DEDICATION
To

Fadil & Soad; My Parents

Randa; My wife

Fadil & Nour; My Lovely Kids
All there love and influence will remain with me always
Thanks Family
ACKNOWLEDGEMENT

I am very grateful to my supervisor Prof. Dr. Doğan İbrahim for providing his overall wisdom, counsel, direction, encouragement and assistance throughout the duration of my thesis.

I would like to express my gratitude and thanks to Prof. Dr. Fakhreddin Mamedov, Assoc.Prof.Dr Rahib Abiyev, Assoc.Prof.Dr Adnan Khashman, and Assoc. Prof. Dr. Feridun Muradov for their support and valuable advice given throughout the duration of my studies for the Degree of Master of Science at the Near East University.

And a big thank to my family that supports me in every step I take in this life and one of these steps is achieving Masters Degree at this university (NEU), and I would like to make use of this chance to thank my mother, father, brothers and my sisters.

I would like to express my deepest gratitude for the constant support, understanding and love that I received from my wife Randa during the past years.
Finally, I will not forget the people who supported me in North Cyprus and made me enjoy the last two years I spent studying; especially Özatay Family, Hakkı Şahlan and Mehmet Cancuri.
ABSTRACT

Data compression is an important field of information technology because of the reduced data communication and storage costs it achieves. The continued increase in the amount of data that needs to be transferred or archived nowadays, is the reason for increasing the importance of data compression. Data compression is implemented using several data compression methods. One of these methods is Huffman algorithm, which has been successfully applied in the field of data compression.
The goal of this thesis is software development of lossless algorithm for compressing Latin characters based languages text files by reducing the amount of redundancy in the coding of symbols. The design of a compression system with concentrating on Turkish language requires careful attention to the following issues: Frequencies of letters in the text file, the Turkish alphabet consists of 29 letters, three letters of the Turkish alphabet are not included in the ASCII code, and Turkish alphabet has some special characters which are not included in other languages.

In this thesis a computer program for the compression of Turkish text was developed. The program has been applied to totally unconstrained computerized Turkish text files.
TABLE OF CONTENTS
iDEDICATION

iiACKNOWLEDGEMENT

iiiABSTRACT

ivTABLE OF CONTENTS

viiiLIST OF FIGURES

ixLIST OF TABLES

1INTRODUCTION

3DATA COMPRESSION TERMINOLOGY

4CHAPTER 1 : DATA COMPRESSION BACKGROUND

41.1 Overview

41.2 Importance of Data Compression

41.3 History of Data Compression Development

51.4 Physical and Logical Compression

61.5 Symmetric and Asymmetric Compression

71.6 Adaptive, Semi-Adaptive, and Non-Adaptive Encoding

71.7 Loosy and Lossless Compression

81.8 Compression algorithms input/output strategy

91.9 Classifications of Compression algorithms strategy

91.10 Data Types to be compressed

91.10.1 Speech compression

101.10.2 Image and video compression

101.10.3 Text compression

101.11 Summary:

11CHAPTER 2 : TURKISH LANGUAGE SPECIFICATIONS

112.1 Overview

112.2 Introduction

122.3 A Short History of the Turkish Language

132.4 The New Script

142.5 The Turkish Alphabet

142.6 The Turkish Vocabulary

152.7 Turkish Grammar

152.8 Encoding Standards

162.9 Turkish Keyboard Standards

172.10 Typographic Issues

172.11 Mixing Scripts

172.12 Linguistic Characteristics of English and Turkish

182.13 Statistical Data Based On Static Language Elements

202.14 Corpus Statistics

232.15 Other statistics

232.16 Summary:

24CHAPTER 3 : TEXT COMPRESSION ALGORITHMS

243.1 Overview

243.2 Introduction

253.3 Compression paradigm

253.4 Compression algorithm categories

263.4.1 Statistical Compressor

263.4.1.1
Symbol frequency

263.4.1.2
Huffman Algorithm

273.4.1.2.1
History

273.4.1.2.2
Huffman Encoding

283.4.1.2.3
Prefix-Free Property

303.4.1.2.4
Binary Trees

313.4.1.2.5
Algorithm for creating a Huffman binary tree

313.4.1.2.6
Construction of a binary tree for Huffman Coding

353.4.1.2.7
Obtaining Huffman code from the Tree

363.4.1.2.8
Advantages and Disadvantages

373.4.2 Dictionary Model Compressor

373.4.2.1
Lempel Ziv Compression Algorithm

373.4.2.1.1
History

383.4.2.1.2
LZW CODING

383.4.2.1.3
Description of LZW Algorithm

383.4.2.1.4
How Does LZW Compression Algorithm Work

423.4.2.1.5
Decompression

423.4.2.1.6
How Does LZW Decompression Algorithm Work

433.4.2.1.7
Facts about LZW Algorithm

443.4.3 Transformation Based Compression Technique

443.4.3.1
History

453.4.3.2
Pre-Compression Transformations

453.4.3.3
Transformation Based Compress Paradigm

463.4.3.4
Star-Encoding

463.4.3.4.1
An Example of Star Encoding

473.5 Summary

48CHAPTER 4 : DEVELOPMENT OF TEXT COMPRESSION PROGRAM

484.1 Overview

484.2 The Developed application program

484.3 Turkish alphabets coding:

494.4 The Application algorithm

504.5 Two Examples:

524.6 The User application Interface

524.7 Software Development language

524.7.1 Why Visual Basic 6.0?

534.8 Parts of the program listing

554.9 . Functions of the application program interfaces

554.9.1 Radio Buttons

564.9.2 Command buttons

564.9.3 Text boxes

574.9.4 Text list

584.9.5 Graph tool

584.10 Summary

59CHAPTER 5 : RESULTS OF SIMULATION

595.1 Overview

595.2 Files to be compressed

595.3 Compressing a file

595.3.1 Original text file

605.3.2 File after compression

605.4 Applying compression using the program

625.5 Summary

63CONCLUSION

64REFERENCES

1APPENDIX A: LISTING OF SOURCE CODE
A-

1APPENDIX B: ENGLISH LANGUAGE ALPHABETS
B-

1APPENDIX C: TURKISH LANGUAGE ALPHABETS
C-

LIST OF FIGURES
16Figure 2.1 Turkish Q Keyboard style

16Figure 2.2 Turkish F Keyboard style

25Figure 3.1 Text compression and decompression

32Figure 3.2 Ordering characters from highest to lowest frequency

32Figure 3.3 Combined frequencies of the lowest 2 nodes

33Figure 3.4 Combinations of lowest frequency nodes

33Figure 3.5 Combinations of lowest frequency nodes

34Figure 3.6 Combinations between tow nodes

34Figure 3.7 Combinations between tow nodes

35Figure 3.8 Last combination of nodes which result binary Huffman tree

35Figure 3.9 Assigning 0s for the right side of the tress and 1s for the left side

45Figure 3.10 Text compression paradigm with lossless, reversible transformation.

50Figure 4.1 Flowchart of the application algorithm.

51Figure 4.2 creating a binary tree, (a) without moving, (b) with moving characters.

51Figure 4.3 creating a binary tree, (a) without moving, (b) with moving characters.

52Figure 4.4 User interface of the application developed by the author

55Figure 4.5 Activating the compress part of the program

56Figure 4.6 Activating the de-compress part of the program

57Figure 4.7 Text boxes used on the program

57Figure 4.8 The text list used to display the letter frequency of the project

58Figure 4.9 Letter frequencies shown in graphical shape

60Figure 5.1 An example of file after compression

LIST OF TABLES
9Table1.1 Algorithms, (a) lossy/lossless, (b) input/output strategy, classifications

14Table 2.1 The Turkish Alphabet

17Table 2.2 Linguistic characteristics of English and Turkish

29Table 3.1 ASCII code and Generated code for some characters

30Table 3.2 A generated prefix free code for English alphabet

32Table 3.3 Letter frequencies in a text file to be compressed

36Table 3.4 Original ASCII codes and generated codes for letters in the above example

41Table 3.5 Generated dictionary for the above text

42Table 3.6 Regenerating dictionary from a compressed file

59Table 5.1 Original file sizes tested using the program

61Table 5.2 Result of applying the compression program on Doc files

61Table 5.3 Result of applying the compression program on txt files

INTRODUCTION
Data transmission and storage cost money. The more information being dealt with, the more it costs. In spite of this, most digital data are not stored in the most compact form. Rather, they are stored in whatever way makes them easiest to use, such as: ASCII text from word processors, binary code that can be executed on a computer, individual samples from a data acquisition system, etc. Typically, these easy-to-use encoding methods require data files about twice as large as actually needed to represent the information. Data compression is the general term for the various algorithms developed to address this problem. A compression program is used to convert data from an easy-to-use format to one optimized for compactness. Likewise, a un-compression program returns the information to its original form.

Data compression is an important field of Computer Science mainly because of the reduced data communication and storage costs it achieves. Given the continued increase in the amount of data that needs to be transferred and/or archived nowadays, is the reason for increasing the importance of data compression. On the other hand, the great variety of data that allows for compression leads to the discovery of many new techniques specifically tailored to one type of data or another.

Data compression methods are generally classified as lossless and lossy. Lossless compression allows original data to be recovered exactly. Although used for text data, lossless compression is useful in special classes of images, such as medical imaging, finger print data and astronomical images and databases containing mostly vital numerical data, tables and text information. In contrast, lossy compression schemes allow some deterioration and are generally used for video, audio and still image applications. The deterioration of the quality of lossy images are usually not detectable by human perceptual system, and the compression system exploit this by a process called ‘Quantization’ to achieve compression by a factor of 10 to a couple of hundreds.
Thesis Objective

The objectives of this thesis research are to develop software for compressing Turkish language text files. This thesis presents a text compression system using Huffman algorithm although it has a decompression system. The main feature of the thesis for compression is reducing the amount of redundancy in the coding of symbols. To achieve this target, instead of using the ASCII code which is fixed 8 bits for each character for storing data, we will generate a smaller code for each character. The generated new code may be fixed length but smaller than 8 bits, or a variable-length coding system that assigns smaller codes for more frequently used characters and larger codes for less frequently used characters in order to reduce the size of files being compressed.

Thesis Outline
The thesis includes five chapters that include a Visual Basic program developed by the author to allow any user to compress text files on windows operating system which may be “txt” and “doc” files. Because of concentration on compression of Turkish text in the program, the file to be compressed may contain text of English language as well, but it will be compressed better if the text is in Turkish. Moreover the program contains a decompression program, which will decompress the compressed files. On the other hand the program shows the frequency of letter used in the file before compression.

Chapter 1 gives an overview of data compression including history of developing digital data compression, types and classifications of data compression, types of data and examples of fields that use data compression.

Chapter 2 gives an overview of the Turkish language including history of Turkish language, the language alphabet and its development, brief description of vocabulary and grammar, Linguistic Characteristics of English and Turkish, and Statistical Data Based Language Elements.
Chapter 3 shows that the compression techniques fall into three categories which are Statistical compressors, Dictionary Model compressors and Transformation based compressors categories. The chapter describes these three categories with providing an example for each category. This thesis concentrates on statistical compression category especially on Huffman algorithm.

Chapter 4 describes the application program developed by the author and shows its interfaces and describes the function of each component of it.
Chapter 5 shows the results of applying the program developed to compress some files. The program is applied on 14 files of deferent sizes.
DATA COMPRESSION TERMINOLOGY
Below is a list of some commonly used terms which may be encountered while reading this thesis:

Compression: decreasing the size of any computerized file size in a new file, the result file is an unreadable file unless it is de-compressed.
Encoding: It is a way of compressing computerized files by giving new code for the characters (letters).
Original File: The text file before it has been compressed

Encoded Data And Compressed Data: describe the same information after it has been compressed.

Un-Encoded Data And Raw Data: describe data before it has been compressed, and the terms.

Compression Algorithm: is the method that used to compress or to encode a computerized data file.
Huffman Coding Algorithm: is the algorithm I used to develop the application program for my thesis.
Compression Ratio: is used to refer to the ratio of uncompressed data to compressed data. Thus, a 10:1 compression ratio is considered five times more efficient than 2:1. Of course, data compressed using an algorithm yielding 10:1 compression is five times smaller than the same data compressed using an algorithm yielding 2:1 compression. In practice, because only image data is normally compressed, analysis of compression ratios provided by various algorithms must take into account the absolute sizes of the files tested.

