
FACULTY OF ENGINEERING 

DEPARTMENT OF COMPUTER ENGINEERING 

INTELLECTUAL ·coNTROL SYSTEM 
FOR TECHNOLOGICAL PROCESSES 

GRADUATION PROJECT 
COM-400 

Student: Mohammed Alhaj Hussein (991288) 

Supervisor: Assoc.Prof.Dr Rahib ABIYEV 

Nicosia - 2002 



ACKNOWLDGMENT 

First of all I would like to thank Assoc. Prof Dr. Rahib Abiyev for his endless and 

untiring support and help and his persistence, in the course of the preparation of this 

project. 
Under his guidance, I have overcome many difficulties that I faced during the 

various stages of the preparation of this project. 
I would like to thank all of my friends who helped me to overcome my project 

especially Yousef, and manna. 
Finally, I would like to thank my family, especially my parents. Their love and 

guidance saw me through doubtful times. Their never-ending belief in me and their 

encouragement has been a crucial and a very strong pillar that has held me together. 

They have made countless sacrifices for my betterment. I can't repay them, but I 

do hope that their endless efforts will bear fruit and that I may lead them, myself and all 

. who surround me to a better future. 



11 

ABSTRACT 

Human beings epitomize the concept of "intelligent control." Despite its apparent 

computational advantage over humans, no machine or computer has come close to 

achieving the level of sensor-based control which humans are capable of. Thus, there is a 

clear need to develop computational methods which can abstract human decision-making 

processes based on sensory feedback. 
Neural networks offer one such method with their ability to map complex 

nonlinear functions. 
The aim of graduating project is the development of neural control system for 

technological processes. To achieve this aim the application problem of neural system for 

technological processes is considered .The model of neural systems, their architectures 

and learning algorithms are given. 
Using neural structure the development of the neural control system is preformed, 

Controller is constructed on the base of neural network. The learning algorithm of neural 

network for controllers is described. 
The modeling of the neural identification and control system is performed, 

Results of simulations of the developed and the traditional control system showed the 

improved time response characteristics of previous. 
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INTRODUCTION 

/Researchers in the field of robotics and ®ton,omous systems frequently find 

themselves looking towards human intelligence as a guide for develooing "[ntelligent" 
- . . . . ~.,r ,t;, ~<l' 

machines/Paradoxically, control tasks, which seem easy or even 1rivfai' for hu.mans, are 
]; ~P:±:~~......t(.._ 

often.extremely difficult or impossible for computers or robots to I duplicate:-hule-based 
. olct>•lL rl,,H,-.Y\ Ii~ 

systems usually fail to anticipate every reventuafi@ and thus are;ll suited for robots in 
' •.. _-. ' 

uncertain and new environments. There is a clear need to develop computational methods 

which can, in a general framework, abstract the human decision-making process based on 

sensory feedback. · 
I 

Modeling/and identifyi.~--:hym~n control processes can be_a significant step 

towards transferring human knowledge and skill in real-time control. This can lead to c.-> - 
more intelligent control systems, and can bridge the gap between traditional artificial 

intelligence theory and the develop~ent of intellige~t machines. ' ~ ~t," d,._. .. J, 
Artificial neural networks have shown great promise inr identifying complex 

. . 
nonlinear systems. Thus, neural networks 'are well s1.1;ite_d _!or generating the complex 

Q l i~ernal mapping: from sensory in~s to control actions, which .humans possess. Our goal 

is to develop ~easible neural. network-based m:thod. for identifj'ing human~ntrol 

strategy and transferring that control strategy to control systems. To this end, we are 
r -- . 

looking at an efficient and flexible neural network architecture that is capable of 

modeling nonlinear dynamic systems. 

The project consists of introduction, 4 chapters and conclusion . 
. - -- - 

Chapterl describes the states of neural control system however, its describes the 

two problems. First, the neural control of intelligent structures and the second, 

autonomous vehicle navigation. 

Chapter2 describes the architecture of neural control systems for technological 

process, including the structure of neural system and descriptions of the functions of its 

main block are given. The neural network structures and their operation principles 

considering some problems, also the description of the learning in neural network has 

been considered, and some historical background of neural network has considered too. 
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Chapter3 describes the development of neural control system for technological 

process. The desired time response characteristic of system, neural control system's 

learning algorithm and characteristic of technological process are described. Using these 

the synthesis of procedures and simulation of neural control system are performed. 

Chapter 4 describes the provide background information on this new architecture 

for neural network learning and a theoretical basis for its use. Then simulation results 

presented for this architecture in identifying both static and dynamic systems, including a 

nonlinear controller for an inverted pendulum system. Finally, some preliminary results 

in modeling human control strategy have been showed and discussed. 

Conclusion presents the important obtained result that the project discussed and 

contributes in the project itself. 



CHAPTER ONE. STATE OF APPLICATION PROBLEMS OF 

NEURAL NETWORK FOR TECHNOLOGICAL PROCESSES 

,,.... »-": 
1.1. ~ural Control oflntelligent Structure rt'?"'=''""~ 

v;J!-, Smart structures asEi~ ~mbedded and distributed sensor/actor 

/i.f 'v!' ~evice~ challenges and problems for control engineering. The reasons for 

"'{ this a~ofuki:-First, the design of embedded and distributed sensor/actor devices 

~ 'wy ~ ~ r~ new questions about the development of more appropriate control 

\ ~ t strategies interpreting the global versus local control strategy trade-off from a new 

and "distributed" perspective. Second, due to the non-linearity of the system 
./ 

components it is often too difficult to derive a system model of the smart structure 

suitable for classical controller design based on an exact analytical model using first 

principles. 
Neural architectures such as neural networks offer in these cases the advantage 

to avoid the analytical modelling of smart structures and to "learn" the system transfer 

function from available experimental or simulated data instead. The work described 

here is focusing on the learning aspect of smart structure controllers with neural 

architectures and is organized along the following two main research directions of the 

basic research effort that aims at the development of novel neural control 

architectures. In this respect it has been aimed to resolve the "black-box-character" in 

neural network applications to allow a deeper mathematical analysis of the neural 

network after training. 
This goal has been achieved through the introduction of the concept of 

dimensional homogeneity for neural networks [6], which leads to the emergence of 

dimensionless similarity parameters in the neural nets and allows to interpret the 

neural mapping in the network as the similarity function of the physical object under 

consideration, and, through the identification of the neural correspondence for 

classical control engineering techniques such as the Laplace-Transform [7]. It is 

expected that these two developments will ease a future performance analysis and a 

more direct comparison of classical controllers with neural control approaches 

including a future stability proof for neural control. 
The practical development and design of novel controllers with neural 

architectures for different reference models [ 1,2, 7]. These reference models are: 

1) The tether deployment for small capsule re-entry, 
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2) The generic bump panel, 

3) The adaptive helicopter blade, 

4) The acoustic cavity. 
In the practical development of neural controllers for these applications, the pre- 

processing of the training data, the employed training procedures for the neural 

network controller, the control performance and accuracy have been investigated. A 

generic procedure for the design of neural controllers has also been established for 

these purposes. 
These two main research directions characterize the research results of the project 

Al "Neural control oflntelligent Structures" which have been achieved in cooperation 

with other projects in the framework of the collaborative research project SFB 409 

"Smart Structures in Aerospace Engineering". The details about the above mentioned 

different system models to be controlled and the simulation or experimental data have 

been provided from the partner project, while the neural modelling and the neural 

controller design has been performed in the project Al. The lessons learned and the 

results obtained are described in the following. 

T~'.o. diff~Een~~~Ja.L!}.5~rk rcoi:i!:?l sch·~·~:s, __ ad~e.ct and an indi~ect control 
scheme, have been~rv the literature [5]. For a detailed overview of neural -- ---.:-•~' .,,... .. - . - . - ~ ,: - ~ __, 

con:rol methodologies see [4]._ ~hi)e the direct ~;~;l c~2~1~,,~~eme in _figu~e .lJ 
doesn't us~. a mo~~! of the plant and is known_ to~ from sf~~J.lity_problems,. the 

indirect neural control scheme makes use of a previously identified neural plant 

model, see figure 1.2. 

Neural 
Controller 

Plant 

Figure .1.1. The direct neural control scheme 

The neural plant model in figure 1 .2 is trained using theGm1are9 err~ between 7/ (;fl)')-'> ~e;;~~..., '"'- 
the a~ual plant <?utput and t~e model. Training. is ceased when the approximation of 

the plant is good enough anf he neural network can be used as a ~nt mod~ for the 



training of the controller without the use of the actual system. After successful plant 

? identification, the neural controller is trained with an inverse training scheme [4] as 
------ shown in figurel.2. The control input is fed into the plant and the neural plant model. 

The error between the commanded input and the plant output and the neural 

network output is then propagated back through the neural plant model using the first 

steps of the well-known Back propagation algorithm. The error found for the input 

neuron of the neural plant model corresponds directly to the error of the output neuron 

of the neural controller and can be used for the training with standard learning 

algorithms 
Identified 

riJ Plant 

Neural 
Controller 

l 

Plant 

Figure 1.2. The indirect neural control scheme and training 

The neural network controller is usually structured according to the neural 

network plant model using external feedback of the control signal and delayed values 

of the commanded input using time-delay Jines. This neural control approach has been 

compared to classical controller designs using the mentioned reference examples. 

For the tether-assisted de orbit of a re-entry capsule from the international 

space station (ISS), the results of the neural controller are significantly better 

compared to a conventional controller design as shown in the figure l.3.below, 

Together with the project B3 "Adaptive Tether Systems for Orbital Systems", a time­ 

variant neural network controller has been developed for the deployment of a tethered 

re-entry capsule from the International Space Station (ISS). 

3 
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Figure 1.3. Tethered re-entry capsule from the International Space Station (ISS). 

The relative advantages and disadvantages of the inductive versus the 

deductive modelling and control approach for smart structures have been reported in 

[1,2,7] and are subject of ongoing and future research in the SFB 409 project Al. 

1.2. Autonomous Vehicle Navigation 

Vision-based autonomous vehicle and robot guidance have proven difficult for 

algorithm-based computer vision methods, mainly because of the diversity of unex­ 

pected cases that must be explicitly dealt with in the algorithms and the real-time 

constraint, Pomerleau successfully demonstrated the potential of neural networks for 

overcoming these difficulties, his ALVINN (Autonomous Land Vehicle in Neural 

Networks) set a world record for autonomous navigation distance. After training on a 

two-mile stretch of highway, it drove the CMU Navlab. Equipped with video cameras 

and laser range sensors, for 21.2 miles with an average speed of 55 mph on a 

relatively old highway open to normal traffic, AL VINN was not disturbed by passing 

cars while it was being driven autonomously, ALVINN nearly doubled the previous 

distance world record for autonomous navigation. What is surprising is the simplicity 

of the networks and the training techniques used in ALVINN, which consists of 

several networks, each trained for a specific road situation: 

1) Single-lane paved road. 

2) Single-lane dirt road. 



3) Two-lane Neighbourhood Street. 

4) Multilane highway. 

A monocular colour video input is sufficient for all of these situations; therefore, 

no depth perception is used in guiding the vehicle. Not using stereovision saves a sig­ 

nificant amount of time, because matching of correspondence points in a stereo pair of 

images is computationally expensive. Laser rangefinder and laser reflectance inputs 

are also tested. The laser reflectance input resembles a black-and-white video image 

and can be handled in the same way as a video image. Reflectance input is ad­ 

vantageous over video input, because it appears the same regardless of the lighting 

conditions. This allows ALVINN to be trained in daylight and tested in darkness. 

Laser rangefinder input is useful for obstacle avoidance. However, a laser range 

image needs to be processed differently, because its image pixel values represent 

distance instead of lightness. We will focus the discussion on video image input. 

A network in AL VINN for each situation consists of a single hidden layer of only 

four units, an output layer of 30 units and a 30 X 32 retina for the 960 possible input 

variables. The retina is fully connected to the hidden layer, and the hidden layer is 

fully connected to the output layer, as shown in figure! .4 for two representative nodes 

( out of a total of 960). The graph of the feed forward network is a node-coalesced 

cascade of directed versions of bipartite graphs K960, 4 and k4, 30 Pomerleau tried 

networks with more layers and more hidden units but did not observe significant 

performance improvement over this simple network, Because of the real-time 

constraint of the task, a simple network is definitely preferred. 

5 



It is a node-coalesced of two directed bipartite graphs, The Image on the retina 

is a low-resolution version of a cooler video image with 480 X 512 pixels. A 16X16 

neighbourhood in the video image is randomly sampled and averaged to produce a 

single pixel on the retina .the outputs from the three channels of a colour video image­ 

namely, red(R), green (G), and blue (B) are combined to produce 

P=~+ B 
255 R+G+B 

30x32 
Retina 

Figure 1.4. The graph of a network in ALVINN. 

Where, P is the brightness of the combined image. This combination is based on 

empirical observation. What is interesting is that it approximates the learning result if 

one chooses to add another layer to learn the pre-processing from video image to the 

retina. The darkest 5% of the pixels on the retina are assigned the minimum activation 

level of -1, and the brightest 5% are assigned the maximum activation level of I. The 

6 



remaining 90% of the pixels are assigned activation values proportional to their 

brightness relative to the two extremes. 
The 30 output units are arranged in a one-dimensional array for controlling the 

steering wheel. The steering direction is represented by a Gaussian activation pattern 

in the output layer, illustrated in the Figurel.5; the distributed pattern representation 

of the output proves to be useful in evaluating the reliability of the network output. If 

the vehicle under the guidance of one network (e.g., for single-lane paved road) 

transits into a new situation (e.g. multilane highway) the network will be confused. 

There is a high likelihood that the output pattern will significantly deviate from a 

Gaussian pattern. This signals; the AL VINN to pick another network to guide the 

vehicle. 
Each network is trained using the back propagation algorithm with a technique 

Pomerleau called training-on-the-fly: i.e. the network is trained by observing a person 

driving a sequence of training pairs, consisting of input images and the person's 

response, is obtained during a drive. Training can be performed at the same time. 

There are several potential problems with the training-on-the-fly approach. They are 

all due to the low level of diversity or- in other words, the high level of similarity, in 

the training data. For example, the network needs to learn how to recover from 

Various mistakes, a sequence of consistently similar training data will also cause the 

network to over learn the current situation and forget about what it might have learned 

about other situations, Diversity in the training data is necessary for valid 

generalization. Pomerleau used several techniques to solve these problems. 

First, the inner images and the steering directions are geometrically 

transformed as if the vehicle had been in different positions relative to the road. 

Second, structured noise is added to the input images to simulate different situations 

on the road, such as passing cars. Guardrails, and trees. New training pairs are formed 

using a new image with added structure noise and the same steering direction as the 

noise-free image. These techniques greatly increase the diversity of the training data. 

Thus leading to good generalisation of learning. 

7 
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figurel.5. Representation of two steering directions in the output layer from the plot 

of output unit activation values versus the output unit. 

After each network is trained for a specific situation, how is the system going 

to decide when to use which network? Pomerleau proposed two techniques for 

selecting a network: output appearance and input reconstruction. Output appearance 

measures the deviation of the shape of the output response from the Gaussian shape. 

Although not always true, there is a high level of correlation between the Gaussian 

shape of the output response and the applicability of the network to the current 

situation. Input reconstruction feeds the output response back through the connections 

and the hidden layer to reconstruct an input image. The difference between the real 

input image and the reconstructed image provides another indication of the 

applicability of the network to the current situation. These two techniques can then be 

used to guide the choice of the right network for the current situation, Due to the Fact 

that neural networks are not good at remembering maps and planning the route, a 

symbolic component is added to the system for these functions. The symbolic 

component is also responsible for generating structured noises and transformations to 

increase the diversity of the training data and for coordinating all the components in 

the system. 



