
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

STOCK MANAGEMENT

Graduation Project

COM-400

Student: Alp SOYDAN

Supervisor : Assist.Prof .Dr. imanov ELBRUS

Nicosia - 2008

ACKNOWLEDGMENTS

"First, I would like to thank my supervisor Dr. Elbus lmanov for his

invaluable advice and belief in my work and myself over the course of this

Graduation Project..

Second, I would like to express my gratitude to Near East University for

the scholarship that made the work possible.

Third, I thank my family for their constant encouragement and support

during the preparation of this project.

Fourth, I would like to thank Neu Computer Engineering Department

academicians for their invaluable advice and support.

Finally, I would also like to thank my friend Evrim Kaki for his advice and

support."

TABLE OF CONTENTS

ACKNOWLEDGEMENT

TABLE OF CONTENTS

ABSTRACT

INTRODUCTION
CHAPTER ONE - DELPHI PROGRAMMING LANGUAGE

1.1 Introduction
1.2 What is Delphi?

1.3 History Of Delphi
1.3.1 Pascal and Delphi's history

1.3.2 Delphi Versions

1.4 Delphi Programming Pheriphals
1.4.1 What is Project File(.DPR)?

1.4.2 Project Unit
1.4.3 Data types and variables

1.4.4 Procedures and functions

1.4.5 Classes and Objects

1.4.6 Libraries and Packages

CHAPTER TWO-DATABASE CONCEPT OF DELPHI

2.1 Borland Database Engine
2.1.1 What is BOE?

2.1.2 History of BOE

2.1.3 BOE Design Fundamentals

2.2 Paradox Database
2.2.1 Paradox Database Fundamentals

2.2.2 Paradox Table Field Types
2.2.3 Paradox 4 Table Specifications

2.2.4 Paradox 5 Table Specifications
2.2.5 Paradox 7 And Above Table Specifications

CHAPTER THREE - USER'S MANUAL

CONCLUSION

REFERENCES

APPENDIX

11

ii

iii

1

2

2

3
3
3

4

6
6

8
10

12

17

21

23

23
23

23

24

25
25

27

31

31

32

33

39

40

41

ABSTRACT

Automation or management software is generally any software program

that helps a business increase productivity or measure their productivity.

The term covers a large variation of uses within the business environment,

and can be categorized by using a small, medium and large matrix
The medium size, or SME, has a broader range of software applications,

ranging from accounting, groupware, customer relationship management,
human resources software, outsourcing relationship management, loan

origination software, shopping cart software, field service software, and

other productivity enchancing applications.
The main problem of a stock management system is tracking the data

flow on time and calculating net profit or total net income up to that point

and calculating the amount of money that will be assigned to investments

for products. In my project there will be graphical aids for users that will

make everything easier.
The aim of the project is to develop a stock management system that the

users can save, edit, add stock or make any arrangements on orders or

databases related with stock , customers and sales .
Stock Management simply enables companies to manage and control

their inventory stock and it aides businesses in many areas. This ranges

from assisting them in having complete control over the storage, quantity,

and movement of their stock.

111

INTRODUCTION

The purpose of the project is to design user friendly business software

product. This business software is designed to help businesses improve while

reducing costs. Since it is time saving and need minimal effort to run and follow
the business with the use of such kind of software, I preferred to develop this for
the user who would like to utilize or make use of this product which serves

simplicity. For the successful execution of a project, effective planning is

essential.
While planning what the necessary things and features should be in the

content of the software and what functions should be fulfilled in the software,

more and more functions seemed to be considered to design a proper and well

working business software product. In order to develop a product which can

serve its users, all the details should be considered in depth. In this software, all

necessary things were thought in detail and the software which can also be

suited to all business sizes was designed.
The aim of this project is to develop a simple Stock Management System

for small companies. The project consists of introduction,three chapters and

conclusion.

Chapter One describes general terms of Delphi Programming and

specific details about Delphi Components and coding structures.

Chapter Two describes the main lines of Borland Delphi Databases and

controls. It includes the Borland Database Engine Description and Paradox

databases explanations in details.

Chapter Three is the User's Manual of the program that gives information

about the system which is developed as Stock Management System.

1

CHAPTER ONE

1.DELPHI PROGRAMMING LANGUAGE

1.1 Introduction

Object (or Delphi) Pascal, a set of object-oriented extensions to standard

Pascal, is the language of Delphi. Delphi Pascal is a high-level, compiled,

strongly typed language that supports structured and object-oriented design. Its

benefits include easy-to-read code, quick compilation, and the use of multiple

unit files for modular programming. Borland Delphi is a sophisticated Windows

programming environment, suitable for beginners and professional

programmers alike. Using Delphi you can easily create self-contained, user

friendly, highly efficient Windows applications in a very short time - with a

minimum of manual coding.
Delphi provides all the tools you need to develop, test and deploy

Windows applications, including a large number of so-called reusable

components.
Borland Delphi, in it's latest version, provides a cross platform solution

when used with Borland Kylix - Borland's RAD tool for the Linux platform.

Borland Delphi (1/2/3/4/5) is a development tool for Microsoft Windows

applications. Delphi is powerful and easy to use tool for generating stand-alone
graphical user interface (GUI) programs or 32-bit console applications

(programs that have no GUI presence but instead run in what is commonly

referred to as a "DOS box.")
When paired with Borland Kylix, Delphi 6 users can build single-source

applications for both Windows and Linux, which opens new opportunities and

increases the potential return on development investments. Use the Cross
platform CLX component library and visual designers to build high-performance

portable applications for Windows that can be easily re-compiled on Linux.

Delphi is the first programming language to shatter the barrier between high

level, easy-to-use rapid application development environments and low-level
bits-and-bytes power tools. Delphi ships in a variety of configurations aimed at

both departmental and enterprise needs. With Delphi, you can write Windows

programs more quickly and more easily than was possible ever before.

2

Delphi can access many types of databases. Using forms and reports that you

create, the BOE (Borland Database Engine) can access local databases, like

Paradox and DBase, network SQL server databases, like lnterBase, and

SysBase, and any data source accessible though ODBC (open database

connectivity).

1.2 What is Delphi?
Borland Delphi is a high-level, compiled, strongly typed language that

supports structured and object-oriented design. Delphi language is based on

Object Pascal. Today, Delphi is much more than simply "Object Pascal

language".
Borland Delphi is the first rapid application development environment for

Windows that fully supports new and emerging Web Services. With Delphi,

corporate or individual developers can create next-generation e-business

applications quickly and easily.

1.3 History of Delphi
This chapter gives information about history of Borland Delphi.

1.3.1 Pascal And Delphi's History
The origin of Pascal owes much of its design to Algol - the first high-level

language with a readable, structured, and systematically defined syntax.
In the late sixties (196X), several proposals for an evolutionary successor to

Algol were developed. The most successful one was Pascal, defined by Prof.

Niklaus Wirth. Wirth published the original definition of Pascal in 1971. It was
implemented in 1973 with some modifications. Many of the features of Pascal

came from earlier languages. The case statement, and value-result parameter

passing came from Algol, and the records structures were similar to Cobol and

PL 1. Besides cleaning up or leaving out some of Algol's more obscure

features, Pascal added the capability to define new data types out of simpler

existing ones. Pascal also supported dynamic data structures; i.e., data

3

structures which can grow and shrink while a program is running. The language

was designed to be a teaching tool for students of programming classes.

In 1975, Wirth and Jensen produced the ultimate Pascal reference book

"Pascal User Manual and Report". Wirth stopped its work on Pascal in 1977 to

create a new language, Modula - the successor to Pascal.

With the release (November 1983) of Turbo Pascal 1.0, Borland started

its journey into the world of development environments and tools. To create

Turbo Pascal 1.0 Borland licensed the fast and inexpensive Pascal compiler

core, written by Anders Hejlsberg. Turbo Pascal introduced an Integrated

Development Environment (IDE) where you could edit the code, run the

compiler, see the errors, and jump back to the lines containing those errors.

Turbo Pascal compiler has been one of the best-selling series of compilers of all

time, and made the language particularly popular on the PC platform.

In 1995 Borland revived its version of Pascal when it introduced the rapid

application development environment named Delphi - turning Pascal into a

visual programming language. The strategic decision was to make database

tools and connectivity a central part of the new Pascal product.

After the release of Turbo Pascal 1, Anders joined the company as an

employee and was the architect for all versions of the Turbo Pascal compiler

and the first three versions of Delphi. As a chief architect at Borland, Hejlsberg

secretly turned Turbo Pascal into an object-oriented application development

language, complete with a truly visual environment and superb database

access features: Delphi.

1.3.2 Delphi Versions

Delphi-1 (1995)

Delphi, Borland's powerful Windows programming development tool first

appeared in 1995. Delphi 1 extended the Borland Pascal language by providing

object-orientated and form-based approach, extremely fast native code

compiler, visual two-way tools and great database support, close integration

with Windows and the component technology.

4

Delphi-2(1996)

Delphi 2* is the only Rapid Application Development tool that combines

the performance of the world's fastest optimizing 32-bit native-code compiler,

the productivity of visual component-based design, and the flexibility of scalable

database architecture in a robust object-oriented environment.
Delphi 2, beside being developed for the Win32 platform (full Windows 95

support and integration), brought improved database grid, OLE automation and
variant data type support, the long string data type and Visual Form Inheritance.

Delphi 2: "the Ease of VB with the Power of C++"

Delphi-3(1997)
The most comprehensive set of visual, high-performance, client and

server development tools for creating distributed enterprise and Web-enabled
applications.

Delphi 3* introduced new features and enhancements in the following

areas: the code insight technology, DLL debugging, component templates, the

DecisionCube and TeeChart components, the WebBroker technology,

ActiveForms, component packages, and integration with COM through

interfaces.

Delphi-4(1998)
Delphi 4* is a comprehensive set of professional and clienUserver

development tools for building high productivity solutions for distributed

computing. Delphi provides Java interoperability, high performance database

drivers, CORSA development, and Microsoft BackOffice support. You've never

had a more productive way to customize, manage, visualize and update data.

With Delphi, you deliver robust applications to production, on time and on

budget. Delphi 4 introduced docking, anchoring and constraining components.

New features included the AppBrowser, dynamic arrays, method overloading,

Windows 98 support, improved OLE and COM support as well as extended

database support.

5

Delphi 5 (1999)

Delphi 5* introduced many new features and enhancements. Some,

among many others, are: various desktop layouts, the concept of frames,

parallel development, translation capabilities, enhanced integrated debugger,

new Internet capabilities (XML), more database power (ADO support), etc.

Delphi 6(2000)
Delphi 6 introduced new features and enhancements in IDE, Internet,

XML, Compiler, COM/Active X and lastly database support areas. What's more,

Delphi 6 added the support for cross-platform development - thus enabling the

same code to be compiled with Delphi (under Windows) and Kylix (under

Linux). More enhancements included , support for Web Services, the

DBExpress engine, new components and classes.

Delphi 7(2001)
For the 7th anniversary of Delphi, Borland prepared the most significant

Delphi release: Delphi 7 continues to provide Visual Component Library (VCL)

and Component Library for Cross-platform (CLX) development for Win32 (and

Linux) as well as new features and continued framework, compiler, IDE, and
design time enhancements.

1.4 Delphi Programming Pheriphals
1.4.1 Using Project Files

Since it is quite common for Delphi applications to share code or

previously customized forms, Delphi organizes applications into what is called
projects.

A project is made up of the visual interface along with the code that

activates the interface. Each project can have multiple forms, allowing us to

build applications that have multiple windows. The code that is needed for a

form in our project is stored in a separate Unit file that Delphi automatically
associates to the form. General code that we want to be shared by all the forms

in our application is placed in unit files as well. Simply put, a Delphi project is a

6

collection of files that make up an application. What this means is that each

project is made of one or more Form files (files with the .dfm extension) and one

or more Unit files (.pas extension). We can also add resource files, and they are

compiled into .RES files and linked when we compile the project.

! \J / ~ !) ' t ' ' • -!' { '' ~ • '

New Items ~

lntraW~b T W~bS~rvices I BQs_ir::iers ·1 \!,'~bSt)ap I WebDqc~n,-ie'n\s I ·corba, ~
'~~~ 1 ~cSi~e\<J'.t,iulti\iei I Pr§/ectl t;f8rpJ I Dj~legs I p!§ie~,ts I P1,t? Moq~lesJ

Control Panel Control Panel Data Module DLL Wizard
Application Module

Form

Component Console
Application Application

li&I
~

Frame

~ ~
[m' ~

Package Project Group Resource DLL Service
Wizard

OK

Figure 1.4.1.1 Delphi New Project View

Each project is made up of a single project file (.dpr). Project files contain

directions for building an application. This is normally a set of simple routines

which open the main form and any other forms that are set to be opened

automatically and then starts the program by calling the Initialize, CreateForm

and Run methods of the global Application object (which is actually a form of

zero width and height, so it never actually appears on the screen).

7

1.4.2 Project Unit

A program is constructed from source-code modules called units. Each

unit is stored in its own file and compiled separately; compiled units are linked

to create an application. Units allow you to

-divide large programs into modules that can be edited separately.

-create libraries that you can share among programs.

-distribute libraries to other developers without making the source code

available.

In traditional Pascal programming, all source code, including the main

program, is stored in .pas files. Borland tools use a project (.dpr) file to store the

"main" program, while most other source code resides in unit (.pas) files. Each

application--or project--consists of a single project file and one or more unit files.

(Strictly speaking, you needn't explicitly use any units in a project, but all

programs automatically use the System unit and the Syslnit unit.) To build a

project, the compiler needs either a source file or a compiled unit file for each
unit.

Althogh you can look and edit the Project File, in most cases, you'll let

Delphi maintain the DPR file. The main reason to view the project file is so we

can see the units and forms that make up the project, and which form is

specified as the application's main form.

Another reason to work with the project file is when we are creating a

DLL rather than a stand-alone application or need some start-up code, such as
a splash screen before the main form is created by Delphi.

Here is the default project file for a new application (containing one form:

"Form1 "):

program Project1;

uses

8

Forms,

Unit1 in 'Unit1 .pas' {Form1};

{$R *.RES}

begin
Application.Initialize;

Application.CreateForm(TForm1, Form1) ;
Application.Run;

end.

