
 
NEAR EAST UNIVERSITY 

 
GRADUATE SCHOOL OF APPLIED AND SOCIAL 

SCIENCES 
 
 
 
 
 

INTELLIGENT MOVING OBJECT RECOGNITION 
SYSTEM  

 
 
 

Harun Bareke 
 
 

Master Thesis 
 
 
 

Department of Electrical and Electronic 
Engineering 

 
 
 
 
 

Nicosia - 2006 



 i

ACKNOWLEDGEMENT 

 
First, i would like to thank my supervisor Assoc. Professor Dr Adnan Khashman for his 

invaluable advice and belief in my work and myself over the course of this MSc. Degree 

 

Second, I wish to special thank my parents, my sister and my fiancée for their constant 

encouragement, support and patience during the preparation of this thesis 

 

Third, I would like to thank Research Assistant Boran ŞEKEROĞLU for his helps 

about the program and answers my endless questions. I benefited from his source code 

about Backpropagation algorithm. 

 

Finally, I would like to express my thankfulness to all my family for their patience and 

advice. 



 ii

ABSTRACT 
 

Intelligent systems technology applications continued to create and demonstrate important new 

capabilities. Several investigations were conducted to increase the robustness and safety of future 

systems in areas such as security applications. The security of border areas is the most important 

problem of the any country. Therefore these areas should always be monitored.  

 

This thesis introduces an intelligent system, which can be applied in the security applications. 

The system is called Intelligent Moving Object Recognition System (IMORS). The ability of the 

system is extremely useful in border areas, buffer zones and restricted areas. The IMORS helps 

operators at border. This thesis first gives brief information about Artificial Neural Networks and 

Digital Image Processing. Then, the developed algorithms of moving object detection, object 

extraction and object recognition are described in detail. The system recognizes humans, vehicles 

and animals in observed areas. 
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INTRODUCTION 
 

Intelligent Moving Object Detection System based on computer vision aims to secure border 

areas, buffer zones and restricted areas from images captured by cameras. The system detects 

moving object, extract the object and recognize the object. Remote monitoring of activities of 

moving vehicles and humans is a critical component in security applications.  

 

The Intelligent Moving Object Detection System has three key components; moving object 

detection, object extraction and object recognition. The aim of detecting phase is to detect a 

moving object. The most popular approaches are background subtraction and optical flow. 

Background subtraction detects moving objects by subtracting estimated background models 

from images. This method is sensitive to illumination changes and small movement in the 

background, e.g. leaves of trees. Many techniques have been proposed to overcome this problem 

[1], [2]. However, a common problem of background subtraction is that it requires a long time for 

estimating the background models. It usually takes several seconds for background model 

estimation because the speed of illumination changes and small movement in the background are 

very slow. Optical flow also has a problem caused by illumination changes since its approximate 

constraint equation basically ignores temporal illumination changes [3]. Also this technique has 

too complex equations and it is not suitable for real-time application. In this thesis, the new 

method for detecting moving objects is presented; this method receives a wide-angle camera 

image as input and compares the difference between consecutive images within a reference 

image.  

 

The goal of object extraction is to extract meaningful objects from an input image. Image 

extraction is important and one of the most difficult image analysis tasks. The new method is 

developed by the author. The method based on pixel values calculation. The method is presented 

in chapter 3. The image segmentation is a pre-processing phase for image recognition phase. An 

object recognition system is Backpropagation Neural Network. The Backpropagation algorithm is 

used in layered feed-forward ANNs. Backpropagation, also known as Error Backpropagation or 

the Generalized Delta Rule, is the most widely used supervised training algorithm for neural 

networks. 
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The used training database of the Backpropagation Neural Network is explained in detailed 

chapter IV. The usefulness of a set of algorithm parameters in the Backpropagation Neural 

Network system can only be determined by the system’s output, such as, recognition 

performance.  

 

In the remainder of Chapter 1, we present an overview of the Artificial Neural Network. Chapter 

2 gives the details of the Digital Image Processing. Chapter 3 presents the moving object 

detection and object extraction algorithms used in this Thesis. Chapter 4 provides the details of 

the Backpropagation Neural Network and its parameters. It also gives the experimental results for 

object recognition. 
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CHAPTER 1 
 

ARTIFICIAL NEURAL NETWORKS 
 

1.1 Overview 
 
This chapter presents a brief introduction to Artificial Neural Networks (ANNs). It also 

describes the Backpropagation Learning Algorithm.  

 

1.2 History of the Artificial Neural Networks 
 
ANN research has experienced three periods of extensive activity. The first peak in the 

1940s was due to McCullloch and Pitts' pioneering work [4]. The second occurred in the 

1960s with Rosenblatt's perceptron convergence theorems [5] and Minsky and Papert's 

work showing the limitations of a simple perceptron [6]. Minsky and Papert's results 

dampened the enthusiasm of most researchers; especially those in the computer science 

community. The resulting lull in neural network research lasted almost 20 years. Since 

the early 1980s, ANNs have received considerable renewed interest. The major 

developments behind this resurgence include Hopfield's energy approach [7] in 1982 

and the back-propagation learning algorithm for multilayer perceptrons (multilayer 

feedforward networks) first proposed by Werbos [8], reinvented several times, and then 

popularized by Rumelhart et al. [6] in 1986. 

 
1.3 Artificial Neural Networks 
 
Artificial Neural Networks are being touted as the wave of the future in computing. 

They are indeed self-learning mechanisms which do not require the traditional skills of 

a programmer. 
 

Artificial Neural Networks are relatively crude electronic models based on the neural 

structure of the brain. The brain basically learns from experience. It is natural proof that 

some problems that are beyond the scope of current computers are indeed solvable by 

small energy efficient packages. This brain modeling also promises a less technical way 

to develop machine solutions. This new approach to computing also provides a more 

graceful degradation during system overload than its more traditional counterparts. 

These biologically inspired methods of computing are thought to be the next major 
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advancement in the computing industry. Even simple animal brains are capable of 

functions that are currently impossible for computers. Computers do memorize things 

well, like keeping ledgers or performing complex math. But computers have trouble 

recognizing even simple patterns much less generalizing those patterns of the past into 

actions of the future.  

 

Now, advances in biological research promise an initial understanding of the natural 

thinking mechanism. This research shows that brains store information as patterns. 

Some of these patterns are very complicated and allow us the ability to recognize 

individual faces from many different angles. This process of storing information as 

patterns, utilizing those patterns, and then solving problems encompasses a new field in 

computing. This field, as mentioned before, does not utilize traditional programming 

but involves the creation of massively parallel networks and the training of those 

networks to solve specific problems. This field also utilizes words very different from 

traditional computing, words like behave, react, self-organize, learn, generalize, and 

forget. 
 

One type of network sees the nodes as ‘artificial neurons’. These are called artificial 

neural networks (ANNs). An artificial neuron is a computational model inspired in the 

natural neurons. Natural neurons receive signals through synapses located on the 

dendrites or membrane of the neuron. When the signals received are strong enough 

(surpass a certain threshold), the neuron is activated and emits a signal through the 

axon. This signal might be sent to another synapse, and might activate other neurons. 

 
The complexity of real neurons is highly abstracted when modeling artificial neurons. 

These basically consist of inputs (like synapses), which are multiplied by weights 

(strength of the respective signals), and then computed by a mathematical function, 

which determines the activation of the neuron. Another function (which may be the 

identity) computes the output of the artificial neuron (sometimes in dependence of a 

certain threshold). ANNs combine artificial neurons in order to process information. 
 

In Figure 1.1, various inputs to the network are represented by the mathematical 

symbol, x(n). Each of these inputs is multiplied by a connection weight. These weights 

are represented by w(n). In the simplest case, these products are simply summed, fed 
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through a transfer function to generate a result, and then output. This process lends itself 

to physical implementation on a large scale in a small package. This electronic 

implementation is still possible with other network structures that utilize different 

summing functions as well as different transfer functions. 

 

The higher a weight of an artificial neuron is, the stronger the input, which is multiplied 

by it will be. Weights can also be negative, so we can say that the signal is inhibited by 

the negative weight. Depending on the weights, the computation of the neuron will be 

different. By adjusting the weights of an artificial neuron we can obtain the output we 

want for specific inputs. But when we have an ANN of hundreds or thousands of 

neurons, it would be quite complicated to find by hand all the necessary weights. But 

we can find algorithms, which can adjust the weights of the ANN in order to obtain the 

desired output from the network. This process of adjusting the weights is called 

learning or training. 

 

 
 
 
 
. 
. 
. 
. 

 
 
 

Figure 1.1. An Artificial Neuron  
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1.4 Training an Artificial Neural Network 
 
Once a network has been structured for a particular application, that network is ready to 

be trained. To start this process the initial weights are chosen randomly. Then, the 

training, or learning, begins. 