1.3. Application of Artificial Neural Network For Control Problem 

In the design of autonomous computer based systems, we often face the 

embarrassing situation of having to specify, to the system, how it should carry out 

certain tasks, which involve computations known to be intractable or are suspect of 

being so. To circumvent such impasses, we resort to complexity reducing strategies 

and tactics, which trade some loss of accuracy for significant reduction in complexity; 

the term computational intelligence refers to such complexity reduction methods. In 

this paper we describe briefly some of our own work in this area and then develop a 

computation intelligence view of the tasks of process monitoring and optimization, as 

performed by autonomous system. Some important current fields of discovery in 

computational intelligence include neural net computing evolutionary, fuzzy sets, 

associative memory and so on. 
Some of the theory bounded evolutional trends in real time al application are 

pointed out based system. The evolutional main stream is increasing interdisciplinary 

integration. 
Three sub trends are illustrated on examples: mechanical combination of method, A 

methods used for approximate solution of classical problems, and abstract methods 

applied in new domains .in addition similarity between integrated circuits and real 

time system designed and increased use of formal verification at the early stages of 

systems development are pointed out. 
A new control system for the intelligent force control of multifingered robot 

grips, which combines both fuzzy, based adaptation level and neural based one with a 

conventional PID _ controller. The most attention is given to the neural based force 

adaptation level implemented by three-layered back propagation neural network. A 

computer based simulation system for the big_in_hole insertion task is developed to 

analyse the capabilities of the neural controllers. Their behaviour is discussed by 

comparing them to conventional and fuzzy based force controllers performing the 

same task. 
Increasingly artificial neural networks are finding applications in process 

engineering environment. Recently the department of trade and industry of the UK 

has supported the transfer of neural technology as part of the campaign, the university 

of the new castle and EDS advanced technologies group have set-up a process 

monitoring and control club. 

9 
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The logical design of a neural controller is a achieved by representing a neural 

computation as a stochastic timed linear proof with a built-in system for rewards and 

punishments based on the timelines of a computation performed by a neural 

controller. 
Logical designs are represented with stochastic forms of proof nets and proof 

boxes. Sample application of the logical design methodology of the truck-backer 

upper and a real time object recognition and tracking system (RTorts) are presented. 

Performance result of the implementation module of the (RTorts) are given and 

compared to similar system. 
The work describe in the neural network of intelligent structure is focusing on 

the learning aspect of smart structure controllers with neural architectures along the 

following two main research directions of The basic research effort that aims at the 

development of novel neural control architectures. So it used two different neural 

network control schemes, a direct and an indirect control scheme. 

For the autonomous navigation concept is explaining a network in ALVININ 

for each situation consists of a single hidden layer of only four units. The retina is 

fully connected to the hidden layer as well as hidden layer is fully connected to the 

output layer as a result of the real time constraint of the task, a simple network is 

definitely preferred. 
Each network is trained using the back propagation algorithm with a technique 

Pomerleau called training-on-the-fly; training can be performed at the same time. 

Pomerleau proposed two techniques for selecting a network: output 

appearance and input reconstruction as we have declared before, this two techniques 

can then be used to guide the choice of the right network for the current situation. 
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CHAPTER TWO. STRUCTURE AND LEARNING OF NEURAL 
NETWORKS 

2.1. Introduction To Neural Networks 

The power and speed of modern digital computers is truly astounding. No 

human can ever hope to compute a million operations a second. However, there are 

some tasks for which even the most powerful computers cannot compete with the 

human brain, perhaps not even with the intelligence of an earthworm. 

Imagine the power of the machine, which has the abilities of both computers and 

humans. It would be the most remarkable thing ever. And all humans can live happily 

ever after. This is the aim of artificial intelligence in general. 

When we are talking about a neural network, we should more properly say "artificial 

neural network" (ANN), because that is what we mean most of the time. Biological 

neural networks are much more complicated than the mathematical models we use for 

ANNs. But it is customary to be lazy and drop the "A" or the "artificial". 

An Artificial Neural Network (ANN) is an information-processing paradigm that 

rs inspired by the way biological nervous systems, such as the brain, process 

information. 
The key element of this paradigm is the novel structure of the information 

processing system. It is composed of a large number of highly interconnected 

processing elements (neurons) working in unison to solve specific problems. ANNs, 

like people, learn by example. An ANN is configured for a specific application, such 

as pattern recognition or data classification, through a learning process. Learning in 

biological systems involves adjustments to the synaptic connections that exist 

between the neurons. This is true of ANNs as well. 

At the core of neural computation are the concepts of distributed, adaptive, and non­ 

linear computing. Neural networks perform computation in a very different way than 

conventional computers, where a single central processing unit sequentially dictates 

every piece of the action. 
Evolving from neuro-biological insights, neural network technology gives a 

computer system an amazing capacity to actually learn from input data. Artificial 

neural networks have provided solutions to problems normally requiring human 

observation and thought processes. Some real world applications include: 



~ Quality Control 

~ Financial Forecasting 

~ Economic Forecasting 

~ Credit Rating 

~ Speech & Pattern Recognition 

~ Biomedical Instrumentation 

~ Process Modelling & Management 

~ Laboratory Research 

~ Oil & Gas Exploration 

~ Health Care Cost Reduction 

~ Targeted Marketing 

~ Defence Contracting 

~ Bankruptcy Prediction 

~ Machine Diagnostics 

~ Securities Trading 

2.2 Some Other Definitions of a Neural Networks 

According to the DARPA Neural Network Study (1988, AFCEA International 

Press, p. 60): a neural network is a system composed of many simple processing 

elements operating in parallel whose function is determined by network structure, 

connection strengths, and the processing performed at computing elements or nodes. 

According to Haykin, S. (1994), Neural Networks: A Comprehensive 

Foundation, NY: Macmillan, p. 2: 

A neural network is a massively parallel-distributed processor that has a 

natural propensity for storing experiential knowledge and making it available for use, 

It resembles the brain in two respects: 

I .The network through a learning process acquires knowledge. 

2.lnterneuron connection strengths known as synaptic weights are used to store the 

knowledge. 

ANNs have been applied to an increasing number of real-world problems of 

considerable complexity. Their most important advantage is in solving problems that 

are too complex for conventional technologies problems that do not have an 

algorithmic solution or for which an algorithmic solution is too complex to be found. 

12 



ANNs have been applied to an increasing number of real-world problems of 

considerable complexity. Their most important advantage is in solving problems that are 

too complex for conventional technologies problems that do not have an algorithmic 

solution or for which an algorithmic solution is too complex to be found. In general. 

because of their abstraction from the biological brain. ANNs are well suited to problems 

that people are good at solving. but for which computers are not. This problem includes 

pattern recognition and forecasting (which requires the recognition of trends in data). 

Neural Networks approaches this problem by trying to mimic the structure and 

function of our nervous system Many researchers believe that Al (Artificial Intelligence) 

and neural networks are completely opposite in their approach. Conventional Al is based 

on the symbol system hypothesis. Loosely speaking. a symbol system consists of 

indivisible entities called symbols. which can form more complex entities. by simple 

rules. The hypothesis then states that such a system is capable of and is necessary for 

intelligence 

The general belief is that Neural Networks is a sub-symbolic science. Before 

symbols themselves are recognized. some thing must be done so that conventional Al can 

then manipulate those symbols. To make this point clear. consider symbols such as cow. 

grass. house etc. Once these symbols and the "simple rules" which govern them are 

known. conventional AI can perform miracles. But to discover that something is a cow is 

not trivial. It can perhaps be done using conventional Al and symbols such as - white. 

legs. etc. But it would be tedious and certainly. when you see a cow. you instantly 

recognize it to be so. without counting its legs. 

But this belief that Al and Neural Networks are completely opposite is not valid 

because. even when you recognize a cow. it is because of certain properties, which you 

observe, that you conclude that it is a cow. This happens instantly because various parts 

of the brain function in parallel. All the properties, which you observe, are "summed up". 

Certainly there are symbols here and rules - "summing up". The only difference is that in 

Al, symbols are strictly indivisible, whereas here. the symbols (properties) may occur 

with varying degrees or intensities. 

13 
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Only breaking this line of distinction between AI and Neural Networks. and 

combining the results obtained in both. towards a unified framework. can make progress 

in this area. 

2.3. Biological Information Process 

To imitate biological information processing models for different level of 

organization and of abstraction have to be considered. First. there is the level of the 

individual neuron where it is a matter of representing the static and dynamic electncal 

charactenstics as well as the adaptive behaviour of the neuron. On the network ievel 

The interconnection of identical neurons to form network is examined to describe specific 

sensor and motor city-related functions such as filtering, projection operations. controller 

function. In non-linear. biological system. network on the mental function level are the 

most complicated ones and comprise functions such as perception. solution of problems. 

strategic proceeding etc. these are the networks on the highest level of biological 

information processing. 

2.3.1 The Biological Neuron 

The most basic element of the human brain is a specific type of cell. which 

provides us with the abilities to remember. think, and apply previous expenences to our 

every action. These cells are known as neurons; each of these neurons can connect with 

up to 200000 other neurons. The power of the brain comes from the numbers of these 

basic components and the multiple connections between them. 

All natural neurons have four basic components. which are dendrites. soma. axon. 

and synapses. Basically, a biological neuron receives inputs from other sources. combines 

them in some way. performs a generally non-linear operation on the result, and then 

output the final result. The figure below shows a simplified biological neuron and the 

relationship of its four components. 



4 Parts of a 
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figure2.1. Biological Neuron 

2.3.2 The Artificial Neuron 
The basic unit of neural networks, the artificial neurons, simulates the four 

basic functions of natural neurons. Artificial neurons are much simpler than the 

biological neuron; the figure below shows the basics of an artificial neuron. 

Xz 
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X i sunmetlon 
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Note that various inputs to the network are represented by the mathematical 

symbol, x (n). Each of these inputs are multiplied by a connection weight, these 

Sun Transfer 
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Pa.th 

Processing 
Element 

Weigrts vln 

Figure2.2. Artificial Neuron 
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weights are represented by w (n). In the simplest case, these products are simply 

summed, fed through a transfer function to generate a result, and then output. 

Even though all artificial neural networks are constructed from this basic 

building block the fundamentals may vary in these building blocks and there are 

differences. 

2.4. The characteristic of neural systems 

1. Imitation of the structure and function of the brain. 

2. Parallel information processing. 

3. Implicit knowledge representation. 

4. Application of inductive reasoning. 

5. Learning occurs within the system. 

2.5. The Structure of the Nervous System 

For our purpose, it will be sufficient to know that the nervous system consists 

of neurons, which are connected to each other in a rather complex way. Each neuron 

can be thought of as a node and the interconnections between them are edges as 

shown below in the figure2.3: 

ncde (neuron) 

edg e 
(interconnection) 

figure2.3. Edge interconnections. 
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Such a structure is called as a directed graph. Further, each edge has a weight 

associated with it, which represents how much the two neurons, which are connected 

by it, can interact. If the weight is more, then the two neurons can interact much more 

a stronger signal can pass through the edge. 

2.6. Functioning of the Nervous System 

The nature of interconnections between 2 neurons can be such that one neuron 

can either stimulate or inhibit the other. An interaction can take place only if there is 

an edge between 2 neurons. If neuron A is connected to neuron B as below with a 

weight w, in the figurel.2 

• w 

A B 

Figure2.4. The Edge Between Two Neurons. 

Then if A is stimulated sufficiently, it sends a signal to B. The signal depends 

on the weight w, and the nature of the signal, whether it is stimulating or inhibiting. 

This depends on whether w is positive or negative. If sufficiently strong signals are 

sent, B may become stimulated. 
Note that A will send a signal only if it is stimulated sufficiently, that is, if its 

stimulation is more than its threshold. Also if it sends a signal, it will send it to all 

nodes to which it is connected. The threshold for different neurons may be different. 

If many neurons send signals to A, the combined stimulus may be more than the 

threshold. 
Next if B is stimulated sufficiently, it may trigger a signal to all neurons to 

which it is connected. 
Depending on the complexity of the structure, the overall functioning may be 

very complex but the functioning of individual neurons is as simple as this. Because 

of this we may dare to try to simulate this using software or even special purpose 

hardware. 
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2.7 The Difficulty of Modelling a Brain-like Neural Network 

We have seen that the functioning of individual neurons is quite simple. Then 

why is it difficult to achieve our goal of combining the abilities of computers and 

humans? 

The difficulty arises because of the following: 

It is difficult to find out which neurons should be connected to which. This is the 

problem of determining the neural network structure. Further, the interconnections in 

the brain are constantly changing. The initial interconnections seem to be largely 

governed by genetic factors. 

The weights on the edges and thresholds in the nodes are constantly changing. 

This problem has been the subject of much research and has been solved to a large 

extent. The approach has been as follows: Given some input, if the neural network 

makes an error, then it can be determined exactly which neurons were active before 

the error. Then we can change the weights and thresholds appropriately to reduce this 

error. 

For this approach to work, the neural network must "know" that it has made a 

mistake. In real life, the mistake usually becomes obvious only after a long time. This 

situation is more difficult to handle since we may not know which input led to the 

error. 

Also notice that this problem can be considered as a generalization of the 

previous 

problem of determining the neural network structure. If this is solved, that is also 

solved. This is because if the weight between two neurons is zero then, it is as 

good as the two neurons not being connected at all. So if we can figure out the 

weights properly, then the structure becomes known. But there may be better methods 

of determining the structure. 

The functioning of individual neurons may not be so simple after all. For 

example, remember that if a neuron receives signals from many neighbouring 

neurons, the combined stimulus may exceed its threshold. Actually, the neuron need 

not receive all signals at exactly the same time, but must receive them all in a short 

time-interval. 

It is usually assumed that such details will not affect the functioning of the 

simulated neural network much. But may be it will. 



Another example of deviation from normal functioning is that some edges can 

transmit signals in both directions. Actually, all edges can transmit in both directions, 

but usually they transmit in only 1 direction, from one neuron to another. 

2.8.Neural Network Topologies 

The building blocks of neural networks are in place. Neural networks consist of 

layer(s) of PES, as we will declare later interconnected by weighted connections. The 

arrangement of the PEs, connections and patterns in to a neural network is referred to 

as topology. 

Neural networks are built from a large number of very simple processing 

elements that individually deal with pieces of a big problem. A processing element 

(PE) simply multiplies an input by a set of weights, and a nonlinearly transforms the 

result into an output value. The principles of computation at the PE level are 

deceptively simple. The power of neural computation comes from the massive 

interconnection among the PEs, which share the load of the overall processing task, 

and from the adaptive nature of the parameters (weights) that interconnect the PEs. 

Normally, a neural network will have several layers of PEs. The most basic and 

commonly used neural network architecture is the multi layer perceptron (MLP). The 

diagram (figure 2.5.) below illustrates a simple MLP. The circles are the PEs arranged 

in layers. The left row is the input layer, the middle row is the hidden layer, and the 

right row is the output layer. The lines represent weighted connections (i.e., a scaling 

factor) between PEs. 

figure2.5. A simple Multi Layer Perceptron 

The performance of an MLP is measured in terms of a desired signal and an 

error criterion. The output of the network is compared with a desired response to 
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Biologically, neural networks are constructed in a three dimensional way from 

microscopic . components. These neurons seem capable of nearly unrestricted 

interconnections. This is not true in any man-made network. Artificial neural 

networks are the simple clustering of the primitive artificial neurons. This clustering 

occurs by creating layers, which are then connected to one another. How these layers 

connect may also vary. Basically, all artificial neural networks have a similar structure 

of topology. 
Some of the neurons interface the real world to receive its inputs and other 

neurons provide the real world with the network's outputs. All the rest of the neurons 

are hidden form view. 

produce an error. An algorithm called back propagation is used to adjust the weights a 

small amount at a time in a way that reduces the error. The network is trained by 

repeating this process many times. The goal of the training is to reach an optimal 

solution based on the performance measurement. 

We shall now try to understand different types of neural networks 

2.8.1. Layers 

20 
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INPUT 
LAYER 

( there may be sever a 1 
hidden layers) 

figure2.6. Layer Structure 

As the figure above shows, the neurons are grouped into layers the input layer 

consist of neurons that receive input form the external environment. The output layer 

consists of neurons that communicate the output of the system to the user or external 

environment. There are usually a number of hidden layers between these two layers; 

the figure above shows a simple structure with only one hidden layer. 

When the input layer receives the input its neurons produce output, which 

becomes input to the other layers of the system. The process continues until a certain 

condition is satisfied or until the output layer is invoked and fires their output to the 

external environment. 

To determine the number of hidden neurons the network should have to 

perform its best, one are often left out to the method trial and error. If you increase the 

hidden number of neurons too much you will get an over fit, that is the net will have 

problem to generalize. The training set of data will be memorized, making the 

network useless on new data sets. 

2.8.2. Communication And Types of Connections 

Neurons are connected via a network of paths carrying the output of one 

neuron as input to another neuron. These paths is normally unidirectional, there might 

however be a two-way connection between two neurons, because there may be 



another path in reverse direction. A neuron receives input from many neurons, but 

produce a single output, which is communicated to other neurons. 

The neuron in a layer may communicate with each other, or they may not have 

any connections. The neurons of one layer are always connected to the neurons of at 

least another layer. 

2.8.2.1 Inter-layer connections 

There are different types of connections used between layers; these connections 

between layers are called inter-layer connections. 