CHAPTER 1 : DATA COMPRESSION BACKGROUND

1.1 Overview
In this chapter we will give an overview of Data compression for better understanding of what will be described in next chapters.

This chapter will show the importance and a brief history of developing data compression. Moreover it will describe the classifications of data compression. In addition, it will talk about types of data that could be compressed giving examples about fields that make use of data compression.

1.2 Importance of Data Compression
Images transmitted over the World Wide Web are an excellent example of why data compression is important, and the effectiveness of lossless versus lossy compression.
Suppose we need to download a detailed color image over a computer's 33.6 kbps modem. If the image is not compressed (a TIFF file, for example), it will contain about 600 Kbytes of data. If it has been compressed using a lossless technique (such as used in the GIF format), it will be about one-half this size, or 300 Kbytes. If lossy compression has been used (a JPEG file), it will be about 50 Kbytes. The point is, the download times for these three equivalent files are 142 seconds, 71 seconds, and 12 seconds, respectively. [11] That's a big difference! It's no wonder you seldom see TIFF images on the web. JPEG is usually used for acquired images, such as photographs; while GIF is used for line art, such as logos.
1.3 History of Data Compression Development
Morse code, invented in 1838 for use in telegraphy, is an early example of data compression based on using shorter codewords for letters such as "e" and "t" that are more common in English. [31]

The late 40's were the early years of Information Theory; the idea of developing efficient new coding methods was just starting to be fleshed out. Ideas of entropy, information content and redundancy were explored. One popular notion held that if the probability of symbols in a message were known, there ought to be a way to code the symbols so that the message will take up less space. [27] In 1949 Claude Shannon and Robert Fano devised a systematic way to assign codewords based on probabilities of blocks. An optimal method for doing this was then found by David Huffman in 1951. Early implementations were typically done in hardware, with specific choices of codewords being made as compromises between compression and error correction. In the mid-1970s, the idea emerged of dynamically updating codewords for Huffman encoding, based on the actual data encountered. And in the late 1970s, with online storage of text files becoming common, software compression programs began to be developed, almost all based on adaptive Huffman coding.[31]
In 1977 Abraham Lempel and Jacob Ziv suggested the basic idea of pointer-based encoding. In the mid-1980s, following work by Terry Welch, the so-called LZW algorithm rapidly became the method of choice for most general-purpose compression systems. It was used in programs such as PKZIP, as well as in hardware devices such as modems. In the late 1980s, digital images became more common, and standards for compressing them emerged. In the early 1990s, lossy compression methods also began to be widely used.
1.4 Physical and Logical Compression

Compression algorithms are often described as squeezing, squashing, crunching, or imploding data, but these are not very accurate descriptions of what is actually happening. Although the major use of compression is to make data use less disk space, compression does not actually physically cram the data into a smaller size package in any meaningful sense. [6]
Instead, compression algorithms are used to re-encode data into a different, more compact representation conveying the same information. In other words, fewer words are used to convey the same meaning, without actually saying the same thing.

The distinction between physical and logical compression methods is made on the basis of how the data is compressed or, more precisely, how the data is rearranged into a more compact form. Physical compression is performed on data exclusive of the information it contains; it only translates a series of bits from one pattern to another, more compact one. While the resulting compressed data may be related to the original data in a mechanical way, that relationship will not be obvious to us.

Physical compression methods typically produce strings of gibberish, at least relative to the information content of the original data. The resulting block of compressed data is normally smaller than the original because the physical compression algorithm has removed the redundancy that existed in the data itself. [6]

Logical compression is accomplished through the process of logical substitution that is, replacing one alphabetic, numeric, or binary symbol with another. Changing "United States of America" to "USA" is a good example of logical substitution, because "USA" is derived directly from the information contained in the string "United States of America" and retains some of its meaning. In a similar fashion "can't" can be logically substituted for "cannot". Logical compression works only on data at the character level or higher and is based exclusively on information contained within the data. Logical compression is generally not used in image data compression. [6]
1.5 Symmetric and Asymmetric Compression
Compression algorithms can also be divided into two categories: symmetric and asymmetric. A symmetric compression method uses roughly the same algorithms, and performs the same amount of work, for compression as it does for decompression. For example, a data transmission application where compression and decompression are both being done on the fly will usually require a symmetric algorithm for the greatest efficiency.

Asymmetric methods require substantially more work to go in one direction than they require in the other. Usually, the compression step takes far more time and system resources than the decompression step. In the real world this makes sense. For example, if we are making an image database in which an image will be compressed once for storage, but decompressed many times for viewing, then we can probably tolerate a much longer time for compression than for decompression. An asymmetric algorithm that uses much CPU time for compression, but is quick to decode, would work well in this case.

Algorithms that are asymmetric in the other direction are less common but have some applications. In making routine backup files, for example, we fully expect that many of the backup files will never be read. A fast compression algorithm that is expensive to decompress might be useful in this case. [6]
1.6 Adaptive, Semi-Adaptive, and Non-Adaptive Encoding

Non-adaptive encoders are certain dictionary-based encoders, which are designed to compress only specific types of data. These non-adaptive encoders contain a static dictionary of predefined substrings that are known to occur with high frequency in the data to be encoded. A non-adaptive encoder designed specifically to compress English language text would contain a dictionary with predefined substrings such as "and", "but", and "the", because these substrings appear very frequently in English text. [6]
An adaptive encoder, on the other hand, carries no preconceived heuristics about the data it is to compress. Adaptive compressors, achieve data independence by building their dictionaries completely from scratch. They do not have a predefined list of static substrings and instead build phrases dynamically as they encode.

Adaptive compression is capable of adjusting to any type of data input and of returning output using the best possible compression ratio. This is in contrast to non-adaptive compressors, which are capable of efficiently encoding only a very select type of input data for which they are designed.

A mixture of these two dictionary encoding methods is the semi-adaptive encoding method. A semi-adaptive encoder makes an initial pass over the data to build the dictionary and a second pass to perform the actual encoding. Using this method, an optimal dictionary is constructed before any encoding is actually performed.

1.7 Loosy and Lossless Compression

The majority of compression scheme we deal within this thesis is called lossless. A lossless technique means that the restored (decompressed) data file is identical to the original (compressed) one. When a chunk of data is compressed and then decompressed, the original information contained in the data is preserved. No data has been lost or discarded; the data has not been changed in any way. This is absolutely necessary for many types of data, for example: executable code, text files, word processing files, tabulated numbers, etc. You cannot afford to misplace even a single bit of this type of information.

In comparison, data files that represent images and other acquired signals do not have to be kept in perfect condition for storage or transmission. All real world measurements inherently contain a certain amount of noise. If the changes made to these signals resemble a small amount of additional noise, no harm is done. Compression techniques that allow this type of degradation are called lossy. This distinction is important because lossy techniques are much more effective at compression than lossless methods. The higher the compression ratio, the more noise added to the data. [19]
Lossy compression methods, however, throw away some of the data in an image in order to achieve compression ratios better than that of most lossless compression methods. Some methods contain elaborate heuristic algorithms that adjust themselves to give the maximum amount of compression while changing as little of the visible detail of the image as possible. Other less elegant algorithms might simply discard a least significant portion of each pixel, and, in terms of image quality, hope for the best.

The terms lossy and lossless are sometimes erroneously used to describe the quality of a compressed image. Some people assume that if any image data is lost, this could only degrade the image. The assumption is that we would never want to lose any data at all. This is certainly true if our data consists of text or numerical data that is associated with a file, such as a spreadsheet or a chapter of a novel.

1.8 Compression algorithms input/output strategy
Most data compression programs operate by taking a group of data from the original file, compressing it in some way, and then writing the compressed group to the output file. For instance, one of the audio compression techniques is CS&Q, short for Coarser Sampling and/or Quantization. Suppose we are compressing a digitized waveform, such as an audio signal that has been digitized to 12 bits. We might read two adjacent samples from the original file (24 bits), discard one of the samples completely, discard the least significant 4 bits from the other sample, and then write the remaining 8 bits to the output file. With 24 bits in and 8 bits out, we have implemented a 3:1 compression ratio using a lossy algorithm. While this is rather crude in itself, it is very effective when used with a technique called transform compression. [11]

CS&Q is called a fixed-input fixed-output scheme. That is, a fixed number of bits are read from the input file and a smaller fixed number of bits are written to the output file. Other compression methods allow a variable number of bits to be read or written.

1.9 Classifications of Compression algorithms strategy
As mentioned before data compression algorithms can be categorized in many different ways. In the tables below we will show two classification types of compression algorithms. Lossless/lossy is an important classification type for compression algorithms, will be shown in (Table 1.1(a)) for some compression techniques. [11]
Another type of classification is input/output strategy which is shown in (Table 1.1(b)). In this table JPEG and MPEG image compression techniques are not listed, because they are composite algorithms that combine many of the other techniques and are too sophisticated to be classified into these simple categories.
Table1.1 Algorithms, (a) lossy/lossless, (b) input/output strategy, classifications
	Lossless

Lossy

Huffman

JPEG

LZW

MPG

Delta

CS&Q

Run-length

	Method

Input

output

Huffman

fixed

variable

LZW, Run-length

variable

fixed

CS&Q

fixed

fixed

Arithmetic

variable

variable

	(a)
	(b)

1.10 Data Types to be compressed

Computerized data can be in the form of text, image, picture, video, sound etc. Each form of these data types are compressed by special algorithms. Within this section some information will be given on compressing some of these different data types.
1.10.1 Speech compression
The compression of speech signals has many practical applications. One example is in digital cellular technology where many users share the same frequency bandwidth. Compression allows more users to share the system than otherwise possible. Another example is in digital voice storage (e.g. answering machines). For a given memory size, compression allows longer messages to be stored than otherwise. [25]
Historically, digital speech signals are sampled at a rate of 8000 samples/sec. Typically, each sample is represented by 8 bits (using mu-law). This corresponds to an uncompressed rate of 64 kbps (kbits/sec). With current compression techniques (all of which are lossy), it is possible to reduce the rate to 8 kbps with almost no perceptible loss in quality. Further compression is possible at a cost of lower quality. [25]
1.10.2 Image and video compression
Computer imaging is a fascinating and exciting area to be involved in today. Computer imaging can be defined as the acquisition and processing of visual information by computer. One of the manipulated processes on images is compression. Image compression is recognized as an enabling technology and it is the natural technology for handling the increased spatial resolutions of today’s imaging sensors. Image compression plays a major role in many important and diverse applications, including televideo conferencing, remote sensing.
 In practice, a small change in the value of a pixel may well be invisible, especially in high-resolution images where a single pixel is barely visible anyway. [25]
1.10.3 Text compression
Text compression is one of the widest applications of compression algorithms. In this thesis we are investigating only text compression, mainly the compression of text based on Turkish characters.
1.11 Summary:

This chapter has explained the importance and a brief history of developing data compression. Moreover it described the classifications of data compression. In addition, it talked about types of computer data that could be compressed.
CHAPTER 2 : TURKISH LANGUAGE SPECIFICATIONS
2.1 Overview

In this chapter, we present statistical information about the structure and the usage of Turkish Language. Statistical data analysis is divided into two groups: static data analysis and dynamic data analysis. The former one takes into account all the parts of the structure of the language, while the latter one concerns with the daily usage.
The benefits obtained from statistical analysis are that, we can get important information about the language as a whole and it will be helpful to develop computerized language applications.
2.2 Introduction

Turkish is a member of the south-western or Oghuz group of the Turkic languages, which also includes Turkmen, Azerbaijani or Azeri, Ghasghai and Gagauz. The Turkish language uses a Latin alphabet consisting of twenty-nine letters, of which eight are vowels and twenty-one are consonants. Unlike the main Indo-European languages (such as French and German), Turkish is an example of an agglutinative language, where words are a combination of several morphemes and suffixes. Here, words contain a root and suffixes are combined with this root in order to extend its meaning or to create other classes of words. In Turkish the process of adding one suffix to another can result in relatively long words, which often contain an amount of semantic information equivalent to a whole English phrase, clause or sentence. Due to this complex morphological structure, a single Turkish word can give rise to a very large number of variants, with a consequent need for effective conflation procedures if high recall is to be achieved in searches of Turkish text databases. [5]

Turkish morphology is quite complex and includes many exceptional cases. As the work on agglutinative languages has begun, it became clear that a straightforward analysis was not enough to solve the problems of these languages. This fact has forced the researchers to generate new techniques and to adapt the old techniques that had been widely used in other fields of natural language processing for the morphological analysis. [13]
The study on the analysis of Turkish language forms is our aim in this chapter. Statistical data analysis can be grouped into two categories: analysis on static data and analysis on dynamic data. The former one takes into account all the parts of the structure of the language (the words, the affixes, the grammatical rules of the language, etc.). The latter one concerns with the daily usage of the language. [12]
First the statistics gives us information on how the language is used in daily life and how these structures and rules are utilized. Second, it serves as a base for us and researchers who intend to develop language applications, e.g. spelling checkers or electronic dictionaries.

