delete the order, we have to press the delete button after we select the order product in 

the databae table. 

To Search a product. We can search by Order No and search by Order Name after it is 

written Order No or Order Name. 

Fig 3.18 New Company Form 

61 



In "New Company Form " we can add new company to the database by pressing add 

button, after all the information are filled, from which company we are buying the product. 

And to clear the EditBox it is needed to press clear button. 

Fig 3.19 List of Companies Form 

In "List of Companies Form" we can update and delete the companies which is needed. To 

update the company information, first we select the company on the table then correct the 

information in the EditBox and ComboBox shown above in Fig 3.19. above, then it is 

needed to press update button. 

To delete the order, first it is needed to select a company in the database table then it is 

necessary to press delete button. 

And to clear the EditBox it is needed to press clear button. 

62 



Fig 3.20Chart 

Company chart includes number of work done with the companies in a percentage 

value. The company names are colored of chartfx control. Above there are toolbox, palette 

bar, pattern bar which give user to customize the chart by changing the color of each slices 

of the chart which is in pie type chart control. 

And also the chart type, 3d vision, show/hide list can be changed from the toolbar. 

Furthermore toolbar allows users to save, import, export or print the chart by clicking the 

proper buttons on the toolbar. 

63 



Fig 3.21 Select Report Form 

When we press report button, then displays product name, date, price, quantity 

information as it is shown fig. below. 

SALE REPORT 

27 .Oll .2006 

Product Oat•: 27.05.2006 C).uurtUy: 2 

Product woo, DRESS FOR MAN PrlH: 941,64 

Product SPIDERMAN CHILD SHIRT Oat•: 27.05.2006 Quantify: 3 

Product BAD SHEET Oat•: 27.05.2006 Quantify: 4 Prlc•: 1347,56 

Product BAD SHEET Oat•: 27.05-2006 Quantify: 2 PrlH: 1347,56 

Product woo, DRESS FOR MAN Date: 27Jl5.2006 Quantify: 1 

Product Date: 27.05.2006 Quantify: 1 

Fig 3. 22 Report 

64 



Fig 3.23 Manage User Form 

In "Manage User Form" we can add user, update user and delete user. 

To add the user to the database table, first it is needed to filled the EditBoxes those are 

Usemame, Password, Password(Re), then it is necessary to press add button. 

To update the user, first we select the user in the table, then correct the information in the 

EditBox shown above in Fig. above, then it is needed to press update button. 

To delete user, first it is needed to select a user in the database table, then it is necessary 

to press delete button. 

And to clear the EditBoxes it is needed to press clear button. 

65 



Fig 3.24 Calendar Form 

In Calendar Form there is shown the Calendar as we see above Fig 3.19. We can see the 

date or specific date which we want to learn. 

66 



Fig 3.25 About Form 

Gives the user a brief description about the programmer. 

67 



Conclusion 

After making so many researches about Delphi Programming language and 

investigating through internet to make this project, I learned many things about Delphi, 

because I obliged to finish my project and everything had to be done by myself alone. So 

making practical things is much better than learning it literary. 

During the project I faced so many problems they were difficult for me because it 

was my first program, later after practicing and learning from books it became easier by the 

time and I used to know how to use Delphi and how to write codes. So the first 2 or 3 forms 

where hard to organize and write codes, but later other forms become easier in design and 

writing codes. 

In the future other options could be add to the program, it can be updated according 

to the need, also it can be connected to the internet, at that time sales could be done on net, 

for instance when someone wants to buy something, he/she looks to the internet first, 

investigates about that item, its image, size, color and price, also the payment facilities 

could be shown to the customer, so if the customer likes what he/she wants to buy, he 

orders through internet and the workplace provides that item for him in the limited time. 

68 



REFERENCES 

Reference to Book: 

[ 1] Turkmen Kitabevi, Borland Delphi 7 

[2] Quick Star Publishing Borland Delphi 7 

Reference to Electronic-Book: 

[1] Delphi 7 Delphi Handle software .PDF 

[2] Delphi 7 Paradox star Delphi .PDF 

Reference to Electronic Source- Online source from Web: 

[ 1 ]J .. Micky DOFNARD ''http://www.vegasoftware.com'' 

[2]Jimmy,T.F "http://www.borland.com" 

69 



APPENDIX 1: PROGRAM CODES 

LOGIN FORM 
unit Unit21; 

interface 

uses 

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 

Dialogs, StdCtrls, jpeg, ExtCtrls, DB, DBTables; 

type 

TLoginF = class(TForm) 

Uname: TEdit; 

Upass: TEdit; 

Label 1: TLabel; 

Label2: TLabel; 

Buttonl: TButton; 

LOGIN: TTable; 

Panel 1: TPanel; 

Label3: TLabel; 

Label4: TLabel; 

Image2: Timage; 

Imagel: Tlmage; 

Label5: TLabel; 

Label6: TLabel; 

procedure Buttonl Click(Sender: TObject); 

procedure FormClose(Sender: TObject; var Action: TCloseAction); 

procedure UpassKeyPress(Sender: TObject; var Key: Char); 

procedure UnameKeyPress(Sender: TObject; var Key: Char); 

procedure FormShow(Sender: TObject); 

procedure ImagelClick(Sender: TObject); 

private 

70 



{ Private declarations } 

public 

{ Public declarations } 

end; 

var 

LoginF: TLoginF; 

implementation 

uses Unitl; 

{$R *.dfm} 

procedure TLoginF.Buttonl Click(Sender: TObject); 

begin 

//open login table 

login.Open; 

//find user by usemame and password 

login.Filter:='Uname='+quotedstr(Uname.text); 

login.Filtered:=true; 

login.Filter:='UPass='+quotedstr(Upass.Text); 

login.Filtered:=true; 

//if no user found give message 

if login.RecordCount =O then 

showmessage('Wrong Usemame Or Password') 

else 

begin 

//show forml 

forml .AlphaBlend :=false;; 

LoginF.AlphaBlend :=true; 

forml .SetFocus; 

end; 

end; 

procedure TLoginF.FormClose(Sender: TObject; var Action: TCloseAction); 

begin 

71 



//close application 

application. Terminate; 

end; 

procedure TLoginF.UpassKeyPress(Sender: TObject; var Key: Char); 

begin 

//ENTER key is pressed call buttonl click which is login 

if key=# 13 then 

buttonl .Click; 

end; 

procedure TLoginF.UnameKeyPress(Sender: TObject; var Key: Char); 

begin 

//ENTER key is pressed call buttonl click which is login 

if key=# 13 then 

buttonl .click; 

end; 

procedure TLoginF.FormShow(Sender: TObject); 

begin 

loginf.setfocus; 

end; 

procedure TLoginF.ImagelClick(Sender: TObject); 

begin 

uname. SetF ocus; 

end; 

end. 