• Fully connected Each neuron on the first layer is connected to every neuron 

on the second layer. 

• Partially connected 
A neuron of the first layer does not have to be connected to all neurons on the 

second layer. 

• Feed forward 
The neurons on the first layer send their output to the neurons on the second 

layer, but they do not receive any input back form the neurons on the second 

layer. 

• Bi-directional 
There is another set of connections carrying the output of the neurons of the 

second layer into the neurons of the first layer. 

Feed forward and bi-directional connections could be fully- or partially connected. 

• Hierarchical 
if a neural network has a hierarchical structure, the neurons of a lower layer 

may only communicate with neurons on the next level of layer. 

• Resonance 
The layers have bi-directional connections, and they can continue sending 

messages across the connections a number of times until a certain condition is 

achieved. 
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2.8.2.2 Intra-layer connections 

In more complex structures the neurons communicate among themselves within a 

layer, this is known as intra-layer connections. There are two types of intra-layer 

connections. 
• Recurrent the neurons within a layer are fully- or partially connected to one 

another. After these neurons receive input form another layer, they 

communicate their outputs with one another a number of times before they are 

allowed to send their outputs to another layer. Generally some conditions 

among the neurons of the layer should be achieved before they communicate 

their outputs to another layer. 

• On-centre/off surround A neuron within a layer has excitatory connections 

to itself and its immediate neighbours, and has inhibitory connections to other 

neurons. One can imagine this type of connection as a competitive gang of 

neurons. Each gang excites itself and its gang members and inhibits all 

members of other gangs. After a few rounds of signal interchange, the neurons 

with an active output value will win, and is allowed to update its and its gang 

member's weights. (There are two types of connections between two neurons, 

excitatory or inhibitory. In the excitatory connection, the output of one neuron 

increases the action potential of the neuron to which it is connected. When the 

connection type between two neurons is inhibitory, then the output of the 

neuron sending a message would reduce the activity or action potential of the 

receiving neuron. 
One causes the summing mechanism of the next neuron to add while the 

other causes it to subtract. One excites while the other inhibits. 
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2.9. Learning Algorithms 

2.9.1. The Perceptron 

This .is a very simple model and consists of a single 'trainable' neuron. 

Trainable means that its threshold and input weights are modifiable. Inputs are 

presented to the neuron and each input has a desired output (determined by us). If the 

neuron doesn't give the desired output, then it has made a mistake. To rectify this, its 

threshold and/or input weights must be changed. How this change is to be calculated 

is determined by the learning algorithm. 
The output of the perceptron is constrained to Boolean values - (true, false), 

(1,0), (1, -1) or whatever. This is not a limitation because if the output of the 

perceptron were to be the input for something else, then the output edge could be 

made to have a weight. Then the output would be dependant on this weight. 

The perceptron looks like 

X 

y 

• 
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figure2.7. The perceptron. 

xl, x2, ... , xn are inputs. These could be real numbers or Boolean values depending on 

the problem. 

y is the output and is Boolean. 

wl, w2, ... , wn are weights of the edges and are real valued. 

T is the threshold and is real valued. 

The output y is 1 if the net input which is 

wl xl + w2 x2 + ... + wn xn 
Is greater than the threshold T. Otherwise the output is zero. 



The idea is that we should be able to train this perceptron to respond to certain 

inputs with certain desired outputs. After the training period, it should be able to give 

reasonable outputs for any kind of input. If it wasn't trained for that input, then it 

should try to find the best possible output depending on how it was trained. 

So during the training period we will present the perceptron with inputs one at a time 

and see what output it gives. If the output is wrong, we will tell it that it has made a 

mistake. 
It should then change its weights and/or threshold properly to avoid making 

the same mistake later. 
Note that the model of the perceptron normally given is slightly different from 

the one pictured here. Usually, the inputs are not directly fed to the trainable neuron 

but are modified by some "pre-processing units". These units could be arbitrarily 

complex, meaning that they could modify the inputs in any way. These units have 

been deliberately eliminated from our picture, because it would be helpful to know 

what can be achieved by just a single trainable neuron, without all its "powerful 

friends". 
To understand the kinds of things that can be done using a perceptron, we 

shall see a rather simple example of its use - Compute the logical operations "and", 

"or", "not" of some given Boolean variables. 

Computing "and": There are n inputs, each either a O or 1. To compute the 

logical "and" of these n inputs, the output should be 1 if and only if all the inputs are 

1. This can easily be achieved by setting the threshold of the perceptron to n. The 

weights of all edges are 1. The net input can be n only if all the inputs are active. 

Computing "or": It is also simple to see that if the threshold is set to 1, then the output 

will be 1 if at least one input is active. The perceptron in this case acts as the logical 

"or". 
Computing "not": The logical "not" is a little tricky, but can be done. In this 

case, there is only one Boolean input. Let the weight of the edge be -1, so that the 

input, which is either O or I, becomes O or -1. Set the threshold to 0. If the input is 0, 

the threshold is reached and the output is I. If the input is -1, the threshold is not 

reached and the output is 0. 
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2.9.2. The XOR Problem 

There are problems, which cannot be solved by any perceptron In fact there are 

more such probiems than problems, which can be solved using perceptrons The most 

often quoted example is the XOR problem - build a perceptron, which takes 2 Boolean 

inputs and outputs the XOR of them What we want is a perceptron, which will output 

if the two inputs are different and 0, otherwise 

lnnut Desired Output 

0 

0 

0 0 

0 

0 

Consider the following perceptron as an attempt to solve the problem 

1 

1 
y 

Figure 2.8. Example Illustrates The Perceptron Problem. 

If the mputs are both 0, then net input is 0, which is less than the threshold (0.5) 

So the output is O - desired output, 

If one of the inputs is O and the other is 1, then the net input is l _ This is above 

threshold, and so the output l is obtained. 



If a set of patterns can be correctly classified by some perceptron, then such a set 

of patterns is said to be linearly separable The term "linear" is used because the 

perceptron is a linear device. The net input is a linear function of the individual inputs 

and the output is a linear function of the net mput Linear means that there is no square 

(x2) or cube (x3), etc. terms in the formulas. 

A pattern (xl ,x.2, ... , xn) is a point in an n-dimensional space (Stop imagining 

things.) This is an extension of the idea that (x, y) is a pomt in 2-dimensions and (x, y, z) 

is a point in 3 dimensions. The utility of such a weird notion of an n--dimensional space is 

that there are many concepts, which are independent of dimension Such concepts carry 

But the given perceptron fails for the last case To see that no perceptron can be 

built to solve the problem, try to build one yourself 

2.9.3. Pattern Recognition Terminology 

The inputs that we have been referring to, of the form (x I, x2 . xn) are also called 

as patterns If a perceptron gives the correct desired output for some pattern, then we say 

that the perceptron recognizes that pattern We also say that the perceptron correctly 

classifies that pattern 
Since a pattern by our definition is Just a sequence of numbers, It could represent 

anythmg such as a picture, a song, and a poem anything that you can have in a 

computer file We could then have a perceptron, which could learn such inputs and 

classify them, eg. A neat picture or a scnbblmg, a good or a bad song, etc. All we have to 

do is to present the perceptron with some examples -- give it some songs and tell rt 

whether each one ts good or bad (It could then go all over the internet, searching for 

songs, which you may like) Sounds incredible? At least that's the way it is supposed to 

work, But it may not. The problem is that the set of patterns, which you want the 

perceptron to learn, might be something like the XOR problem. Then no perceptron can 

be made to recognize your taste. 

2.9.4. Linearly Separable Patterns and Some Linear Algebra 
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Similarly, a straight line in 2D is given by - 

ax+ by= c 

In 3D, a plane is given by - 

ax+ by+ cz = d 

When we generalize this, we get an object called as a hyper plane - 

wlxl + w2x2 + ... + wnxn = T 

Notice something familiar? This is the net input to a perceptron. All points 

(patterns) for which the net input is greater than T belong to one class (they give the 

same output). All the other points belong to the other class. 

We now have a lovely geometrical interpretation of the perceptron. A perceptron with 

weights wl, w2, ... wn and threshold T can be represented by the above hyper plane. 

All points on one side of the hyper plane belong to one class. The hyper plane 

(perceptron) divides the set of all points (patterns) into 2 classes. 

Now we can see why the XOR problem cannot have a solution. Here there are 

2 inputs. Hence there are 2 dimensions (luckily). The points that we want to classify 

are (0,0), (1, 1) in one class and (0, 1 ), (1,0) in the other class. 

(1,1) 

0 ------·-- 1 X 

figure2.9. Two Inputs Dimensions. 

Clearly we cannot classify the points ( crosses on one side, circles on other) 

using a straight line. Hence no perceptron exists which can solve the XOR problem. 
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ABSTRACT 

Human beings epitomize the concept of "intelligent control." Despite its apparent 

computational advantage over humans, no machine or computer has come close to 

achieving the level of sensor-based control which humans are capable of. Thus, there is a 

clear need to develop computational methods which can abstract human decision-making 

processes based on sensory feedback. 
Neural networks offer one such method with their ability to map complex 

nonlinear functions. 
The aim of graduating project is the development of neural control system for 

technological processes. To achieve this aim the application problem of neural system for 

technological processes is considered .The model of neural systems, their architectures 

and learning algorithms are given. 
Using neural structure the development of the neural control system is preformed, 

Controller is constructed on the base of neural network. The learning algorithm of neural 

network for controllers is described. 
The modeling of the neural identification and control system is performed, 

Results of simulations of the developed and the traditional control system showed the 

improved time response characteristics of previous. 
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INTRODUCTION 

/Researchers in the field of robotics and ®ton,omous systems frequently find 

themselves looking towards human intelligence as a guide for develooing "[ntelligent" 
- . . . . ~.,r ,t;, ~<l' 

machines/Paradoxically, control tasks, which seem easy or even 1rivfai' for hu.mans, are 
]; ~P:±:~~......t(.._ 

often.extremely difficult or impossible for computers or robots to I duplicate:-hule-based 
. olct>•lL rl,,H,-.Y\ Ii~ 

systems usually fail to anticipate every reventuafi@ and thus are;ll suited for robots in 
' •.. _-. ' 

uncertain and new environments. There is a clear need to develop computational methods 

which can, in a general framework, abstract the human decision-making process based on 

sensory feedback. · 
I 

Modeling/and identifyi.~--:hym~n control processes can be_a significant step 

towards transferring human knowledge and skill in real-time control. This can lead to c.-> - 
more intelligent control systems, and can bridge the gap between traditional artificial 

intelligence theory and the develop~ent of intellige~t machines. ' ~ ~t," d,._. .. J, 
Artificial neural networks have shown great promise inr identifying complex 

. . 
nonlinear systems. Thus, neural networks 'are well s1.1;ite_d _!or generating the complex 

Q l i~ernal mapping: from sensory in~s to control actions, which .humans possess. Our goal 

is to develop ~easible neural. network-based m:thod. for identifj'ing human~ntrol 

strategy and transferring that control strategy to control systems. To this end, we are 
r -- . 

looking at an efficient and flexible neural network architecture that is capable of 

modeling nonlinear dynamic systems. 

The project consists of introduction, 4 chapters and conclusion . 
. - -- - 

Chapterl describes the states of neural control system however, its describes the 

two problems. First, the neural control of intelligent structures and the second, 

autonomous vehicle navigation. 

Chapter2 describes the architecture of neural control systems for technological 

process, including the structure of neural system and descriptions of the functions of its 

main block are given. The neural network structures and their operation principles 

considering some problems, also the description of the learning in neural network has 

been considered, and some historical background of neural network has considered too. 
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Chapter3 describes the development of neural control system for technological 

process. The desired time response characteristic of system, neural control system's 

learning algorithm and characteristic of technological process are described. Using these 

the synthesis of procedures and simulation of neural control system are performed. 

Chapter 4 describes the provide background information on this new architecture 

for neural network learning and a theoretical basis for its use. Then simulation results 

presented for this architecture in identifying both static and dynamic systems, including a 

nonlinear controller for an inverted pendulum system. Finally, some preliminary results 

in modeling human control strategy have been showed and discussed. 

Conclusion presents the important obtained result that the project discussed and 

contributes in the project itself. 



CHAPTER ONE. STATE OF APPLICATION PROBLEMS OF 

NEURAL NETWORK FOR TECHNOLOGICAL PROCESSES 

,,.... »-": 
1.1. ~ural Control oflntelligent Structure rt'?"'=''""~ 

v;J!-, Smart structures asEi~ ~mbedded and distributed sensor/actor 

/i.f 'v!' ~evice~ challenges and problems for control engineering. The reasons for 

"'{ this a~ofuki:-First, the design of embedded and distributed sensor/actor devices 

~ 'wy ~ ~ r~ new questions about the development of more appropriate control 

\ ~ t strategies interpreting the global versus local control strategy trade-off from a new 

and "distributed" perspective. Second, due to the non-linearity of the system 
./ 

components it is often too difficult to derive a system model of the smart structure 

suitable for classical controller design based on an exact analytical model using first 

principles. 
Neural architectures such as neural networks offer in these cases the advantage 

to avoid the analytical modelling of smart structures and to "learn" the system transfer 

function from available experimental or simulated data instead. The work described 

here is focusing on the learning aspect of smart structure controllers with neural 

architectures and is organized along the following two main research directions of the 

basic research effort that aims at the development of novel neural control 

architectures. In this respect it has been aimed to resolve the "black-box-character" in 

neural network applications to allow a deeper mathematical analysis of the neural 

network after training. 
This goal has been achieved through the introduction of the concept of 

dimensional homogeneity for neural networks [6], which leads to the emergence of 

dimensionless similarity parameters in the neural nets and allows to interpret the 

neural mapping in the network as the similarity function of the physical object under 

consideration, and, through the identification of the neural correspondence for 

classical control engineering techniques such as the Laplace-Transform [7]. It is 

expected that these two developments will ease a future performance analysis and a 

more direct comparison of classical controllers with neural control approaches 

including a future stability proof for neural control. 
The practical development and design of novel controllers with neural 

architectures for different reference models [ 1,2, 7]. These reference models are: 

1) The tether deployment for small capsule re-entry, 
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2) The generic bump panel, 

3) The adaptive helicopter blade, 

4) The acoustic cavity. 
In the practical development of neural controllers for these applications, the pre- 

processing of the training data, the employed training procedures for the neural 

network controller, the control performance and accuracy have been investigated. A 

generic procedure for the design of neural controllers has also been established for 

these purposes. 
These two main research directions characterize the research results of the project 

Al "Neural control oflntelligent Structures" which have been achieved in cooperation 

with other projects in the framework of the collaborative research project SFB 409 

"Smart Structures in Aerospace Engineering". The details about the above mentioned 

different system models to be controlled and the simulation or experimental data have 

been provided from the partner project, while the neural modelling and the neural 

controller design has been performed in the project Al. The lessons learned and the 

results obtained are described in the following. 

T~'.o. diff~Een~~~Ja.L!}.5~rk rcoi:i!:?l sch·~·~:s, __ ad~e.ct and an indi~ect control 
scheme, have been~rv the literature [5]. For a detailed overview of neural -- ---.:-•~' .,,... .. - . - . - ~ ,: - ~ __, 

con:rol methodologies see [4]._ ~hi)e the direct ~;~;l c~2~1~,,~~eme in _figu~e .lJ 
doesn't us~. a mo~~! of the plant and is known_ to~ from sf~~J.lity_problems,. the 

indirect neural control scheme makes use of a previously identified neural plant 

model, see figure 1.2. 

Neural 
Controller 

Plant 

Figure .1.1. The direct neural control scheme 

The neural plant model in figure 1 .2 is trained using theGm1are9 err~ between 7/ (;fl)')-'> ~e;;~~..., '"'- 
the a~ual plant <?utput and t~e model. Training. is ceased when the approximation of 

the plant is good enough anf he neural network can be used as a ~nt mod~ for the 



training of the controller without the use of the actual system. After successful plant 

? identification, the neural controller is trained with an inverse training scheme [4] as 
------ shown in figurel.2. The control input is fed into the plant and the neural plant model. 

The error between the commanded input and the plant output and the neural 

network output is then propagated back through the neural plant model using the first 

steps of the well-known Back propagation algorithm. The error found for the input 

neuron of the neural plant model corresponds directly to the error of the output neuron 

of the neural controller and can be used for the training with standard learning 

algorithms 
Identified 

riJ Plant 

Neural 
Controller 

l 

Plant 

Figure 1.2. The indirect neural control scheme and training 

The neural network controller is usually structured according to the neural 

network plant model using external feedback of the control signal and delayed values 

of the commanded input using time-delay Jines. This neural control approach has been 

compared to classical controller designs using the mentioned reference examples. 