2.3 A Short History of the Turkish Language

Turkish, in both its spoken and written form, has undergone distinct periods of change and can be identified in three historical forms: Old Anatolian Turkish (roughly between the 7th and 15th centuries), Ottoman Turkish (from the 16th to the 19th century) and Modern Standard Turkish (the 20th century). However, Turkish comes originally from the Altai mountains between China, Mongolia and Russia; the movement of the Altai people around the eleventh century bringing the beginnings of this form of language to the Anatolia. [17]
The Turkish that developed in the Anatolia during the times of the Seljuks and the Ottomans which was written using the Arabic script system could be divided into two forms: the divan, the classical literature to originate from the palace, which carrying heavy influences of the Persian and Arabic languages and the folk literature of the people. However, the royal appreciation of ‘divan’ literature eventually impacted on the folk works and foreign language elements began to dominate all Turkish literature and language.

Turkish is officially a member of the Ural-Altaic family of languages. The Ottoman Turkish language borrowed heavily, however, from both Persian and Arabic. These borrowings included not only vocabulary but also syntax. These influences caused problems for spelling and for writing as well, many of which can be attributed to the fact that Ottoman Turkish, Persian and Arabic belong to different language families — Indo-European in the case of Persian and Semitic in the case of Arabic.

The twentieth century saw the National Literature movement gain force in Turkey, with a greater emphasis on simple, a favor towards the syllabic meter of folk literature and a concern with Turkish topics. The formation of the Turkish Republic which was led by Mustafa Kemal was in 1923. Mustafa Kemal who was later called Atatürk, "father of the Turks," and was the first president of the Republic of Turkey, believed that Western culture would greatly benefit the development of the new republic brought a change in the alphabet and lexicon of the Turkish language as it sought to ‘purge’ Arabic and Persian influences from the language (the Writing Reform). A Latin alphabet was introduced to replace the Arabic-based Ottoman script and Arabic and Persian words were replaced with ones of Turkish origin. This larger cultural reform sought to break Turkey free from its Ottoman past and Islamic influences. [17]
Further, by adopting the Latin script, Turkey effectively broke its ties to its Ottoman past, with the Ottoman culture and religious views. This breaking with the past remains highly controversial and is the basis of deep sociological and political conflict which is beyond the scope of my thesis.

2.4 The New Script

While the plans were being laid out for script reform, Atatürk called in linguists and historians to discuss the best methodology for adapting the Latin script to Turkish. After much debate and study of languages written with the Latin script, the language committee came to a consensus for the new Turkish alphabet in August of 1928. [17]
Only minimal change was required to adapt the Latin script to the phonology of Turkish. This was accomplished relatively smoothly because there was no prior legacy of using the Latin script to represent Turkish. The implementation of the Latin script, however, required some modification to the base Latin letters. The letters q, w and x were deemed unnecessary because their sounds are not used in Turkish; hence, they are absent from the Turkish alphabet.

Five Latin letters — the consonants c, g and s and the vowels o and u — were modified for the phonology of Turkish. The cedilla diacritic was added to the letters c and s forming the letters ç and ş. The letter g was given the diacritic breve (curvy bar) or "hook" on top to form the letter ğ and is often used to lengthen a preceding vowel. The dieresis was added to the letters o and u, forming the letters ö and ü. Additionally, one non-Latin letter, the undotted i (ı), was added to the Turkish alphabet and serves as a vowel. Furthermore, the dotted i retains the dot even when capitalized.

Vowels in Turkish are grouped into two categories: front vowels and back vowels. The front vowels are e, i, ö and ü, while the back vowels are a, ı, o and u. Additionally, the circumflex accent can be used in conjunction with the vowels a, i and u to prolong the vowel sound, although this is no longer common practice.

Like other languages that use the Latin script system, Turkish is written horizontally and in a left-to-right fashion.

2.5 The Turkish Alphabet
The Turkish alphabet is composed of 29 letters (see table below). It has all the letters in the English alphabet, except "q", "w", and "x". In addition, it has new characters which are"şŞ" , "öÖ" , "çÇ", "üÜ" , and "ğĞ" . Also note that, in Turkish, the upper case "i" is dotted like "İ", and the "I" is reserved for the capital of "dotless - i" like "ı" (compare characters 11 & 12) in the (Table 2.1) below.[1]
Table 2.1 The Turkish Alphabet

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14

	a
	b
	C
	Ç
	d
	e
	f
	g
	ğ
	h
	i
	ı
	j
	k

	A
	B
	C
	Ç
	D
	E
	F
	G
	Ğ
	H
	İ
	I
	J
	K

	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29

	l
	m
	N
	O
	Ö
	p
	r
	s
	ş
	t
	u
	ü
	v
	y
	z

	L
	M
	N
	O
	Ö
	P
	R
	S
	Ş
	T
	U
	Ü
	V
	Y
	Z

2.6 The Turkish Vocabulary

While script reform sought to address the Turkish writing system, language reform sought to address the Turkish language.

In 1932 Turkish Linguistic Society was formed. Its goals were to promote the Turkish language and to eliminate all Arabic and Persian vocabulary from the literary language. The elimination of foreign words included even those words which had become crucial elements of both the written and spoken languages. [29]
Throughout the 1930s the Linguistic Society published several guides on the use of the new Turkish grammar and vocabulary. However, it is not until 1940, two years after the death of Atatürk, that the first formal modern Turkish grammar books were published for use in secondary education.

The old writing system was outlawed and soon became obsolete. In the transition to a Roman alphabet, many words of Arabic and Persian origin were purged from the language.
Some English words of Turkish descent include caviar, yogurt, and shish kebab. Also, the word tulip is derived from the Turkish word for turban, because the flower’s shape was thought to resemble a turban. [29]
2.7 Turkish Grammar

English speakers will find many differences between Turkish and English grammar. One of the most distinctive characteristics of the Turkish language is agglutination: the practice of adding on multiple suffixes to word stems to indicate grammatical functions such as number, gender, or tense. Often, a single word with various suffixes can convey the meaning of an entire phrase or sentence. Understanding the meaning of some of these lengthy words can prove especially challenging, as some suffixes have multiple meanings.
Vowel harmony is another essential aspect of the Turkish language. Turkish vowels are divided into two classes: front vowels and back vowels. Vowel harmony means that all vowels in a given word should belong to the same class, as well as the vowels in suffixes added to the word.

Turkish nouns have six cases: nominative, genitive, accusative, dative, locative, and ablative. Verbs must agree with their subjects in both case and number. As with nouns, suffixes are added to verbs to signify grammatical function.

2.8 Encoding Standards

Encoding the modern Turkish script system for computing is no more difficult than encoding any other Latin-based script system. The Turkish alphabet contains 58 unique characters (29 uppercase and 29 lowercase letters) and uses no special punctuation over what is traditionally used in the Latin script. Therefore, Turkish can be faithfully represented within the confines of an 8-bit encoding scheme. On most Unix systems Turkish text is represented using the ISO8859-9 encoding (commonly known as Latin 5) where the Icelandic characters from ISO8859-1 are replaced with the special Turkish characters. On Windows, Turkish text is encoded using Microsoft's ANSI code page 1254, while in DOS, IBM code page 857 is used.[10] In Unicode the special Turkish characters, such as the undotted i, appear within the Latin Extended-A block (U+0100 – U+017F), which is part of Unicode's Base Multilingual Plane[10].
2.9 Turkish Keyboard Standards

The entry of the Turkish alphabet requires no special software input method editor. Turkish keyboards come in two different styles: a Q layout and an F layout see (Figure 2.1). The Q layout is a QWERTY-style keyboard with the Turkish letters arranged on the right-hand side of the keyboard. The F-style keyboard shown in (Figure 2.2) remaps the keys according to the layout found on traditional Turkish keyboards, where QWERTY is replaced by FGĞIOD. Additionally, the euro symbol is available on both keyboard layouts on Windows as well as in other operating systems.
[image: image1.png]

Figure 2.1 Turkish Q Keyboard style
[image: image2.png]

Figure 2.2 Turkish F Keyboard style
2.10 Typographic Issues
When one is rendering Turkish text, some attention must be given to the use of ligatures (joining of two or more glyphs), specifically the fi and ffi ligatures. The fi and ffi ligatures present problems because there is a tendency to replace the dot of the i with the overhang of the f, thus creating confusion with the Turkish letter ı (undotted i). It is paramount that there be no ambiguity between ı (undotted i) and i (regular dotted i) because these letters have completely different pronunciations. The use of most other ligatures (for example, ll) does not appear to create confusion, although there may be others which do cause ambiguity. [9]
2.11 Mixing Scripts

It is not necessary to encode both the Turkish alphabet and the Arabic alphabet script simultaneously outside of digitizing historic documents. In daily life, the Arabic script is completely non-existent. A countless wealth of Ottoman documents, however, awaits study by historians, academicians and researchers. Fortunately, with Unicode gaining wider and wider acceptance in digital information systems, the ability to capture traditional Ottoman text in Arabic script along with modern Turkish commentary in Latin script has become readily possible and will facilitate this process. [6]
2.12 Linguistic Characteristics of English and Turkish

Most of the linguistic studies are based on English, because it is a world-wide used language. Turkish is one of the most common twelve languages over the world [3]. This is why we based our thesis on Turkish languages.
Table 2.2 Linguistic characteristics of English and Turkish

	characteristic

Language
	Alphabet size
	Average word length

	
	characters
	characters

	English
	26
	4.42

	Turkish
	29
	6.13

As (Table 2.2) indicates, Turkish has larger alphabet size, higher average word length and higher average entropy than that of English. Hence, we expect to obtain lower compression rates on Turkish than that of English.

English is an analytical agglutinative language. Turkish is also an agglutinative and a free constituent order language, with highly productive morphology, which has a rich set of derivational and inflectional suffixes.

2.13 Statistical Data Based On Static Language Elements

Analysis on static data concerns with the structure of the language. The structure is formed of from the words of the language, the affixes that are used in building new words, the morphophonemic rules, the rules for the syllabification process, and so on. We refer to these as static language elements since they do not change from day to day. In what follows, the static data analysis is divided into three categories: root word statistics, rule statistics, and suffix statistics.

Root word statistics refers to the statistical data collected solely from the root word lexicon. The root word lexicon contains, for each root word, the following information: the word and a list of the categories that the word possesses. Some of the results are: [12]

· The number of root words in the lexicon is 31,255.

· Some of the mostly used word categories are: noun (47.68%), proper noun (33.09%), adjective (10.44%), verb (3.37%), and adverb (2.44%). Almost 90% of the root words belong to the three categories noun, proper noun, and adjective.

· The initial letter distribution of words is as follows (for the top 5 entries): 9.84% of the words begin with the letter ‘k’, 8.10% with ‘a’, 7.95% with ‘m’, 7.51% with ‘t’, and 7.47% with ‘s’.

· The word length distribution is as follows (for the top 5 entries): 21.62% of the words have a length of 5 characters, 20.29% of 6, 16.08% of 7, 12.83% of 8, and 8.49% of 4. The average length for Turkish root words is 6.60.

· The mostly used letter in Turkish root words is ‘a’ with a percentage of 13.16. The top 5 entries are as follows: ‘a’ (13.16%), ‘e’ (8.71%), ‘i’ (6.92%), ‘r’ (6.65%), and ‘n’ (5.90%). Mostly occurring three letters are unrounded vowels.
Rule statistics refers to the statistical information about the rules of the language. Because of the complexity of its morphological structure, there are a large number of rules that are used in Turkish. Since the definition and explanation of these rules necessitate a great deal of information about the language, we will include here only a few results without delving into the underlying theory. The proper nouns were excluded while performing analysis about rule statistics. The results are presented below:[12]
· The most well-known rule of Turkish is the primary vowel harmony rule. The number of root words that obey this rule is 12,565 and that do not obey is 8,807. Out of this second figure, more than 7,000 are noun and more than 1,000 are adjective.

· The last letter rule is: No root words end in the consonants {b,c,d,g}. 140 root words do not obey, 110 of which are nouns.

