
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

BOOK STORE AUTOMATION

Graduation Project
COM-400

Student: Kagan UZUN (20020313)

Supervisor: Mr. Omit iLHAN

Nicosia - 2008

ACKNOWLEDGEMENT

This project was prepared by Kagan Uzun, a senior student in the Near East University to
cover the requirements of the senior project in the department of Computer Engineering.

First of I would like to thank to dean of faculty of engineering dear Prof. Dr. Fakhreddin
Mamedov

Second, I like to thank to Mr. Umit Ilhan for supervising my Project and who lectured us the
basics of this Project.

Third, I thank Mr. Okan Donangil and Dr. Kaan Dyar who were my advisors and were
always beside me and shown me many helpful ideas that I will not forget in whole my life.

Fourth, I have not forget my friends; Armagan Ozdemir, Gercek Sezgin, Hakan Kihc, Erkan
Kalkanci for over whelming and help.

Also, I would like to special thank my father Mr. Ahmet Uzun and my mother Mrs. Atike
Uzun and my darling Serna Dag for everything

ABSTRACT

The aim of this project is to register book store automation program that

contain registration, all applications and also personel application. The program was

prepared by using Delphi programming and using database.

This project consist of so many forms and menues. The main form of the arrive

the others forms . Which are include information about the books, customers,

employees.

First time i thing this program form my friend's books for help register. So this

program is real life prepare to Yticel Book Store.

To show results show the efficiency of the program of book in program of the

using in other chapters.