For the tether-assisted de orbit of a re-entry capsule from the international 

space station (ISS), the results of the neural controller are significantly better 

compared to a conventional controller design as shown in the figure l.3.below, 

Together with the project B3 "Adaptive Tether Systems for Orbital Systems", a time­ 

variant neural network controller has been developed for the deployment of a tethered 

re-entry capsule from the International Space Station (ISS). 
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Figure 1.3. Tethered re-entry capsule from the International Space Station (ISS). 

The relative advantages and disadvantages of the inductive versus the 

deductive modelling and control approach for smart structures have been reported in 

[1,2,7] and are subject of ongoing and future research in the SFB 409 project Al. 

1.2. Autonomous Vehicle Navigation 

Vision-based autonomous vehicle and robot guidance have proven difficult for 

algorithm-based computer vision methods, mainly because of the diversity of unex­ 

pected cases that must be explicitly dealt with in the algorithms and the real-time 

constraint, Pomerleau successfully demonstrated the potential of neural networks for 

overcoming these difficulties, his ALVINN (Autonomous Land Vehicle in Neural 

Networks) set a world record for autonomous navigation distance. After training on a 

two-mile stretch of highway, it drove the CMU Navlab. Equipped with video cameras 

and laser range sensors, for 21.2 miles with an average speed of 55 mph on a 

relatively old highway open to normal traffic, AL VINN was not disturbed by passing 

cars while it was being driven autonomously, ALVINN nearly doubled the previous 

distance world record for autonomous navigation. What is surprising is the simplicity 

of the networks and the training techniques used in ALVINN, which consists of 

several networks, each trained for a specific road situation: 

1) Single-lane paved road. 

2) Single-lane dirt road. 



3) Two-lane Neighbourhood Street. 

4) Multilane highway. 

A monocular colour video input is sufficient for all of these situations; therefore, 

no depth perception is used in guiding the vehicle. Not using stereovision saves a sig­ 

nificant amount of time, because matching of correspondence points in a stereo pair of 

images is computationally expensive. Laser rangefinder and laser reflectance inputs 

are also tested. The laser reflectance input resembles a black-and-white video image 

and can be handled in the same way as a video image. Reflectance input is ad­ 

vantageous over video input, because it appears the same regardless of the lighting 

conditions. This allows ALVINN to be trained in daylight and tested in darkness. 

Laser rangefinder input is useful for obstacle avoidance. However, a laser range 

image needs to be processed differently, because its image pixel values represent 

distance instead of lightness. We will focus the discussion on video image input. 

A network in AL VINN for each situation consists of a single hidden layer of only 

four units, an output layer of 30 units and a 30 X 32 retina for the 960 possible input 

variables. The retina is fully connected to the hidden layer, and the hidden layer is 

fully connected to the output layer, as shown in figure! .4 for two representative nodes 

( out of a total of 960). The graph of the feed forward network is a node-coalesced 

cascade of directed versions of bipartite graphs K960, 4 and k4, 30 Pomerleau tried 

networks with more layers and more hidden units but did not observe significant 

performance improvement over this simple network, Because of the real-time 

constraint of the task, a simple network is definitely preferred. 
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It is a node-coalesced of two directed bipartite graphs, The Image on the retina 

is a low-resolution version of a cooler video image with 480 X 512 pixels. A 16X16 

neighbourhood in the video image is randomly sampled and averaged to produce a 

single pixel on the retina .the outputs from the three channels of a colour video image­ 

namely, red(R), green (G), and blue (B) are combined to produce 

P=~+ B 
255 R+G+B 

30x32 
Retina 

Figure 1.4. The graph of a network in ALVINN. 

Where, P is the brightness of the combined image. This combination is based on 

empirical observation. What is interesting is that it approximates the learning result if 

one chooses to add another layer to learn the pre-processing from video image to the 

retina. The darkest 5% of the pixels on the retina are assigned the minimum activation 

level of -1, and the brightest 5% are assigned the maximum activation level of I. The 
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remaining 90% of the pixels are assigned activation values proportional to their 

brightness relative to the two extremes. 
The 30 output units are arranged in a one-dimensional array for controlling the 

steering wheel. The steering direction is represented by a Gaussian activation pattern 

in the output layer, illustrated in the Figurel.5; the distributed pattern representation 

of the output proves to be useful in evaluating the reliability of the network output. If 

the vehicle under the guidance of one network (e.g., for single-lane paved road) 

transits into a new situation (e.g. multilane highway) the network will be confused. 

There is a high likelihood that the output pattern will significantly deviate from a 

Gaussian pattern. This signals; the AL VINN to pick another network to guide the 

vehicle. 
Each network is trained using the back propagation algorithm with a technique 

Pomerleau called training-on-the-fly: i.e. the network is trained by observing a person 

driving a sequence of training pairs, consisting of input images and the person's 

response, is obtained during a drive. Training can be performed at the same time. 

There are several potential problems with the training-on-the-fly approach. They are 

all due to the low level of diversity or- in other words, the high level of similarity, in 

the training data. For example, the network needs to learn how to recover from 

Various mistakes, a sequence of consistently similar training data will also cause the 

network to over learn the current situation and forget about what it might have learned 

about other situations, Diversity in the training data is necessary for valid 

generalization. Pomerleau used several techniques to solve these problems. 

First, the inner images and the steering directions are geometrically 

transformed as if the vehicle had been in different positions relative to the road. 

Second, structured noise is added to the input images to simulate different situations 

on the road, such as passing cars. Guardrails, and trees. New training pairs are formed 

using a new image with added structure noise and the same steering direction as the 

noise-free image. These techniques greatly increase the diversity of the training data. 

Thus leading to good generalisation of learning. 
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figurel.5. Representation of two steering directions in the output layer from the plot 

of output unit activation values versus the output unit. 

After each network is trained for a specific situation, how is the system going 

to decide when to use which network? Pomerleau proposed two techniques for 

selecting a network: output appearance and input reconstruction. Output appearance 

measures the deviation of the shape of the output response from the Gaussian shape. 

Although not always true, there is a high level of correlation between the Gaussian 

shape of the output response and the applicability of the network to the current 

situation. Input reconstruction feeds the output response back through the connections 

and the hidden layer to reconstruct an input image. The difference between the real 

input image and the reconstructed image provides another indication of the 

applicability of the network to the current situation. These two techniques can then be 

used to guide the choice of the right network for the current situation, Due to the Fact 

that neural networks are not good at remembering maps and planning the route, a 

symbolic component is added to the system for these functions. The symbolic 

component is also responsible for generating structured noises and transformations to 

increase the diversity of the training data and for coordinating all the components in 

the system. 



1.3. Application of Artificial Neural Network For Control Problem 

In the design of autonomous computer based systems, we often face the 

embarrassing situation of having to specify, to the system, how it should carry out 

certain tasks, which involve computations known to be intractable or are suspect of 

being so. To circumvent such impasses, we resort to complexity reducing strategies 

and tactics, which trade some loss of accuracy for significant reduction in complexity; 

the term computational intelligence refers to such complexity reduction methods. In 

this paper we describe briefly some of our own work in this area and then develop a 

computation intelligence view of the tasks of process monitoring and optimization, as 

performed by autonomous system. Some important current fields of discovery in 

computational intelligence include neural net computing evolutionary, fuzzy sets, 

associative memory and so on. 
Some of the theory bounded evolutional trends in real time al application are 

pointed out based system. The evolutional main stream is increasing interdisciplinary 

integration. 
Three sub trends are illustrated on examples: mechanical combination of method, A 

methods used for approximate solution of classical problems, and abstract methods 

applied in new domains .in addition similarity between integrated circuits and real 

time system designed and increased use of formal verification at the early stages of 

systems development are pointed out. 
A new control system for the intelligent force control of multifingered robot 

grips, which combines both fuzzy, based adaptation level and neural based one with a 

conventional PID _ controller. The most attention is given to the neural based force 

adaptation level implemented by three-layered back propagation neural network. A 

computer based simulation system for the big_in_hole insertion task is developed to 

analyse the capabilities of the neural controllers. Their behaviour is discussed by 

comparing them to conventional and fuzzy based force controllers performing the 

same task. 
Increasingly artificial neural networks are finding applications in process 

engineering environment. Recently the department of trade and industry of the UK 

has supported the transfer of neural technology as part of the campaign, the university 

of the new castle and EDS advanced technologies group have set-up a process 

monitoring and control club. 
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The logical design of a neural controller is a achieved by representing a neural 

computation as a stochastic timed linear proof with a built-in system for rewards and 

punishments based on the timelines of a computation performed by a neural 

controller. 
Logical designs are represented with stochastic forms of proof nets and proof 

boxes. Sample application of the logical design methodology of the truck-backer 

upper and a real time object recognition and tracking system (RTorts) are presented. 

Performance result of the implementation module of the (RTorts) are given and 

compared to similar system. 
The work describe in the neural network of intelligent structure is focusing on 

the learning aspect of smart structure controllers with neural architectures along the 

following two main research directions of The basic research effort that aims at the 

development of novel neural control architectures. So it used two different neural 

network control schemes, a direct and an indirect control scheme. 

For the autonomous navigation concept is explaining a network in ALVININ 

for each situation consists of a single hidden layer of only four units. The retina is 

fully connected to the hidden layer as well as hidden layer is fully connected to the 

output layer as a result of the real time constraint of the task, a simple network is 

definitely preferred. 
Each network is trained using the back propagation algorithm with a technique 

Pomerleau called training-on-the-fly; training can be performed at the same time. 

Pomerleau proposed two techniques for selecting a network: output 

appearance and input reconstruction as we have declared before, this two techniques 

can then be used to guide the choice of the right network for the current situation. 
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CHAPTER TWO. STRUCTURE AND LEARNING OF NEURAL 
NETWORKS 

2.1. Introduction To Neural Networks 

The power and speed of modern digital computers is truly astounding. No 

human can ever hope to compute a million operations a second. However, there are 

some tasks for which even the most powerful computers cannot compete with the 

human brain, perhaps not even with the intelligence of an earthworm. 

Imagine the power of the machine, which has the abilities of both computers and 

humans. It would be the most remarkable thing ever. And all humans can live happily 

ever after. This is the aim of artificial intelligence in general. 

When we are talking about a neural network, we should more properly say "artificial 

neural network" (ANN), because that is what we mean most of the time. Biological 

neural networks are much more complicated than the mathematical models we use for 

ANNs. But it is customary to be lazy and drop the "A" or the "artificial". 

An Artificial Neural Network (ANN) is an information-processing paradigm that 

rs inspired by the way biological nervous systems, such as the brain, process 

information. 
The key element of this paradigm is the novel structure of the information 

processing system. It is composed of a large number of highly interconnected 

processing elements (neurons) working in unison to solve specific problems. ANNs, 

like people, learn by example. An ANN is configured for a specific application, such 

as pattern recognition or data classification, through a learning process. Learning in 

biological systems involves adjustments to the synaptic connections that exist 

between the neurons. This is true of ANNs as well. 

At the core of neural computation are the concepts of distributed, adaptive, and non­ 

linear computing. Neural networks perform computation in a very different way than 

conventional computers, where a single central processing unit sequentially dictates 

every piece of the action. 
Evolving from neuro-biological insights, neural network technology gives a 

computer system an amazing capacity to actually learn from input data. Artificial 

neural networks have provided solutions to problems normally requiring human 

observation and thought processes. Some real world applications include: 



~ Quality Control 

~ Financial Forecasting 

~ Economic Forecasting 

~ Credit Rating 

~ Speech & Pattern Recognition 

~ Biomedical Instrumentation 

~ Process Modelling & Management 

~ Laboratory Research 

~ Oil & Gas Exploration 

~ Health Care Cost Reduction 

~ Targeted Marketing 

~ Defence Contracting 

~ Bankruptcy Prediction 

~ Machine Diagnostics 

~ Securities Trading 

2.2 Some Other Definitions of a Neural Networks 

According to the DARPA Neural Network Study (1988, AFCEA International 

Press, p. 60): a neural network is a system composed of many simple processing 

elements operating in parallel whose function is determined by network structure, 

connection strengths, and the processing performed at computing elements or nodes. 

According to Haykin, S. (1994), Neural Networks: A Comprehensive 

Foundation, NY: Macmillan, p. 2: 

A neural network is a massively parallel-distributed processor that has a 

natural propensity for storing experiential knowledge and making it available for use, 

It resembles the brain in two respects: 

I .The network through a learning process acquires knowledge. 

2.lnterneuron connection strengths known as synaptic weights are used to store the 

knowledge. 

ANNs have been applied to an increasing number of real-world problems of 

considerable complexity. Their most important advantage is in solving problems that 

are too complex for conventional technologies problems that do not have an 

algorithmic solution or for which an algorithmic solution is too complex to be found. 
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ANNs have been applied to an increasing number of real-world problems of 

considerable complexity. Their most important advantage is in solving problems that are 

too complex for conventional technologies problems that do not have an algorithmic 

solution or for which an algorithmic solution is too complex to be found. In general. 

because of their abstraction from the biological brain. ANNs are well suited to problems 

that people are good at solving. but for which computers are not. This problem includes 

pattern recognition and forecasting (which requires the recognition of trends in data). 

Neural Networks approaches this problem by trying to mimic the structure and 

function of our nervous system Many researchers believe that Al (Artificial Intelligence) 

and neural networks are completely opposite in their approach. Conventional Al is based 

on the symbol system hypothesis. Loosely speaking. a symbol system consists of 

indivisible entities called symbols. which can form more complex entities. by simple 

rules. The hypothesis then states that such a system is capable of and is necessary for 

intelligence 

The general belief is that Neural Networks is a sub-symbolic science. Before 

symbols themselves are recognized. some thing must be done so that conventional Al can 

then manipulate those symbols. To make this point clear. consider symbols such as cow. 

grass. house etc. Once these symbols and the "simple rules" which govern them are 

known. conventional AI can perform miracles. But to discover that something is a cow is 

not trivial. It can perhaps be done using conventional Al and symbols such as - white. 

legs. etc. But it would be tedious and certainly. when you see a cow. you instantly 

recognize it to be so. without counting its legs. 

But this belief that Al and Neural Networks are completely opposite is not valid 

because. even when you recognize a cow. it is because of certain properties, which you 

observe, that you conclude that it is a cow. This happens instantly because various parts 

of the brain function in parallel. All the properties, which you observe, are "summed up". 

Certainly there are symbols here and rules - "summing up". The only difference is that in 

Al, symbols are strictly indivisible, whereas here. the symbols (properties) may occur 

with varying degrees or intensities. 
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Only breaking this line of distinction between AI and Neural Networks. and 

combining the results obtained in both. towards a unified framework. can make progress 

in this area. 

2.3. Biological Information Process 

To imitate biological information processing models for different level of 

organization and of abstraction have to be considered. First. there is the level of the 

individual neuron where it is a matter of representing the static and dynamic electncal 

charactenstics as well as the adaptive behaviour of the neuron. On the network ievel 

The interconnection of identical neurons to form network is examined to describe specific 

sensor and motor city-related functions such as filtering, projection operations. controller 

function. In non-linear. biological system. network on the mental function level are the 

most complicated ones and comprise functions such as perception. solution of problems. 

strategic proceeding etc. these are the networks on the highest level of biological 

information processing. 

2.3.1 The Biological Neuron 

The most basic element of the human brain is a specific type of cell. which 

provides us with the abilities to remember. think, and apply previous expenences to our 

every action. These cells are known as neurons; each of these neurons can connect with 

up to 200000 other neurons. The power of the brain comes from the numbers of these 

basic components and the multiple connections between them. 

All natural neurons have four basic components. which are dendrites. soma. axon. 

and synapses. Basically, a biological neuron receives inputs from other sources. combines 

them in some way. performs a generally non-linear operation on the result, and then 

output the final result. The figure below shows a simplified biological neuron and the 

relationship of its four components. 



4 Parts of a 
Typical Nerve Cell , ....•. 

~ d ·t~s . Accept inputs ~Derin~. 

r Soma: Process the inputs 

~ Axon: Turri the processed inputs 
~ into outputs 

~--------- ~ _,./ Syriapses: The electrochemical 

~ ""'"' ,,,w •• n ""'°'' 

figure2.1. Biological Neuron 

2.3.2 The Artificial Neuron 
The basic unit of neural networks, the artificial neurons, simulates the four 

basic functions of natural neurons. Artificial neurons are much simpler than the 

biological neuron; the figure below shows the basics of an artificial neuron. 
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Note that various inputs to the network are represented by the mathematical 

symbol, x (n). Each of these inputs are multiplied by a connection weight, these 
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Figure2.2. Artificial Neuron 
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weights are represented by w (n). In the simplest case, these products are simply 

summed, fed through a transfer function to generate a result, and then output. 