FORM 2. PRODUCT ENTRY FORM 

unit Unit2; 

interface 

uses 

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 

72 



Dialogs, StdCtrls, Mask, DBCtrls, Spin, ComCtrls, ExtCtrls, Grids, 

DBGrids, DB, DBTables, jpeg; 

type 

TForm2 = class(TForm) 

DataSource 1: TDataSource; 

DBGridl: TDBGrid; 

Table 1: TT able; 

compT: TTable; 

GroupBoxl: TGroupBox; 

Label 1: TLabel; 

Label2: TLabel; 

Label3: TLabel; 

Label4: TLabel; 

Label5: TLabel; 

GroupBox2: TGroupBox; 

Label6: TLabel; 

Label?: TLabel; 

Label8: TLabel; 

Label 11: TLabel; 

Label12: TLabel; 

GroupBox3: TGroupBox; 

code: TEdit; 

Sname: TEdit; 

price: TEdit; 

Sprice: TEdit; 

company: TEdit; 

GroupBox4: TGroupBox; 

quantity: TSpinEdit; 

guarantee: TSpinEdit; 

size: TEdit; 

color: TEdit; 

73 



date 1: TDateTimePicker; 

GroupBox5: TGroupBox; 

Add: TButton; 

Clean: TButton; 

Delete: TButton; 

Update: TButton; 

GroupBox6: TGroupBox; 

Label 13: TLabel; 

Label14: TLabel; 

ComboBox 1: TComboBox; 

comboBox2: TComboBox; 

GroupBox7: TGroupBox; 

RadioButtonl: TRadioButton; 

RadioButton2: TRadioButton; 

GroupBox 12: TGroupBox; 

DBNavigatorl: TDBNavigator; 

Imagel: Timage; 

procedure FormClose(Sender: TObject; var Action: TCloseAction); 

procedure FormActivate(Sender: TObject); 

procedure RadioButton2Click(Sender: TObject); 

procedure RadioButtonl Click(Sender: TObject); 

procedure AddClick(Sender: TObject); 

procedure DeleteClick(Sender: TObject); 

procedure CleanClick(Sender: TObject); 

procedure quantityChange(Sender: TObject); 

procedure guaranteeChange(Sender: TObject); 

procedure ComboBox2Change(Sender: TObject); 

procedure DBGridlCellClick(Column: TColumn); 

procedure UpdateClick(Sender: TObject); 

procedure ComboBoxlChange(Sender: TObject); 

procedure FormCreate(Sender: TObject); 

74 



private 

{ Private declarations } 

public 

{ Public declarations } 

end; 

var 

Form2: TForm2; 

implementation 

uses unit3; 

{$R *.dfm} 

procedure TForm2.FormClose(Sender: TObject; var Action: TCloseAction); 

begin 

//Close Tablel on form close 

tablel.Close; 

action:=caFree; 

end; 

procedure TForm2.FormActivate(Sender: TObject); 

begin 

//On form active make the window maximize 

WindowState := wsMaximized; 

end; 

procedure TForm2.RadioButton2Click(Sender: TObject); 

var k:integer; 

i:integer; 

begin 

//Clear all fields on form 

clean.Click; 

Comboboxl.Clear; 

Combobox2.Clear; 

Combobox I .Enabled := True; 

Combobox2.Enabled := True; 

75 



//List All Products in Comboboxl and Combobox2 

tablel .First; 

for i:=O to Tablel.RecordCount-1 do 

begin 

comboboxl .Items.Add(tablel .FieldValues['Stock _ Name']); 

combobox2.Items.Add(tablel .FieldValues['Stock _Id']); 

table I .Next; 

end; 

end; 

procedure TForm2.RadioButtonl Click(Sender: TObject); 

begin 

//comboboxl and combobox2 will be disabled 

Comboboxl.Enabled := False; 

Combobox2.Enabled := False; 

//Clear all fields on form 

clean.Click; 

end; 

procedure TForm2.AddClick(Sender: TObject); 

begin 

II Add if New Product is selected 

if Radio Button 1. Checked=true then 

begin 

//insert mode to add new record to table 

Tab 1 e I .insert; 

Table l .FieldValues['Stock _ Code'] :=code. Text; 

Tablel.FieldValues['Stock_Name']:=Sname.Text; 

Table l .FieldValues['Purchase _Price'] :=strtofloat(price. Text); 

Table 1.FieldValues['Selling_Price'] :=strtofloat(Sprice. Text); 

Table l .FieldValues['Company'] :=Company. Text; 

Table 1.FieldValues['size']:=size. Text; 

Table l .FieldV alues['color'] :=Color.Text; 

76 



Table 1.FieldValues['Quantity'] :=strtoint( Quantity. Text); 

Table l .FieldValues['Guarantee'] :=strtoint( Guarantee. Text); 

Table l .FieldValues['Date'] :=DateToS tr( date l .Date); 

Tablel.Post; 

//Select Product in stock to list all products again 

radiobutton2.0nClick(sender); 

clean. Click; 

tablel .close; 

tablel.Open; 

end; 

end; 

procedure TForm2.DeleteClick(Sender: TObject); 

begin 

//Make user confirm deletion process 

ifMessagedlg('Please Confirm Deletion',mtwarning, [mbYes, mbNo,mbCancel],0)=6 then 

begin 

//if accepts delete record 

Tablel .Delete; 

//list and refresh the product comboboxes 

radiobutton2.0nClick(sender); 

table 1. Close; 

table 1. Open; 

clean. Click; 

Showmessage('Deletion is successfull'); 

end 

else 

Showmessage('Deletion is Cancelled'); 

end; 

procedure TForm2.CleanClick(Sender: TObject); 

begin 

//Clear all fields on form 

77 



code.Text:="; 

Sname.Text:="; 

price.Text:="; 

Sprice.Text:="; 

Company.Text:="; 

size. Text:="; 

Color.Text:="; 

quantity.Text:='O'; 

guarantee.Text:='O'; 

ADD.Enabled :=true; 

Update.Enabled :=false; 

end; 

procedure TForm2.quantityChange(Sender: TObject); 

begin 

//if quantity is less then O make it 0 

if Quantity.Value<O then 

Quantity. Value:=O; 

end; 

procedure TForm2.guaranteeChange(Sender: TObject); 

begin 

//if Guarantee is less then O make it 0 

if Guarantee. Value<O then 

Guarantee.Value:=O; 

end; 

procedure TForm2.ComboBox2Change(Sender: TObject); 

var k,i:integer; 

begin 

//assign text of combobox2 to variable k 

k:=strtoint(Combobox2.Text); 

//set comboboxl index from the variable k 

Combobox 1.Itemlndex: =k-1; 

78 



Tablel .open; 

//Find Record which has k id 

table 1.Locate('S tock_ code' ,k, [loPartialKey ]); 

//bring values to the fields on form 

Sname.Text:=Tablel.FieldValues['Stock_Name']; 

Code. Text:=Table l .FieldValues['S tock_ Code']; 

Price. Text:=Table l .FieldValues['Purchase _Price'J; 

Sprice. Text:=Table 1.FieldValues['Selling_Price'J; 

Company. Text:=Table l .FieldValues['Company']; 

size. Text:=Table 1.FieldValues['size']; 

Color. Text:=Table 1.FieldValues['Color']; 

Guarantee. Text:=Table l.FieldValues['Guarantee']; 

Quantity.Text:='O'; 

Date 1.Date:=Table 1.FieldValues['Date']; 

end; 

procedure TForm2.DBGridl CellClick(Column: TColumn); 

begin 

if db grid I.Fields[ db grid 1. Selectedlndex ].AsString<>" then 

begin 

//bring values to the fields on form 

Sname.Text := tablel.FieldValues['Stock_Name']; 

code.Text:= tablel .FieldValues['Stock_ Code']; 

Price.Text := table 1.FieldValues['Purchase _Price']; 