11

-------··-

ACKNOWLEDGEMENT .i

ABSTRACT .ii

TABLE OF CONTENTS iii

INTRODUCTION .ix

CHAPTER ONE 1

1. DEFINITION OF DELPHI 1

1.1 What is Delphi? l

1.2.A Brief history of Borland's Delphi 2

1.2.1.Pascal 2

1.2.1.1.beginnings 2

1.2.1.2.The 1970's 2

1.2.1.3.The 1980's 2

1.2.2.From Turbo Pascal to Delphi 2

1.2.3. Delphi for Microsoft .Net 3

1.3.Standard tab GUI components .4

1.3.1 GUI components 4

1.3.2 IC'.'.l!Frame objects 5

fr 1.3.3 - Menus 5

1.3.4 ~ Popup menus 6

A 1.3.5 Labels 7

iii

l~bI . 1.3.6 - Edit boxes 7

Ii 1.3.7 - Memo boxes 7

[ill 1.3.8 - Buttons 7

rx 1.3.9 Check boxes 7

1.3.10 '® Radio buttons 7

1.3.11 ~List boxes 8

~ 1.3.12 - Combo boxes 8

EO:EI 1.3.13 Scroll bars 8

r-- 1.3.14 ~ Group boxes 8

[fg] 1.3.15 := Radio group panels 9

1.3.16 DEmptypanels 9

~
-

1.3.17 I - Actionlists 9

CHAPTER TW0 10

2. ACCESS DATABASElO 10

2.1.What is Access? 10

2.1.1. Using Microsoft Access with Borland Delphi. 12

2.2.Microsoft Access Database tables 13

2.3.Benefits of a Primary Key 18

iv

2.3.1.Primary and Foreign Key constraints are and what they are used for. 19

2.3 .1.1.Primary Key 19

2.3.1.2.Foreign Key 19

2.4.What is a Key field in a Database and how should I choose one? 22

2.5.Import Excel Data into Microsoft Access 24

2.5.1.Creating a new table using an Excel file 24

2.5.2.Importing from Excel.. 25

CHAPTER THREE 27

3. BASIC DOCUMENTS OF DELPHI 27

3.1.Delphi data types 27

3.1.1.Storing data in computer programs 27

3.1.2.Simple delphi data types 27

3.1.2.1.Number types 28

3.1.2.2.Text types 29

3.1.2.3.Logical data types 29

3.1.2.4.Sets,enumerations and sub types 30

3.1.3.Using these simple data types 30

3.1.3.1.Assigning to and from variables 31

3.1.4.Compound data types 32

3.1.4.1.Arrays 32

V

3.1.4.2.Records 33

3.1.4.3.0bjects 34

3.1.5.0ther data types 34

3.1.5.1.Files 34

3.1.5.2.Pointers 35

3.1.5.3.Variants 35

3.1.6.Type definitions 35

3.2.Integer and Floating point numbers 35

3.2.1.The different number types in Delphi. 35

3.2.2.Assigning to and from number variables 35

3.2.3.Numerical operators 36

3.2.4.Numeric functions and procedures 37

3.2.5.Converting from numbers to strings 37

3.2.6.Converting from strings to numbers 37

3.3.Strings and Characters 38

3.3.1.Text types 38

3.3.2.Characters 38

3.3.2.1.The Ansi character set.. 38

3.3.2.2.Assigning to and from character variables .42

3.3.2.3.What are Wide Char types? .43

3.3.3.Strings 43

3.3.3.1.Assigning to and from a string .43

3.3.3.2.String operators .44

vi

3 .3.3 .3 .String processing routines .45

3.3.3.4.Converting from numbers to strings .46

3 .3.3.5.Converting from strings to numbers .4 7

3.4.Enumerations, SubRanges and Sets 47

3.4.1.Enumerations 4 7

3 .4.1.1.Defining Enumerations .48

3.4.1.2.Using Enumerations numbers , .49

3.4.1.3.A word of warning .49

3.4.2.SubRanges 49

3.4.3.Sets 50

3.4.3.1.What is a set 50

3.4.3.2.Including and Excluding set values 50

3.4.3.3.Set operators 51

3.5.Arrays 51

3.5.1.About arrays 51

3 .5.2.Constant arrays 52

3 .5.3.Different ways of defining array sizes 52

3.5.3.1.Using enumerations and subranges to define an array size 52

3.5.3.2.Using a data type 53

3.5.4.Static arrays 53

3.5.5.Dynamic arrays 53

3.5.6.0pen arrays to routines 54

3.5.7.Multi-dimensional arrays 54

vii

3.5.8.Copying arrays 54

3.6.Records 55

3.6.1.What are the records? 55

3.6.2.Using the with keyword 56

3.6.3.A more complex example 57

3.6.4.Packing record data 58

3.6.5.Records with variant parts 61

CHAPTER FOUR 64

4. DESCRiPTiON ABOUT PROJECT 64

4.1.Password screen 64

4.2.Main menu 64

4.3.Customers form 65

4.4.Employees 66

4.5.Installment Paymen 67

4.6.Products 68

4.7.Sales And Installment Form 69

4.8.Payment form 70

4.9.Database relationship 72

CONCLUSION 73

REFERENCES 74

APPENDIX 75

viii

INTRODUCTION

This project is register book and company workers which uses ACCESS quarries. This

program was prepared by using Borland Delphi 7 and ACCESS.

The subjects chapter by chapter so let us go through the overview the chapters in breif:

In the first Borland Delphi 7 programming language is described, its properties,
components and some examples, I used Borland Delphi 6 in my project, because I find
it easy and I liked its coding system. Borland Delphi 6 for applications

In the Second Chapter I described Database system, I used ACCESS data base
system in my program with Borland Delphi 7.

Third Chapter is About the project , how we create it, its forms and using the
program

Finally, the last chapter is the explanation of the program followed by the
Appendices. So by developing and moderating of technology our program can be
developed and updated. Also new properties could be added in to the program in the
future.

IX

CHAPTER ONE

1.DEFINITION OF DELPHI

1.1 what is Delphi?

Delphi (pronounced DEHL-F AI) from Borland competes with Visual Basic as an

offering for an object-oriented, visual programming approach to application development.

Based on object Pascal programming language, the latest version of Delphi includes facilities

for rapidly building or converting an application into a Web service. It provides interfaces for

the programmer to build an application using the Extensible Markup Language (XML),

Extensible Stylesheet Language (XSL), Simple Object Access Protocol (SOAP), and Web

Services Description Language (WSDL).

In ancient Greece, Delphi was the seat of the famous oracle that powerful people

consulted for advice. When Borland's developers expanded their popular version of Pascal

into an application builder with interfaces to databases such as Oracle, they chose Delphi as

the code name for the project. News media and early users liked the name so it was marketed

as Delphi. Delphi started life as the name of the visual IDE for Borland's Object Pascal

programming language. In the old days, Borland used to try to make a distinction between

'Delphi the product' and 'Object Pascal the language'. However, most people used the name

'Delphi' indiscriminately to describe both the product and the language. On the whole, when

people talked about 'programming in Delphi', they meant coding Object Pascal within the

Delphi IDE. Delphi is a high-level, compiled, strongly typed language that supports structured

and object-oriented design. Based on Object Pascal, its benefits include easy-to-read code,

quick compilation, and the use of multiple unit files for modular programming

h
''lj;

1

1.2.A Brief history of Borland's Delphi

1.2.1.Pascal

Delphi uses the language Pascal, a third generation structured language. It is what is

called a highly typed language. This promotes a clean, consistent programming style, and,

importantly, results in more reliable applications. Pascal has a considerable heritage.

1.2.1.1.Beginnings

Pascal appeared relatively late in the history of programming languages. It probably

benefited from this, learning from Fortran, Cobol and IBM's PL/1 that appeared in the early

1960's. Niklaus Wirth is claimed to have started developing Pascal in 1968, with a first

implementation appearing on a CDC 6000 series computer in 1970.

Curiously enough, the C language did not appear until 1972. C sought to serve quite

different needs to Pascal. C was designed as a high level language that still provided the low

level access that assembly languages gave. Pascal was designed for the development of
structured, maintainable applications.

1.2.1.2.The 1970's

In 1975, Wirth teamed up with Jensen to produce the definitive Pascal reference book

"Pascal User Manual and Report". Wirth moved on from Pascal in 1977 to work on Modula -
the successor to Pascal.

1.2.1.3.The 1980's

In 1982 ISO Pascal appears. The big event is in November 1983, when Turbo Pascal

is released in a blaze of publicity. Turbo Pascal reaches release 4 by 1987. Turbo Pascal

excelled on speed of compilation and execution, leaving the competition in its wake.

1.2.2.From Turbo Pascal to Delphi

Delphi, Borland's powerful Windows? and Linux? programming development tool

first appeared in 1995. It derived from the Turbo Pascal? product line.

2

As the opposition took heed of Turbo Pascal, and caught up, Borland took a gamble on

an Object Oriented version, mostly based on the Pascal object orientation extensions. The risk

paid off, with a lot of the success due to the thought underlying the design of the IDE

(Integrated Development Environment), and the retention of fast compilation and execution.

This first version of Delphi was somewhat limited when compared to today's

heavyweights, but succeeded on the strength of what it did do. And speed was certainly a key

factor. Delphi went through rapid changes through the 1990's.