Even though all artificial neural networks are constructed from this basic 

building block the fundamentals may vary in these building blocks and there are 

differences. 

2.4. The characteristic of neural systems 

1. Imitation of the structure and function of the brain. 

2. Parallel information processing. 

3. Implicit knowledge representation. 

4. Application of inductive reasoning. 

5. Learning occurs within the system. 

2.5. The Structure of the Nervous System 

For our purpose, it will be sufficient to know that the nervous system consists 

of neurons, which are connected to each other in a rather complex way. Each neuron 

can be thought of as a node and the interconnections between them are edges as 

shown below in the figure2.3: 

ncde (neuron) 

edg e 
(interconnection) 

figure2.3. Edge interconnections. 
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Such a structure is called as a directed graph. Further, each edge has a weight 

associated with it, which represents how much the two neurons, which are connected 

by it, can interact. If the weight is more, then the two neurons can interact much more 

a stronger signal can pass through the edge. 

2.6. Functioning of the Nervous System 

The nature of interconnections between 2 neurons can be such that one neuron 

can either stimulate or inhibit the other. An interaction can take place only if there is 

an edge between 2 neurons. If neuron A is connected to neuron B as below with a 

weight w, in the figurel.2 

• w 

A B 

Figure2.4. The Edge Between Two Neurons. 

Then if A is stimulated sufficiently, it sends a signal to B. The signal depends 

on the weight w, and the nature of the signal, whether it is stimulating or inhibiting. 

This depends on whether w is positive or negative. If sufficiently strong signals are 

sent, B may become stimulated. 
Note that A will send a signal only if it is stimulated sufficiently, that is, if its 

stimulation is more than its threshold. Also if it sends a signal, it will send it to all 

nodes to which it is connected. The threshold for different neurons may be different. 

If many neurons send signals to A, the combined stimulus may be more than the 

threshold. 
Next if B is stimulated sufficiently, it may trigger a signal to all neurons to 

which it is connected. 
Depending on the complexity of the structure, the overall functioning may be 

very complex but the functioning of individual neurons is as simple as this. Because 

of this we may dare to try to simulate this using software or even special purpose 

hardware. 
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2.7 The Difficulty of Modelling a Brain-like Neural Network 

We have seen that the functioning of individual neurons is quite simple. Then 

why is it difficult to achieve our goal of combining the abilities of computers and 

humans? 

The difficulty arises because of the following: 

It is difficult to find out which neurons should be connected to which. This is the 

problem of determining the neural network structure. Further, the interconnections in 

the brain are constantly changing. The initial interconnections seem to be largely 

governed by genetic factors. 

The weights on the edges and thresholds in the nodes are constantly changing. 

This problem has been the subject of much research and has been solved to a large 

extent. The approach has been as follows: Given some input, if the neural network 

makes an error, then it can be determined exactly which neurons were active before 

the error. Then we can change the weights and thresholds appropriately to reduce this 

error. 

For this approach to work, the neural network must "know" that it has made a 

mistake. In real life, the mistake usually becomes obvious only after a long time. This 

situation is more difficult to handle since we may not know which input led to the 

error. 

Also notice that this problem can be considered as a generalization of the 

previous 

problem of determining the neural network structure. If this is solved, that is also 

solved. This is because if the weight between two neurons is zero then, it is as 

good as the two neurons not being connected at all. So if we can figure out the 

weights properly, then the structure becomes known. But there may be better methods 

of determining the structure. 

The functioning of individual neurons may not be so simple after all. For 

example, remember that if a neuron receives signals from many neighbouring 

neurons, the combined stimulus may exceed its threshold. Actually, the neuron need 

not receive all signals at exactly the same time, but must receive them all in a short 

time-interval. 

It is usually assumed that such details will not affect the functioning of the 

simulated neural network much. But may be it will. 



Another example of deviation from normal functioning is that some edges can 

transmit signals in both directions. Actually, all edges can transmit in both directions, 

but usually they transmit in only 1 direction, from one neuron to another. 

2.8.Neural Network Topologies 

The building blocks of neural networks are in place. Neural networks consist of 

layer(s) of PES, as we will declare later interconnected by weighted connections. The 

arrangement of the PEs, connections and patterns in to a neural network is referred to 

as topology. 

Neural networks are built from a large number of very simple processing 

elements that individually deal with pieces of a big problem. A processing element 

(PE) simply multiplies an input by a set of weights, and a nonlinearly transforms the 

result into an output value. The principles of computation at the PE level are 

deceptively simple. The power of neural computation comes from the massive 

interconnection among the PEs, which share the load of the overall processing task, 

and from the adaptive nature of the parameters (weights) that interconnect the PEs. 

Normally, a neural network will have several layers of PEs. The most basic and 

commonly used neural network architecture is the multi layer perceptron (MLP). The 

diagram (figure 2.5.) below illustrates a simple MLP. The circles are the PEs arranged 

in layers. The left row is the input layer, the middle row is the hidden layer, and the 

right row is the output layer. The lines represent weighted connections (i.e., a scaling 

factor) between PEs. 

figure2.5. A simple Multi Layer Perceptron 

The performance of an MLP is measured in terms of a desired signal and an 

error criterion. The output of the network is compared with a desired response to 
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Biologically, neural networks are constructed in a three dimensional way from 

microscopic . components. These neurons seem capable of nearly unrestricted 

interconnections. This is not true in any man-made network. Artificial neural 

networks are the simple clustering of the primitive artificial neurons. This clustering 

occurs by creating layers, which are then connected to one another. How these layers 

connect may also vary. Basically, all artificial neural networks have a similar structure 

of topology. 
Some of the neurons interface the real world to receive its inputs and other 

neurons provide the real world with the network's outputs. All the rest of the neurons 

are hidden form view. 

produce an error. An algorithm called back propagation is used to adjust the weights a 

small amount at a time in a way that reduces the error. The network is trained by 

repeating this process many times. The goal of the training is to reach an optimal 

solution based on the performance measurement. 

We shall now try to understand different types of neural networks 

2.8.1. Layers 
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INPUT 
LAYER 

( there may be sever a 1 
hidden layers) 

figure2.6. Layer Structure 

As the figure above shows, the neurons are grouped into layers the input layer 

consist of neurons that receive input form the external environment. The output layer 

consists of neurons that communicate the output of the system to the user or external 

environment. There are usually a number of hidden layers between these two layers; 

the figure above shows a simple structure with only one hidden layer. 

When the input layer receives the input its neurons produce output, which 

becomes input to the other layers of the system. The process continues until a certain 

condition is satisfied or until the output layer is invoked and fires their output to the 

external environment. 

To determine the number of hidden neurons the network should have to 

perform its best, one are often left out to the method trial and error. If you increase the 

hidden number of neurons too much you will get an over fit, that is the net will have 

problem to generalize. The training set of data will be memorized, making the 

network useless on new data sets. 

2.8.2. Communication And Types of Connections 

Neurons are connected via a network of paths carrying the output of one 

neuron as input to another neuron. These paths is normally unidirectional, there might 

however be a two-way connection between two neurons, because there may be 



another path in reverse direction. A neuron receives input from many neurons, but 

produce a single output, which is communicated to other neurons. 

The neuron in a layer may communicate with each other, or they may not have 

any connections. The neurons of one layer are always connected to the neurons of at 

least another layer. 

2.8.2.1 Inter-layer connections 

There are different types of connections used between layers; these connections 

between layers are called inter-layer connections. 

• Fully connected Each neuron on the first layer is connected to every neuron 

on the second layer. 

• Partially connected 
A neuron of the first layer does not have to be connected to all neurons on the 

second layer. 

• Feed forward 
The neurons on the first layer send their output to the neurons on the second 

layer, but they do not receive any input back form the neurons on the second 

layer. 

• Bi-directional 
There is another set of connections carrying the output of the neurons of the 

second layer into the neurons of the first layer. 

Feed forward and bi-directional connections could be fully- or partially connected. 

• Hierarchical 
if a neural network has a hierarchical structure, the neurons of a lower layer 

may only communicate with neurons on the next level of layer. 

• Resonance 
The layers have bi-directional connections, and they can continue sending 

messages across the connections a number of times until a certain condition is 

achieved. 
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2.8.2.2 Intra-layer connections 

In more complex structures the neurons communicate among themselves within a 

layer, this is known as intra-layer connections. There are two types of intra-layer 

connections. 
• Recurrent the neurons within a layer are fully- or partially connected to one 

another. After these neurons receive input form another layer, they 

communicate their outputs with one another a number of times before they are 

allowed to send their outputs to another layer. Generally some conditions 

among the neurons of the layer should be achieved before they communicate 

their outputs to another layer. 

• On-centre/off surround A neuron within a layer has excitatory connections 

to itself and its immediate neighbours, and has inhibitory connections to other 

neurons. One can imagine this type of connection as a competitive gang of 

neurons. Each gang excites itself and its gang members and inhibits all 

members of other gangs. After a few rounds of signal interchange, the neurons 

with an active output value will win, and is allowed to update its and its gang 

member's weights. (There are two types of connections between two neurons, 

excitatory or inhibitory. In the excitatory connection, the output of one neuron 

increases the action potential of the neuron to which it is connected. When the 

connection type between two neurons is inhibitory, then the output of the 

neuron sending a message would reduce the activity or action potential of the 

receiving neuron. 
One causes the summing mechanism of the next neuron to add while the 

other causes it to subtract. One excites while the other inhibits. 
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2.9. Learning Algorithms 

2.9.1. The Perceptron 

This .is a very simple model and consists of a single 'trainable' neuron. 

Trainable means that its threshold and input weights are modifiable. Inputs are 

presented to the neuron and each input has a desired output (determined by us). If the 

neuron doesn't give the desired output, then it has made a mistake. To rectify this, its 

threshold and/or input weights must be changed. How this change is to be calculated 

is determined by the learning algorithm. 
The output of the perceptron is constrained to Boolean values - (true, false), 

(1,0), (1, -1) or whatever. This is not a limitation because if the output of the 

perceptron were to be the input for something else, then the output edge could be 

made to have a weight. Then the output would be dependant on this weight. 

The perceptron looks like 

X 

y 

• 
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figure2.7. The perceptron. 

xl, x2, ... , xn are inputs. These could be real numbers or Boolean values depending on 

the problem. 

y is the output and is Boolean. 

wl, w2, ... , wn are weights of the edges and are real valued. 

T is the threshold and is real valued. 

The output y is 1 if the net input which is 

wl xl + w2 x2 + ... + wn xn 
Is greater than the threshold T. Otherwise the output is zero. 



The idea is that we should be able to train this perceptron to respond to certain 

inputs with certain desired outputs. After the training period, it should be able to give 

reasonable outputs for any kind of input. If it wasn't trained for that input, then it 

should try to find the best possible output depending on how it was trained. 

So during the training period we will present the perceptron with inputs one at a time 

and see what output it gives. If the output is wrong, we will tell it that it has made a 

mistake. 
It should then change its weights and/or threshold properly to avoid making 

the same mistake later. 
Note that the model of the perceptron normally given is slightly different from 

the one pictured here. Usually, the inputs are not directly fed to the trainable neuron 

but are modified by some "pre-processing units". These units could be arbitrarily 

complex, meaning that they could modify the inputs in any way. These units have 

been deliberately eliminated from our picture, because it would be helpful to know 

what can be achieved by just a single trainable neuron, without all its "powerful 

friends". 
To understand the kinds of things that can be done using a perceptron, we 

shall see a rather simple example of its use - Compute the logical operations "and", 

"or", "not" of some given Boolean variables. 

Computing "and": There are n inputs, each either a O or 1. To compute the 

logical "and" of these n inputs, the output should be 1 if and only if all the inputs are 

1. This can easily be achieved by setting the threshold of the perceptron to n. The 

weights of all edges are 1. The net input can be n only if all the inputs are active. 

Computing "or": It is also simple to see that if the threshold is set to 1, then the output 

will be 1 if at least one input is active. The perceptron in this case acts as the logical 

"or". 
Computing "not": The logical "not" is a little tricky, but can be done. In this 

case, there is only one Boolean input. Let the weight of the edge be -1, so that the 

input, which is either O or I, becomes O or -1. Set the threshold to 0. If the input is 0, 

the threshold is reached and the output is I. If the input is -1, the threshold is not 

reached and the output is 0. 
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2.9.2. The XOR Problem 

There are problems, which cannot be solved by any perceptron In fact there are 

more such probiems than problems, which can be solved using perceptrons The most 

often quoted example is the XOR problem - build a perceptron, which takes 2 Boolean 

inputs and outputs the XOR of them What we want is a perceptron, which will output 

if the two inputs are different and 0, otherwise 

lnnut Desired Output 

0 

0 

0 0 

0 

0 

Consider the following perceptron as an attempt to solve the problem 

1 

1 
y 

Figure 2.8. Example Illustrates The Perceptron Problem. 

If the mputs are both 0, then net input is 0, which is less than the threshold (0.5) 

So the output is O - desired output, 

If one of the inputs is O and the other is 1, then the net input is l _ This is above 

threshold, and so the output l is obtained. 



If a set of patterns can be correctly classified by some perceptron, then such a set 

of patterns is said to be linearly separable The term "linear" is used because the 

perceptron is a linear device. The net input is a linear function of the individual inputs 

and the output is a linear function of the net mput Linear means that there is no square 

(x2) or cube (x3), etc. terms in the formulas. 

A pattern (xl ,x.2, ... , xn) is a point in an n-dimensional space (Stop imagining 

things.) This is an extension of the idea that (x, y) is a pomt in 2-dimensions and (x, y, z) 

is a point in 3 dimensions. The utility of such a weird notion of an n--dimensional space is 

that there are many concepts, which are independent of dimension Such concepts carry 

But the given perceptron fails for the last case To see that no perceptron can be 

built to solve the problem, try to build one yourself 

2.9.3. Pattern Recognition Terminology 

The inputs that we have been referring to, of the form (x I, x2 . xn) are also called 

as patterns If a perceptron gives the correct desired output for some pattern, then we say 

that the perceptron recognizes that pattern We also say that the perceptron correctly 

classifies that pattern 
Since a pattern by our definition is Just a sequence of numbers, It could represent 

anythmg such as a picture, a song, and a poem anything that you can have in a 

computer file We could then have a perceptron, which could learn such inputs and 

classify them, eg. A neat picture or a scnbblmg, a good or a bad song, etc. All we have to 

do is to present the perceptron with some examples -- give it some songs and tell rt 

whether each one ts good or bad (It could then go all over the internet, searching for 

songs, which you may like) Sounds incredible? At least that's the way it is supposed to 

work, But it may not. The problem is that the set of patterns, which you want the 

perceptron to learn, might be something like the XOR problem. Then no perceptron can 

be made to recognize your taste. 

2.9.4. Linearly Separable Patterns and Some Linear Algebra 
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Similarly, a straight line in 2D is given by - 

ax+ by= c 

In 3D, a plane is given by - 

ax+ by+ cz = d 

When we generalize this, we get an object called as a hyper plane - 

wlxl + w2x2 + ... + wnxn = T 

Notice something familiar? This is the net input to a perceptron. All points 

(patterns) for which the net input is greater than T belong to one class (they give the 

same output). All the other points belong to the other class. 

We now have a lovely geometrical interpretation of the perceptron. A perceptron with 

weights wl, w2, ... wn and threshold T can be represented by the above hyper plane. 

All points on one side of the hyper plane belong to one class. The hyper plane 

(perceptron) divides the set of all points (patterns) into 2 classes. 

Now we can see why the XOR problem cannot have a solution. Here there are 

2 inputs. Hence there are 2 dimensions (luckily). The points that we want to classify 

are (0,0), (1, 1) in one class and (0, 1 ), (1,0) in the other class. 

(1,1) 

0 ------·-- 1 X 

figure2.9. Two Inputs Dimensions. 