The program identifies this unit as a program's main source unit. You

can see that the unit name, Project1, follows the program keyword (Delphi gives

the project a default name until you save the project with a more meaningful

name). When we run a project file from the IDE, Delphi uses the name of the
Project file for the name of the EXE file that it creates.

Delphi reads the uses clause of the project file to determine which units are part
of a project.

The .dpr file is linked with the .pas file with the compile directive {$R

.RES} (in this case '' represents the root of the .pas filename rather than "any

file"). This compiler directive tells Delphi to include this project's resource file.

The project's resource file contains such items as the project's icon image.

The begin .. end block is the main source-code block for the project.

Although Initialize is the first method called in the main project source

code, it is not the first code that is executed in an application. The application

first executes the "initialization" section of all the units used by the
application.

The Application.CreateForm statement loads the form specified in its

argument. Delphi adds an Application.CreateForm statement to the project file

for each form you add to the project. This code's job is to first allocate memory

for the form. The statements are listed in the order the forms are added to the
project. This is the order that the forms will be created in memory at runtime. If

9

you want to change this order, do not edit the project source code. Use the

Projectloptions menu command.

The Application.Run statement starts your application. This instruction tells the

predeclared object called Application to begin processing the events that occur

during the run of a program.

Form objects are the basic building blocks of a Delphi application, the

actual windows with which a user interacts when they run the application.

Forms have their own properties, events, and methods with which you can

control their appearance and behavior. A form is actually a Delphi component,

but unlike other components, a form doesn't appear on the component palette.

We normally create a form object by starting a new application (File I New
Application). This newly created form will be, by default, the application's main

form - the first form created at runtime.

Note: To add an additional form to Delphi project, we select FilelNew Form.

There are, of course, other ways to add a "new" form to a Delphi project.

1.4.3 Data Types And Variables
A type is essentially a name for a kind of data. When you declare a

variable you must specify its type, which determines the set of values the

variable can hold and the operations that can be performed on it. Every

expression returns data of a particular type, as does every function. Most

functions and procedures require parameters of specific types.

The Delphi language is a "strongly typed" language, which means that it

distinguishes a variety of data types and does not always allow you to substitute

one type for another. This is usually beneficial because it lets the compiler treat

data intelligently and validate your code more thoroughly, preventing hard-to

diagnose runtime errors. When you need greater flexibility, however, there are
mechanisms to circumvent strong typing. These include typecasting, pointers,

variants, variant parts in records, and absolute addressing of variables.

10

There are several ways to categorize Delphi data types:

Some types are predefined (or built-in); the compiler recognizes these

automatically, without the need for a declaration. Almost all of the types

documented in this language reference are predefined. Other types are created

by declaration; these include user-defined types and the types defined in the

product libraries.

Types can be classified as either fundamental or generic. The

range and format of a fundamental type is the same in all implementations of

the Delphi language, regardless of the underlying CPU and operating system.

The range and format of a generic type is platform-specific and could vary

across different implementations. Most predefined types are fundamental, but a

handful of integer, character, string, and pointer types are generic. It's a good

idea to use generic types when possible, since they provide optimal

performance and portability. However, changes in storage format from one

implementation of a generic type to the next could cause compatibility

problems--for example, if you are streaming content to a file as raw, binary data,

without type and versioning information.

Types can be classified as simple, string, structured, pointer, procedural,

or variant. In addition, type identifiers themselves can be regarded as belonging

to a special "type" because they can be passed as parameters to certain

functions (such as High, Low, and SizeOf).

The outline below shows the taxonomy of Delphi data types.

simple

ordinal

integer

character

Boolean

enumerated

subrange

real

11

string

structured

set

array

record

file

class

class reference

interface

pointer

procedural

variant

Type Identifier
The standard function SizeOf operates on all variables and type

identifiers. It returns an integer representing the amount of memory (in bytes)

required to store data of the specified type. For example, SizeOf(Longint)

returns 4, since a Longint variable uses four bytes of memory.

Type declarations are illustrated in the sections that follow. For general

information about type declarations, see Declaring types.

1.4.4 Procedures And Functions

Procedures and functions, referred to collectively as routines, are self

contained statement blocks that can be called from different locations in a
program. A function is a routine that returns a value when it executes. A
procedure is a routine that does not return a value.

Function calls, because they return a value, can be used as expressions
in assignments and operations. For example,

I := SomeFunction(X);

12

calls SomeFunction and assigns the result to I. Function calls cannot appear on

the left side of an assignment statement.

Procedure calls--and, when extended syntax is enabled ({$X+}), function calls-

can be used as complete statements. For example,

DoSomething;

calls the DoSomething routine; if DoSomething is a function, its return value is

discarded.

Procedures and functions can call themselves recursively.

When you declare a procedure or function, you specify its name, the

number and type of parameters it takes, and, in the case of a function, the type

of its return value; this part of the declaration is sometimes called the prototype,

heading, or header. Then you write a block of code that executes whenever the

procedure or function is called; this part is sometimes called the routine's body

or block.

A procedure declaration has the form

procedure procedureName(parameterlist); directives;

local Declarations;

begin

statements

end;

where procedureName is any valid identifier, statements is a sequence of

statements that execute when the procedure is called, and (parameterlist),

directives;, and local Declarations; are optional.

13

Here is an example of a procedure declaration:

procedure NumString(N: Integer; var S: string);

var

V: Integer;

begin

V := Abs(N);

s ·= ";
repeat

S := Chr(V mod 10 + Ord('O')) + S;

V := V div 10;

until V = O;

if N < 0 then S := '-' + S;

end;

Given this declaration, you can call the NumString procedure like this:

NumString(17, MyString);

This procedure call assigns the value "17" to MyString (which must be a

string variable).

Within a procedure's statement block, you can use variables and other

identifiers declared in the localDeclarations part of the procedure. You can also

use the parameter names from the parameter list (like N and S in the previous

example); the parameter list defines a set of local variables, so don't try to

14

redeclare the parameter names in the localDeclarations section. Finally, you

can use any identifiers within whose scope the procedure declaration falls.

Most procedure and function headers include a parameter list. For example, in

the header

function Power(X: Real; Y: Integer): Real;

the parameter list is (X: Real; Y: Integer).

A parameter list is a sequence of parameter declarations separated by

semicolons and enclosed in parentheses. Each declaration is a comma

delimited series of parameter names, followed in most cases by a colon and a

type identifier, and in some cases by the = symbol and a default value.

Parameter names must be valid identifiers. Any declaration can be preceded by

var, canst, or out (see Parameter semantics). Examples:

(X, Y: Real)

(var S: string; X: Integer)

(HWnd: Integer; Text, Caption: PChar; Flags: Integer)

(const P; I: Integer)

The parameter list specifies the number, order, and type of parameters that

must be passed to the routine when it is called. If a routine does not take any

parameters, omit the identifier list and the parentheses in its declaration:

procedure UpdateRecords;

begin

end;

Within the procedure or function body, the parameter names (X and Y in
the first example) can be used as local variables. Do not redeclare the

15

parameter names in the local declarations section of the procedure or function

body.

Calling Procedures:

When you call a procedure or function, program control passes from the

point where the call is made to the body of the routine. You can make the call

using the routine's declared name (with or without qualifiers) or using a
procedural variable that points to the routine. In either case, if the routine is

declared with parameters, your call to it must pass parameters that correspond

in order and type to the routine's parameter list. The parameters you pass to a

routine are called actual parameters, while the parameters in the routine's

declaration are called formal parameters.

When calling a routine, remember that expressions used to pass typed
const and value parameters must be assignment-compatible with the

corresponding formal parameters.

Expressions used to pass var and out parameters must be identically

typed with the corresponding formal parameters, unless the formal parameters

are untyped.

only assignable expressions can be used to pass var and out

parameters.

if a routine's formal parameters are untyped, numerals and true

constants with numeric values cannot be used as actual parameters.

When you call a routine that uses default parameter values, all actual

parameters following the first accepted default must also use the default values;

calls of the form SomeFunction(,,X) are not legal.

You can omit parentheses when passing all and only the default

parameters to a routine. For example, given the procedure

procedure DoSomething(X: Real= 1.0; I: Integer= O; S: string = ");

the following calls are equivalent.

DoSomething();

DoSomething;

16

1.4.5 Classes and Objects

A class, or class type, defines a structure consisting of fields, methods,

and properties. Instances of a class type are called objects. The fields,

methods, and properties of a class are called its components or members.

A field is essentially a variable that is part of an object. Like the fields of a
record, a class's fields represent data items that exist in each instance of the

class.

A method is a procedure or function associated with a class. Most

methods operate on objects--that is, instances of a class. Some methods

(called class methods) operate on class types themselves.

A property is an interface to data associated with an object (often stored
in a field). Properties have access specifiers, which determine how their data is

read and modified. From other parts of a program--outside of the object itself--a

property appears in most respects like a field.

Objects are dynamically allocated blocks of memory whose structure is

determined by their class type. Each object has a unique copy of every field

defined in the class, but all instances of a class share the same methods.
Objects are created and destroyed by special methods called constructors and

destructors.

A variable of a class type is actually a pointer that references an object.
Hence more than one variable can refer to the same object. Like other pointers,
class-type variables can hold the value nil. But you don't have to explicitly

dereference a class-type variable to access the object it points to. For example,
SomeObject.Size := 100 assigns the value 100 to the Size property of the

object referenced by SomeObject; you would not write this as

SomeObjectA.Size := 100.

17

Class Types

A class type must be declared and given a name before it can be

instantiated. (You cannot define a class type within a variable declaration.)

Declare classes only in the outermost scope of a program or unit, not in a
procedure or function declaration.

A class type declaration has the form

type className = class (ancestorClass)
memberlist

end;

where className is any valid identifier, (ancestorClass) is optional, and

memberlist declares members--that is, fields, methods, and properties--of the
class. If you omit (

ancestorClass), then the new class inherits directly from the predefined

TObject class. If you include (ancestorClass) and memberlist is empty, you can

omit end. A class type declaration can also include a list of interfaces
implemented by the class; see Implementing interfaces.

Methods appear in a class declaration as function or procedure
headings, with no body. Defining declarations for each method occur elsewhere
in the program.

For example, here is the declaration of the TMemoryStream class from
the Classes unit.

type

TMemoryStream = class(TCustomMemoryStream)

18

private

FCapacity: Longint;

procedure SetCapacity(NewCapacity: Longint);

protected

function Realloc(var NewCapacity: Longint): Pointer; virtual;

property Capacity: Longint read FCapacity write SetCapacity;

public

destructor Destroy; override;

procedure Clear;

procedure LoadFromStream(Stream: TStream);

procedure LoadFromFile(const FileName: string);

procedure SetSize(NewSize: Longint); override;

function Write(const Buffer; Count: Longint): Longint; override;

end;

TMemoryStream descends from TStream (in the Classes unit), inheriting

most of its members. But it defines--or redefines--several methods and

properties, including its destructor method, Destroy. Its constructor, Create, is

inherited without change from TObject, and so is not redeclared. Each member

is declared as private, protected, or public (this class has no published

members); for explanations of these terms, see Visibility of class members.

Given this declaration, you can create an instance of TMemoryStream as

follows:

var stream: TMemoryStream;

stream:= TMemoryStream.Create;

19

Fields

A field is like a variable that belongs to an object. Fields can be of any

type, including class types. (That is, fields can hold object references.) Fields

are usually private.

To define a field member of a class, simply declare the field as you would

a variable. All field declarations must occur before any property or method

declarations. For example, the following declaration creates a class called

TNumber whose only member, other than the methods is inherits from TObject,

is an integer field called Int.

type TNumber = class
Int: Integer;

end;

Fields are statically bound; that is, references to them are fixed at

compile time. To see what this means, consider the following code.

type

TAncestor = class
Value: Integer;

end;

TDescendant = class(TAncestor)
Value: string; II hides the inherited Value field

end;

var

MyObject: TAncestor;

begin

MyObject := TDescendant.Create;

20

MyObject.Value := 'Hello!'; II error

(MyObject as TDescendant).Value := 'Hello!'; II works!

end;

Although MyObject holds an instance of TDescendant, it is declared as

TAncestor. The compiler therefore interprets MyObject.Value as referring to the

(integer) field declared in TAncestor. Both fields, however, exist in the

TDescendant object; the inherited Value is hidden by the new one, and can be

accessed through a typecast.

1.4.6 Libraries And Packages :

A dynamically loadable library is a dynamic-link library (DLL) on Windows

or a shared object library file on Linux. It is a collection of routines that can be

called by applications and by other DLLs or shared objects. Like units,

dynamically loadable libraries contain sharable code or resources. But this type

of library is a separately compiled executable that is linked at runtime to the

programs that use it.

To distinguish them from stand-alone executables, on Windows files
containing compiled DLLs are named with the .DLL extension. On Linux, files

containing shared object files are named with a .so extension. Delphi programs

can call DLLs or shared objects written in other languages, and applications

written in other languages can call DLLs or shared objects written in Delphi.

Calling Dynamically loadable libraries

You can call operating system routines directly, but they are not linked to

your application until runtime. This means that the library need not be present

when you compile your program. It also means that there is no compile-time

validation of attempts to import a routine.

21

Before you can call routines defined in a shared object, you must import

them. This can be done in two ways: by declaring an external procedure or

function, or by direct calls to the operating system. Whichever method you use,

the routines are not linked to your application until runtime.

The Delphi language does not support importing of variables from shared

libraries.

Static loading

The simplest way to import a procedure or function is to declare it using

the external directive. For example,

On Windows:

procedure DoSomething; external 'MYLIB.DLL';

On Linux:

procedure DoSomething; external 'mylib.so';

If you include this declaration in a program, MYLIB.DLL (Windows) or mylib.so

(Linux) is loaded once, when the program starts. Throughout execution of the

program, the identifier DoSomething always refers to the same entry point in the

same shared library.

Declarations of imported routines can be placed directly in the program

or unit where they are called. To simplify maintenance, however, you can collect

external declarations into a separate "import unit" that also contains any

constants and types required for interfacing with the library. Other modules that

use the import unit can call any routines declared in it.