1.2.3. Delphi for Microsoft .Net

From that first version, Delphi went through 7 further iterations before Borland

decided to embrace the competition in the form of the Microsoft? .Net architecture with the

stepping stone Delphi 8 and then fully with Delphi 2005 and 2006. Delphi however still

remains, in the opinion of the author, the best development tool for stand alone Windows and

Linux applications. Pascal is a cleaner and much more disciplined language than Basic, and
adapted much better to Object Orientation than Basic.

3

1.3.Standard tab GUI components

1.3.1 GUI components

GUI stands for Graphical User Interface. It refers to the windows, buttons, dialogs,

menus and everything visual in a modem application. A GUI component is one of these

graphical building blocks. Delphi lets you build powerful applications using a rich variety of

these components.

These components are grouped under a long set of tabs in the top part of the Delphi

screen, starting with Standard at the left. We'll look at this Standard tab here. It looks

something like this (Delphi allows you to tinker with nearly everything in its interface, so it

may look different on your system):

standard l'..8ciditf2iii'[0";32i:Svs1e'.m1.,Q.-gii3,89£~]i~t~"tqpt;;iiJ4bE~pr~I:s DE ·. le,DO

~, a fr \ A .~· fil [ill ,,r ,@ •. ~ ~. Eliill t:J: r~ o ~
Table: 1.3.1.1 GUI Components

Each of the components is itemised below with a picture of a typical GUI object they

can create:

U Menu \ PopupMenu [] GroupBox [~ RadioGroup

This
is
a

TR adioG roup
()Monday
() Tuesday
()Wednesday

Right click me~---~ TGroupBo:,

popup

M@,E [$

Ii Button 1

[' Button2 ~

0AIIOK?

A Label Tlabel

jab{ Edit I TEdit j

Lill B tt. [;l· .· TB utton ·1 u on .. ,, . ···d

pc CheckBox 0 TCheckBox

4

~.1 RadioButton @TRadioButton

·1n1 ScrollBar

~ ListBox ~ ComboBox D Panel ii Memo

[Ej] Frame : see text below ~ ActionList : see text below

Table: 1.3.1.2 Radio Button

1.3.2 iDIFrame objects

These were introduced in Delphi 5. They represent a powerful mechanism, albeit one

that is a little advanced for a Delphi Basics site. However, it is worth describing their role if

you want to research further.

A frame is essentially a new object. It is defined using the FileJNew menu. Only then

can you add the frame to your form using the Frame component. You can add the same frame

to as many forms of your application as you want. This is because the frame is designed as a

kind of template for a part of a form. It allows you to define the same look and feel for that

part of each form. And more importantly, each instance of the frame inherits everything from

the original frame.

1.3.3 ff Menus

After you add a TMenu component to your form, you can design the menu by double

clicking it (or using the right button popup menu for it). You are then shown a panel with an

empty menu. As you type, you are creating the top left menu item. Press enter and you are

5

positioned at the first sub item of this menu item. Click the new empty box to the right of the

first menu item to create a new menu item.

In this way, you can build the menu structure.

To make each menu item do something, just double click it. Delphi will then insert

code into your program to handle the menu item, and position your cursor in the form unit

ready for you to write your code.

Explore the popup menu for the menu editor to discover more options, such as sub-

menus.

A menu can also be dynamically updated by your code.

1.3.4 ~ Popup menus

A popup menu appears in many applications when you right click on something. For

example, when you right click the Windows desktop. You create a popup menu by adding the

popup menu component to your form and double clicking it. You then simply type in your
menu item list.

You attach the popup menu to an existing form object (or the form itself) by selecting

your new popup menu in the PopupMenu property of the object.

6

To activate the popup menu items, double click each in turn. Delphi will add the

appropriate code to your form unit. You can then type in the code that each menu item should
perform.

A popup menu can also be dynamically updated by your code.

1.3.5 A Labels

Labels are the simplest component. They are used to literally label things on a form,

but the text, colours and so on can be changed by your code. For example, you can change the

label colour when the mouse hovers over it, and can run code when the user clicks it. This

makes the label like a web page link. Normally, they are just kept as plain, unchanging text.

1.3.6 f~f Edit boxes

An edit box allows the user to type in a single line of text. For example, the name of

the user. You set up the initial value with the Text property either at design time or when your

code runs.

1.3. 7 liJ Memo boxes

A memo box displays a single string as a multi line wrapped text display. You cannot

apply any formatting. The displayed lines are set using the Lines property. This may be set at

design time as well as at run time.

1.3.8 00 Buttons

A button is the simplest active item. When clicked by a user, it performs some action.

You can change the button label by setting the Caption property. Double clicking the button

when designing adds code to your form to run when the button is clicked at run time.

1.3.9 rx Check boxes

Check boxes are used to give a user a yes/no choice. For example, whether to wrap

text or not. The label is set using the Caption property. You can preset the check box to

ticked by setting the Checked property to true.

1.3.10 ;@ Radio buttons

7

Radio buttons are used to give a user multiple choices. For example, whether to left,

centre or right align text. The label is set using the Caption property. You can preset a radio

button to selecteded by setting the Checked property to true.

You would normally use radio buttons in groups of two or more. The TRadioGroup

component allows you to do this in a neat and dynamic way.

1.3.11 ·~List boxes

List boxes provide selectable items. For example, a collection of fish names. If you set

the MultiSelect property to true, you allow the user to select more than one. The items in the

list are added using the Items.Add method, passing the string of each item as a parameter.

1.3.12 ~ Combo boxes

A combo box is like a list box, and is set up in the same way (see above). It just takes

up less space on your form by collapsing to a single line when deselected, showing the chosen

list item. It is not recommend to use one for multi line selection.

