
NEAR EAST UNIVERSITY

Faculty of Engineering

Department Of Computer Engineering

TRANSMISSION CONTROL PROTOCOL- USER
DATAGRAMPROTOCOL(TCP-UDP)

Graduation Project
COM-400

Student: Asif Khurshid

Supervisor: Assist. Prof. Dr. Firudin Muradov

Nicosia - 2003

ACKNO\VLEDGE1"1ENTS

knowledge and wisdom endowed to mankind. All thanks are due to ALLAH who

enabled me to complete this project.

I would like to say special thanks to my project advisor Dr Firudin Muradov for his

deep interest, continuous guidance, assistance and cooperation at every stage of the

project.

Then I want to say thanks to my family for their encouragement and support

Finally I would like to thank all of my friends for their help."

ABSTRACT

Transmission Control Protocol/Internet Protocol (TCP/IP) is an industry-standard suit

of protocols designed for Wide Area Networks (WANs). The roots of the TCP/IP can

be traced back to the packet switching network experiments conducted by the US

Department of Defense Advanced Research Projects Agency (DARPA). IP is a

connectionless protocol primarily responsible for addressing and routing packets

between hosts, that is, a session is not established before exchanging data. IP is

unreliable in that delivery is not guaranteed. An acknowledgement is not required

when data is received. Where as Transmission Control Protocol (TCP) is responsible

for controlling the transmission of data from one host to another host. The TCP/IP

utilities include File Transfer Protocol (FTP), Trivial File Transfer Protocol (TFTP),

Remote Copy Protocol (RCP), Telnet, Remote Shell (RSH), Remote Execution

(REXEC), Line Printer Remote (LPR), Line Printer Queue (LPQ), Line Printer

Daemon (LPD).

User Datagram Protocol (UDP) is a connectionless protocol used with both the

Trivial File Transfer Protocol (TFTP) and the Remote Call Procedure (RCP).

Connectionless communications don't provide reliability, meaning there is no

indication to the sending device that a message has been received correctly. It also

does not gives error recovery facility like IP.

11

TABLE OF CONTENTS

ACKNOWLEDEGMENT ı

ABSTRACT ıı

TABLE OF CONTENTS ııı

INTRODUCTION 1

CHAPTER ONE: OPEN SYSTEMS, STANDARDS, AND

PROTOCOLS 3

1. 1 Open Systems 3

1. 1. 1 What Is an Open System? 4

1 .2 Network Architectures 6

1 . 2. 1 Local Area Networks 7

1.2. 1.1 The Bus Network 7

1.2. L2 The Ring Network 1 O

1.2.1.3 The Hub Network 10

1.2.2 Wide Area Networks 11

1.3 Layers 13

1.3.1 The Application Layer 14

1.3.2 The Presentation Layer 15

1. 3. 3 The Session Layer 15

1.3.4 The Transport Layer 15

1.3.5 The Network Layer 16

1.3.6 The Data Link Layer 16

1.3.7 The Physical Layer 16

1 .4 Terminology and Notations 17

1.4. l Packets 17

ııı

L4.2 Subsystems

1.4.3 Entities

1.4.4 N Notation

1.4.5 N-Functions

1 A.6 N-Facilities

1.4.7 Services

L4.8 Making Sense of the Jargon

1.4.9 Queues and Connections

1.5 Standards

1.5.1 Setting Standards

1.5.2 Internet Standards

1 .6 Protocols

1.6.1 Breaking Data Apart

1.6.2 Protocol Headers

CHAPTER T\VO: TCP and UDP

2. 1 What Is TCP?

2.2 Following a Message

2 .3 Ports and Sockets

2.4 TCP Communications with the Upper Layers

2.5 Passive and Active Ports

2.6 TCP Timers

2.6.1 The Retransmission Timer

2.6.2 The Quiet Timer

2.6.3 The Persistence Timer

IV

17

18

18

18

18

18

20

21

23

23

24

26

27

29

32

32

34

36

41

43

44

44

45

45

2.6.4 The Keep-Alive Timer and the Idle Timer 45

2. 7 Transmission Control Blocks and Flow Control 45

2.8 TCP Protocol Data Units 47

2.9 TCP and Connections 49

2.9.1 Establishing a Connection 49

2.9.2 Data Transfer 51

2.9.3 Closing Connections 52

2.10 User Datagram Protocol (UDP) 54

CHAPTER THREE: TCP/UDP and Networks 56

3. I TCP/UDP and Other Protocols 56

3. 1. 1 LAN Layers 57

3. 1 .2 NetBIOS and TCP/IP 59

3.1.3 XNS and TCP/IP 61

3. 1.4 IPX and UDP 61

3.1.5 ARCnet and TCP/IP 62

3.1.6 FDDI Networks 62

3. L7 X.25 and IP 63

3.1.8 ISDN and TCP/IP 63

3 .1. 9 Switched Multi-Megabit Data Services and IP 64

3. L 10 Asynchronous Transfer Mode (ATM) and BISON 64

3.1.11 Windows 95 and TCP/IP 64

3.2 Optional TCP/UDP Services 66

3.2.1 Active Users 67

3 .2.2 Character Generator 67

V

3.2.3 Daytime 68

3 .2.4 Discard 68

3.2.5 Echo 68

3.2.6 Quote of the Day 68

3 .2. 7 Time 69

3.2.8 Using the Optional Services 69

3 .3 SettingUp a Sample TCP/IP Network: Servers 7 I

3.3.1 The SampleNetwork 71

33.2 ConfiguringTCP/IP Software 72

3.4 Setting Up a Sample TCP/IP Network: DOS and Windows
Clients 78

3.4.1 DOS-BasedTCP/IP:ftp Software'sPC/TCP 78

3.4. 1. 1 InstallingPC/TCP 80

3.4.1.1. 1 The AUTOEXECBATFile 80

3.4.1.1.2The CONFIG.SYSFile 83

3.4.1.1.3The PROTOCOL.INIFile 85

3.4.1.1.4The PCTCP.INIFile 86

3.4.1.1.5The WindowsSYSTEM.INIFile 87

3.4.1.2 Windowsfor WorkgroupsusingNetBIOS 89

3.4.1.3 TestingPC/TCP 92

CHAPTER_FOUR: WINSOCK AND THE SOCKET
PROGRAMMING INTERFACE 98

4.1 Winsock 98

4. 1. 1 TrumpetWinsock 98

4.1.2 InstallingTrumpetWinsock 99

VI

4.1.3 Configuring the TCP/IP Packet Driver 99

4.2 The Socket Programming Interface 101

4.2. 1 Development of the Socket Programming Interface 1 O 1

4.2.2 Socket Services 102

4.2.2.1 Transmission Control Block 103

4.2.2.2 Creating a Socket 103

4.2.2.3 Binding the Socket 103

4.2.2.4 Connecting to the Destination 105

4.2.2.5 The open Command 105

4.2.2.6 Sending Data 107

4.2.2.7 Receiving Data 109

4.2.2.8 Server Listening 1 1 O

4.2.2.9 Getting Status Information 112

4.2.2.10 Closing a Connection 113

4.2.2.11 Aborting a Connection 114

4.2.2.12UN1XForks 114

CONCLUSION 115

REFERENCES 116

VII

INTRODUCTION

The internet consists of thousands of network wördwide connecting research

ilities, universities; libraries, government agencies and private companies.

CPIUDP are the standard, mutable entries networking protocols. All modern

perating systems offer TCP support and most large networks rely on TCP for much

of their network traffic. This is a technology for connecting dissimilar systems.

In the first chapter, we will see the Open Systems, what is an open system,

. [etwork Structures, local area networks such as the bus network, the ring network,

the hub network, wide area networks; Layers such as the application layer, the

presentation layer, the session layer, the transport layer; the network layer, the data

link layer, the physical layer, Standards such as setting standards, internet standards,

Protocols, breaking data apart, and protocol headers.

The second chapter begins with definition of TCP/IP. The rest of chapter

covers Following a Message, Ports and Sockets; TCP Communications with Upper

Layers; Passive and Active Ports; TCP Timers; the retransmission timer, the quiet

timer; the persistence timer, the keep-alive timer and the idle timer, Transmission

Control Blocks and Flow Control, TCP Protocols Data Units, TCP and Connections,

establishing a connection, data transfer, closing connections, and UDP(User Datagram

Protocol).

The third chapter covers the TCP-UDP and Networks, including TCP-UDP

and Other Protocols, LAN layers, NetBIOS and TCP/IP, XNS and TCP/IP, IPX and

UDP, ARCnet and TCP/IP, FDDI Networks, X.25 and IP, ISDN and TCP/IP,

Switched Multi-Megabit Data Services and IP; Asynchronous Transfer Mode (ATM)

and BISDN, Optional TCP/UDP services, active users, character generator, daytime,

discard, echo, quote of the day, time, using the optional services, Setting Up a Sample

TCP/IP Network Servers, the sample network, configuring TCP/IP software, and

Setting Up a Sample TCP/IP Network: DOS and Windows Clients.

In the fourth chapter, we will see the Winsock and the Socket Programming

Interface, including Trumpet Winsock, Installing Trumpet Winsock, Configuring the

1

acket Driver, Socket Services, transmission control block, creating a socket,

E Hı, g the socket, connecting to the destination, the open command, sending data,

_ data, server listening, getting status information, closing a connection,

::: a connection, and UNIX Forks.

2

CHAPTER ONE

OPEN SYSTEMS, STANDARDS AND PROTOCOLS

This chapter covers some important information, including the following:

• What an open system is

• How an open system handles networking

• Why standards are required

• How standards for protocols like TCP/IP are developed

• What a protocol is

• The OSI protocols

1. I Open Systeıns

Primarily because TCP/IP grew out of the need to develop a standardized

communications procedure that would inevitably be used on a variety of platforms.

The need for a standard, and one that was readily available to anyone (hence open),

was vitally important to TCP/IP's success. Therefore, a little background helps put
the design ofTCP/IP into perspective.

More importantly, open systems have become de rigueur in the current

competitive market. The term open system is bandied around by many people as a

solution for all problems (to be replaced occasionally by the term client/server), but

neither term is usually properly used or understood by the people spouting them.

Understanding what an open system really is and what it implies leads to a better

awareness of TCP/IP's role on a network and across large internetworks like the
Internet.

In a similar vein, the use of standards ensures that a protocol such as TCP/IP is the

same on each system. This means that our PC can talk to a minicomputer running

TCP/IP without special translation or conversion routines. It means that an entire

network of different hardware and operating systems can work with the same

network protocols. Developing a standard is not a trivial process. Often a single

standard involves more than a single document describing a software system. A

standard often involves the interrelationship ofmany different protocols, as does

TCP/IP. Knowing the interactions between TCP/IP and the other components of a

3

communications system is important for proper configuration and optimization, and

ro ensure that all the services we need are available and interworking properly .

. 11What Is an Open System?

An open system is best loosely defined as one for which the architecture is not

a secret. The description of the architecture has been published or is readily available

t0 anyone who wants to build products for a hardware or software platform. This

definition of an open system applies equally well to hardware and software.

A decade ago, open systems were virtually nonexistent. Each hardware

manufacturer had a product line, and we were practically bound to that manufacturer

for all our software and hardware needs. Some companies took advantage of the

captive market, charging outrageous prices or forcing unwanted configurations on

their customers. The groundswell of resentment grew to the point that customers

began forcing the issue. The lack of choice in software and hardware purchases is

why several dedicated minicomputer and mainframe companies either went bankrupt

or had to accept open system principles: their customers got fed up with relying on a

single vendor. A good example of a company that made the adaptation is Digital

Equipment Corporation (DEC). They moved from a proprietary operating system on

their VMS minicomputers to a UNIX-standard open operating system. By doing that,

they kept their customers happy, and they sold more machines. That's one of the

primary reasons DEC is still in business today.

UN1Xis a classic example of an open software platform. UN1Xhas been

around for 30 years. The source code for the UNIX operating system was made

available to anyone who wanted it, almost from the start. UN1X's source code is well

understood and easy to work with, the result of30 years of development and

improvement. UN1Xcan be ported to run on practically any hardware platform,

eliminating all proprietary dependencies. The attraction ofUNIX is not the operating

system's features themselves but simply that a UNIX user can run software from

other UN1Xplatforms, that files are compatible from one UN1X system to another

(except for disk formats), and that a wide variety of vendors sell products for UNIX.

The growth ofUN1X pushed the large hardware manufacturers to the open

systems principle, resulting in most manufacturers licensing the right to produce a

UNIX version for their own hardware. This step let customers combine different

4

dware systems into larger networks, all running UNIX and working together.

- ers could move between machines almost transparently, ignorant of the actual

ardware platform they were on. Open systems, originally of prime importance only

ro the largest corporations and governments, is now a key element in even the

smallest company's computer strategy.

The term open system networking means many things, depending on whom we

k. In its broadest definition, open system networking refers to a network based on a

-ell-known and understood protocol (such as TCP/IP) that has its standards

published and readily available to anyone who wants to use them. Open system

networking also refers to the process of networking open systems (machaine-specific

hardware and software) using a network protocol. It is easy to see why people want

open systems networking, though. Three services are widely used and account for the

highest percentage of network traffic: file transfer, electronic mail, and remote login.

Without open systems networking, setting up any of these three services would be a

nightmare.

File transfers enable users to share files quickly and efficiently, without excessive

duplication or concerns about the transport method. Network file transfers are much

faster than an overnight courier crossing the country, and usually faster than copying

a file on a disk and carrying it across the room. File transfer is also extremely

convenient, which not only pleases users but also eliminates time delays while

waiting for material. A common open system governing file transfers means that any

incompatibilities between the two machines transferring files can be overcome

easily.

Electronic mail has mushroomed to a phenomenally large service, not just

within a single business but worldwide. The Internet carries millions of messages

from people in government, private industry, educational institutions, and private

interests. Electronic mail is cheap (no paper, envelope, or stamp) and fast (around the

world in 60 seconds or so). It is also an obvious extension of the computer-based

world we work in. Without an open mail system, we wouldn't have anywhere near

the capabilities we now enjoy.

Finally, remote logins enable a user who is based on one system to connect

through a network to any other system that accepts him as a user. This can be in the

next workgroup, the next state, or in another country. Remote logins enable users to

5

vantage of particular hardware and software in another location, as well as to

lications on another machine. Once again, without an open standard, this

be almost impossible.

_ • ;etwork Architectures

The term network usually means a set of computers and peripherals (printers,

ems, plotters, scanners, and so on) that are connected together by some medium.

connection can be direct (through a cable) or indirect (through a modem). The

erent devices on the network communicate with each other through a predefined

~- of rules (the protocol).

The devices on a network can be in the same room or scattered through a

ilding. They can be separated by many miles through the use of dedicated

relephone lines, microwave, or a similar system. They can even be scattered around

:he world, again connected by a long-distance communications medium. The layout

of the network (the actual devices and the manner in which they are connected to

each other) is called the network topology.

Usually, if the devices on a network are in a single location such as a building

or a group of rooms, they are called a local area network, or LAN. LANs usually

have all the devices on the network connected by a single type of network cable. If

the devices are scattered widely, such as in different buildings or different cities, they

are usually set up into several LANs that are joined together into a larger structure

called a wide area network, or WAN. AWAN is composed of two or more LANs.

Each LAN has its own network cable connecting all the devices in that LAN. The

LANs are joined together by another connection method, often high-speed telephone

lines or very fast dedicated network cables called backbones.

One last point about WANs: they are often treated as a single entity for

organizational purposes. For example, the ABC Software company might have

branches in four different cities, with a LAN in each city. All four LANs are joined

together by high-speed telephone lines. However, as far as the Internet and anyone

outside the ABC Software company are concerned, the ABC Software WAN is a

single entity. (It has a single domain name for the Internet.)

6

Local Area Networks

TCP/IP works across LANs and WANs, and there are several important

~r-r" of LAN and WAN topologies we should know about. We can start with

~~ and look at their topologies. Although there are many topologies for LANs,

topologies are dominant: bus, ring, and hub.

--~.l The Bus Network

The bus network is the simplest, comprising a single main communications

aıhway with each device attached to the main cable (bus) through a device called a

sceiver or junction box. The bus is also called a backbone because it resembles a

man spine with ribs emanating from it. From each transceiver on the bus, another

cable (often very short) runs to the device's network adapter. An example of a bus

network is shown in Figure 1. 1.

The primary advantage of a bus network is that it allows for a high-speed bus.

Another advantage of the bus network is that it is usually immune to problems with

any single network card within a device on the network. This is because the

transceiver allows traffic through the backbone whether a device is attached to the

junction box or not. Each end of the bus is terminated with a block ofresistors or a

similar electrical device to mark the end of the cable electrically. Each device on the

pathway has a special identifying number, or address, that lets the device know that
incoming information is for that device.

A bus network is seldom a straight cable. Instead, it is usually twisted around

walls and buildings as needed. It does have a single pathway from one end to the

other, with each end terminated in some way (usually with a resistor). Figure 1. 1

shows a logical representation ofthe network, meaning it has simplified the actual

physical appearance of the network into a schematic with straight lines and no real

scale to the connections. A physical representation of the network would show how it

goes through walls, around desks, and so on. Most devices on the bus network can

send or receive data along the bus by packaging a message with the intended
recipient's address.

7

Connector (Transceiver)

II

I Printer Workstation

\PC Work stati on

File Server
B us Terminator

Figure 1-1: A schematic ofa bus network

••:)})' :tii.:l;i

Figure 1.1 A schematic of a bus network showing the backbone with transceivers

leading to network devices.

A variation ofthe bus network topology is found in many small LANs that use

Thin Ethernet cable (which looks like television coaxial cable) or twisted-pair cable

(which resembles telephone cables). This type of network consists of a length of

coaxial cable that snakes from machine to machine. Unlike the bus network in Figure

1.1, there are no transceivers on the bus. Instead, each device is connected into the

bus directly using a T-shaped connector on the network interface card, often using a

connector called a BNC. The connector connects the machine to the two neighbors

through two cables, one to each neighbor. At the ends of the network, a simple

resistor is added to one side ofthe T-connector to terminate the network electrically.

A schematic of this type of network is shown in Figure 1.2. Each network

device has a T-connector attached to the network interface card, leading to its two

neighbors. The two ends of the bus are terminated with resistors.

8

T-Coruı.ector

Printer
Network
Interface
Card

PC
Network
Interface
Card

PC
Network
Interface
Card

PC
Network
Interface
Card

PC
Network
Interface
Card

Figure 1.2 A schematic of a machine-to-machine bus network.

This machine-to-machine (also called peer-to-peer) network is not capable of

sustaining the higher speeds of the backbone-based bus network, primarily because

of the medium of the network cable. A backbone network can use very high-speed

cables such as fiber optics, with smaller (and slower) cables from each transceiver to

the device. A machine-to-machine network is usually built using twisted-pair or

coaxial cable because these cables are much cheaper and easier to work with. Until

recently, machine-to-machine networks were limited to a throughput of about 1 O

Mbps (megabits per second), although recent developments called lOOVG AnyLAN

and Fast Ethernet allow 100 Mbps on this type of network.

The advantage of this machine-to-machine bus network is its simplicity.

Adding new machines to the network means installing a network card and

connecting the new machine into a logical place on the backbone. One major

advantage of the machine-to-machine bus network is also its cost: it is probably the

lowest cost LAN topology available. The problem with this type of bus network is

that if one machine is taken off the network cable, or the network interface card

malfunctions, the backbone is broken and must be tied together again with a jumper

of some sort or the network might cease to function properly.

9

_ I.Z The Ring Network

A ring network topology is often drawn as its name suggests, shaped like a

g. A typical ring network schematic is shown in Figure 1.3. We might have heard

~ a token ring network before, which is a ring topology network. We might be

sappointed to find no physical ring architecture in a ring network, though.

Printer
PC

Workstation

Worksta tion

Figure 1.3 A schematic of a ring network.

The term ring is a misnomer because ring networks don't have an unending

cable like a bus network with the two terminators joined together. Instead, the ring

refers to the design ofthe central unit that handles the network's message passing. In

a token ring network, the central control unit is called a Media Access Unit, or MAU.

The MAU has a ring circuit inside it (for which the network topology is named). The

ring inside the MAU serves as the bus for devices to obtain messages.

1.2.1.3 The Hub Network

A hub network uses a main cable much like the bus network, which is called

the backplane. The hub topology is shown in Figure 1.4. From the backplane, a set of

10

cables leads to a hub, which is a box containing several ports into which devices are

plugged. The cables to a connection point are often called drops, because they drop
from the backplane to the ports.

."""-"'---..

Backplane

Figure 1.4 A schematic of a hub network.

Hub networks can be very large, using a high-speed fiber optic backplane and

slightly slower Ethernet drops to hubs from which a workgroup can be supported.

The hub network can also be small, with a couple of hubs supporting a few devices

connected together by standard Ethernet cables. The hub network is scaleable

(meaning we can start small and expand as we need to), which is part of its
attraction.

Hub networks have become popular for large installations, in part because they

are easy to set up and maintain. They also can be the least expensive system in many

larger installations, which adds to their attraction. The backplane can extend across a

considerable distance just like a bus network, whereas the ports, or connection

points, are usually grouped in a set placed in a box or panel. There can be many

panels or connection boxes attached to the backplane.