22

2.1 Borland Database Engine

~BOE Administrator (:\Program Files\Common Files\Borland Shared\BDE\IDAPIJZ.CFG
Object Edit /\li~w Op\ion!{ Help ~----
Ge, ~

[o,~(init[on of stopklist I' .AIL Database Aliases ' ~" ,. . . , '

D~,\abases tconfiguration ,I

EJ-,IG!!J Databases
gl :i' dB ASE Files
[tr-t, DBDEMOS
$-t, DefaultDD
[!]-:'i Excel Files
EEi t' IBLocal
$--,"i MS Access Database
ft]--t, ORACLEl , =~, ,,
'·--·'tlil stocklist L._
lt]--·"i Visual FoxPro Databas,
~--"i Visual FoxPro Tables

Definition l
STANDARD
PARADOX
TRUE

Type
DEFAULT DRIVER
ENABLE BCD
PATH C:\Documents and Settrn 1\AI \Deskto \Pro·

Figure 2.1.1 BOE Screen

2.1.1 What is BDE?
Borland Database Engine (BOE) is 32-bit Windows-based core database

engine and connectivity software behind Borland Delphi, C++Builder,

lntraBuilder, Paradox for Windows, and Visual dBASE for Windows.

2.1.2 History of BDE

Borland's Turbo Pascal included a "database" Toolbox, it was the
beginning of the Borland compiler add-ons that facilitated database connectivity.

Then came the Paradox Engine for Windows - PXENGWIN - which could be

compiled into a program to facilitate connectivity to Paradox tables.

The first DLL-based connectivity engine was ODAPI (Open Database API). It

represented Borland's attempt to centralise connectivity in its suite of
applications which included the brand-new Paradox for Windows 4 and Quattro.

23

With version 4.5 I 5.0 of Paradox for Windows, this database engine was
crystallised as IDAPl.ln 2000, Borland introduced a new SQL driver architecture

called dbExpress, which deprecated BOE SQL links technology.

2.1.3 BDE DESIGN
The included set of database drivers enables consistent access to

standard data sources: Paradox, dBASE, FoxPro, Access, and text databases.

You can add Microsoft ODBC drivers as needed to the built-in ODBC socket.

Optionally, Borland's SQL Links product provides access to a range of SQL

servers, including lnformix, DB2, lnterBase, Oracle, and Sybase.

BOE is object-oriented in design. At runtime, application developers

interact with BOE by creating various BOE objects. These runtime objects are
then used to manipulate database entities, such as tables and queries. BDE's

application program interface (API) provides direct C and C++ optimized access

to the database engine, as well as BDE's built-in drivers for dBASE, Paradox,

FoxPro, Access, and text databases.

The core database engine files consist of a set of DLLs that are fully re

entrant and thread-safe. Included with BOE are a set of supplemental tools and

examples with sample code.BOE system is configured using the BOE

Administrator (BDEADMIN.EXE).

Included with BOE is Borland's Local SQL, a subset of ANSl-92 SQL

enhanced to support Paradox and dBASE (standard) naming conventions for

tables and fields (called "columns" in SQL). Local SQL lets you use SQL to

query "local" standard database tables that do not reside on a database server

as well as "remote" SQL servers. Local SQL is also essential to make multi

table queries across both local standard tables and those on remote SQL

servers.

The older name for the BOE API is the "Integrated Database Application

Program Interface" or "IDAPI".

24

2.2 Paradox Database

2.2.1 Paradox Database Fundamentals

Paradox for Windows was a distinctly different product produced by a
different team of programmers. Although key features of the DOS product, the

QBE and the database engine, were ports keeping the DOS code, there was a

major break in compatibility from PAL to ObjectPAL and in the shift to a GUI

design metaphor for Forms and Reports. The ObjectPAL changes were

controversial but forced since PAL was based on keystroke recording actions

that had no equivalent in Windows. An object-based language based on ideas

from Hypercard was used in place of keystroke recording. The Forms and
Reports designers used device independent scaling including ability to work in

zoomed mode for detailed layout. The mouse right-click was used for access to

Forms and Reports properties, inspired by the Xerox Alto and Smalltalk, in a

way now almost universal to Windows programs. The ObjectPAL was (like

Hypercard) associated with the visual objects - also revealed by right click.

Property inspection and layout tools could be "pinned up" to stay on screen, an

idea borrowed from the NeXT and now fairly widely adopted in Windows.

For approximately the first year of development the object-oriented code

was written in C aided by macros, until Turbo C++ was available at which point

the remaining parts of the code were written in C++. The product manager up

until shipping version 1.0 was Joe Duncan. The development and QA team

totaled about 30 people.

Both Paradox for Windows and Quattro Pro for Windows, a closely

related project, started development using beta versions of Windows 3.0, in the

spring of 1990. Paradox/\/Vindows ended up delayed about a year beyond its

original plan, shipping in early 1993. The reasons were many, but not entirely

surprising for a major rewrite, in 00 language with new tools, shifting to a GUI

paradigm, on what was essentially a first version operating system. Still it was a

big problem for the company and Microsoft managed to ship Access a couple of

months ahead of Paradox for Windows, a major marketing win to Microsoft.

25

In 1990 Borland also started work on an internal dBASE clone for both

DOS and Windows, written in assembler, which was planned to ship in 1992. By

early 1992 it became clear that Ashton-Tate was in difficulties on developing

Windows versions of their products and so Borland switched plans, instead

acquiring the company and anointing their internal project as the official

successor. Part of the Ashton-Tate acquisition was the lnterbase database and

it was decided that Paradox/W should be able to work with lnterbase as well as

the Paradox engine and this led to the creation of an IDAPI engine based

around lnterbase.

The acquisition also shifted focus. Paradox had historically competed

against dBASE in some markets, and Paradox/W originally was designed to

improve the competitive position in the developer-oriented market. After dBASE

was acquired this was no longer desirable and emphasis shifted towards an

ease-of-use market. However the product could not be changed to match the

emphasis (this occurred in later releases) at that late stage, making the product

somewhat over complex for the entry level market. Access did a good job of

addressing that same market and got there first, by Christmas 1992. Still,

Paradox/W sold well for a while. Meanwhile, Borland was going through some

serious problems caused by the Ashton-Tate acquisition. Many product lines

were discontinued, corporate reorganization and consolidation was painful, and

even worse the internal dBASE project at the center of the acquisition rationale

was eventually cancelled for technical reasons leaving Borland with a collapse

in revenues and a serious need to develop the missing dBASE for Windows in a

hurry. Borland had lost the strength to fight the multiple marketing battles it

needed for its range of products. Paradox was minimally marketed to the

developers since the company decided it would hold out for a replacement of

dBASE, which eventually came out in 1994, too late for the company.

Microsoft Access was sold for a fraction of the price of Paradox/Windows

and bundled with Word, Excel and PowerPoint in Microsoft Office Professional.

Furthermore, Access performance was good thanks to team contributions from

FoxPro programmers. Despite solid follow-on versions with improvements to

usability for entry-level users, Paradox faded from the market. It was included in

26

the sale of Borland products to Word Perfect, which were in turn resold as Word

Perfect got into financial products, and at the current time of writing Paradox for

Windows, Word Perfect and Quattro Pro for Windows are all owned by Corel

and sold as part of their office suite. dBASE for Windows came out too late to

be a significant player in the Windows market, most dBASE programmers by

then had migrated to Microsoft FoxBase, a very similar database tool. Borland

itself retained the lnterbase/lDAPI server and focussed efforts on its Delphi

tools which over the years gave it an influential but small part of the data

oriented developer market.

2.2.2 Paradox Table Field Types
Alpha (A)

Paradox 3.5, 4, 5, and 7 field type that can contain up to 255 letters and

numbers. This field type was called Alphanumeric in versions of Paradox before

version 5. It is similar to the Character field type in dBASE.

Autoincrement (+)
Field type introduced in the Paradox 5 table format that adds one to the

highest number in the table whenever a record is inserted. The starting range

can from -2, 147,483,647 to 2,147,483,647. Deleting a record does not change

the field values of other records.

BCD(#)
Paradox 5 and 7 field type which is provided only for compatibility with

other applications that use BCD data. Paradox correctly interprets BCD data

from other applications that use the BCD type. When Paradox performs
calculations on BCD data, it converts the data to the numeric float type, then

converts the result back to BCD. When this field type is fully supported, it will

support up to 32 significant digits.

Binary (B)
Paradox 1, 5, and 7 field type that can store binary data up to 256MB

per field.

27

Bytes (Y)

Paradox 5 and 7 field type for storing binary data up to 255 bytes. Unlike

binary fields, bytes fields are stored in the Paradox table (rather than in the

separate .MB file), allowing for faster access.

Date (D)
Paradox 3.5, 4, 5, and 7 as well as dBASE Ill+, IV, and V. dBASE tables

can store dates from January 1, 100, to December 31, 9999. Paradox 5 tables

can store from 12/31/9999 B.C. to 12/31/9999 A.O.

Formatted Memo (F)
Paradox 1, 4.5, 5, and 7 field type is like a memo field except that you

can format the text. You can alter and store the text attributes of typeface, style,
color, and size. This rich text document has a variable-length up to 256MB per

field.

Graphic (G)
Paradox 1, 5, and 7 field type can contain pictures in .BMP (up to 24 bit),

.TIF (up to 256 color), .GIF (up to 256 color), .PCX, and .EPS file formats. Not

all graphic variations are available. For example, currently you cannot store a

24-bit .TIF graphic. When you paste a graphic into a graphic field, Paradox

converts the graphic into the .BMP format.

Logical (L)
Paradox 5 and 7 and dBASE Ill+, IV, and V field type can store values

representing True or False (yes or no). By default, valid entries include T and F

(case is not important).

Memo (M)
Paradox 4, 5, and 7 as well as dBASE Ill+, IV, and V field. A Paradox

field type is an Alpha variable-length field up to 256MB per field. dBASE Memo

fields can contain binary as well as memo data.

For Paradox tables, the file is divided into blocks of 512 characters. Each block

is referenced by a sequential number, beginning at zero. Block O begins with a

28

4-byte number in hexadecimal format, in which the least significant byte comes

first. This number specifies the number of the next available block. It is, in

effect, a pointer to the end of the memo file. The remainder of Block O isn't
used.

Money($)
Paradox 3.5, 4, 5, and 7 field type, like number fields, can contain only

numbers. They can hold positive or negative values. Paradox recognizes up to
six decimal places when performing internal calculations on money fields. This

field type was called Currency in previous versions of Paradox.

OLE (0)
Paradox 1, 5, and 7 as well as dBASE V field type that can store OLE

data.

Number (N)

Paradox 3.5, 4, 5, and 7 as well as dBASE Ill+, IV, and V field type can

store up to 15 significant digits -10307 to + 10308 with up to 15 significant

digits.

dBASE number fields contain numeric data in a Binary Coded Decimal
(BCD) format. Use number fields when you need to perform precise calculations

on the field data. Calculations on number fields are performed more slowly but

with greater precision than are calculations on float number fields. The size of a

dBASE number field can be from 1 to 20. Remember, however, that BCD is in

Paradox 5 and 7 only for compatibility and is mapped directly to the Number

field type.

Short (S)

Paradox 3.5, 4, 5, and 7 field type that can contain integers from --

32,767 through 32,767 (no decimal).

29

Time (T)

Paradox 5 and 7 field type that can contain time times of day, stored in

milliseconds since midnight and limited to 24 hours.

This field type does not store duration which is the difference between

two times. For example, if you need to store the duration of a song, use an

Alpha field. Whenever you need to store time, make a distinction between clock

time and duration. The Time field type is perfect for clock time. Duration can be

stored in an Alpha field and manipulated with code.

TimeStamp (@)

Paradox 5 field type comprised of both date and time values. Rules for

this field type are the same as those for date fields and time fields.

Right -click or press S pacebar to choose. a fieJ
?'. L

Alpha
Number
$ (Money)
Short
Long Integer
(BCD)
Date
Time
@ (Timestamp)
Memo
Formatted Memo
Graphic
OLE
Logical
+ (Autoincrement)
Binary
Bytes

Ta!:,le propeJties.:
rvalidity Checks

Darin~,,, I
r '1, Required Field

. 2, Mir1lp1urn vekie:

FfeliS

Figure 2.2.2.1 Field Types

30

2.2.3 Paradox 4 Table Structure
The Paradox standart table format was introduced in Paradox for DOS

version 4.0ther products that use the standard format include Paradox for DOS

version 4.5, ObjectVision 2.1, and Paradox for Windows versions 1.0 and 4.5.

Earlier versions of the Paradox table type are referred to as the
Compatible table type. In the BOE Configuration Utility, the level option for the

Paradox driver dictates what default table type is created by Paradox for

Windows. Use 3 for Compatible tables, 4 for Standard tables(the
default).Following are the specifications for standard Paradox tables:

- 256MB file size limit if the table is in Paradox format and using a 4 K
block size

- Up to 255 fields per record.

Up to 64 validity checks per table.

- A primary index can have up to 16 fields.

- Tables can have up to 127 secondary indexes.
- Up to two billion records per file.

2.2.4 Paradox 5 Table Structure

The Paradox 5 table format was introduced in Paradox for Windows version
5. Following are the specifications for Paradox 5 tables.

• Up to two billion records per file.

• File size is limited to two gigabytes.
• Up to 255 fields per record.

• Record size: Up to 10,800 bytes per record for indexed tables and 32,750

bytes per record for nonindexed tables. When figuring out the size (the

number of bytes or characters) of a table, remember that Alpha fields take

up their size (for example, an A 10 = 10 bytes), numeric field types take up 8
bytes, short number field types take up 2 bytes, money takes up 8, and
dates take up 4 bytes.

31

• Memos, BLOBs, and so on take 10 bytes plus however much of the memo is

stored in the .DB. For example, M15 takes 25 bytes.

• Up to 64 validity checks per table for Paradox for Windows tables.

• A primary index can have up to 16 fields.

• Tables can have up to 127 secondary indexes.