· There is an interesting rule for verbs which is utilized during the affixation process: If the last letter of the root word is a vowel and the first letter of the suffix is ‘y’, then the last letter of the word is replaced by ‘i’ before the suffix is affixed to the word. There are only two verbs in Turkish which are subject to this rule: de (to say) and ye (to eat). Hence this rule is not referred to as a rule by itself in grammar books; instead it is treated as an exceptional case.

Suffix statistics refers to the statistical data collected solely from the suffix lexicon. The suffix lexicon contains, for each suffix, the following information: the suffix, the source category of the suffix (the category of the words that the suffix can be affixed to), the destination category of the suffix (the category of the word after the suffix is affixed to), and the type of the suffix (inflectional or derivational). A suffix has as many occurrences in the lexicon as the number of its source and destination category combinations. [12]
· The number of suffixes in the suffix lexicon is 199. 57 of the suffixes are inflectional and 158 are derivational. Note that the total of these two figures is greater than the number of the suffixes since some of the suffixes function both as an inflectional suffix and as a derivational suffix depending on the source and destination categories.

· The distribution of suffixes to source categories is as follows: 42.11% are affixed to verbs, 34.59% to nouns, 10.53% to numbers, 5.26% to adjectives, 4.51% to proper nouns, 2.26% to adverbs, 0.37% to interjections, and 0.37% to pronouns.

· The length of the suffixes changes from one to seven. The distribution of suffix lengths is as follows: 30.65% have a length of three characters, 20.60% of two characters, 18.09% of four characters, 17.59% of five characters, 8.04% of six characters, 3.52% of one character, and 1.51% of seven characters. The average suffix length is 3.56.
2.14 Corpus Statistics

This section is devoted to the presentation of statistical information about the usage of Turkish language. The general statistical figures about the corpus are given below with explanations for some of them: [12]
· Number of words is 2,203,787.

· Number of distinct words is 200,120. All occurrences of a word are regarded as a single occurrence.

· Average word usage is 11.01. How many times, on the average, each word is used. It is obtained by the formula “a/b”.

· Number of successful parses is 2,008,145. Number of words that the spelling checker program had been able to parse. They either are root words that take place in the root word lexicon or can be derived from the root words with the application of the morphotactic and morphophonemic rules.

· Number of unsuccessful parses is 195,642. Number of words that the spelling checker program was unable to parse and marked as grammatically wrong. It is obtained by the formula “a-d”. Depending on the program used, these may either be grammatically wrong words as indicated by the program or be grammatically correct words but were outside the capacity of the program. The major reason of this second kind of unsuccessful parses, as also encountered by the program used in this research, is the proper nouns that are not included in the lexicon. The number of proper nouns is huge and beyond the capacity of any lexicon.[2]
· Number of distinct roots is 11,806.

· Average root usage is 170.10. How many times, on the average, each root word is used in the corpus. It is obtained by the formula “d/f”.

· Percentage of lexicon usage is 37.77. What percentage of the root word lexicon is utilized by the corpus. It is obtained by the formula “f / number of root words in the lexicon * 100”. The number of root words is 31,255. We must note that since the contents of the lexicons differ slightly, this figure yields different numbers for different spelling checker programs. [2]
· Number of affixed words is 1,026,095. Number of words in the corpus that are affixed with at least one suffix.

· Number of un-affixed words is 982,050. It is obtained by the formula “d-i”.

· Number of words that don’t change category is 1,568,741. Number of words whose initial category and final category are the same. This number is always greater than or equal to the number shown in part j.

· Number of words that change category is 439,404. It is obtained by the formula “d-k”. In a similar way, this number is always less than or equal to the one shown in part i.

· Minimum word length is 1. Length of the shortest word. It is obvious that for almost every corpus this number evaluates to one.

· Maximum word length is 25. Length of the longest word.[2]
· Average word length is 6.13. Average length of the words contained in the corpus. This is an important figure as it is an indication of the word lengths used in daily life.

· Minimum root length is 1. Length of the shortest root word.

· Maximum root length is 16. Length of the longest root word.

· Average root length is 4.03. Average length of the root words contained in the corpus.

· Minimum number of suffixes is 0. Least number of suffixes that are affixed to a word in the corpus. Obviously, it evaluates to zero for almost every corpus.

· Maximum number of suffixes is 8. At most how many suffixes are affixed to a word in the corpus. For agglutinative languages, theoretically there is no upper limit in the number of affixations. And it is not unusual to find words formed of ten or more suffixes in texts. This is the basic point that distinguishes agglutinative and non-agglutinative languages. [2]
· Average number of suffixes for all words is 0.94. Number of suffixes that are affixed to a word on the average. It is obtained by considering all the successfully parsed words (part d).

· Average number of suffixes for affixed words is 1.85. Number of suffixes that are affixed to a word on the average. It is obtained by considering only the affixed words (part i).

· Minimum suffix length is 1. Length of the shortest suffix that is utilized in the corpus. It evaluates to one for almost every corpus since there are several suffixes of length one in Turkish.

· Maximum suffix length is 7. Length of the longest suffix that is utilized in the corpus. This number is less than or equal to the maximum suffix length which is 7. Being less than this number implies that the longer suffixes are not used in corpus.

· Average suffix length is 2.44. Average length of the suffixes in the corpus. An interesting result that can be obtained is the following: The average root word length plus the average number of suffixes multiplied by the average suffix length yields more or less the average word length. Stated in another way, (r + u * y) is more or less equal to o.

2.15 Other statistics

Some of the other statistical figures obtained by the analysis are as follows: [12]
· The most frequently used words are bir (2.24%), ve (1.92%), bu (1.11%).

· The most frequently used roots are bir (2.40%), ve (1.92%), ol (1.81%).

· The most frequently used suffixes are -ın (11.89%), -sı (11.69%), -lar (8.90%).

· The longest words are: gerçekleştirilebileceğini, gerçekleştirilemeyeceğini, anlamlandırabiliyordunuz.

· The longest roots are: allahaısmarladık, egzistansiyalist, gastroenteroloji.
2.16 Summary:

This chapter has presented statistical information about the structure and the usage of the Turkish Language. Statistical data analysis is divided into two groups: static data analysis and dynamic data analysis. The former one takes into account all the parts of the structure of the language, while the latter one concerns with the daily usage.
CHAPTER 3 : TEXT COMPRESSION ALGORITHMS
3.1 Overview

This chapter presents the most common algorithms for text compression such as Huffman encoding algorithm, LZ, lzw algorithm.

In addition, this chapter represents an example for each algorithm which shows how each algorithm works step by step.

3.2 Introduction

Compression algorithms reduce the redundancy in data representation to decrease the storage required for that data. As mentioned before there are "lossless" and "lossy" forms of data compression. Lossless data compression is used when the data has to be uncompressed exactly as it was before compression. Text files are stored using lossless techniques, since losing a single character can in the worst case make the text dangerously misleading. Archival storage of master sources for images, video data, and audio data generally needs to be lossless as well. However, there are strict limits to the amount of compression that can be obtained with lossless compression.
Lossy compression, in contrast, works on the assumption that the data doesn't have to be stored perfectly. Much information can be simply thrown away from images, video data, and audio data, and when uncompressed such data will still be of acceptable quality. The deterioration of the quality of lossy images are usually not detectable by human perceptual system. Compression ratios can be an order of magnitude greater than those available from lossless methods. In this chapter we will focus on types of lossless compression algorithms of text files where the majority of text compression techniques fall into three main categories.
1. Statistical compressors (e.g. Prediction by Partial Matching -PPM, Arithmetic Coding, Huffman Coding and Word based Huffman.
2. Dictionary Model compressors (e.g. Lempel-Ziv-LZ)
3. Family Transformation based compressors (e.g. BWT, LIPT, LIT, NIT). [8]
In this chapter we will explain the general idea behind each of these compressors and compare their relative performances.
3.3 Compression paradigm

(Figure 3.1) illustrates text compression and decompression paradigm .The original text file is provided to an existing, data compression algorithm (such as Huffman), which compresses the text. To decompress, one merely reverses this process, by invoking the appropriate decompression algorithm.

Figure 3.1 Text compression and decompression
There are several important observations about this paradigm. The data compression and decompression algorithms are unmodified, so they do not exploit information about the transformation while compressing.

One well-known example of the text compression paradigm outlined in (Figure 3.1) is the Huffman coding to provide one of the best compression ratios available on a wide range of data.
3.4 Compression algorithm categories

As mentioned before, lossless compression algorithms fall into three main categories, are [24]
1. Statistical compressors,
2. Dictionary Model compressors
3. Transformation based compressors.
In this section we will explain the general idea behind each of these compressors with giving an example for each category.
3.4.1 Statistical Compressor

Statistical coders are the backbone of compression. The basic idea is: the compressor guesses what input will be, and writes fewer bits to the output if it is guessed correctly. The de-compressor must be able to make the same guess as the compressor, in order to correctly decode the transmission, since the transmission is different depending on the prediction. Statistical methods are traditionally regarded as a combination of a modeling stage and a following coding stage.[24] The model is constructed from the already-known input and used to facilitate efficient compression within the coder (and matching decompression in the decoder). A good model will contain a few symbols with high probability (and preferably one dominant symbol), thus allowing very compact coding of those probable symbols. The model needs to make predictions that deviate from a uniform distribution.
3.4.1.1 Symbol frequency

The possible symbols have expected frequencies associated with them, allowing the coder to use shorter codes for the more frequent symbols and longer codes for the less frequent ones. In the simplest cases the model just accumulates the frequencies of all of the symbols, which it has seen, or even works with pre-assigned frequencies. [24]
3.4.1.2 Huffman Algorithm

Huffman algorithm is an example of statistical compressor category. In general, computers use ASCII codes to represent characters, which is a fixed-length code with eight bits for each character. So each character cost 8 bits to be stored. The number of characters in the ASCII table is 256, but not all of them are used in text files. Text files contain only a part of these characters which are the ones in the alphabet and some special characters like (. , ? “space“).

The main idea of Huffman compression is not to use ASCII code to store data, but to use smaller codes. It may be fixed length but smaller than 8 bits, or a variable-length coding system that assigns smaller codes for more frequently used characters and larger codes for less frequently used characters in order to reduce the size of files being compressed. In this section we are interested in variable-length coding.
3.4.1.2.1 History

In 1951, David Huffman and his MIT information theory classmates were given the choice of a term paper or a final exam. The professor, Robert M. Fano, assigned a term paper on the problem of finding the most efficient binary code. [16] Huffman, unable to prove any codes were the most efficient, was about to give up and start studying for the final when he hit upon the idea of using a frequency-sorted binary tree, and quickly proved this method the most efficient.

In doing so, the student outdid his professor, who had worked with information theory inventor Claude Shannon to develop a similar code. Huffman avoided the major flaw of Shannon-Fano coding by building the tree from the bottom up instead of from the top down. [28]
3.4.1.2.2 Huffman Encoding

The Huffman encoding algorithm is an optimal compression algorithm when only the frequency of individual letters is used to compress the data. The idea behind the algorithm is that characters are to be converted into variable length binary bit strings. Most-frequently occurring characters are converted to shortest bit strings, and least frequent characters are converted to longest bit strings. [20]
Huffman coding uses a specific method for choosing the representation for each symbol, resulting in a prefix-free code (that is, the bit string representing some particular symbol is never a prefix of the bit string representing any other symbol)

Compression takes two passes. The first pass analyzes the data file to be compressed and creates a binary tree model based on its contents. The second pass compresses the data via the model. Decompression decodes the variable length strings via the tree. [15]
For instance, take the following phrase: "ADA ATE APPLE". There are 4 As, 1 D, 1 T, 2 Es, 2 Ps, 1 L, and 2 spaces. There are a few ways that might be reasonable ways of encoding this phrase using letter frequencies. First, notice that there are only a very few letters that show up here. In fact, given that there are only seven characters, we could get away with using three bits for each character! If we decided to simply take that route, that would require using 14 * 3 bits, for a total of 42 bits (and some extra padding for the sake of having correct bit-alignment since you have to use an entire byte). That's not too bad! It's a lot better than the 8 * 14 = 112 bits that would otherwise be required. But we can do even better if we consider that if one character shows up many times, and several characters show up only a few times, then using one bit to encode one character and many bits to encode another might actually be useful if the character that uses many bits only shows up a small number of times.