SPrice. Text := table 1.FieldValues['Selling_Price']; 

Company. Text := table 1.FieldValues['Company']; 

size.Text := tablel.FieldValues['size']; 

Color.Text:= tablel .FieldValues['color']; 

Guarantee. Text := table l .FieldValues['Guarantee']; 

Date I .date := table l .FieldValues['Date']; 

Quantity.Text := table l .FieldValues['Quantity']; 

//disable add button and enable update button 

79 



Add.Enabled :=false; 

Update.Enabled :=true; 

end; 

end; 

procedure TForm2.UpdateClick(Sender: TObject); 

begin 

//Edit mode to update records 

table I .Edit; 

Table l.FieldValues['Stock _ Code'] :=code.Text ; 

tablel .FieldValues['Stock _Name']:= Sname.Text; 

table l.FieldValues['Purchase Price'] :=Price. Text; 

table 1.FieldValues['Selling_Price'] :=SPrice. Text; 

table 1.FieldValues['Company'] :=Company. Text ; 

table I .FieldValues['size'] :=size. Text ; 

table 1.FieldValues['Color'] :=Color. Text ; 

table l .FieldValues['Guarantee'] :=Guarantee. Text; 

table I .FieldValues['Date'] :=Date I .date ; 

table 1.FieldValues['Quantity'] :=Quantity. Text ; 

II send values to table 

table I .Post; 

//close table 

table 1. Close; 

table! .Open; 

end; 

procedure TForm2.ComboBox1Change(Sender: TObject); 

begin 

//Find the selected product and bring values to the fields on form 

tablel .Locate('Stock _ name',comboboxl .Text,[loPartialKey]); 

Sname. Text:=Table l .FieldValues['Stock _Name']; 

Code.Text:=Tablel .FieldValues['Stock _ Code']; 

Price. Text:=Tablel .FieldValues['Purchase _Price']; 

80 



Sprice. Text:=Table 1.FieldValues['Selling_ Price']; 

Company. Text:=Table l .FieldValues['Company']; 

size. Text:=Table 1.FieldValues['size']; 

Color.Text:=Table l .FieldValues['color']; 

Guarantee.Text:=Tablel.FieldValues['Guarantee']; 

Quantity. Text:='O'; 

Date l .Date:=Tablel .FieldValues['Date']; 

combobox2.ltemlndex := combobox2.ltems.Index0f(Tablel .FieldValues['Stock _Id'] ); 

end; 

end. 

FORM 3. NEW ORDER FORM 

unit Unit3; 

interface 

uses· 

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 

Dialogs, StdCtrls, Spin, ComCtrls, DB, DBTables, ExtCtrls; 

type 

TForm3 = class(TForm) 

order: TTable; 

comp: TTable; 

Group Box 1: TGroupBox; 

GroupBox2: TGroupBox; 

Price: TEdit; 

Quantity: TSpinEdit; 

Label6: TLabel; 

Label2: TLabel; 

GroupBox3: TGroupBox; 

PName: TEdit; 

Company: TComboBox; 

81 



Label 1: TLabel; 

Label4: TLabel; 

GroupBox4: TGroupBox; 

Properties: TEdit; 

Label3: TLabel; 

GroupBox5: TGroupBox; 

adate: TDateTimePicker; 

Label7: TLabel; 

odate: TDateTimePicker; 

Label5: TLabel; 

GroupBox6: TGroupBox; 

GroupBox7: TGroupBox; 

GroupBox8: TGroupBox; 

ADDB: TButton; 

GroupBox9: TGroupBox; 

Group Box 10: TGroupBox; 

GroupBox 11: TGroupBox; 

CLEARB: TButton; 

Panel 1: TPanel; 

Panel2: TPanel; 

Panel3: TPanel; 

Panel4: TPanel; 

procedure ADDBClick(Sender: TObject); 

procedure CLEARBClick(Sender: TObject); 

procedure FormCreate(Sender: TObject); 

procedure FormClose(Sender: TObject; var Action: TCloseAction); 

procedure QuantityChange(Sender: TObject); 

private 

{ Private declarations } 

public 

{ Public declarations } 

82 



end; 

var 

Fonn3: TForm3; 

implementation 

{$R *.dfm} 

procedure TForm3.ADDBClick(Sender: TObject); 

begin 

//order name , properties , quantity, comapny , price can not be empty 

if (Pname.Text<>") and (Properties.Text<>") and ( quantity.value>O) and 

(Company.Text<>") and (Price.Text<>") then 

begin 

Order.Open; 

//Insert mode for add new record to table 

Order. Insert; 

order.FieldValues['OName']:=Pname.Text; 

order.FieldValues['Properties'] :=Properties. Text; 

order.FieldValues['Quantity'] :=Quantity. Value ; 

order.FieldValues['Company'] :=Company. Text 

order.FieldValues['Price'] :=Price. Text; 

order.FieldValues['Odate'] :=Odate.Date; 

order.FieldValues['Adate'] :=Adate.Date ; 

//send values to the table 

Order.Post; 

order.close; 

//show message to user 

showmessage('Order is Added Successfully'); 

end 

else 

begin 

Showmessage('Do Not Leave Empty Spaces'); 

end; 

83 



end; 

procedure TForm3.CLEARBClick(Sender: TObject); 

begin 

//Clear All fields on form 

Pname.Clear; 

Properties.clear; 

Quantity.Value :=O; 

Company.clear; 

price.Clear; 

Odate.Date:=now; 

Adate.Date:=now; 

end; 

procedure TForm3.FormCreate(Sender: TObject); 

var i:integer; 

begin 

//List Companies into the company combobox 

Comp.Open; 

Comp.First; 

for i:=O to comp.RecordCount-1 do 

begin 

company.Items.Add( comp.F ieldVal ues['N ame']); 

comp.Next; 

end; 

end; 

procedure TForm3.FormClose(Sender: TObject; var Action: TCloseAction); 

begin 

action:=caFree; end; 

procedure TForm3.QuantityChange(Sender: TObject); 

begin 

if quantity.Value <O then 

quantity. Val ue.=O; 

84 



end; end. 

FORM 4 PRODUCT LiST 

unit Unit4; 

interface 

uses 

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 

Dialogs, Spin, ComCtrls, StdCtrls, Mask, DBCtrls, DB, DBTables, Grids, 

DBGrids, ExtCtrls; 

type 

TForm4 = class(TForm) 

DBGridl: TDBGrid; 

DataSource 1: TDataSource; 

Tablel: TTable; 

Panel 1: TPanel; 

All: TRadioButton; 

Company: TRadioButton; 

Byname: TRadioButton; 

ByCode: TRadioButton; 

compT: TTable; 

GroupBox 1: TGroupBox; 

Label8: TLabel; 

datel: TEdit; 

GroupBox2: TGroupBox; 

Label?: TLabel; 

guarantee: TEdit; 

GroupBox3: TGroupBox; 

Label6: TLabel; 

quantity: TEdit; 

GroupBox4: TGroupBox; 

85 



Label13: TLabel; 

color: TEdit; 

GroupBox5: TGroupBox; 

Label12: TLabel; 

size: TEdit; 

GroupBox6: TGroupBox; 

Label 1: TLabel; 

Scode: TEdit; 

GroupBox7: TGroupBox; 

Label2: TLabel; 

Sname: TEdit; 

GroupBox8: TGroupBox; 

Label3: TLabel; 