• Block size can be from 1 K to 32K in steps of 1 K. For example, 1024, 2048,

3072, 4096, 5120 ... 32768.

2.2.5 Paradox 7 and Above Table Structure

The Paradox 7 table format was introduced in Paradox version 7 for

Windows 95/NT. The Paradox 7 table format has all the same specifications as

the Paradox 5 table format with two additions. Following are the specification

additions for the Paradox 7 table format.

-Added descending secondary indexes.

-Added unique secondary indexes

Figure 2.2.5.1 Paradox 7 Table

32

CHAPTER3

USERS MANUAL

After executing the main program the following page welcomes us.(figure 3.1)

STOCK ll: SALES MANAGEMENT V1 .0
Stock Customers Sales Overall Profit Options Help

• 45 Geforce-4000
.16 ASUS- A6
• 12 Creative Infra
• 78 Hp-Deskjet
• 60 Samsung VS
• 56 Dvd-Rom

100

901· 80' ·
70 ... ,

60
so
40·
30-''
20
10•·
0

Geforce-4000 ASUS- A6 Creative Infra Hp-Deskjet Samsung VS Dvd-Rom

ADD STOCK STOCK LIST J
REPORT SALES LIST EDIT STOCK

ADD CUSTOMER EDIT
CUSTOMERS

CUSTOMER
LIST J REPORT

Figure 3.1 (Main Menu)

This is the main view of the program that we can select the operations

that we want to proceed with buttons and a main menu in the top left position of

the screen. There is a stock chart that will show you the initial number of

products in units . This chart is a live chart that is active all through the usage of

the program and updates with any changes in stock.

33

ADD STOCK

I StockNo IProductNarne
._) G elorce-4000

Product Name :
8 ASUS-A6
9 Creative Infra

1 0 H p·D eskjet
11 S arnsung V5
12 Dvd-Rorn

16
12
78
60
56

67
45
45
78

BACK

Figure 3.2 The Add Stock Window

When you select "ADD STOCK" button on main screen then the add

stock window in figure 3.2 will be opened automatically to add new stocks into

our stocklist. After this you have to click "NEW button to enter details of the new

product , then you have to click ADD" button to add product with database

safety.
If you press the "CANCEL" button then the program will cancel the record

and everything you wrote will be truncated automatically. When you press the

"BACK" button you will be redirected to the main screen.

34

7' EDIT STOCK
SELECT PRODUCT :

'StockNo IProductName
.- JiMiffiii!li1iE

Quantityleft UnitPrice SalePrice DateAdded
I

16 56 67 10 01 2008
12 67 89 10 01 . 2008
78 45 67 10 01. 2008
60 45 45 1 0. 01.2008
56 78 89 10 01. 2008

Stock No

Product Name
Quantity
Unit Price
Sale Price
Date

8 ASUS·A6
9 Creative Infra

10 Hp-D eskjet
11 Samsung V5
12 Dvd-Rom

DELETE PRODUCT

SAVF Cl-!Afll1ES

Figure 2.3 Edit Stock Window

In figure 2.3 we see our "EDIT STOCK" window after pressing the "EDIT

STOCK" button on the main program view. In "EDIT STOCK" window you will

be given the opportunity to select the products and edit their stock details which

are already added to stock once a time ago.
When you press the edit button then you will be redirected to the product

name input box to input the new values in order. Any time if you leave empty

any boxes then you will be warned about the empty fields and "Empty Fields

Detected" popup box will pop up to your screen and the record will not be

saved automatically.
After Pressing back button the "EDIT STOCK" window will also close and

you will be welcomed with main program screen again.

35

1' STOCKLIST
StockHo __ I PtoductNarne elt I UnitPrice SalePrice_J DateAdded-1 ~Jt frlist Optio

67110.01.2008
I I

89 10.01.2008
67 10.01.2008
45 10.01.2008
89 10.01.20081 !iU\ r.•Arranae Order F

7 iGeforce-4000 45 56
16 56

9 Creative Infra
10 Hp-Deskjet
11 Samsung V5
12 Dvd-Rom

12
78
60
56

67
45
45
78

Figure 2.4 Stocklist Window

In figure 2.4 we can see the "STOCKLIST" window and this window opens

when you press the "STOCK LIST/REPORT" window in the main program

screen.
In this window you can view or list the products which are currently in

stock . On list options screen you can arrange the list by "stock

number"(numerical ordering) , "product name"(alphabetical ordering),"unit

price","sale price","date added" credentials .

Also you can print the selected list on a report sheet by pressing the

"PRINT" button. After pressing the "PRINT" button there will be print priew,

printer setup and print immediately selection which will pop up on the

screen.Then you can select the preview option to view your current stock

list.(figure 2.5)

36

STOCK LIST
Product Name Quantity Left Unit Price Sale Price Date

Geforce-4000 45 56 67 10.01.2008

ASUS-A6 16 56 67 10.01.2008

Creative Infra 12 67 89 10.01.2008

Hp-Dsskjet 78 45 67 10.01.2008

Samsung VS 60 45 45 10.01.2008

Dvd-Rom 56 78 89 10.01.2008

Figure 2.5 The Print Preview Window

The print Preview Screen Welcomes us with the list of products in details.

CUSTOMER LIST :
I Customerid I Firstname I Lastname lfhonenumber

8;Alp 'Soydan
9 Mehmet Tor

1 0 Ayse : Keri ban
ll1Mustafa !Melek

Address l"J
· ataturk cad no 27 lefk f
.Adiyarnan
PortoRico Cad
Pringles Apt. No:2

23432432
4564645645
345345345
34534535w

KEYWORD
a

SEARCH BACK

Figure 2.6 The Customer List Window

37

In figure 2.6 you can see the customer list screen which has same properties

with stock list screen like printing the list , searching for any customer and

printing the report for any customer.

7' SALES ...

SELECT CUSTOMER CUSTOMER INFORMATION

I Q.1sforne,id I Filstnarne j l.astr)am~ fhonemmber
8 IAlp Soydan 23432432
3 I Mehme> Tor 4564845645

1 0 I Ayse Keriban 345345345
11 , Mustafa Melek 34534535w

Customer Id

First Name

Last Name

ADDED PRODUCTS FAST NAME SEARCH

SELECT PRODUCT Product Name
Hp-Deskjet
ASUS-A6
Hp-Deskjet

StockNo ProductName
7 Gelorce-4000
8 ASUS-A6

QuantityLelt UnitPrice SalePrice DateAcldj~
45 56 67 1001 20[
11 -- 56 67 100120(~1 ------'
12 67 89 10.01.2oc~
72

,o,0[) PRCC<UCT

QUANTITY: ro--- jJ
FAST NAME SEARCH, FIND

"'J [Confirm ProdtJC!~

Sub ToTal : }871

CANCEL SALE VAT%: %

%

PRINT REPORT APPROVE SALE GRAND TOTAL : !1001,6 LYTL

Figure 2. 7 The Sales Window

When you select sales in main program window then you will be directed

to sales window automatically.(Figure 2.7) In sales window you can fast name

search for any customer, confirm the customer and you can add products to the

shopping list with their names , quantities and prices in order .

The program will ask you VAT rate but its initially set as 15% and will

apply it to Sub Total when you confirm product. Also you can make any

discounts on sales if you wish with selecting the discount rate on the right

bottom side of the screen.The program can print/report the current sale after

checking it out.

38

CONCLUSION

Although there are many types and forms of business software, the

overall purpose stays the same, which is to help administration and maintain the

control of the business. Buying a business software is an investment so it is

advised that you must think carefully about the programs and packages that you
purchase for your business; make sure that the business software that you buy

is best suited to your business. It can be hard to decide what software to invest

your time and money in but this decision will help your business in the long run,

for example business software will smooth the transaction process as ordering

and arranged data is automatically stored in your database then the products

can be carefully watched, all with minimal effort.
Delphi gives us the chance to create any software for any businesses. it

has many components or design tools that makes the job easier and faster than

any other development platforms.I also used several components and tools to

design a stock management software.Business software that was developed

and designed by me allows you to control your business in a user friendly way

without having to spend your entire time doing so. It allows you to be more

productive, which will in turn generate better business.
Business software can help all business sizes. That's why; the software

which I've designed can also be developed for bigger business if your business

has larger scale. In other words, it is possible to redesign according to aim and

size of the business to make it suit your business. This is the suitability of my

business software project.

39

REFERENCES

[1] Mastering Borland Delphi 2005 (Mastering) by Marco Cantu' (Paperback -

Aug 19, 2005)

[2] Inside Delphi 2006 (Wordware Delphi Developer's Library) by Ivan Hladni

(Paperback - Nov 25, 2005)
[3] Introducing Delphi Programming: Theory through Practice by John Barrow,

Linda Miller, Katherine Malan, and Helene Gelderblom

[4] www.google.com

[5] www.altavista.com

40

APPENDIX

PROGRAM CODE

FORM 1
unit Unit1;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, Menus, DB, DBTables, StdCtrls, TeEngine, Series, ExtCtrls,
TeeProcs, Chart, DbChart, jpeg, TeeFunci, ComCtrls, Mask, DBCtrls, Grids,

DBGrids;

type

TForm1 = class(TForm)

MainMenu1: TMainMenu;

Stock1: TMenultem;

ADDStock1: TMenultem;
EditStock1: TMenultem;

Exit1: TMenultem;

Options1: TMenultem;

Extras1: TMenultem;

Overa11Profit1: TMenultem;
MonthlyProfit1: TMenultem;

Help1: TMenultem;

ProfitChart1: TMenultem;

SellingChart1: TMenultem;

Exit2: TMenultem;

NewSale1: TMenultem;

Help2: TMenultem;
Howtos1: TMenultem;

41

LockProgram1: TMenultem;

DataSource1: TDataSource;

lmage1: Tlmage;

Button1: TButton;

Button2: TButton;

Button3: TButton;

Button4: TButton;

Button5: TButton;

Button6: TButton;

Button?: TButton;

Buttons: TButton;

StatusBar1: TStatusBar;

Timer1: TTimer;

Label1: Tlabel;

Query1: TQuery;

Chart1 : TChart;

Series 1 : TBarSeries;

DBEdit1: TDBEdit;

DBEdit2: TDBEdit;

EditCustomers1: TMenultem;

ListCustomers1: TMenultem;

Stocklist1: TMenultem;

Customer1: TMenultem;

Sales1: TMenultem;

DeleteAIIData1: TMenultem;

DeleteAIIData2: TMenultem;

DeleteAIIData3: TMenultem;

Query3: TQuery;

Query4: TQuery;

Query5: TQuery;

Edit2: TEdit;

Query2: TQuery;

procedure ADDStock1 Click(Sender: TObject)·

procedure Exit1 Click(Sender: TObject);

procedure Select1 Click(Sender: TObject);

procedure EditStock1 Click(Sender: TObject);

procedure Exit2Click(Sender: TObject);

procedure Button1 Click(Sender: TObject);

procedure Button2Click(Sender: TObject);

procedure Button3Click(Sender: TObject);

procedure SALES1 Click(Sender: TObject);

procedure Button4Click(Sender: TObject);

procedure Button5Click(Sender: TObject);

procedure Button6Click(Sender: TObject);

procedure Button?Click(Sender: TObject);

procedure ButtonBClick(Sender: TObject);

procedure Timer1 Timer(Sender: TObject);

procedure FormCreate(Sender: TObject);

procedure Timer2Timer(Sender: TObject);

procedure Howtos1 Click(Sender: TObject);

procedure NewSale1 Click(Sender: TObject);

procedure EditCustomers 1 Click(Sender: TObject);

procedure ListCustomers1 Click(Sender: TObject);

procedure ProfitChart1 Click(Sender: TObject);

procedure SellingChart1 Click(Sender: TObject);

procedure DeleteAIIData1 Click(Sender: TObject);

procedure DeleteAIIData2Click(Sender: TObject);

procedure DeleteAIIData3Click(Sender: TObject);

procedure MonthlyProfit1 Click(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

Form1: TForm1;

43

implementation

uses Unit2, Unit3, Unit4, Unit5, Unit6, Unit?, Unit8, Unit9;

{$R *.dfm}

procedure TForm1 .AD0Stock1 Click(Sender: TObject);

begin

form2.show;

form2.Query1 .Refresh;

form1 .enabled:=false;

end;

procedure TForm1 .Exit1 Click(Sender: TObject);

begin

form5.Show;

form1 .enabled:=false;

end;

procedure TForm1 .Select1 Click(Sender: TObject);

begin

form3.show;

end;

procedure TForm1 .EditStock1 Click(Sender: TObject);

begin

form3.Show;

form3.Query1 .Refresh;

form1 .enabled:=false;

end;

procedure TForm1 .Exit2Click(Sender: TObject);

var

a:word;

44

begin

a:=application.MessageBox('Are you Sure?','Close Program',36);
if(a=IDYES) then

begin

form1 .close;

end;

end;

procedure TForm1 .Button1 Click(Sender: TObject);
begin

form2.show;

form2.Query1 .Refresh;

form1 .enabled:=False;

end;

procedure TForm1 .Button2Click(Sender: TObject);
begin

form3.Show;

form3.Query1 .Refresh;

form1 .enabled:=false;

end;

procedure TForm1 .Button3Click(Sender: TObject);

begin

form4.show;

form4.query1 .Refresh;

form1 .enabled:=false;

end;

procedure TForm1 .SALES1 Click(Sender: TObject);
begin

form4.show;

form4.Query1 .refresh;

end;

45

procedure TForm1 .Button4Click(Sender: TObject);

begin

forms.show;

form1 .enabled:=false;

end;

procedure TForm1 .Button5Click(Sender: TObject);

begin

form6.show;

form1 .enabled:=false;

end;

procedure TForm1 .Button6Click(Sender: TObject);

begin

form7.show;

form7.Query1 .Refresh;

form1 .enabled:=false;

end;

procedure TF orm 1. Button 7Click(Sender: TObject);

begin

form8.show;

form8.Query1 .Refresh;

form1 .enabled:=false;

end;

procedure TForm1 .Button8Click(Sender: TObject);

begin

form9.show;

form9.Query1 .Close;

form9.Query1 .Open;

form9.Query2.Close;

form9.Query2.0pen;