1.2.2 Wide Area Networks

LANs can be combined into a large entity called a WAN. WANs are usually

composed ofLANs joined together by a high-speed link (such as a telephone line or

dedicated cable). At the entrance to each LAN, one or more machines act as the link

11

between the LAN and WAN: these are called gateways. A gateway is the interface

between a LAN and a WAN. The same applies for any LAN that accesses the

Internet: one machine usually acts as the gateway from the LAN to the Internet

(which is really just a very large WAN). LANs can be tied to a WAN through a

gateway that handles the passage of data between the LAN and WAN backbone. In a

simple layout, a router is used to peıform this function. This is shown in Figure 1.5.

WAN BACKBONE

Figure 1.5 A router connects a LAN to the backbone.

Another gateway device, called a bridge, is used to connect LANs using the

same network protocol. Bridges are used only when the same network protocol (such

as TCP/IP) is on both LANs. The bridge does not care which physical media is used.

Bridges can connect twisted-pair LANs to coaxial LANs, for example, or act as an

interface to a fiber optic network. As long as the network protocol is the same, the

bridge functions properly. If two or more LANs are involved in one organization and

there is the possibility of a lot of traffic between them, it is better to connect the two

LANs directly with a bridge instead of loading the backbone with the cross-traffic.
This is shown in Figure 1.6.

12

,/-----....... .,........---.....-......
/_,,r.... \, /_,/...,...- .••. \ •.

(LocalArea ~· (LocalArea)\Bridge
\, N etwork) . Network

""'--- __./ \,"'-.._ _/

BACKBONE

Figure 1.6 Using a bridge to connect two LANs.

In a configuration using bridges between LANs, traffic from one LAN to

another can be sent through the bridge instead of onto the backbone, providing better

peıformance. For services such as Telnet and FTP, the speed difference between

using a bridge and going through a router onto a heavily used backbone can be

significant.

1.3 Layers

Suppose we have to write a program that provides networking functions to

every machine on our LAN. Writing a single software package that accomplishes

every task required for communications between different computers would be a

nightmarish task. Apart from having to cope with the different hardware

architectures, simply writing the code for all the applications we desire would result

in a program that was far too large to execute or maintain. Dividing all the

requirements into similar-purpose groups is a sensible approach, much as a

programmer breaks code into logical chunks. With open systems communications,

groups are quite obvious. One group deals with the transport of data, another with the

packaging of messages, another with end-user applications, and so on. Each group of
related tasks is called a layer.

Of course, some crossover of functionality is to be expected, and several

different approaches to the same division of layers for a network protocol were

proposed. One that became adopted as a standard is the Open Systems

13

Interconnection Reference Model. The OSI Reference Model (OSI-RM) uses seven

ayers, as shown in Figure 1. 7. The TCP/IP architecture is similar but involves only

five layers, because it combines some of the OSI functionality in two layers into one.

For now, though, we consider the seven-layer OSI model.

7 Appli cati on

Presentation

Session

Tran sp ort

Network

Data Link

Physical

6

5

4
?
...J

2

Figure 1. 7 The OSI Reference Model showing all seven layers.

The application, presentation, and session layers are all application-oriented in

that they are responsible for presenting the application interface to the user. All three

are independent of the layers below them and are totally oblivious to the means by

which data gets to the application. These three layers are called the upper layers. The

lower four layers deal with the transmission of data, covering the packaging, routing,

verification, and transmission of each data group. The lower layers don't worry about

the type of data they receive or send to the application, but deal simply with the task

of sending it. They don't differentiate between the different applications in any way.

1.3. 1 The Application Layer

The application layer is the end-user interface to the OSI system. It is where

the applications, such as electronic mail, USENET news readers, or database display

modules, reside. The application layer's task is to display received information and

send the user's new data to the lower layers. In distributed applications, such as

client/server systems, the application layer is where the client application resides. It

communicates through the lower layers to the server.

14

_ The Presentation Layer
The presentation layer's task is to isolate the lower layers from the application's

format. It converts the data from the application into a common format, often

ed the canonical representation. The presentation layer processes machine­

endent data from the application layer into a machine-independent format for the

'er layers.
e presentation layer is where file formats and even character formats (ASCII and

EBCDIC, for example) are lost. The conversion from the application data format

-~,,esplace through a "common network programming language" (as it is called in

ıae OSI Reference Model documents) that has a structured format.
The presentation layer does the reverse for incoming data. It is converted from

ıne common format into application-specific formats, based on the type of

pplication the machine has instructions for. If the data comes in without

reformatting instructions, the information might not be assembled in the correct

manner for the user's application.

1.3.3The Session Layer
The session layer organizes and synchronizes the exchange of data between

application processes. It works with the application·layerto provide simple data sets

called synchronizationpoints that let an application know how the transmission and

reception of data are progressing. In simplified terms, the session layer can be

thought of as a timing and flow control layer.
The session layer is involved in coordinating communications between

different applications, letting each know the status of the other. An error in one

application (whether on the same machine or across the country) is handled by the

session layer to let the receiving application know that the error has occurred. The

session layer can resynchronize applications that are currently connected to each

other. This can be necessary when communications are temporarily interrupted, or

when an error has occurred that results in loss of data.

1.3 .4 The Transport Layer
The transport layer, as its name suggests, is designed to provide the

"transparent transfer of data from a source end open system to a destination end open

15

system," according to the OSI Reference Model. The transport layer establishes,

maintains, and terminates communications between two machines.

The transport layer is responsible for ensuring that data sent matches the data

received. This verification role is important in ensuring that data is correctly sent,

with a resend if an error was detected. The transport layer manages the sending of

data, determining its order and its priority.

1.3.5 The Network Layer
The network layer provides the physical routing of the data, determining the

path between the machines. The network layer handles all these routing issues,

relieving the higher layers from this issue. The network layer examines the network

topology to determine the best route to send a message, as well as figuring out relay

systems. It is the only network layer that sends a message from source to target

machine, managing other chunks of data that pass through the system on their way to

another machine.

1. 3. 6 The Data Link Layer
The data link layer, according to the OSI reference paper, "provides for the

control of the physical layer, and detects and possibly corrects errors that can occur."

In practicality, the data link layer is responsible for correcting transmission errors

induced during transmission (as opposed to errors in the application data itself, which

are handled in the transport layer).
The data link layer is usually concerned with signal interference on the

physical transmission media, whether through copper wire, fiber optic cable, or

microwave. Interference is common, resulting from many sources, including cosmic

rays and stray magnetic interference from other sources.

1.3.7 The Physical Layer
The physical layer is the lowest layer of the OSI model and deals with the

"mechanical, electrical, functional, and procedural means" required for transmission

of data, according to the OSI definition. This is really the wiring or other

transmission form. When the OSI model was being developed, a lot of concern dealt

with the lower two layers, because they are, in most cases, inseparable. The real

world treats the data link layer and the physical layer as one combined layer, but the

16

formal OSI definition stipulates different purposes for each. (TCP/IP includes the

data link and physical layers as one layer, recognizing that the division is more

academic than practical.)

1.4 Terminology and Notations
Both OSI and TCP/IP are rooted in formal descriptions, presented as a series of

complex documents that define all aspects ofthe protocols. To define OSI and

TCP/IP, several new terms were developed and introduced into use; some (mostly

OSI terms) are rather unusual. We might find the term OSI-speak used to refer to

some of these rather grotesque definitions, much as legalese refers to legal terms. To

better understand the details of TCP/IP, it is necessary to deal with these terms now.

Therefore, all the major terms are covered here.

1.4.1Packets
To transfer data effectively, many experiments have shown that creating a

uniform chunk of data is better than sending characters singly or in widely varying

sized groups. Usually these chunks of data have some information ahead of them (the

header) and sometimes an indicator at the end (the trailer). These chunks of data are

calledpackets in most synchronous communications systems.

The amount of data in a packet and the composition of the header can change

depending on the communications protocol as well as some system limitations, but

the concept of a packet always refers to the entire set (including header and trailer).

The term packet is used often in the computer industry, sometimes when it shouldn't

be.

1.4.2 Subsystems
A subsystem is the collective of a particular layer across a network. For

example, if 10 machines are connected together, each running the seven-layer OSI

model, all 10 application layers are the application subsystem, all 10 data link layers

are the data link subsystem, and so on. With the OSI Reference Model there are

seven subsystems. It is entirely possible that all the individual components in a

subsystem will not be active at one time. Using the IO-machineexample again, only

three might have the data link layer actually active at any moment in time, but the

cumulative of all the machines makes up the subsystem.

17

tities
_.\ layer can have more than one part to it. For example, the transport layer can

,. routines that verify checksums as well as routines that handle resending packets

didn't transfer correctly. Not all these routines are active at once, because they

_ -. not be required at any moment. The active routines, though, are called entities.

- _, Notation
The notations N, N+1, N+2, and so on are used to identify a layer and the

ers that are related to it. Referring to Figure 1.7, if the transport layer is layer N,

physical layer is N-3 and the presentation layer is N+2. With OSI, N always has

ue of 1 through 7 inclusive. One reason this notation was adopted was to enable

ers to refer to other layers without having to write out their names every time. It

~O makes flow charts and diagrams of interactions a little easier to draw. The terms

1 and N-1 are commonly used in both OSI and TCP for the layers above and

low the current layer, respectively.

. 5 N-Functions
Each layer performs N-functions. The functions are the different things the

yer does. Therefore, the functions of the transport layer are the different tasks that

the layer provides. For most purposes, functions and entities mean the same thing.

_ _4_6 N-Facilities
This uses the hierarchical layer structure to express the idea that one layer

provides a set of facilities to the next higher layer. This is sensible, because the

application layer expects the presentation layer to provide a robust, well-defined set

of facilities to it. In OSI-speak, the (N+1)-entities assume a defined set ofN-facilities

from the N-entity.

1.4.7 Services
The entire set ofN-facilities provided to the (N+1)-entities is called the N-

service. In other words, the service is the entire set ofN-functions provided to the

next higher layer. Services might seem like functions, but there is a formal difference

between the two. The OSI documents go to great lengths to provide detailed

descriptions of services, with a "service definition standard" for each layer. This was

necessary during the development of the OSI standard so that the different tasks

18

lved in the communications protocol could be assigned to different layers, and so

- the functions of each layer are both well-defined and isolated from other layers.

The service definitions are formally developed from the bottom layer

ysical) upward to the top layer. The advantage of this approach is that the design

the N+ 1 layer can be based on the functions performed in the N layer, avoiding

functions that accomplish the same task in two adjacent layers. An entire set of

· ations on the service name has been developed to apply these definitions, some

f which are in regular use:
ı"l-serviceuser is a user of a service provided by the N layer to the next higher

--ı) layer.

-service provider is the set ofN-entities that are involved in providing the N

ayer servıce.
An N-service access point (often abbreviated to N-SAP) is where an N-service is

rovided to an (N+1)-entity by the N-service provider .

. ~-servicedata is the packet of data exchanged at an N-SAP.

_;-service data units (N-SDUs) are the individual units of data exchanged at an N­

-.c\P (so that N-service data is made up ofN-SDUs).

These terms are shown in Figure 1.8. Another common term is encapsulation, which

· the addition of control information to a packet of data. The control data contains

addressing details, checksums for error detection, and protocol control functions.

19

Layer l'-l+ 1

~- '\"ı
(_ N-service user _));

••

"""'"'I""'._ . - cc·esspoint..-...,__ N -servıce <i · · · •

LayerN 1

N-service provider

Figure 1.8 Service providers and service users communicate through service access

points.

. 8 Making Sense of the Jargon
It is important to remember that all these terms are used in a formal

escription, because a formal language is usually the only method to adequately

describe something as complex as a communications protocol. It is possible, though,

to fit these terms together so that they make a little more sense when we encounter

them. An example should help. The session layer has a set of session functions. It

provides a set of session facilities to the layer above it, the presentation layer. The

session layer is made up of session entities. The presentation layer is a user of the

services provided by the session layer (layer 5). A presentation entity is a user of the

services provided by the session layer and is called a presentation service user.

The session service provider is the collection of session entities that are

actively involved in providing the presentation layer with the session's services. The

point at which the session service is provided to the presentation layer is the session

service access point, where the session service data is sent. The individual bits of

data in the session service data are called session service data units.

20

es and Connections
Communication between two parties (whether over a telephone, between layers

chitecture, or between applications themselves) takes place in three distinct

·- establishment of the connection, data transfer, and connection termination.

l',ımr=unication between two OSI applications in the same layer is through queues to

yer beneath them. Each application (more properly called a service user) has

eues, one for each direction to the service provider of the layer beneath (which

ols the whole layer). In OSI-speak, the two queues provide for simultaneous (or

ic) interactions between two N-service action points.
Data, called service primitives, is put into and retrieved from the queue by the

· ations (service users). A service primitive can be a block of data, an indicator

· something is required or received, or a status indicator. As with most aspects of

,-T a lexicon has been developed to describe the actions in these queues:

A request primitive is when one service submits a service primitive to the

eue (through the N-SAP) requesting permission to communicate with another

ice in the same layer.
An indication primitive is what the service provider in the layer beneath the

sending application sends to the intended receiving application to let it know that

communicationis desired.
A response primitive is sent by the receiving application to the layer beneath's

serviceprovider to acknowledge the granting of communications between the two

servıceusers.
A confirmation primitive is sent from the service provider to the final

application to indicate that both applications on the layer above can now

communicate.
An example might help clarify the process. Assume that two applications in the

presentation layer want to communicate with each other. They can't do so directly

(according to the OSI model), so they must go through the layer below them. These

steps are shown in Figure 1.9.

21

Application 2
(N-se rvice user)

:..ayerN+ 1

Application 1
(N-service user) l -~~

2 l I
Indica tion / /

SAP 2SAP I

/ ı 3f J Response

4
C onfirm atio n

LayerN

)"--------~·
N-service provider

Figure 1.9 Two applications communicate through SAPs using primitives.

The first application sends a request primitive to the service provider of the

__ ssion layer and waits. The session layer's service provider removes the request

· mitive from the inbound queue from the first application and sends an indication

rimitive to the second application's inbound queue.

The second application takes the indication primitive from its queue to the

session service provider and decides to accept the request for connection by sending

a positive response primitive back through its queue to the session layer. This is

received by the session layer service provider, and a confirmation primitive is sent to

the first application in the presentation layer. This is a process called confirmed

service because the applications wait for confirmation that communications are

established and ready.

OSI also provides for unconfirmed service, in which a request primitive is sent to the

service provider, sending the indication primitive to the second application. The

response and confirmation primitives are not sent. This is a sort of "get ready,

because here it comes whether you want it or not" communication, often referred to

as send and pray.

When two service users are using confirmed service to communicate, they are

considered connected. Two applications are talking to each other, aware of what the

22

5 doing with the service data. OSI refers to the establishment and maintenance

information between the two, or the fact that each knows when the other is

=> or receiving. OSI calls this connection-oriented or connection-mode

~Jıi!ctionless communication is when service data is sent independently, as with

lw,:;:;ı,fumed service. The service data is self-contained, possessing everything a

ing service user needs to know. These service data packets are often called

:'.!' ams. The application that sends the datagram has no idea who receives the

_ am and how it is handled, and the receiving service users have no idea who

rt (other than information that might be contained within the datagram itself).

alls this connectionless-mode.
OSI (and TCP/IP) use both connected and connectionless systems between

ers of their architecture. Each has its benefits and ideal implementations. All these

unications are between applications (service users) in each layer, using the

r beneath to communicate. There are many service users, and this process is

_ ıng on all the time.

- Standards

Standards prevent a situation arising where two seemingly compatible systems

eally are not. For example, 10 years ago when CP/M was the dominant operating

system, the 5.25-inch floppy was used by most systems. But the floppy from a

- ypro II couldn't be read by an Osbourne I because the tracks were laid out in a

ifferent manner. A utility program could convert between the two, but that extra

step was a major annoyance for machine users. When the IBM PC became the

latform of choice, the 5 .25-inch format used by the IBM PC was adopted by other

ompanies to ensure disk compatibility. The IBM format became a de facto standard,

one adopted because of market pressures and customer demand.

ı.5.1 Setting Standards
Creating a standard in today's world is not a simple matter. Several

organizations are dedicated to developing the standards in a complete, unambiguous

manner. The most important of these is the International Organization for

23

~SR:t.1ardization, or ISO (often called the International Standardization). The ISO

ped the Open Systems Interconnection (OSI) standard.

The goal ofISO is to agree on worldwide standards. Otherwise,

patibilities could exist that wouldn't allow one country's system to be used in

er. (An example of this is with television signals: the US relies on NTSC,

eas Europe uses PAL-systems that are incompatible with each other.) To help

- ea standard, an abstract approach is usually used. In the case of OSI, the

ing (called the semantics) of the data transferred (the abstract syntax) is first

t with, and the exact representation of the data in the machine (the concrete

ax) and the means by which it is transferred (transfer syntax) are handled

arately. The separation of the abstract lets the data be represented as an entity,

thout concern for what it really means. To describe systems abstractly, it is

essary to have a language that meets the purpose. Most standards bodies have

eveloped such a system. The most commonly used is ISO's Abstract Syntax

-otationOne, frequently shortened to ASN.l. It is suited especially for describing

en systems networking. Thus, it's not surprising to find it used extensively in the

I and TCP descriptions. Indeed, ASN.l was developed concurrently with the OSI

standards when it became necessary to describe upper-layer functions.

The primary concept ofASN. l is that all types of data, regardless of type, size,

rigin, or purpose, can be represented by an object that is independent of the

rdware, operating system software, or.application. The ASN.l system defines the

contents of a datagram protocol header-the chunk of information at the beginning

of an object that describes the contents to the system.

Part ofASN.l describes the language used to describe objects and data types

such as a data description language in database terminology). Another part defines

the basic encoding rules that deal with moving the data objects between systems.

ASN.1 defines data types that are used in the construction of data packets

(datagrams). It provides for both structured and unstructured data types, with a list of

28 supported types.

1.5.2 Internet Standards
When the Defense Advanced Research Projects Agency (DARPA) was

established in 1980, a group was formed to develop a set of standards for the

Internet. The group, called the Internet Configuration Control Board (ICCB) was

24

ı :ı ıaized into the Internet Activities Board (IAB) in 1983, whose task was to

: :ıç; engineer, and manage the Internet. In 1986,the IAB turned over the task of

~ning the Internet standards to the Internet Engineering Task Force (IETF), and

g-term research was assigned to the Internet Research Task Force (IRTF). The

retained final authorization over anything proposed by the two task forces.

The last step in this saga was the formation of the Internet Society in 1992,

... the IAB was renamed the Internet Architecture Board. This group is still

nsible for existing and future standards, reporting to the board of the Internet

cry. After all that, what happened during the shuffling? Almost from the

~nning, the Internet was defined as "a loosely organized international

boration of autonomous, interconnected networks," which supported host-to­

-- communications "through voluntary adherence to open protocols and

edures" defined in a technical paper called the Internet Standards, RFC 1310,2.

t definition is still used today.
The IETF continues to work on refining the standards used for communications

er the Internet through a number of working groups, each one dedicated to a

soecificaspect of the overall Internet protocol suite. There are working groups

edicated to network management, security, user services, routing, and many more

ıaings. It is interesting that the IETF's groups are considerably more flexible and

efficient than those of, say, the ISO, whose working groups can take years to agree

on a standard. In many cases, the IETF's groups can form, create a recommendation,

and disband within a year or so. This helps continuously refine the Internet standards

o reflect changing hardware and software capabilities.

Creating a new Internet standard (which happened with TCP/IP) follows a

well-defined process, shown schematically in Figure 1. I O. It begins with a request

for comment (RFC). This is usually a document containing a specific proposal,

sometimes new and sometimes a modification of an existing standard. RFCs are

widely distributed, both on the network itself and to interested parties as printed

documents. Important RFCs and instructions for retrieving them are included in the

appendixes at the end of this book.

The RFC is usually discussed for a while on the network itself, where anyone

can express their opinion, as well as in formal IETF working group meetings. After a

suitable amount of revision and continued discussion, an Internet draft is created and

25

lıııiıced. This draft is close to final form, providing a consolidation of all the

_.:filS the RFC generated. The next step is usually aproposed standard, which

~ as such for at least six months. During this time, the Internet Society

- at least two independent and interoperable implementations to be written

ed. Any problems arising from the actual tests can then be addressed. (In

e, it is usual for many implementations to be written and given a thorough

After that testing and refinement process is completed, a draft standard is

••n which remains for at least four months, during which time many more

iiıı!.•lcmentationsare developed and tested. The last step-after many months-is the

ion ofthe standard, at which point it is implemented by all sites that require it.

C RFC)
l

Internet Draft) ..
--
Refinements

i
At least ('\

Proposed ı....ı
two implementations Standard

Refinements

Widely C Draft ı .••
implemented Standard

...,...,·

I Refinements

(Official
Standard

Figure 1.10 The process for adopting a new Internet standard.

1.6 Protocols
Computer protocols define the manner in which communications take place. If

one computer is sending information to another and they both follow the protocol

properly, the message gets through, regardless ofwhat types of machines they are

and what operating systems they run (the basis for open systems). As long as the

26

nes have software that can manage the protocol, communications are possible.