Clearly we cannot classify the points ( crosses on one side, circles on other) 

using a straight line. Hence no perceptron exists which can solve the XOR problem. 
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2.9.5 Perceptron Learning Algorithms 

During the training period, a series of inputs are presented to the perceptron - 

each of the form (xl, x2 ... xn). For each such input, there is a desired output - either 0 

or 1. ' The net input, which is wl xl, determines the actual output+ w2 x2 + ... + wn 

xn. If the net input is less than threshold then the output is 0, otherwise output is 1. If 

the perceptron gives a wrong (undesirable) output, then one of two things could have 

happened - 

1. The desired output is 0, but the net input is above threshold. So the actual output 

becomes in such a case we should decrease the weights. But by how much? The 

perceptron-learning algorithm says that the decrease in weight of an edge should be 

directly proportional to the input through that edge. So, New weight of an edge i = old 

weight - cxi There are several algorithms depending on what c is. For now, think that 

it is a constant. 

The idea here is that if the input through some edge was very high, then that 

edge must have contributed to most of the error. So we reduce the weight of that edge 

more (i.e. proportional to the input along that edge). 

2.The other case when the perceptron makes a mistake is when the desired output is 

1, but the net input is below threshold. 

Now we should increase the weights. Using the same intuition, the increase in 

weight of an edge should be proportional to the input through that edge. So, 

New weight of an edge i = old weight+ cxi 

What. about c? If c is actually a constant, then the algorithm is called as the 

"fixed increment rule". Note that in this case, the perceptron may not correct its 

mistake immediately. That is, when we change the weights because of a mistake, the 

new weights don't guarantee that the same mistake will not be repeated. This could 

happen if c is very small. However, by repeated application of the same input, the 

weights will change slowly each time, until that mistake is avoided. 

We could also choose c in such a way that it will certainly avoid the most 

recent mistake, next time it is presented the same input. This is called as the "absolute 

correction rule". The problem with this approach is that by learning one input, it 

might "forget" a previously learnt input. For example, if one input leads to an increase 

in some weight and another input decreases it, then such a problem may arise. 
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This method works on reinforcement from the outside. The connections 

among the neurons in the hidden layer are randomly arranged, then reshuffled as the 

network is told how close it is to solving the problem. Reinforcement learning is also 

called supervised learning, because it requires a teacher. The teacher may be a 

training set of data or an observer who grades the performance of the network results. 

Both unsupervised and reinforcement suffers from relative slowness and 

inefficiency relying on a random shuffling to find the proper connection weights. 

2.10.Neural network Learning 

The brain basically learns from experience. Neural networks are sometimes 

called machine-learning algorithms, because changing of its connection weights 

(training) causes the network to learn the solution to a problem. The strength of 

connection between the neurons is stored as a weight-value for the specific 

connection. The system learns new knowledge by adjusting these connection weights. 

The learning ability of a neural network is determined by its architecture and 

by the algorithmic method chosen for training. 
The training method usually consists of one of three schemes: 

2.10.1.Unsupervised learning 

The hidden neurons must find a way to organize themselves without help from 

the outside. In this approach, no sample outputs are provided to the network against 

which it can measure its predictive performance for a given vector of inputs. This is 

learning by doing. 

2.10.2.Reinforcement learning 
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(2.2) 

2.10.3. Error Back propagation 

This method is proven highly successful in training of multi-layered neural 

nets, The network is not just given reinforcement for how it is doing on a task. 

Information about errors is also filtered back through the system and is used to adjust 

the connections between the layers, thus improving performance. A form of 

supervised learning. 
However, when we have a multi-layer network we encounter a difficulty: we 

don't have any target values for the hidden units. How could we tell the hidden units 

just what to do? This unsolved question was in fact the reason why neural networks 

fell out of favour after an initial period of high popularity in the 1950s .it took 3() 

years before the error back propagation algorithm popularised away to train hidden 

units, leading to a new wave of a neural network research and applications. 

For hidden units, we must propagate the error back from the outputs nodes. 

Again using the chain rule, we can expand the error of a hidden unit in terms of its 

posterior nodes: 

(2.1) 

Of the three factor inside the sums, the first is just the error of node i. The 

second is: 

While the third is the derivative of node j's activation function: 

of,(netj) = J;(netj) 
= onetj 

(2.3) 

For a hidden units h that use the tanh activation function, we can make use of 

the special identity tanh(u)' = 1- tanh(u)2, giving us: 

J; (net1J = 1 - y/ 
Putting all the pieces together we get 

01 =J;(net1ff<5,wu 
ie pj 

(2.4) 

(2.5) 

Note that in order to calculate the error for unit j, we must first know the error 

of all its posterior nodes (forming the set pj) Again, as long as there are no cycles in 
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the network, there is an ordering of nodes from the output back to the input that 

respects this· condition. For example we can simply use the reverse of the order in 

which activity was propagated forward. 

2.10.4. Learning laws 

There are a variety of learning laws, which are in common use. These laws are 

mathematical algorithms used to update the connection weights. Most of these laws 

are some sorts of variation of the best-known and oldest learning law, Hebb's Rule. 

Man's understanding of how neural processing actually works is very limited. 

Learning is certainly more complex than the simplification represented by the 

learning laws currently developed. Research into different learning functions 

continues as new ideas routinely show up in trade publications etc. A few of the major 

laws are given as an example below. 

2.10.4.1.Hebb's Rule 

The first and the best known learning rule was introduced by Donald Hebb. 

The Hebbian Learning Rule is a learning rule that specifies how much the weight of 

the connection between two units should be increased or decreased in proportion to 

the product of their activation. The rule builds on Hebbs's 1949 learning rule, which, 

states that the connections between two neurons might be strengthened if the neurons 

fire simultaneously. 
The Hebbian Rule works well as long as all the input patterns are orthogonal 

or uncorrelated. The requirement of orthogonal places serious limitations on the 

Hebbian Learning Rule. 
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2.10.4.2.Hopfield Law 

This law is similar to Hebb's Rule with the exception that it specifies the 

magnitude of the strengthening or weakening. It states, "if the desired output and the 

input are both active or both inactive, increment the connection weight by the learning 

rate, otherwise decrement the weight by the learning rate." (Most learning functions 

have some provision for a learning rate, or a learning constant. Usually this term is 

positive and between zero and one.) 

2.10.4.3. The Delta Rule 

The Delta Rule is a further variation of Hebb's Rule, and it is one of the most 

commonly used. This rule is based on the idea of continuously modifying the 

strengths of the input connections to reduce the difference (the delta) between the 

desired output value and the actual output of a neuron. This rule changes the 

connection weights in the way that minimizes the mean squared error of the network. 

The error is back propagated into previous layers one layer at a time. The process of 

back-propagating the network errors continues until the first layer is reached. The 

network type called Feed forward, Back-propagation derives its name from this 

method of computing the error term. 
This rule is also referred to as the Windrow-Hoff Learning Rule and the Least 

Mean Square Learning Rule. 

2.10.4.4.Kohonen's Learning Law 

This procedure, developed by Teuvo Kohonen, was inspired by learning in 

biological systems. In this procedure, the neurons compete for the opportunity to 

learn, or to update their weights. The processing neuron with the largest output is 

declared the winner and has the capability of inhibiting its competitors as well as 

exciting its neighbours. Only the winner is permitted output, and only the winner plus 

its neighbours are allowed to update their connection weights. 
The Kohonen rule does not require desired output. Therefore it is implemented 

in the unsupervised methods of learning. Kohonen has used this rule combined with 
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the on-centre/off-surround intra- layer connection (discussed earlier) to create the self­ 

organizing neural network, which has an unsupervised learning method. 

2.11. Recurrent Network 

Consider the following two networks 

Figure 2.10. Feed forward networks 

The network on the left is a simple feed forward network of the kind we have 

already met. The right hand network has an additional connection from the hidden 

unit to itself. What difference could this seemingly small change to the network 

make? 
Each time a pattern is presented, the unit computes its activation just as in a 

feed forward network. However its net input now contains a term, which reflects the 

state of the network (the hidden unit activation) before the pattern was seen. When we 

present subsequent patterns, the hidden and output units' states will be a function of 

everything the network has seen so far. The network behaviour is based on its history, 

and so we must think of pattern presentation as it happens in time. 
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Yi(t) = fi(neti(t-1 )) (2.6) 

2.11.1. Network topology 

Once we allow feedback connections, our network topology becomes very 

free: we can connect any unit to any other, even to itself. Two of our basic 

requirements for computing activations and errors in the network are now violated. 

When computing activations, we required that before computing Yi, we had to know 

the activations of all units in the posterior set of nodes, Pi. For computing errors, we 

required that before computing 81 , we had to know the errors of all units in its 

anterior set of nodes, Ai. 

For an arbitrary unit in a recurrent network, we now define its activation at time t as: 

At each time step, therefore, activation propagates forward through one layer 

of connections only. Once some level of activation is present in the network, it will 

continue to flow around the units, even in the absence of any new input whatsoever. 

We can now present the network with a time series of inputs, and require that it 

produce an output based on this series. These networks can be used to model many 

new kinds of problems, however, these nets also present us with many new difficult 

issues in training. 
Before we address the new issues in training and operation of recurrent neural 

networks, let us first look at some sample tasks, which have been attempted (or 

solved) by such networks. 

• Learning formal grammars 
Given a set of strings S, each composed of a series of symbols, identify the 

strings, which belong to a language L. A simple example: L = [a'l.b"} is the 

language composed of strings of any number of a's, followed by the same number 

ofb's. 
Strings belonging to the language include aaabbb, ab, aaaaaabbbbbb. Strings 

not belonging to the language include aabbb, abb, etc. A common benchmark is 

the language defined by the reber grammar. Strings, which belong to a language 

L, are said to be grammatical and are ungrammatical otherwise. 

• Speech recognition 
In some of the best speech recognition systems built so far, speech is first 

presented as a series of spectral slices to a recurrent network. Each output of the 
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network represents the probability of a specific phone (speech sound, e.g. Iii, /pl, 

etc), given both present and recent input. The probabilities are then 

Interpreted by a Hidden Markov Model, which tries to recognize the whole 

utterance. 

• Music composition 
A recurrent network can be trained by presenting it with the notes of a musical 

score. Its task is to predict the next note. Obviously this is impossible to do 

perfectly, but the network learns that some notes are more likely to occur in one 

context than another. Training, for example, on a Jot of music by J. S. Bach, we 

can then seed the network with a musical phrase, let it predict the next note, feed 

this back in as input, and repeat, generating new music. Music generated in this 

fashion typically sounds fairly convincing at a very local scale, i.e. within a short 

phrase. At a larger scale, however, the compositions wander randomly from key to 

key, and no global coherence arises. This is an interesting area for further work . 

2.11.2. The Simple Recurrent Network 

One way to meet these requirements is illustrated below in a network known 

variously as an Elman network (after Jeff Elman, the originator), or as a Simple 

Recurrent Network. At each time step, a copy of the hidden layer units is made to a 

copy layer. Processing is done as follows: 

l. Copy inputs for time t to the input units 
2. Compute hidden unit activations using net input from input units and from 

copy layer 

3. Compute output unit activations as usual 

4. Copy new hidden unit activations to copy layer 
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Figure 2.11. Simple recurrent neural network 

In computing the activation, we have eliminated cycles, and so our 

requirement that the activations of all posterior nodes be known is met. Likewise, in 

computing errors, all trainable weights are feed forward only, so we can apply the 

standard back propagation algorithm as before. The weights from the copy layer to the 

hidden layer play a special role in error computation. The error signal they receive 

comes from the hidden units, and so depends on the error at the hidden units at time t. 

The activations in the hidden units, however, are just the activation of the hidden units 

at time t-1. Thus, in training, we are considering a gradient of an error function, which 

is determined by the activations at the present and the previous time steps. 

A generalization of this approach is to copy the input and hidden unit 

activations for a number of previous time steps. The more context (copy layers) we 

maintain, the more history we are explicitly including in our gradient computation. 

This approach has become known as Back Propagation Through Time. It can be seen 

as an approximation to the ideal of computing a gradient, which takes into 

consideration not just the most recent inputs, but also all inputs seen so far by the 

network. The figure below illustrates one version of the process: 
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Figure 2.12. Learning of recurrent neural networks 

The inputs and hidden unit activations at the last three time steps are stored. 

The solid arrows show how each set of activations is determined from the input and 

hidden unit activations on the previous time step. A backward pass, illustrated by the 

dashed arrows, is performed to determine separate values of delta (the error of a unit 

with respect to its net input) for each unit and each time step separately. Because each 

earlier layer is a copy of the layer one level up, we introduce the new constraint that 

the weights at each level be identical. Then the partial derivative of the negative error 

with respect to WiJ is simply the sum of the partials calculated for the copy of WiJ 

between each two layers. 
Elman networks and their generalization, Back Propagation Through Time, 

both seek to approximate the computation of a gradient based on all past inputs, while 

retaining the standard back prop algorithm. BPTT has been used in a number of 

applications (e.g. ecg modelling). The main task is to produce a particular output 

sequences in response to specific input sequences. The downside of BPTT is that it 

requires a large amount of storage, computation, and training examples in order to 

work well. In the next section we will see how we can compute the true temporal 

gradient using a method known as Real Time Recurrent Learning. 

2.11.3. Real Time Recurrent Learning 
In deriving a gradient-based update rule for recurrent networks, we now make 

network connectivity very unconstrained. We simply suppose that we have a set of 

input units, I= {xk(O, O<k<m}, and a set of other units, U = {yk(t), O<k<n}, which 

can be hidden or output units. To index an arbitrary unit in the network we can use 
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z k (t) = { X k (t) 
y k (t) 

if k E I 
if k E U 

(2.7) 

Let W be the weight matrix with n rows and n+m columns, where W;J is the 

weight to unit i (which is in U) from unit) (which is in I or U). Units compute their 

activations in the now familiar way, by first computing the weighted sum of their 

inputs: 

net{t)= LWk1z1(t) 
JEI.AJI 

Where the only new element in the formula is the introduction of the temporal index t. 

(2.8) 

Units then computes some non-linear function of their net input 

yk(t+l) = fi(netk(t)) (2.9) 

Usually, both hidden and output units will have non-linear activation functions. Note 

that external input at time t does not influence the output of any unit until time t+ I. 

The network is thus a discrete dynamical system. 
Some of the units in U are output units, for which a target is defined. A target 

may not be defined for every single input however. For example, if we are presenting 

a string to the network to be classified as either grammatical or ungrammatical, we 

may provide a target only for the last symbol in the string. In defining an error over 

the outputs, therefore, we need to make the error time dependent too, so that it can be 

undefined ( or 0) for an output unit for which no target exists at present. Let T(t) be the 

set of indices kin U for which there exists a target value dk(t) at time t. We are forced 

to use the notation dk instead of t here, as t now refers to time. Let the error at the 

output units be 

,I 

( )
-{dk(t)-yJt)if kET(t) 

ek t - 0 otherwise 
(2.10) 

and define our error function for a single time step as 

(2.11) 

The error function we wish to minimize is the sum of this error over all past steps of 

the network 

(2.12) 
,=lo+I 
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Now, because the total error is the sum of all previous errors and the error at 

this time step, so also, the gradient of the total error is the sum of the gradient for this 

time step and the gradient for previous steps: 

(2.13) 

As a time series is presented to the network, we can accumulate the values of the 

gradient, or equivalently, of the weight changes. We thus keep track of the value 

~wu(t) = -µ a~t) 
u 

(2.14) 

After the network has been presented with the whole series, we alter each weight wu 
by 

f1 I~w/t) 
t=t0+1 

(2.15) 

We therefore need an algorithm that computes 

at each time step t. Since we know ek(t) at all times (the difference between our targets 

and outputs), we only need to find a way to compute the second factor. 

,I 

(2.17) 

This is given here for completeness, for those who wish perhaps to implement RTRL. 

(2.18) 

Where 5,k is the Kronecker delta 

s, = {~ 
if i = k 
otherwise 

(2.19) 

Because input signals do not depend on the weights in the network, 

az (t) 1 = 0 for 1 EI 
awu 

Equation becomes: 

(2.20) 
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(2.21) 

This is a recursive equation. That is, ifwe know the value of the left hand side 

for time 0, we can compute the value for time 1, and use that value to compute the 

value at time 2, etc. Because we assume that our starting state (t = 0) is independent 

of the weights, we have 

ayk(to) = 0 
awu 

These equations hold for all 

(2.22) 

k E U, i E U and j E U u I (2.23) 

We therefore need to define the values 

~/ (t) = 8y k (t) 
awif 

For every time step t and all appropriate i,j and k. We start with the initial condition 

p/(to) = 0 and compute at each time step 

(2.24) 

(2.24) 

The algorithm then consists of computing, at each time step t, the quantities 

p/(t) using the above equations and then using the differences between targets and 

actual outputs to ompute weight changes 

~ w if (t) = µLek (t )P/ (t) 
kEU 

(2.25) 

And the overall correction to be applied to wu is given by 
t 1 

~wu = L~wu(t) 
t=to + I 

(2.26) 
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2.12. Advantages of the neural network 

Either humans or other computer techniques can use neural networks, with 

their remarkable ability to derive meaning from complicated or imprecise data, to 

extract patterns and detect trends that are too complex to be noticed. A trained neural 

network can be thought of as an "expert" in the category of information it has been 

given to analyse. This expert can then be used to provide projections given new 

situations of interest and answer "what if' questions. Other advantages include: 

1. Adaptive learning: An ability to learn how to do tasks based on the data given 

for training or initial experience. 
2. Self-Organization: An ANN can create its own organization or representation of 

the information it receives during learning time. 
3. Real Time Operation: ANN computations may be carried out in parallel, and 

special hardware devices are being designed and manufactured which take advantage 

of this capability. 
4. Fault Tolerance via Redundant Information Coding: Partial destruction of a 

network leads to the corresponding degradation of performance. However, 

some network capabilities may be retained even with major network damage. 