46

form9.Query1 .Refresh;

form9.Query2.Refresh;

form9.button7.enabled:=true;

form1 .enabled:=false;

end;

procedure TForm1 .Timer1Timer(Sender: TObject);

begin

query1 .Open;

label1.Visible:=true;

label1.Caption:=timetostr(time);

while not query1 .eof do begin

series1 .AddBar(strtoint(dbedit1 .text),dbedit2.text,clblue);

query1 .next;

end;

end;

procedure TForm1 .FormCreate(Sender: TObject);

begin

label1.Visible:=false;

edit2.text:='O';

end;

procedure TForm1 .Timer2Timer(Sender: TObject);

begin

form1 .Visible:=false;

end;

procedure TForm1 .Howtos1 Click(Sender: TObject);

begin

application.MessageBox('Stock & Sales Management V1 .0, Programmed by

Alp Soydan','About',32);

end;

47

procedure TForm1 .NewSale1 Click(Sender: TObject);

begin

form6.show;

form1 .enabled:=false;

end;

procedure TForm1 .EditCustomers1 Click(Sender: TObject);

begin

form?.show;

form7.Query1 .Refresh;

form1 .enabled:=false;

end;

procedure TForm1 .ListCustomers1 Click(Sender: TObject);

begin

form8.show;

form8.Query1 .Refresh;

form1 .enabled:=false;

end;

procedure TForm1 .ProfitChart1 Click(Sender: TObject);

begin

form9.show;

form9.Query1 .Close;

form9.Query1 .Open;

form9.Query2.Close;

form9.Query2.0pen;

form9.Query1 .Refresh;

form9.Query2.Refresh;

form 9. button 7 .enabled :=true;

form1 .enabled:=false;

end;

procedure TForm1 .SellingChart1 Click(Sender: TObject);

48

begin

form4.show;

form4.query1 .Refresh;

form1 .enabled:=false;

end;

procedure TForm1 .DeleteAIIData1 Click(Sender: TObject);

var b: integer;

var i: integer;

var a:word;

begin

a:=application.MessageBox('Are you Sure?','Clear Stock',36);

if(a=IDYES) then

begin

b:=query3. Record Count;

query3.First;

for i:=1 to b do begin

query3.Delete;

query3.next;

end;

query3.Close;

query3.0pen;

form1 .series1 .clear;

form1 .Query1 .close;

form1 .query1 .open;

end;

end;

procedure TForm1 .DeleteAIIData2Click(Sender: TObject);

var b: integer;

var i: integer;

var a:word;

begin

a:=application.MessageBox('Are you Sure?','Delete All Customers',36);

if(a=IDYES) then

49

begin

b:=query4.RecordCount;

query4.First;

for i:=1 to b do begin

query4.Delete;

query4.next;

end;

query4.Close;

query4.0pen;

form1 .series1 .clear;

form1 .Query1 .close;

form1 .query1 .open;

end;

end;

procedure TForm1 .DeleteAIIData3Click(Sender: TObject);

var b: integer;

var i: integer;

var a:word;

begin

a:=application.MessageBox('Are you Sure?','Clear All Sales',36);

if(a=IDYES) then

begin

b:=query5.RecordCount;

query5.First;

for i:=1 to b do begin

query5.Delete;

query5.next;

end;

query5.Close;

query5.0pen;

form1 .series1 .clear;

form1 .Query1 .close;

form1 .query1 .open;

50

end;

end;

procedure TForm1 .MonthlyProfit1 Click(Sender: TObject);

begin

query2.Close;

query2.sql.Clear;

query2.sql.Text:=('select sum(netprofit) from sales where

datedone='+#39+datetostr(date)+#39);

query2.0pen;

edit2.Text:=query2.Fields[O].AsString;

showmessage('TodaysProfit Up to Now:'+' '+edit2.Text+' '+'YTL');

query2.Close;

end;

end.

FORM2
unit Unit2;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, StdCtrls, ExtCtrls, DB, DBTables, Mask, DBCtrls, Grids, DBGrids,

jpeg;

type
TForm2 = class(TForm)

D8Grid1: TDBGrid;

D8Edit2: TDBEdit;

D8Edit3: TDBEdit;

D8Edit4: TDBEdit;

51

Query1: TQuery;

DataSource1: TDataSource; -

Timer1: TTimer;

Label3: TLabel;

Label4: TLabel;

Label5: TLabel;

Label6: TLabel;

D8Edit5: TDBEdit;

Button1: TButton;

D8Edit6: TDBEdit;

Label?: TLabel;

Button2: TButton;

Button3: TButton;

lmage1: Tlmage;

Button4: TButton;

procedure Button1 Click(Sender: TObject);

procedure Button2Click(Sender: TObject);

procedure D8Grid1 MouseDown(Sender: TObject; Button: TMouseButton;

Shift: TShiftState; X, Y: Integer);

procedure D8Grid1 CellClick(Column: TColumn);

procedure FormCreate(Sender: TObject);

procedure D8Edit1 KeyPress(Sender: TObject; var Key: Char);

procedure D8Edit2KeyPress(Sender: TObject; var Key: Char);

procedure D8Edit3KeyPress(Sender: TObject; var Key: Char);

procedure D8Edit4KeyPress(Sender: TObject; var Key: Char);

procedure D8Edit5KeyPress(Sender: TObject; var Key: Char);

procedure Button1 KeyPress(Sender: TObject; var Key: Char);

procedure Button3Click(Sender: TObject);

procedure Button4Click(Sender: TObject);

private

{ Private declarations}

public

{ Public declarations }

end;

52

var

Form2: TForm2;

implementation

uses Unit1;

{$R *.dfm}

procedure TForm2.Button1 Click(Sender: TObject);

begin

dbedit2.enabled:=false;

dbedit3.enabled:=false;

dbedit4.enabled:=false;

dbedit5.enabled :=false;

button2.enabled:=true;

button1 .enabled:=false;

dbgrid1 .enabled:=true;

button3.Enabled:=true;

button4. Enabled :=false;

if dbedit2.text<>" then begin

if dbedit3.text<>" then begin

if dbedit4.text<>" then begin

if dbedit5.text<>" then begin

query1 .Post;

end else begin

query1 .Cancel;

query1 .Close;

query1 .Open;

application.MessageBox('EMPTY FIELDS DETECTED : RECORD NOT

SAVED','Warning',32);

end;

end else begin

53

query1 .Cancel;

query1 .Close;

query1 .Open;

application.MessageBox('EMPTY FIELDS DETECTED : RECORD NOT

SAVED','Warning',32);

end;

end else begin

query1 .Cancel;

query1 .Close;

query1 .Open;

application.MessageBox('EMPTY FIELDS DETECTED : RECORD NOT

SAVED','Warning',32);

end;

end else begin

query1 .Cancel;

query1 .Close;

query1 .Open;

application.MessageBox('EMPTY FIELDS DETECTED: RECORD NOT

SAVED','Warning',32);

end;

end;

procedure TForm2.Button2Click(Sender: TObject);

begin

dbedit2.enabled:=true;

dbedit3.enabled:=true;

dbedit4.enabled:=true;

dbedit5.enabled:=true;

button1 .Enabled:=true;

button2.enabled: =false;

button3. Enabled: =false;

dbedit2.Text:=";

dbedit3.Text:=";

54

dbedit4.Text:=";

dbedit5.Text:=";

dbedit2.SetFocus;

button4.enabled:=true;

query1 .insert;

D8Edit6.Text:= datetostr(date);

dbgrid1 .Enabled:=false;

dbedit2.SetFocus;

end;

procedure TForm2.DBGrid1 MouseDown(Sender: TObject; Button:

TMouseButton;

Shift: TShiftState; X, Y: Integer);

begin

dbedit2.enabled:=false;

dbedit3.enabled:=false;

dbedit4.enabled:=false;

dbedit5.enabled :=false;

button 1. Enabled :=false;

end;

procedure TForm2.D8Grid1 CellClick(Column: TColumn);

begin

dbedit2.enabled :=false;

dbedit3.enabled:=false;

dbedit4.enabled :=false;

dbedit5.enabled:=false;

button1 .Enabled:=false;

end;

procedure TForm2.FormCreate(Sender: TObject);

begin

form2.Borderlcons:= Borderlcons - [biMaximize];

55

dbedit2.enabled:=false;

dbedit3.enabled:=false;

dbedit4.enabled:=false;

dbed it5.enabled: =false;

button1 .Enabled:=false;

end;

procedure TForm2.DBEdit1 KeyPress(Sender: TObject; var Key: Char);

begin

if(key=#13) then dbedit2.SetFocus;

end;

procedure TForm2.DBEdit2KeyPress(Sender: TObject; var Key: Char);

begin

if(key=#13)then dbedit3.SetFocus;

end;

procedure TForm2.DBEdit3KeyPress(Sender: TObject; var Key: Char);

begin

if(key=#13) then dbedit4.SetFocus;

end;

procedure TForm2.DBEdit4KeyPress(Sender: TObject; var Key: Char);

begin

if(key=#13) then dbedit5.SetFocus;

end;

procedure TForm2.DBEdit5KeyPress(Sender: TObject; var Key: Char);

begin

if(key=#13) then button1 .SetFocus;

end;

56

procedure TForm2.Button1 KeyPress(Sender: TObject; var Key: Char);

begin

if(key=#13) then button2.SetFocus;

end;

procedure TForm2.Button3Click(Sender: TObject);

begin

form2.Close;

form1 .enabled:=true;

form1 .series1 .clear;

form1 .Query1 .close;

form1 .query1 .open;

form1 .SetFocus;

end;

procedure TForm2.Button4Click(Sender: TObject);

begin

query1 .close;

query1 .Open;

button1 .Enabled:=false;

button2.Enabled:=true;

button4.enabled:=false;

button3. Enabled :=true;

dbedit2.enabled:=false;

dbedit3.enabled:=false;

dbedit4.enabled:=false;

dbedit5.enabled :=false;

dbedit6.enabled:=false;

end;

end.

57

FORM 3
unit Unit3;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, StdCtrls, ExtCtrls, DB, Mask, DBCtrls, DBTables, Grids, DBGrids,

jpeg;

type
TForm3 = class(TForm)
DBGrid1: TDBGrid;

Query1: TQuery;

DBEdit1: TDBEdit;

DBEdit2: TDBEdit;

DBEdit3: TDBEdit;

DBEdit4: TDBEdit;

DBEdit5: TDBEdit;

Label1: Tlabel;
Label2: Tlabel;

Label3: Tlabel;

Label4: Tlabel;

Label5: Tlabel;

DataSource1: TDataSource;

DBEdit6: TDBEdit;

Label6: Tlabel;

Button1: TButton;

Button2: TButton;

Button3: TButton;

lmage1: Tlmage;

Button4: TButton;

Label?: Tlabel;

58

procedure Button2Click(Sender: TObject);

procedure Button1 Click(Sender: TObject);

procedure Button3Click(Sender: TObject);

procedure FormCreate(Sender: TObject);

procedure DBEdit1Chnge(Sender: TObject);

procedure DBEdit1 Click(Sender: TObject);

procedure DBEdit2Click(Sender: TObject);

procedure DBEdit3Click(Sender: TObject);

procedure DBEdit4Click(Sender: TObject);

procedure DBEdit5Click(Sender: TObject);

procedure DBEdit6Click(Sender: TObject);

procedure DBEdit1 KeyPress(Sender: TObject; var Key: Char);

procedure DBEdit2KeyPress(Sender: TObject; var Key: Char);

procedure DBEdit3KeyPress(Sender: TObject; var Key: Char);

procedure DBEdit4KeyPress(Sender: TObject; var Key: Char);

procedure DBEdit5KeyPress(Sender: TObject; var Key: Char);

procedure DBEdit6KeyPress(Sender: TObject; var Key: Char);

procedure DBGrid 1 CellClick(Column: TColumn);

procedure Button4Click(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

Form3: TForm3;

implementation

uses Unit1;

{$R *.dfm}

59

procedure TForm3.Button2Click(Sender: TObject);

var

a:word;

b:string;

begin

b:=dbedit2.text;

a:=application.MessageBox('Are you sure?','Warning',36);

if(a=IDYES) then

begin

query1 .Delete;

end;

end;

procedure TForm3.Button1 Click(Sender: TObject);

begin

query1 .edit;

button2.Enabled:=false;

button3.Enabled:=true;

dbedit1 .enabled:=true;

dbedit2.enabled:=true;

dbedit3.enabled:=true;

dbedit4.enabled:=true;

dbedit5.enabled:=true;;

dbedit2.SetFocus;

dbgrid1 .Enabled:=false;

button1 .Enabled:=false;

button4.Enabled:=false;

end;

procedure TForm3.Button3Click(Sender: TObject);

begin

button3.Enabled:=false;

button2.Enabled:=true;

button1 .enabled:=true;

dbgrid 1.enabled :=true;

60

button4.Enabled:=true;

dbedit1 .Enabled:=false;

dbedit2.enabled:=false;

dbedit3.enabled:=false;

dbedit4.enabled:=false;

dbedit5.enabled :=false;

dbedit6.enabled :=false;

if dbedit2.text<>" then begin

if dbedit3.text<>" then begin

if dbedit4.text<>" then begin

if dbedit5.text<>" then begin

query1 .Post;

end else begin

query1 .Cancel;

query1 .Close;

query1 .Open;

application.MessageBox('EMPTY FIELDS DETECTED : RECORD NOT

SAVED','Warning',32);

end;

end else begin

application.MessageBox('EMPTY FIELDS DETECTED : RECORD NOT

SAVED','Warning',32);

query1 .Cancel;

query1 .Close;

query1 .Open;

end;

end else begin

query1 .Cancel;

query1 .Close;

query1 .Open;

application.MessageBox('EMPTY FIELDS DETECTED : RECORD NOT

SAVED','Warning',32);

end;

end else begin

61

query1 .Cancel;

query1 .Close;

query1 .Open;

application.MessageBox('EMPTY FIELDS DETECTED: RECORD NOT

SAVED', 'Warning' ,32);

end;

end;

procedure TForm3.FormCreate(Sender: TObject);

begin

button1 .Enabled:=false;

button2.Enabled:=false;

form3.Refresh;

form3.Query1 .Open;

button3.enabled:=false;

dbedit1 .enabled:=false;

dbedit2.enabled:=false;

dbedit3.enabled:=false;

dbedit4.enabled:=false;

dbedit5.enabled:=false;

dbedit6.enabled:=false;

end;

procedure TForm3.DBEdit1 Chnge(Sender: TObject);

begin

button1 .enabled:=false;

end;

procedure TForm3.DBEdit1 Click(Sender: TObject);

begin

button1 .enabled:=false;

end;

procedure TForm3.DBEdit2Click(Sender: TObject);