3.4.1.2.3 Prefix-Free Property

To get away with doing this, it is needed a way of knowing how to tell which encoding matches which letter. For instance, in fixed length encoding, it is known that every three (or eight bits) was a boundary for a letter. But, with different length encodings for different letters, some way of separating words out is needed. For instance, given the string 001011100, it's easy to break apart into 001 011 100, if each letter is encoded with three bits. A problem – How many bits is this letter? -will occur if some letters are encoded with one bit. The "prefix-free property" is the solution for this problem. [20]
The "prefix-free property" idea is that the encoding for any character isn't a prefix for any other character. That is, if A is encoded with 0, then no other character will be encoded with a zero at the front. This means that once a string of bits is being read that match a particular character, it is known that it must mean that that's the next character and it can be started fresh from the next bit, looking for a new character encoding match.
Note that it is perfectly fine for the encoding for a character to show up in the middle of the encoding for another character because there's no way for mistake that as the encoding for another character so long as it started decoding from the first bit in the compressed file. [20]
Let's take a look at how this might actually work using some simple encodings that all have the "prefix-free property". (Table 3.1) shows that, the original ASCII code and a new code that generated using Huffman binary tree for some characters. As we see in the table generating a new code for text using Huffman tree will provide a prefix free encoding. In this table we have a text contains six characters and “space”.
Table 3.1 ASCII code and Generated code for some characters

	Characters
	Char. Frequency
	Original ASCII code
	Prefix free encoding

	 A
	4
	01000001
	 0

	 E
	2
	01000101
	 10

	 P
	2
	01010000
	 110

	 Space
	2
	00100000
	 1110

	 D
	1
	01000100
	 11110

	 T
	1
	01010100
	 111110

	 L
	1
	01001100
	 111111

In the table above the original text is “ADA ATE APPLE”. This string costs 13x8 =104 bits to be stored, while it could be coded by 39 bits.

[image: image3.wmf]39

1

6

1

6

1

5

2

4

2

3

2

2

4

1

=

´

+

´

+

´

+

´

+

´

+

´

+

´

011110011100111110101110011011011111110 (39 bits)
Which we could break apart as

0 11110 0 1110 0 111110 10 1110 0 110 110 111111 10

A D A Space A T E Space A P P L E

(Table 3.2) shows that we can get a "prefix –free” code for all letters of English alphabet, which means there won't be any confusion while decoding message. Moreover we can get a prefix free code for Turkish characters or any language
Table 3.2 A generated prefix free code for English alphabet
	Char
	Encoding
	
	Char
	Encoding
	
	Char
	Encoding

	A
	1110
	
	J
	000011001
	
	S
	0101

	B
	010010
	
	K
	000010
	
	T
	001

	C
	110111
	
	L
	11110
	
	U
	10010

	D
	11111
	
	M
	110101
	
	V
	0000111

	E
	011
	
	N
	1000
	
	W
	01000

	F
	110100
	
	O
	1100
	
	X
	000011010

	G
	00000
	
	P
	010011
	
	Y
	110110

	H
	1010
	
	Q
	000011011
	
	Z
	000011000

	I
	1011
	
	R
	0001
	
	Space
	10011

A nice way of visualizing the process of decoding a file compressed with Huffman encoding is to think about the encoding as a binary tree, where each leaf node corresponds to a single character. At each inner node of the tree, if the next bit is a 1, move to the left node, otherwise move to the right node.

3.4.1.2.4 Binary Trees
The binary tree is a fundamental data structure used in computer science. The binary tree is a useful data structure for rapidly storing sorted data and rapidly retrieving stored data. A binary tree is composed of parent nodes, or leaves, each of which stores data and also links to up to two other child nodes (leaves) which can be visualized spatially as below the first node with one placed to the left and with one placed to the right. It is the relationship between the leaves linked to and the linking leaf, also known as the parent node, which makes the binary tree such an efficient data structure. It is the leaf on the left which has a lesser key value (i.e., the value used to search for a leaf in the tree), and it is the leaf on the right which has an equal or greater key value. As a result, the leaves on the farthest left of the tree have the lowest values, whereas the leaves on the right of the tree have the greatest values. More importantly, as each leaf connects to two other leaves, it is the beginning of a new, smaller, binary tree. Due to this nature, it is possible to easily access and insert data in a binary tree using search and insert functions recursively called on successive leaves. [21]
The typical graphical representation of a binary tree is essentially that of an upside down tree. It begins with a root node, which contains the original key value. The root node has two child nodes; each child node might have its own child nodes. Ideally, the tree would be structured so that it is a perfectly balanced tree, with each node having the same number of child nodes to its left and to its right. A perfectly balanced tree allows for the fastest average insertion of data or retrieval of data. The worst case scenario is a tree in which each node only has one child node, so it becomes as if it were a linked list in terms of speed. [21]
3.4.1.2.5 Algorithm for creating a Huffman binary tree

1. Start with as many leaves as there are symbols.

2. Push all leaf nodes into the heap.

3. While there is more than one node in the heap:

a. Remove two nodes with the lowest weight from the heap.

b. Put the two nodes into the tree, noting their location.

c. If parent links are used, set the children of any internal nodes to point at their parents.

d. Create a new internal node, using the two nodes as children and their combined weight as the weight.

e. Push the new node into the heap.

4. The remaining node is the root node.

3.4.1.2.6 Construction of a binary tree for Huffman Coding

Here how Huffman coding works will be shown with a text file to be compressed. The file characters file have the frequencies as follows in (Table 3.3):

Table 3.3 Letter frequencies in a text file to be compressed
	Character
	Character Frequency

	A
	29

	B
	64

	C
	32

	D
	12

	E
	9

	F
	66

	G
	23

In practice, the frequencies for all the characters used in the text are needed, including all letters, digits, and punctuation, but to keep the example simple we'll just stick to the characters from A to G.

The first step in building a Huffman code is to order the characters from highest to lowest frequency of occurrence as follows in (Figure 3.2):

 SHAPE * MERGEFORMAT

Figure 3.2 Ordering characters from highest to lowest frequency
First, the two least-frequent characters are selected, logically grouped together, and their frequencies added. In this example, the D and E characters have a combined frequency of 21 as shown down in (Figure 3.3):

[image: image5]
Figure 3.3 Combined frequencies of the lowest 2 nodes
This begins the construction of a "binary tree" structure. Again the two elements with the lowest frequencies are selected, regarding the D-E combination as a single element. In this case, the two elements selected are G and the D-E combination. They are to be grouped together and add their frequencies. This new combination will result a new node has a frequency of 44 as in (Figure 3.4):

[image: image6]
Figure 3.4 Combinations of lowest frequency nodes
The same way in selecting the two elements with the lowest frequency, group them together, and add their frequencies is to be continued, until run out of elements. In the third iteration, the lowest frequencies are C and A: As shown in (Figure 3.5) the combination between C and A gives a new node with frequency of 61.

[image: image7]
Figure 3.5 Combinations of lowest frequency nodes
As we continue by the next iterations combining tow iterations will result a node with frequency of 105, and another node with frequency of 130. This is shown in the next two figures, (Figure 3.6) and (Figure 3.7):

[image: image8]
Figure 3.6 Combinations between tow nodes

[image: image9]
Figure 3.7 Combinations between tow nodes
By the next step which is last step in this example the result is known as a "Huffman tree". The generated Huffman tree is shown in (Figure 3.8):

[image: image10]
Figure 3.8 Last combination of nodes which result binary Huffman tree
3.4.1.2.7 Obtaining Huffman code from the Tree

To obtain the Huffman code itself, each branch of the tree is labeled with a 1 or 0. It is important to give 1s for a side and 0s for the other side. Here in this example I will give 0s for the right side and 1s for the left side as shown in (Figure 3.9):

[image: image11]
Figure 3.9 Assigning 0s for the right side of the tress and 1s for the left side

Tracing down the tree gives the "Huffman codes", with the shortest codes assigned to the characters with the greatest frequency as shown in (Table 3.4) down:

Table 3.4 Original ASCII codes and generated codes for letters in the above example
	Character
	The ASCII code
	The generated code

	F
	01000110
	 00

	B
	01000010
	 01

	C
	01000011
	 100

	A
	01000001
	 101

	G
	01000111
	 110

	D
	01000100
	 1110

	E
	01000101
	 1111

A Huffman coder will go through the source text file, convert each character into its appropriate binary Huffman code, and dump the resulting bits to the output file. The Huffman codes won't get mixed up in decoding. The best way to see that this is so is to envision the decoder cycling through the tree structure, guided by the encoded bits it reads, moving from top to bottom and then back to the top. As long as bits constitute legitimate Huffman codes and a bit doesn't get scrambled or lost, the decoder will never get lost either.

3.4.1.2.8 Advantages and Disadvantages

Huffman compression algorithm is mainly efficient in compressing text or program files. But it is not very effective if the data in the file is strongly random, since the frequencies of different characters or bytes would be close to the same, but such "random" data files are hard to compress by any technique.

3.4.2 Dictionary Model Compressor

Dictionary based techniques like LZ-family exploit text redundancy caused by the grammatical structure of the language text. Generally, they parse the input string into a sequence of sub strings, or dictionary words, and encode the text by replacing the parsed token with its dictionary index or with a pointer to its last occurrence in the text.[14] There are numerous variants that differ in the parsing strategy, the token coding, and the dictionary update heuristics (for adaptive additions and deletions). The main characteristic of all of them, and their biggest advantage, is the fact that they are extremely fast and are therefore very suitable for practical purposes. [24]
3.4.2.1 Lempel Ziv Compression Algorithm

Improvements in the field of data compression up until the late 1970's were chiefly directed towards creating better methodologies for Huffman Coding. In order to obtain the necessary frequencies of symbols in the data to be compressed.

In 1977, a new technique was introduced with a very different way of compressing data - one which would avoid the uncertainty of making predictions or the wastefulness of pre-reading data and it was know as LZ77 technique.[22] Some new versions of this technique was described in 1978 and 1984, which was named as LZ78 and LZW respectively. LZW, which we are interesting in this section, takes that scheme one step further, actually constructing a "dictionary" of words or parts of words in a message, and then using pointers to the words in the dictionary.

3.4.2.1.1 History

In 1977, two Israeli information theorists, Abraham Lempel and Jacob Ziv, introduced a new technique of compressing data was known as "LZ-77", which uses the redundant nature of text to provide compression. [22]
Lempel and Ziv came up with an improved scheme in 1978, appropriately named "LZ-78". In 1984, Terry Welch improved LZ78 algorithm, resulting a new version of this technique named as LZW. The dictionary is the central point of the algorithm. Furthermore, a hashing technique makes its implementation efficient. LZW compression was implemented by the "compress" command of the UNIX operating system.

3.4.2.1.2 LZW CODING

LZ-77 is an example of what is known as "substitutional coding". There are other schemes in this class of coding algorithms. Lempel and Ziv came up with an improved scheme in 1978, appropriately named "LZ-78", and it was refined by a Mr. Terry Welch in 1984, making it "LZW".
LZ-77 uses pointers to previous words or parts of words in a file to obtain compression. LZW takes that scheme one step further, actually constructing a "dictionary" of words or parts of words in a message, and then using pointers to the words in the dictionary. [30]

3.4.2.1.3 Description of LZW Algorithm

The key insight of the method is that it is possible to automatically build a dictionary of previously seen strings in the text being compressed. The dictionary does not have to be transmitted with the compressed text, since the de-compressor can build it the same way the compressor does, and if coded correctly, will have exactly the same strings that the compressor dictionary had at the same point in the text. [18]
The dictionary starts off with 256 entries, one for each possible character (single byte string). Every time a string not already in the dictionary is seen, a longer string consisting of that string appended with the single character following it in the text, is stored in the dictionary.

The output consists of integer indices into the dictionary. These initially are 9 bits each, and as the dictionary grows, can increase to up to 16 bits. A special symbol is reserved for "flush the dictionary" which takes the dictionary back to the original 256 entries, and 9 bit indices. This is useful if compressing a text which has variable characteristics, since a dictionary of early material is not of much use later in the text. [18]
3.4.2.1.4 How Does LZW Compression Algorithm Work
The LZW algorithm stores strings in a "dictionary" with entries for 4,096 variable-length strings. The first 255 entries are used to contain the values for individual bytes, so the actual first string index is 256. As the string is compressed, the dictionary is built up to contain every possible string combination that can be obtained from the message, starting with two characters, then three characters, and so on.