 

There are two approaches to training - supervised and unsupervised. Supervised training 

involves a mechanism of providing the network with the desired output either by 

manually "grading" the network's performance or by providing the desired outputs with 

the inputs. Unsupervised training is where the network has to make sense of the inputs 

without outside help. 

 

The vast bulk of networks utilize supervised training. Unsupervised training is used to 

perform some initial characterization on inputs. However, in the full-blown sense of 

being truly self-learning, it is still just a shining promise that is not fully understood, 

does not completely work, and thus is relegated to the lab. 

 

1.4.1 Supervised training. 
 

In supervised training, both the inputs and the outputs are provided. The network then 

processes the inputs and compares its resulting outputs against the desired outputs. 

Errors are then propagated back through the system, causing the system to adjust the 

weights, which control the network. This process occurs over and over as the weights 

are continually tweaked. The set of data, which enables the training, is called the 

"training set." During the training of a network the same set of data is processed many 

times as the connection weights are ever refined. 

 

If a network simply can't solve the problem, the designer then has to review the input 

and outputs, the number of layers, the number of elements per layer, the connections 

between the layers, the summation, transfer, and training functions, and even the initial 

weights themselves. Those changes required to create a successful network constitute a 

process wherein the "art" of neural networking occurs. 
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Another part of the designer's creativity governs the rules of training. There are many 

laws (algorithms) used to implement the adaptive feedback required to adjust the 

weights during training. The most common technique is backward-error propagation, 

more commonly known as back-propagation. 

 

When finally the system has been correctly trained, and no further learning is needed, 

the weights can, if desired, be "frozen." In some systems this finalized network is then 

turned into hardware so that it can be fast. Other systems don't lock themselves in but 

continue to learn while in production use. 

 
1.4.1.1 Feedforward networks 

 
Perceptrons are the simplest type of feedforward networks that use supervised learning. 

A perceptron is comprised of binary threshold units arranged into layers. 

 
1.4.1.2 Hopfield networks  
 
The Hopfield net uses supervised learning and binary input [7]. A Hopfield net is very 

good for ASCII character recognition, where there are exact numerical values for each 

character. A Hopfield net can be used as a content addressable memory, but there are 

two limitations. There is only a limited amount of patterns that can be stored and 

recalled accurately, because if there are too many patterns, the Network may create a 

pattern different from the expected output, and will not result in a match. 

 

1.4.1.3 Single layer perceptron  
 

Single layer perceptron is supervised, and uses either binary or continuous input. A 

perceptron is used to check whether the input belongs in one of two classes. This then 

updates the weights. These weights and perceptrons values can vary vastly depending 

on the algorithm used to create them. Single layer perceptron can often learn to identify 

simple patterns 
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1.4.1.4 Multi layer perceptron  
 
Multi Layer Perceptron is also a supervised neural network [8]. It is a feed forward 

network, which means that it doesn't have any loops, and is restricted to finite input and 

output. They differ from single layer perceptrons in that they have many layers of 

perceptrons to go through. Many of the problems of single layer perceptrons were over 

come by Multi layer perceptrons, in Figure 1.2. 

 
1.4.1.5 Back-propagation network 
 
A back propagation neural network uses supervised learning, and the backpropagation-

learning algorithm [10]. This algorithm was responsible in large part for the 

reemergence of neural networks in the mid 1980s. In this thesis, the backpropagation 

networks will be used because a back propagation network with a single hidden layer of 

processing elements can model any continuous function to any degree of accuracy and it 

includes a small solution network and quick (forward) computational speed that permits 

training over a large input vector set. The more detailed information will be given in 

section 1.5. 

 

1.4.2 Unsupervised, or Adaptive Training 
 

The other type of training is called unsupervised training. In unsupervised training, the 

network is provided with inputs but not with desired outputs. The system itself must 

then decide what features it will use to group the input data. This is often referred to as 

self-organization or adoption. 

 

 

 

 

 

 

 

 
Figure 1.2: Perceptrons. (a) Single Layer Perceptron; (b) Multi-Layer Perceptron  
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At the present time, unsupervised learning is not well understood. This adaption to the 

environment is the promise, which would enable science fiction types of robots to 

continually learn on their own as they encounter new situations and new environments. 

Life is filled with situations where exact training sets do not exist. Some of these 

situations involve military action where new combat techniques and new weapons 

might be encountered. Because of this unexpected aspect to life and the human desire to 

be prepared, there continues to be research into, and hope for, this field. 

 

One of the leading researchers into unsupervised learning is Tuevo Kohonen, an 

electrical engineer at the Helsinki University of Technology. He has developed a self-

organizing network, sometimes called an auto associator that learns without the benefit 

of knowing the right answer. It is an unusual looking network in that it contains one 

single layer with many connections. The weights for those connections have to be 

initialized and the inputs have to be normalized. The neurons are set up to compete in a 

winner-take-all fashion.[11] 

 

Kohonen continues his research into networks that are structured differently than 

standard, feedforward, back-propagation approaches. Kohonen's work deals with the 

grouping of neurons into fields. Neurons within a field are "topologically ordered." 

Topology is a branch of mathematics that studies how to map from one space to another 

without changing the geometric configuration. The three-dimensional groupings often 

found in mammalian brains are an example of topological ordering. 

 

Kohonen has pointed out that the lack of topology in neural network models make 

today's neural networks just simple abstractions of the real neural networks within the 

brain. As this research continues, more powerful self-learning networks may become 

possible. But currently, this field remains one that is still in the laboratory. 
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1.4.2.1 Kohonen's Self organizing feature map  
 

The Self Organizing Feature Map uses unsupervised learning, and continuous data. It 

sets its self up as the human brain does, by putting nodes that have similar features close 

together, and makes stronger weighted connections between them as opposed to farther 

nodes. The Self-organizing Feature Map is often used in speech recognition because it 

adapts better to background noise then the Carpenter and Grossberg's net.[11] 

 

1.5 Back Propagation 
 

The back propagation algorithm is used in layered feed-forward ANNs. (Figure 1.4)  

Backpropagation, also known as Error Backpropagation or the Generalized Delta Rule, 

is the most widely used supervised training algorithm for neural networks. This means 

that the artificial neurons are organized in layers, and send their signals “forward”, and 

then the errors are propagated backwards. The network receives inputs by neurons in 

the input layer, and the output of the network is given by the neurons on an output 

layer. There may be one or more intermediate hidden layers. The backpropagation 

algorithm uses supervised learning, which means that we provide the algorithm with 

examples of the inputs and outputs we want the network to compute, and then the error 

(difference between actual and expected results) is calculated. The idea of the 

backpropagation algorithm is to reduce this error, until the ANN learns the training 

data. The training begins with random weights, and the goal is to adjust them so that the 

error will be minimal. 

 

 

 

 

 

 

 

 

 

 
Figure 1.3: A feedforward neural network is highlighting the connection from unit i to unit j [12].  
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Suppose we have a multilayered feedforward network of nonlinear (typically sigmoidal) 

units, as shown in Figure 1.7. I want to find values for the weights that will enable the 

network to compute a desired function from input vectors to output vectors. The 

equations that describe the network training and operation can be divided into two 

categories. First, the feed-forward calculations. These are used in both training mode 

and in the operation of the trained neural network. Second, the error back propagation 

calculations. These are applied only during training. But before we present the two 

categories of calculations, another important element must be described. This is the 

activation function that the algorithm will be based upon. 

 
1.5.1 The activation function 

 

An artificial neuron is the fundamental building block in a back propagation network. 

The input to the neuron is obtained as the weighted sum given by equation (1.1). 

 

1

n

i i
i

n e t O W
=

= ∑                                                   (1.1) 

 

 

 

In Figure 1.8, F is the activation function, which has a sigmoid form. The simplicity of 

the derivative of the sigmoid function justifies it s popularity and use as an activation 

function in training algorithms. With a sigmoid activation function, the output of the 

neuron is given by equation (1.2) and equation (1.3). 

( )o u t F n e t=                                                        (1.2) 

1( )
(1 e x p ( ) )

F n e t
n e t

=
+ −

                                            (1.3) 
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Figure 1.4: Artificial neuron. 
 

The derivative of the sigmoid function can be obtained as follows: 
 

2

( ) e x p ( )
(1 e x p ( ) )

F n e t n e t
n e t n e t

∂ −
=

∂ + −
 

      
1 exp( )

1 exp( ) 1 exp( )
net

net net
⎛ ⎞ ⎛ ⎞−

= ⎜ ⎟ ⎜ ⎟+ − + −⎝ ⎠ ⎝ ⎠
 

      (1 )o u t o u t= −  

       [ ]( ) 1 ( )F n e t F n e t= −                                                                    (1.4) 

 

Any other function can be used in the back propagation algorithm, as in shown in 

Figure 1.5.  