Pprice: TEdit; 

GroupBox9: TGroupBox; 

Label4: TLabel; 

Sprice: TEdit; 

Group Box 10: TGroupBox; 

Label5: TLabel; 

companyl: TEdit; 

GroupBox14: TGroupBox; 

GroupBox 15: TGroupBox; 

GroupBox16: TGroupBox; 

GroupBoxl 7: TGroupBox; 

GroupBox 18: TGroupBox; 

GroupBox 19: TGroupBox; 

ByCodeP: TPanel; 

Label 11: TLabel; 

Code: TEdit; 

SearchByCode: TButton; 

ByNameP: TPanel; 

86 



Label9: TLabel; 

PName: TEdit; 

SearchByNameB: TButton; 

ByComp: TPanel; 

Label 10: TLabel; 

CompName: TEdit; 

SearchByComp: TButton; 

GroupBox12: TGroupBox; 

GroupBox 13: TGroupBox; 

GroupBox 11: TGroupBox; 

GroupBox20: TGroupBox; 

procedure FormClose(Sender: TObject; var Action: TCloseAction); 

procedure FormActivate(Sender: TObject); 

procedure AllClick(Sender: TObject); 

procedure ByCodeClick(Sender: TObject); 

procedure CompanyClick(Sender: TObject); 

procedure BynameClick(Sender: TObject); 

procedure SearchByN ameBClick(Sender: TObject); 

procedure SearchByCompClick(Sender: TObject); 

procedure SearchByCodeClick(Sender: TObject); 

procedure DBGridlCellClick(Column: TColumn); 

procedure PNameKeyPress(Sender: TObject; var Key: Char); 

procedure CompNameKeyPress(Sender: TObject; var Key: Char); 

procedure CodeKeyPress(Sender: TObject; var Key: Char); 

procedure FormCreate(Sender: TObject); 

private 

{ Private declarations } 

public 

{ Public declarations } 

end; 

87 



var 

Form4: TForm4; 

implementation 

{$R *.dfm} 

procedure Clear(sender:Tobject); 

begin 

//Clear All Fields on form4 

with form4 do 

begin 

Scode.clear; 

Sname.Clear; 

Pprice.Clear; 

Sprice.Clear; 

company I .clear; 

size.clear; 

color.Clear; 

quantity.Clear; 

guarantee.Clear; 

date 1. Clear; 

end; 

end; 

procedure TForm4.FormClose(Sender: TObject; var Action: TCloseAction); 

begin 

//close table on form4 when form closes 

table 1. Close; 

action:=caFree; 

end; 

procedure TForm4.FormActivate(Sender: TObject); 

begin 

WindowState := wsMaximized; 

end; 

88 



procedure TForm4.AllClick(Sender: TObject); 

begin 

// set visible false for all panels and list all products 

BycodeP. Visible:=false; 

Bycomp.Visible := false; 

Bynamep. Visible:=false; 

table 1.Filtered:=false; 

end; 

procedure TForm4.ByCodeClick(Sender: TObject); 

begin 

//When Bycode is selected show Bycode panel and setfocus to the code textbox 

ifbycode.Checked =true then 

begin 

bycodeP. Visible:=true; 

B ycomp. Visible:=false; 

bynamep. Visible :=false; 

code.setfocus; 

clear( sender); 

end 

else 

bycodeP. Visible:=false; 

end; 

procedure TForm4.CompanyClick(Sender: TObject); 

begin 

//When Company is selected show Company panel and setfocus to the compname textbox 

if company.Checked =true then 

begin 

Bycomp. Visible:=true; 

bynamep. Visible :=false; 

bycodep. Visible :=false; 

Compname.SetFocus; 

89 



Clear(sender); 

end 

else 

bycomp. Visible:=false; 

end; 

procedure TForm4.BynameClick(Sender: TObject); 

begin 

//When Byname is selected show Byname panel and setfocus to the Pname textbox 

if Byname.Checked =true then 

begin 

bynameP. Visible:=true; 

Bycomp.Visible:=false; 

bycodep. Visible :=false; 

Pname.SetFocus; 

clear(sender); 

end 

else 

bynameP. Visible:=false; 

end; 

//UserDefined procedure to bring values of a selected record to the fields on form 

procedure Getinfo( sender:Tobj ect); 

begin 

form4.scode.Text:= form4.tablel.FieldValues['Stock_code']; 

form4.sname.Text:= form4.tablel.FieldValues['Stock_Name']; 

form4.Pprice.Text:= form 4. table 1.FieldValues['Purchase _Price']; 

form4.Sprice.Text:= form4.tablel.FieldValues['Selling_Price']; 

form4.company 1. Text:= form 4. table l .FieldValues['Company']; 

form4.size. Text:= form 4. table 1.FieldValues['size']; 

form4.color. Text:= form 4. table l .FieldValues['color']; 

form4.guarantee.Text:= form4.tablel.FieldValues['Guarantee']; 

form4.datel .Text:= form4.tablel .FieldV alues['Date']; 

90 



form4.quantity. Text:= form 4. table 1.FieldV alues['Quantity']; 

end; 

procedure TForm4.SearchByNameBClick(Sender: TObject); 

begin 

// search in table by stock name 

tablel.filter:='Stock_Name='+ quotedstr(Pname.Text ); 

table 1.Filtered:=true; 

//if no record found 

if table I .Record Count =0 then 

//show user message 

showmessage('No Record Found') 

else 

//bring values by calling the userdefined procedure 

getinfo(form4); 

Pname.Clear; 

Pname. SetF ocus; 

end; 

procedure TForm4.SearchByCompClick(Sender: TObject); 

begin 

// search in table by company 

table 1.filter:='Company='+ quotedstr(CompN ame. Text ); 

tablel .Filtered:=true; 

if table I .Record Count =O then 

showmessage('No Record Found') 

else 

//bring values by calling the userdefined procedure 

getinfo(form4); 

compname. Clear; 

compname.SetFocus; end; 

procedure TForm4.SearchByCodeClick(Sender: TObject); 

begin 

91 



// search in table by code 

tablel.filter:='Stock_Code='+ quotedstr(Code.Text ); 

table 1.Filtered:=true; 

if table I .Record Count =O then 

showmessage('No Record Found') 

else 

//bring values by calling the userdefined procedure 

getinfo(form4); 

code.Clear; 

code. SetF ocus; 

end; 

//bring values of selected in dbgrid record onto form 

procedure TForm4.DBGridl CellClick(Column: TColumn); 

begin 

if db grid I .Fields[ db grid 1. Selectedlndex] .AsString<>" then 

be$in 

getinfo(form4); 

end; 

end; 

procedure TForm4.PNameKeyPress(Sender: TObject; var Key: Char); 

begin 

if key=# 13 then 

SearchByNameB.Click; 

end; 

procedure TForm4.CompNameKeyPress(Sender: TObject; var Key: Char); 

begin 

if key=# 13 then 

SearchByComp. Click; 

end; 

procedure TForm4.CodeKeyPress(Sender: TObject; var Key: Char); 

92 



begin 

if key=# 13 then 

SearchByCode. Click; 

end; 

procedure TForm4.FormCreate(Sender: TObject); 

begin 

end; 

end. 