· ally, a computer protocol is a set of rules that coordinates the exchange of

Protocols have developed from very simple processes to elaborate, complex

nisms that cover all possible problems and transfer conditions. A task such as

·ng a message from one coast to another can be very complex when we consider

anner in which it moves. A single protocol to cover all aspects of the transfer

d be too large, unwieldy, and overly specialized. Therefore, several protocols

been developed, each handling a specific task. Combining several protocols,

with their own dedicated purposes, would be a nightmare if the interactions

-eerı the protocols were not clearly defined. The concept of a layered structure

- developed to help keep each protocol in its place and to define the manner of

eraction between each protocol (essentially, a protocol for communications

erween protocols!).

The ISO has developed a layered protocol system called OSI. OSI defines a

rotocol as "a set of rules and formats (semantic and syntactic), which determines the

mmunication behavior ofN-entities in the performance ofN-functions. N

represents a layer, and an entity is a service component of a layer. When machines

communicate, the rules are formally defined and account for possible interruptions or

faults in the flow of information, especially when the flow is connectionless (no

ormal connection between the two machines exists). In such a system, the ability to

roperly route and verify each packet of data (datagram) is vitally important. As

iscussed earlier, the data sent between layers is called a service data unit (SDU), so

OSI defines the analogous data between two machines as a protocol data unit (PDU).

The flow of information is controlled by a set of actions that define the state machine

for the protocol. OSI defines these actions as protocol control information (PCI).

. 6.1 Breaking Data Apart
It is necessary to introduce a few more terms commonly used in OSI and

TCP/IP, but luckily they are readily understood because of their real-world

connotations. These terms are necessary because data doesn't usually exist in

manageable chunks. The data might have to be broken down into smaller sections, or

several small sections can be combined into a large section for more efficient

transfer. The basic terms are as follows:

27

~.;mtation is the process of breaking an N-service data unit (N-SDU) into several

._-r--.rocoldata units (N-PDUs).
Reassembly is the process of combining several N-PDUs into an N-SDU (the

se of segmentation).
Blocking is the combination of several SDUs (which might be from different

ces) into a larger PDU within the layer in which the SDUs originated.

Unblocking is the breaking up of a PDU into several SDUs in the same layer.

Concatenation is the process of one layer combining several N-PDUs from the

higher layer into one SDU (like blocking except occurring across a layer

dary).
Separation is the reverse of concatenation, so that a layer breaks a single SDU

several PDUs for the next layer higher (like unblocking except across a layer

xındary).

ese six processes are shown in Figure I. I I.

I N-SDU I/8~ \. .•""
~· "lu-~u, N-mu IN~PDul IN-:Oui

Reassembly

/- I
lıı-:uı ı H-Pnul l}~U,

Segmentation

lıH~JI Jıı-~ui IH-PD~I H-PDU,_ \ I ;:>- \ I
(N-1)-SDU

Cone ate na ti.o rıSeparation

I··;)~ I·;~
~ \ / C

N-PDU I
UnblockingBlocking

Figure 1.11 Segmentation, reassembly, blocking, unblocking, concatenation, and

separation.

Finally, here is one last set of definitions that deal with connections:

28

~~ering is when several connections are supported by a single connection in the

·er layer (so three presentation service connections could be multiplexed into

_ e session connection).

emultiplexing is the reverse of multiplexing, in which one connection is split

__ reral connections for the layer above it.

Splitting is when a single connection is supported by several connections in the

· elow (so the data link layer might have three connections to support one

rk layer connection).

Recombining is the reverse of splitting, so that several connections are

ined into a single one for the layer above.

iplexing and splitting (and their reverses, demultiplexing and recombining) are

erent in the manner in which the lines are split. With multiplexing, several

ections combine into one in the layer below. With splitting, however, one

ection can be split into several in the layer below Each has its importance
. TCP and OSI. 'ı

~ Protocol Headers

Protocol control information is information about the datagram to which it is

-ached. This information is usually assembled into a block that is attached to the

---nt of the data it accompanies and is called a header orprotocol header. Protocol

eadersare used for transferring information between layers as well as between

achines. The protocol headers are developed according to rules laid down in the

SO'sASN.1 document set. When a protocol header is passed to the layer beneath,

.•..e datagram including the layer's header is treated as the entire datagram for that

receiving layer, which adds its own protocol header to the front. Thus, if a datagram

started at the application layer, by the time it reached the physical layer, it would

ave seven sets of protocol headers on it. These layer protocol headers are used when

moving back up the layer structure; they are stripped off as the datagram moves up.

An illustration of this is shown in Figure 1. 12.

It is easier to think of this process as layers on an onion. The inside is the data

that is to be sent. As it passes through each layer of the OSI model, another layer of

onion skin is added. When it is finished moving through the layers, several protocol

headers are enclosing the data. When the datagram is passed back up the layers

29

J on another machine), each layer peels off the protocol header that

-.,.._ ..•nds to the layer.

App PC! l User elata
',
\

Pres PC!

Session PC! Presentation layer da ta

TıaıısPCI Sessionlayer data
'\,

\
Network PCI Transport layer data

\._
j Data Lirık PC! J

Ne twork layıı r data

::.,rical PC! Data Linklayerdata

Figure 1.12 Adding each layer's protocol header to user data.

When it reaches the destination layer, only the data is left. This process makes

e, because each layer of the OSI model requires different information from the

tagram, By using a dedicated protocol header for each layer of the datagram, it is a

relatively simple task to remove the protocol header, decode its instructions, and pass

· •.. e rest of the message on. The alternative would be to have a single large header that

contained all the information, but this would take longer to process.

As usual, OSI has a formal description for all this, which states that the N-user

ata to be transferred is prepended with N-protocol control information (N-PCI) to

orman N-protocol data unit (N-PDU). The N-PDUs are passed across an N-service

access point (N-SAP) as one of a set of service parameters comprising an N-service

data unit (N-SDU). The service parameters comprising the N-SDU are called N­

service user data (N-SUD), which is prepended to the (N-l)PCI to form another (N-

1)PDU. For every service in a layer, there is a protocol for it to communicate to the

30

yer below it (remember that applications communicate through the layer below, not

iirectly). The protocol exchanges for each service are defined by the system, and to a

esser extent by the application developer, who should be following the rules of the

~ vstem Protocols and headers might sound a little complex or overly complicated for

tne task that must be accomplished, but considering the original goals of the OSI

odel, it is generally acknowledged that this is the best way to go.

31

CHAPTER TWO

TCP AND UDP

pter we look at the transport layer, where the Transmission Control

TCP) and User Datagram Protocol (UDP) come into play. TCP is one of

widely used transport layer protocols, expanding from its original

entation on the ARPANET to connecting commercial sites all over the world.

er one, "Open Systems, Standards, and Protocols," we looked at the OSI

ı-ıayermodel, which bears a striking resemblance to TCP/IP's layered model, so

surprising that many of the features of the OSI transport layer were based on

In theory, a transport layer protocol could be a very simple software routine,

CP cannot be called simple. Why use a transport layer that is as complex as

The most important reason depends on IP's unreliability. IP does not guarantee

ery of a datagram; it is a connectionless system with no reliability. IP simply

es the routing of datagrams, and if problems occur, IP discards the packet

out a second thought (generating an ICMP error message back to the sender in

rocess). The task of ascertaining the status of the datagrams sent over a network

handling the resending of information ifparts have been discarded falls to TCP,

· h can be thought of as riding shotgun over IP. Most users think of TCP and IP as

rightlyknit pair, but TCP can be (and frequently is) used with other protocols

rhout IP. For example, TCP or parts of it are used in the File Transfer Protocol

FTP) and the Simple Mail Transfer Protocol (SMTP), both ofwhich do not use IP.

_ .ı What Is TCP?

The Transmission Control Protocol provides a considerable number of services

to the IP layer and the upper layers. Most importantly, it provides a connection­

oriented protocol to the upper layers that enable an application to be sure that a

datagram sent out over the network was received in its entirety. In this role, TCP acts

a message-validation protocol providing reliable communications. If a datagram is

corrupted or lost, TCP usually handles the retransmission, rather than the

applications in the higher layers. TCP manages the flow of datagrams from the

32

gher layers to the IP layer, as well as incoming datagrams from the IP layer up to

higher level protocols. TCP has to ensure that priorities and security are properly

spected. TCP must be capable of handling the termination of an application above

hat was expecting incoming datagrams, as well as failures in the lower layers.

CP also must maintain a state table of all data streams in and out of the TCP layer.

e isolation of all these services in a separate layer enables applications to be

signed without regard to flow control or message reliability. Without the TCP

yer, each application would have to implement the services themselves, which is a

ste of resources.

TCP resides in the transport layer, positioned above IP but below the upper

yers and their applications, as shown in Figure 2. 1. TCP resides only on devices

tnat actually process datagrams, ensuring that the datagram has gone from the source

the target machine. It does not reside on a device that simply routes datagrams, so

ınere is usually no TCP layer in a gateway. This makes sense, because on a gateway

.ne datagram has no need to go higher in the layered model than the IP layer.

S ending Machine Receiving Mac hine

TCP: End-to-End Communic ations

Application
Presentation

Session

TCP

IP

Data Link

Physical

Appliı;atiorı

Pre serıtatio n

Session

TCP

IP

Data Link

Physical

Gateway Gateway

IP IP

Data Link
""

Data Link
Physical Physical I

>._ ,/
/"- .

(Subnetwork)
\... .

\ /1(

Figure 2.1 TCP provides end-to-end communications.

33

ecause TCP is a connection-oriented protocol responsible for ensuring the

iııııie of a datagram from the source to destination machine (end-to-end

.-,c:.ınications), TCP must receive communications messages from the destination

• nıne to acknowledge receipt of the datagram. The term virtual circuit is usually

refer to the communications between the two end machines, most of which

pie acknowledgment messages (either confirmation of receipt or a failure

and datagram sequence numbers.

llowing a Message
To illustrate the role of TCP, it is instructive to follow a sample message

een two machines. The processes are simplified at this stage, to be expanded

The message originates from an application in an upper layer and is passed to

from the next higher layer in the architecture through some protocol (often

ed to as an upper-layer protocol, or ULP, to indicate that it resides above TCP).

message is passed as a stream-a sequence of individual characters sent

chronously. This is in contrast to most protocols, which use fixed blocks of data.

- can pose some conversion problems with applications that handle only formally

structed blocks of data or insist on fixed-size messages. TCP receives the stream

ytes and assembles them into TCP segments, or packets. In the process of

ssembling the segment, header information is attached at the front of the data. Each

segment has a checksum calculated and embedded within the header, as well as a

__ouence number if there is more than one segment in the entire message. The length

f the segment is usually determined by TCP or by a system value set by the system

ministrator. (The length of TCP segments has nothing to do with the IP datagram

ength, although there is sometimes a relationship between the two.)

If two-way communications are required (such as with Telnet or FTP), a

connection (virtual circuit) between the sending and receiving machines is

established prior to passing the segment to IP for routing. This process starts with the

ending TCP software issuing a request for a TCP connection with the receiving

machine. In the message is a unique number (called a socket number) that identifies

the sending machine's connection. The receiving TCP software assigns its own

unique socket number and sends it back to the original machine. The two unique

34

s then define the connection between the two machines until the virtual

is terminated.

After the virtual circuit is established, TCP sends the segment to the IP

e, which then issues the message over the network as a datagram. IP can

~rm any of the changes to the segment, such as fragmenting it and reassembling

..... e destination machine. These steps are completely transparent to the TCP

, however. After winding its way over the network, the receiving machine's IP

s the received segment up to the recipient machine's TCP layer, where it is

ssed and passed up to the applications above it using an upper-layer protocol.

message was more than one TCP segment long (not IP datagrams), the

zrving TCP software reassembles the message using the sequence numbers

ined in each segment's header. If a segment is missing or corrupt (which can be

ermined from the checksum), TCP returns a message with the faulty sequence

berin the body. The originating TCP software can then resend the bad segment.

If only one segment is used for the entire message, after comparing the

_ ent's checksum with a newly calculated value, the receiving TCP software can

_ erate either a positive acknowledgment (ACK) or a request to resend the segment

route the request back to the sending layer. The receiving machine's TCP

plementation can perform a simple flow control to prevent buffer overload. It does

· by sending a buffer size called a window value to the sending machine,

llowing which the sender can send only enough bytes to fill the window. After that,

e sender must wait for another window value to be received. This provides a

dshaking protocol between the two machines, although it slows down the

transmission time and slightly increases network traffic. As with most connection-

ased protocols, timers are an important aspect of TCP. The use of a timer ensures

that an undue wait is not involved while waiting for an ACK or an error message. If

the timers expire, an incomplete transmission is assumed. Usually an expiring timer

· efore the sending of an acknowledgment message causes a retransmission of the

datagram from the originating machine.

Timers can cause some problems with TCP. The specifications for TCP

provide for the acknowledgment of only the highest datagram number that has been

received without error, but this cannot properly handle fragmentary reception. If a

message is composed of several datagrams that arrive out of order, the specification

35

that TCP cannot acknowledge the reception of the message until all the

shave been received. So even if all but one datagram in the middle of the

ce have been successfully received, a timer might expire and cause all the

~ms to be resent. With large messages, this can cause an increase in network

If the receiving TCP software receives duplicate datagrams (as can occur with

ransmissiorı after a timeout or due to a duplicate transmission from IP), the

.ing version of TCP discards any duplicate datagrams, without bothering with

or message. After all, the sending system cares only that the message was

eıved-cnot how many copies were received. TCP does not have a negative

owledgment (NAK) function; it relies on a timer to indicate lack of

owledgment. If the timer has expired after sending the datagram without

eiving an acknowledgment of receipt, the datagram is assumed to have been lost

is retransmitted. The sending TCP software keeps copies of all unacknowledged

ıagrams in a buffer until they have been properly acknowledged. When this
pens, the retransmission timer is stopped, and the datagram is removed from the

er. TCP supports a push function from the upper-layer protocols. A push is used

en an application wants to send data immediately and confirm that a message

ssed to TCP has been successfully transmitted. To do this, a push flag is set in the

lP connection, instructing TCP to forward any buffered information from the

plication to the destination as soon as possible (as opposed to holding it in the

uffer until it is ready to transmit it).

_ 3 Ports and Sockets
All upper-layer applications that use TCP (or UDP) have a port number that

identifies the application. In theory, port numbers can be assigned on individual

machines, or however the administrator desires, but some conventions have been

adopted to enable better communications between TCP implementations. This

enables the port number to identify the type of service that one TCP system is

requesting from another. Port numbers can be changed, although this can cause

difficulties. Most systems maintain a file of port numbers and their corresponding

servıce.

36

Typically, port numbers above 255 are reserved for private use of the local

ıne, but numbers below 255 are used for frequently used processes. A list of

ntly used port numbers is published by the Internet Assigned Numbers

rity and is available through an RFC or from many sites that offer Internet

ary files for downloading. The commonly used port numbers on this list are

.11 in Table 2.1. The numbers O and 255 are reserved.

Table 2.1. Frequently used TCP port numbers.

,I Port Number II Process Name II Description I
:ı 1 II TCPMUX II TCP Port Service Multiplexer I
:I 5 II RIB II Remote Job Entry I
·ı 7 II ECHO II Echo I

~
II DISCARD J Discard I

J ıı II USERS Active Users
I

113 II DAYTIME Daytime
I

J 17 II Quote Quotation of the Day
I

I
19 CHARGEN Character generator

I
I 20 FTP-DATA II File Transfer Protocol-Data I

21 FTP II File Transfer Protocol-Control

23 TELNET j Telnet I
25 SMTP II Simple Mail Transfer Protocol

27 NSW-FE NSW User System Front End

29 MSG-ICP MSG-ICP

31 II MSG-AUTH MSG Authentication

33 II DSP Display Support Protocol

35
II

Private Print Servers

37

38

TIME Time

RLP Resource Location Protocol

GRAPHICS Graphics I
NAMESERV Host Name Server I
NICNAME Who Is I
LOGIN Login Host Protocol I
DOMAIN Domain Name Server)I

BOOTPS Bootstrap Protocol Server I
BOOTPC Bootstrap Protocol Client I
TFTP Trivial File Transfer Protocol

FINGER

101 HOSTNAME NIC Host Name Server

102 ISO-TSAP ISO TSAP

103 X400 X.400

104 X400SND X.400 SND

105 I[CSNET-NS I
CSNET Mailbox Name Server

109 II POP2 il Post Office Protocol v2

110 II POP3 j[Post Office Protocol v3

111 II RPC il SunRPC Portmap

137]I NETBIOS-NS ıı NETBIOS Name Service

138]j NETBIOS-DG II NETBIOS Datagram Service

139 II NETBIOS-SS ıı NETBIOS Session Service

146 II ISO-TPO II ISO TPO

147]I ISO-IP I[ISO IP

! 150 II SQL-NET SQLNET I
153 SGMP SGMP

156 SQLSRV SQL Service

160 SGMP-TRAPS SGMP TRAPS

161 I
SNMP I

SNMP

162 II SNMPTRAP II SNMPTRAP I
'

ıl 163 II CMIP-MANAGE II CMIP/TCP Manager I,,
II CMIP-AGENT II CMIP/TCP Agent I:. 164

il

I 165 II XNS-Courier II Xerox I
I 179 II BGP II Border Gateway Protocol I

Each communication circuit into and out of the TCP layer is uniquely

ntifıed by a combination of two numbers, which together are called a socket. The

"ket is composed of the IP address of the machine and the port number used by the

P software. Both the sending and receiving machines have sockets. Because the

address is unique across the internetwork, and the port numbers are unique to the

adividual machine, the socket numbers are also unique across the entire

nternetwork. This enables a process to talk to another process across the network,

ased entirely on the socket number. The last section examined the process of

establishing a message. During the process, the sending TCP requests a connection

"ith the receiving TCP, using the unique socket numbers. This process is shown in

Figure 2.2. If the sending TCP wants to establish a Telnet session from its port

number 350, the socket number would be composed of the source machine's IP

address and the port number (350), and the message would have a destination port

number of 23 (Telnet's port number). The receiving TCP has a source port of 23

Telnet) and a destination port of 350 (the sending machine's port).

39

''

Request for Connection including Source Socket Number

Aclmowledge:ment with Receiving Socket Number

' ,,
Seru:lingTCP Receiving TCP

Figure 2.2 Setting up a virtual circuit with socket numbers.

The sending and receiving machines maintain a port table, which lists all active

rt numbers. The two machines involved have reversed entries for each session

een the two. This is called binding and is shown in Figure 2.3. The source and

srinationnumbers are simply reversed for each connection in the port table. Of

se, the 1P addresses, and hence the socket numbers, are different.

Source=B Destination= 350;:mce=350 Destination= 23
; :mce=351 Destination= 23 Soıırce=23Destination= 351

Soıırce=23Destination= 400Souıce=400 Destination= 23

II/Ii'ı. CHINE A Iı."1.(1,CHINE B II/Lil.CHINEC

t t tt tj

Figure 2.3 Binding entries in port tables.

If the sending machine is requesting more than one connection, the source port

numbers are different, even though the destination port numbers might be the same.

For example, if the sending machine were trying to establish three Telnet sessions

simultaneously, the source machine port numbers might be 350, 351, and 352, and

.iestinatiorı port numbers would all be 23. It is possible for more than one

e to share the same destination socket-a process called multiplexing. In

_ _4, three machines are establishing Telnet sessions with a destination. They

estination port 23, which is port multiplexing. Because the datagrams

_ g from the port have the full socket information (with unique IP addresses),

o confusion as to which machine a datagram is destined for.

Source Port 350 Destination Port 23

Source Port 400 Destination Port 23

Source Port 354 Destination Port 23

Port 23

Iv!ACHINE B I I Ivl.ı\CHINE C TARGET

Figure 2.4 Multiplexing one destination port.

When multiple sockets are established, it is conceivable that more than one

chine might send a connection request with the same source and destination ports.

·ever, the IP addresses for the two machines are different, so the sockets are still

uely identified despite identical source and destination port numbers.

TCP Communications with the Upper Layers
TCP must communicate with applications in the upper layer and a network

_ stern in the layer below. Several messages are defined for the upper-layer protocol

TCP communications, but there is no defined method for TCP to talk to lower

....vers (usually, but not necessarily, IP). TCP expects the layer beneath it to define

ıae communication method. It is usually assumed that TCP and the transport layer

communicate asynchronously. The TCP to upper-layer protocol (ULP)

communication method is well-defined, consisting of a set of service request

rimitives. The primitives involved in ULP to TCP communications are shown in

Table 2.2.

41

Table 2.2. ULP-TCP service primitives.

Parameters Expected

ıo TCP Service Request Primitives

Local connection name

-OPEN

-OPEN-

:LL-PASSIVE-

Local port, remote socket

Optional: ULP timeout, timeout action, precedence,
security, options

Source port, destination socket, data, data length, push flag,
urgent flag

Optional: ULP timeout, timeout action, precedence,
security

Local connection name

Local connection name, data length

Local port, destination socket

Optional: ULP timeout, timeout action, precedence,
security, options

Local connection name, buffer address, byte count, push
flag, urgent flag

Local connection name, buffer address, data length, push
flag, urgent flag

! Optional: ULP timeout, timeout action

-TATUSf I! Local connection name

Local port
:NSPECIFIED­

PASSIVE-OPEN

42

. Optional: ULP timeout, timeout action, precedence,

security, options

:o ULP Service Request Primitives

Local connection name

Local connection name, buffer address, data length, urgent

flag

Local connection name, error description

Local connection name

Local connection name, remote socket, destination address

Local connection name

Local connection name, source port, source address, remote

socket, connection state, receive window, send window,

amount waiting ACK, amount waiting receipt, urgent

mode, precedence, security, timeout, timeout action

Local connection name, description

5 Passive and Active Ports
TCP enables two methods to establish a connection: active and passive. An

ive connection establishment happens when TCP issues a request for the

nnection, based on an instruction from an upper-level protocol that provides the

cket number. A passive approach takes place when the upper-level protocol

structs TCP to wait for the arrival of connection requests from a remote system

sually from an active open instruction). When TCP receives the request, it assigns

port number. This enables a connection to proceed rapidly, without waiting for the

ctive process. There are two passive open primitives. A specified passive open

eates a connection when the precedence level and security level are acceptable. An

specified passive open opens the port to any request. The latter is used by servers

tnat are waiting for clients of an unknown type to connect to them.