Let's use this example message to show how LZW algorithm work, where “_” indicates the space between the words:

 the_rain_in_Spain_falls_mainly_in_the_plain

For example, it is to be scanned through the message to build up dictionary entries as follows:

 256 -> th < th > e_rain_in_Spain_falls_mainly_in_the_plain

 257 -> he t < he > _rain_in_Spain_falls_mainly_in_the_plain

 258 -> e_ th < e_ > rain_in_Spain_falls_mainly_in_the_plain

 259 -> _r the < _r > ain_in_Spain_falls_mainly_in_the_plain

 260 -> ra the_ < ra > in_in_Spain_falls_mainly_in_the_plain

 261 -> ai the_r < ai > n_in_Spain_falls_mainly_in_the_plain

 262 -> in the_ra < in > _in_Spain_falls_mainly_in_the_plain

 263 -> n_ the_rai < n_ > in_Spain_falls_mainly_in_the_plain

 264 -> _i the_rain < _i > n_Spain_falls_mainly_in_the_plain

The next two-character string in the message is "in", but this has already been included in the dictionary in entry 262. This means the three-character string "in_” are to be set up as the next dictionary entry, and then go back to adding two-character strings:

 265 -> in_ the_rain_ < in_ > Spain_falls_mainly_in_the_plain

 266 -> _S the_rain_in < _S > pain_falls_mainly_in_the_plain

 267 -> Sp the_rain_in_ < Sp > ain_falls_mainly_in_the_plain

 268 -> pa the_rain_in_S < pa > in_falls_mainly_in_the_plain

The next two-character string is "ai", but that's already in the dictionary at entry 261, so now a three-character string "ain" is to be added in the next entry:

 269 -> ain the_rain_in_Sp < ain > _falls_mainly_in_the_plain

Since "n_" is already stored in dictionary entry 263, "n_f" is added as a new dictionary entry:

 270 -> n_f the_rain_in_Spai < n_f > alls_mainly_in_the_plain

 271 -> fa the_rain_in_Spain_ < fa > lls_mainly_in_the_plain

 272 -> al the_rain_in_Spain_f < al > ls_mainly_in_the_plain

 273 -> ll the_rain_in_Spain_fa < ll > s_mainly_in_the_plain

 274 -> ls the_rain_in_Spain_fal < ls > _mainly_in_the_plain

 275 -> s_ the_rain_in_Spain_fall < s_ > mainly_in_the_plain

 276 -> _m the_rain_in_Spain_falls < _m > ainly_in_the_plain

 277 -> ma the_rain_in_Spain_falls_ < ma > inly_in_the_plain

Since "ain" is already stored in entry 269, a four-character string "ainl" is stored in the next dictionary entry:

 278 -> ainl the_rain_in_Spain_falls_m < ainl > y_in_the_plain

 279 -> ly the_rain_in_Spain_falls_main < ly > _in_the_plain

 280 -> y_ the_rain_in_Spain_falls_mainl < y_ > in_the_plain

Since the string "_i" is already stored in entry 264, so an entry is added for the string "_in":

 281 -> _in the_rain_in_Spain_falls_mainly < _in > _the_plain

Since "n_" is already stored in dictionary entry 263, an entry is added for "n_t":

 282 -> n_t the_rain_in_Spain_falls_mainly_i < n_t > he_plain

Since "th" is already stored in dictionary entry 256, an entry is added for "the":

 283 -> the the_rain_in_Spain_falls_mainly_in_ < the > _plain

Since "e_" is already stored in dictionary entry 258, an entry is added for "e_p":

 284 -> e_p the_rain_in_Spain_falls_mainly_in_th < e_p > lain

 285 -> pl the_rain_in_Spain_falls_mainly_in_the_ < pl > ain

 286 -> la the_rain_in_Spain_falls_mainly_in_the_p < la > in

The remaining characters form a string already contained in entry 269, so there is no need to put it in the dictionary.

So the generated dictionary will contain the strings as shown in (Table 3.5):

Table 3.5 Generated dictionary for the above text
	 256 -> th
	 267 -> Sp
	 278 -> ainl

	 257 -> he
	 268 -> pa
	 279 -> ly

	 258 -> e_
	 269 -> ain
	 280 -> y_

	 259 -> _r
	 270 -> n_f
	 281 -> _in

	 260 -> ra
	 271 -> fa
	 282 -> n_t

	 261 -> ai
	 272 -> al
	 283 -> the

	 262 -> in
	 273 -> ll
	 284 -> e_p

	 263 -> n_
	 274 -> ls
	 285 -> pl

	 264 -> _i
	 275 -> s_
	 286 -> la

	 265 -> in_
	 276 -> _m
	

	 266 -> _S
	 277 -> ma
	

The dictionary is a means to an end, not an end in itself. The LZW coder simply uses it as a tool to generate a compressed output. The coder does not output the dictionary to the compressed output file; the decoder doesn't need it. While the coder is building up the dictionary, it sends characters to the compressed data output until it hits a string that's in the dictionary. It outputs an index into the dictionary for that string, and then continues output of characters until it hits another string in the dictionary, causing it to output another index, and so on. That means that the compressed output for our example message looks like this:

the_rain_<262>_Sp<261><263>falls_m<269>ly<264><263><256><258>pl<269>

The decoder constructs the dictionary as it reads and uncompresses the compressed data, building up dictionary entries from the uncompressed characters and dictionary entries it has already established.

3.4.2.1.5 Decompression

The companion algorithm for compression is the decompression algorithm. It needs to be able to take the stream of codes output from the compression algorithm, and use them to exactly recreate the input stream. One reason for the efficiency of the LZW algorithm is that it does not need to pass the dictionary to the decompression code. The dictionary can be built exactly as it was during compression, using the input stream as data. This is possible because the compression algorithm always outputs the STRING and CHARACTER components of a code before it uses it in the output stream. This means that the compressed data is not burdened with carrying a large string translation table (dictionary).

The decompression algorithm is just like the compression algorithm, it adds a new string to the dictionary each time it reads in a new code. All it needs to do in addition to that is translate each incoming code into a string and send it to the output.

An important thing to note is that the dictionary ends up looking exactly like the table built up during compression. The output string is identical to the input string from the compression algorithm.

3.4.2.1.6 How Does LZW Decompression Algorithm Work
A compressed text is:”/ W E D 256 E 260 261 257 B 260 T” The dictionary would be created as shown in the following table, (Table 3.6):
Table 3.6 Regenerating dictionary from a compressed file
	Input/

NEW_CODE
	OLD_CODE
	STRING/

Output
	CHARACTER
	New table entry

	/
	/
	/
	
	

	W
	/
	W
	W
	256 = /W

	E
	W
	E
	E
	257 = WE

	D
	E
	D
	D
	258 = ED

	256
	D
	/W
	/
	259 = D/

	E
	256
	E
	E
	260 = /WE

	260
	E
	/WE
	/
	261 = E/

	261
	260
	E/
	E
	262 = /WEE

	257
	261
	WE
	W
	263 = E/W

	B
	257
	B
	B
	264 = WEB

	260
	B
	/WE
	/
	265 = B/

	T
	260
	T
	T
	266 = /WET

3.4.2.1.7 Facts about LZW Algorithm
· One puzzling thing about LZW is why the first 255 entries in the 4K buffer are initialized to single-character strings. There would be no point in setting pointers to single characters, since the pointers would be longer than the characters, and in practice that's not done anyway. I speculate that the single characters are put in the buffer just to simplify searching the buffer.

· As this example of compressed output shows, as the message is compressed, the dictionary grows more complete, and the number of "hits" against it increases. Longer strings are also stored in the dictionary, and on the average the pointers substitute for longer strings. This means that up to a limit, the longer the message, the better the compression.

· This limit is imposed in the original LZW implementation by the fact that once the 4K dictionary is complete, no more strings can be added. Defining a larger dictionary of course results in greater string capacity, but also longer pointers, reducing compression for messages that don't fill up the dictionary.

· A variant of LZW known as "LZC" is used in the old UN*X "compress" data compression program. LZC uses variable length pointers up to a certain maximum size. It also monitors the compression of the output stream, and if the compression ratio goes down, it flushes the dictionary and rebuilds it, on the assumption that the new dictionary will be better "tuned" to the current text.

· Another refinement of LZW keep track of string "hits" for each dictionary entry, and overwrites "least recently used" entries when the dictionary fills up. Refinements of LZW provide the core of GIF and TIFF image compression as well.

· LZW is also used in some modem communication schemes, such as the "V.42bis" protocol. V.42bis has an interesting flexibility. Since not all data files compress well given any particularly encoding algorithm, the V.42bis protocol monitors the data to see how well it compresses. It sends it "as is" if it compresses poorly, but will switch to LZW compression using an escape code if it compresses well. Both the transmitter and receiver continue to build up an LZW dictionary even while the transmitter is sending the file uncompressed and switch over transparently if the escape character is sent.
3.4.3 Transformation Based Compression Technique

In mathematics, difficult problems can often be simplified by performing a transformation on a data set. For example, digital signal processing programs use the Fast Fourier Transformation (FFT) to convert sets of sampled audio data points to equivalent sets of frequency data. [7]
Michael Burrows and David Wheeler recently released the details of a transformation function that opens the door to some revolutionary new data compression techniques. The Burrows-Wheeler Transform, or BWT, transforms a block of data into a format that is extremely well suited for compression. [7]
3.4.3.1 History
Michael Burrows and David Wheeler released a research report in 1994 discussing work they had been doing at the Digital Systems Research Center in Palo Alto, California. Their paper, "A Block-sorting Lossless Data Compression Algorithm" presented a data compression algorithm based on a previously unpublished transformation discovered by Wheeler in 1983. [26]
While the paper discusses a complete set of algorithms for compression and decompression technique, the real heart of the paper consists of the disclosure of the BWT algorithm. [7]
3.4.3.2 Pre-Compression Transformations

One interesting class of data compression techniques consists of transformation algorithms. It is often possible to perform a reversible transformation on a data set that increases its susceptibility to other compression techniques.

The transformations don't compress data at all; they merely prepare the data before compression is applied. One type of transformation techniques is Burrows-Wheeler transform (BWT). With BWT transformation technique a good results come from a three-stage compressor.[8] The output of the BWT transform is usually piped through a move-to-front (MTF) stage, then a run length encoder (RLE) stage, and finally an entropy encoder, normally arithmetic or Huffman coding (ARI). The actual command line to perform this sequence will look something like this: BWT < input-file | MTF | RLE | ARI > output-file
3.4.3.3 Transformation Based Compress Paradigm
The transformation is designed to make it easier to compress the source file. Paradigm for transformation compression is illustrated in (Figure 3.10). The original text file is provided as input to the transformation, which outputs the transformed text. This output is provided to an existing, unmodified data compression algorithm (such as LZW), which compresses the transformed text. To decompress, one merely reverses this process, by first invoking the appropriate decompression algorithm, and then providing the resulting text to the inverse transform. [4]

[image: image12]
Figure 3.10 Text compression paradigm with lossless, reversible transformation.
There are several important observations about this paradigm. The transformation must be exactly reversible, so that the overall lossless text compression paradigm is not compromised. The data compression and decompression algorithms are unmodified, so they do not exploit information about the transformation while compressing. The intent is to use the paradigm to improve the overall compression ratio of the text in comparison with what could have been achieved by using only the compression algorithm. An analogous paradigm has been used to compress images and video using the Fourier transform, Discrete Cosine Transform (DCT) or wavelet transforms [BGGu98]. In the image/video domains, however, the transforms are usually lossy, meaning that some data can be lost without compromising the interpretation of the image by a human. [4]

3.4.3.4 Star-Encoding

Another type of transformation technique is star encoding. While Burrows-Wheeler transform is a fairly complicated sorting algorithm that radically changes the nature of an input file. Star-encoding is much simpler to understand.
Star-encoding works by creating a large dictionary of commonly used words expected in the input files. The dictionary must be prepared in advance, and must be known to the compressor and de-compressor.

Each word in the dictionary has a star-encoded equivalent, in which as many letters a possible are replaced by the '*' character. For example, a commonly used word such the might be replaced by the string t**. The star-encoding transform simply replaces every occurrence of the word the in the input file with t**.

Ideally, the most common words will have the highest percentage of '*' characters in their encodings. If done properly, this means that transformed file will have a huge number of '*' characters. This ought to make the transformed file more compressible than the original plain text.

3.4.3.4.1 An Example of Star Encoding

But soft, what light through yonder window breaks?