  

1.5.2 Feed forward calculations 
 

Figure 1.5 shows the most common configuration of a back propagation neural network. 

This is the simple three-layer back propagation model. A circle and each 

interconnection, with its associated weight, represent each neuron by an arrow. The 

neurons labeled b are bias neurons. 

 

Normalization of the input data prior to training is necessary. The values of the input 

data into the input layer must be in the range (0 - 1). The stages of the feed forward 

calculations can be described according to the layers. The suffixes i, h and j are used for 

input, hidden and output respectively. 
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Figure 1.5: Back propagation network structure [12]. 
 
 

 

 
 

Figure 1.6: An input layer neuron.[13] 
 
 
1.5.2.1 Input layer ( i ) 
 
Figure 1.6 shows a neuron in the input layer. The output of each input layer neuron is 

exactly equal to the normalized input. 

 

Input-Layer Output= Oi=Ii 

 

1.5.2.2 Hidden layer ( h ) 
 

Figure 1.7 describes a neuron in the hidden layer. The signal presented to a neuron in 

the hidden layer is equal to the sum of all the outputs of the input layer neurons 

multiplied by the associated connection weights, as in equation (1.5). 

 

h h hi iHidden Layer Input I W O− = =∑                                         (1.5) 

 

Each output of a hidden neuron is calculated using the sigmoid function. This is 
described in equation (1.6). 
 

1
1 exp( )h h

h

Hidden Layer Output O
I

− = =
+ −

                                  (1.6) 
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Figure 1.7: A Hidden layer neuron.[13] 

 
 
1.5.2.3 Output layer ( j ) 
 
Figure 1.8 describes a neuron in the output layer. The signal presented to a neuron in the 

output layer is equal to the sum of all the outputs of the hidden layer neurons multiplied 

by their associated connection weights plus the bias weights at each neuron, as in 

equation (1.7). 

 
j j jh h

h
Output Layer Input I W O− = =∑                                          (1.7) 

 

Each output of an output neuron is calculated using the sigmoid function in a similar 

manner as in the hidden layer. This is described in equation (1.8). 

 

1
1 exp( )j j

j

Output Layer Output O
I

− = =
+ −

                                                           (1.8) 

 
 

 
 

 
 

 
 

 

Figure 1.8: An output layer neuron.[13] 
 

HIDDEN 
NEURODE 

Hidden – Layer 
Input Ih 

Hidden - Layer 
Output Oh 

b 

OUTPUT 
NEURODE 

Output – Layer 
Input Ij 

Output - Layer 
Output Oj 

b 



 13

The set of calculations that has been described so far in the feed forward calculations 

can be carried out during the training phase as well as during the testing / running phase. 

 

1.5.3 Error back propagation calculations 
 
The error back propagation calculations are applied only during the training of the 

neural network. Vital elements in these calculations are described next. These include 

the error signal, some essential parameters and weight adjustment. 

 

1.5.3.1 Signal error 
 

During the network training, the feed forward output state calculation is combined with 

backward error propagation and weight adjustment calculations that represent the 

network's learning. Central to the concept of training a neural network is the definition 

of network error. Rumelhart and McClelland define an error term that depends on the 

difference between the output value an output neuron is supposed to have, called the 

target value Tj, and the value it actually has as a result of the feed forward calculations, 

OJ. The error term represents a measure of how well a network is training on a 

particular training set.  

2

1

( )
jn

p pj pj
j

E T O
=

= −∑                                                    (1.9) 

 

Equation (1.9) presents the definitions for the error. The subscript p denotes what the 

value is for a given pattern.  

 

 

 

 

 

 

 

 
Figure 1.9: Back Propagation of the Error in a Two-Layer Network  
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The aim of the training process is to minimize this error over all training patterns. From 

equation (1.10), it can be seen that the output of a neuron in the output layer is a 

function of its input, or Oj = f( Ij ). The first derivative of this function, f '( Ij ) is an 

important element in error back propagation. For output layer neurons, a quantity called 

the error signal is represented by Δj, which is defined in equation (1.10) and thus 

equation (1.11). 
 

' ( )( )f j j jf I T OΔ = −                                                              (1.10) 

( ) (1 )j j j jT O O O= − −                                                       (1.11) 

 

This error value is propagated back and appropriate weight adjustments are performed. 

This is done by accumulating the D's for each neuron for the entire training set, add 

them, and propagate back the error based on the grand total D. This is called batch 

(epoch) training. 

 

1.5.3.2 Essential parameters 
 
There are two essential parameters that do affect the learning capability of the neural 

network. First of all is the learning coefficient η which defines the learning 'power' of a 

neural network. Second, the momentum factor α which defines the speed at which the 

neural network learns. This can be adjusted to a certain value in order to prevent the 

neural network from getting caught in what is called local energy minima. Both rates 

can have a value between 0 and 1. 
 

1.5.3.3 Weight adjustment 
 
Each weight has to be set to an initial value. Random initialisation is usually performed. 

Weight adjustment is performed in stages. Starting at the end of the feed forward phase 

and going backward to the inputs of the hidden layer. 

 

1.5.3.4 Output-layer weights update 
 
The weights that feed the output layer (Wjh) are updated using equation (1.12). This also 

includes the bias weights at the output layer neurons. However, in order to avoid the 
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risk of the neural network getting caught in local minima, the momentum term can be 

added as in equation (1.13). 

 

( ) ( )jh jh j hW new W old Oη= + Δ                                                      (1.12) 

( ) ( ) [ ( )]jh jh j j jhW new W old O W oldη α δ= + Δ +                                          (1.13) 

 

Where δWjh (old) stands for the previous weight change. 
 

 

1.5.3.5 Hidden-layer weights update 
 
The error term for an output layer is defined in equation (1.11). For the hidden layer, it 

is not as simple to figure out a definition for the error term. However, a definition by 

Rumelhart and McClelland describes the error term for a hidden neuron as in equation 

(1.14) and, subsequently, in equation (1.15). 

 

'

0

( )
jn

h h jh j
j

f I W
=

Δ = Δ∑                                                        (1.14) 

0

(1 )
jn

h h h jh j
j

O O W
=

Δ = − Δ∑                                                     (1.15) 

The weight adjustments for the connections feeding the hidden layer from the input 

layers are now calculated in a similar manner to those feeding the output layer. These 

adjustments are calculated using equation (1.16). 

 

( ) ( ) [ ( )]hi hi h i hiW new W old O W oldη α δ= + Δ +                                     (1.16) 

 

The bias weights at the hidden layer neurons are updated, similarly, using equation 
(1.15). 

 

1.6 Summary 
 
This chapter provided a brief introduction to Artificial Neural Networks and also the 

detailed explanation about back propagation algorithm and formulas were presented. 

Supervised and Unsupervised training algorithms are introduced in section 1.4. Some 

well known algorithms are also explained briefly in the same section.  
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CHAPTER 2 
 

DIGITAL IMAGE PROCESSING 
 
2.1 Overview 
 
Digital image processing involves the manipulation and interpretation of digital images 

with the aim to make the data more usable for particular applications. This chapter 

introduces briefly the basic principles of image and digital image processing.  

 

2.2 What is an Image?  
 
Images are produced by a variety of physical devices, including still and video cameras, 

x-ray devices, electron microscopes, radar, and ultrasound, and used for a variety of 

purposes, including entertainment, medical, business (e.g. documents), industrial, 

military, civil (e.g. traffic), security, and scientific. The goal in each case is for an 

observer, human or machine, to extract useful information about the scene being 

imaged. 

 

We begin with certain basic definitions. An image defined in the "real world" is 

considered to be a function of two real variables, for example, a(x,y) with a as the 

amplitude (e.g. brightness) of the image at the real coordinate position (x,y). An image 

may be considered to contain sub-images sometimes referred to as regions-of-interest, 

ROIs, or simply regions. This concept reflects the fact that images frequently contain 

collections of objects each of which can be the basis for a region. In a sophisticated 

image processing system it should be possible to apply specific image processing 

operations to selected regions. Thus one part of an image (region) might be processed to 

suppress motion blur while another part might be processed to improve colour rendition. 

 

A digital image a[m,n] described in a 2D discrete space is derived from an analog image 

a(x,y) in a 2D continuous space through a sampling process that is frequently referred to 

as digitization. The 2D continuous image a(x,y) is divided into N rows and M columns. 

The intersection of a row and a column is termed a pixel. The value assigned to the 

integer coordinates [m,n] with {m=0,1,2,...,M-1} and {n=0,1,2,...,N-1} is a[m,n]. In fact, 

in most cases a(x,y)--which we might consider to be the physical signal that impinges 
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on the face of a 2D sensor--is actually a function of many variables including depth (z), 

colour (), and time (t). 

 

 
Figure 2.1: Digitization of a continuous image. The pixel at coordinates [m=10, n=3] has the 

integer brightness value 110. 