1.3.13 m::m Scroll bars

Many components have built in scroll bars. For those that don't, you can use this to do

your own scrolling. You link the scrollbar to your component by setting the OnScroll event.

This gives you the details of the last scroll activity made by the user.

1.3.14 [] Group boxes

A group box is like a panel. It differs in that it gives a name to the collection of

components that you add to it. This title is set with the Caption property. Use a group box to

help the user see what controls affect one particular aspect of the application.

8

1.3.15 Is Radio group panels

Radio buttons are used to give a user a multiple choices. For example, whether to left,

centre or right align text. Unlike individual radio buttons, a group is only set up by your code.

You define the buttons by calling the Items.Add method of the TRadioGroup object, passing

the caption string of each radio button as a parameter. You can reference each button by using

the Buttons indexed property. You might, for example, choose the third button to be checked.

1.3.16 Empty panels

When building your form, you might want to add many components. These may fall

into logical groups. If so, you can add each group to a panel, and use the panel to position the

whole group on the form. The panel name can be blanked out by setting the Caption
property.

1.3.17 ~ Action lists

Action lists are a large topic on their own. They allow you to define, for example,

menus with sub-items that are also shown as buttons on your aplication. Only one action is

defined, regardless of the number of references to it.

9

CHAPTER TWO

2. ACCESS DATABASE

2.1.what is Microsoft Access?

For anyone that has found him/herself under the gun who needs to consolidate, store,

gather, isolate or manipulate information then report against it to a group of stakeholders,

Microsoft Access is the application to use. It can be purchased as an add-on to the Microsoft

Office Professional package. If you foresee yourself managing a neighborhood contact list or

downloading information from a company's mainframe system, you can use Microsoft
Access.

Upon opening Microsoft Access, there is the option to open a blank database or a

number of templates. When you open the application, either using a template or a blank

database, you will see a menu on the left side of the application which is the "Objects" menu.

This menu will provide the category of functions that you need in order to use the database.

The general concept of Access, using the "Object" menu is as follows:

• Tables: are used to store your raw data. For example, the administrator can upload

information from Excel(* .xls), Text(* .txt), or non-Access database(* .dbf) files.

• Queries: are used to manipulate the data in the tables. They can be used to add, update,

or remove information from the tables. They can also be used to create tables. There

are several types of queries that can be created. To add information, use an "append"

query, to update information, use an "update" query, to remove information, use a

"delete" query, to create tables, use a "make table" query.

• Forms: are used to enter information into the tables. In addition, they are designed for
end-users to navigate the database.

• Reports: provide a layout in order to share the raw data and/or data analysis with
others.

• Pages: provide an interface with the internet.

• Macros: are used to automate database tasks. They can be used to upload information

into the database, automate functions within the database, to providing the end-user
warning and/or informational messages.

• Modules: allow you to program the database using Visual Basic.

10

Across the top of the database window is another menu with the "Open", "Design",

"New", "X", and several icon display options. These menu options are available regardless of

which category chosen in the "Objects" menu. The menu across the top of the database

window provides the following functions:

• Open: the database administrator can open any highlighted object (table, query, form,
etc.)

• Design: allows the administrator to change the inherent/design functions of any

database object. For example, if the administrator goes into the design view of a

macro, s/he can change the operations of the macro.

• New: the programmer can create any new object within the database.

• X: deletes any object within the database.

• Icon displays: change how the objects appear within the database window. This

function is similar to how Windows provides various display options.

As you delve into the world of Microsoft Access, there are wizards to assist with any

function needed. Based upon what needs to be created, the questions will change. If the

database is for personal use, department-wide use, or for use across the organization, ensure

that the following foundation questions are answered prior to building the database:

• Why is the database needed? Is it to store information on a long-term basis or will the
information be updated on a daily basis?

• Where are the information sources? Is it from a pre-existing spreadsheet or will it be

entered manually? Who will need the information from the database?

• Who will be using the database? Are there many end-users or just one?

• Where will the database be housed? Will it be on a network server or a personal
computer?

• When does the database need to be operational? Build testing time into the project
plan.

11

2.1.1.Using Microsoft Access with Borland Delphi

Applications used:

• Borland Delphi 7 °

• Microsoft Access 2000

The article assumes that the reader knows how to create a basic Microsoft Access

database and has some knowledge of programming in Delphi.

Microsoft Access is primarily used for developing stand alone applications. It is very

fast, reliable and is very dependable when it comes to rapid application development. One of

the benefits of Access from a developer's perspective is its relative compatibility with the

structured query language (SQL). SQL is of course used to manipulate data within databases.

So to develop efficient and dependable database applications in a rapid manner, we are going

to need the advantages that MS Access offers.

So where does Borland Delphi fit in this scenario? Like Access, Delphi is also one of

the frontrunners in its field. It is also a rapid application development language that offers

easy application development. One of the reasons why I choose Delphi for this article is

because it has a set of database components that integrates applications with MS Access' Jet

Engine. And since we intend to build a stand alone application, Access and Delphi are

perfectly place to handle this task. The aim of the application is simply to show how well MS

Access and Delphi work together, among other things I will demonstrate how to use SQL to

manipulate the data in the database. So let's start with building an Access database. For the

sake of brevity, we are going to use Microsoft Access to create the database, but it is also

possible to programmatically create an Access database with Delphi. Create a database called

addressbook.mdb, and then create a table called contacts with the following columns:

The Contacts table design in the Addressbook database

I Column I Description I Type
12

Cid Contact ID PrimaryKey, Autonumber

Name Name of Contact Text

surname Surname of Contact Text

Gender Gender of the Contact Text

Age Age of Contact Number

Country Country of residence Text

Add the following data in the table:

2.2 Microsoft Access Database Tables

rn 25 China
3 Jane Smith f 30 En~nd
4 Dean Smith m 35 China
5 Tom Sexton rn 20 England
6 Carrv Sexton f 33 Ghana
7 Lucv F er:!lili_ ____ L __ '--~ ,_E_IJ_gl9.0..9._

Cook f 36 Ghana
van Graaf' m 40 Cameroon
Santos f 50 Ghana

0
of 10

Table: 2.2.1 Contacts Table

That's all there is for the Access side of things. Next, we create the Delphi side of
things:

Start a new application in Delphi and add the following components to the form:

• 1 Tmemo renamed qmemo

• 1 Dbgrid

• 1 buttons

• 1 Tedit renamed edparam

13

Then add the following components from the ADO tab:

• 1 ADOQuery rename to q 1

• 1 ADOTable rename to ado 1

• 1 AdoConnection

• 1 Datasource from the data access tab.

Setting the component connections

Now select the adoconnection component and go. to the object inspectors' connection

string property. Click on the ellipses button. You should now see a window that looks like

this:

ffi'prm! ~AJ).QCq[11tectioµ1 C.cmneQth1,rJStri~g . . ~
---------~~----------·----·--·

("' Use O~a }.ir1k .Ra

-

,,_,-
i

f." trse ~e(;ticm Sli[in.g

lli~fflij,lu/,MJffl:M=m.aamfui illfflHftr111;11l~§.1aCl'JII

1QK

Table: 2.2.2 Forml.ADOconnecion

Click on "build ... " a window called "Data Link Properties" should come up. Click on the

ellipses button and point to where the addressbook.mdb database is located. Then click OK

twice and your connection should now be set.

Select the datasource component and go to its dataset property and add "q l" from the

dropdown list.

Select the dbgrid component, go to its datasource property and add "datasourcel" as

its datasource.

That links up all the components, now all you have to do is to run the queries and all

the data will be displayed in the dbgrid.

14

Your main form should look something like this at this point:

-. """ .. "' '· ·- .. ·'.~·~· ,.• "' ··, .

Table: 2.2.3 Ms Access and Delphi

Executing SQL Queries

The GUI of the application gives us enough flexibility to run as many queries as we

like. The above picture shows a sample query statement that is going to retrieve data that is

based on a country criterion:

select* from contacts WHERE country=:c

if the country specified in "=:c" is England then the above query would produce the result:

select" from contacts WHERE countrye.c Parameter Value:

15

Table: 2.2.4 Executing SQL Queries

The "=:c" is what is called a parameter. It will contain the value that is to be included

in the edparam text field (in the above the value is England). You can also just run a straight

query that simply retrieves all of the records from the database:

select * from contacts

This produces:

select x from contacts

Table: 2.2.5 Paramater Value

Or one that retrieves all the records where the ages of the contacts are 20:
:~

select * from contacts WHERE age=:c

select ' from contacts WHERE age=: c Parameter Value:

Table: 2.2.6 Where age

16

Query number one and three are what are called parameterized or dynamic queries. A

parameterized query is one that provides flexible row/column selection using a parameter in

the WHERE clause of a SQL statement. The ADOQuery components' param property allows

replaceable values to be stored for the query, as demonstrated in the queries above. To specify

a parameter in a query, use a colon(:) preceding a parameter name, as in:

select * from contacts WHERE age=:c

All of the above queries are executed in the following procedure:

procedure TForml .qbtnClick(Sender: TObject);

begin

//close query component

if q I .Active then begin

ql.Close;

q l .Parameters.ParamByName('c').Value:=";

edparam.Clear;

end;

with ql do

begin

SQL.Add(qmem.lines.text);

if edparam.text <>"then begin

Parameters.ParamByName('c').Value:=edparam.text;

end;

Open;

end;

The procedure itself is very abstract in the sense that it does not allow you to write the

queries. In other words, the queries are not hard coded. You can use any name of a contact or
country and it will just work.

To make any changes to a contact's details is even easier. You simply call up the

details using a query and then select the name of the contact and then make the changes that

want. These changes will then be posted to the Access database.

17

So as you can see, the marriage of Access databases and Delphi's ADO components

makes it a snap to write database applications with ease. Thanks to the on going

improvements of MS Access, you can now also create a database application that is able to

handle multiple user access at the same time.

2.3 Benefits of a Primary Key

Have you ever placed an order with a company for the first time and then decided the

next day to increase your order? You call the people at the order desk. Sometimes they ask

you for your Customer Number. You tell them that you don't know your Customer Number.

This happens all the time

So they ask you for some other personal information, generally your Postcode or

telephone area code. Then, as they narrow down the list of customers, they will ask your

name. Then, they will tell you your Customer Number. Some businesses use phone numbers

as a unique starting point.

Database systems usually have more than one table, and these tend to be related in

some manner. For example a Customer table and an Order table are related to each other via a

unique Customer Number. The Customer table will always have one record for each

Customer, and the Order table has one record for each Order that the Customer has made.

As each Customer in one physical person, you only need one record for the Customer

in the Customer table. Each Customer can make several Orders, however, which means that

you set up a table to hold information about each order (the Orders table). Each individual

Order has one record in the Orders table.

Of course, you relate the Customers' Orders in the Orders table to the correct

Customer in the Customer table by using a common field between both tables. In this example

case, we would use the Customer Number (which is included in both tables).