62

begin

button1 .enabled:=false;

end;

procedure TForm3.DBEdit3Click(Sender: TObject);

begin

button1 .enabled:=false;

end;

procedure TForm3.DBEdit4Click(Sender: TObject);

begin

button1 .enabled:=false;

end;

procedure TForm3.DBEdit5Click(Sender: TObject);

begin

button1 .enabled:=false;

end;

procedure TForm3.DBEdit6Click(Sender: TObject);

begin

button 1.enabled: =false;

end;

procedure TForm3.DBEdit1 KeyPress(Sender: TObject; var Key: Char);

begin

if(key=#13)then dbedit2.SetFocus;

end;

procedure TForm3.DBEdit2KeyPress(Sender: TObject; var Key: Char);

begin

if(key=#13)then dbedit3.SetFocus;

end;

63

procedure TForm3.DBEdit3KeyPress(Sender: TObject; var Key: Char);

begin

if(key=#13)then dbedit4.SetFocus;

end;

procedure TForm3.DBEdit4KeyPress(Sender: TObject; var Key: Char);

begin

if(key=#13)then dbedit5.SetFocus;

end;

procedure TForm3.DBEdit5KeyPress(Sender: TObject; var Key: Char);

begin

if(key=#13)then dbedit6.SetFocus;

end;

procedure TForm3.DBEdit6KeyPress(Sender: TObject; var Key: Char);

begin

if(key=#13)then button3.SetFocus;

end;

procedure TForm3.DBGrid1 CellClick(Column: TColumn);

begin

button1 .enabled:=true;

button2.enabled:=true;

end;

procedure TForm3.Button4Click(Sender: TObject);

begin

form1 .enabled:=true;

form1 .series1 .clear;

form1 .Query1 .close;

form1 .query1 .open;

form3.close;

form1 .SetFocus;

64

end;

end.

FORM4
unit Unit4;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, StdCtrls, ExtCtrls, DBCtrls, Mask, DB, DBTables, Grids, DBGrids,

jpeg, ComCtrls;

type

TForm4 = class(TForm)
DataSource1: TDataSource;

Query1: TQuery;

Timer1: TTimer;

RadioGroup1: TRadioGroup;
Edit1: TEdit;

Label1: Tlabel;

Button1: TButton;

DBGrid1: TDBGrid;

lmage1: Tlmage;
Button2: TButton;

UpDown1: TUpDown;
RadioGroup2: TRadioGroup;

Edit2: TEdit;

UpDown2: TUpDown;

Edit3: TEdit;
UpDown3: TUpDown;

Edit4: TEdit;

65

UpDown4: TUpDown;

procedure Button1 Click(Sender: TObject);

procedure FormCreate(Sender: TObject);

procedure Button2Click(Sender: TObject);

procedure RadioGroup1 Click(Sender: TObject);

procedure RadioGroup2Click(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

Form4: TForm4;

implementation

uses Unit1;

{$R *.dfm}

procedure TF orm4. Button 1 Click(Sender: TObject);

begin

form4.Close;

form1 .enabled:=true;

form1 .setfocus;

end;

procedure TForm4.FormCreate(Sender: TObject);

begin

edit1 .text:=";

radiogroup1 .itemindex:=O;

edit1 .Visible:=true;

edit2.Visible:=false;

66

edit3.Visible:=False;

edit4.Visible:=false;

updown1 .Visible:=true;

updown2.visible:=false;

updown3.Visible:=false;

updown4.Visible:=false;

end;

procedure TForm4.Button2Click(Sender: TObject);

begin

if(radiogroup1 .itemindex=O) then

begin

query1 .close;

query1 .SOL.clear;

query1 .sql.text:=('select * from sales where saleid='+#39+edit1 .text+#39);

query1 .Open;

end;

if(radiogroup1 .itemindex=1) then

begin

query1 .close;

query1 .SOL.clear;

query1 .sql.text:=('select * from sales where customerid='+#39+(edit1 .text)+#39);

query1 .Open;

end;

if(radiogroup1 .itemindex=2) then

begin

edit1 .Text:=edit2.text+'.'+edit3.Text+'.'+edit4.text;

query1 .close;

query1 .SOL.clear;

query1 .sql.text:=('select * from sales where datedone='+#39+(edit1 .text)+#39);

query1 .Open;

end;

end;

procedure TForm4. RadioGroup1 Click(Sender: TObject);

67

begin

edit1 .Text:='1 ';

if radiogroup1 .ltemindex=O then begin

edit1 .Visible:=true;

updown1 .visible:=true;

edit2.Visible:=false;

edit3.Visible:=false;

edit4.visible:=false;

updown2.Visible:=false;

updown3.Visible:=false;

updown4. visible:=false;

radiogroup2.visible:=true;

end;

if radiogroup1 .itemindex=1 then begin

edit1 .Visible:=true;

updown1 .visible:=true;

edit2.Visible:=false;

edit3.Visible:=false;

edit4.visible:=false;

updown2.Visible:=false;

updown3.Visible:=false;

updown4.visible:=false;

radiogroup2.Visible:=true;

end;

if radiogroup1 .ltemlndex=2 then begin

edit1 .Visible:=false;

updown1 .visible:=false;

edit2.visible:=true;

edit3.visible:=true;

edit4.visible:=true;

updown2.visible:=true;

updown3.visible:=true;

updown4.visible:=true;

radiogroup2.Visible:=false;

68

end;

end;

procedure TForm4.RadioGroup2Click(Sender: TObject);

begin

if (radiogroup2.ltemindex=O) then begin

updown1 .lncrement:=1;

end;

if(radiogroup2.itemindex=1) then begin

updown1 .lncrement:=10;

end;

if(radiogroup2.itemindex=2) then begin

updown1.increment:=100;

end;

end;

end.

FORM 5
unit Unit5;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, StdCtrls, ExtCtrls, Grids, DBGrids, DB, DBTables, jpeg, RpCon,

RpConDS, RpDefine, RpRave, Spin, ComCtrls;

type
TForm5 = class(TForm)

DataSource1: TDataSource;

Query1 : TQuery;

DBGrid1: TDBGrid;

69

RadioGroup1: TRadioGroup;

Button1: TButton;

lmage1: Tlmage;

Button2: TButton;

Edit1: TEdit;

Label1: Tlabel;

RadioGroup2: TRadioGroup;

Button3: TButton;

RvProject1: TRvProject;

RvDataSetConnection1: TRvDataSetConnection;

RadioGroup3: TRadioGroup;

Edit2: TEdit;

Edit3: TEdit;

Edit4: TEdit;

UpDown1: TUpDown;

UpDown2: TUpDown;

UpDown3: TUpDown;

Edit5: TEdit;

UpDown4: TUpDown;

procedure RadioGroup1 Click(Sender: TObject);

procedure Button1 Click(Sender: TObject);

procedure Button2Click(Sender: TObject);

procedure Button3Click(Sender: TObject);

procedure RadioGroup3Click(Sender: TObject);

procedure FormCreate(Sender: TObject);

procedure RadioGroup2Click(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

Form5: TForm5;

70

implementation

uses Unit1;

{$R *.dfm}

procedure TForm5.RadioGroup1 Click(Sender: TObject);

begin

if(radiogroup1 .itemindex=O) then

begin

query1 .close;

query1 .SOL.clear;

query1 .sql.text:=('select * from stocklist order by stockno');

query1 .Open;

end;

if(radiogroup1 .itemindex=1) then

begin

query1 .close;

query1 .SOL.clear;

query1 .sql.text:=('select * from stocklist order by productname');

query1 .Open;

end;

if(radiogroup1 .itemindex=2) then

begin

query1 .close;

query1 .SOL.clear;

query1 .sql.text:=('select * from stocklist order by unitprice');

query1 .Open;

end;

if(radiogroup1 .itemindex=3) then

begin

query1 .close;

query1 .SOL.clear;

71

query1 .sql.text:=('select * from stocklist order by saleprice');

query1 .Open;

end;

if(radiogroup1 .itemindex=4) then

begin

query1 .close;

query1 .SQL.clear;

query1 .sql.text:=('select * from stocklist order by saleprice');

query1 .Open;

end;

if(radiogroup1 .itemindex=5) then

begin

query1 .close;

query1 .SQL.clear;

query1 .sql.text:=('select * from stocklist order by dateadded');

query1 .Open;

end;

end;

procedure TForm5.Button1 Click(Sender: TObject);

begin

form5.close;

form1 .enabled:=true;

form1 .setfocus;

end;

procedure TForm5.Button2Click(Sender: TObject);

begin

if(rad iog roup2. itemindex=O) then

begin

edit1 .Text:=edit5.text;

query1 .close;

query1 .SQL.clear;

query1 .sql.text:=('select * from stocklist where stockno='+#39+(edit1 .text)+#39);

query1 .Open;

72

end;

if(radiogroup2.itemindex=1) then

begin

query1 .close;

query1 .SOL.clear;

query1 .sql.text:=('select * from stocklist where ProductName

like'+#39+(edit1 .text)+'%'+#39);

query1 .Open;

end;

if(radiogroup2.itemindex=2) then

begin

edit1 .Text:=edit2.text+'.'+edit3.Text+'.'+edit4.text;

query1 .close;

query1 .SOL.clear;

query1 .sql.text:=('select * from stocklist where

dateadded='+#39+(edit1 .text)+#39);

query1 .Open;

end;

end;

procedure TForm5.Button3Click(Sender: TObject);

begin

rvproject1 .Execute;

end;

procedure TForm5.RadioGroup3Click(Sender: TObject);

begin

edit5.Visible:=false;

updown4.visible:=false;

radiogroup2.ltemlndex:=-1;

if(rad iogroup3. itemi ndex=O) then

begin

radiogroup1 .Visible:=true;

radiogroup2.Visible:=false;

73

radiogroup1 .Enabled:=true;

radiogroup2.Enabled:=false;

edit1 .Visible:=False;

edit2.Visible:=false;

edit3.visible:=false;

edit4.visible:=false;

updown1 .Visible:=false;

updown2.Visible:=false;

updown3.Visible:=false;

button2.visible:=false;

query1 .close;

query1 .SOL.clear;

query1 .sql.text:=('select * from stocklist order by stockno');

query1 .Open;

end;

if(radiogroup3.itemindex=1) then

begin

radiogroup1 .Enabled:=false;

radiogroup1 .Visible:=false;

radiogroup2.Visible:=true;

rad iog roup2. Enabled: =true;

edit1 .Visible:=true;

button2. visible: =true;

query1 .close;

query1 .SOL.clear;

query1 .sql.text:=('select * from stocklist order by stockno');

query1 .Open;

end;

end;

procedure TForm5.FormCreate(Sender: TObject);

begin

edit1 .Text:=";

edit2.Visible:=false;

74

egit3.Visible:=false;

edit4.Visible:=false;

edit5.Visible:=false;

updown1 .Visible:=false;

updown2.Visible:=false;

updown3.Visible:=false;

rad iog rou p2 .Visible: =false;

edit1 .Visible:=false;

button2.Visible:=false;

updown1 .Min:=01;

updown1 .Max:=31;

updown2.min:=01;

updown2.Max:=12;

updown3.Min:=2008;

updown3.max:=2100;

updown4.Min:=01;

updown4.visible:=false;

end;

procedure TF orm5. Rad ioGroup2Click(Sender: TObject);

begin

if radiogroup2.ltemindex=2 then begin

edit1 .Visible:=false;

updown1 .visible:=true;

updown2. visible:=true;

updown3.visible:=true;

edit2.Visible:=true;

edit3.Visible:=true;

edit4.Visible:=true;

edit5.Visible:=false;

end;

i{ radiogroup2.itemindex=O then begin

edit1 .Visible:=false;

updown1 .visible:=false;

75

updown2.visible:=false;

updown3.visible:=false;

edit2.Visible:=false;

edit3.Visible:=false;

edit4.Visible:=false;

edit5. visible:=true;

updown4. visible:=true;

end;

if radiogroup2.itemindex=1 then begin

edit1 .Visible:=true;

edit1 .Text:=";

edit1 .SetFocus;

updown1 .visible:=false;

updown2.visible:=false;

updown3. visible:=false;

updown3. visible:=false;

updown4.visible:=false;

edit2.Visible:=false;

edit3.Visible:=false;

edit4.Visible:=false;

edit5.Visible:=false;

end;

end;

end.