 

The image shown in Figure 2.1 has been divided into N = 16 rows and M = 16 columns. 

The value assigned to every pixel is the average brightness in the pixel rounded to the 

nearest integer value. The process of representing the amplitude of the 2D signal at a 

given coordinate as an integer value with L different gray levels is usually referred to as 

amplitude quantization or simply quantization. 

 

2.2.1 Greyscale image 

A greyscale (or greylevel) image is simply one in which the only colours are shades of 

gray. The reason for differentiating such images from any other sort of colour image is 

that less information needs to be provided for each pixel. In fact a `gray' colour is one in 

which the red, green and blue components all have equal intensity in RGB space. 

Often, the greyscale intensity is stored as an 8-bit integer giving 256 possible different 

shades of gray from black to white. If the levels are evenly spaced then the difference 

between successive greylevels is significantly better than the greylevel resolving power 

of the human eye.  
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2.2.2 Colour images 

It is possible to construct (almost) all visible colours by combining the three primary 

colours red, green and blue, because the human eye has only three different colour 

receptors, each of them sensible to one of the three colours. Different combinations in 

the stimulation of the receptors enable the human eye to distinguish approximately 

350000 colours. A RGB colour image is a multi-spectral image with one band for each 

colour red, green and blue, thus producing a weighted combination of the three primary 

colours for each pixel.  

A full 24-bit colour image contains one 8-bit value for each colour, thus being able to 

display 224=16777216 different colours.  

However, it is computationally expensive and often not necessary to use the full 24-bit 

image to store the colour for each pixel. Therefore, the colour for each pixel is often 

encoded in a single byte, resulting in an 8-bit colour image. The process of reducing the 

colour representation from 24-bits to 8-bits, known as colour quantization, restricts the 

number of possible colours to 256. However, there is normally no visible difference 

between a 24-colour image and the same image displayed with 8 bits. An 8-bit colour 

images are based on colour maps, which look-up tables are taking the 8-bit pixel value 

as index and providing an output value for each colour. 

2.2.3 Differences between Colour and Greyscale Images 
 

a) Greyscale is only necessary to specify a single intensity value for each pixel, 

as opposed to the three intensities needed to specify each pixel in a full 

colour image. 

 
b) Greyscale often provides better structural detail to the eye. This is especially 

true for fine details, so greyscale mapping is often used in image analysis to 

pick out hard-to-discern features. 

 

c) Colour images are shown on a background of alternating white and light 

gray checkerboard pattern so that differences in transparency are more 

visible. 
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d) Greyscale would require less KB of storage 
 

 
e) The colour images can also be transformed easily into other coordinate 

systems, which might be more useful for some applications. 

 
2.3 Image Processing 
 

Image processing is the field of research concerned with the development of computer 

algorithms working on digitized images. The range of problems studied in image 

processing is large, encompassing everything from low-level signal enhancement to 

high-level image understanding.  

 

Digital image processing is a subset of the electronic domain wherein the image is 

converted to an array of small integers, called pixels, representing a physical quantity 

such as scene radiance, stored in a digital memory, and processed by computer or other 

digital hardware. Digital image processing allows the use of much more complex 

algorithms for image processing, and hence can offer both more sophisticated 

performance at simple tasks, and the implementation of methods which would be 

impossible by analog means. 

 

Digital image processing, either as enhancement for human observers or performing 

autonomous analysis, offers advantages in cost, speed, and flexibility, and with the 

rapidly falling price and rising performance of personal computers it has become the 

dominant method in use. 

 

In this thesis, we deal with only image analysis. Image analysis, by contrast, produces 

information that is much smaller in quantity but much more highly refined than an 

image, for example the position and orientation of an object. 

 

2.4 Image Analysis 

 

Understanding usually attempts to mimic the human visual system in extracting 

meaning from an image. Image analysis is the extraction of useful information from 
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images. Image analysis tasks can be as simple as reading bar coded tags or as 

sophisticated as identifying a person by its face or recognising object. 

 

The image analysis process can be divided into five primary stages: 1) Preprocessing, 2) 

Data Reduction, 3) Image segmentation 4) Object Recognition and 5) Image 

Understanding. (Figure 2.2) 
 

2.4.1 Preprocessing  

 

The first step in the image analysis chain consists of preprocessing. Loosely defined, by 

preprocessing we mean any operation of which the input consists of sensor data, and of 

which the output is a full image. Preprocessing operations generally fall into one of 

three categories: image reconstruction (to reconstruct an image from a number of sensor 

measurements), image restoration (to remove any aberrations introduced by the sensor, 

including noise) and image enhancement (accentuation of certain desired features, 

which may facilitate later processing steps such as segmentation or object recognition). 

 

2.4.1.1 Image reconstruction  

 

Image reconstruction problems often require quite complex computations and a unique 

approach is needed for each application. Given some data (that may be a corrupted 

image but also any kind of signal, like the output of a tomography device or of a 

satellite aerial), how to reconstruct a clear and clean image that can be correctly 

understood by a human operator or post-processed by other image analysis methods. 

 

2.4.1.2 Image restoration 

 

In general, one wants to restore an image that is distorted by the (physical) measurement 

system. The system might introduce noise, motion blur, out-of-focus blur, distortion 

caused by low resolution, in the most basic image restoration approach; noise is 

removed from an image by simple filtering. 
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2.4.1.3 Image enhancement  

 

The purpose of image enhancement is to improve the visual appearance of an image, or 

to transform an image into a form that is better suited for human interpretation or 

machine analysis. 

 

2.4.2 Data reduction 

 

Two of the most important applications of data reduction are image compression and 

feature extraction. In general, an image compression algorithm, used for storing and 

transmitting images, contains two steps: encoding and decoding. 

 

2.4.2.1 Image compression  

 

The goal of image compression is to store an image in a more compact form, i.e., a 

representation that requires fewer bits for encoding than the original image. This is 

possible for images because, in their “raw” form, they contain a high degree of 

redundant data. Every image we see contains some form of structure. As a result, there 

is some correlation between neighbouring pixels. If one can find a reversible 

transformation that removes the redundancy by decorrelating the data, then an image 

can be stored more efficiently. 

 

2.4.2.2 Feature extraction 

 

Feature extraction can be seen as a special kind of data reduction of which the goal is to 

find a subset of informative variables based on image data. Since image data are by 

nature very high dimensional, feature extraction is often a necessary step for 

segmentation or object recognition to be successful. 

 

2.4.3 Image segmentation 

 

Segmentation is the partitioning of an image into parts that are coherent according to 

some criterion. When considered as a classification task, the purpose of segmentation is 
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to assign labels to individual pixels. There is no theory of image segmentation. As a 

consequence, no single standard method of image segmentation has emerged. Rather, 

there are collections of ad hoc methods that have received some degree of popularity. 

 

2.4.4 Object recognition 

 

Object recognition consists of locating the positions and possibly orientations and scales 

of instances of objects in an image. The purpose may also be to assign a class label to a 

detected object. ANNs have been trained to locate individual objects based directly on 

pixel data. Another less frequently used approach is to map the contents of a window 

onto a feature space that is provided as input to a neural classifier. 

 

2.4.5 Image understanding  

 

Obtaining high level (semantic) knowledge of what an image shows. Image 

understanding is a complicated area in image processing. It couples techniques from 

segmentation or object recognition with knowledge of the expected image content. 

 

 

 

 

 
Figure 2.2: The block diagram of a basic image analysis system.[14] 
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In this thesis, we use image segmentation techniques for detecting moving object. In 

next section, we will give more detailed information about image segmentation. 

 

2.5 Image Segmentation Details 

 

Image segmentation is a common term for a variety of image operations. Image 

segmentation is a necessary step in any image processing task involving the labelling 

and identification of constituent parts of an image or scene. In the analysis of the objects 

in images it is essential that we can distinguish between the objects of interest and "the 

rest." This latter group is also referred to as the background. The techniques that are 

used to find the objects of interest are usually referred to as segmentation techniques. 

These techniques are segmenting the foreground from background. We will present two 

most commonly used techniques; thresholding and edge detection. 

 

2.5.1 Thresholding  

 

This technique is based upon a simple concept. A threshold value is computed above (or 

below) which pixels are considered “object” and below (or above) which “background”. 

Sometimes two thresholds are used to specify a band of values that correspond to object 

pixels. Thresholding can also be done using neighborhood operations. In all cases the 

result is a binary image—only black and white are represented, with no shades of gray. 

 

A parameter θ called the brightness threshold is chosen and applied to the image a[m,n] 

as follows: 

 

If    [ , ]a m n θ≥      a[m,n]=object=1 

Else               a[m,n]=background=0 

 

Or 

 

If    [ , ]a m n θ<      a[m,n]=object=1 

Else               a[m,n]=background=0 
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Or 

If    1 2[ , ]a m nθ θ≤ <      a[m,n]=object=1 

Else               a[m,n]=background=0 

 

The output is the label "object" or "background" which, due to its dichotomous nature, 

can be represented as a Boolean variable "1" or "0". 