43

has strict rules about the use of passive and active connection processes.

passive open is performed on one machine, while an active open is

ııım:::-ect on the other, with specific information about the socket number,

~ce (priority), and security levels. Although most TCP connections are

shed by an active request to a passive port, it is possible to open a connection

jıııiını:ur a passive port waiting. In this case, the TCP that sends a request for a

-=-rion includes both the local socket number and the remote socket number. If

ceiving TCP is configured to enable the request (based on the precedence and

_.r settings, as well as application-based criteria), the connection can be opened.

rocess is looked at again in the section titled "TCP and Connections."

TCP uses several timers to ensure that excessive delays are not encountered

g communications. Several of these timers are elegant, handling problems that

ot immediately obvious at first analysis. The timers used by TCP are examined

e following sections, which reveal their roles in ensuring that data is properly

from one connection to another.

The Retransmission Timer

The retransmission timer manages retransmission timeouts (RTOs), which

ccur when a preset interval between the sending of a datagram and the returning

acknowledgment is exceeded. The value of the timeout tends to vary, depending on

ine network type, to compensate for speed differences. If the timer expires, the

atagram is retransmitted with an adjusted RTO, which is usually increased

exponentially to a maximum preset limit. If the maximum limit is exceeded,

onnection failure is assumed, and error messages are passed back to the upper-layer

application. Values for the timeout are determined by measuring the average time

that data takes to be transmitted to another machine and the acknowledgment

received back, which is called the round-trip time, or RTT. From experiments, these

RTTs are averaged by a formula that develops an expected value, called the

smoothed round-trip time, or SRTT. This value is then increased to account for

unforeseen delays.

44

~ er a TCP connection is closed, it is possible for datagrams that are still

_ their way through the network to attempt to access the closed port The quiet

intended to prevent the just-closed port from reopening again quickly and

g these last datagrams. The quiet timer is usually set to twice the maximum

.t lifetime (the same value as the Time to Live field in an IP header), ensuring

egments still heading for the port have been discarded. Typically, this can

ın a port being unavailable for up to 30 seconds, prompting error messages

other applications attempt to access the port during this interval.

_ The Persistence Timer

The persistence timer handles a fairly rare occurrence. It is conceivable that a

·e window might have a value of O, causing the sending machine to pause

smission. The message to restart sending might be lost, causing an infinite delay.

- persistence timer waits a preset time and then sends a one-byte segment at

etermined intervals to ensure that the receiving machine is still clogged.

receiving machine resends the zero window-size message after receiving one of

-e status segments, if it is still backlogged. If the window is open, a message

_ -ing the new value is returned, and communications are resumed.

_ 6.4 The Keep-Alive Timer and the Idle Timer

Both the keep-alive timer and the idle timer were added to the TCP

specifications after their original definition. The keep-alive timer sends an empty

acket at regular intervals to ensure that the connection to the other machine is still

etive. If no response has been received after sending the message by the time the

idle timer has expired, the connection is assumed to be broken. The keep-alive timer

value is usually set by an application, with values ranging from 5 to 45 seconds. The

idle timer is usually set to 360 seconds.

2.7 Transmission Control Blocks and Flow Control
TCP has to keep track of a lot of information about each connection. It does

this through a Transmission Control Block (TCB), which contains information about

the local and remote socket numbers, the send and receive buffers, security and

45

es, and the current segment in the queue. The TCB also manages send

= sequence numbers. The TCB uses several variables to keep track of the

eive status and to control the flow of information. These variables are

Table 2.3. TCP send and receive variables.

I :ariable Name 11 Description I
(: Send Variables II 5~.UNA Send Unacknowledged I
[SND.NXT SendNext I

I SND.WND I
Send Window I

' SND.UP II
Sequence number of last urgent set Ij

SND.WLl
I

Sequence number for last window update

SND.WL2 I
Acknowledgment number for last window update

::
SND.PUSH

II
Sequence number of last pushed set

I
I ISS 11 Initial send sequence number

I
I Receive Variables I
I RCV.NXT II

Sequence number ofnext received set I
I RCV.WND 11 Number of sets that can be received

I
I RCV.UP II

Sequence number of last urgent data
I

I RCV.IRS II Initial receive sequence number I

Using these variables, TCP controls the flow of information between two

sockets. A sample connection session helps illustrate the use of the variables. It

begins with Machine A wanting to send five blocks of data to Machine B. If the

window limit is seven blocks, a maximum of seven blocks can be sent without

acknowledgment. The SND.UNA variable on Machine A indicates how many blocks

46

am sent but are unacknowledged (5), and the SND.NXT variable has the value

next block in the sequence (6). The value of the SND.WND variable is 2

blocks possible, minus five sent), so only two more blocks could be sent

t overloading the window. Machine B returns a message with the number of

- received, and the window limit is adjusted accordingly. The passage of

ges back and forth can become quite complex as the sending machine forwards

unacknowledged up to the window limit, waiting for acknowledgment of

blocks that have been removed from the incoming cue, and then sending more

- to fill the window again. The tracking of the blocks becomes a matter of

keeping, but with large window limits and traffic across internetworks that

imes cause blocks to go astray, the process is, in many ways, remarkable.

TCP Protocol Data Units

As mentioned earlier, TCP must communicate with IP in the layer below

g an IP-defined method) and applications in the upper layer (using the TCP­

primitives). TCP also must communicate with other TCP implementations

ss networks. To do this, it uses Protocol Data Units (PDUs), which are called

_ ents in TCP parlance.

layout of the TCP PDU (commonly called the header) is shown in Figure 2.5.

Source Port (16 bits) Destination Port (16 bits)

Sequence Number (32 bits)

Acknowledgement Number (32 bits)

Data
Reserved o :,:: ::r:: E-< zOffset ~ o tıı tıl >-, z Window (16 bits)

(4 bits) (6 bits) :::ı ~ p.. ~ r....-1 iı:

,. Checksum (16 bits) Urgent Pointer (16 bits)

Options and Padding

Figure 2.5 The TCP Protocol Data Unit.

47

different fields are as follows:

• Source port: A 16-bit field that identifies the local TCP user (usually an

upper-layer application program).

• Destination port: A 16-bit field that identifies the remote machine's TCP user.

• Sequence number: A number indicating the current block's position in the

overall message. This number is also used between two TCP implementations

to provide the initial send sequence (ISS) number.

• Acknowledgment number: A number that indicates the next sequence number

expected. In a backhanded manner, this also shows the sequence number of

the last data received; it shows the last sequence number received plus 1.

• Data offset: The number of 32-bit words that are in the TCP header. This

field is used to identify the start of the data field.

• Reserved: A 6-bit field reserved for future use. The six bits must be set to O.

• Urg flag: If on (a value of 1), indicates that the urgent pointer field is

significant.

• Ack flag: If on, indicates that the Acknowledgment field is significant.

• Psh flag: If on, indicates that the push function is to be performed.

• Rst flag: If on, indicates that the connection is to be reset.

• Syn flag: If on, indicates that the sequence numbers are to be synchronized.

This flag is used when a connection is being established.

Fin flag: If on, indicates that the sender has no more data to send. This is the

equivalent of an end-of-transmission marker.

Window: A number indicating how many blocks of data the receiving

machine can accept.

Checksum: Calculated by taking the 16-bit one's complement of the one's

complement sum of the 16-bit words in the header (including pseudo-header)

and text together. (A rather lengthy process required to fit the checksum

properly into the header.)

Urgent pointer: Used if the urg flag was set; it indicates the portion of the

data message that is urgent by specifying the offset from the sequence

number in the header. No specific action is taken by TCP with respect to

urgent data; the action is determined by the application.

.,

48

Options: Similar to the IP header option field, .this is used for specifying TCP

options. Each option consists of an option number (one byte), the number of

bytes in the option, and the option values. Only three options are currently

defined for TCP:

O End of option list

I No operation

2 Maximum segment size

• Padding: Filled to ensure that the header is a 32-bit multiple.

wing the PDU or header is the data. The Options field has one useful function:

ecify the maximum buffer size a receiving TCP implementation can

ommodate. Because TCP uses variable-length data areas, it is possible for a

ing machine to create a segment that is longer than the receiving software can

le. The Checksum field calculates the checksum based on the entire segment

c, including a 96-bit pseudoheader that is prefixed to the TCP header during the

ulation. The pseudoheader contains the source address, destination address,

otocol identifier, and segment length. These are the parameters that are passed to

when a send instruction is passed, and also the ones read by IP when delivery is
rrempted.

__ 9 TCP and Connections

TCP has many rules imposed on how it communicates. These rules and the

ocesses that TCP follows to establish a connection, transfer data, and terminate a

orınection are usually presented in state diagrams. (Because TCP is a state-driven

rotocol, its actions depend on the state of a flag or similar construct.) Avoiding

overly complex state diagrams is difficult, so flow diagrams can be used as a useful
method for understanding TCP.

~.9.I Establishing a Connection

A connection can be established between two machines only if a connection

between the two sockets does not exist, both machines agree to the connection, and

49

chines have adequate TCP resources to service the connection. If any of

conditions are not met, the connection cannot be made. The acceptance of

ctions can be triggered by an application or a system administration routine.

When a connection is established, it is given certain properties that are valid

e connection is closed. Typically, these are a precedence value and a security

These settings are agreed upon by the two applications when the connection is

process of being established. In most cases, a connection is expected by two

cations, so they issue either active or passive open requests. Figure 2.6 shows a

iagram for a TCP open. The process begins with Machine A's TCP receiving a

est for a connection from its ULP, to which it sends an active open primitive to

ine B. (Refer back to Table 4.2 for the TCP primitives.) The segment that is

structed has the SYN flag set on (set to 1) and has a sequence number assigned.

diagram shows this with the notation "SYN SEQ 50," indicating that the SYN

_ is on and the sequence number (Initial Send Sequence number or ISS) is 50.

'"Y number could have been chosen.)

Connection
o

Connection
o

Active vprn Passive
.._,pen

Open J Oprn Ii SYN SEQ 50 ~
--

Ivlachiıı.e A ACK 51; SYN 200 Ivlachine B

TCP --.;; TCP
ACK 201 -

Figure 2.6 Establishing a connection.

The application on Machine B has issued a passive open instruction to its TCP .

Vhen the SYN SEQ 50 segment is received, Machine B's TCP sends an

acknowledgment back to Machine A with the sequence number of 51. Machine B

also sets an ISS number of its own. The diagram shows this message as "ACK 51;

SYN 200," indicating that the message is an acknowledgment with sequence number

50

he SYN flag set, and it has an ISS of 200. Upon receipt, Machine A sends

wn acknowledgment message with the sequence number set to-201. This is

-= 1" in the diagram. Then, having opened and acknowledged the connection,

A and Machine B both send connection open messages through the ULP to

esting applications.

· :" not necessary for the remote machine to have a passive open instruction, as

·-ed earlier. In this case, the sending machine provides both the sending and

g socket numbers, as well as precedence, security, and timeout values. It is

n for two applications to request an active open at the same time. This is

-.A quite easily, although it does involve a little more network traffic.

: Data Transfer

Transferring information is straightforward, as shown in Figure 4.7. For each

· of data received by Machine A's TCP from the ULP, TCP encapsulates it and

- it to Machine B with an increasing sequence number. After Machine B
ves the message, it acknowledges it with a segment acknowledgment that

zrementsthe next sequence number (and hence indicates that it has received

1hing up to that sequence number). Figure 2.7 shows the transfer of two

_ ents of information-one each way.

Received
D

Received
DatSend LJata Lıata Send

Datı J Dataı SYN SEQ 100 J
-.

ACK 101--
DATA SEQ 250

Machine A - Machine B
TCP ACK 251 - TCP

Figure 2.7 Data transfers.

51

TCP data transport service actually embodies six subservices:

• Full duplex: Enables both ends of a connection to transmit at any time, even

simultaneously.

• Timeliness: The use of timers ensures that data is transmitted within a

reasonable amount of time.

• Ordered: Data sent from one application is received in the same order at the

other end. This occurs despite the fact that the datagrams might be received

out of order through JP, because TCP reassembles the message in the correct

order before passing it up to the higher layers.

• Labeled: All connections have an agreed-upon precedence and security value.

• Controlled flow: TCP can regulate the flow of information through the use of

buffers and window limits.

• Error correction: Checksums ensure that data is free of errors (within the

checksum algorithm's limits).

3 Closing Connections

To close a connection, one of the TCPs receives a close primitive from the

.lP and issues a message with the FIN flag set on. This is shown in Figure 2.8. In

e figure, Machine A's TCP sends the request to close the connection to Machine B

rith the next sequence number. Machine B then sends back an acknowledgment of

request and its next sequence number. Following this, Machine B sends the close

essage through its ULP to the application and waits for the application to

cknowledge the closure. This step is not strictly necessary; TCP can close the

nnection without the application's approval, but a well-behaved system would

form the application of the change in state.

After receiving approval to close the connection from the application (or after

e request has timed out), Machine B's TCP sends a segment back to Machine A

irh the FIN flag set. Finally, Machine A acknowledges the closure, and the

nnection is terminated. An abrupt termination of a connection can occur when one

e shuts down the socket. This can be done without any notice to the other machine

d without regard to any information in transit between the two. Aside from sudden

shutdowns caused by malfunctions or power outages, abrupt termination can be

52

by a user, an application, or a system monitoring routine that judges the

on worthy of termination. The other end of the connection might not realize

rupt termination has occurred until it attempts to send a message and the

Connection Rea ue st C onnec tion.~ı -c:ıosed to ı.rose Closed
Close

J ·~ Close J

i FIN SEQ 350 J --
SEQ 475; ACK 351

-

FIN SEQ 475; ACK 351
Machine A - Machine B

TCP ACK 476 - TCP

Figure 2.8 Closing a connection.

teep track of all the connections, TCP uses a connection table. Each existing

nnection has an entry in the table that shows information about the end-to-end

nnection. The layout ofthe TCP connection table is shown in Figure 2.9.

STATE LOCAL LOCAL REIVIOTE REIVIOTE
ADDRESS PORT ADDRESS PORT

C orınec tiorı. 1

Conrı.ection 2

Corırı.ection 3

Co:rmection n

Figure 2.9 The TCP connection table.

53

earıing of each column is as follows:

State: The state of the connection (closed, closing, listening, waiting, and so

on).

Local address: The IP address for the connection. When in a listening state,

this is set to O.O.O.O.

Local port: The local port number.

Remote address: The remote machine's IP address.

Remote port: The port number of the remote connection.

ser Datagram Protocol (UDP)
TCP is a connection-based protocol. There are times when a connectionless

col is required, so UDP is used. UDP is used with both the Trivial File Transfer

ocol (TFTP) and the Remote Call Procedure (RCP). Connectionless

unications don't provide reliability, meaning there is no indication to the

ing device that a message has been received correctly. Connectionless protocols

o not offer error-recovery capabilities-which must be either ignored or

.ided in the higher or lower layers. UDP is much simpler than TCP. It interfaces

IP (or other protocols) without the bother of flow control or error-recovery

chanisms, acting simply as a sender and receiver of datagrams. The UDP message

er is much simpler than TCP's. It is shown in Figure 2. 10. Padding can be added

e datagram to ensure that the message is a multiple of 16 bits.

Source Port (16 bits) Destination Port (16 bits)

Length (16bits) Checksum (16 bits)

Dala ...

Figure 2.10 The UDP header.

54

,,
I•

are as follows:

- ource port: An optional field with the poı1 number. If a port number is not

specified, the field is set to O.

Destination port: The port on the destination machine.

Length: The length of the datagram, including header and data.

Checksum: A 16-bit one's complement of the one's complement sum of the

datagram, including a pseudoheader similar to that of TCP.

e UDP checksum field is optional, but if it isn't used, no checksum is applied

the data segment because IP's checksum applies only to the IP header. If the

ecksum is not used, the field should be set to O.

55

CHAPTER THREE

TCP/UDP AND NETWORKS

P'UDP and Other Protocols
CP/IP is not often found as a sole protocol. It is usually one of several

- used in any given network. Therefore, the interactions between TCP/UDP

sociated protocols) and the other protocols that might be working with it must

rstood. It is easiest to begin looking at this subject :from a local area network

.~ iew and then expand that view to cover intemetworks. The layers of a TCP/IP

las well as most other OSI-model protocols, are designed to be independent of

er, enabling mixing of protocols. When a message is to be sent over the network

ote machine, each protocol layer builds on the packet of information sent :from

yer above, adding its own header and then passing the packet to the next lower

.After being received over the network (packaged in whatever network format is

red), the receiving machine passes the packet back up the layers, removing the
r information one layer at a time.

Replacing any layer in the protocol stack requires that the new protocols can

etwork with the other layers, as well as perform all the required functions of that

for example, duplicating the services of the replaced protocol). To examine the

etworking of the layers and the substitution or addition of others, a simple

lation can be used as a starting point. Figure 3. 1 shows a simple layered

itecture using TCP and IP with the Ethernet network. Figure 3 .1 also shows the

mbly of Ethernet packets as they pass from layer to layer.

TCP

Upper Layer Protocols

IP I H>I

'Ethemet

Figure 3.1 A simple layered architecture.

56

The process begins with a message of some form from an Upper Layer Protocol

hich itself is passing a message from an application. As the message is passed

, it adds its own header information and passes to the IP layer, which does the

Vhen the IP message is passed to the Ethernet layer, Ethernet adds its own

~ ••• ıation at the front and back of the message and sends the message out over the

~- Although this simple model might seem ideal, in practice it has a few

ems. Most importantly, it requires IP to interface directly with the Ethernet layer.

terface is not a clean one; it has many connections that break from the ideal

To expand on the layered system requires a better understanding of the

~ ces to the network layer in a LAN. Figure 3 .2 shows an expanded layer

ecture for a LAN. This type of architecture applies for collision sense multiple

ss (CSMA) and collision detect (CD) networks such as Ethernet.

Applic atio n

Prese nta hon / Logical Link Control/
Session /

Media Acee ss Control/
I

I Tıaıısp:ı rt I Physical Layer
Network

AUI/
Drıta Link /'

,/

II PivlAPhysical

1\IIDI

•I·•,

Figure 3.2 Network architecture.

The LAN involves some additional layers. The Logical Link Control (LLC)

zer is an interface between the IP layer and the network layers. There are several kinds

f LLC configurations, but it is sufficient at this point to know its basic role as a buffer

etween the network and IP layers either as a simple system for a connectionless service

or as an elaborate system for a connection-based service. LLC is usually used with the

57

evel Data Link Control (HDLC) link standard. For connectionless service, this

unnumbered information (UI) message frame, whereas connection-based

- can use the asynchronous balanced mode (ABM) message frame, both

rted by HDLC. The configuration ofLLC with respect to TCP/IP is important.

~C is responsible for managing traffic on the network, such as collision

-......un and transmission times. It also handles timers and retransmission functions.

· s independent of the network medium but is dependent on the protocol used on

ork. The physical layer in the Network architecture is composed of several

-··0-.-. The Attachment Unit Interface (AUI) provides an attachment between the

.., ıı ıne's physical layer and the network medium. Typically, the AUI is where the

rk ports or jacks are located.

The Medium Attachment Unit (MAU) is composed of two parts: the Physical

m Attachment (PMA) and the Medium Dependent Interface (MDI), both of

can be considered as separate parts as shown in the figure. The MAU is

nsible for managing the connection of the machine to the LAN medium itself, as

as providing basic data integrity checking and network medium monitoring. The

• has functions that check the signal quality from the network and test routines for

- ing the network's correct operation. When these layers are added to the layered

itecture for a protocol stack, the IP-Ethernet layer is separated. This is shown in

gure 3.3. This type of configuration is more common than the one shown in Figure 3.1

is usually called the IP/802 configuration (because Ethernet is defined by the IEEE
_ specification).

The IP/802 LAN can be connectionless using a simple form ofLLC called LLC

_ 'pe 1, which supports unnumbered information (UI). The LLC and MAC layers help

arate IP from the physical layer. More headers are added to the message packet, but

ese have useful information. The LLC header has both source and destination service

ccess points (SAP) in it to identify the layers above. UDP is frequently used instead of

CP in this type of network. UDP is not as complex as TCP, so the entire network's

omplexity is reduced. However, UDP has no message integrity functionality built in,

·- a different form ofLLC (called LLC Type 2) is used that implements these functions.