FORMS
unit Unit6;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

76

Dialogs, Grids, DBGrids, StdCtrls, Mask, DBCtrls, DB, DBTables, jpeg,

ExtCtrls;

type

TForm6 = class(TForm)
DataSource1: TDataSource;

Query1: TQuery;
DBEdit2: TDBEdit;

DBEdit3: TDBEdit;

DBEdit4: TDBEdit;

DBEdit5: TDBEdit;

Label2: Tlabel;

Label3: Tlabel;
Label4: Tlabel;

Labels: Tlabel;

DBGrid1: TDBGrid;

Label6: Tlabel;

Button1: TButton;

Button2: TButton;
Button3: TButton;

Button4: TButton;

lmage1: Tlmage;

procedure Button2Click(Sender: TObject);

procedure Button1 Click(Sender: TObject);

procedure Button4Click(Sender: TObject);

procedure Button3Click(Sender: TObject);

procedure FormCreate(Sender: TObject);

private

{ Private declarations }

public
{ Public declarations }

end;

77

var

Form6: TForm6;

implementation

uses Unit2, Unit1;

{$R *.dfm}

procedure TForm6.Button2Click(Sender: TObject);

begin

dbedit2:enabled:=true;

dbedit3.enabled:=true;

dbedit4.enabled:=true;

dbedit5.enabled:=true;

button1 .Enabled:=true;

button2.enabled:=false;

button 3. Enabled :=false;

dbedit2.Text:=";

dbedit3.Text:=";

dbedit4.Text:=";

dbedit5.Text:=";

dbedit2.SetFocus;

button4.enabled :=true;

query1 .insert;

dbgrid1 .Enabled:=false;

end;

procedure TF orm6. Button 1 Click(Sender: TObject);

begin

dbedit2.enabled:=false;

dbed it3.enabled :=false;

dbedit4.enabled:=false;

78

dbedit5.enabled:=false;

button2.enabled:=true;

button1 .enabled:=false;

dbgrid1 .enabled:=true;

button 3. Enabled :=true;

button4. Enabled :=false;

query1 .Post;

form2.Refresh;

end;

procedure TForm6.Button4Click(Sender: TObject);

begin

query1 .close;

query1 .Open;

button1 .Enabled:=false;

button2. Enabled: =true;

button4.enabled :=false;

button3. Enabled :=true;

dbedit2.enabled:=false;

dbedit3.enabled :=false;

dbedit4.enabled:=false;

dbedit5.enabled:=false;

button1 .Enabled:=false;

end;

procedure TForm6.Button3Click(Sender: TObject);

begin

dbedit2.enabled:=false;

dbedit3.enabled:=false;

dbedit4.enabled:=false;

dbedit5.enabled:=false;

button1 .Enabled:=false;

form6.hide;

79

form1 .enabled:=true;

form1 .setfocus;

end;

procedure TForm6.FormCreate(Sender: TObject);

begin

button4. Enabled: =false;

form6.Borderlcons:= Borderlcons - [biMaximize];

dbedit2.enabled:=false;

dbedit3.enabled:=false;

dbedit4.enabled:=false;

dbed it5.enabled: =false;

button1 .Enabled:=false;

end;

end.

FORM 7
unit Unit?;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Mask, DBCtrls, DB, DBTables, Grids, DBGrids, jpeg,
ExtCtrls;

type

TForm7 = class(TForm)

Label1: Tlabel;

Button1: TButton;

Button2: TButton;

80

Button3: TButton;

Button4: TButton;

DataSource1: TDataSource;

D8Grid1: TDBGrid;

Query1: TQuery;

D8Edit2: TDBEdit;

D8Edit3: TDBEdit;

D8Edit4: TDBEdit;

D8Edit5: TDBEdit;

Label3: TLabel;

Label4: TLabel;

Labels: TLabel;

Label6: TLabel;

lmage1: Tlmage;

Label2: TLabel;

D8Edit1: TDBEdit;

procedure Button1 Click(Sender: TObject);

procedure Button2Click(Sender: TObject);

procedure Button4Click(Sender: TObject);

procedure Button3Click(Sender: TObject);

procedure FormCreate(Sender: TObject);

procedure D8Grid1 CellClick(Column: TColumn);

private

{ Private declarations }

public

{ Public declarations }

end;

var

Form?: TForm7;

implementation

uses Unit1;

81

{$R *.dfm}

procedure TForm7.Button1 Click(Sender: TObject);

begin

query1 .edit;

button2. Enabled :=false;

button3.Enabled:=true;

dbedit1 .enabled:=true;

dbedit2.enabled:=true;

dbedit3.enabled:=true;

dbedit4.enabled:=true;

dbedit5.enabled:=true;

d bed it2. SetF OCUS;

dbgrid1 .Enabled:=false;

button1 .Enabled:=false;

end;

procedure TForm7. Button2Click(Sender: TObject);

var

a:word;

b:string;

begin

b:=dbedit2.text;

a:=application.MessageBox('Are you sure?','Warning',36);

if(a=IDYES) then

begin

query1 .Delete;

end;

end;

procedure TForm7.Button4Click(Sender: TObject);

begin

82

form7.Close;

form7.Query1 .cancel;

form7.Query1 .Close;

form7.Query1 .Open;

form7.button1 .enabled:=false;

form7.button2.Enabled:=false;

form7.button3.enabled:=false;

form7.dbedit1 .Enabled:=false;

form7.dbedit2.Enabled:=false;

form7.dbedit3.Enabled:=false;

form7.dbedit4.Enabled:=false;

form7.dbedit5.Enabled:=false;

form7.D8Grid1 .Enabled:=true;

form1 .enabled:=true;

form1 .setfocus;

end;

procedure TForm7.Button3Click(Sender: TObject);

begin

query1 .Post;

button 3. Enabled: =false;

button2.Enabled:=true;

button1 .enabled:=true;

dbgrid1 .enabled:=true;

end;

procedure TForm7.FormCreate(Sender: TObject);

begin

form7.Refresh;

button1 .Enabled:=false;

button2.Enabled:=false;

button3.enabled:=false;

dbedit1 .enabled:=false;

dbedit2.enabled:=false;

83

dbedit3.enabled :=false;

dbedit4.enabled :=false;

dbedit5.enabled:=false;

end;

procedure TForm7.DBGrid1 CellClick(Column: TColumn);

begin

button2.Enabled:=true;

button1 .enabled:=true;

end;

end.

FORMS
unit Unit8;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, DB, DBTables, Grids, DBGrids, ExtCtrls, jpeg, ComCtrls,

RpCon, RpConDS, RpConBDE, RpDefine, RpRave;

type

TForm8 = class(TForm)
RadioGroup1: TRadioGroup;

DBGrid1: TDBGrid;

Label1: Tlabel;

DataSource1: TDataSource;

Query1: TQuery;

Button1: TButton;
Button2: TButton;

Edit1: TEdit;

84

lmage1: Tlmage;

Label2: TLabel;

Button3: TButton;

Edit2: TEdit;

Up0own1: TUpDown;

RvProject1: TRvProject;

RvQueryConnection1: TRvQueryConnection;

procedure Button1 Click(Sender: TObject);

procedure FormCreate(Sender: TObject);

procedure Button2Click(Sender: TObject);

procedure RadioGroup1 Click(Sender: TObject);

procedure Button3Click(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

Form8: TForm8;

implementation

uses Unit1;

{$R *.dfm}

procedure TForm8.Button1 Click(Sender: TObject);

begin

if(radiogroup1 .itemindex=O) then

begin

edit1 .text:=edit2.text;

query1 .close;

query1 .SOL.clear;

85

query1 .sql.add('select * from customer where

customerid='+#39+(edit1. text)+#39);

query1 .Open;

end;

if(radiogroup1 .itemindex=1) then

begin

query1 .close;

query1 .SOL.clear;

query1 .sql.add('select * from customer where firstname

like'+#39+(edit1 .text)+'%'+#39);

query1 .Open;

end;

if(radiogroup1 .itemindex=2) then

begin

query1 .close;

query1 .SOL.clear;

query1 .sql.add('select * from customer where lastname

like'+#39+(edit1 .text)+'%'+#39);

query1 .Open;

end;

end;

procedure TForm8.FormCreate(Sender: TObject);

begin

edit1 .text:=";

updown1 .Min:=1;

updown1 .Max:=1000;

end;

procedure TForm8.Button2Click(Sender: TObject);

begin

form8.Close;

form1 .enabled:=true;

form1 .setfocus;

end;

86

procedure TForm8.RadioGroup1 Click(Sender: TObject);

begin

if radiogroup1 .ltemindex=O then begin

edit1 .Visible:=false;

updown1 .visible:=true;

edit2.Visible:=true;

edit1 .text:=";

end;

if radiogroup1 .itemindex=1 then begin

edit1 .Visible:=true;

updown1 .visible:=false;

edit2.Visible:=false;

end;

if radiogroup1 .itemindex=1 then begin

edit1 .Visible:=true;

edit1 .Text:=";

edit1 .SetFocus;

updown1 .visible:=false;

ed it2 .Visible:=false;

end;

end;

procedure TForm8.Button3Click(Sender: TObject);

begin

rvproject1. Execute;

end;

end.

87

FORM9
unit Unit9;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, DB, DBTables, StdCtrls, DBCtrls, dbcgrids, Grids, DBGrids, Mask,
jpeg, ExtCtrls, ComCtrls, RpRenderPreview, RpDefine, RpRender,

RpRenderCanvas, RpRenderPrinter, RpCon, RpConDS, RpRave;

type

TForm9 = class(TForm)
Label2: Tlabel;

Query1: TQuery;

DataSource1: TDataSource;
DBGrid1: TDBGrid;

Label3: Tlabel;

DBGrid2: TDBGrid;

Query2: TQuery;

DataSource2: TDataSource;

DBEdit1: TDBEdit;

DBEdit2: TDBEdit;

DBEdit3: TDBEdit;

Button1: TButton;
ListBox1: TListBox;

Label4: Tlabel;

Label5: Tlabel;

Edit1: TEdit;

Label6: Tlabel;

Edit2: TEdit;
Button2: TButton;

Button3: TButton;

88

1 I.
I
I

ListBox2: TListBox;

Label?: Tlabel;

Label8: Tlabel;

Ed it3: TEd it;

Label9: Tlabel;
Label10: Tlabel;

Label11: Tlabel;
Label12: Tlabel;

Label13: Tlabel;

DBEdit4: TDBEdit;

Label14: Tlabel;

Button4: TButton;

CheckBox1: TCheckBox;
DBEdit5: TDBEdit;

ListBox3: TListBox;

Edit4: TEdit;

Label15: Tlabel;

Label16: Tlabel;

Edit5: TEdit;
Label17: Tlabel;

Edit6: TEdit;

Label18: Tlabel;

Edit?: TEdit;

Label19: Tlabel;

Label20: Tlabel;

Button5: TButton;
Button6: TButton;

CheckBox2: TCheckBox;

Button?: TButton;

lmage1: Tlmage;

lmage2: Tlmage;

DBEdit6: TDBEdit;

Edit8: TEdit;

Edit9: TEdit;

89

UpDown1: TUpDown;

DBEdit7: TDBEdit;

DBEdit8: TDBEdit;

DBEdit9: TDBEdit;

DBEdit10: TDBEdit;

Query3: TQuery;

DataSou rce3: TDataSou rce;

Label1: Tlabel;

DBEdit14: TDBEdit;

DBEdit15: TDBEdit;

DBEdit16: TDBEdit;

DBEdit17: TDBEdit;

DBEdit18: TDBEdit;

Query4: TQuery;

DataSource4: TDataSource;

DBEdit19: TDBEdit;

DBEdit20: TDBEdit;

RvProject1: TRvProject;

Buttons: TButton;

RvDataSetConnection2: TRvDataSetCon nection;

DBEdit11: TDBEdit;

DBEdit12: TDBEdit;

DBEdit13: TDBEdit;

DBEdit21: TDBEdit;

DBEdit22: TDBEdit;

Query5: TQuery;

procedure Button2Click(Sender: TObject);

procedure Button1 Click(Sender: TObject);

procedure Button4Click(Sender: TObject);

procedure FormCreate(Sender: TObject);

procedure CheckBox1 Click(Sender: TObject);

procedure Button3Click(Sender: TObject);

procedure Button6Click(Sender: TObject);

procedure Button5Click(Sender: TObject);

90

1
procedure Check8ox2Click(Sender: TObject);

procedure Button?Click(Sender: TObject);

procedure UpDown1 Click(Sender: TObject; Button: TUDBtnType);

procedure DBGrid2CellClick(Column: TColumn);

procedure Button8Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var

Form9: TForm9;

implementation

uses Unit1;

{$R *.dfm}

procedure TForm9.Button2Click(Sender: TObject);

begin

query1 .close;

query1 .SOL.clear;
query1 .sql.add('select * from customer where firstname

like'+#39+(edit1 .text)+'%'+#39);

query1 .Open;

end;

procedure TForm9.Button1 Click(Sender: TObject);

var a: extended;

begin
form9.query4.lnsert;

dbedit11.text:=dbedit1 .text;

91

dbedit12.text:=dbedit2.Text;

dbedit13.text:=dbedit3.Text;

dbedit14.text:=query2. Fields[1].asstring;

dbedit15.text:=edit3.Text;

dbedit16.Text:=dbedit5.text;

dbedit22.Text:=datetostr(date);

dbedit21.Text:=timetostr(time);

button1 .Enabled:=false;

ed it8. Text: =floattostr((strtofloat(d bed it6. Text) *strtofloat(ed it3. text))+strtofloat(edit

8.Text));

checkbox2. Enabled: =false;

query2.edit;

listbox1. ltems.Add(query2. Fields[1].asstring);

listbox2.ltems.Add(edit3.text);

d bed it4. Text:= floattostr(strtofloat(d bed it 4. text) - strtofloat(ed it3. Text));

a: =strtofloat(d bed it5. text)*strtofloat(edit 3. text);

listbox3.items.add(floattostr(a)+' '+'YTL');

edit4.Text:=floattostr(strtofloat(edit4.text)+a);

edit3.Text:='O';

form9.query4. Post;

if listbox1 .ltems.count>=1 then begin

checkbox1 .Enabled:=true;

end;

end;

procedure TForm9.Button4Click(Sender: TObject);

begin

query4. Insert;

dbedit11.text:=dbedit1 .text;

dbedit12.text:=dbedit2.Text;

92

dbedit13.text:=dbedit3.Text;

dbedit17.Text:=edit4.text;

dbedit18.text:=edit5.Text;

dbedit19.Text:=edit6.text;

d bed it20. text: =ed it7. text;

query4.Post;

query2.applyupdates;

buttons. Enabled :=true;

button7.enabled:=true;

d bed it10. Text: =floattostr((strtofloat(dbed it 1 O. Text)

(strtofloat(ed it4.Text)*0.01 *strtofloat(edit6.Text))));

q uery3. Post;

edit3.Text:='O';

edit8.text:='O';

edit2.enabled:=false;

dbgrid1 .enabled:=false;

dbgrid2.enabled:=false;

button3.enabled :=false;

button1 .enabled:=false;

button5.enabled :=false;

checkbox1 .Enabled:=false;

edit3.enabled:=false;

edit5.enabled:=false;

edit6.Enabled:=false;

button4.enabled:=false;

button7.SetFocus;

dbedit1 .enabled:=false;

dbedit2.enabled:=false;

dbedit3.enabled:=false;

dbgrid1 .Refresh;

dbgrid2.Refresh;

form9.query2.close;

form9.query2.0pen;

form9.query3.close;