It is the East, and Iuliet is the Sunne,

Arise faire Sun and kill the enuious Moone,

Who is already sicke and pale with griefe,

That thou her Maid art far more faire then she
Running this text through the star-encoder yields the following text:

B** *of*, **a* **g** *****g* ***d*r ***do* b*e***?

It *s *** E**t, **d ***i** *s *** *u**e,

A***e **i** *un **d k*** *** e****** M****,

*ho *s a****** **c*e **d **le ***h ****fe,

***t ***u *e* *ai* *r* f*r **r* **i** ***n s**

You can clearly see that the encoded data has exactly the same number of characters, but is dominated by stars. It certainly looks as though it is more compressible.
3.5 Summary

In this chapter, the most common algorithms for text compression such as Huffman encoding algorithm, and LZ, lzw algorithm have been described in detail.

In addition, examples are provided for each algorithm which show how the algorithms work step by step.

CHAPTER 4 : DEVELOPMENT OF TEXT COMPRESSION PROGRAM
4.1 Overview
This chapter describes the computer program developed by the author for the compression of Turkish language text. The chapter shows the interfaces and the functions of each component of the program. The complete source code of this application is included in Appendix A.
4.2 The Developed application program

The application program developed by the author has been built to compress text files of types “*.txt” and “*.doc”. A compressed file is unreadable because the text in the original file is encoded to new text which is almost rubbish. For this reason a compress program must have a decompression part that decompresses the encoded file using the same algorithm. The decompression algorithm can also be used to test the validity and the correctness of the compression algorithm. Both the compression and the decompression algorithms are given in this chapter. The application program is based on the well known encoding algorithm: “Huffman Algorithm”.

As mentioned before in chapter three, Huffman algorithm falls in statistical compressors category, which use the appearance frequency of characters in compression.

The application developed in this thesis also has a part that shows the frequency of the characters used in the given text in the form of a graph.
4.3 Turkish alphabets coding:

Unicode's Base Multilingual Plane, which supports almost all languages alphabets, is used by Windows® operating system. As mentioned in section 2.8 Special Turkish characters, such as the un-dotted i, appear in the Unicode system within the Latin Extended-A block (U+0100 – U+017F), which is part of Unicode's Base Multilingual Plane. The application program works under Windows®, where it will get the benefit of Turkish alphabet encoding.
4.4 The Application algorithm

As mentioned before, the compression is this thesis is based on the Huffman algorithm. Huffman algorithm’s first step is to consider the frequencies of letters in the file to be compressed, and sort them decreasing from left to right. The next coming step is the most important step for Huffman algorithm, which is creating the Huffman tree to get the new code for the letters. The binary tree (Huffman tree) can easily be constructed by recursively grouping the lowest frequency characters and nodes, then continuing the algorithm as described in section 3.4.1.6.2. When some of letter positions were changed, in some cases better results were obtained.

The method works as Huffman algorithm with a change in building the binary tree. While in Huffman algorithm the characters are sorted in decreasing way, the method allows us to change the places of characters in some cases. The time that we have to change the place of a sorted letter is, if the sum of the new node with the next letter is smaller than the sum of next letter and the letter after. The letter itself is moved to the right of the tree.

The algorithm is as follows:

1. Sort all characters decreasingly according to letter frequency and initially are considered as free nodes.

2. The two free nodes with the lowest frequency are assigned to a parent node with a weight equal to the sum of the two child nodes.

3. If sum of (new node + next node) < (next node+ the node after) move the next node to the right of the tree.

4. Steps 2 through 3 are repeated until there is only one free node left. This free node is the root of the tree.

Getting the code from the tree
To see the code, redraw all the symbols in the form of a tree, where each symbol contains either a single letter or splits up into two smaller symbols.

5. Label all the left branches of the tree with a 0 and all the right branches with a 1. The code for each of the letters is the sequence of 0's and 1's that lead to it on the tree, starting from the head of the tree.

[image: image13]
Figure 4.1 Flowchart of the application algorithm.
4.5 Two Examples:

Here in this section two examples will be shown applying compression using the original Huffman method and the other method. These two examples will show that moving some characters to the right of the tree will be either better or the same without moving, but it will not be worst. (Figure 4.2) and (Figure 4.3) shows the situation where results where obtained in both cases.

[image: image14.emf]1

1 1 1

1

1

0

0

0

0 0

0

E A D B C C R G

53 46 22 20 15 15 12 7

34

19

76

42 99

175

E A D B C R G

1

1 1

1

1

1

0

0

0 0 0

0

53 46 22 20 15 12 7

34

19

76

42 99

175

(a)

 (b)

Figure 4.2 creating a binary tree, (a) without moving, (b) with moving characters.

(Figure 4.1) shows that it remains same compression result if some letter position were moved or not. Where compression results in both cases will be 445 bytes in both cases, where the original text size is1400 bytes.

[image: image15.emf]E B I A T S R

1

1

1

1

1

1

0

0

0

0 0

0

15 13 12 10 4 3 1

8

4

18

58

25

40

E B I A T S R

1

1

1

1

1 1

0 0

0

0 0

0

15 13 12 10 4 3 1

4

18

33

53

8

25

A T

10 4

E

15

(a)

 (b)

Figure 4.3 creating a binary tree, (a) without moving, (b) with moving characters.

But (Figure 4.2) shows that letters moving case results better compression result. While the original size is 464 bytes, while the compression results in both cases is 153 bytes without moving and 131 bytes with letter possession moving.
As creating binary tree moving characters possession causes some letters that have high frequency to flout to the top of the binary tree. The letters those on the top of the tree take less bits to coded. That is why better compression results could be gained.

4.6 The User application Interface

The user interface of the application developed in this thesis consists of one simple window. This window contains some buttons, text bars and other tools. Using these tools we will be able to compress and decompress text files and get some information about the characteristics of the compressed file. (Figure 4.4) shows the application interface which will be described in more detail within this chapter.

[image: image16.jpg]. Text Compression Thesis

Source Fik:

F-AF aladdin\Thesis\ Complete Thesis\The Projectia tt Compress

Compressed File (HUF}
F-AF aladdinThesis\ Complete Thesis\The Projectia Hul

Decompress

]

Figure 4.4 User interface of the application developed by the author
4.7 Software Development language
Visual Basic 6.0 programming language was used in developing the application program in this thesis. The application program will be described in this chapter.

4.7.1 Why Visual Basic 6.0?
There are many reasons for choosing Visual Basic over other tools; among them are the following:

· A comprehensive object framework.

· A fast, native-code compiler.

· A development environment based on sophisticated two-way tools.

· Compatible with Microsoft Windows 9x, Windows ME, Windows 2000, Windows XP and Linux.

· Visual Basic took all the best elements of modern Windows development tools and wove them into a single product.

· You can drop components onto a form to build almost any type of application.

· You can generate normal Windows EXEs with the press of a key.

· Supports direct access to the Windows API.

· Make it easy to create DLLs and other secondary Windows objects.

· Get benefit of using object-oriented that include Inheritance, Polymorphism, Encapsulation and Primary Methodology, which is full used in Visual Basic net VB.net.

4.8 Parts of the program listing
The complete source code of the application program is given in Appendix A. In this section, only the important parts of the source code, namely the creation of the Huffman binary tree is discussed.
Public Sub DecodeFile(SourceFile As String, DestFile As String)

 Dim ByteArray() As Byte

 Dim Filenr As Integer

 'Make sure the source file exists

 If (Not FileExist(SourceFile)) Then

 Err.Raise vbObjectError, "clsHuffman.DecodeFile()", "Source file does not exist"

 End If

 'Read the data from the sourcefile

 Filenr = FreeFile

 Open SourceFile For Binary As #Filenr

 ReDim ByteArray(0 To LOF(Filenr) - 1)

 Get #Filenr, , ByteArray()

 Close #Filenr

 'Uncompress the data

 Call DecodeByte(ByteArray(), UBound(ByteArray) + 1)

 'If the destination file exist we need to

 'destroy it because opening it as binary

 'will not clear the old data

 If (FileExist(DestFile)) Then Kill DestFile

 'Save the destination string

 Open DestFile For Binary As #Filenr

 Put #Filenr, , ByteArray()

 Close #Filenr

End Sub

Private Sub CreateTree(Nodes() As HUFFMANTREE, NodesCount As Long, Char As Long, Bytes As ByteArray)

 Dim a As Integer

 Dim NodeIndex As Long

 NodeIndex = 0

 For a = 0 To (Bytes.Count - 1)

 If (Bytes.Data(a) = 0) Then

 'Left node

 If (Nodes(NodeIndex).LeftNode = -1) Then

 Nodes(NodeIndex).LeftNode = NodesCount

 Nodes(NodesCount).ParentNode = NodeIndex

 Nodes(NodesCount).LeftNode = -1

 Nodes(NodesCount).RightNode = -1

 Nodes(NodesCount).Value = -1

 NodesCount = NodesCount + 1

 End If

 NodeIndex = Nodes(NodeIndex).LeftNode

 ElseIf (Bytes.Data(a) = 1) Then

 'Right node

 If (Nodes(NodeIndex).RightNode = -1) Then

 Nodes(NodeIndex).RightNode = NodesCount

 Nodes(NodesCount).ParentNode = NodeIndex

 Nodes(NodesCount).LeftNode = -1

 Nodes(NodesCount).RightNode = -1

 Nodes(NodesCount).Value = -1

 NodesCount = NodesCount + 1

 End If

 NodeIndex = Nodes(NodeIndex).RightNode

 Else

 Stop

 End If

 Next

 Nodes(NodeIndex).Value = Char

End Sub

4.9 . Functions of the application program interfaces
When the application program is run, the user interface shown in (Figure 4.2) is obtained. On the application interface window the following tools exist:
1. Two Radio buttons to activate the function we are going to apply.

2. Six command buttons to give the order we are going to apply.

3. Four text boxes tools to get the file name and path for files are going to be compressed or decompressed.

4. One text list to get the frequency of letters in the file to be compressed.

5. One Graph to show the frequency of letters in graphical way.

6. Some information labels to give information about the file being compressed.

On the following sections I am going to explain these tools and there functions.

4.9.1 Radio Buttons
These are used to activate the part we are going to apply of the program. Compress radio button will activate the compress part. As well as the decompress radio will activate the decompress part of the program. (Figure 4.5) shows that compress part of the program is active while the decompress pat is non-active. While when selecting the decompress radio button the decompress part is activated as in (Figure 4.6).
[image: image17.jpg]. Text Compression Thesis

Source Fik:

F-AF aladdin\Thesis\Complete Thesis\Thesis Projectia tt

Compressed File (HUF}:

F-AF aladdinThesis\ Complete Thesis\Thesis Projectya Hul

Compress

Decompress

Figure 4.5 Activating the compress part of the program
[image: image18.jpg]. Text Compression Thesis

File to be DeCompressed

F-AF aladdin\Thesis\ Complete Thesis\Thesis Projectya Hul

Decompress to il

F-AF aladdin\Thesis\Complete Thesis\Thesis Projectia tt

Compress

Decompress

Figure 4.6 Activating the de-compress part of the program
4.9.2 Command buttons
On the interface window we have six command buttons each one have its function as follows:

Brows Buttons: each of them is used to help the user for finding the file is going to be compressed, while it opens the open window.

Compress Button: after selecting the file to be compressed, we press on this button to apply the compress function and get the new compressed file which name and path is written on the second text box.

Decompress Button: will apply the decompress function on a compressed file secreted on the “File to be compressed” text button.

Frequency Button: shows the letter frequencies in the file being compressed by numbers on the list text box and by graph on the “Frequency Graph” part.
Close Button: to end working on the application program.

4.9.3 Text boxes

As shown in (Figure 4.7) we have four text boxes on my program only two of them are active at a time.
[image: image19.jpg]. Text Compression Thesis

Source Fik:
[FAF Aladdn\Thesis\Complete Thesis\Thesis Profectia bt Bro

Compressed File (HUF}:
F-AF aladdinThesis\ Complete Thesis\Thesis Projectya Hul

Figure 4.7 Text boxes used on the program
Source file: will contain the name and path of the original file is being compressed.
Compressed File (HUF): contains the path and file name of the new file (compressed file) while extension of the original file will be changed from (*.txt) to (*.huf).

