Development of (NN) based Fingerprint Recognition system

4. DEVELOPMENT OF NEURAL NETWORK BASED FINGERPRINT RECOGNITION SYSTEM
4.1 Overview
It is often useful to have a machine performing pattern recognition. In this chapter the development of fingerprint recognition system is considered. Steps of computer modeling of fingerprint recognition system are described.
4.2 Introduction

Fingerprint is one of biometric approach for personal identification. Fingerprint images are classified into one of several prespecified classes. Automatic classification can be used as a preprocessing step for fingerprint matching, reducing matching time and complexity by narrowing the search space to a subset of a typically huge database [15, 16]. Fingerprint images may have different vies and they could be classified as left loop (L), right loop (R), whorl (W), arch (A) and tented arch (T) according to Henry’s classification scheme, as shown in Fig. 4.1.
[image: image1.wmf]11

00

22

(,)(,)exp{1}exp{1ln}

NN

mn

FklImnkm

NN

pp

--

==

=----

åå

Figure 4.1 Fingerprint images. From the top left, class labels are left loop (L), right loop

(R), whorl (W), arch (A), and tented arch (T) [17].
One of important step in fingerprint classification is feature extraction. The features generated after the fingerprint preprocessing are fed into classifiers such as neural networks [18], hidden Markov model [19], probabilistic neural networks [20], and support vector machines [21]. Jain et al. extracted features from Gabor-filtered images which were centered on a core point and used two-stage classifiers of K-nearest neighbor and neural networks [16]. Since the fingerprints are flow-like images, many approaches are based on directional structures explicitly or implicitly. Local orientation flows are estimated from a fingerprint image and desired features are computed from the estimated orientation field. The features can be singular points and the classification is based on the number and locations of detected singular points [22]. In [23], a directional image is partitioned into homogeneous regions and the relative relations of segmented regions are used for classification. In order to overcome the possible ill-posed problem of the directional partitioning task, Cappelli et al. performed guided segmentation using directional masks as a prototype of each class [24].

An approach for fingerprint classification based on the Discrete Fourier Transform (DFT) and neural networks is proposed in this chapter. Discrete Fourier Transform (DFT) and directional filters are used to obtain reliable and efficient representations of fingerprint images. The DFT is a useful computational tool that provides an efficient means for detecting directionality or periodicity in the frequency domain and removing noise by deleting high frequency coefficients [25]. In order to estimate local ridge orientations in a fingerprint image, the directional filters are applied in the frequency domain after the image has been transformed by the DFT. Directional images are then constructed in order to capture the distinguishing orientational structure among classes. By deleting high frequency coefficients in the frequency domain, this method utilizing the DFT and directional filters can deal with noise in fingerprint images effectively, and therefore tolerate low quality fingerprint images.
4.3 Construction of Directional Images
Fingerprints vary in size, are positioned randomly in printed images, and the backgrounds can contain noise such as scratches, lines or blur. In the Discrete Fourier Transform (DFT), thresholding the high frequency coefficients correspond to reducing the noise effects, while the low frequency coefficients provide a trigonometric interpolation via a finite linear combination of sines and cosines of the various frequencies [26]. The DFT has been widely used in signal and image processing [25]. The Fast Fourier Transform (FFT) is applied and the fast algorithm for computing the gray level at (x, y) in an N × N image. Image I in the spatial domain is transformed to the frequency domain by the two dimensional FFT, [17]

[image: image35.png]

(4.1)

For 0 ≤ k, L≤ N-1. By translating the image F by
[image: image2.wmf],

22

NN

æö

ç÷

èø

and wrapping it around at the edges, the zero frequency (DC point – DC stands for Direct Current) is moved to the point
[image: image3.wmf],

22

NN

æö

ç÷

èø

 in the frequency domain and the absolute magnitude image in the frequency domain becomes symmetric around the DC point. It is assumed that FFT has been applied and we proceed in the shifted frequency domain. Absolute magnitudes along the line passing through the DC point in the frequency domain can be viewed as responses of sine and cosine waves of the same orientation but at various frequencies in the space domain. By using directional filters, the dominant direction and its directionality could be determined [25].
The main steps for constructing a directional image are:
(1) Segment the fingerprint from the background by applying the FFT in a local neighborhood and computing the directionality.