FORM 6 CUSTOMER iNFORMA Ti ON 

unit Unit6; 

interface 

uses 

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 

Dialogs, ExtCtrls, DBCtrls, Grids, DBGrids, DB, DBTables, StdCtrls, Mask; 

type 

TForm6 = class(TForm) 

DataSource 1 : TDataSource; 

customer: TTable; 

DBGridl: TDBGrid; 

GroupBox 1: TGroupBox; 

Labell 1: TLabel; 

SearchBynoB: TButton; 

No: TEdit; 

GroupBox2: TGroupBox; 

Label9: TLabel; 

Label 10: TLabel; 

Fname: TEdit; 

Lname: TEdit; 

searchbyname: TButton; 

93 



GroupBox3: TGroupBox; 

Label2: TLabel; 

Label3: TLabel; 

Cname: TEdit; 

CLname: TEdit; 

GroupBox4: TGroupBox; 

Label6: TLabel; 

Cfax: TEdit; 

GroupBox5: TGroupBox; 

CADD: TButton; 

Button2: TButton; 

Update: TButton; 

Clear: TButton; 

GroupBox6: TGroupBox; 

GroupBox7: TGroupBox; 

GroupBox8: TGroupBox; 

GroupBox9: TGroupBox; 

DBNavigatorl: TDBNavigator; 

Retail: TButton; 

Button 1: TButton; 

GroupBox 10: TGroupBox; 

GroupBox 11: TGroupBox; 

GroupBoxl2: TGroupBox; 

ALL: TRadioButton; 

byno: TRadioButton; 

Byname: TRadioButton; 

Caddress: TEdit; 

Label4: TLabel; 

email: TEdit; 

CPhone: TEdit; 

Label?: TLabel; 

94 



Label5: TLabel; 

procedure FormClose(Sender: TObject; var Action: TCloseAction); 

procedure FormActivate(Sender: TObject); 

procedure FormCreate(Sender: TObject); 

procedure CADDClick(Sender: TObject); 

procedure Button2Click(Sender: TObject); 

procedure SearchBynoBClick(Sender: TObject); 

procedure searchbynameClick(Sender: TObject); 

procedure ALLClick(Sender: TObject); 

procedure ClearClick(Sender: TObject); 

procedure DBGridlCellClick(Column: TColumn); 

procedure bynoClick(Sender: TObject); 

procedure BynameClick(Sender: TObject); 

procedure RetailClick(Sender: TObject); 

procedure Button I Click(Sender: TObject); 

procedure NoKeyPress(Sender: TObject; var Key: Char); 

procedure LnameKeyPress(Sender: TObject; var Key: Char); 

procedure UpdateClick(Sender: TObject); 

private 

{ Private declarations } 

public 

{ Public declarations } 

end; 

var 

Form6: TForm6; 

implementation 

uses Unit5, Unit8; 

{$R *.dfm} 

procedure TForm6.FormClose(Sender: TObject; var Action: TCloseAction); 

95 



begin 

Customer. Close; 

action:=caFree; 

end; 

procedure TForm6.FormActivate(Sender: TObject); 

begin 

WindowState := wsMaximized; 

end; 

procedure TForm6.FormCreate(Sender: TObject); 

begin 

customer. Open; 

end; 

procedure clear! (Sender:Tobject); 

begin 

//Clear all fields on the form 

form6.Cname.clear; 

form 6. CLname.clear; 

form 6. Caddress. Clear; 

form 6. CPhone.clear; 

form 6. Cfax. Clear; 

form6.email.Clear; 

form6.No.Clear; 

form6.Fname.clear; 

form6.Lname.clear; 

form6.customer.Filtered:=false; 

Form6.Cadd.Enabled :=true; 

form 6. update.Enabl ed:=false; 

form6.Button2.Enabled :=false; 

form6.Cname.SetFocus ; 

end; 

procedure TForm6.CADDClick(Sender: TObject); 

96 



begin 

//Customer name, last name, address, fax, phone , email cant be empty 

if(Cname.Text<>") and (Clname.Text<>") and (caddress.Text<>") and (cfax.Text<>") and 

(cphone.Text<>") and (email.Text<>") then 

begin 

//Insert mode to add new record 

customer. Insert; 

customer.FieldValues['N ame'] :=Cname. Text; 

customer.FieldValues['S umame'] :=CLname. Text; 

customer.FieldValues['Address'] :=Caddress. Text; 

customer.FieldValues['Phone'] :=Cphone. Text; 

customer.FieldValues['Email'] :=Email. Text; 

customer.FieldValues['Fax'] :=Cfax. Text; 

//send values to table customer 

customer.Post; 

//Close table customer 

customer. Close; 

customer. Open; 

//Call the clear procedure 

clearl (form6); 

end 

else 

showmessage('Do not leave Fields Empty'); 

end; 

procedure TForm6.Button2Click(Sender: TObject); 

begin 

//Make user confirm deletion 

if MessageDLG('Confirm Deletion',mtwaming, [ mb Y es,mbNo,mbCancel], 0)=6 then 

begin 

//delete customer 

customer.Delete; 

97 



//clear all fields 

clearl(form6); 

end 

else 

//Show message to uesr 

ShowMessage('Deletion is Canceled'); 

end; 

procedure TForm6.SearchBynoBClick(Sender: TObject); 

var code:integer; 

a:integer; 

begin 

val(no. Text,a,code ); 

//if number entered in the textfield 

if code=O then 

begin 

//search customer by no 

customer.Filter:= 'Customerld='+quotedstr(No. Text); 

customer.Filtered=true; 

if customer.RecordCount =0 then 

begin 

//Show message to user 

showmessage('No Record Found'); 

// Cancel Filter on customer table 

customer.Filtered:=false; 

No.Clear; 

end 

else 

begin 

//Clear No editbox 

No.Clear; 

No.SetFocus; 

98 



end; 

end; 

end; 

procedure TForm6.searchbynameClick(Sender: TObject); 

begin 

//search customer by name and surname 

customer.Filter:= 'N ame='+quotedstr(Fname. Text); 

customer.Filtered:=true; 

customer.Filter:='Sumame='+quotedstr(Lname.Text); 

customer.Filtered:=true; 

if customer.RecordCount =O then 

begin 

customer.Filtered:=false; 

Fname.Clear; 

Lname.Clear; 

//Show message to user 

showmessaget'No Customer Found'); 

end 

else 

begin 

Fname.Clear; 

Lname.Clear; 

Fname.SetFocus; 

end; 

end; 

procedure TForm6.ALLClick(Sender: TObject); 

begin 

//Show all customers cancel filter 

customer.Filtered:=false; end; 

procedure TForm6.ClearClick(Sender: TObject); 

99 



begin 

//Call clearl procedure 

clear! (sender); 

end; 

procedure TForm6.DBGrid1CellClick(Column: TColumn); 

begin 

if db grid I .Fields[ db grid 1. Selectedlndex] .AsString<>" then 

begin 

//bring the values of the selected record onto fields on form 

Cname. Text:=customer.FieldValues['N ame']; 

CLname. Text:=customer.FieldValues['Sumame']; 

Caddress.Text:=customer.FieldValues['Address'J; 

Cphone. Text:=customer.FieldValues['Phone'J; 

Email.Text:=customer.FieldValues['Email']; 

Cfax. Text:=customer.FieldValues['F ax']; 

Cadd.Enabled :=false; 