2.13. Neural network in practice 

Given this description of neural networks and how they work, what real world 

applications are they suited for? Neural networks have broad applicability to real 

world business problems. In fact, they have already been successfully applied in many 

industries. 
Since neural networks are best at identifying patterns or trends in data, they 

are well suited for prediction or forecasting needs including Sales forecasting : 

)" Industrial process control 

)" Customer research 

)" Data validation 

)" Risk management 

)" Target marketing 
But to give you some more specific examples; ANN are also used in the following 

specific paradigms: recognition of speakers in communications; diagnosis of hepatitis; 
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recovery of telecommunications from faulty software; interpretation of multi meaning 

Chinese words; undersea mine detection; texture analysis; three-dimensional object 

recognition; handwritten word recognition; and facial recognition. 

2.14. Historical Background of Neural systems 

Neural network simulations appear to be a recent development. However, this 

field was established before the advent of computers, and has survived at least one 

major setback and several eras. 
Many important advances have been boosted by the use of inexpensive 

computer emulations. Following an initial period of enthusiasm, the field survived a 

period of frustration and disrepute. During this period when funding and professional 

support was minimal, relatively few researchers made important advances. These 

pioneers were able to develop convincing technology, which surpassed the limitations 

identified by Minsky and Papert. Minsky and Papert, published a book (in 1969) in 

which they summed up a general feeling of frustration (against neural networks) 

among researchers, and was thus accepted by most without further analysis. 

Currently, the neural network field enjoys a resurgence of interest and a 

-corresponding increase in funding. 
The history of neural networks that was described above can be divided into several 

periods: 
1. First Attempts: There were some initial simulations using formal logic. 

McCulloch and Pitts (1943) developed models of neural networks based on their 

understanding of neurology. These models made several assumptions about how 

neurons worked. Their networks were based on simple neurons, which were 

considered to be binary devices with fixed thresholds. The results of their model were 

simple logic functions such as "a orb" and "a and b". Another attempt was by using 

computer simulations. Two groups (Farley and Clark, 1954; Rochester, Holland, 

Haibit and Duda, 1956). The first group (IBM researchers) maintained closed contact 

with neuroscientists at McGill University. So whenever their models did not work, 

they consulted the neuroscientists. This interaction established a multi disciplinary 

trend, which continues to the present day. 
2. Promising & Emerging Technology: Not only was neuroscience influential 

m the development of neural networks, but psychologists and engineers also 
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contributed to the progress of neural network simulations. Rosenblatt (1958) stirred 

considerable interest and activity in the field when he designed and developed the 

Perceptron. The Perceptron had three layers with the middle layer known as the 

association layer. This system could learn to connect or associate a given input to a 

random output unit. 

3. Period of Frustration & Disrepute: In 1969 Minsky and Papert wrote a book 

in which they generalized the limitations of single layer Perceptrons to multi-layered 

systems. In the book they said: " ... our intuitive judgment that the extension (to multi 

layer systems) is sterile". The significant result of their book was to eliminate funding 

for research with neural network simulations. The conclusions supported the 

disenchantment of researchers in the field. As a result, considerable prejudice against 

this field was activated. 
4. Innovation: Although public interest and available funding were minimal, 

several researchers continued working to develop neuromorphically based 

computational methods for problems such as pattern recognition. 

During this period several paradigms were generated which modern work 

continues to enhance. Grossberg's (Steve Grossberg and Gail Carpenter in 1988) 

influence founded a school of thought, which explores resonating algorithms. They 

developed the ART (Adaptive Resonance Theory) networks based on biologically 

plausible models. Anderson and Kohonen developed associative techniques 

independent of each other. Klopf (A. Henry Klopf) in 1972 developed a basis for 

learning in artificial neurons based on a biological principle for neuronal learning 

called heterostasis. 
Werbos (Paul Werbos 1974) developed and used the back-propagation 

learning method, however several years passed before this approach was popularized. 

Back-propagation nets are probably the most well known and widely applied of the 

neural networks today. In essence, the back-propagation net. Is a Perceptron with 

multiple layers, a different thresholds function in the artificial neuron, and a more 

robust and capable learning rule? 
Amari (A. Shun-lchi 1967) was involved with theoretical developments: he published 

a paper, which established a mathematical theory for a learning basis (error-correction 

method) dealing with adaptive pattern classification. While Fukushima (F. Kunihiko) 

developed a stepwise trained multi layered neural network for interpretation of 
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handwritten characters. The original network was published in 1975 and was called 

the Cognitron. 
5. Re-Emergence: Progress during the late 1970s and early 1980s was 

important to the re-emergence on interest in the neural network field. Several factors 

influenced this movement. For example, comprehensive books and conferences 

provided a forum for people in diverse fields with specialized technical languages, 

and the response to conferences and publications was quite positive. The news media 

picked up on the increased activity and tutorials helped disseminate the technology. 

Academic programs appeared and courses were introduced at most major Universities 

(in US and Europe). 
Attention is now focused on funding levels throughout Europe, Japan and the 

US and as this funding becomes available, several new commercial with applications 

in industry and financial institutions are emerging. 
6. Today: Significant progress has been made in the field of neural networks- 

enough to attract a great deal of attention and fund further research. Advancement 

beyond current commercial applications appears to be possible, and research is 

advancing the field on many fronts. Neutrally based chips are emerging and 

applications to complex problems developing. Clearly, today is a period of transition 

for neural network technology. 
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CHAPTER THREE. NEURAL LEARNING SYSTEMS FOR 

TECHNOLOGICAL PROCESSES CONTROL \ 
df~ .· ~I 

('~0~\<J . ~Q,}\ 
';) ~' A~~\,J' 

~<../' The complexity of a number of technological/processes and the preiing °' »: 
'1\i;/:' C:regime of their functioning require use of more quafitative control algorithms for 
ri.(r I • ' \, 5 Jt.lf"W regime parameters that provide1possibility of learning;and~daptation to chang~in the 

environment/Howeyer the algorithms developing on the bas~ 9f traditional approach ~ ~ ,.: - - --- - 

- 

are complex and their implementation is difficult. 
Taking into account the fuzziness and uncertainty of working environment of 

modern technological processes, an effective method for development of control 

system is using the artificial intelligence ideas. However, the traditional algorithms 

and artificial intelligence methods do not always adequately describe some processes 

for complex objects. 
In this condition it is advisable to use neural technology for developing the 

control systems. Using it allows to improve the quality of systems by paralleling 

computational processes and the ability for learning and adaptation, which improve 

flexibility of systems. 
In this chapter, identifications of control objects and development of direct and ( 

inverse controllers based on neural network are considered. 

3.1. Modelling of Neural Control System 

Assume that control object is described by the following differential equation 

n m L an-iY(i) (t) + ccp(y(t)) = L bm_iu(il (t) (3.1) 
i=l j=I 

Where a: (i=l,n) and bj U=l ,m) are unknown parameters of control object, dis delay; 

c is unknown non-linear parameter, m<n. 
The problem consists in constructing the controller for control of object (1) 

that would provide the target characteristic of system. 
At first the development of PD-, PI-, PID- neural controllers for control of 

regime parameters of control object are considered. In figure 3 .1 the structure of PID- 

neural controller is shown. 
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1 Neural PID controller I 
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Neural 
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Control 
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The ~ynthesis' of neural controller ~ the determination of the~ 

coefficients and parameters of the neural network (NN). In the controller synthesis 

Figure 3.1. Structure of Neural PID- controller. 

processes the main problem is learning of the NN coefficients. J~8o,~:,._ 
The architecture of the network is chosen to be feedsforward consisting of three 

layers: input, hidden and output layer. The problem of control system synthesis on the 
- / - 

base of NN is the following. 
Assume there is target behaviour for the constructed control system. It is - necessary to determine the values of parameters- weight matrix Wij and ~ 

v" coefficients using of which in control system for object (1) would allow achieving 

\~ E~;spo~ which provides arget step res pons of the system. D I ( -- . t~.>I.. (},}- 1r.>,-,-.°J .J..t!l"-1- 

~(;::r,,,v The input signals error e, error derivative e' and integral value of error f e( t)dt 
. ~Yf /". !J after scaling wi'.h coefficients k" k ,· , k j ,Jre entered to neural network. The / 

functioning of neural network is performed by using activation function U=Y/(A+[Y[). 

Here Y=XW. 
For synthesis of neural controller.the NN learning is performed by using 'back 

propagation' algorithm. The NN learning is performed in the closed control system, 

i.e. for learning NN error between target characteristic of control system and current 

output value of implemented system (output of control object) ~(y, t)=ke(g (t)-y(t)) is 

used. That error is used for correction NN parameters for adjusting of controller. 

Using learning algorithm of 'back propagation, the values of weight coefficients 

ofNN is found. 
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3.2. Simulation of Neural Control Structure 

Using neural PD-, PI-, and PID controllers for control of different object o. 
performs the computer simulation of the system by using neural PD-, PI-, and PID ~ 

contro,lle7for contra! of different object. For the simulation using following 

differential equations chooses the models of control object: 

------ 
(3.2). 

Where ao= 0.072 min", a1=0.056 min, a2=1, b0=60 °C/(kgf/cm2); 

Here y (t)- regulation parameter of object, u (t)- neural controller's output. 

ao/2)(t)+a1 / 1 )(t)+a2y(t)=bou(t-d) 

(3.3) t 
Where ao= 6.3 min'', a1=11.2 min, a2=1, b0=5.1 °C/(kgf/cm2), d=2.5 min is delay; 

(3.4) 

Where ao= 2.8 mirr', a1=3 mirr', a2=1 min, a3=1, b0=34 °C/(kgf/cm2); 

The neural controllers development for given control objects are performed. In 

the result of learning corresponding values of neural network coefficients are 

determined. In fig.3.2 (a, b, c) the time responses of PD-, Pl-, PID- controllers for 

control object (2) are shown. 
Then the results of simulation of neural controllers for technological processes 

control are compared with simulation results of the traditional PD-, Pl-, PID­ 

controllers. When optimal value of tuning parameters of PD- controller amplifying 

coefficient KP=0.08[(kgf/cm2)/0C] and differentiation time Td=0.15 min., then 

transient process in the control system oscillates with 18% o~overshoot. 

8Where settling time t= 1.3-1.5 min, static error E ,1 ( co) ~ 0.15x( oo), and value of 
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squared integral control quality index J=276.4. Such value of static error is not 

satisfactory. One can see from transient object operation mode of automatic control 

system with neural PD-controller that static error (t:51~0) is almost absent, transient 

overshoot is almost 8%, settling time t= 1.3 min., J= 126. l. 

y(l)t ~ 

I ./.\/\ / Vi. 

\~~ 
1... ... . . r-··~.··---t •.. ·. .. 8 

! 

2 3 4 5 {J 7 

Figure 3.2. (a) PD Controller 

3 4 5 1 B 9 

Figure 3 .2. (b) Pl Controller 
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v(t)• . I 

Figure 3.2. (c) PID Controller 

Figure3.2.time response characteristics of control system with PD, PI and PID 
controller 

The simulation results of comparison of traditional and neural controllers show 

that when optimal value of tuning parameters of PI-controller 

KP=0.054[(kgf/cm2)/0C] and Ti=l rnin., then transient process in the control system 

oscillate with 12% of transient overshoot. Where settling time t=l.5 min, static error 

E.1(00)=0, and value of squared integral control quality index J=134.39. Transient 

object operation mode of automatic control system with neural PI-controller shows 

that static error Est=O, transient overshoot is almost 7%, settling time t=l.5 min., 

J=l 14.2. 
Also when optimal value of tuning parameters of PID- controller 

kp=0.064[(kgf/cm2)!°C], Ti=l min. and Td=0.15 min., then transient processes in the 

control system oscillate with 10% of transient overshoot, settling time t= 1.5 min, 

static error E.1(00)=0, and value of squared integral control quality index J=l04.75. 

Transient object operation mode of automatic control system with neural PID­ 

controller show that static error Est=O, transient overshoot is almost 7%, settling time 

t=l.2 min., J=102.21. 
Results of experimental analysis of the automatic control system with neural 

network shown their efficiency. 
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3.3. Identification and inverse control of dynamical systems 

It is necessary to note, that for control of technological processes, functioning 

in the fuzzy environment, the development of fuzzy neural PD-, PI-, PID- controllers 

are carried out. The learning of those controllers is carried out by using a- level and 

interval arithmetic. 
Also the direct and inverse identifications of control object (1) and development 

of inverse controller are performed. 
In figure.3.3. The structure of direct identifier is shown. Here input signals of 

neural network are control object output signals. Those signals enter to NN, are 

processed and the derived signals on the output of network are compared with object 

output. In the result of comparison the value of error E=Y (k)-Y N (k) is calculated. 

This error Corrects the value of synaptic weights of NN to minimise error. In the 

result o'f learning on the NN the plant model is derived. For learning of NN the 'back 

propagation' algorithms is used. In the NN the following activation function is used. 

YN=X/(A+\X\) 

In the inverse identification (figure.3.4) the input signals of NN are object 

output signals. Those signals enter to input of NN. After processing derived NN 

output signal are compared with object input U (t) and the value of error E (k)=U (k)­ 

UN (k) is calculated. Using above-mentioned learning algorithm the correction of 

weight coefficients is performed. Learning processes is continued until the value of 

error attains to minimum. In the result of learning the derived model on NN is taken 

as object model. 

NN 
y(k) 
+ 

Figure 3.3 Structure of direct identification Figure 3.4. Structure of inverse 

Identification 
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The program performing direct, inverse identification processes and 

controlling object is developed. The system is implemented using Turbo Pascal 

and a computer IBM PC/AT. 

The results of direct and inverse identification processes of the plant are shown 

in figure 5(a, b). During the identification the sinusoidal signal is given to the input of 

the system. In the figure the straight line shows the object output (3.5a) and object 

input (3.5b) and dotted line shows output of the neural identifiers. As shown in the 

figures the input and output of the object coincided with neural identifiers. This 

confirmed the adequacy of the derived models. 

Results of inverse identification are used for development of a neural controller 

for control of object. Fig. 6 shows the structure of the controller. 