When linking tables, we link the primary key field from one table (the Customer

Number in the Customers table) to a field in the second (related) table that has the same

structure and type of data in it (the Customer Number in the Orders table).

18

If the link in the second table is not the primary key field (and usually it isn't), it is

known as the foreign key field.

Besides being a common link field between tables, a primary key field in Microsoft

Access has the following advantages:

• A primary key field is an index that greatly speeds up queries, searches and sort

requests.

• When you add new records, you must enter a value in the primary key field(s).

Microsoft Access will not allow you to enter Null values, which guarantees that you

will have only valid records in your table.

• When you add new records to a table that has a primary key, Microsoft Access checks

for duplicate data and doesn't let you enter duplicates for the primary key field.

• By default, Access displays your data in the order of the primary key.

Primary key fields should be made as short as possible as this can affect the speed of

operations in the database.

A primary key is a field or combination of fields that uniquely identify a record in a

table, so that an individual record can be located without confusion.

2.3.1 Primary and Foreign key constraints are and what they are used for

2.3.1.1 Primary Key

2.3.1.2 Foreign Key

A foreign key (sometimes called a referencing key) is a key used to link two tables

together. Typically you take the primary key field from one table and insert it into the other

table where it becomes a foreign key (it remains a primary key in the original table).

More complicated but fuller explanation:

Employee Table

EmployeeID (PK) FirstName LastName Department Manager I
19

001 Stan Smithers IT Support Stan Smithers

002 Joe Blog gs Sales Joe Bloggs

003 Mark Richards Sales Joe Bloggs

004 Jenny Lane Marketing Jenny Lane

005 Sally Holmes Sales Joe Bloggs

006 John Lee IT Support Stan Smithers

A primary key is the field(s) (a primary key can be made up of more than one field)

that uniquely identifies each record, i.e. the primary key is unique for each record and the

value is never duplicated in the same table, so in the above table the EmployeeID field would

be used. A constraint is a rule that defines what data is valid for a given field. So a primary

key constraint is a rule that says that the primary key fields cannot be null and cannot

contain duplicate data.

The problem with the above table is that you have repeating information in the

manager field, this causes all sorts of problems, e.g. Fred Bloggs leaves and Jenny Smith

becomes sales manager, you now have to replace all entries that say Fred Bloggs with Jenny

Smith.

If however you split the last two fields out to make a department table you would only

need one entry for each department, when a manager changes you only need to make the

change in one place, if you setup a primary key of DeptlD in the department table you would

have the following.

Department Table

DeptID (PK) Department Manager

01 IT Support Stan Smithers

02 Sales Joe Bloggs

03 Marketing Jenny Lane

20

Employee Table

EmployeeID (PK) FirstName LastName

001 Stan Smithers

002 Joe Bloggs

003 Mark Richards

004 Jenny Lane

005 Sally Holmes

006 John Lee

You now need to link the two table together so you know which department each

employee is in, so what you do is take the primary key from the department table and insert it

into the employee table (where it becomes a foreign key as a foreign key is the primary key

from one table inserted into another table to link them).

Employee Table

EmployeeID (PK) FirstName LastName DeptlD (FK)

001 Stan Smithers 01

002 Joe Bloggs 02

003 Mark Richards 02

004 Jenny Lane 03

005 Sally Holmes 02

006 John Lee 01

A foreign key constraint specifies that the data in a foreign key must match the data

in the primary key of the linked table, in the above example we couldn't set the DeptlD in the

Employee table to 04 as there is no DeptlD of 04 in the Department table. This system is

called referential integrity, it is to ensure that the data entered is correct and not orphaned

(i.e. there are no broken links between data in the tables)

21

The other added advantage is that you are saving space, if the following were the field

sizes for the tables we have:

• EmployeeID = 3 characters

• Firstname = 10 characters

• Surname = 10 characters
• Department = 10 characters
• DeptID = 2 characters

• Manager = 20 characters

The original Employee Table would take 53 characters per record, 6 records gives us

318 characters.

The latest version of the Employee Table would take 25 characters, 6 records gives us

150 characters. The Department table would take 32 characters and there a 3 records so 96

characters, so 150+96 = 246 characters.

So over a very simple structure with just 6 records we have saved ourselves 72

characters, which would be 72 Bytes.

Doesn't sound much on 6 records but if we had 600 employees the original system

would take 53*600 = 31800 characters. Whereas the new system would take 25*600 = 15000

+32*3=96

Which is a total of 15096 characters, a saving of 16704 characters so we have saved over 50%

of

2.4 What is a Key field in a Database and how should I choose one?

Keys are crucial to a table structure for many reasons, some of which are identified

below:

• They ensure that each record in a table is precisely identified.

• They help establish and enforce various types of integrity.

• They serve to establish table relationships.

Now let's see how you should choose your key(s). First, let's make up a little table to look at:

22

PersonID LastName FirstName D.O.B

1 Smith Robert 01/01/1970

2 Jones Robert 01/01/1970

4 Smith Henry 01/01/1970

5 Jones Henry 01/01/1970

A superkey is a column or set of columns that uniquely identify a record. This table has many
superkeys:

• PersonID

• PersonID + LastName

• PersonID + FirstName

• PersonID + DOB
• PersonID + LastName + FirstName

• PersonID + LastName + DOB
• PersonID + FirstName + DOB

• PersonID + LastName + FirstName + DOB
• LastName + FirstName + DOB

All of these will uniquely identify each record, so each one is a superkey. Of those

keys, a key which is comprised of more than one column is a composite key; a key of only
one column is a simple key.