 

When thresholding works it can be quite effective, because it directly identifies objects 

against a background, and eliminates unimportant shading variation. (Figure 2.3) 

 

 

 

 

 

 

 

 
Figure 2.3: The figure shows two binary images resulting from different choices of θ 
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2.5.2 Edge detection 

 

Edge detection is a problem of fundamental importance in image analysis. In typical 

images, edges characterize object boundaries and are therefore useful for segmentation, 

registration, and identification of objects in a scene. 

 

Edges in images are areas with strong intensity contrasts – a jump in intensity from one 

pixel to the next. Edge detecting an image significantly reduces the amount of data and 

filters out useless information, while preserving the important structural properties in an 

image. There are many ways to perform edge detection. However, the majority of 

different methods may be grouped into two categories, gradient and Laplacian. The 

gradient method detects the edges by looking for the maximum and minimum in the 

first derivative of the image. The Laplacian method searches for zero crossings in the 

second derivative of the image to find edges. An edge has the one-dimensional shape of 

a ramp and calculating the derivative of the image can highlight its location. 

 

This method of locating an edge is characteristic of the “gradient filter” family of edge 

detection filters and includes the Sobel method. A pixel location is declared an edge 

location if the value of the gradient exceeds some threshold. As mentioned before, 

edges will have higher pixel intensity values than those surrounding it. So once a 

threshold is set, you can compare the gradient value to the threshold value and detect an 

edge whenever the threshold is exceeded.  

 

2.6 Neural Networks for Image Processing 

 
There are many problems in image processing for which good, theoretically justifiable 

solutions exists, especially for problems for which linear solutions suffice. However, 

these solutions often only work under ideal circumstances; they may be highly 

computationally intensive (e.g. when large numbers of linear models have to be applied 

to approximate a nonlinear model) [14]; or they may require careful tuning of 

parameters. Where linear models are no longer sufficient, nonlinear models will have to 

be used. Furthermore, many algorithms quickly become intractable when non-linearities 
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are introduced. Problems further in the image processing, such object recognition and 

image understanding, cannot even (yet) be solved using standard techniques. 
 
As was discussed above, dealing with non-linearity is still a major problem in image 

processing. ANNs might be very useful tools for nonlinear image processing: 
 

• Instead of designing an algorithm, one could construct an example data set and 

an error criterion, and train ANNs to perform the desired input output mapping; 

 

• The network input can consist of pixels or measurements in images; the output 

can contain pixels, decisions, labels, etc., as long as these can be coded 

numerically – no assumptions are made. This means adaptive methods can 

perform several steps in the image processing chain at once; 

 

• ANNs can be highly nonlinear; the amount of non-linearity can be influenced by 

design, but also depends on the training data. 

 

2.7 Summary 

 

This chapter presented a brief introduction to image and digital image processing. The 

differences between colour and greyscale images are explained in section 2.2.3. More 

detailed explanation about image segmentation was given. The basic Digital Image 

Analysis steps are also explained in section 2.4. Finally the importance of artificial 

neural networks for image processing was explained. 
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CHAPTER 3 
 

IMORS: IMAGE CAPTURE AND PROCESSING PHASE 
 
3.1 Overview 
 
The image capture and processing phase is one of the most important phases of IMORS 

(Intelligent Moving Object Recognition System). An image-processing scheme to detect 

moving objects in real time is a key technology for the automatic surveillance. This 

chapter presents the first phase of the developed system by author where the image 

capturing method to detect moving object and digital image processing for further 

operations will be described. 

 

3.2 Introduction 

 

In this thesis, digital image processing algorithms are used for detecting a moving 

object and extracting a whole region of this object in preparation for advanced 

applications. The applications include calculating the speed of object and the 

recognition of the moving object. For recognizing the moving object artificial neural 

networks will be used as will be explained in chapter 4.  

 
3.3 Moving Object Detection  
 
There are some methods to detect moving objects in image sequences. Some of these 

methods are based on an optical flow [15], and other is background subtraction [16] 

 

Adaptive Optical Flow For Person Tracking [17]; The systems are dependent on being 

able to locate a person accurately across a series of frames. Optical flow can be used to 

segment a moving object from a scene, the expected velocity of the moving object is 

known; but successful detection also relies on being able segment the background. 

 

Moving Objects Segmentation Using Optical Flow Estimation [18]; it presents a new 

method for the segmentation of moving objects. it uses one of the most powerful 

variation method for computing the optical flow and we exploit this information in the 

segmentation. This segmentation lies on well-known techniques of active contours. 
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Since it takes a lot of computational time to extract the optical flow and it does not 

discriminate the foreground from the background, so often detect motion (and thus the 

object) in the background. The methods based on the optical flow do not suit for a real 

time processing.  

 

On the other hand, Background subtraction detects moving objects by subtracting 

estimated background models from images. This method is sensitive to illumination 

changes and small movement in the background.  

 

In this thesis, comparing image pixel value was used thus it is a very simple process, the 

methods based on comparing each pixel values of the images. Generally, either a 

background image obtained in advance or an image taken just previously in an image 

sequence is used to compare pixel values with a current image. 

 

Therefore, we use the difference between pixel values in consequent images to extract a 

whole region of moving objects in real time. At the same time, we update the 

background image based on the result of the difference in two continuous frames.  

 

3.4 Moving Object Detection Method 
 
 This method can be used for extracting differences between two images. Basically, for 

extracting a region of moving objects or detecting image differences the same method 

can be used. The method will be explained below. (Figure 3.2)  

 

Extract a whole region of moving object is done by comparing image pixel values. For 

this purpose at least two images are needed and thus captured consequently at every 2 

seconds. Although only two images of moving object are required for detecting, four 

shots will be taken for increasing the detection accuracy. The captured image size is 

256x256. The clearest two images will be chosen. The first image, which is called 

reference image, consists of reference pixel values for comparison purpose. The second 

image is an image that contains movement. It is called as input image.  

 

If the second image pixel values are not equal to the reference image pixel values, the 

pixel values are thresholded and saved as an output image with a black or white 
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background. This image will be referred to in our work as the output image. The output 

image background (black or white) is decided by comparison to the average value of the 

pixel values that are not equal to reference image and input image. If the average is 

smaller than threshold value the output image background will be white (pixel value is 

255). Otherwise the background will be black. See Equation 3.3. 

 

After tracking the moving object motion, the previous input image will now be used as 

a reference image. And the third image is called as the input image. The same 

comparison method is applied and another output image is created. Now, we have a 

prepared image for extraction. Figure 3.2 shows the process of moving object detection.  

 

 

      
 

 
Figure 3.1: Difference with background image 

∑
-

+ 
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Figure 3.2: The motion object detection method  

 

Figure 3.1 shows the images after subtracting the second image from the background 

image. The equal pixel values will be 0. The different pixels values will equal to 

(second image – background image).  

 

The comparison method is used in this phase of the IMORS. See figure 3.2 and 

Equation 3.1. 

1,255

255,1 255,255

140152 52 a
Image

a a

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

…
# % #

"
 

 

125 15 25 40 210 225

12 65 25 30 56 0
22 75 63 175 57 0
35 69 119 61 159 0
55 22 37 110 140 68

117 2 59 140 89 68

R image

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

Compare 
and 

threshold 



 31

125 15 25 40 210 225

12 65 52 40 74 0
22 75 36 250 0 0
35 69 40 52 85 0
55 22 37 110 140 68

117 2 59 140 89 68

I image

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

Assume that, we have two 6x6 image matrices (image file), figure 3.4. The image 

matrix values are compared. The comparison is done by the equation shown in 3.1. 
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The difference matrix values are found after comparison and saved into Output image 

matrix. Then the next equation (3.2) is applied to output image matrix. ‘R’ refers to 

threshold value range.  
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Figure 3.3: The raw output image  
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Finally we obtain output image matrix. 

255 255 255 255 255 225

255 255 52 40 74 255
255 255 36 250 0 255
255 255 40 52 85 255
255 255 255 255 255 255
255 255 255 255 255 255
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The IMORS chooses the clearest two images for comparison. Then the equations 3.1 

and 3.2 are applied and equation 3.3 for calculating background of the output image. 

Figure 3.3 shows the final output image file. 

 
3.5 Extracting Whole Region of Moving Object 
 
The second phase of our developed system for detecting and recognizing moving 

objects is the extraction of a detected object where the result will be used in the second 

phase that uses neural network recognition. Digital image processing is used to provide 

required image data for artificial neural network for recognition of moving object. As it 

is described in the previous section the motion detection method has been applied and 

raw output image has been obtained. Then we have to extract whole region of the 

moving object. For this purpose horizontal and vertical tracing of the raw output image 

will be implemented. 