Update.Enabled :=true; 

button2.Enabled:=true; 

end; 

end; 

procedure TForm6.bynoClick(Sender: TObject); 

begin 

no. SetF ocus; 

end; 

procedure TForm6.BynameClick(Sender: TObject); 

begin 

fname. SetF ocus; 

end; 

procedure TForm6.RetailClick(Sender: TObject); 

begin 

Form5:=TForm5.Create(self); 

100 



Form5.show; 

form5. Cno:=customer.FieldValues['CustomerID']; 

end; 

procedure TForm6.Button1Click(Sender: TObject); 

begin 

Form8:=TForm8.create(self); 

form8.Edit l. Text := customer.FieldValues['Customerld']; 

form8.FormStyle := fsMDIChild; 

Form8.show; 

end; 

procedure TForm6.NoKeyPress(Sender: TObject; var Key: Char); 

begin 

//if ENTER key is pressed on No editbox click searchbyno button 

if key=# 13 then 

begin 

SearchBynoB. Click; 

end; 

end; 

procedure TForm6.LnameKeyPress(Sender: TObject; var Key: Char); 

begin 

//if ENTER key is pressed on Lastname editbox click searchbyname button 

if key=# 13 then 

begin 

searchbyname. Click; 

end; 

end; 

procedure TForm6.UpdateClick(Sender: TObject); 

begin 

if (Cname.Text<>") and (Clname.Text<>") and (caddress.Text<>") and (cfax.Text<>") and 

(cphone.Text<>") and (email.Text<>") then 

begin 

101 



Customer.Edit; 

customer.FieldV alues['N ame'J :=Cname. Text; 

customer.FieldV alues['Sumame'J :=CLname. Text; 

customer.FieldV alues[' Address'] :=Caddress. Text; 

customer.FieldV alues['Phone'] :=Cphone. Text; 

customer.FieldValues['Email']:=Email.Text; 

customer.FieldV alues['Fax'] :=Cfax. Text; 

//send values to table customer 

customer.Post; 

//Close table customer 

customer. Close; 

customer. Open; 

clear I (sender); 

ShowMessage ('Update Successful'); 

end; 

end; 

end. 

FORM 7 PERSONEL iNFORMATiON 

unit Unit7; 

interface 

uses 

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 

Dialogs, StdCtrls, Grids, DBGrids, DB, DBTables, Mask, DBCtrls, ComCtrls; 

type 

TForm7 = class(TForm) 

DataSource 1: TDataSource; 

Personel: TTable; 

GroupBox 1: TGroupBox; 

DBGridl: TDBGrid; 

102 



GroupBox3: TGroupBox; 

AddB: TButton; 

UpdateB: TButton; 

Clear: TButton; 

DeleteB: TButton; 

GroupBox2: TGroupBox; 

GroupBox4: TGroupBox; 

Label 1 : TLabel; 

Label 11: TLabel; 

Sname: TEdit; 

Ssurname: TEdit; 

searchbyname: TButton; 

GroupBox5: TGroupBox; 

GroupBox6: TGroupBox; 

GroupBox7: TGroupBox; 

Buttonl: TButton; 

GroupBox8: TGroupBox; 

Label12: TLabel; 

SearchBynoB: TButton; 

No: TEdit; 

GroupBox9: TGroupBox; 

Phone: TEdit; 

Email: TEdit; 

Datel: TDateTimePicker; 

Address: TEdit; 

GroupBox 10: TGroupBox; 

Label7: TLabel; 

Label8: TLabel; 

Label9: TLabel; 

Labell 0: TLabel; 

Group Box 11: TGroupBox; 

103 



Fname: TEdit; 

Lname: TEdit; 

duty: TEdit; 

dept: TEdit; 

salary: TEdit; 

GroupBox12: TGroupBox; 

Label2: TLabel; 

Label3: TLabel; 

Label4: TLabel; 

Label5: TLabel; 

Label6: TLabel; 

GroupBox 13: TGroupBox; 

Byname: TRadioButton; 

byno: TRadioButton; 

ALL: TRadioButton; 

procedure FormClose(Sender: TObject; var Action: TCloseAction); 

procedure FormActivate(Sender: TObject); 

procedure FormCreate(Sender: TObject); 

procedure AddBClick(Sender: TObject); 

procedure DBGridlCellClick(Column: TColumn); 

procedure ClearClick(Sender: TObject); 

procedure DeleteBClick(Sender: TObject); 

procedure UpdateBClick(Sender: TObject); 

procedure ALLClick(Sender: TObject); 

procedure bynoClick(Sender: TObject); 

procedure BynameClick(Sender: TObject); 

procedure SearchBynoBClick(Sender: TObject); 

procedure searchbynameClick(Sender: TObject); 

procedure NoKeyPress(Sender: TObject; var Key: Char); 

procedure SsumameKeyPress(Sender: TObject; var Key: Char); 

procedure Buttonl Click(Sender: TObject); 

104 



private 

{ Private declarations } 

public 

{ Public declarations } 

end; 

var 

Form7: TForm7; 

implementation 

uses Unit9; 

{$R *.dfm} 

procedure TForm7.FormClose(Sender: TObject; var Action: TCloseAction); 

begin 

//close table personel on form close 

Personel. Close; 

action:=caFree; 

end; 

procedure TForm7.FormActivate(Sender: TObject); 

begin 

WindowState := wsMaximized; 

end; 

procedure TForm7.FormCreate(Sender: TObject); 

begin 

//open personel table 

person el. Open; 

end; 

Procedure Clearl(Sender:Tobject); 

begin 

//Clear all fields on form 

//by using with ... do statement no need to write the name of the form for every 

// statements. 

with form7 do 

105 



begin 

Fname.clear; 

Lname.Clear; 

Duty. Clear; 

Dept.Clear; 

Salary. Clear; 

Address.Clear; 

Phone.Clear; 

Email.Clear; 

Date l .Date:=now; 

addb.Enabled :=true; 

updateB.Enabled :=false; 

deleteb.Enabled :=false; 

end; 

end; 

procedure TForm7.AddBClick(Sender: TObject); 

begin 

I /First , last name , duty , department, salary , address cant be empty 

if (Fname.Text<>") and (Lname.Text <>") and (duty.Text<>") and (dept.Text<>") and 

(salary.Text<>") and (address.Text<>") then 

begin 

//Insert mode to enter new record 

personel.Insert; 

personel.FieldValues['Fname'] :=Fname. Text; 

personel.FieldValues['Lname']:=Lname.Text; 

personel.FieldValues['Duty'] :=Duty. Text; 

personel.FieldValues['Department']:=Dept.Text; 

personel.FieldValues['Salary'] :=strtofloat(Salary. Text); 

personel.FieldValues['Address'] :=Address. Text; 

personel.FieldValues['Phone'] :=Phone. Text; 

personel.FieldValues['Email'] :=Email. Text; 

106 



personel.FieldValues['HireDate'] :=Date I .date; 

//Send values to table 

personel.Post; 

//Close personel table 

person el. Close; 

person el. Open; 

//clear all fields on form 

Clearl(form7); 

showmessage('Personel is added successfully'); 

end 

else 

//show user message 

showmessage('Do not Leave Fields Empty'); 

end; 

procedure TForm7.DB0rid1CellC1ick(Column: TColumn); 

begin 

if db grid I .Fields[ dbgridl. Selectedlndex] .AsString<>" then 

begin 

//Bring values to the fields on form 

Fname. text:= personel.FieldValues['Fname'J; 