23

A candidate key is a superkey that has no unique subset; it contains no columns that

are not necessary to make it unique. This table has 2 candidate keys:

• PersonID

• LastName + FirstName + DOB

Not all candidate keys make good primary keys: Note that these may work for our current data

set, but would likely be bad choices for future data. It is quite possible for two people to share

a full name and date of birth.

We select a primary key from the candidate keys. This primary key will uniquely

identify each record. It may or may not provide information about the record it identifies. It

must not be Null-able, that is if it exists in a record it can not have the value. Null. It must be

unique. It can not be changed. Any candidate keys we do not select become alternate keys.

We will select (PersonID) as the primary key. This makes (LastName + FirstName +

DOB) an alternate key.

Now, if this field Person!D is meaningful, that is it is used for any other purpose than

making the record unique, it is a natural key or intelligent key. In this case PersonID is

probably not an AutoNumber field, but is rather a "customer number" for use, much like the

UPC or ISBN.

However, if this field is not meaningful, that is · it is strictly for the database to

internally identify a unique record, it is a surrogate key or blind key. In this case Person ID

probably is an AutoNumber field, and it should not be used except internally by the database.

There is a long running debate over whether one should use natural or surrogate keys,

and I'm not going to foolishly attempt to resolve it here. Whichever you use, stick with it. If

you choose to generate an AutoNumber that is only used to identify a record, do not expose

that number to the user. They will surely want to change it, and you can not change primary

keys.

I can now use my chosen primary key in another table, to relate the two tables. It may

or may not have the same name in that second table. In either case, with respect to the second

table it is a foreign key, and if in that second table the foreign key field is not indexed it is a

fast foreign key.

the storage space.

2.5 Import Excel Data into Microsoft Access

2.5.1 Creating a new table using an Excel file

As I became familiar with Access, I was very pleased to know that you could import

existing information to use in Access. This saved retyping and editing time. In most cases, it

24

is easier to use Access to store, retrieve, manipulate, and report data than other applications.

This article will explain, in a step-by-step format, how to create a table by importing an

existing Excel file.

2.5.2. Importing from Excel (.xis)

Prior to importing from Excel it is necessary to eliminate all of the formatting in the

file. This includes, but is not limited to, centering, bold, underlining, etc. Also, ensure that

there are no spaces in front of the column headings. By eliminating the spaces, you prevent

importing errors and column heading issues so Access can recognize the headings. Below,

you have the step-by-step guidelines for creating an Access table using an Excel file.

1. Save then close the .xls file.

2. Next, go to "New" on the "Tables" tab.

3. Click on "import table."

4. Change the "files of type" to Microsoft Excel.

5. Navigate to the "Excel" file that you would like to import.

6. Select the worksheet or named ranges you would like to import.

7. In the bottom half of the "Import Spreadsheet Wizard" dialog box, you will see the

information that will be imported.

8. Click "Next."
9. If you have put the column headings in the Excel file, they are transferred to Access. If

the first row of your data contains the column headings, check the box "First Row

Contains Column Headings". If your first row of information does not contain column

headings, do not check the box.
10. Click "Next". You will see that the first row of your data is grey and will be the

column heading for your table.
11. To create a new table based on the data you are importing, click on "In a New Table".

If you would like to import the information into an existing table, click on "In an

Existing Table" and use the drop-down box to select the table name.

Please understand that you will be adding the information to an existing table daily.

Please ensure that you want to do that. Instead, you will be taken straight to the last

step of the wizard to click on "Finish."

25

12. Click "Next."

13. Select the indexing options for each field by clicking on the field heading to highlight

the column then go to the "Indexed" field drop-down box and determine whether or

not you would like to allow duplicate values (allows fields on different rows to

contain the same information), to not allow duplicate values (fields on different rows

must contain unique information), to not index the field.

Indexing the field allows the database to run faster. If you do not want to import a

column, click on the column heading to highlight the entire column, then check "Do

not import field (Skip)." You can adjust the data types after the table has been

imported.

14. Click "Next."

15. At this point, decide if you want Access to add a primary key, if you want to choose

your own primary key, or if you do not want a primary key. If Access creates a

primary key, it will create an ID field which numbers your records. If you choose

your own primary key, select a column that does not contain duplicate fields. For

example, an invoice number field cannot contain invoice 12345678 twice in the same

column.

16. Click "Next."

17. Type the name of your table into the "Import to Table:" field. If you do not want to

overwrite an existing table, choose a name that is not currently being used.

18. Click "Finish."

19. Once you have successfully imported the file, a dialog box will display that reads:

"Finished importing file [filepath] to table [table name]."

26

CHAPTER THREE

3. BASIC DOCUMENTS OF DELPHI

3.1.Delphi data types

3.1.1.Storing data in computer programs

For those new to computer programming, data and code go hand in hand. You cannot

write a program of any real value without lines of code, or without data. A Word Processor

program has logic that takes what the user types and stores it in data. It also uses data to

control how it stores and formats what the user types and clicks.

Data is stored in the memory of the computer when the program runs (it can also be

stored in a file, but that is another matter beyond the scope of this tutorial). Each memory

'slot' is identified by a name that the programmer chooses. For example LineTotal might be

used to name a memory slot that holds the total number of lines in a Word Processor

document.

The program can freely read from and write to this memory slot. This kind of data is

called a Variable. It can contain data such as a number or text. Sometimes, we may have data

that we do not want to change. For example, the maximum number of lines that the Word

Processor can handle. When we give a name to such data, we also give it its permanent value.

These are called constants.