 

In a two-dimensional matrix an object could be addressed by finding its vertical and 

horizontal coordinates. The image width and height can be found by using its starting 

coordinates and ending coordinates. The tracer uses this simple rule for extracting the 

object from the output image. The tracer has two steps.  

 

The first step of trace process is to scan the output image matrix horizontally. The tracer 

sums all the output image matrix value at the current column. It continues summing 

until end of matrix. If the total value of the raw is equal to 255x255=65025 or it is in 

range 63000<total≤65025, there is no any object at that row. As shown in equation 3.5. 

The equation 3.6 shows the general threshold equation.  
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Threshold image size B= ×                                           (3.6) 

 

If the Totalx < (Threshold-correction), this means one or more pixels values are smaller 

than B value. In this way, the starting point of the object could be found and it is saved. 

Correction (2025) defines how many pixels are meaningful, and it is also used for 

eliminating noise from the image. (Equation 3.7) 

 

[1]
[1]

[1] 0
xTotal Threshold correction Gx x

Gx
else Gx

< − =⎧ ⎫
= ⎨ ⎬=⎩ ⎭

             (3.7) 

[1]Gx first object first point=  

 

 

The tracer continuous nearly same process but the comparison criterion is changed. The 

new criteria is (Threshold-correction) <Totalx ≤ Threshold. When it is in range that 

means it is the ending point of the object and it is saved. (Equation 3.8) 

 

[2]
[2]

[2] 0
xTotal Threshold correction Gx x

Gx
else Gx

> − =⎧ ⎫
= ⎨ ⎬=⎩ ⎭

                (3.8) 

[2]Gx first object second point=  

 

The tracer repeats the first and the second steps to find the same object in the output 

image. ( Figure 3.4) . Finally there are four points saved but these points give the 

horizontal coordinates of the two objects. Thus the vertical coordinates must be found. 

The tracer now repeats process for vertical scan. Finally, there are four vertical 

coordinates of the two objects. As shown in Equation 3.5., 3.6., 3.7 and 3.8 are applied 

and second object vertical coordinates are found. 
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                                    (3.8) 

 

Finally there are four vertical and four horizontal coordinates. The tracer can now 

extract the object or objects by using these coordinates. By taking difference of the first 

and second coordinates the first object can be obtained. And by taking differences 

between first and fourth coordinates we obtain both the first and the second object. By 

taking differences between third and fourth coordinates the second object is obtained. 

The table 3.1 shows the coordinates and its outputs. 

  

 

Assume that the output image matrix size is 6x6 and there is an object in it. Figure 3.4. 

The tracer applies first step. It is horizontal scanning and summing. Table 3.2 shows the 

summing values for each row. Correction value is set to 0 for this example because each 

pixel value is meaningful. 

 

Applying the equation 3.6, the B value is assumed 255. The equation result is 

6x255=1530. as can be see in table 3.2. Summing value is different from threshold 

value at (0,2) and (0,4) for vertical coordinates and it is also different at (0,2) and (2,2) 

for horizontal coordinates. By using these coordinates we obtain that, the object starts at 

(0,2) and ends at (2,4).  

 

 

 

 

 

 

 
Figure 3.4: The output image after the first traces 

 

 

 

Output image 
Extract image  

Threshold 
And 

C.4-C.1 
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Or 
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Table 3.1: The output of coordinate’s difference 

C Coordinates Result 
1 2 - 1 First object 
2 3 - 2 Space between objects 
3 4 - 3 Second object 
4 4 - 1 First and Second object with Space 

 

255 255 74 255 255 255
255 255 36 250 0 255
255 255 40 52 85 255
255 255 255 255 255 255
255 255 255 255 255 255
255 255 255 255 255 255

O image

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

 
Table 3.2: The output image tracer-summing table 

 0 1 2 3 4 5 SUM B THRES 
0 255 255 74 255 255 255 1349 255 1530 
1 255 255 36 250 0 255 1051 255 1530 
2 255 255 40 52 25 255 882 255 1530 
3 255 255 255 255 255 255 1530 255 1530 
4 255 255 255 255 255 255 1530 255 1530 
5 255 255 255 255 255 255 1530 255 1530 

SUM 1530 1530 925 1322 1045 1530    
B 255 255 255 255 255 255    

THRES. 1530 1530 1530 1530 1530 1530    
 

 
74 255 255
36 250 0
40 52 85

E image
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
There are two important parameters in this tracer algorithm. The first parameter is the 

correction value selection if it is too high, the object could be eliminated, whereas if it is 

too low, then unwanted objects or noise could be extracted. The second important 

parameter is the B value selection (described in Section 3.4.).It is calculated in equation 

3.3. If it is 0 the threshold value will be 0. See equation 3.4. 

 

For obtaining an extracted object image which can be used efficiently for further 

processes, a frame is added to the extracted image. The Neural network will use this 

image, for intelligent recognition. A standard image of size 100x100 should be 

presented to Neural Network. The standard image should be square image and defined 
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size. In real life applications; the extracted image mostly is not a square image and also 

its size may differ from the required size for neural network input. Therefore, the tracer 

squares the extracted image by using very simple algorithm.  

 

3.6 Squaring and Framing Algorithm 

 

This algorithm compares the extracted image height with its width. If its width is greater 

than height, the tracer makes its height equal to its width and vice versa. A shown 

Equation 3.9. Before applying this equation the difference between height and width is 

saved to a file. 

 

height width width height
Exctract

width height height width
> =⎧ ⎫

= ⎨ ⎬> =⎩ ⎭
                               (3.9) 

 

The object in the new square extracted image should be in the middle of the image file. 

Therefore, using the difference between its height and width, which was saved to the 

file, should shift the object. It shifts the object by using Equation 3.10 below.  

 

, ,
2

,
, ,

2

x y difx y

x y
x y difx y

dif height width E E
E

dif width height E E

+

+

= − =⎧ ⎫
⎪ ⎪= ⎨ ⎬= − =⎪ ⎪
⎩ ⎭

                               (3.10) 

 

The extracted image is square and object is in the middle of the image now. The first, 

last row and column of the extracted image must be equal to B for the Neural Network. 

It is a kind of a frame around object which aims to clearly outline the object image. The 

image is now ready for resizing. The next section will be explaining the image resizing 

algorithms. 
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3.7 Resizing Extracted Image for Neural Network 

 
The number of input layer neurons is not variable for Backpropagation Neural Network. 

Therefore, the input image size should fit to the input layer neurons. The extracted 

image could be larger or smaller than the training or testing image. In order to solve this 

problem a new algorithm is developed by the author.  

 

There are two possibilities; the extracted image is larger than the training/testing image. 

So two different algorithms are needed; upsizing and downsizing the extracted object 

image.  

 

3.7.1 Upsizing extracted image 

 

There are two possibilities; the image size is smaller than ¾ x training image or larger. 

There are two different algorithms are used. 

 

3.7.1.1 The image smaller than ¾ x training image 

 

The developed algorithm is aimed to be used for upsizing extracted image for Neural 

Network implementation. This can be achieved using equations 3.11 and 3.12 is 

multiplied by four where each extracted image pixel. The upsized image is called as 

Output image. k is a parameter that it is used as multiplier.  

 

100 / ( )k height width=                                              (3.11) 

, , ( 1) , ( 2) , ( 3)

( 1), ( 1), ( 1) ( 1), ( 2) ( 1), ( 3)

( 2), ( 2), ( 1) ( 2), ( 2) ( 2), ( 3)

( 3), ( 3), ( 1) ( 3), ( 2) ( 3), (

kx ky kx k y kx k y kx k y

k x ky k x k y k x k y k x k y

k x ky k x k y k x k y k x k y

k x ky k x k y k x k y k x k

O O O O

O O O O

O O O O

O O O O

+ + +

+ + + + + + +

+ + + + + + +

+ + + + + +

= = =

= = =

= = =

= = =

,

3)

x y

y

E

+

⎧ ⎫
⎪ ⎪
⎪ ⎪ =⎨ ⎬
⎪ ⎪
⎪ ⎪
⎩ ⎭

                        (3.12) 

 



 38

The k parameter is used for deciding how many pixels of output image equal to the 

extracted image pixel value. The k is whole number.  

 

3.7.1.2 The image larger than ¾ x training image 

 

If the extracted image size is larger than ¾ x trainer image, this previous algorithm does 

not work. So it just adds new empty (white) pixels to extracted image until it reaches to 

trainer image size. This can be achieved using equation 3.13. 