Lname. text:= personel.FieldValues['Lname'J; 

Duty. text:= personel.FieldValues['Duty']; 

Dept. text:= personel.FieldValues['Department']; 

Salary. text:= personel.FieldValues['Salary']; 

Address. text:= personel.FieldValues['Address']; 

Phone. text:= personel.FieldValues['Phone'J; 

Email. text:= personel.FieldValues['Email']; 

Date I .Date:= personel.FieldValues['HireDate']; 

updateB.Enabled:=true; 

addB.Enabled :=false; 

deleteB.Enabled :=true; 

107 



end; 

end; 

procedure TForm7.ClearClick(Sender: TObject); 

begin 

//Call userdefined procedure to clear all fields 

clearl(form7); 

end; 

procedure TForm7.DeleteBClick(Sender: TObject); 

begin 

// Make user confirm the deletion 

if Messagedlg('Please Confirm Deletion',mtwaming, [mbYes, mbNo,mbCancel],0)=6 then 

begin 

//Delete personel 

personel.Delete; 

//Show message 

showmessage('Personel is Deleted'); 

end; 

end; 

procedure TForm7.UpdateBClick(Sender: TObject); 

begin 

//First , last name , duty , department, salary , address cant be empty 

if (Fname.Text<>") and (Lname.Text<>") and (Duty.Text<>") and (Dept.Text<>") and 

(Salary.Text=>") then 

begin 

//Edit mode to update personel 

personel.Edit; 

personel.FieldValues['Fname'J :=Fname. Text; 

personel.FieldValues['Lname'] := Lname. Text; 

personel.FieldValues['Duty'] :=Duty.Text; 

personel.FieldValues['Department'] :=Dept. Text; 

personel.FieldValues['Salary'] :=Salary. Text; 

108 



personel.FieldValues['Address'] :=Address. Text; 

personel.FieldValues['Phone'] :=Phone. Text; 

personel.FieldValues['Email'] :=Email. Text; 

personel.FieldValues['HireDate'] :=Date 1.date; 

//Send values to table 

personel.Post; 

//close table 

person el. Close; 

. person el. Open; 

showmessage('Personel is updated successfully'); 

end 

else 

showmessage('Please Do not Leave Empty Spaces'); 

end; 

procedure TF orm 7 .ALLClick(Sender: TObj ect ); 

begin 

//Cancel Filter on table Personel 

PERSON el.Filtered :=false; 

end; 

procedure TForm7.bynoClick(Sender: TObject); 

begin 

no.SetFocus; 

end; 

procedure TForm7.BynameClick(Sender: TObject); 

begin 

Sname.SetFocus; 

end; 

procedure TForm7.SearchBynoBClick(Sender: TObject); 

begin 

//Find Personel by No 

personel.Filter:='PNo='+quotedstr(No.Text); 

109 



personel.Filtered :=true; 

if personel.RecordCount =O then 

begin 

showmessage('No Record Found'); 

//if no record found cancel filter show all personels 

personel.Filtered:=false; 

No.Clear; 

No.SetFocus; 

end 

else 

begin 

No.Clear; 

No.SetFocus; 

end; 

end; 

procedure TForm7.searchbynameClick(Sender: TObject); 

begin 

//Find Personel by Name 

personel.Filter:='Fname='+quotedstr(Sname.Text); 

personel.Filtered :=true; 

personel.Fil ter: ='Lname='+quotedstr(Ssumame. Text); 

personel.Filtered :=true; 

if personel.RecordCount =O then 

begin 

showmessage('No Record Found'); 

//if no record found cancel filter show all personels 

personel.Filtered:=false; 

Sname.Clear; 

Ssumame. Clear; 

Sname.SetFocus; 

end 

110 



else 

begin 

Sname.Clear; 

Ssumame.Clear; 

Sname. SetF ocus; 

end; 

end; 

procedure TForm7.NoKeyPress(Sender: TObject; var Key: Char); 

begin 

//if ENTER key is pressed in No EditBox SearchByno button's click event is called 

if key=# 13 then 

SearchBynoB.click; 

end; 

procedure TForm7.SsumameKeyPress(Sender: TObject; var Key: Char); 

begin 

//if ENTER key is pressed in Ssumame EditBox, SearchByname button's click event is 

called 

if key=# 13 then 

searchbyname.click; 

end; 

procedure TForm7.Button1Click(Sender: TObject); 

begin 

//Show Mail Form 

mail:= T mail. create( self); 

mail.show; 

mail. txtT o. Text :=personel.FieldValues['email']; 

end; 

end. 

111 



APPENDIX 2: DATABASE TABLES 

Fig. 4.1 Login Table 

Fig. 4.2 Stock List Table 

112 



Fig. 4.4 Company Table 

113 



Fig. 4.5 personelTable 

Fig. 4.6 order Table 

114 



Fig. 4. 7 Sale Table 

115 


	Page 1
	Titles
	NEAR EAST UNIVERSITY 
	Faculty of Engineering 

	Images
	Image 1
	Image 2


	Page 2
	Titles
	ACKNOWLEDGMENT 

	Images
	Image 1


	Page 3
	Images
	Image 1


	Page 4
	Titles
	TABLE OF CONTENTS 

	Images
	Image 1
	Image 2


	Page 5
	Images
	Image 1


	Page 6
	Titles
	INTRODUCTION 

	Images
	Image 1


	Page 7
	Titles
	CHAPTER! 
	1.1. Introduction 

	Images
	Image 1


	Page 8
	Titles
	1.2. What is Delphi? 

	Images
	Image 1


	Page 9
	Titles
	1.2.lDeveloper Support Services and Web Site 
	1.2. A Tour of The Environment 

	Images
	Image 1


	Page 10
	Titles
	1.3.1. Starting Delphi 
	1.3.2Delphi (IDE) 

	Images
	Image 1
	Image 2


	Page 11
	Images
	Image 1
	Image 2


	Page 12
	Titles
	1.3.3 The Object Inspector 
	7 

	Images
	Image 1
	Image 2


	Page 13
	Titles
	1.3.4 The Delphi Workspace 
	1.3.5 The Menus and Toolbars 

	Images
	Image 1


	Page 14
	Titles
	Save current 
	New \VebSnap New WebSnap 
	you can run into 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9


	Page 15
	Titles
	1.3.2. The Component Palette and Form Designer 

	Images
	Image 1
	Image 2


	Page 16
	Titles
	1.3.7The Object Tree View 

	Images
	Image 1
	Image 2


	Page 17
	Titles
	1.3.8The Object Repository 

	Images
	Image 1
	Image 2
	Image 3


	Page 18
	Titles
	1.3.9The Code Editor 

	Images
	Image 1
	Image 2
	Image 3


	Page 19
	Titles
	1.3.9.lCode Insight 

	Images
	Image 1
	Image 2


	Page 20
	Titles
	1.3.10 Class Completion 
	1.3.llCode Browsing 

	Images
	Image 1
	Image 2


	Page 21
	Titles
	1.3.12 
	The Diagram Page 

	Images
	Image 1


	Page 22
	Titles
	1.3.13 Wiewing Form Code 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 23
	Titles
	1.3.14 The Code Explorer 

	Images
	Image 1
	Image 2


	Page 24
	Titles
	1.3.15The Project Manager 
	1.3.16The Project Browser 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 25
	Titles
	1.4 Programming With Delphi 
	1.4.1 Creating a Project 
	1.4.2 Adding Data Modules 