C Type 2 provides the data integrity functionality that TCP usually provides, such as

sequencing, transfer window management, and flow control. The disadvantage is that

these functions are now below the IP layer, instead of above it. In case of fatal problems

I
h

58

LC layer, this can result in problems that must be dealt with in the application

Upper Layer Protocols

TCP

IP

LLC

IvlAC

Physical Layer

~

k<! HeaderorTail

Figure 3.3 TCP!lP with LLC/MAC.

: ~etBIOS and TCP!lP

A popular PC-oriented network operating system is NetBIOS, which can be

y integrated with TCP/IP. Figure 3.4 shows the network architecture for this kind

A....'-.f. NetBIOS resides above the TCP or UDP protocol, although it usually has solid

- into that layer (so the two layers cannot be cleanly separated). NetBIOS acts to

ect applications together in the upper layers, providing messaging and resource

,,
'I

Three Internet port numbers are allocated for NetBIOS. These are for the

IOS name service (port 137), datagram service (port 138), and session service (port

. There is also the provision for a mapping between Internet's Domain Name

rice (DNS) and the NetBIOS Name Server (NBNS). The NetBIOS Name Server is

to identify PCs that operate in a NetBIOS area. In the interface between NetBIOS

TCP, a mapping between the names is used to produce the DNS name. IP can be

nfigured to run above NetBIOS, eliminating TCP or UDP entirely and running
-etBIOS as a connectionless service.

59

Upper Layer Protocols

NetBIOS
- -

TCP I UDP

IP

LLC

MAC

Physical Layer

r::::l
L..:..:8

[:';:71
L.:_j

[

.·.·.·

· h< I Header or Tail

Figure 3.4 The NetBIOS Network architecture.

In this case, NetBIOS takes over the functions of the TCP/UDP layer, and the

layer protocols must have the data integrity, packet sequencing, and flow control

ons. This is shown in Figure 3.5. In this architecture, NetBIOS encapsulates IP

_ ams. Strong mapping between IP and NetBIOS is necessary so that NetBIOS

cıs reflect IP addresses. (To do this, NetBIOS codes the names as

ı.nnn.nnn.nnn.) This type of network requires that the upper layer protocols

s) handle all the necessary features of the TCP protocol, but the advantage is that

etwork architecture is simple and efficient. For some networks, this type of

oach is well suited, although the development of suitable ULPs can be problematic

60

Upper Layer Protocols

IP

NetBIOS

LLC

MAC

Physical Layer

k:::! HeaclerorTail

Figure 3.5 Running IP above NetBIOS.

3 XNS and TCP/IP

XNS appears in several commercial network software packages. XNS can use

The Sequenced Packet Protocol (SPP) is above the IP layer, providing some TCP

ion, although it is not as complete a protocol. In the ULP layer is the Courier

ocol, which provides presentation and session layer services.

XNS uses the term Internet Transport Protocols to refer to the set of protocols

, including IP. Among the protocols is the Routing Information Protocol (RIP) and

- error protocol similar to the Internet Control Message Protocol (ICMP).

-' l .4 IPX and UDP

Novell's NetWare networking product has a protocol similar to IP ca11ed the

Internet Packet Exchange (IPX), which is based on Xerox's XNS. The IPX architecture

· shown in Figure 3.6. IPX usually uses UDP for a connectionless protocol, although

TCP can be used when combined with LLC Type 1. The stacking of the layers (with

IPX above UDP) ensures that the UDP and IP headers are not affected, with the IPX

information encapsulated as part of the usual message process. As with other network

protocols, a mapping is necessary between the IP address and the IPX addresses, IPX

""'S network and host numbers of 4 and 6 bytes, respectively. These are converted as

sed to UDP. It is possible to reconfigure the network to use IPX networks

. ~~\~~~~\"\S\)~'o..\\~~\).\ı~\\\\).\.\.\.\..~ ~~ ı.:.~\.\...\.\..~ı.:.\.\.~~~~~\.....\.....'-, '"'\,'\~~\..~"\..~\.~'"~·

61

f_dit Fıı.rmat Special ı,,.'iew _eage graphics Iııble '.ı'ı'indow !:!cip

ULP

!PX

UDP

IP

LLC

MAC

Physical Leyer

CJ
[

LJ HeaderorTail

Figure B -7: IPX Network Architecture

;;\)/)1:ttf

Figure 3.6 The IPX Network architecture.

5 ARCnet and TCP/IP

ARCnet is widely used for LANs and has an Internet RFC for using it with IP.

architecture is similar to that of the IPX-based network but with ARCnet replacing

r Messages passed down from IP are encapsulated into ARCnet datagrams.

'FDDI Networks
The Fiber Distributed Data Interface (FDDI) is an ANSI-defined high-speed

'Ork that uses fiber-optic cable as a transport medium. FDDI is gaining string

ort because of the high throughout that can be achieved. For TCP/IP, FDDI uses a

ered architecture like the other networks discussed. FDDI differs slightly from other

ia in that there are two sublayers for the physical layer. FDDI's addressing scheme

similar to other Ethernet networks, requiring a simple mapping, as seen with the

ernet system. IP and ARP can both be used over FDDI. IP is used with the LLC

e 1 connectionless service.

The frame size for FDDI is set to 4,500 bytes, including the header and other

aming information. After that is taken into account, there are 4,470 bytes available for

62

e Internet RFC for FDDI defines 4,096 bytes for data and 256 bytes for header

ve the MAC layer.) This large packet size can cause problems for some

_.'S, so routing for FDDI packets must be carefully chosen to prevent truncation or

·on ofthe packet by a gateway that can't handle the large frame size. In case of

FDDI packets should be reduced in size to 576 data bytes.

X.25 networks modify the network architecture by using an OSI TP4 layer on

--IP, and the X.25 Packet Layer Procedures (PLP) layer below IP. TP4 is a TCP­

otocol that does not use port identifiers. The destination and source fields in the

,. are the transport service access points (TSAPs). TP4 is more complex than TCP,

sometimes works against it.

ISDN and TCP/IP

The Integrated Services Digital Network (ISDN) provides packet-switched

1P networks. The architecture is shown in Figure 3.7. IP is not in the stack because

sually incorporated into CLNP. (Both TCP and IP can be used with ISDN instead

SI TP4 and CLNP, but the ISDN versions are optimized for that network.) ISDN

· a more complex architecture than most networks, replacing gateways and routers

terminal adapters and ISDN nodes. These perform the equivalent functions but

ea more rigid (and complex) internal architecture.

,•I
::ı

ULP

OSI TP4

CLNP

EIA 232/V Series

[
f;':'::J
~

X.25 PLP

LAPE

HH HeaderorTail

Figure 3.7 The ISDN-based Network architecture.

63

itched Multi-Megabit Data Services and IP

The Switched Multi-Megabit Data Services (SMDS) system is a public packet­

d connectionless service that provides high throughput with large packet sizes

9188 data bytes). SMDS uses a subscriber-to-network and network-to-subscriber

mechanism for flow control. SMDS works with IP by interfacing the SMDS to

C layer. SMDS using IP supports multiple logical IP subnetworks (LISs), which

managed separately but treated as a single unit by SMDS. This method requires

- subnetworks to have to same IP address. SMDS uses LLC Type 1 frames.

~ Asynchronous Transfer Mode (ATM) and BISDN

Two new protocols for high-speed intemetworks that are becoming popular are

hronous Transfer Mode (ATM) and Broadband ISDN (BISDN). The architecture

e user's machine is similar to the TCP/IP architectures discussed earlier, although

ional layers can be added to provide new services, such as video and sound

bilities. The router, gateway, or other device that accesses the high-speed network

ore complex as well. Called a terminal adapter (as with ISDN), it provides a

· sticated interface between user layers and adaptation layers, which are application­

cific. From the terminal adapter, traffic is passed to the ATM service, which

vides switching and multiplexing services.

. 11 Windows 95 and TCP/IP

Because Windows 95 is supposed to become the dominant operating system on

machines running a DOS or Windows operating system, it is worth taking a quick

kat how Windows 95 integrates networking software into its kernel. The approach

sed by Windows 95 is similar to that ofWindows NT and OS/2, so the knowledge is

seful for many operating systems on common client devices in today's LANs.

indows 95 refines the network architecture used in Windows for Workgroups and

'indows NT, resulting in better performance and reliability, as well as catering to the

emands of different network requirements such as multiple protocol support. Because

indows 95 supports many different network protocols in 16- and 32-bit Virtual Mode

Driver (VxD) versions, the architecture must provide the flexibility to accommodate a

number of structures.

64

e Windows 95 architecture is layered; a layered architecture is the most

networking structure (such as OSI and TCP/IP). The network architecture used

ows 95 is known as Microsoft's Windows Open Services Architecture (WOSA).

was developed to enable applications to work with several different network

d it includes a set of interfaces designed to enable coexistence of several

· components.

orking software components of Windows 95 are shown in their respective

Figure 3.8. Many of the network components are familiar from earlier versions

ows for Workgroups, Windows NT, or other operating systems and

nications protocols. Older Iô-bit applications are treated slightly differently, but

The standard Win32 Application Programming Interface (API, the same system

ith Windows NT). The API handles remote file operations and remote resources

·ers and other devices). The Win32 APis are used for programming applications.

iple Provider Router (MPR): The MPR routes all network operations for

ows 95, as well as implementing network functions common to a11 network types.

2 APis communicate directory with the MPR, although some can be routed

ght through. The MPR is a 32-bit protected mode DLL.

_!;;dit F.Q.rmatS.peclal 1,'lew f!a9e §raphlcs !able ~lndow tlelıı

32-bit Win.doı,2,'S
Application

16-bit Windows
API 11.pplication

Multiple Provider
Router (MPR)

NETWORKDRV
Meppeı-

16-bit Netwcık
Driver

Real Mode
Redirector

Tran~port~~~~~~..ı-~~~..,...~~~.•...•~~~~~~

Network
Trensport

NDIS ~~~~~~~~~f--~~~~~.~~~-
Netwnrk

Adapter Driver

figure XX-1: Windows 95 Networking Software Components

Figure 3.8 The Windows 95 networking software architecture showing the components.

65

k Provider: The network provider implements the network service provider

. Only the MPR can communicate with the network provider. The network

·r is a 32-bit protected mode DLL.

anager: The IFS Manager routes fılesystem requests to the proper fılesystem

'FSD). The IFS Manager can be called directly by network providers.

rk Filesystem Driver (FSD): The FSD implements the particular remote

stem characteristics. The FSD can be used by the IFS Manager when the

. stem of the local and remote machines match. The FSD is a 32-bit protected mode

ı virtual device driver).

ork Transport: The network transport is a Vx.D that implements the device-

fie network transport protocol. Multiple network transports can be active at a time.

etwork FSD interfaces with the network transport, usually with a one-to-one

ing, although that is not necessarily the case.

-'Ork Driver Interface Specification (NDIS): A vendor-independent software

cification that defines interactions between the network transport and device driver.

dows 95 supports both 32-bit and 16-bit NDIS versions.

twork Adapter Driver: The network adapter driver Vx.D controls the actual network

rdware device. NDIS communicates with the driver, which sends packets over the

ork. Windows 95 uses Media Access Control (MAC) drivers.

__ Optional TCP/UDP Services
TCP/UDP offers a number of optional services that users and applications can

se. All these optional services have strict definitions for their protocols. These optional

services and their assigned port numbers are shown in Table 3. 1.

Table 3.1 Optional TCP/UDP services.

ı IIPortllDescription
ltJ Returns the names of all users on the remote system

======~ EJ Returns all printable ASCII characters

======~
j~IRetunıs the date and time, day of the week, and month of the

Active Users

ervice

Character

Generator

Daytime

66

ıı==========;DI year I
~ d iLllDiscards all receivedmessages I

[]!Returns any messages

~ıı:==.:=o=f=t=he=D=a=y==:i~II Returns a quotation I

[:JI Returns the time since January 1, 1900 (in seconds) I

The Active Users service returns a message to the originating user that contains

-· of all users currently active on the remote machine. The behavior of the TCP and

P versions is the same. When requested, the Active Users service monitors port 11

upon establishment of a connection, responds with a list of the currently active

s and then closes the port. UDP sends a datagram, and TCP uses the connection

il

_ 2 Character Generator

The Character Generator service is designed to send a set of ASCII characters.

n receipt of a datagram (the contents of which are ignored), the Character Generator

ice returns a list of all printable ASCII characters. The behavior of the TCP and

.TIP versions of the Character Generator are slightly different. The TCP Character

nerator monitors port 19, and upon connection ignores all input and sends a stream of

aracters back until the connection is broken. The order of characters is fixed. The
\

:-DP Character Generator service monitors port 19 for an incoming datagram (UDP

esn't create connections) and responds with a datagram containing a random number

f characters. Up to 512 characters can be sent. Although this service might seem

seless, it does have diagnostic purposes. It can ensure that a network can transfer all 95

rintable ASCII characters properly, and it can also be used to test printers for their

capability to print all the characters.

67

time

The Daytime service returns a message with the current date and time. The

uses is the day of the week, month of the year, day of the month, time, and the

ıme is specified in a HH-.MM:SS format. Each field is separated by spaces to

arsing of the contents. Both TCP and UDP versions monitor port 13 and, upon

of a datagram, return the message. The Daytime service can be used for several

ses, including setting system calendars and clocks to minimize variations. It also

used by applications.

The Discard service simply discards everything it receives. TCP waits for a

ction on port 9, whereas UDP receives datagrams through that port. Anything

ming is ignored. No responses are sent. The Discard service might seem pointless,

can be useful for routing test messages during system setup and configuration. It

also be used by applications in place of a discard service of the operating system

ch as /dev/null in UNIX).

The Echo service returns whatever it receives. It is called through port 7. With

CP, it simply returns whatever data comes down the connection, whereas UDP returns

identical datagram (except for the source and destination addresses). The echoes

ntinue until the port connection is broken or no datagrams are received. The Echo

serviceprovides very good diagnostics about the proper functioning of the network and

e protocols themselves. The reliability of transmissions can be tested this way, too.

I urnaround time from sending to receiving the echo provides useful measurements of

esponse times and latency within the network.

3.2.6 Quote of the Day

The Quote of the Day service does as its name implies. It returns a quotation

from a file of quotes, randomly selecting one a day when a request arrives on port 17. If

a source file of quotations is not available, the service fails.

68

The Time service returns the number of seconds that have elapsed since January

. Port 3 7 is used to listed for a request (TCP) or receive an incoming datagram

. When a request is received, the time is sent as a 32-bit binary number. It is up to

iving application to convert the number to a useful figure. The Time service is

sed for synchronizing network machines or for setting clocks within an

- Using the Optional Services

The optional services can be accessed from an application. Users can directly

ess their service of choice (assuming it is supported) by using Telnet. A simple

:.::clnet merlin 7

-~ected to merlin.tpci.com

is '/\T'.

is a message

~:.sis a message

:~n't this exciting?

=~~·t this exciting?

~trl+T>

telnet merlin 13

:rying...

:onnected to merlin.tpci.com

~scape character is '/\T'.

69

'!..!n 21 10:16:45 1994

_.:::c:ion closed.

_:;et merlin 19

.>. I () *+,-

-~3456789: ;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ [[\]A abcdefg

~'()*+,­

~23456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[[\JA abcdefgh

() *+, -

~23456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[[\]A abcdefghi

I)*+, -

_23456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[(\JA abcdefghij

)*+,-

-:23456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[[\]A abcdefghijk

*+,-

Jl23456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[[\JA_abcdefghijkl

*+,-

0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[[\J" abcdefghijklm

::crl+T>

this example, a connection to port 7 starts an Echo session. Everything typed by the

.ser is echoed back immediately, unchanged. Then a connection to port 13 provides the

aytime service, showing the current date and time. The connection is broken by the

Serviceonce the data is sent. Finally, the Character Generator is started. Both the.Echo

and Character Generator services were terminated with the Telnet break sequence of

trl+T.

70

Setting Up a Sample TCP/IP Network: Servers

Here, we look at how to set up four different types of servers: a Santa Cruz

ation (SCO) OpenServer 5 machine, a Linux machine, a Windows NT machine,

a Sun SPARCstation 5. All four servers are connected to the sample network, and

of them can be accessed by a client machine or other servers.

__ ı The Sample Network

We designed a dedicated TCP/IP network to show the steps we must follow to

up, configure, and test a TCP/IP implementation. The sample network relies on

'era! servers, although many networks have only one. The sample network has four

ers and three clients. Each of the seven machines on the network has its own name

d IP address. For this sample network, the IP address mask has been randomly chosen

- 147.120. The sample network configuration is shown in Figure 3.9.

Server Server ServerServer

"ırıerlinn "fre)/"" "brurus" "megan"

SCO OS5 Linux SPA RC station Windows NT
IP: 147.120.0.1 IP: 147.120.0.2 IP: 147.120.0.3 IP: 147.120.0.4. .

Thin Ethernet I. . .
"whitney'' "sinbad" "pepper'

Windows 95 DOS 6.2 Windows 3.1

IP: 147 .120.0.10 IP:147.120.0.11 IP:14'1.120.0.12

Client Client Client

Figure 9 -1: Sample TCP/IP Network

Figure 3.9 The sample TCP/IP network.

The physical setup of the network is undertaken first. It involves installing a

network interface card in each machine (except the SPARCstation, which has the

71

network card as part of the motherboard). On each system we must ensure that any

[umpers for intermpt vectors and memory I/O addresses do not conflict with any other

ard on that system. (Some of the cards are software programmable; some are set by

jumpers or DIP switches.) All the boards used in this system are from different

manufacturers to show the independent nature of the TCP/IP network. Cable must be

run between all the machines, connecting the network interface cards together. In the

case of Ethernet, the cables must be properly terminated. The sample network uses thin

Ethernet, which closely resembles television coaxial cable. BNC Thin Ethernet

connectors resemble a T, with cables attached to both ends of the T and the stem

connected to the network card. Two of the machines form the ends of the cable and

require a terminating resistor as part of their T. The SPARC station normally uses an

RJ45 connector.
To test the physical network, it is easiest to wait until a couple of machines have

had their basic software configuration completed. All the machines on the network do

not have to be active, as long as the network cable is contiguous from end to end and

each BNC connector is attached to a network card to provide electrical termination. If

problems are found when the network is tested, the physical network is the first item to

check. Some network monitoring devices can supply integrity information prior to

installing the network, but these devices are not usually available to system

administrators who are just beginning their installation, or who have a small number of

machines to maintain (primarily because the network testers tend to be expensive).

,,I

3.3.2 Configuring TCP/IP Software

The discussion here applies equally to the UNIX, Windows, and DOS machines

on the sample network (as it would to any other type of machine, such as a Macintosh).

Filenames can change with different operating systems, but the general approach

remains valid. Most operating systems and TCP/IP software packages provide several

utilities, including menu-driven scripts that help automate the installation process of the

TCP/IP applications. Some operating systems (notably older UNIX systems) still

require manual configuration of several files using a text editor. To configure TCP/IP

software properly, we must know several pieces of information before we start. The

necessary information we need for each machine on the network follows:

72

• Domain name: The name the entire network will use.

• System name: The unique name of each local machine.

• IP address: The full address of each machine.

• Driver type: Each interface to the network must be associated with a device

driver, instructing the operating system how to talk to the device.

• Broadcast address: The address used for network-wide broadcasts.

• Netmask: The network mask that uniquely identifies the local network.

• Hardware network card configuration information: The interrupt vector and

memory address of the network card.

system domain name is necessary if the network is to be connected to other

chines outside the local network. Domain names can be invented by the system

· nistrator. If, however, the network is to interface with Internet or one of its service

oviders, the domain name should be approved by the Internet Network Information

enter (InterNIC). Creating and registering a new domain is as simple as filling out a

rm (and recently, paying a small administration fee). Domain names usually reflect

company name, with the extension identifying the type of organization. The sample

-etwork uses the name tpci.com.

The machine name is used for symbolic naming of a machine instead of forcing

- •. e full IP address to be specified. The system name must be unique on the local

zetwork Other networks might have machines with the same name, but their network

asks are different, so there is no possible confusion during packet routing. In most

ses, system names are composed of eight characters (or less) and are usually all

wercase characters (in keeping with UNIX tradition for lowercase). The system name

-:<111 be a mix of characters and numbers. Larger organizations tend to number their

machines, and small companies give their machines more familiar names. The device

river instructs the operating system how to communicate with the network interface

usually either a network card or a serial port). Each interface has its own specific

evice driver. Most operating systems have device drivers included in their distribution

software, although some require software supplied with the network card. Generic

drivers are available for most network cards on bulletin board systems.