(2) On a segmented fingerprint, compute the directional vectors by computing the dominant directions in a local neighborhood.

(3) Find the core point, to be defined later, which can be used as a landmark for unified centering of fingerprints belonging to the same class, and construct the directional image centered on the core point. The parameter values were determined by applying the three steps to fingerprint images of the training data set and examining the produced directional images.

4.3.1 Fingerprint Segmentation

Given an input image of size 512 × 512, its rows and columns are divided into 16 pixels, giving 31 × 31 inner grid points. The FFT is applied on the 32 × 32 pixels centered at each inner grid point (m,n), l≤ m, n ≤ 31. In order to detect the dominant direction of the oriental flow in each 32 × 32 sized local neighborhood, we devise a filter, called a directional filter, which will be used in the FFT image. The directional filter Dθ for orientation
[image: image4.wmf][0,180)

q

Î

 is given as follows:

[image: image5.wmf]2222

2222

exp{},1,,,

(,)

0,,

vvvv

abab

ifforpijp

Dipjp

otherwise

q

ì

--+£-££

ï

++=

í

ï

î

(4.2)

2a and 2b are the lengths of the short and the long axes of the ellipsoid
[image: image6.wmf]22

22

1

vv

ab

+=

, respectively. By using directional filters that emphasize the low frequency coefficients around the DC point and the high frequency coefficients, the noise effects in the fingerprint images can be reduced effectively in this algorithm.
[image: image7.wmf]16,1.5,32/3,0,10,....,170

paband

q

====

 are used.
At each grid point (m, n), l≤ m, n ≤ 31, directionality Dm,n and local dominant
Direction θm,n = θmax are calculated as

[image: image8.wmf]max

,

max

()()

()

mn

ff

D

f

q

qq

q

-

=

å

(4.3)
Where
[image: image9.wmf]22

max

00

()(,)|(,)|,argmax()

pp

ij

fDijFijf

qq

qqq

==

=´=

åå

(4.4)

The value f (θ) is weighted sum of FFT coefficients by the directional filter Dθ along the direction θ, and Dm,n measures how strong the direction θmax stands out. After computing
[image: image10.wmf],,

{(,)|131,131}

mnmn

Dn

q

£££

, by thresholding out the elements with low directionality Dm,n or horizontal or vertical direction θm,n and then choosing the outermost rows and columns that have the remaining elements with magnitude greater than 1, the boundaries for segmentation of foreground fingerprint from the background plane are determined. The mean value of Dm,n, 1≤ m, n ≤ 31 is used as a threshold.[17]
4.3.2 Computation of Directional Vectors

The size of segmented fingerprints can vary. In order to obtain scaling invariance, the segmented fingerprint is divided to give 31 × 31 inner grids and the FFT is applied to 32 × 32 local neighborhoods centered at each grid point. The local dominant directions are detected as θmax given in equation (4.4). The obtained direction θ is represented as a vector [image: image11.png][cos(28). sin (28]

 where 0o and 180o to avoid the discontinuity between 0o and 180o. [17]
Let
[image: image12.wmf],,,

[cos(2),sin(2)]

mnmnmn

d

qq

=

be the directional vector at 1 ≤ m, n ≤ 31. Smoothing of directional elements is done by averaging over a 3 × 3 neighborhood as follows,

[image: image13.wmf],,,

[cos(2),sin(2)]

mnmnmn

d

qq

=

(4.5)
Where

[image: image14.wmf],

1

arctan()