93

form9.query3.open;

form9.query4.Close;

form9.query4.0pen;

form9.query1 .Close;

form9.query1 .Open;

query2.Close;

query2.0pen;

end;

procedure TForm9.FormCreate(Sender: TObject);

begin

buttons. Enabled :=false;

edit8.text:='O';

edit1 .enabled:=false;

edit2.enabled:=false;

edit1 .Text:=";

edit2.Text:=";

edit7.Text:='O';

edit6.Text:='O';

edit3.Text:='O';

edit3.enabled:=false;

edit2.Enabled:=false;

button1 .enabled:=false;

button2.enabled:=false;

button3.enabled :=false;

buttons. Enabled :=false;

listbox1 .Clear;

listbox2.Clear;

listbox3.clear;

dbgrid1 .enabled:=false;

dbgrid2.enabled:=false;

edit5.Text:='15';

button4. Enabled :=false;

checkbox1 .Enabled:=false;

94

checkbox2.enabled:=false;

edit4.text:='O';

dbedit1 .Enabled:=false;

dbedit2.enabled:=false;

dbedit3.Enabled:=false;

edit9.Text:='O';

end;

procedure TForm9.CheckBox1 Click(Sender: TObject);

var b: extended;

var c: extended;

begin

b: =strtofloat(edit 4. Text)* (strtofloat(ed it5. T ext)*O. O 1);

c:=strtofloat(edit4.text)* (strtofloat(edit6.Text)*0.01);

edit7.Text:=floattostr(strtofloat(edit4.text)+ b - c);

ed it9. Text: =floattostr(strtofloat(ed it4. Text)-strtofloat(ed itB. text));

if (checkbox1 .Checked=true) then begin

edit3.enabled:=false;

button1 .enabled:=false;

listbox1 .Enabled:=false;

listbox2.Enabled:=false;

listbox3.enabled:=false;

dbgrid2.Enabled:=false;

dbgrid2.Refresh;

d bed itB. text: =edit?. text;

d bed it9. text: =floattostr(b);

d bed it 10. Text: =ed it9. Text;

button4.enabled:=true;

edit5.enabled:=false;

edit6.enabled:=false;

button5.enabled:=true;

end;

begin

if (checkbox1 .Checked=false) then begin

95

edit3.enabled:=true;

dbgrid2.Enabled:=true;

d bg rid2. Refresh;

dbedit11.Text:=query1 .fields[O].AsString;

dbedit12.Text:=query1 .Fields[1].AsString;

dbedit13.Text:=query1 .Fields[2].asstring;

listbox1 .Enabled:=true;

listbox2.Enabled:=true;

listbox3.enabled:=true;

button4.enabled:=false;

edit5.enabled:=true;

edit6.Enabled:=true;

end;

end;

end;

procedure TForm9.Button3Click(Sender: TObject);

begin

query2.close;

query2.SQL.clear;

query2.sql.add('select * from stocklist where productname

like'+#39+(edit2.text)+'%'+#39);

query2.0pen;

end;

procedure TForm9.Button6Click(Sender: TObject);

begin

form1 .enabled:=true;

form1 .setfocus;

form1 .series1 .clear;

form1 .Query1 .close;

form1 .query1 .open;

form9.query3.Cancel;

form9.edit3.Text:='O';

96

form9.edit8.text:='O';

form9.edit9.text:='O';

form9.query2.cancelupdates;

form9.query1 .Cancel;

form9.Query4.Close;

form9.query4.open;

form9.edit4.Text:='O';

form9.edit3.enabled:=false;

form9.edit2.enabled:=false;

form9.button3.Enabled:=false;

form9.dbgrid2.enabled:=false;

form9.button1 .enabled:=false;

form9.edit7.Text:='O';

form9.listbox1 .Clear;

form9.listbox2.Clear;

form9.listbox3.Clear;

form9.checkbox1 .checked:=false;

form9.checkbox1 .Enabled:=false;

form9.checkbox2.enabled:=false;

form9.checkbox2.checked:=false;

form9.button5.Enabled:=false;

form9.dbedit1 .Enabled:=false;

form9.dbedit2.Enabled:=false;

form9.DBEdit3.enabled:=false;

form9.dbgrid1 .Enabled:=false;

form9.dbgrid1 .Refresh;

form9.close;

end;

procedure TForm9.Button5Click(Sender: TObject);

begin

button7.enabled:=true;

query3.Cancel;

edit3.Text:='O';

97

edit8.text:='O';

edit9.text:='O';

query2.cancelupdates;

query1 .Cancel;

edit4.Text:='O';

edit2.enabled:=false;

button3. Enabled :=false;

button1 .enabled:=false;

edit7.Text:='O';

listbox1 .Clear;

listbox2.Clear;

listbox3.Clear;

checkbox1 .checked:=false;

checkbox1 .Enabled:=false;

checkbox2.enabled:=false;

checkbox2. checked: =false;

button5.Enabled:=false;

edit3.enabled:=false;

dbedit1 .enabled:=false;

dbedit2.enabled:=false;

dbedit3.enabled:=false;

dbgrid2.enabled:=false;

dbgrid1 .enabled:=false;

dbgrid2.refresh;

dbgrid1 .refresh;

end;

procedure TForm9.CheckBox2Click(Sender: TObject);

begin

if checkbox2.Checked=true then begin

dbedit7.text:=dbedit1 .text;

edit1 .enabled:=false;

dbgrid1 .enabled:=false;

button3.enabled:=true;

98

edit3.Enabled:=true;

button1 .enabled:=false;

edit2.enabled:=true;

dbgrid2.enabled:=true;

dbgrid2.Refresh;

dbgrid1 .Refresh;

dbedit1 .Enabled:=false;

dbedit2.Enabled:=false;

dbedit3.enabled:=false;

dbedit7.text:=dbedit1 .text;

end else begin

dbgrid2.enabled:=false;

dbgrid2.refresh;

dbgrid1 .Enabled:=true;

dbgrid1 .Refresh;

dbedit1 .Enabled:=true;

dbedit2.Enabled:=true;

dbedit3.enabled:=true;

dbedit7.text:=dbedit1 .text;

end;

end;

procedure TForm9.Button7Click(Sender: TObject);

var i: integer;

var b: integer;

begin

buttons. Enabled: =false;

button7.enabled:=false;

listbox1 .clear;

listbox2.clear;

listbox3.Clear;

query3.lnsert;

edit3.Text:='O';

edit4.Text:='O';

99

edit6.Text:='O';

edit7.Text:='O';

edit1 .enabled:=true;

button2.enabled: =true;

dbgrid1 .enabled:=true;

dbedit7.Text:=";

dbedit8.Text:=";

dbedit9.Text:=";

dbedit1 a.text:=";

dbedit11.text:=";

dbedit12.text:=";

dbedit13.text:=";

dbedit14.Text:=";

dbedit15.Text:=";

dbedit16.text:=";

dbedit1 ?.Text:=";

dbedit1 a.text:=";

dbedit19.text:=";

dbedit20.text:=";

checkbox1 .checked:=false;

checkbox2.Checked:=false;

checkbox2.enabled:=true;

dbgrid1 .Refresh;

dbedit1 .enabled:=true;

dbedit2.enabled:=true;

dbedit3.enabled:=true;

updown1 .Enabled:=false;

b:=query4.RecordCount;

form9.query4.first;

for i:=1 to b do begin

form9.query4. Delete;

form9.query4.next;

end;

form9.query4.Close;

100

form9.query4.0pen;

form9.query4.Refresh;

end;

procedure TForm9.UpDown1 Click(Sender: TObject; Button: TUDBtnType);

var b: integer;

begin

b:=strtoint(dbedit4.Text);

updown1 .Min:=O;

updown1 .Max:=b;

if strtoint(edit3.Text)>O then begin

button1 .Enabled:=true;

end;

end;

procedure TForm9.DBGrid2CellClick(Column: TColumn);

begin

dbedit11.text:=dbedit1 .text;

dbedit12.text:=dbedit2.Text;

dbedit13.text:=dbedit3.Text;

if strtoint(dbedit4.Text)=O then begin

updown1 .Enabled:=false;

button1 .Enabled:=false;

end else beqln

updown1 .Enabled:=true;

button1 .enabled:=true;

edit3.Text:='1 ';

end;

end;

procedure TForm9.Button8Click(Sender: TObject);

begin

rvproject1 .Execute;

end;

end.

101

	Page 1
	Titles
	NEAR EAST UNIVERSITY
	Faculty of Engineering

	Page 2
	Page 3
	Titles
	TABLE OF CONTENTS

	Page 4
	Titles
	ABSTRACT

	Page 5
	Titles
	INTRODUCTION

	Page 6
	Titles
	CHAPTER ONE
	1.DELPHI PROGRAMMING LANGUAGE
	1.1 Introduction

	Page 7
	Titles
	1.2 What is Delphi?
	1.3 History of Delphi

	Page 8
	Page 9
	Page 10
	Titles
	1.4 Delphi Programming Pheriphals

	Page 11
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 12
	Titles
	1.4.2 Project Unit

	Page 13
	Page 14
	Titles
	1.4.3 Data Types And Variables

	Page 15
	Page 16
	Titles
	1.4.4 Procedures And Functions

	Page 17
	Page 18
	Titles
	s ·= ";

	Page 19
	Page 20
	Page 21
	Titles
	1.4.5 Classes and Objects

	Page 22
	Images
	Image 1

	Page 23
	Page 24
	Page 25
	Titles
	1.4.6 Libraries And Packages :

	Images
	Image 1

	Page 26
	Images
	Image 1

	Page 27
	Titles
	2.1 Borland Database Engine
	2.1.1 What is BDE?
	2.1.2 History of BDE

	Images
	Image 1
	Image 2

	Page 28
	Titles
	2.1.3 BDE DESIGN

	Images
	Image 1

	Page 29
	Titles
	2.2 Paradox Database
	2.2.1 Paradox Database Fundamentals

	Images
	Image 1

	Page 30
	Images
	Image 1

	Page 31
	Titles
	2.2.2 Paradox Table Field Types

	Images
	Image 1

	Page 32
	Images
	Image 1

	Page 33
	Images
	Image 1

	Page 34
	Titles
	Darin~,,, I
	30

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 35
	Titles
	2.2.3 Paradox 4 Table Structure
	2.2.4 Paradox 5 Table Structure

	Images
	Image 1

	Page 36
	Titles
	2.2.5 Paradox 7 and Above Table Structure

	Images
	Image 1
	Image 2

	Page 37
	Titles
	CHAPTER3
	USERS MANUAL

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 38
	Images
	Image 1
	Image 2
	Image 3

	Page 39
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Tables
	Table 1

	Page 40
	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 41
	Titles
	KEYWORD
	37
	STOCK LIST
	Figure 2.6 The Customer List Window
	CUSTOMER LIST :
	Figure 2.5 The Print Preview Window
	The print Preview Screen Welcomes us with the list of products in details.

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Tables
	Table 1

	Page 42
	Titles
	ro--- jJ

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Page 43
	Titles
	CONCLUSION

	Images
	Image 1

	Page 44
	Titles
	REFERENCES

	Images
	Image 1

	Page 45
	Titles
	APPENDIX
	PROGRAM CODE
	FORM 1

	Images
	Image 1

	Page 46
	Images
	Image 1

	Page 47
	Images
	Image 1

	Page 48
	Images
	Image 1

	Page 49
	Images
	Image 1

	Page 50
	Images
	Image 1

	Page 51
	Images
	Image 1

	Page 52
	Images
	Image 1

	Page 53
	Images
	Image 1

	Page 54
	Images
	Image 1

	Page 55
	Titles
	FORM2

	Images
	Image 1

	Page 56
	Images
	Image 1
	Image 2
	Image 3

	Page 57
	Images
	Image 1
	Image 2

	Page 58
	Images
	Image 1

	Page 59
	Images
	Image 1
	Image 2

	Page 60
	Images
	Image 1
	Image 2

	Page 61
	Images
	Image 1
	Image 2

	Page 62
	Titles
	FORM 3

	Images
	Image 1
	Image 2

	Page 63
	Images
	Image 1

	Page 64
	Images
	Image 1

	Page 65
	Images
	Image 1

	Page 66
	Page 67
	Images
	Image 1
	Image 2
	Image 3

	Page 68
	Images
	Image 1

	Page 69
	Titles
	FORM4

	Images
	Image 1

	Page 70
	Images
	Image 1

	Page 71
	Images
	Image 1

	Page 72
	Images
	Image 1

	Page 73
	Titles
	FORM 5

	Images
	Image 1

	Page 74
	Images
	Image 1

	Page 75
	Images
	Image 1

	Page 76
	Images
	Image 1

	Page 77
	Images
	Image 1

	Page 78
	Images
	Image 1

	Page 79
	Images
	Image 1

	Page 80
	Titles
	FORMS

	Images
	Image 1

	Page 81
	Images
	Image 1

	Page 82
	Images
	Image 1

	Page 83
	Images
	Image 1

	Page 84
	Titles
	FORM 7

	Images
	Image 1

	Page 85
	Images
	Image 1

	Page 86
	Images
	Image 1

	Page 87
	Images
	Image 1

	Page 88
	Titles
	FORMS

	Images
	Image 1

	Page 89
	Images
	Image 1

	Page 90
	Images
	Image 1

	Page 91
	Images
	Image 1
	Image 2

	Page 92
	Titles
	FORM9

	Images
	Image 1

	Page 93
	Images
	Image 1

	Tables
	Table 1

	Page 94
	Images
	Image 1

	Page 95
	Titles
	1

	Images
	Image 1
	Image 2

	Page 96
	Page 97
	Images
	Image 1

	Page 98
	Images
	Image 1
	Image 2

	Page 99
	Images
	Image 1

	Page 100
	Images
	Image 1

	Page 101
	Images
	Image 1

	Page 102
	Page 103
	Page 104
	Page 105