Most network cards come with default settings that might conflict with other

cards in the system. Users must carefully check for conflicts, resorting to a diagnostic

program if available. UNIX users have several utilities available, depending on the

73

,I

ing system. SCO UNIX and most System V Release 4 operating systems have the

. , hwconfıg, which shows the current hardware configuration. The following

ple shows the hwconfıg output and the output from the command with the -h

on to provide long formatting with headers (making it is easier to read):

_·..ıconfig

·-==fpu vec=13 cima=- type=80387

base=Ox3F8 offset=Ox7 vec=4 cima=- unit=O type=Standard

base=Ox2F8 offset=Ox7 vec=3 cima=- unit=l type=Standard

-orts=l

=-=ıe=floppy base=Ox3F2 offset=Ox5 vec=6 clma=2 unit=O type=96ds15

-~e=floppy vec=- cima=- unit=l type=l35dsl8

=aıne=consolevec=- cima=- unit=vga type=O 12 screens=68k

=aıne=adapterbase=Ox2COO offset=OxFF vec=ll cima=- type=arad ha=O id=7

=~s=st

=ame=nat base=Ox300 offset=Ox20 vec=7 cima=- type=NE2000

~ddr=00:00:6e:24:le:3e

3ame=tape vec=- cima=- type=S ha=O id=4 lun=O ht=arad

~ame=disk vec=- dma=- type=S ha=O id=O lun=O ht=arad fts=stdb

name=Sdsk vec=- cima=- cyls=1002 hds=64 secs=32

$

$ hwconfig -h

device address vec cima comment

74

====== ======= --- --- =======

::pu - 13 - type=80387

serial Ox3f8-0x3ff 4 - unit=O type=Standard nports=l

serial Ox2f8-0x2ff 3 - unit=l type=Standard nports=l

::loppy Ox3f2-0x3f7 6 2 unit=O type=96ds15

::loppy - - - unit=l type=135ds18

::onsole - - - unit=vga type=O 12 screens=68k

adapter Ox2c00-0x2cff 11 - type=arad ha=O id=7 fts=st

na t; Ox300-0x320 7 - type=NE2000
~ddr=00:00:6e:24:le:3e

::ape type=S ha=O id=4 lun=O ht=arad

'I

:i.:_ s k

::t".s=stdb
type=S ha=O id=O lun=O ht=arad

~dsk cyls=1002 hds=64 secs=32

This output is from the SCO UNTXservers set up for the sample network. It has

e network Ethernet card already configured as device nat, which uses lRQ 7 (shown

...nder the vec or interrupt vector column). The nat line also shows the memory address

~ 300-320 (hexadecimal) and the device driver as NE2000 (a Novell NetWare­

ompatible driver). The address and vec columns show no conflicts between the settings

sed for the Ethernet card and other devices on the system. (The adapter entry is for a

igh-speed SCSI-2 card, which controls both the tape and the Sdsk device, the primary

-csı hard drive. All other entries should be self-explanatory.) DOS users can use the

.-IicrosoftDiagnostic utility, MSD.EXE, or one of several third-party tools such as

entral Point PC Tools or The Norton Utilities to display IRQ vectors and memory

dresses in use by the system. Some software even indicates which vectors and
dresses are available for use.

75

There is no need to have the same IRQ and memory address for each card on the

·ork, because the network itself doesn't care about these settings. The IRQ and

ory addresses are required for the machine to communicate with the network

ace card only. The sample network used a different IRQ and memory address for

and memory addresses are usually set on the network interface card itself using

er jumpers on pins or a DIP-switch block. The documentation accompanying the

d should provide all the information necessary for setting these values. Some recently

educed network interface cards can be configured through software, enabling the

· gs to be changed without removing the card from the system. This can be very

dy when a user is unsure of the best settings for the card.

The IP address is a 32-bit number that must be unique for each machine. If the

rwork is to be connected to the Internet, the IP address must be assigned by the NIC.

Even if no access to the Internet is expected, arbitrarily assigning an IP address can

ause problems when messages are passed with other networks. If the network is not

onnected to the outside world, a system administrator can ignore the NIC's numbering

-stem and adopt any IP address. It is worthwhile, however, to consider future

expansion and connection to other networks. The NIC has four classes of IP addresses

ın use depending on the size of the network. Each class has some addresses that are

restricted. These are shown in Table 3 .2. Most networks are Class B, although a few

large corporations require Class A networks.

Table 3.2 The NIC IP address classes.

a lNetwork Mask
s
!Bytes

'

Number of Hosts per

Network
Valid Addresses

Dil 1116,777,216. ırl to 126.255.255.254

iRi\ II \I 128 O O 1 toLJ~2 65'534 J191255255254 Inı II \122400010 ıLJ3
:
254

:[255255255254

Ll\reserved II II
76

..::;J

The network mask is the IP address stripped of its network identifiers, leaving

nly the local machine address. For a Class A network, this strips one byte, whereas a

lass B network strips two bytes (leaving two). The small Class C network strips three

_ 1es as the network mask, leaving one byte to identify the local machine (hence the

mit of 254 machines on the network). The sample network is configured as a Class B

achine with the randomly chosen IP address network mask of 147. 120 (not NTC-
ssigned).

The broadcast address identifies packets that are to be sent to aU machines on the

cal network. Because a network card usuaUy ignores any incoming packets that don't

ve its specific IP address in them, a special broadcast address can be set that the card

can intercept in addition to locally destined messages. The broadcast address has the

ost portion (the local machine identifiers) set to either all Os or all 1 s, depending on the

convention followed. For convenience, the broadcast address's network mask is usually

he same as the local network mask.

Broadcast addresses might seem simple because there are only two possible

settings. Such addresses, however, commonly cause problems because conflicting

ettings are used on a network. BSD UNIX used the convention of all Os for releases 4. I

and 4.2, whereas 4.3BSD and SVR4 (System V Release 4) UNIX moved to all Is for

the broadcast address. The Internet standard specifies all ls as the broadcast address. If

problems are encountered on the network with broadcasts, check all the configurations

to ensure they are using the same setting. The sample network uses an all ls mask for its
broadcast address.

The steps followed for configuring TCP/IP are straightforward, generally following the

information required for each machine. The configuration steps are as follows:

• Link drivers: TCP/IP must be linked to the operating system's kernel or loaded

during the boot stage to enable TCP/IP.

• Add host information: Provide a list of all machines (hosts) on the network
(used for name resolution).

• Establish routing tables: Provide the information for routing packets properly

if name resolution isn't sufficient.

77

• Set user access: Configure the system to enable access in and out of the

network, as well as establishing permissions.

• Remote device access: Configure the system for access to remote printers,

scanners, CD-ROM carousels, and other shared network devices.

• Configure the name domain server: If using a distributed address lookup

system such as Berkeley Internet Name Domain Server (BIND) or NIS,

complete the name server files. (This step is necessary only if you are using

BIND or a similar service.)

• Tune system for performance: Because a system running TCP/IP has different

behavior than one without TCP/IP, some system tuning is usually required.

• Configure NFS: If the Network File System (NFS) is to be used, configure both

the file system and the user access.

• Anonymous FTP: If the system is to enable anonymous FTP access, configure

the system and public directories for this service.

We will use these steps (not necessarily in the sequence given) as the individual
machines on the network are configured. The processes are different with each
operating system, but the overall approach remains the same.

3.4 Setting Up a Sample TCP/IP Network: DOS and Windows Clients
Here we configure some clients for the network. The clients communicate with

the server through a TCP/IP stack loaded on each machine. We configure three clients:

one DOS, one Windows 3.x, and one Windows 95.

3 .4. 1 DOS-Based TCP/IP: ftp Software's PC/TCP

PC/TCP runs under both DOS and Windows. It lets a user perform all the

TCP/IP functions, such as ftp and telnet, and includes software for several members of

the TCP family ofprotocols, including SNMP. Other machines can also access a PC

running PC/TCP, copying its files (assuming access has been granted). PC/TCP can run

TCP/IP as the sole network protocol on the PC, or it can piggy-back on top of other

networks, such as Windows for Workgroups (NetBEUI andNetBIOS) or Novell

NetWare (IPX/SPX). The sample network we are configuring is TCP/IP-based, so

PC/TCP is installed to run on that network protocol only. However, because it would be

useful to be able to run Windows for Workgroups over the network between the DOS

78

'indows 3. 11 machines, the installation process we take is designed so that both

Elli and TCP/IP can reside simultaneously on the network.

The sample network we are installing is configured to enable both PC/TCP and

ows for Workgroups to coexist using NDIS drivers. This results in two software

""-one for PC/TCP and one for Windows for Workgroups-coexisting and

ınıunicating with the NDIS driver. This structure is shown in Figure 3. 10.

PC/TCP App, Windows for
Workgıoup,

PC/TCP Kernel
NetBEUI

PC/TCPNDIS
Converter

Protocol Manager

NDIS Device Driver

Network Interface Caıd(Et!ı,ımet)

Figure 12-1: PC/TCP and Windows for Workgroups Stacks Using NDIS

Figure 3.10 PC/TCP and Windows for Workgroups stacks using NDIS.

PC/TCP uses a kernel that is loaded into memory when DOS boots. The kernel

Terminate and Stay Resident (TSR) program. To ensure that the network is

ilable at all times, the kernel load command is usually added to the

-10EXEC.BAT file. The sample network uses a kernel called ETHDRV.EXE, which

e Ethernet driver supplied with PC/TCP. (A different kernel must be used if the

ork is IEEE 802.3 Ethernet, which differs from the normal DIX Ethernet.) In

ition, an NDIS Converter must be loaded in the AUTOEXEC.BAT file as a device

-er to provide NDIS-format packets to the protocol manager.

79

: -U. 1 Installing PC/TCP

PC/TCP includes an automated installation procedure that copies the distribution

edia to the hard disk and sets up some of the configuration files. Installation of

C/TCP requires the same basic information as TCP/IP under UNIX: the device driver,

tne system's name and IP address, and the names and IP addresses of other systems to

accessed. The process begins with a properly installed network card. The IRQ and

emory address of the card must be known, and a device driver for it must be present

for inclusion in the CONFIG.SYS file. After copying all the distribution files to the hard

drive, the configuration can begin. The sample machine is running DOS 6.22 and

Tindows for Workgroups 3. 1 1. When installing PC/TCP with Windows for

/orkgroups, the Windows network must be installed, configured, and running properly

fore PC/TCP modifies the Windows files to enable both DOS and Windows to work
ver the network

Four files are involved in the initial configuration:

• AUTOEXEC.BAT: Starts the PC/TCP kernel

• CONFIG.SYS: Starts the device drivers for the network and
PC/TCP

• PROTOCOL.INI: Defines the type of network and drivers

• PCTCP.INI: Kernel parameters for PC/TCP

.>.4.1.1.1 The AUTOEXEC.BAT File

The AUTOEXEC.BAT file requires environment variables to be properly set for

PC/TCP and two instructions added to the file. One instruction starts the network and

the other loads the Ethernet driver. The sample machine already had Windows for

Workgroups installed, so a line in the AUTOEXEC.BAT file reads

C:\WINDOWS\NET START

This line starts the network The NET START command can remain in place or be

replaced with a PC/TCP command called NETBIND, which accomplishes the same

thing for NDIS drivers. If both commands are in the AUTOEXEC.BAT file, an error

message results when the second network startup command is executed.

80

After the NET START or NETBIND command, the following line must be

added to the AUTOEXEC.BAT file:

C:\PCTCP\ETHDRV

This starts the PC/TCP Ethernet driver. If another network system is being used, this

would be replaced with the device driver for that network (such as IEEEDRV for IEEE

802.3 Ethernet or SLPDRV for SLIP). It is useful to define two environment variables

in the AUTOEXEC.BAT file for the PC/TCP software to use when searching for file.

One is a simple addition to the PATH command, adding the PCTCP installation

directory to the search path. The second is an environment variable that points tothe
PCTCP.INI file. The two declarations look like this:

SET PCTCP=C:\PCTCP\PCTCP.INI

~ET PATH=C:\PCTCP;%PATH%

Therefore, on the DOS machine, the completed AUTOEXEC.BAT file should have one
of the following four-line combinations in it:

SET PCTCP=C:\PCTCP\PCTCP.INI

~ET PATH=C:\PCTCP;%PATH%

2:\WINDOWS\NET START

::\PCTCP\ETHDRV

or

SET PCTCP=C:\PCTCP\PCTCP.INI

SET PATH=C:\PCTCP;%PATH%

::\PCTCP\NETBIND

~:\PCTCP\ETHDRV

81

en these lines are executed during the system boot process, the system displays

s messages when each command is completed. The NETBIND command displays

message if it loads successfully:

3-DOS LAN Manager v2.1 Netbind

~crosoft Netbind version 2.1

. ~ third line might display a status message about the interrupt vector used by the

-stem. IfNETBIND couldn't load correctly, it generates a message like this:

~-DOS LAN Manager v2.1 Netbind

~rror: Making PROTMAN IOCTL call.

This usually is generated when the network is already running (such as from issuing a

~T START command before the NETBIND command; we might recall that only one

of these two should be in the AUTOEXEC.BAT file).

The ETHDRV command displays a message with status information when it loads
successfully. It looks like this:

MAC/DIS converterFTP Software PC/TCP Resident Module 2.31

12:38
01/07/94

Copyright 1986-1993 by FTP Software, Inc. All rights reserved.

Patch level 17637

Patch time: Fri Jan 07 14:25:09 1994

Kernel interrupt vector is Ox61

Code Segment occupies 49.0K of conventional memory

Data Segment occupies 19.5K of conventional memory

Packet Driver found at vector Ox60

name:

82

version: 30, class: 1, type: 57, functionality: 6

-=cust (PC/TCP Class 1 packet driver - DIX Ethernet) initialized

- free packets of length 1514, 5 free packets of length 160

:he Resident Module occupies 68.7K of conventional memory

f there is an error when the ETHDRV program loads, it generates an error message (of

·aryingutility for debugging purposes). A sample error is shown here:
::TP Software PC/TCP Resident Module 2.31 01/07/94 12:38

Copyright 1986-1993 by FTP Software, Inc. All rights reserved.

?ateh level 17637

?ateh time: Fri Jan 07 14:25:09 1994

?C/TCP is already loaded (interrupt Ox61). Use 'inet unload' to unload

it.

This error occurred because a PC/TCP driver had been loaded prior to the ETHDRV

command.

3.4.1.1.2 The CONFIG.SYS File
The CONFIG.SYS file has to have drivers loaded for the protocol manager, the

NDIS packet converter, and the network card driver. Systems running Windows for

Workgroups might require additional drivers. The CONFIG.SYS file must have an

entry setting the number of files open at one time to at least 20. If this doesn't exist,

PC/TCP crashes. Add this line:

FILES=20

to the CONFIG.SYS file. Depending on the amount of memory available, the number

could be readily increased. With S:MB RAM or more, a value of 40 is satisfactory.

Numbers above this setting tend to be counter-productive because RAM is wasted for

no reason.

83

The protocol manager is supplied as part of Windows for Workgroups, and one is

included with the PC/TCP software package. If Windows for Workgroups 3.1 (not 3.11)

was already loaded and functional, CONFIG.SYS has a line similar to this:

DEVICE=C:\WINDOWS\PROTMAN.DOS /I:C:\WINDOWS

The protocol manager is not always used with the Windows for Workgroups

3.11 release because it is included with other drivers within the CONFIG.SYS file (such

as IFSfilP.SYS). If there is no protocol manager started at boot time, one should be

added from the PC/TCP software. The entry within the CONFIG.SYS file is

DEVICE=C:\PCTCP\PROTMAN.DOS \I:C:\PCTCP

This loads the PC/TCP protocol manager. The \I at the end of the command tells the

driver where to look for files (in this case, the PC/TCP installation directory).

A network card driver should appear next in CONFIG.SYS. This differs for each

network card, but for the sample network DOS machine's Intel EtherExpress 16 network

card, the line is

DEVICE=C:\WINDOWS\EXP16.DOS

This loads the EXP 16 driver for the Intel network card. This was included with the

Windows for Workgroups software, but it is also available as a generic driver. Some

machines with Windows for Workgroups already installed might have this command

already in the CONFIG.SYS file. The final step is to load the PC/TCP NDIS Packet

Converter. The current release ofPC/TCP uses a packet converter called

DIS PKT.GOP. The line looks like this:

DEVICE=C:\PCTCP\DIS PKT.GUP

The properly configured CONFIG.SYS file for the DOS machine should have these

lines in it

DEVICE=C:\WINDOWS\PROTMAN.DOS /I:\C:\WINDOWS

84

DEVICE=C:\WINDOWS\EXP16.DOS

DEVICE=C:\PCTCP\DIS PKT.GUP

if it is using the Windows for Workgroups protocol manager. It should have the

following lines if it is using the PC/TCP protocol manager:

DEVICE=C:\PCTCP\PROTMAN.DOS /I:\C:\PCTCP

DEVICE=C:\WINDOWS\EXP16.DOS

DEVICE=C:\PCTCP\DIS PKT.GUP

As noted earlier, the network interface driver (EXP16) is different if our machine does

not use the Intel EtherExpress 16 board.

3 .4 .1.1.3 The PROTOCOL.INI File

Windows for Workgroups has a PROTOCOL.INI file as part of its setup. The

file tells the system about the network cards and drivers in use. The PC/TCP

PROTOCOL.INI file does the same, but it resides in the PCTCP directory. The contents

of the PROTOCOL.INI file are different for each network card and driver configuration.

There must be a section labeled [PKTDRV] (all in uppercase) that defines the driver

name, the binding to the network card, and any configuration information needed. The

sample network's PROTOCOL.INI file looks like this:

[PKTDRV]

drivername=PKTDRV$

bindings=MS$EE16

intvec=Ox60

[MS$EE16]

DriverName=EXP16$

IOADDRESS=Ox360

IRQ=ll

85

:oCHRDY=Late

RANSCEIVER=Thin Net (BNC/COAX)

3.4.1.1.4 The PCTCP.INI File

The PCTCP.INI file holds the kernel configuration information for PCTCP. In

most cases, it can be left as supplied with the software. Tweaking the kernel parameters

should be performed only after the network is installed and has been operating properly

for a while. The PCTCP.INifıle is quite lengthy, and care should be taken to avoid

accidental changes, which can render the system inoperative. If the supplied installation

script is not used to install PC/TCP, a minimum PCTCP.INI file must be created

manually. There are two ways to create the PCTCP.INI file and configure it properly.

The first is to use an editor and modify the template file. The alternative is to run the

kernel configuration utility KAPPCONF.

A minimum PCTCP.INI file needs to have the software serial number and

activation key, the IP address, broadcast address, router address, a subnet mask, and

information about the system in general. The minimum PCTCP.INI file would look like
this:

[pctcp general)

domain tpci.com

host-name sinbad

time-zone EST

time-zone-offset 600

user tparker

[pctcp kernel)

serial-number 1234-5678-9012

authentication-key 1234-5678-9012

86

:.nterface ifcust O

.:..ow-window o

·-·indow 2048

pctcp ifcust O]

~roadcast-address 255.255.255.255

ip-address 14 7. 12 O. O. 11

router 147.120.0.1

subnet-mask 255.255.0.0

[pctcp addresses]

domain-name-server 147.120.0.1

mail-relay 147.120.0.1

This configuration assumes that the SCO UNIX server (147.120.0.1) is the primary

server for the network. The DOS machine's name (sinbad) and IP address

(147.120.0.11) are shown in the PCTCP.INI file. As different features ofPC/TCP are

enabled (such as SNMP and Kerberos), new sections are added to the PCTCP.INI file.

3.4.1.1.5 The Windows SYSTEM.IN! File

If Windows for Workgroups is to be used on the DOS machine and we are going

to use the PC/TCP drivers instead of a dedicated Windows for Workgroups TCP/IP

package, the Windows for Workgroups SYSTEM.IN! file requires modification. The

Windows for Workgroups SYSTEM.IN! file must be set to use the Windows for

Workgroups driver instead ofthe PC/TCP driver. When the PC/TCP automatic

installation process detects a copy ofWindows, it makes changes to the SYSTEM.IN!

file for us. Some of these changes must be checked and modified to enable Windows to

boot properly with the PC/TCP drivers. One ofthe most important changes is the

87

enting out of the Windows for Workgroups network driver and its replacement

the PC/TCP driver:

-uork.drv=C:\PCTCP\PCTCPNET.DRV

Windows for Workgroups 3 .1, confirm that the SYSTEM.IN! file has these three

ions, with these commands shown:

=~work.drv=wfwnet.drv

~oat.description]

=etwork.drv=Microsoft Windows for Workgroups (version 3.1)

=386Enh]

~evice=c:\pctcp\vpctcp.386

device=c:\pctcp\wfwftp.386

Windows for Workgroups 3.11 has a slightly different SYSTEM.INI. It should look like

this:

[boot]

network.drv=wfwnet.drv

[boot.description]

network.drv=Microsoft Windows Network (version 3.11)

[386Enh]

device=c:\pctcp\vpctcp.386

At the bottom ofthe Windows for Workgroups SYSTEM.INI file, PC/TCP sometimes

adds a block of information that looks like this:

88

[vpctcp]

These option settings may be added to SYSTEM.INI, in a

new section "[vpctcp]".

The next line tells VPCTCP how much copy space memory to request.

It is in units of kilobytes (x1024). This value is only a bid,

as Windows may choose to reduce your allocation arbitrarily.

This value should be increased if using Windows applications which

call the PC/TCP DLL from another DLL; suggested value in such

instances is at least 28.

MinimumCopySpace=l2

The next line tells VPCTCP the segment (paragraph) number of the

beginning of memory reserved for devices, BIOS, and upper-

memory blocks (which could contain TSRs). All calls below the

PSP of Windows or above this parameter are not processed by

the VxD but rather are passed-thru to the kernel untouched.

HiTSRFenceSegment=AOOOh

eof

3.4.1.2 Windows for Workgroups using NetBIOS

Windows for Workgroups can be set to use IP packets. This requires a NetBIOS

driver for both Windows for Workgroups and PC/TCP. The architecture of such as

system is shown in Figure 3. 1 1. The Windows for Workgroups packets are sent through

PC/TCP's NetBIOS and then into the normal PC/TCP stack.