2

mn

y

x

q

=

 and
[image: image15.wmf]11

,

11

[,]

mknl

kl

xyd

++

=-=-

=

åå

[image: image16.wmf]

 EMBED Equation.3 [image: image17.wmf]
4.3.3 Construction of Directional Image
Due to the variance in size and positions of the printed fingerprints, the computed directional array
[image: image18.wmf],

{|131,131}

mn

dmn

££££

 needs to be adjusted to increase consistancy for fingerprints belonging to the same class. It can be done by detecting a point which is common in fingerprints whithin each class, but unique to charactarize each class, and then by extracting an area centered at the point, which is called the core point.

The core point is detected by measuring the consistency of directional elements over 3 × 3 neighborhood by

[image: image19.wmf]11

,,

11

mnmknl

kl

ud

++

=-=-

=

åå

(4.6)
At (m,n). It measures the distance from the starting point to the finishing point after adding directional vectors within a neighborhood. The lower value indicates inconsistency of directions over a neighborhood, as in the central point of swirling circles in the fingerprints of the class whorl (W) or a rapid turning point in orientational flows of ridges and valleys.

In order to find the core point, the lowest value among

[image: image20.wmf]00

,

11

mknl

kl

u

++

=-=-

åå

Is searched in 11 ≤ m, n≤ 21. This core point is used to locate the area which is most common within classes and discriminate between classes. Most of the information about the directional structure of a fingerprint can be found around the core point. A directional image is constructed where each directional vector
[image: image21.wmf],

mn

d

 in equation (4.5) is drawn based on

[image: image22.wmf],

mn

M

q

 . The formula for Mθ is given as

[image: image23.wmf]22

22

.exp{,1,,,

(,)

0

yy

aa

cifforpijp

Mipjp

otherwise

q

ì

-£-££

ï

++=

í

ï

î

(4.7)

Directional images,
Here p = 2, a = 1.2 and C =10 are used. In figure 4.2, the constructed directional images corresponding to the fingerprints in figure 4.1 are shown, where the detected core points are located in the center.
[image: image26.png]

Figure 4.2 The directional images of size 105 × 105 corresponding to the fingerprints in

Fig. 4.1. From the left, the class label is L, R, W, A and T [17].
4.4 Fingerprint Recognition Process
The overall analysis of pattern recognition system could be divided into three stages: image acquisition and preprocessing, feature extraction, and neural network analysis [13]. The overall process can be shown in figure 4.3 with the following flowchart. Source images using input sensors (light scan sensor) are acquired and entered to computer. A typical patter recognition system includes fingerprint image capturing, pre-processing, feature extraction, and pattern matching steps. During capturing the clarity and sharpness fingerprint image provide accurate preprocessing of image pattern. Image pre-processing is important step in the fingerprint recognition. It includes fingerprint normalization and enhancement operations. After these operations the minute characteristics of fingerprint image are obtained. This is done in feature extraction step. Result of this block is entered to neural network. NN implements classification of input images.
[image: image27.png]

Figure 4.3 Flowcharts for Methodology

Fingerprint images of 10 persons are taken for recognition. It was not necessary that the image should touch the box boundary as it was clipped later on. The patterns obtained were used as inputs to the neural network for recognizing different fingerprints.
In Fig.4.4 the fingerprints images used for classification are shown. In future section FFT will be applied in for transformation of images.
[image: image28.png]

.
Figure 4.4 Fingerprint Databases [27]
Figure 4.4 shows that the database of the Fingers before Applying any stage.
4.4.1 Grayscale Factor
A grayscale image is simply one in which the only colors are shades of gray. The reason for differentiating such image from any other sort of the color image is that less information needs to be provided for each pixel. In fact a gray color is one in which the red, green, and blue components all have equal intensity in Red-Green-Blue(RGB) space, and it is necessary to specify a single intensity value for each pixel, as opposed to the three intensities needed to specify each pixel in all color images. Often, the grayscale intensity stored as an 8-bit integer giving 256 possible different shades of gray from black to white.