	Images
	Image 1


	Page 1
	Titles
	1.4.3 Building the user interface 
	1.4.4 Placing components on a form 

	Images
	Image 1
	Image 2
	Image 3


	Page 2
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 3
	Titles
	1.4.5 Setting the properties of the components 
	Fig.1.23.Properties Component 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 4
	Titles
	Fig.1.25.Run form 
	1.4.6 Writing Code 

	Images
	Image 1
	Image 2


	Page 5
	Images
	Image 1
	Image 2
	Image 3


	Page 6
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 7
	Titles
	1.4.6.lUsing The Component Library 

	Images
	Image 1
	Image 2
	Image 3


	Page 8
	Titles
	I 
	I 
	E I . ,,~ I 
	1.4.7Compiling and Debugging Projects 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 9
	Images
	Image 1
	Image 2
	Image 3


	Page 10
	Titles
	1.4.7.1 Deploying Applications 
	1.4. 7 .2Internationalizing Applications 
	1.4.8Types of Projects 

	Images
	Image 1


	Page 11
	Titles
	1.4.8.lDelphi (CLX Applications) 
	1.4.8.2 Delphi (Database Applications) 

	Images
	Image 1


	Page 12
	Titles
	1.4.9Administrator (BDE) 
	1.4.10 Database Explorer 
	1.4.1 lDatabase Desktop 
	1.4.12Data Dictionary 

	Images
	Image 1


	Page 13
	Titles
	1.4.13 Components of custom 
	1.4.14 Dynamic-link libraries 
	1.4.15 Delphi (COM and ActiveX) 

	Images
	Image 1


	Page 14
	Titles
	1.4.16Cmponent Type Libraries 
	1.5Work Area (iDE) 
	1.5.lArranging Menus and Toolbars 

	Images
	Image 1
	Image 2


	Page 15
	Titles
	1.5.2 Tool Windows 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 16
	Images
	Image 1
	Image 2
	Image 3


	Page 17
	Titles
	1.5.3 Desktop Layouts 

	Images
	Image 1
	Image 2
	Image 3


	Page 18
	Titles
	1.4.5 The Component Palette 

	Images
	Image 1
	Image 2


	Page 19
	Titles
	1.4.6 Creating Component Templates 

	Images
	Image 1


	Page 20
	Titles
	CHAPTER2 
	DATABASE CONCEPT OF DELPHI 7 
	2.1 About Dbase And Paradox 
	2.1.1 Architecture of database 
	Ł 
	2.1.2 Relational database concepts 

	Images
	Image 1


	Page 1
	Titles
	2.1.3Accessing data in other databases 
	2.1.4dBASE IV Table Specification 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 2
	Titles
	2.1.5 dBase V Table Specifications 
	2.1.6 dBASE Field Types 

	Images
	Image 1


	Page 3
	Images
	Image 1


	Page 4
	Titles
	2.2Paradox Standard Table Specifications- 
	2.2.1 Paradox 4 table structure. 
	Ł 
	Ł 
	Ł 
	Ł 
	Ł 

	Images
	Image 1
	Image 2


	Page 5
	Titles
	2.2.2Paradox 5 Table Specifications 

	Images
	Image 1


	Page 6
	Titles
	2.2.3Paradox 7 and Above Table Specifications 

	Images
	Image 1
	Image 2


	Page 7
	Titles
	2.2.2.lParadox Field Types 

	Images
	Image 1
	Image 2


	Page 8
	Images
	Image 1


	Page 9
	Images
	Image 1


	Page 10
	Titles
	CHAPTER3 
	MAiN FORMS OF THE APLICA TION PROGRAM 
	3.1 Database Design of The Program 

	Images
	Image 1


	Page 11
	Titles
	3.2 The relationships between tables will as follows: 

	Images
	Image 1
	Image 2
	Image 3


	Page 12
	Images
	Image 1
	Image 2


	Page 13
	Images
	Image 1
	Image 2
	Image 3


	Page 14
	Images
	Image 1
	Image 2


	Page 15
	Images
	Image 1
	Image 2
	Image 3


	Page 16
	Images
	Image 1
	Image 2
	Image 3


	Page 17
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 18
	Titles
	a~~t; ·-· ' ,\ 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 19
	Images
	Image 1
	Image 2
	Image 3


	Page 20
	Images
	Image 1
	Image 2
	Image 3


	Page 21
	Images
	Image 1
	Image 2


	Page 22
	Images
	Image 1
	Image 2


	Page 23
	Images
	Image 1
	Image 2
	Image 3


	Page 24
	Titles
	Fig 3.21 Select Report Form 
	When we press report button, then displays product name, date, price, quantity 
	Fig 3. 22 Report 
	64 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 25
	Images
	Image 1


	Page 26
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 27
	Images
	Image 1
	Image 2


	Page 28
	Titles
	Conclusion 

	Images
	Image 1


	Page 29
	Titles
	REFERENCES 
	Reference to Book: 
	Reference to Electronic-Book: 
	Reference to Electronic Source- Online source from Web: 

	Images
	Image 1
	Image 2


	Page 30
	Titles
	APPENDIX 1: PROGRAM CODES 

	Images
	Image 1


	Page 1
	Images
	Image 1


	Page 2
	Titles
	FORM 2. PRODUCT ENTRY FORM 

	Images
	Image 1


	Page 3
	Images
	Image 1


	Page 4
	Images
	Image 1


	Page 5
	Images
	Image 1


	Page 6
	Images
	Image 1


	Page 7
	Titles
	77 

	Images
	Image 1


	Page 8
	Images
	Image 1
	Image 2


	Page 9
	Images
	Image 1


	Page 10
	Images
	Image 1


	Page 11
	Titles
	FORM 3. NEW ORDER FORM 

	Images
	Image 1


	Page 12
	Images
	Image 1
	Image 2


	Page 13
	Images
	Image 1


	Page 14
	Images
	Image 1


	Page 15
	Images
	Image 1


	Page 16
	Images
	Image 1


	Page 17
	Images
	Image 1


	Page 18
	Images
	Image 1


	Page 19
	Images
	Image 1


	Page 20
	Images
	Image 1


	Page 21
	Images
	Image 1


	Page 22
	Images
	Image 1


	Page 23
	Images
	Image 1


	Page 24
	Images
	Image 1


	Page 25
	Images
	Image 1


	Page 26
	Images
	Image 1


	Page 27
	Images
	Image 1


	Page 28
	Images
	Image 1


	Page 29
	Images
	Image 1


	Page 30
	Images
	Image 1


	Page 1
	Images
	Image 1


	Page 2
	Titles
	FORM 7 PERSONEL iNFORMATiON 

	Images
	Image 1


	Page 3
	Images
	Image 1


	Page 4
	Images
	Image 1


	Page 5
	Images
	Image 1


	Page 6
	Titles
	106 

	Images
	Image 1


	Page 7
	Images
	Image 1


	Page 8
	Images
	Image 1


	Page 9
	Images
	Image 1


	Page 10
	Images
	Image 1


	Page 11
	Images
	Image 1


	Page 12
	Titles
	APPENDIX 2: DATABASE TABLES 

	Images
	Image 1
	Image 2


	Page 13
	Images
	Image 1


	Page 14
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 15
	Images
	Image 1