89

bf! Eile !;dit F!!.rmat Special ',liew Eage yrııphics Iııble ~indow t!elp

Window, for
Workgıoups

PC/TCP;~pµ;

NetBIOS

PC/TCP Kernel

PC/TCP NDIS Converter

Protocol Manager

NDIS Device Driver

Network Interface Caıd(Ethomet)

Figure 12-2: WindowsforWorkgroups andNetBIOS

lı
i=J.iL~:4?!~Jz1®1~1~J't :: +:~ı WGt

Figure 3.11 Windows for Workgroups with NetBIOS.

To install Windows for Workgroups in this manner, Windows must first be set up to use

the Microsoft LAN Manager option. This is usually a matter of selecting the LAN

Manager option from the Network window if it is not already the default setting. The

configuration files must also be changed to reflect the new architecture. The

AUTOEXEC.BAT file has the network initiation command, the network kernel driver,

and a NETBIOS command:

C:\WINDOWS\NET START

C:\PCTCP\ETHDRV

C:\PCTCP\NETBIOS.COM

A NETBIND can be performed instead of a NET START command, although the latter

is preferable. The NETBIOS command must come after the NETBIND or NET START
command.

The CONFIG.SYS file is similar to that seen earlier, with the same drivers. A sample

CONFIG.SYS file for this type of architecture looks like this:

90

::::VICE=C:\WINDOWS\PROTMAN.DOS /I:\C:\WINDOWS

:3VICE=C:\WINDOWS\EXP16.DOS

:EVICE=C:\PCTCP\DIS PKT.GUP

This starts the protocol manager, the card driver, and the NDIS packet converter. This

exampleuses the Intel EtherExpress 16 card driver.

ThePROTOCOL.INI file is the same as the previous example. A sample

PROTOCOL.INI file for the Intel EtherExpress 16 card looks like this:

[PKTDRV]

drivername=PKTDRV$

bindings=MS$EE16

intvec=Ox60

[MS$EE16]

DriverName=EXP16$

IOADDRESS=Ox360

IRQ=ll

IOCHRDY=Late

TRANSCEIVER=Thin Net (BNC/COAX)

Finally, the SYSTEM.INI file requires that the Windows for Workgroups network

driver be used and not the PC/TCP network driver. This might require editing the

SYSTEM.INI file, as noted earlier. The SYSTEM.INI file should contain the following

lines:

[boot]

network.drv=wfwnet.drv

91

:Doot.description]

~etwork.drv=Microsoft Windows for Workgroups (version 3.1)

:3B6Enh]

device=c:\pctcp\vpctcp.386

device=c:\pctcp\wfwftp.386

TimerCriticialSection=SOOOO

The last line in the (386Enh] section might have to be added manually. The version

number in the [boot.description] section changes to (version 3.11) with the later version

of Windows for Workgroups.

3 .4. 1. 3 Testing PC/TCP

After making all the changes previously mentioned, the DOS machine is

rebooted for testing. If no error messages are displayed when the new commands are

executed, the system is ready for testing the TCP/IP protocol stack. The simplest test is

to use ping to ensure that the TCP/IP software is talking to the local machine, then use it

to test the remote machines. Machine name information for other machines hasn't yet

been added to the PC/TCP DOS system, so IP addresses must be used with ping. The

following is an example of a ping command for the local machine (147.120.0.11), the

SCO UNIX server (147.120.0.1), and the Windows 95 machine (147.120.0.10) on the

sample network (which has not yet been installed and hence should not communicate):

C:\> ping 147.120.0.11

host responding, time 25 ms

Debugging information for interface ifcust Addr(6): 00 aa 00 20 18 bf

interrupts: O (2 receive, O transmit)

packets received: 2, transmitted: 3

receive errors: O, unknown types: O

92

runts: O, aligns: O, CRC: O, parity: O, overflow: O

too big: O, out of buffers: O, rev timeout: O, rev reset: O

~ransmit errors: O

collisions: O, underflows: O, timeouts: O, resets: O

lost crs: O, heartbeat failed: O

ARP statistics:

arps received: 1 (O requests, 1 replies)

bad: opcodes: O, hardware type: O, protocol type: O

arps transmitted: 2 (2 requests, O replies)

5 large buffers; 4 free now; minimum of 3 free

5 small buffers; 5 free now; minimum of 4 free

C: \>

C:\> ping 147.120.0.1

host responding, time 25 ms

Debugging information for interface ifcust Addr(6) 00 aa 00 20 18 bf

interrupts: O (5 receive, O transmit)

packets received: 5, transmitted: 6

receive errors: O, unknown types: O

runts: O, aligns: O, CRC: O, parity: O, overflow: O

too big: O, out of buffers: O, rev timeout: O, rev reset: O

93

~ransmit errors: O

collision~: O, underflows: O, timeouts: O, resets: O

lost crs: O, heartbeat failed: O

ARP statistics:

arps received: 2 (O requests, 2 replies)

bad: opcodes: O, hardware type: O, protocol type: O

arps transmitted: 3 (3 requests, O replies)

5 large buffers; 4 free now; minimum of 3 free

5 small buffers; 5 free now; minimum of 4 free

C: \>

C:\> ping 147.120.0.10

ping failed: Host unreachable: ARP failed

Debugging information for interface ifcust Addr(6): 00 aa 00 20 18 bf

interrupts: O (5 receive, O transmit)

packets received: 5, transmitted: 7

receive errors: O, unknown types: O

runts: O, aligns: O, CRC: O, parity: O, overflow: O

too big: O, out of buffers: O, rev timeout: O, rev reset: O

transmit errors: O

collisions: O, underflows: O, timeouts: O, resets: O

94

lost crs: O, heartbeat failed: O

::-~P statistics:

arps received: 2 (O requests, 2 replies)

bad: opcodes: O, hardware type: O, protocol type: O

arps transmitted: 4 (4 requests, O replies)

5 large buffers; 4 free now; minimum of 3 free

5 small buffers; 5 free now; minimum of 4 free

The message ping failed: Host unreachable for the last attempt is expected. PC/TCP

provides the user with diagnostic messages with each ping command. To suppress these

messages and simply get a success or fail message, the -z option can be used:

C:\> ping -z 147.120.0.11

host responding, time 25 ms

C: \>

C:\> ping -z 147.120.0.1

host responding, time 25 ms

C: \>

C:\> ping -z 147.120.0.10

ping failed: Host unreachable: ARP failed

If the ping command is not successful with the local address, either the network

interface card is configured incorrectly or the software installation has incorrect

parameters. Check the network card for the correct IRQ and memory settings and then

check the cable to ensure that it is connected properly and network terminators are in

95

place. The software must have the correct drivers loaded, as well as the machine name,

IP address, and similar information. If the local machine responds but the remote

machines do not, check the network connections. Try ping from one of the remote

machines to ensure that the DOS machine can be reached by the other machines.

Once the machines can successfully respond to a ping request, try ftp or telnet

from the DOS-based machine. An ftp attempt to log onto the SCO UNIX machine is

shown here:

FTP Software PC/TCP File Transfer Program 2.31 01/07/94 12:38

Copyright 1986-1993 by FTP Software, Inc. All rights reserved.

FTP Trying Open

220 tpci.tpci.com FTP Server (Version 5.60 #1) ready.

Userid for logging in on 147.120.0.1? tparker

331 Password required for tparker.

Password for logging in as tparker on 147.120.0.1? abcdefg

230 User tparker logged in.

ftp:147.120.0.1> ls

.profile

.lastlogin

.odtpref

trash

Initial.cit

XDesktop3

Transferred 265 bytes in O seconds

96

226 Transfer complete.

ftp:147.120.0.1> exit

This session, which displayed the listing of files on the SCO UNIX server, shows that

the ftp command worked properly. The FTP session was closed with the command exit.

97

CHAPTER FOUR

WINSOCK AND THE SOCJ<-.ET PROGRAMMING INTERFACE

4.1 Winsock
For some Windows and Windows 95 users, Winsock is the easiest method to get

into TCP/IP because it is available from many public domain, BBS, and online service

sites. There are several versions ofWinsock, some of which are public domain or

shareware. We will look at two versions ofWinsock, one for Windows 3.X and another

for Windows 95. We have chosen the popular Trumpet Winsock implementations for

both operating systems because they are shareware, readily available, and well

supported. Wi.nsock is short for Windows Sockets, originally developed by Microsoft.

Released in 1993, Windows Sockets is an interface for network programming in the

Windows environment. Microsoft has published the specifications for Windows

Sockets, hence making it an open application programming interface (API). The

Winsock API (called WSA) is a library of function calls, data structures, and

programming procedures that provide this standardized interface for applications. The

second release of Winsock, called Winsock version 2, was released in mid 1995.

4. 1. 1 Trumpet Winsock

Tru~pet Winsock is a shareware implementation ofWinsock produced by

Trumpet Software International. Trumpet Winsock is available for Windows 3 .X and

Windows 95 systems. Registration of the Winsock package, developed in Australia, is

$25 US. Trumpet Winsock lets us use several .different protocols including PPP and

SLIP for connection to the Internet or remote networks, direct connection using TCP/IP,

and the BOOTP protocol. Trumpet Winsock allows dynamic IP addressing, which is

necessary with many Internet Service Providers. The Trumpet Winsock files are usually

provided in an archive ZIP file, and should be extracted into a new subdirectory on our

system. The primary files in the Trumpet Winsock distribution are

WINSOCK.DLL: The primary protocol stack for Winsock

TCPMAN.EXE: Manages the communications between WINSOCK.DLL and the

network

98

-

TRUMPWSK.INI: Contains Winsock variable settings

HOSTS: A list of hosts that Winsock is aware of

SERVICES: A list of services supported by Winsock

PROTOCOL: A list of protocols supported by Winsock

There are a number of sample configuration files included in the archive; as well as

utilities such as PING and HOP. Some of the files in the Winsock archive, such as

HOSTS, PROTOCOL; and SERVICES, mirror UNIX files of the same name.

4.1.2 Installing Trumpet Winsock

The installation process for Trumpet Winsock is the same whether we are using

SLIP/PPP for connection or a packet driver for LAN-based operations. We begin the

installation by adding the directory holding the Trumpet Winsock files to our PATH.

The files should, of course, be extracted from the ZIP file they are usually supplied in.

After the path has been modified, we reboot our machine to effect the change.

We can create a Windows program group for the Trumpet Winsock system by adding a

new program group from the Program Manager menus. (Select File menu, the New

menu item, and then Program Group.) Create a title, such as Trumpet Winsock. for the

new program group.

Next, we create a Program Icon for the TCPMAN program (the primary

Trumpet Winsock program) by either creating a new Program Item from the Program

Manager or opening the File Manager and dragging the TCPMAN.EXE entry from its

directory to the Trumpet Winsock program group. Windows will prompt us for any

information it needs. The program icon is read from the distribution files if the path is

properly set.

To test the installation of the path and the Windows icon, we click the TCPMAN

icon. If we receive error messages, either the PATH is not set properly or the program

icon has not been properly defined. Because we are primarily interested in using

Winsock on a TCP/IP network, we ignore configuring PPP and SLIP and concentrate on

the TCP/IP stack.

4. 1 .3 Configuring the TCP /IP Packet Driver

Trumpet Winsock relies on a program called WINPKT to provide TCP/IP

packet capabilities under Windows. After we create a program group for Winsock, we

99

need to set up the packet driver information in the network files. We will need a packet

driver for our system, which is not included with most Trumpet Winsock distributions.

In many cases, the network card vendor includes a disk with a packet driver on it. If not,

one of the best sources for a packet driver is the Crynwr Packet Driver collection, a

library of different packet drivers available from many online, BBS, FTP, and WWW

sites. The packet driver specifications are added to our network startup batch file,

usually AUTOEXEC.BAT for DOS-based systems.

The process for configuring Trumpet Winsock for LAN operation is quite

simple. We set the IRQ and 1/0 address of the packet driver and add the packet driver to

our system. A typical entry in the network batch file looks like this:

ne2000 Ox60 2 Ox3 00

WINPKT Ox60

This sets the network to use an NE2000 (Novell) type card, with 1/0 address of

300H, IRQ of 2, and a vector of 60. Several configurations are usually provided with the

Trumpet Winsock distribution, although it is easy to derive our own from the network

interface card manufacturer's documentation. To set up Trumpet Winsock for a packet

driver, we use the Setup screen that appears when TCPMAN is first launched, or we use

the menus within TCPMAN to display the setup screen. Deselect both Internal SLIP and

Internal PPP settings. If either of them are checked, the packet driver will not launch

properly. Enter the IP address, netmask, name server IP address, and domain name

information. We may also modify the entries for Demand Load Time-out, MTU, TCP

RWIN, TCP MSS, and TCP RTO MAX. The default values used for a packet driver are

different than those for a SLIP/PPP setting. lfwe are using BOOTP or RARP to

determine our machine IP address, we enter the proper protocol name in the IP address

field.

The Packet Vector field should be set to the vector we used in the network card

description, or we can leave it as 00 to let Trumpet Winsock search for the packet

driver. After the configuration is saved, we restart TCPMAN and the network will be·

available (if the configuration and packet drivers are properly set). A ping command or

similar utility will verify the packet driver operation is correct.

100

4.2 The Socket Programming Interface

Because the original socket interface was developed for UNIX systems, today's

text has a decidedly UNIX-based orientation. However, the same principles apply to
most other operating systems that support TCP/IP.

4.2. 1 Development of the Socket Programming Interface

The basic structure of all socket programming commands lies with the unique

structure ofUNIX VO. With UNIX, both input and output are treated as simple

pipelines, where the input can be from anything and the output can go anywhere. The

UNIX I/O system is sometimes referred to as the open-read-write-close system, because

those are the steps that are performed for each I/O operation, whether it involves a file, a

device, or a communications port. Whenever a file is involved, the UNIX operating

system gives the file afile descriptor, a small number that uniquely identifies the file. A

program can use this file descriptor to identify the file at any time. (The same holds true

for a device; the process is the same.) A file operation uses an open function to return

the file descriptor, which is used for the read (transfer data to the user's process) or write

(transfer data from the user process to the file) functions, followed by a close function to

terminate the file operation. The open function takes a filename as an argument. The

read and write functions use the file descriptor number, the address of the buffer in

which to read or write the information, and the number of bytes involved. The close

function uses the file descriptor. The system is easy to use and simple to work with.

TCP/IP uses the same idea, relying on numbers to uniquely identify an end point

for communications (a socket). Whenever the socket number is used, the operating

system can resolve the socket number to the physical connector. An essential difference

between a file descriptor and a socket number is that the socket requires some functions

to be performed prior to the establishment of the socket (such as initialization). In

techno-speak, "a file descriptor binds to a specific fıJe or device when the open function

is called, but the socket can be created without binding them to a specific destination at

all (necessary for UDP), or bind them later (for TCP when the remote address is

provided)." The same open-read-write-close procedure is used with sockets. The process

was actually used literally with the first versions of TCP/IP. A special file called

/dev/tep was used as the device driver. The complexity added by networking made this

approach awkward, though, so a library of special functions (the API) was developed.

101

The essential steps of open, read, write, and close are still followed in the protocol API.

4.2.2 Socket Services

There are three types of socket interfaces defined in the TCP/IP API. A socket

can be used for TCP stream communications, in which a connection between two

machines is created. It can be used for UDP datagram communications, a

connectionless method of passing information between machines using packets of a

predefined format. Or it can be used as a rmv datagram process, in which the datagrams

bypass the TCP/UDP layer and go straight to IP. The latter type arises from the fact that
the socket API was not developed exclusively for TCP/IP.

The presence of all three types of interfaces can lead to problems with some

parameters that depend exclusively on the type of interface. We must always bear in

mind whether TCP or UDP is used. There are six basic communications commands that
the socket API addresses through the TCP layer:

>- open: Establishes a socket

>- send: Sends data to the socket

>- receive: Receives data from a socket

>- status: Obtains status information about a socket

>- close: Terminates a connection

>- abort: Cancels an operation and terminates the connection

All six operations are logical and used as we would expect. The details for each

step can be quite involved, but the basic operation remains the same. Many of the

functions have been seen in previous days when dealing with specific protocols in some

detail. Some of the functions (such as open) comprise several other functions that are

available if necessary (such as establishing each end of the connection instead ofboth

ends at once). Despite the formal definition of the functions within the API

specifications, no formal method is given for how to implement them. There are two

logical choices: synchronous, or blocking, in which the application waits for the

command to complete before continuing execution; and asynchronous, or nonblocking,

in which the application continues executing while the API function is processed. In the

latter case, a function call further in the application's execution can check the API

102

functions' success and return codes. The problem with the synchronous or blocking

method is that the application must wait for the function call to complete. If timeouts are

involved, this can cause a noticeable delay for the user.

4.2.2.1 Transmission Control Block

The Transmission Control Block (TCB) is a complex data stnıcture that contains

details about a connection. The full TCB has over fifty fields in it. The existence of the

TCB and the nature of the information it holds are key to the behavior of the socket

interface.

4.2.2.2 Creating a Socket

The API lets a user create a socket whenever necessary with a simple function

call. The function requires the family of the protocol to be used with the socket (so the

operating system knows which type of socket to assign and how to decode information),

the type of communication required, and the specific protocol. Such a function call is

written as follows:

socket(family, type, protocol)

The family of the protocol actually specifies how the addresses are interpreted.

Examples of families are TCP/IP (coded as AF_INET), Apple's AppleTalk

(AF_ APPLET ALK), and UNIX :filesystems (AF_ UNIX). The exact protocol within the

family is specified as the protocol parameter. When used, it specifically indicates the

type of service that is to be used.

The type parameter indicates the type of communications used. It can be a

connectionless datagram service (coded as SOCK_DGRAM), a stream delivery service

(SOCK _STREAM), or a raw type (SOCK_ RAW). The result from the function call is

an integer that can be assigned to a variable for further checking.

4.2.2.3 Binding the Socket

Because a socket can be created without any binding to an address, there must be

a function call to complete this process and establish the full connection. With the

TCP/IP protocol, the socket function does not supply the local port number, the

103

destination port, or the IP address of the destination. The bind function is called to

establish the local port address for the connection. Some applications (especially on a

server) want to use a specific port for a connection. Other applications are content to let

the protocol software assign a port. A specific port can be requested in the bind

function. If it is available, the software allocates it and returns the port information. If

the port cannot be allocated (it might be in use), a return code indicates an error in port

assignment.

The bind function has the following format:

bind(socket, local . address, address _length)

socket is the integer number of the socket to which the bind is completed; local_ address

is the local address to which the bind is performed; and address _length is an integer that

gives the length of the address in bytes. The address is not returned as a simple number

but has the structure shown in Figure 4.1 .

.1>.,1:1..'<l~li (e:y-t~ı; ?. through ::ı) I
-- --- - Aı:Hıess (I!,ytes 6 throu,;;h 9) :i

::

Figure 4.1 Address structure used by the socket API.

The address data structure (which is usually called sockaddr for socket address)

has a 16-bit Address Family field that identifies the protocol family of the address. The

entry in this field determines the format of the address in the following field (which

might contain other information than the address, depending on how the protocol has

defined the field). The Address field can be up to 14 bytes in length, although most

protocols do not need this amount of space.

· TCP/IP has a family address of 2, following which the Address field contains

both a protocol port number (16 bits) and the IP address (32 bits). The remaining eight

bytes are unused. This is shown in Figure 4.2. Because the address family defines how

the Address field is decoded, there should be no problem with TCP/IP applications

understanding the two pieces of information in the Address field.

104

.. ~ddıt $le F.a~rıi.ly(Vi4l~~~ 2) L . Protoe ol Pott (16 bit;;)

IP Acldıi;ss (32 bits)

Unused

Unused

Figure 4.2 The address structure for TCP/IP.

4.2.2.4 Connecting to the Destination

After a local socket address and port number have been assigned, the destination

socket can be connected. A one-ended connection is referred to as being in an

unconnected state, whereas a two-ended (complete) connection is in a connected state.

After a bind function, an unconnected state exists. To become connected, the destination

socket must be added to complete the connection.

To establish a connection to a remote socket, the connect function is used. The

connect function's format is

connect(socket, destination_ address, address _length)

The socket is the integer number of the socket to which to connect; the

destination address is the socket address data structure for the destination address

(using the same format as shown in Figure 4. 1); and the address _length is the length of

the destination address in bytes.

The manner in which connect functions is protocol-dependent. For TCP, connect

establishes the connection between the two endpoints and returns the information about

the remote socket to the application. If a connection can't be established, an error

message is generated. For a connectionless protocol such as UDP, the connect function

is still necessary but stores only the destination address for the application.

4.2.2.5 The open Command

The open command prepares a communications port for communications. This

is an alternative to the combination of the functions shown previously, used by

applications for specific purposes. There are really three kinds of open commands, two

105

~

of which set a server to receive incoming requests and the third used by a client to

initiate a request. With every open command, a TCB is created for that connection.

The three open commands are an unspecified passive open (which enables a server to

wait for a connection request from any client), a fully specified passive open (which

enables a server to wait for a connection request from a specific client), and an active

open (which initiates a connection with a server). The input and output expected from

each command are shown in Table 4.1.

Table 4.1 Open command parameters.