 

100 ( )w height width= −                                          (3.13) 

The w parameter is used for adding white pixel to the extracted image. It is used for 

adding frame to the image. The height and width of the frame is calculated by using 

equation 3.14 

( )
4
wheight width =                                            (3.14) 

 

3.7.1.3 Enhancement of the output image 

 

When the equations 3.11 and 3.12 are applied, the image could be disturbed. For 

avoiding that problem, further enhancement is applied. This enhancement equation is 

shown in below equation 3.15. 

 

, ,
,

, , ,

240 0

175
x y x y

x y
x y x y x y

E E
E

E E E

< =⎡ ⎤
= ⎢ ⎥≥ =⎢ ⎥⎣ ⎦                                               3.15 

 

                                                                        

 

 

 
 

Figure 3.5: The upsizing image and further enhancement 
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25x25

100x100 100x100
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3.7.2  Downsizing extracted image 
 
The extracted image size could also be larger than the training image. For that reason, 

the image should be downsized by using a new developed algorithm. There are two 

possibilities; the extracted image could be 2 or more times larger than the trainer image 

or it could be less than 2 times the training image. So there are two different algorithms 

are developed by the author.  

 

3.7.2.1 The image larger than 2 x training image 

 

This algorithm uses nearly same equations 3.11 and 3.12. “k” is calculated using 

equation 3.16 and equation 3.17 is applied to this image and the equation 3.16 is a 

averaging algorithm. The divisor is 16 so the extracted image size could be 4 x training 

image. K should be whole number. 

 
( )

100
height widthk =                                             (3.16) 

4 4

( ), ( )
0 0

, 16

k x a k y b
a b

x y

E
O

+ +
= ==
∑∑

                                            (3.17) 

 

The IMORS detects moving object by using captured images as described in section 

3.4. the captured image size is 255x255. So the extracted image size could not be larger 

than 255 (2 x training image). The maximum size of this image is 120x120 for 

efficiently extract. The new developed algorithm is used for downsizing in section 

3.7.2.2 



 40

 

3.7.2.2 The image smaller than 2 x training image 

 

The second algorithm is a very simple algorithm. The equation 3.18 shows the 

algorithm. 

, ,
2 2

x x x

y y y

x y y

y x x

x y Criteria Criteriax y

Difference E T
Difference E T

difference difference Criteria difference
Criteria

difference difference Criteria difference

O E
+ +

= −

= −

< =⎡ ⎤
= ⎢ ⎥< =⎢ ⎥⎣ ⎦

=

                 3.18 

 

The first step of the algorithm is to calculate difference between the training image and 

the extracted image by vertical and horizontal tracing one is larger. Then, the second 

step is to equalize the parameter, which is called “criteria”. The last step is to equalize 

the downsized output image to input image+ criteria/2.  

 

In some cases, the image is aligned centre horizontally but not centres vertically or it is 

aligned centre vertically but not centres horizontally. A white frame is added to the 

image. The frame equation 3.19 and matrix are shown below. 

0,

,0

100,

,100

255 255 . . 255255
255 255255

, . .
255

. .
255 255 255 . . 255

y

x

y

x

F

F
Frame Frame Matrix

F

F

⎡ ⎤=⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥= =⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥=⎣ ⎦ ⎢ ⎥⎣ ⎦
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Figure 3.6: the Downsizing algorithm 
 

3.8 Summary 
 
The chapter presented detailed explanation about the image processing phase with 

IMORS, as developed by author this phase includes image capture method and 

processing captured image. These processes are developed moving object detection, 

extracting the object and developed downsizing/upsizing algorithms for extracted object 

images in Section 3.7. And also this chapter includes all equations that used.  

118x118 

100x100 100x100

 
Downsizing 

 
Frame  
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CHAPTER 4 
 

IMORS: NEURAL NETWORKS IMPLEMENTATION PHASE  
 
4.1 Overview 
 
Neural networks perform a variety of functions such as pattern matching, trend analysis, 

and image recognition. This chapter presents the second phase of IMORS where the 

object recognition method to detect a moving object by using a Back propagation neural 

network algorithm is implemented. 

 

4.2 Object Database 

 

The most important phase of neural networks is a training process. The training process 

adjusts weights of neural networks. If the weights are wrong adjusted, the output of 

neural network will be wrong. Therefore, the training elements have to be chosen 

correctly.  

 

The neural network as a part of the IMORS is used for moving object intelligent 

recognition. This system can be used for securing borders or mine fields. In these 

environments object variation is limited, where objects may be cars, cats, dogs, tractors, 

etc. Therefore, the neural network will be trained to recognize certain object. 

 

The objects are classified into three groups. These groups are animals, human and 

vehicles. The list of each group is given below. Examples are shown in figure 4.1. 

1. Vehicles:  

Cars 

Jeep 

Motorbike 

Loader 

 

2. Humans: 

Boy 

Girl 
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3. Animals:  

Goat 

In this thesis, the training and testing images size will be 100x100. After averaging is 

applied image size will be 10x10. The averaging equation is shown in equation 4.1 and 

an example of averaging is shown in figure 4.2.  

 
99

,
0 0

, 100

yx

x y
x y

x y

I
A

==

= ==
∑∑

                 

x,y

x,y

A = averaged image matrix

x = image width

y = image height

I = input image

                (4.1) 
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          Motorbike 

Figure 4.1: Training images examples 
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Figure 4.2: An example of averaging 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.3: The object orientations. 

 

There are six training images for an each object. These images orientation is chosen 

carefully for the best training. The directions 1, 2, 4, 5, 6 and 8 are used for training the 

Neural Network. The directions 3 and 7 are not used because of the first phase of 

IMORS (moving object detection phase) does not detect a moving object in these 

directions. In order to testing neural network, the points between these directions are 

used. For example, the point 1.5 is used for training the neural network. Figure 4.3 

shows the object orientation directions. As it is seen in figure 4.1, there are two types of 

images for human, boy and girl. The neural network is trained in the directions 1,2 and 

4 by using boy images and in the directions 5,6 and 8 by girl images. Examples of 

training images and testing images are shown in figure 4.4 and figure 4.5. 
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Figure 4.4: Training object orientation examples 

 

 

 

 

 

 

 
    Direction between 4 and 5            Direction between 8 and 1                Direction between 1 and 2 

 

Figure 4.5: Testing object orientation examples 

 
Table 4.1: Database summary 

 Objects Images Total 

Training 6 6 36 

Testing 7 8 56 

Overall 7 14 92 

 



 46

As it is shown in table 4.1, there 7 different are tested, because girl boy images are used 

for testing The IMORS separately. 

 

4.3 The Designed Backpropagation Neural Network Topology 

 

The image size, which uses in training process, is 10x10. This means, there are 

10x10=100 inputs and also input layer’s neurons. There are 200 hidden layer’s neuron 

are used. The training time and iterations are taken to consideration for choosing hidden 

layer’s neuron number. The table 4.2 shows selection of the hidden layer neuron 

number. Finally, there are 6-output layer’s neurons. The table 4.3 and figure 4.6, 4.7 

show the output layer neuron assignment. These parameters are chosen carefully for 

increasing accuracy of the system. 

 
Table 4.2: The Hidden Layer Neuron selection 

Learning 
rate 

Momentum 
factor Hidden Iterations Time 

(sec) 
0.006 0.035 150 13200 160,641 
0.006 0.035 160 12200 175,766 
0.006 0.035 170 10500 173,800 
0.006 0.035 180 10200 182,469 
0.006 0.035 190 9500 176,656 
0.006 0.035 200 9300 164,610 
0.006 0.035 210 9000 172,141 
0.006 0.035 220 8700 173,546 
0.006 0.035 230 8300 165,625 
0.006 0.035 240 7400 164,832 
0.006 0.035 250 6649 176.000 

 
Table 4.3: The Output Layer assignment 

Output Object 

100000 Human 

010000 Motorbike

001000 Goat 

000100 Car 

000010 Loader 

000001 Jeep 
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Figure 4.6: The Hidden layer neurons and time variations 

 

Hidden Neuron - Iterations

0
2000
4000
6000
8000

10000
12000
14000

140 150 160 170 180 190 200 210 220 230 240 250 260

Hidden Neurons

Ite
ra

tio
ns

 
Figure 4.7: The Hidden layer neurons and Iterations variations 

 

The human brain uses more neurons for complex activity. The hidden neuron number 

and training time is directly proportional. For increasing accuracy and speed of the 

system the hidden layer neurons number is chosen 200 by using figure 4.6 and 4.7. 
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Figure 4.8: The designed Back propagation Neural network Topology (n=100, m=200, b=6) 

 

4.4 Neural Network Implementation 

 

The Neural Network within IMORS was successfully trained after 9300 iterations and 

in 164.61 seconds. The table of the selection of learning rate is shown in table 4.3. And 

the momentum factor is shown in table 4.4. A summary of the Neural Network final 

parameters are shown in table 4.5. 