Grayscale images are very common, in part because much of today’s display and images capture hardware can only support 8-bit images. In addition, grayscale images are entirely sufficient for many tasks so no need to use more complicated and harder to process color images. [28]
[image: image29.png]

Figure 4.5 Grayscale of (Person 1) Finger
Figure 4.5 Image (a) shows that (Person 1) Finger colored image, where after applying the grayscale the result became like Image (b) which is grayscale image.
4.5 Clip Images
The resultant image was clipped so that the edges of the image were confined within a fixed boundary. Clipping is defined as the decrease or reduction of the images size by a fixed ratio. Clip image is like a reversal of the process of enlargement, so first of all the images are smoothed by convolution with a spatially resolution.
However, for clip image by specific factor in the respective directions, the used factor hear are hig=20; len=50; of the original image, so the image length to height ratio of the reduced result remains equal to that of the original image length to height ratio.
[image: image30.png]

Figure 5.8 Fingers Clipped (Resized)
Figure 4.6 shows the Clip Images of the grayscale fingers
4.6 Neural Network Based Fingerprint Recognition
A network is to be designed and trained to recognize the 10 fingerprints. An imaging system that digitizes each finger centered in the system’s field of vision is available. The result is that each fingerprint is represented as an image.
Perfect classification of ideal input vectors is required and reasonably accurate classification of noisy vectors. The target is also defined in this file with a variable called target. Each target vector is a 20-element vector with a 1 in the position of the fingerprint it represents, and 0’s everywhere else [10].
The network receives the 400 Boolean values as a 400-element input vector. It is then required to identify the finger by responding with a 20-element output vector. The 16elements of the output vector each represent a finger. To operate correctly, the network should respond with a 1 in the position of the finger being presented to the network. All other values in the output vector should be 0. In addition, the network should be able to handle noise. In practice, the network does not receive a perfect Boolean vector as input. Specifically, the network should make as few mistakes as possible when classifying vectors with noise of mean 0 and standard deviation of 0.2 or less.
4.7 Architecture
The neural network needs 400 inputs and 16neurons in its output layer to identify the fingers. The network is a two-layer log-sigmoid/log-sigmoid network. The log-sigmoid transfer function was picked because its output range (0 to 1) is perfect for learning to output Boolean values.
[image: image31.png]

Figure 4.7 Neural Network Architecture

The hidden (first) layer has 16 neurons. If the network has trouble learning, then neurons can be added to this layer. The network is trained to output a 1 in the correct position of the output vector and to fill the rest of the output vector with 0's. However, noisy input vectors may result in the network not creating perfect 1’s and 0’s. After the network is trained the output is passed through the competitive transfer function compete. This makes sure that the output corresponding to the letter most like the noisy input vector takes on a value of 1, and all others have a value of 0. The result of this post-processing is the output that is actually used.
4.8 Initialization
The two-layer network is created with newff. As shown in figure 4.10
[image: image32.png]

Figure 4.8 Network Initialization
4.8.1 Training

The network is initially trained without noise for a maximum of 10000 epochs or until the network sum-squared error falls beneath 0.01. P = double (P) as shown in figure 4.11
[image: image33.png]

Figure 4.9 Training without Noise
4.9 System Performance
Fingers recognition uses a large (but simple) three-layer neural network to learn and recognize pattern (Input, Hidden, and Output layer). The finger image is digitized onto a grid of input neurons as shown in figure 4.10. The output of the input neurons are input of the hidden layer, each possible answer is represented by a single output neuron. As in most networks, the data is encoded in the links between neurons.
[image: image34.png]

Figure 4.10 Digitize Image to Grid of Input.
After the neuron in the first layer received its input, it will apply the linear combiner and the activation function to the inputs and produce the hidden input. This hidden input, as we will see in figure 4.11, will become the input for the neurons in the next layer.