I Type II Input II Output I
local

Unspecified Local port connection

name

local
Optional: timeout, precedence, security, maximum

connectionpassıve open
segment size name

Local port, remote IP address, remote port local
Fully specified

Optional: timeout, precedence, security, maximum connection
passıve open

segment size name

Local port, destination IP address, destination port local

Active open Optional: timeout, precedence, security, maximum connection

segment size name

When an open command is issued by an application, a set of functions within the

socket interface is executed to set up the TCB, initiate the socket number, and establish

preliminary values for the variables used in the TCB and the application. The passive

open command is issued by a server to wait for incoming requests. With the TCP

(connection-based) protocol, the passive open issues the following function calls:

socket: Creates the sockets and identifies the type of communications.

bind: Establishes the server socket for the connection.

106

•

listen: Establishes a client queue.

accept: Waits for incoming connection requests on the socket.

The active open command is issued by a client. For TCP, it issues two functions:

socket: Creates the socket and identifies the communications type.

connect: Identifies the server's IP address and port; attempts to establish

communications.

If the exact port to use is specified as part of the open command, a bind function call

replaces the connect function.

4.2.2.6 Sending Data

There are five functions within the Socket API for sending data through a

socket. These are send, sendto, sendmsg, write, and writev. Not surprisingly, all these

functions send data from the application to TCP. They do this through a buffer created

by the application (for example, it might be a memory address or a character string),

passing the entire buffer to TCP. The send, write, and writev fünctions work only with a

connected socket because they have no provision to specify a destination address within

their function call. The format of the send function is simple. It takes the local socket

connection number, the buffer address for the message to be sent, the length of the

message in bytes, a Push flag, and an Urgent flag as parameters. An optional timeout

might be specified. Nothing is returned as output from the send function. The format is

send(socket, buffer_ address, length, flags)

The sendto and sendmsg functions are similar except they enable an application to send

a message through an unconnected socket. They both require the destination address as

part of their fünction call. The sendmsg fünction is simpler in format than the sendto

function, primarily because another data structure is used to hold information. The

sendmsg function is often used when the format of the sendto function would be

awkward and inefficient in the application's code. Their formats are

sendto(socket, buffer_ address, length.flags, destination, address _length)

sendmsg(socket, message _structure,flags)

107

The last two parameters in the sendto function are the destination address and the length

of the destination address. The address is specified using the format shown in Figure

4. 1. The message_ structure of the sendmsg function contains the information left out of

the sendto function call. The format of the message structure is shown in Figure 4.3.

Pointer to Socket Address

Size of Socket Address(inbytes)

Pointer to iovectorList (Message)

Lengthof iovector list

Destination Address

Length of Desination Address

Figure 4.3 The message structure used by sendmsg.

The fields in the sendmsg message structure give the socket address, size of the

socket address, a pointer to the iovector, which contains information about the message

to be sent, the length of the iovector, the destination address, and the length of the

destination address. The iovector is an address for an array that points to the message to

be sent. The array is a set of pointers to the bytes that comprise the message. The format

of the iovector is simple. For each 32-bit address to a memory location with a chunk of

the message, a corresponding 32-bit field holds the length of the message in that

memory location. This format is repeated until the entire message is specified. This is

shown in Figure 4.4. The iovector format enables a noncontiguous message to be sent.

In other words, the first part of the message can be in one location in memory, and the

rest is separated by other information. This can be useful because it saves the

application from copying long messages into a contiguous location.

Pointer to I\.fessage Block 1 (32 bits)

Length ofiviessage in BIoc k 1 (32 bits)

Pointer to I\ı1'.essageBlock 2 (32 bits)

Length of Ivleasage in Block 2 (32 bits)

Pointer to Ivless age in Block n (32 bits)

Length of:lviessage in Block n (32 bits)

Figure 4.4 The iovector format.

108

-

The write function takes three arguments: the socket number, the buffer address of the

message to be sent, and the length of the message to send. The format of the function

call is

write(socket, buffer _ address, length)

The writev function is similar to write except it uses the iovector to hold the message.

This lets it send a message without copying it into another memory address. The format

ofwritev is

writev(socket, iovector, lengths

where length is the number of entries in iovector.

The type of function chosen to send data through a socket depends on the type of

connection used and the level of complexity of the application. To a considerable

degree, it is also a personal choice of the programmer.

4.2.2.7 Receiving Data

Not surprisingly, because there are five functions to send data through a socket,

there are five corresponding functions to receive data: read, readv, recv, recvfrom, and

recvmsg. They all accept incoming data from a socket into a reception buffer. The

receive buffer can then be transferred from TCP to the application.

The read function is the simplest and can be used only when a socket is connected. Its
format is

read(socket, buffer, length)

The first parameter is the number of the socket or a file descriptor from which to read

the data, followed by the memory address in which to store the incoming data, and the

maximum number of bytes to be read.

As with writev, the readv command enables incoming messages to be placed in

noncontiguous memory locations through the use of an iovector. The format of readv is

readv(socket, iovector, length)

109

length is the number of entries in the iovector. The format of the iovector is the same as

mentioned previously and shown in Figure 4.4.
The recv function also can be used with connected sockets. It has the format

recv(socket, buffer _address, length,fl.ags)

which corresponds to the send function's arguments.
The recvfrom and recvmsg functions enable data to be read from an unconnected

socket. Their formats include the sender's address:

recvfrom(socket, buffer _ address, length.flags, source _address, address _length)

recvmsg(socket,message _structure,jlags)

The message structure in the recvmsg function corresponds to the structure in sendmsg.

(Figure 4.3.)

4.2.2.8 Server Listening
A server application that expects clients to call in to it has to create a socket

(using socket), bind it to a port (with bind), then wait for incoming requests for data.

The listen function handles problems that could occur with this type of behavior by

establishing a queue for incoming connection requests. The queue prevents bottlenecks

and collisions, such as when a new request arrives before a previous one has been

completely handled, or two requests arrive simultaneously. The listen function

establishes a buffer to queue incoming requests, thereby avoiding losses. The function

lets the socket accept incoming connection requests, which are all sent to the queue for

future processing. The function's format is

listen(sacket, queue _length)

where queue _length is the size of the incoming buffer. If the buffer has room, incoming

requests for connections are added to the buffer and the application can deal with them

in the order of reception. If the buffer is full, the connection request is rejected.

110

After the server has used listen to set up the incoming connection request queue, the

accept function is used to actually wait for a connection. The format of the function is

accept(soeket, address, length)

socket is the socket on which to accept requests; address is a pointer to a structure

similar to Figure 4. 1; and length is a pointer to an integer showing the length of the

address.

When a connection request is received, the protocol places the address of the

client in the memory location indicated by the address parameter, and the length of that

address in the length location. It then creates a new socket that has the client and server

connected together, sending back the socket description to the client. The socket on

which the request was received remains open for other connection requests. This

enables multiple requests for a connection to be processed, whereas if that socket was

closed down with each connection request, only one client/server process could be

handled at a time.

One possible special occurrence must be handled on UNIX systems. It is

possible for a single process to wait for a connection request on multiple sockets. This

reduces the number ofprocesses that monitor sockets, thereby lowering the amount of

overhead the machine uses. To provide for this type ofprocess, the select function is

used. The format of the function is

select(num_dese, in_ dese, out_ dese, exeep _ dese, timeout)

num _ dese is the number of sockets or descriptors that are monitored; in_ dese and

out_ dese are pointers to a bit mask that indicates the sockets or file descriptors to

monitor for input and output, respectively; exeep _ dese is a pointer to a bit mask that

specifies the sockets or file descriptors to check for exception conditions; and timeout is

a pointer to an integer that indicates how long to wait (a value of O indicates forever).

To use the select function, a server creates all the necessary sockets first, then calls

select to determine which ones are for input, output, and exceptions.

111

4.2.2.9 Getting Status Information

Several status functions are used to obtain information about a connection. They

can be used at any time, although they are typically used to establish the integrity of a

connection in case of problems or to control the behavior of the socket. The status

functions require the name of the local connection, and they return a set of information,

which might include the local and remote socket names, local connection name, receive

and send window states, number of buffers waiting for an acknowledgment, number of

buffers waiting for data, and current values for the urgent state, precedence, security,

and timeout variables. Most of this information is read from the Transmission Control

Block (TCB). The format of the information and the exact contents vary slightly,

depending on the implementation.

The function getsockopt enables an application to query the socket for

information. The function format is

getsockopt(socket, level, option id, optionresult, length)

socket is the number of the socket; level indicates whether the function refers to the

socket itself or the protocol that uses it; option _id is a single integer that identifies the

type of information requested; option _result is a pointer to a memory location where the

function should place the result of the query; and length is the length of the result.

The corresponding setsockopt function lets the application set a value for the socket.

The function's format is the same as getsockopt except that option _result points to the

value that isto be set, and length is the length of the value.

Two functions provide information about the local address of a socket. The getpeername

function returns the address of the remote end. The getsockname function returns the

local address of a socket. They have the following formats:

getpeername(socket, destination_ address, address _length)

getsockname(socket, local_ address, address _length)

The addresses in both functions are pointers to a structure of the format shown in Figure

4.1. Two host name functions for BSD UNIX are gethostname and sethostname, which

112

enable an application to obtain the name of the host and set the host name (if

permissions allow). Their formats are as follows:

sethostname(name, length)

gethostname(name, length)

The name is the address of an array that holds the name, and the length is an integer that

gives the name's length.
A similar set of functions provides for domain names. The functions setdomainname

and getdomainname enable an application to obtain or set the domain names. Their

formats are

setdomainname(name, length)

getdomainname(name, length)

The parameters are the same as with the sethostname and gethostname functions, except

for the format of the name (which reflects domain name format).

4.2.2. 1 O Closing a Connection
The close function closes a connection. It requires only the local connection

name to complete the process. It also takes care of the TCB and releases any variable

created by the connection. No output is generated.

The close function is initiated with the call

close(socket)

where the socket name is required. If an application terminates abnormally, the

operating system closes all sockets that were open prior to the termination.

113

I

4.2.2.11 Aborting a Connection

The abort function instructs TCP to discard all data that currently resides in send

and receive buffers and close the connection. It takes the local connection name as

input. No output is generated. This function can be used in case of emergency shutdown

routines, or in case of a fatal failure of the connection or associated software.

The abort function is usually implemented by the close() call, although some special

instructions might be available with different implementations.

4.2.2. 12 UNIX Forks

UNIX has two system calls that can affect sockets: fork and exec. Both are

frequently used by UNIX developers because of their power. (In fact, forks are one of

the most powerfül tools UNIX offers, and one that most other operating systems lack)

For simplicity, we deal with the two functions as though they perform the same task.

A fork call creates a copy of the existing application as a new process and starts

executing it The new process has all the original's file descriptors and socket

information. This can cause a problem if the application programmer didn't take into

account the fact that two (or more) processes try to use the same socket (or file)

simultaneously. Therefore, applications that can fork have to take into account potential

conflicts and code around them by checking the status of shared sockets.

The operating system itself keeps a table of each socket and how many processes

have access to it. An internal counter is incremented or decremented with each process's

open or close function call for the socket. When the last process using a socket is

terminated, the socket is permanently closed. This prevents one forked process from

closing a socket when its original is still using it.

114

CONCLUSION

TCP/UDP are the standard, mutable entries networking protocols. All modern operating
systems offer TCP support and most large networks rely on TCP for much of their

network traffic. This is a technology for connecting dissimilar systems. Many standard

connectivity utilities are available to access and transfer data between dissimilar

systems, including File Transfer Protocol and Telnet. It provides a robust, scalable,

cross-platform client/server framework. TCP/IP offers the socket interface, which is

ideal for developing client/server applications that can run on Sockets-compliant stacks

from other venders. Sockets applications can also advantage of other networking

protocols such as NWLink used in Novell Net Ware networks. TCP/IP provides a

method of gaining access to the Internet. The internet consists of thousands of network

wordwide connecting research facilities, universities, libraries, government agencies and
private companies.

115

REFERENCES

[1] James Chellis, Charles Perkings, Matthew Strebe, "Networking Essentials",

SYBEX Publishers 1999.

[2] James Chellis, "Windows 2000 Network Infra Structure" SYBEX Publishers 2000

[3] Charles W. "Understanding TCP/IP" BPB Publishers 1996

http :I /www.us-epanorama.net

http :I /www.microsoft.com

http://www.commweb.com

http :I /www.oreily.com

116

	Page 1
	Titles
	NEAR EAST UNIVERSITY
	Faculty of Engineering

	Images
	Image 1
	Image 2

	Page 2
	Titles
	ACKNO\VLEDGE1"1ENTS

	Images
	Image 1

	Page 3
	Titles
	ABSTRACT

	Page 4
	Titles
	TABLE OF CONTENTS
	ACKNOWLEDEGMENT ı
	ABSTRACT ıı
	TABLE OF CONTENTS ııı
	INTRODUCTION 1
	CHAPTER ONE: OPEN SYSTEMS, STANDARDS, AND
	PROTOCOLS 3
	1. 1 Open Systems 3
	1 .2 Network Architectures 6
	1.3 Layers 13
	1 .4 Terminology and Notations 17

	Page 5
	Titles
	CHAPTER T\VO: TCP and UDP

	Images
	Image 1

	Page 6
	Titles
	2. 7 Transmission Control Blocks and Flow Control 45
	2.8 TCP Protocol Data Units 47
	2.9 TCP and Connections 49
	2.10 User Datagram Protocol (UDP) 54
	CHAPTER THREE: TCP/UDP and Networks 56
	3. I TCP/UDP and Other Protocols 56
	3.2 Optional TCP/UDP Services 66

	Images
	Image 1

	Page 7
	Titles
	3 .3 Setting Up a Sample TCP/IP Network: Servers 7 I
	3.4 Setting Up a Sample TCP/IP Network: DOS and Windows
	Clients 78
	CHAPTER_FOUR: WINSOCK AND THE SOCKET
	PROGRAMMING INTERFACE 98
	4.1 Winsock 98

	Images
	Image 1

	Page 8
	Titles
	4.2 The Socket Programming Interface 101
	CONCLUSION 115
	REFERENCES 116

	Images
	Image 1

	Page 9
	Titles
	INTRODUCTION

	Images
	Image 1

	Page 10
	Images
	Image 1
	Image 2
	Image 3

	Page 11
	Titles
	CHAPTER ONE
	OPEN SYSTEMS, STANDARDS AND PROTOCOLS

	Images
	Image 1
	Image 2

	Page 12
	Images
	Image 1
	Image 2
	Image 3

	Page 13
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 14
	Titles
	_ • ; etwork Architectures

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 15
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 16
	Titles
	••
	\
	II
	I

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 17
	Images
	Image 1
	Image 2
	Image 3

	Page 18
	Images
	Image 1
	Image 2
	Image 3

	Page 1
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 2
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 3
	Titles
	1.3 Layers

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 4
	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 5
	Images
	Image 1
	Image 2

	Page 6
	Images
	Image 1

	Page 7
	Titles
	1.4 Terminology and Notations

	Images
	Image 1

	Page 8
	Images
	Image 1

	Page 9
	Images
	Image 1

	Page 10
	Titles
	"""'"'I""'._ . - cc·ess point
	~- '\"ı
	••

	Images
	Image 1
	Image 2

	Page 11
	Images
	Image 1
	Image 2
	Image 3

	Page 12
	Titles
	/ ı 3
	l
)
	"--------~·

	Images
	Image 1
	Image 2
	Image 3

	Page 13
	Titles
	- Standards

	Images
	Image 1
	Image 2

	Page 14
	Images
	Image 1
	Image 2

	Page 15
	Images
	Image 1

	Page 16
	Titles
	1.6 Protocols

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 17
	Images
	Image 1

	Page 18
	Titles
	I··;)~ I·;~
	/8~ \. .• ""
	lu-~u, N-mu IN~PDul IN-:Oui
	/- I
	lıı-:uı ı H-Pnul l}~U,
	lıH~JI Jıı-~ui IH-PD~I H-PDU
	,_ \ I

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 19
	Images
	Image 1

	Page 20
	Titles
	\
	\._
	',
	\

	Images
	Image 1
	Image 2

	Page 1
	Images
	Image 1
	Image 2

	Page 2
	Titles
	CHAPTER TWO
	TCP AND UDP
	_ .ı What Is TCP?

	Images
	Image 1
	Image 2

	Page 3
	Titles
	I
	>._ ,/
	\

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1
	Table 2
	Table 3

	Page 4
	Titles
	llowing a Message

	Images
	Image 1

	Page 5
	Images
	Image 1
	Image 2

	Page 6
	Images
	Image 1

	Page 7
	Images
	Image 1

	Tables
	Table 1

	Page 8
	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 9
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 10
	Titles
	t t tt tj

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 11
	Titles
	TCP Communications with the Upper Layers

	Images
	Image 1

	Page 12
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 13
	Titles
	5 Passive and Active Ports

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 14
	Images
	Image 1
	Image 2

	Page 15
	Titles
	2.7 Transmission Control Blocks and Flow Control

	Images
	Image 1

	Page 16
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Tables
	Table 1

	Page 17
	Titles
	TCP Protocol Data Units

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 18
	Titles
	.,

	Images
	Image 1

	Page 19
	Titles
	__ 9 TCP and Connections

	Images
	Image 1

	Page 20
	Images
	Image 1

	Tables
	Table 1

	Page 21
	Images
	Image 1

	Tables
	Table 1

	Page 22
	Images
	Image 1

	Page 23
	Titles
	.~ı -

	Images
	Image 1

	Tables
	Table 1
	Table 2

	Page 24
	Titles
	,,
	ser Datagram Protocol (UDP)

	Images
	Image 1
	Image 2

	Page 25
	Images
	Image 1

	Page 26
	Titles
	TCP/UDP AND NETWORKS
	I H>I
	'
	CHAPTER THREE
	P'UDP and Other Protocols

	Images
	Image 1
	Image 2

	Page 27
	Titles
	•I

	Images
	Image 1

	Tables
	Table 1

	Page 28
	Images
	Image 1

	Page 29
	Titles
	,,

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 30
	Titles
	[

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 1
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1

	Page 2
	Titles
	CJ

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Tables
	Table 1

	Page 3
	Titles
	[

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 4
	Images
	Image 1

	Page 5
	Images
	Image 1
	Image 2
	Image 3

	Page 6
	Titles
	__ Optional TCP/UDP Services
	ı IIPortllDescription
	======~
	======~

	Images
	Image 1

	Page 7
	Titles
	ıı==========;DI year I
	~ıı:==.:=o=f=t=he=D=a=y==:i~II Returns a quotation I
	il

	Images
	Image 1
	Image 2

	Page 8
	Images
	Image 1

	Page 9
	Images
	Image 1

	Page 10
	Titles
	70

	Images
	Image 1

	Page 11
	Titles
	Setting Up a Sample TCP/IP Network: Servers

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 12
	Page 13
	Images
	Image 1

	Page 14
	Titles
	ing system. SCO UNIX and most System V Release 4 operating systems have the
	ple shows the hwconfıg output and the output from the command with the -h
	on to provide long formatting with headers (making it is easier to read):
	74

	Images
	Image 1

	Page 15
	Images
	Image 1

	Tables
	Table 1

	Page 16
	Titles
	Ll\reserved II II
	..::;J

	Images
	Image 1

	Page 17
	Images
	Image 1

	Page 18
	Titles
	3.4 Setting Up a Sample TCP/IP Network: DOS and Windows Clients

	Images
	Image 1

	Page 19
	Titles
	Figure 12 -1: PC/TCP and Windows for Work groups Stacks Using ND IS
	79

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 20
	Titles
	80

	Images
	Image 1

	Page 1
	Images
	Image 1

	Page 2
	Images
	Image 1

	Page 3
	Images
	Image 1

	Page 4
	Images
	Image 1

	Page 5
	Images
	Image 1

	Page 6
	Images
	Image 1

	Page 7
	Titles
	o

	Images
	Image 1

	Page 8
	Images
	Image 1

	Page 9
	Titles
	89

	Images
	Image 1

	Page 10
	Titles
	lı
	i
	=J.iL~:4?!~Jz1®1~1~J't :: :~ı WGt

	Images
	Image 1
	Image 2

	Page 11
	Images
	Image 1

	Page 12
	Images
	Image 1

	Page 13
	Titles
	93

	Images
	Image 1

	Page 14
	Titles
	94

	Images
	Image 1

	Page 15
	Images
	Image 1

	Page 16
	Images
	Image 1

	Page 17
	Images
	Image 1

	Page 18
	Titles
	CHAPTER FOUR
	WINSOCK AND THE SOCJ<-.ET PROGRAMMING INTERFACE
	4.1 Winsock
	-

	Page 19
	Images
	Image 1

	Page 20
	Images
	Image 1

	Page 1
	Titles
	4.2 The Socket Programming Interface

	Images
	Image 1

	Page 2
	Page 3
	Page 4
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 5
	Images
	Image 1

	Page 6
	Titles
	•

	Tables
	Table 1

	Page 7
	Page 8
	Titles
	-

	Images
	Image 1

	Tables
	Table 1

	Page 9
	Images
	Image 1
	Image 2

	Page 10
	Page 11
	Images
	Image 1

	Page 12
	Images
	Image 1

	Page 13
	Titles
	I

	Images
	Image 1
	Image 2

	Page 14
	Images
	Image 1

	Page 15
	Titles
	CONCLUSION

	Images
	Image 1

	Page 16
	Titles
	REFERENCES