 
Table 4.4: The Learning Rate selection 

Learning 
rate 

Momentum 
factor Hidden Iterations Time 

(sec) 
.005 .035 200 11889 244,243 
.0055 .035 200 10362 218,484 
.006 .035 200 9300 164,61 
.0065 .035 200 8925 170,891 
.0070 .035 200 8838 149,312 
.0075 .035 200 8428 140,625 
.008 .035 200 7120 139,01 
.0085 .035 200 6316 134,094 
.009 .035 200 6300 127,578 
.0095 .035 200 5712 95,594 

.01 .035 200 5713 95,422 
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Figure 4.9: The Learning Rate and Iterations variations 
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Figure 4.10: The Learning Rate and Time variations 
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Table 4.5: The Momentum Factor selection 

Learning 
rate 

Momentum 
factor Hidden Iterations Time 

(sec) 
.006 .020 200 9322 166,25 
.006 .025 200 9339 195,812 
.006 .030 200 9358 196,312 
.006 .035 200 9300 164,61 
.006 .040 200 9137 153,344 
.006 .045 200 10424 230,094 
.006 .050 200 9489 202,828 
.006 .055 200 9321 188,593 
.006 .060 200 9124 203,375 
.006 .065 200 11554 254,531 
.006 .070 200 10707 227,719 
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Figure 4.11: The Momentum Factor and Iterations variations 
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Figure 4.12: The Momentum Factor and Time variations 

 

 
Table 4.6: The Designed Backpropagation Neural Network Parameters 

No. of Object 6 

No. of input layer neurons 100 

No. of hidden layer neurons 200 

No. of output layer neurons 6 

No. of iterations 20000 

RMS error 0.009 

Momentum Rate 0.35 

Learning rate 0.006 
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Figure 4.13: The total error and iteration variations 

 

The learning rate parameter is a very important parameter for the Neural Network 

because if it is too high the neural network will not learn but only memorize the output. 

If it is too low the training takes too much time. As it is seen in table 4.4 the learning 

rate is inversely proportional to training time. 

 

The momentum factor is also important parameter for the Neural Network. The 

selection of this parameter is done by many experimental running results.  

 

4.5 Results and Analysis 

 

The Neural Network within IMORS was successfully tested at 92 images and its 

recognition rates were %95 at tolerance 0.65 and %88 at tolerance 0.75. Table 4.4 

shows the successful test and failed test and also recognition rate according to objects. 

The used computer specifications were  Intel® Pentium® M 740, 1,73 GHz cpu and 1 

GByte MB/Mo Ram  with Microsoft®   Windows ® XP Home Edition. The software was 

written in Borland® C++ Builder Version 6.0. The total program run time with training 

is 200 seconds and without training is 0.7 seconds. Table 4.7 shows the recognition rate 

and results. 
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Table 4.7: The Recognition rates and result table 
Object Tolerance Successful Failed Total Percentage 

0,65 27 1 28 96,43 Human 
0,75 27 1 28 96,43 
0,65 14 0 14 100,00 Motorbike 
0,75 10 4 14 71,43 
0,65 14 0 14 100,00 Goat  
0,75 12 2 14 85,71 
0,65 12 2 14 85,71 Car 
0,75 11 3 14 78,57 
0,65 13 1 14 92,86 Loader 
0,75 10 4 14 71,43 
0,65 13 1 14 92,86 Jeep 
0,75 11 3 14 78,57 
0,65 88 4 92 95,65 Overall  
0,75 81 11 92 88,04 

 

4.6 Modifications 

 

Modifications can be made by using IMORS Recognition phase and the IMORS 

Moving Detection phase. These modifications are calculating speed of a moving object 

and testing with extra objects. 

 

4.6.1 Speed calculation 

 

The speed moving object can be found by using images. Nowadays computer 

processors are fast and capable to solve complex mathematical equations this gives us 

opportunities to develop new algorithms for measuring speed by using images. 

 

The speed calculation equation 4.1 is a general equation. For calculating speed we have 

to know starting and ending point of the object and time it takes to go. In this thesis, we 

use images so we have to develop an algorithm for measuring speed. The algorithm is 

based on finding how many pixels object takes between image shots and also distance 

between camera and object is important.  

 

distance ( / )
time

Velocity m s=                                                     (4.1) 

 



 54

As we explained in chapter 3 (see figure 3.3), two same objects are in different location 

into the output image. So we can able to find starting and ending point. And we also 

know time between two shots. Therefore, we have to find how many pixels it moved. It 

is the key point of calculation. Firstly, the starting and ending point of object must be 

found. Then take difference for calculating. The starting and ending points of both 

objects can be found by using the equations were that explained in chapter 3 section 3.5. 

 

The distance between camera and observed area can be found during camera 

installation. So the camera view width is known by the IMORS. Then it is divided to 

captured image size, the width of each pixel is found. Figure 4.14. and  equation 4.2, 

show the algorithm. The camera capturing interval is known by IMORS which has 

every parameter that is needed to calculate the speed of the moving object. 

 

( )dPixelWidth m
image width

=                                       (4.2) 

 

distance PixelWidth difference= ×                                       (4.3) 

 

( / )distancespeed m s
interval

=                                       (4.4) 

 

 

 

 

 

 

 

 

 
Figure 4.14: The width of the observed area 

 

d
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Assume that, the observed area width is equal to 20 meters and capturing interval is 3 

second. The captured image size is 9x9. 
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After applying, equations 4.2, 4.3 and 4.4. the speed of the moving object can 

calculated. The object moved 3 pixels in the image. 

 

20 2
10

PixelWidth m= =     2 3 6distance m= × =    6 2 / 72 /
3

speed m s km h= = =  

 

4.6.2 Testing with extra objects 

 

The IMORS detects a moving object that it did not learn before. This object should be 

classified as unrecognized. The IMORS human operator can train IMORS using the 

new unrecognised object.   

 

This system is tested with extra objects that it did not learn. Table 4.8 shows the tested 

objects and outputs of the IMORS and figure 4.14 shows the two new objects. 
 

 

 

 

 

 

 

 

                                 Hare                                                                                   Dog 

Figure 4.15: Example of two new objects. 
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Table 4.8: Extra objects and IMORS response 

 

 

4.7 Summary 

 

This chapter presented detailed explanation about the object recognition phase within 

the developed IMORS by the author. The training and testing image orientations are 

explained. The designed Backpropagation Neural Network topology and selection of 

parameters were explained in section 4.3. The training of IMORS was detailed in 

section 4.4. The recognition rates and results were also given and explained. Finally the 

modifications like speed calculations were also explained. 

 

This system used real-life images. The testing results show us this system can be used in 

real-time applications where detects a moving object and recognizes it. It can be used 

for border security application, restricted zone security etc. IMORS implementation in 

real-time does not need very complex and powerful hardware. 

Object Output Mean 
dog 000000 unrecognized
hare 101000 unrecognized
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CONCLUSION 
 

In this thesis, the Intelligent Moving Object Detection System (IMORS) has been 

presented. The system acts as a comprehensive border zone monitoring system. The 

system combines Digital Image Processing with Artificial Neural Network 

implementation. It is able to detect a moving object, extract the object and recognize the 

object. It is able to recognize humans, vehicles and animals, this providing a 

comprehensive solution for security applications. 

 

The moving object algorithm is based on the comparing a reference image with an input 

image. The object extraction algorithm based on the pixel values comparison. The most 

important part is the object recognition. The system has used machine learning methods 

in order to reduce the need for human. The Backpropagation Neural Network was the 

key to intelligence of the system. It uses supervised neural network learning. Their ideal 

description is to behave like the human brain which is to learn whatever is new and to 

accept to be corrected if wrong. It gives flexibility to the IMORS; the system could be 

trained to recognize any desired objects. The training database for different object could 

be used for training the BPNN. The all used algorithms have been presented. 

 

This thesis described the software implementation of the IMORS by using real –life 

images. The total number of testing images was 92. The recognition rate was %95 at 

tolerance 0.65 and %88 at tolerance 0.75. Tolerance 0.65 and 0.75 means recognition 

with %65 and %75 accuracy respectively. Results show that high recognition and 

include rates, can be achieved using IMORS. The modifications have also presented, 

speed calculation of the moving. If desired, the IMORS can calculate the speed of the 

moving object.  

 

In summary, a novel method for detecting and recognising moving objects has been 

presented. 
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APPENDIX 1 
 

The Training and Testing Images 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The object ‘car’ training images 
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The object ‘car’ testing images 
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The object ‘goat’ training images 
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The object ‘goat’ testing images 
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The object ‘jeep’ training images 
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The object ‘jeep’ testing images 
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The object ‘human’ training images 
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The object ‘human (boy)’ testining images 
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The object ‘human (girl)’ testing images 
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The object ‘loader’ training images 
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The object ‘loader’ testing images 
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The object ‘motorbike’ training images 
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The object ‘motorbike’ testing images 
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