Figure 4.11 Input-Hidden Layer Feed-Forward Connections
After the neuron in the hidden layer received its input, it will apply the linear combiner and the activation function to the inputs and produce the hidden output. This hidden output, as we will see in figure 4.12 will be the input for the neurons in the next layer (Output layer).

Figure 4.12 Hidden-Output Layer Feed-Forward Connections
Output of the neurons will be match with the different types of the network and it will identify whether it is Person1’s finger, Person 2’s finger, and so on up to last finger as shown in figure 4.13 & 4. 14.

[image: image24.png]

Figure 4.13 The final result after met the goal (Person1’s finger)
[image: image25.png]

Figure 4.14 The final result after met the goal (Person 2’s finger)
4.10 Summary
In this chapter, a NN based approach was presented for fingerprint classification based on grayscale values fingerprint images. The directional images are constructed from fingerprint images utilizing the Discrete Fourier Transform (DFT). Applying directional filters in the frequency domain after the transformation by the DFT achieves effective low frequency filtering, reducing the noise effects in fingerprint images. The constructed directional images contain the essential directional structure which is common within each class and discriminates between classes. NN is used for classification of images by capturing global difference among classes. The fast algorithm FFT for DFT speeds up the preprocessing to construct directional images.
a2=logsig(LW2,1a1 + b2)

13

a1=logsig(IW1,1P1 + b1)

Hidden Layer

Input

Output Layer

20x1

20x1

+

n2

1

20x1

20x10

10x1

a1

a2=y

LW2,1

b2

x1

10

n1

+

P1

16x1

16x1000

x1

1

1000

20

b1

IW1,1

Person 10

Person 9

Person 8

Person 7

Person 6

Person 5

Person 3

Person 2

Person 1

� EMBED MSPhotoEd.3 ���

Output

Input

Neural Network Classification

Feature extraction

Preprocessing

Image acquisition

Source Image

Person 9

Person 8

Person 8

Person 6

Person 5

Person 4

Person 3

Person 2

Person 10

Image (a)

Image (b)

I1.1

I1.2

I1.3

I1.4

I1.9

I1.20

I2.9

I2.20

I2.1

I2.2

I2.3

I2.4

I20.1

I20.2

I20..3

I20.4

I20.19

I20.20

I1.1

I1.2

I1.3

I20.19

I20.20

I1.1

I1.2

I1.3

I2019

I2020

H1

H2

H3

H16

H1

H2

H16

O1

O2

O10

Person 4

T=target1;

S1 = 16;

 [R,Q] = size(pi);

[S2,Q1] = size(T);

P = double(P);

net = newff(minmax(P),[S1 S2], {'tansig','purelin'},'traingdx');

T=target1;

S1 = 16;

 [R,Q] = size(pi);

[S2,Q1] = size(T);

P = double(P);

net = newff(minmax(P),[S1 S2], {'tansig','purelin'},'traingdx');

T = target1;

net.trainParam.show = 20;

net.trainParam.lr = 0.04;

net.trainParam.lr_inc = 1.04;

net.trainParam.epochs = 10000;

net.trainParam.goal = 0.02;

[net,tr]=train(net,P,T);

Person1’s finger

Person 2’s finger

 Person 10’s finger

Person 1

� EMBED MSPhotoEd.3 ���

PAGE
59

_1225010627.unknown

_1225092384.unknown

_1225105076.unknown

_1285833214.unknown

_1285833386.unknown

_1225105676.unknown

_1226887099.unknown

_1225105638.unknown

_1225092627.unknown

_1225098635.unknown

_1225092410.unknown

_1225045573.unknown

_1225086281.unknown

_1225010963.unknown

_1225008325.unknown

_1225008942.unknown

_1225010497.unknown

_1225008723.unknown

_1224244240.unknown

_1225008228.unknown

_1221193742.bin

_1224243992.unknown

_1221190929.bin