----Output of control object 
- - - - - Output of identifier 

nt 

2 a) 

Figure 3.5(a) Simulation results of direct identification 
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---- Output of control object 

u UN - - - - Output of identifier 

I 

~ IJ ~ IJ ~ 11 J N~ ~ ~ ~ 

nt 

V II 
l Ii l 

~ I, i\ I\ 
1J 

6) 
Figure 3.5(b) Simulation results of inverse identification 

Also in fig. 3 .6 the time response of the system with inverse neural controller is 

shown. Although the inverse identification of the object and use of their results in the 

inverse neural controller require certain time. 
The developed direct neural controller is used for creating a control system of 

temperature of rectifier K-2 column. 

y 

Uu.JControl ly 1 
contr. I I C !object 

0 n 

Figure 3.6. Structure of inverse controller. Figure 3.7 Time response of 

control system 

53 



CHAPTER FOUR. NEURAL NETWORK APPROACH TO 

CONTROL SYSTEM IDENTIFICATION WITH VARIABLE 

ACTIVATION FUNCTIONS 

4.1. Neural Network Architecture 

4.1.1. Cascade Architecture 

The cascade two learning architecture, developed by Fahlman [14], is very similar 

to the previously developed cascade correlation algorithm. Both cascade correlation 

and cascade two combine the following two notions: (1) the cascade architecture, in 

which hidden units are automatically added one at a time to an initially minimal 

network, and (2) the accompanying learning algorithm, which creates and installs the 

new hidden units [13][14]. In cascade correlation, the learning algorithm attempts to 

maximize the magnitude of the correlation between the new hidden unit's output and 

the residual error signal. This covariance measure tends to overshoot small errors, 

however, and thus is not suitable for continuous-valued outputs. The cascade two 

algorithms correct this problem by attempting to minimize the sum-squared difference 

between the scaled unit outputs and the residual error [13]. Training proceeds as 

summarized below. Initially, there are no hidden units in the network, only the 

input/output connections. These weights are trained first, thereby capturing any linear 

relationship between the inputs and outputs. With no further appreciable decrease in 

the error measure (in cascade two, the sum squared error), the first hidden unit wil\ be 

added to the network from a pool of candidate units. Using the quickprop algorithm 

[12], these candidate units are trained independently and in parallel with different 

random initial weights. 
After no more appreciable error reduction occurs, the best candidate unit is 

selected and installed in the network. Once installed, the hidden unit input weights are 

frozen, while the weights to the output units are retrained. By freezing the input 

weights for all previous hidden units, each training cycle is equivalent to training a 

three-layer feed forward neural network with a single hidden unit. 
This allows for much faster convergence of the weights during training than in a 

standard back prop network where many hidden unit weights are trained 

simultaneously. 
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The process is repeated until the algorithm succeeds in reducing the sum­ 

squared error sufficiently for the training set or the number of hidden units reaches a 

specified maximum number. Note that each new hidden unit receives as input 

connections from all previous units, including all input units as well as previous 

hidden units. Figure 4.1 below illustrates how a 2-input, 1-output network grows as 2 

hidden units are added. We believe that the cascade two architecture offers several 

advantages, particularly relevant for mapping of non-linear continuous-valued 

functions. First, the algorithm adjusts the architecture of the network automatically, 

thus obviating the need for a priori guessing of the necessary network architecture. 

Second, the cascade architecture can potentially model higher degrees of non-linearity 

with fewer hidden units than might be required in a single or two hidden-layer 

network. Finally, and perhaps most importantly, the incremental addition of hidden 

units allows for new hidden units to have variable activation functions. 
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C5) Bias Unit 

0 Input Unit 

[l\ Output Unit 

Ill Hidden Unit #1 

B Hidden Unit #2 

I 

Figure 4.1. The cascade two learning architecture adds hidden units one at a time as 

shown in the above diagram. All connections are feed forward. 

In the pool of candidate units, we can assign a different non-linear activation 

function to each unit. These functions can include but are not limited to the sigmoid 

function, sine or cosine functions, and the Gaussian function. Thus, if the function to 

be approximated has a strong sinusoidal dependence of some sort, it is more efficient 

to have one sinusoidal hidden unit rather than several sigmoidal units, which have to 

act together to first, approximate a sinusoidal dependence. During candidate training, 

the algorithm will select for instalment whichever candidate unit reduces the sum- 

squared error of the training data the most. 
Hence, the unit with the most appropriate activation function at 
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That point during training is selected. 
Finally, we note that the cascade two architecture is capable of arbitrary, non- 

linear function approximation. Using Kolmogorov's theorem, Kurkova shows in [19] 

that a feed forward neural network with two hidden layers is sufficient for arbitrary 

function approximation. 
In fact, Cybenko and Funahashi have shown separately that a continuous feed 

forward neural network with a single hidden layer and sigmoidal activation functions 

can approximate non-linear mappings arbitrarily well [11][15]. Since any multilayer 

feed forward neural network with full connectivity between consecutive layers is 

simply a special case of a cascade network with an equal number of hidden units, 

these function approximation theorems extend trivially for this architecture. 

Furthermore, Cybenko shows that there is no strict theoretical argument for confining 

the activation functions exclusively to sigmoidal functions, and shows, for example, 

that sine and cosine are complete in the space of n-dimensional continuous functions 

[11 ]. 

4.1.2. Dynamic System Identification 

In general, a dynamic system may be expressed as a finite difference equation 

of the general form, 

y(K + 1) = g(y(k), y(k-1), ... , y(k- n),u (k),u (k-1), ... ,u (k-m)) (Eq.1) 

Where g () is some arbitrary non-linear function y( k), is the output vector and u(k) 
is the input vector at time step k. Most neural networks are only capable of static 

input/output mapping however, to overcome this problem, Narendra suggests 

providing a time history of data as input to the neural network [13][14]. Thus, static 

feed forward neural networks have the potential to approximate complex non-linear 

mappings of dynamic systems for which no analytic model may exists. For example, 

Figure 4.2 illustrates how this is done for a SISO system of the form, 

y(k + 1) = f (y(k), y(k -1), y(k - 2), u(k), u(k -1)) (Eq.2) 
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y(~)~ 

Neural Network _y(k) 

Figure 4. 2. The diagram illustrates how a dynamic system is mapped onto a static 

feed forward neural network. 
In [24], special cases of (Eq.1) are classified depending on whether part of the 

relationship in the equation is linear. Since the cascade architecture begins with direct 

linear connections between inputs and outputs, such classification is unnecessary here. 

4.2. Control System Modelling 

Below, we present simulation results, which serve a three-fold purpose. First, 

the simulations demonstrate the feasibility and advantage of variable activation 

functions over a priori specification of activation functions. Second, the simulations 

demonstrate the neural network's ability to model dynamic systems from input/output 

data vectors. Finally, we show that the neural network can learn a known control 

strategy for a sample system. Such learning is crucial to identifying components of the 

human control process. 
For all simulations, we allowed a maximum of 250 epochs to train the weights 

in a pool of eight candidate units. In the case of variable activation types, the pool of 

candidate units has the following function types: (1) standard symmetric sigmoid, 

with a (-0.5, 0.5) range, (2) standard zero-mean Gaussian, (3) Bessel function of the 

first kind of order zero and one, ( 4) sine, (5) cosine, (6) double frequency sine, and (7) 
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double frequency cosine. Output units are linear, so as to allow the outputs to assume 

any real value. 

Unless otherwise noted, the dashed or dotted line in each figure shows the 

function to be modelled, while the solid line plots the output from the trained network. 

4.2.1. One-dimensional Function Approximation 

Here, we demonstrate the consequences of utilizing different non-linear 

activation functions for each hidden unit by modelling a simple, static one-variable 

function given by, 

f (x) = . 
2 

(Eq.3) 
(1 + X ) 

Here, we use 1500 uniformly distributed random data points in the Interval 

x E [4,- 4] as training data. We train two different networks, one with all sigmoidal 

units, and one with variable hidden units. In each case we stop training after six 

hidden units have been added. The hidden unit types in the network with variable 

activation functions follow in the order of insertion: (1) Bessel function of order zero, 

(2) sine, (3) double frequency cosine, (4) Bessel function of order one, (5) sine, and 

(6) double frequency cosine. Figure 4.3 below shows the network output for the 

variable-unit network, while Figure 4.4 shows the network output for the sigmoidal 

network. Figure 4.5 and Figure 4.6 show the approximation errors for Figure 4.3 and 

Figure 4.4, respectively. Table 1 summarizes the relationship between approximation 

error and activation functions for three different f (x ). In each case, the neural 
networks are trained to a size of six hidden units. 
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.flx) 
Sig,noidal Units 
{RMS error) 

Vari able Units 
{RMS error) 

Table 1: Approximation Error for Various f(x) 

0.6sin (1tx) + 
0.3sin 01tx) + 

O.l sin ( 511:x) 

OJJ397 0.0097 

x3 + O.Jx2 - OAx 0.0140 

0.0215 

4.2.2. Non-linear Difference Equation 

Below, we compare our network architecture to a standard multiplayer feed 

forward back prop network as described by Narendra in [20]. The difference equation 

we want to approximate is given by, 

-4 -2 
X 

Figure 4.3. The network with non-sigmoid units performs better in 

the function f (x). 

approximating 
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Figure. 4.4. The sigmoid network performs Jess well in approximating f (x). 
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Figure.4. 5. The approximation error is relatively uniform over the training interval. 

y(k + 1) = 0.3y(k) + 0.6y(k-1) + u(k)3 + 0.3u(k )2 _ 0.4u(k) (Eq.4) 

We use 1000 uniformly distributed random inputs in the interval u ( k) E [-1 

, 1 ] as training data. The resulting cascade network has three hidden units whose 

activation functions are in order of insertion: 

(1) Double frequency cosine, (2) Besse\ function of order one, and (3) sine. 

To test the network, we use an input given by, u(k) = sin(~;~) (Eq.5) 
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Figure.4. 6. The approximation error is much larger for the sigmoidal network. 

The resulting output is shown in Figure 4.7 below. This result compares very 

favourably to the simulation in [14] where a network with two hidden layers of 20 

units and 10 units, respectively is used, and the training data set includes over 50,000 

data points. 

6 

4 

~ ;.,.~ 2 

0 

-2_ 
0 50 ](}(} 1:50 200 250 300 

tim.e index 

Figure.4.7. The 3-hidden unit neural network performs well in tracking the output of 

the dynamic system. 

A network with three sigmoid hidden units performs significantly worse as is 

shown in Figure 4.8. 
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Figure. 4.8. More sigmoid hidden units are required to match the performance of the 

neural network in Figure4.7. 

4.2.3. Control Application 

Below, we simulate a non-linear controller for the classic inverted pendulum 

system. This is a traditional benchmark problem in control since the dynamics of the 

system are non-linear and coupled, and the open-loop system is unstable. The 

dynamics of the system are governed by the following equations [6]: 

.. 3 .. e = -(gsinB-xcosB) 
41 (Eq.6) 

, ~ ) . :.) ~' . ' '. ' . ' ni( lsmee- - 8gsm20' -.fx + u 
(Eq. 7) (,,j~.·)·· lvl + m l - -cosle .· 

,, 4 . 

We use the following non-linear control law as teacher to the neural network: 
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(Eq. 8) 

3 
hz = 4lcose (Eq. 9) 

/1 = n{ l sin eEi - ~g sin 2e)-f.x (Eq. lO) 

f; = lvf + m ( l - ~ cos2 9) (Eq. l 1) 

I" . 2 [ ,~ 1 .' £l C. •. t: . ~ r . . . . ) . ·. '] :· u = h2 n1 +,cl (u-udJ +/l..28+c1 tx-xd +c2x -Ji 

(Eq. 12) 

For the simulations, we used the following numeric values: 

M=l kg, m=0.1 kg, /=1 m,f=5 kg/s, g=9.81 m/s2, kl=25, k2=10 ,CJ=l,c2=2.6 Also 

we set Xc1 =Om, Bc1 = 0 rad, which are the desired position of the cart and angle of the 

pendulum respectively. For details on all the parameters see [16]. This system is 

simulated numerically using Euler's approximation method with a time step of T = 

0.02 seconds. The neural network takes as input the current and previous x positions, 

as well as the current and previous positions. It is trained to approximate the control 

law given in (Eq.12). As training data, we generate 500 uniformly distributed random 

input/output vectors in the following range: 

(xcurrent xprevl'.ous) E [ 0.04; 0.04] (m) 

(e current - (jpreViOUS) E [-0.02, 0.02] (rad) (Eq. 16) 

XE [ 1, t] (111) 

8 E [-0.5, 0.5] (rad) 

(Eq. 13) 

(Eq. 14) 

(Eq. 15) 

We found that as few as three hidden units were sufficient to model the 

controller, even for large initial values of 8 . Below we compare the performance of a 

64 



trained neural network with three sinusoidal hidden units to that of the actual control 

law. The initial 

Conditions for the simulation are, 

[~,\.t, 0, 8] = [O, 0, 0.6 (rad), O] (Eq. l7) 

Note that the initial condition for is outside the range of e the training data. 
Figure4.9 compares the actual controller and the neural network controller 

performance. The controller and neural network generate virtually identical results. 

Figure4.10 shows the difference in response between the actual and the neural 

network controller. 

o.e 

0.4 

0 JOO 200 

lime steps 

Figure 4.9. The angle of the pendulum is controlled almost identically for the non­ 

linear control law and the neural network controller. 

lq 

-11.0()4 

-OJW6 
() JOO 200 300 400 

Figure4.10. This figure plots the error between the angle position caused by the non­ 

linear control law and the angle position caused by the neural network controller. 

65 



4.3. Modelling Human Control Strategy 

4.3.1. Experimental Set-up 

In this section, we show preliminary results in modelling human control 

strategy. For the experiment, a human subject is shown an inverted pendulum-cart 

system on a computer screen, and is able to control the horizontal force to be applied 

to the cart via the horizontal mouse position. The parameters for this cart-pendulum 

system are equivalent to those given in the previous section. Thus, we have replaced 

the non-linear control law with a human being as teacher for the neural network. The 

system state, as well as the control input provided by the human, is recorded at 100 

Hz. 

4.3.2. Modelling Results 

Case 1: After numerous failed attempts at keeping the pendulum from falling 

for any meaningful period of time, the first human subject successfully controls the 

system for 23 seconds or 2300 data points. Figure 4.11 below shows the pendulum 

angle for the time that the human is able to keep the pendulum from falling. From this 

data, 750 randomly selected data points are selected to train the network, while 

another 750 randomly selected data points are used for cross validation. The neural 

network to be trained from this data takes six inputs, namely, the past five values of 

the pendulum angle, as well as the velocity of the cart, 

[ e ck . . 4) , ... , e ck 1 ) , e ( k) i i ck) } . (Eq. 18) 

As output, the network generates the horizontal force to be applied to the cart 

in the next time step, .u (k+ 1). 
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Figure 4.11. Data from this run of 23 seconds was used to train the neural network to 

control the inverted cart-pendulum system. 

Here, the pendulum angle is shown in radians. 
We allow a maximum of 150 epochs to train the weights as each new hidden 

unit is added. Here, all hidden unit activation function types are one of the sinusoidal 

functions; we stop training with twelve hidden units. Figure 4.12 below shows the 

resulting neural network control of the pendulum-cart system with 8initial =0.2 for 20 

seconds. 

O. l 

02 

0 500 !000 !500 2000 

-0. J 

-0.2 

Figure 4.12. Neural network control of the inverted pendulum-cart system. Here, the 

pendulum angle is shown in radians. 
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By plotting the trajectory of the pendulum in phase space, we see that the 

trajectory, although not periodic, does exhibit a definite pattern over a long period of 

time. In Figure 4.13 below, 200 seconds of the pendulum trajectory in phase space are 

plotted. 

-l 

l 

fl. 5 ~· 
~ 
"' -'::. ,.. 

{/ 
~ 
"':: 
-~ -0 5 ,... 
~ 

Figure 4.13. Pendulum trajectory in phase space. 

It was determined experimentally that this neural network controller is stable 

for -0.92 <8initial< 0.98. 

Case 2: A different human subject is also asked to control the system. This 

subject shows greater skill than the first subject and has a successful run of 

approximately 60 seconds. From this data, 1000 randomly selected data points are 

selected to train the network, while another 1000 randomly selected data points are 

used for cross validation, 

This network has the same inputs and outputs, and training proceeds as in 

Case 1 above. After training, an examination of the resulting weights in the network 

revealed several weights that are much larger than many smaller weights. The largest 

weight (in magnitude) is, for example, approximately 1201. Thus, all weights less 

than six in magnitude are set to zero. The resulting controller proves to be remarkably 

simple, and can be expressed by, 

u(k+ l) = w18(k) ; H'29 (k- 2) ;. w39 (k-4) +lF4X 

(Eq. 19) 
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Where wl=-350, w2=1201, w3= -925 and w4=7.6. Thus a traditional linear 

feed back controller has been abstracted from training data provided by human 

operator. This controller is stable for -1.04< 8initial< 1.05. 
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CONCLUSION 

Learning control from humans by example is an important concept for making 

controllers, machines more intelligent. Neural networks are well suited to generate the 

complex nonlinear mapping of the human control process, which maps sensory inputs 

to control action outputs. 

The work have been described in the neural network of intelligent structure is 

focusing on the learning aspect of smart structure controllers with neural architectures 

along two main research directions of The basic research effort that aims at the 

development of novel neural control architectures. 

The neural network controller is usually structured according to the neural 
v 

network plant model using external feed back of the control signal and delayed values 

of the commanded input using time delay lines. 

The architecture of neural control system for technological process is given. 

This architecture allows improving accuracy of the control system due to its learning 

ability and adaptability to the changing of environment. 

The encouragement results for nonlinear continuous function mapping and 

dynamic system identification by utilizing new neural network architecture are 

presented. 

The recurrent network architecture and learning Process is well suited for 

efficiently mapping continuous nonlinear functions. 

The method allows a neural network to learn both a known nonlinear, coupled 

control law, as well as unknown nonlinear human control strategy. 
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