File to be decompressed and Decompress to file: will be active together when selecting the decompress radio button. These are used to help the user to decompress a compressed file, while they will contain the compressed file name and destination and the new file name and destination respectively.
4.9.4 Text list

Will contain each letter presented in the file being compressed as a list, and will show the letters frequencies. Text list is shown in (Figure 4.8):
[image: image20.jpg]ol

Figure 4.8 The text list used to display the letter frequency of the project
4.9.5 Graph tool

(Figure 4.9) shows the frequency of each letter of the file being compressed in graphical way, to make it easy for the user to read the frequency. In the following example characters “a” and “i” have the highest frequencies.
[image: image21.jpg]]

Figure 4.9 Letter frequencies shown in graphical shape
4.10 Summary

This chapter has described the application program developed by the author. The user interface has also been described in detail. The presented graphical user interface and the functions carried out when using the buttons, were developed using Visual Basic 6.0 programming language.
CHAPTER 5 : RESULTS OF SIMULATION
5.1 Overview

This chapter shows the results of using program to compress files with different sizes. Two types of text files were tried: “*.txt” and “*.doc” files.

5.2 Files to be compressed
Changing the type of file will change the size, because each type has its characteristics like the file header etc. So I preferred to apply the developed compression program on two types of files. 7 files of types “.DOC”, and 7 files of types “.TXT” have been tested using the program. The sizes of these files are given in (Table 5.1).
 Table 5.1 Original file sizes tested using the program
	Document Files (*.Doc)
	Size on Disk
In Bytes
	
	Text Files (*.txt)
	Size on Disk
In Bytes

	1.Doc
	21504
	
	1t.Txt
	1854

	2.Doc
	34304
	
	2t.Txt
	14544

	3.Doc
	62464
	
	3t.Txt
	35912

	4.Doc
	128000
	
	4t.Txt
	90788

	5.Doc
	248832
	
	5t.Txt
	196264

	6.Doc
	437760
	
	6t.Txt
	360966

	7.Doc
	523264
	
	7t.Txt
	404778

5.3 Compressing a file

Compressing a file will produce a new file of type which I suggested to be Huf (*.Huf). The new files can be opened by notepad program but they are not readable by the user. Here, a small file is shown before and after compression.
5.3.1 Original text file

PVC NEDİR?

PVC, yaygın deyimi ile "vinil" , (Poli Vinil Klorür) kelimesinin kısaltılmış şeklidir ve petrol (veya doğalgaz) ile tuz'dan petrokimya tesislerinde üretilen, formülü - (CH2- CH2) olan bir polimer türüdür. Bu polimer, çeşitli katkı maddeleri ile harmanlandıktan sonra yüksek sıcaklıklarda şekillendirilerek plastik haline getirilir ve kullanılır. PVC, polimer zincirinde klor atomu taşıyan ender termoplastiklerdendir. Klor içermesi nedeni ile PVC'nin alev alma sıcaklığı yüksektir, alev tutuştuğunda kendiliğinden hemen söner. PVC çok yüksek sıcaklarda termal olarak kolaylıkla bozulur ve korrozif bir gaz olan hidroklorik asit çıkarır. PVC, diğer polimerlere kıyasla daha fazla miktarda ve çeşitte katkı maddesi ile karıştırılabilir. Bu nedenle de, PVC plastik malzemenin maliyeti nispeten düşüktür; genel ve çok amaçlı kullanım sağlar. PVC, Polietilen'i takiben en çok kullanılan bir polimer türüdür.

5.3.2 File after compression
Figure 5.1 shows the above text after compression which is unreadable text, because a new code will be generated for it to be compressed. I used notepad program to open the generated file.

[image: image22.jpg]B 1t.Huf - Notepad

Flo Edt Format View Hel

HE3E>e 8 D" () B-8071-2,27/BC0DIEHKNIPORAE Ra O celf ofh
i K1 rm=n| o-per| s-t-usvBy»2cfepya-O§manE 64xeh~Buk<al EThFD« A <leAen;-$yTa GSC Ugce
ZezlPe MNPk Zy PIRIGP<ce o fie, VEgd —4j0X#E% 012" 6l ullanU—le-aC T teyorm s
JNE-(A TSIHE SO8=AErNIAE" UEScexjul TPiSU W e amrYIEOhYaEO- -F 1R
8D V1)%40) OVERA mSISmITTINZIol (AP «gsSIWQ DASNH)Y T SeUlliuto®i 6%l 0o G)@d ™ s
“ R +HK 35— Sp-* sETAKEWSU ~3A% 2V QUG ZAS oo ZME0"IEVAN@RT-gOfLJQIRCH-4.
0% O TIENIAD ANBS[UJZOE O+Brer A—V, Z TR0 e E OX¥, 1~S b THrdSIUSA'U CED
Eagaetors YA R0V S BV o heAIL i Skt 1a IS0 bV TieSER
S R}+9-36@sTex* Y 5T 4¢ AT OTeUSE OUER™ SBI~(AZelitk gIR-VWUSES(AHOE I~ \Cl
AE§ A0S KAEFOCre oS- AED /2 _1-NPCE | IBA[TEUSMWOBBZ G T2 " 1|« < B0 ™ar 10Xz Efd
“5-GATA OIS M OTCERYYPE 5,42 | 6340 wok S0 RIS HLOBUIUEZ

Figure 5.1 An example of file after compression
5.4 Applying compression using the program

As it is mentioned before, 14 files were used in the compression test. In (Table 5.2), the results of applying the compression to 7 of the “*.Doc” type files is given. The results table contains the original file sizes, the new file sizes and the compression ratios. Table 5.3 shows the results of applying the compression to other 7 files which are of type “*.txt”.
Table 5.2 Result of applying the compression program on Doc files
	File name
	Old file size

In Bytes
	New file size

In Bytes
	Comp. ratio

	1.Doc
	21504
	5988
	72%

	2.Doc
	34304
	12902
	62%

	3.Doc
	62464
	26254
	57%

	4.Doc
	128000
	58144
	54%

	5.Doc
	248832
	112506
	54%

	6.Doc
	437760
	198931
	54%

	7.Doc
	523264
	248693
	52%

Table 5.3 Result of applying the compression program on txt files

	File name
	Old file size

In Bytes
	New file size

In Bytes
	Comp. ratio

	1t.txt
	1854
	988
	46%

	2t.txt
	14544
	6699
	53%

	3t.txt
	39512
	17625
	55%

	4t.txt
	90788
	40129
	55%

	5t.txt
	196264
	86566
	55%

	6t.txt
	360966
	158891
	55%

	7t.txt
	404778
	178298
	55%

5.5 Summary

In this chapter the results of using the program to compress various files have been shown. 7 files of type “.doc” and 7 files of type “.txt” have been used in the test. On average, the compression ratio for the “.doc” files was 58%, and the compression ratio for the “.txt” files was 53%.
CONCLUSION

Data compression is a vast field and is very useful in computing world especially in networking and data storage. Data compression could be realized through many methods. For text data compression, lossless compression algorithms must be applied to avoid losing even a single character from the text.
Huffman algorithm is one of the efficient methods which have been successfully applied in the field of text data compression. This thesis focused on text compression especially Turkish language text compression using a statistical algorithm, which is Huffman encoding algorithm. In compressing Turkish language text we must consider that it has characters not included in the standard ASCII table. For this thesis an algorithm and a computer program that compress text files was developed. The program applied on totally unconstrained computerized Turkish text files.
This thesis consists of five chapters. Chapter one explained the importance and a brief history of developing data compression. Moreover it described the classifications of data compression. Statistical information about the structure and the usage of Turkish Language was presented in chapter two. In chapter three, the most common algorithms for text compression such as Huffman encoding algorithm, LZ, lzw algorithm was explained with examples. Chapter four describes the application program developed for this thesis. Results of Turkish text files compression using the developed system was shown in chapter five and it was more than 50% compressed data. The developed program was applied on 14 files, were 7 of these files were of type “.doc”, and 7 were of type “.txt”. On average, the compression ratio for “.doc” files was 58%, and the compression ratio for “.txt” files was 53%.

REFERENCES
1. Aysan Bayramoğlu, Let’s Learn Turkish 2nd Edition,Gelişim offset, Lefkoşa 1991.

2. Dalkiliç, G., and Çebi Y., 2004, “Word Statistics of Turkish Language on a Large Scale Text Corpus - TurCo”, ITCC 2004, IEEE International Conference on Information Technology, Vol:2, pp. 319-325.

3. E. CELIKEL, B. DINCER, Improving the Compression Performance of Turkish Texts with PoS Tags., International Conference on Information and Knowledge Engineering (IKE’04).
4. F Robert,K Holger, Z Nan,I Raja, and M Amar, Lossless, Reversible Transformations that Improve Text Compression Ratios, University of Central Florida.

5. F. Çuna Ekmekçioglu, Michael F. Lynch, and Peter Willett, Stemming and N-gram matching for term conflation in Turkish texts, Information Research, Vol. 2 No. 2, October 1996.
6. James D. Murray and William vanRyper, Encyclopedia of Graphics File Formats, Second Edition, 1996.

7. Mark Nelson, Data Compression with the Burrows-Wheeler Transform, Dr. Dobb's Journal September, 1996 .

8. Mark Nelson, Star-Encoding in C++, Dr. Dobb's Journal August, 2002.
9. Meeting with Prof. Dr. Bülent YORULMAZ, Dean of Fen-Edebiyat Fakültesi NEU, chairman of Turkish language and literature department.

10. Steven Atkin & Alihan Irmakkesen , Computing in Turkish.
11. Steven W. Smith, The Scientist and Engineer's Guide to Digital Signal Processing, Second Edition, 1999.

12. T. Güngör Lexical and Morphological Statistics For Turkish, International XII. Turkish Symposium on Artificial Intelligence and Neural Networks - TAINN 2003.
13. T. Güngör, Computer Processing of Turkish: Morphological and Lexical Investigation, Ph.D. Dissertation, Boğaziçi University, İstanbul, 1995.
14. Terry A. Welch. “A Technique for High Performance Data Compression”. IEEE Computer, Vol. 17, No. 6, 1984, pp. 8-19.

Internet References:
15. http://computing-dictionary.thefreedictionary.com/Huffman+tree
16. http://en.wikipedia.org/wiki/Huffman_tree
17. http://scic.cec.eu.int/Main/enlargement/lan_pres/turk_01.htm

18. http://www.answers.com/topic/lzw-1
19. http://www.array.com/compres.pdf
20. http://www.cprogramming.com/tutorial/computersciencetheory/huffman.html
21. http://www.cprogramming.com/tutorial/lesson18.html
22. http://www.cs.mcgill.ca/~cs251/OldCourses/1997/topic23/
23. http://www.cs.sfu.ca/cs/CC/365/li/squeeze/AdaptiveHuff.html
24. http://www.cs.ucf.edu/~nmotgi/thesisproposal.html
25. http://www.data-compression.com/index.shtml

26. http://www.data-compression.info/Algorithms/BWT/
27. http://www.eee.bham.ac.uk/WoolleySI/All7/main.htm
28. http://www.livejournal.com/users/parakleta/137282.html
29. http://www.transparent.com/languagepages/turkish/overview.htm
30. http://www.vectorsite.net/ttdcmp1.html
31. http://www.wolframscience.com/reference/notes/1069b
APPENDIX A: LISTING OF SOURCE CODE

APPENDIX B: ENGLISH LANGUAGE ALPHABETS
APPENDIX C: TURKISH LANGUAGE ALPHABETS
Original text

Data compression

Compressed text:

(binary code)

Data decompression

Original text

66 64 32 29 23 12 9

F B C A G D E

66 64 32 29 23 12 9

F B C A G D E

21

21

66 64 32 29 23 12 9

F B C A G D E

44

44

21

66 64 32 29 23 12 9

F B C A G D E

61

61

44

21

66 64 32 29 23 12 9

F B C A G D E

105

105

61

44

21

66 64 32 29 23 12 9

F B C A G D E

130

130

105

61

44

21

66 64 32 29 23 12 9

F B C A G D E

235

235

130

105

61

44

21

66 64 32 29 23 12 9

F B C A G D E

0

0

0

0

0

0

1

1

1

1

1

1

Transformed text:

***a^ ** * ***b.

Transform decoding

Original text:

This is a test.

Data

Decompression

Compressed text:

(binary code)

Data compression

Transformed text:

***a^ ** * ***b.

Transform encoding

Original text:

This is a test.

Move next node to right

is

 (new node+ next node)

<

(next node+ the node after)

Stop

Collect Bits Starting From the Root Reaching Each Letter

Is This the Root Node

Label Left Branch with 0 & Right with 1

Sum the Least 2 nodes

Sort Character Frequency Decreasingly

Start

PAGE
8

_1193811443.unknown

_1193909261.unknown

_1193642503.unknown