3.1.2.Simple delphi data types

Like many modem languages, Delphi provides a rich variety of ways of storing data.

We'll cover the basic, simple types here. Before we do, we'll show how to define a variable to

Delphi:

var // This starts a section of variables

LineTotal : Integer; // This defines an Integer variable called LineTotal

First,Second : String;// This defines two variables to hold strings of text

27

We'll show later exactly where this var section fits into your program. Notice that the

variable definitions are indented - this makes the code easier to read - indicating that they are
part of the var block.

Each variable starts with the name you choose, followed by a : and then the variable

type. As with all Delphi statements, a ; terminates the line. As you can see, you can define

multiple variables in one line if they are of the same type.

It is very important that the name you choose for each variable is unique, otherwise

Delphi will not know how to identify which you are referring to. It must also be different

from the Delphi language keywords. You'll know when you have got it right when Delphi

compiles your code OK (by hitting Ctrl-F9 to compile).

Delphi is not sensitive about the case (lower or upper) of your names. It treats theCAT
name the same as TheCat.

3.1.2.1.Number types

Delphi provides many different data types for storing numbers. Your choice depends

on the data you want to handle. Our Word Processor line count is an unsigned Integer, so we

might choose Word which can hold values up to 65,535. Financial or mathematical

calculations may require numbers with decimal places - floating point numbers.

var

I I Integer data types :

Intl : Byte; II

Int2 : Shortint; II

Int3 : Word; II

Int4 : Smalllnt; I I

0 to 255

-127 to 127

0 to 65,535

-32,768 to 32,767

Int5 : LongWord; II Oto 4,294,967,295

Int6 : Cardinal; II Oto 4,294,967,295

Int7: Longlnt; II -2,147,483,648 to 2,147,483,647

Int8 : Integer; II -2,147,483,648 to 2,147,483,647

Int9: Int64; II -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

28

I I Decimal data types :

Deel : Single; II 7 significant digits, exponent -38 to +38

Dec2 : Currency; II 50+ significant digits, fixed 4 decimal places

Dec3 : Double; II 15 significant digits, exponent -308 to +308

Dec4 : Extended; II I 9 significant digits, exponent -4932 to +4932

Some simple numerical variable useage examples are given below - fuller details on numbers
is given in the Numbers tutorial.

3.1.2.2. Text types

Like many other languages, Delphi allows you to store letters, words, and sentences in

single variables. These can be used to display, to hold user details and so on. A letter is stored

in a single character variable type, such as Char, and words and sentences stored in string
types, such as String.

var

Strl : Char; II Holds a single character, small alphabet

Str2 : WideChar; II Holds a single character, International alphabet

Str3 : AnsiChar; II Holds a single character, small alphabet

Str4 : ShortString; II Holds a string of up to 255 Char's

Str5 : String; II Holds strings of Char's of any size desired

Str6 : AnsiString; II Holds strings of AnsiChar's any size desired

Str7 : WideString; II Holds strings of WideChar's of any size desired

Some simple text variable useage examples are given below - fuller details on stmgs and
characters is given in the Text tutorial.

3.1.2.3.Logical data types

These are used in conjunction with programming logic. They are very simple:

var

Logl : Boolean; II Can be 'True' or 'False'

29

Boolean variables are a form of enumerated type. This means that they can hold one of

a fixed number of values, designated by name. Here, the values can be True or False. See the

tutorials on Logic and Looping for further details.

3.1.2.4.Sets,enumerations and sub types

Delphi excels in this area. Using sets and enumerations makes your code both easier to

use and more reliable. They are used when categories of data are used. For example, you may

have an enumeration of playing card suits. You literally enumerate the suit names. Before we

can have an enumerated

variable, we must define the enumeration values. This is done in a type section.

type

TSuit = (Hearts, Diamonds, Clubs, Spades); II Defines the enumeration

var

suit : TSuit; I I An enumeration variable

Sets are often confused with enumerations. The difference is tricky to understand. An

enumeration variable can have only one of the enumerated values. A set can have none, 1,

some, or all of the set values. Here, the set values are not named - they are simply indexed

slots in a numeric range. Confused? Well, here is an example to try to help you out. It will

introduce a bit of code a bit early, but it is important to understand.

type

TWeek = Set of 1..7; II Set comprising the days of the week, by number
var

week : TWeek;

begin

week:= [1,2,3,4,5]; II Switch on the first 5 days of the week

end;

See the Set reference, and the Sets and enumerations tutorial for further details. That

tutorial introduces a further data type - a subrange type.

3.1.3.Using these simple data types

Variables can be read from and written to. This is called assignment. They can also be

used in expressions and programming logic. See the Text tutorial and Programming logic

30

3.1.3.1.Assigning to and from variables

.~~"'
~v i.S,r\

</ ~·
<$) ~~ ~~ <: .

'..-1 /TJ
I "-? :0 G,,, .).. 0
':.<s ' /ro ~)'
~ Variables can be assigned from constant values, such as 23 and 'My Name', and also

tutorial for more about these topics.

from other variables. The code below illustrates this assignment, and also introduces a further

section of a Delphi program : the const (constants) section. This allows the programmer to

give names to constant values. This is useful where the same constant is used throughout a

program - a change where the constant is defined can have a global effect on the program.

Note that we use upper case letters to identify constants. This is just a convention, since

Delphi is not case sensitive with names (it is with strings). Note also that we use= to define a
constant value.

types

TWeek = 1..7; II Set comprising the days of the week, by number

TSuit = (Hearts, Diamonds, Clubs, Spades); II Defines an enumeration

con st

FRED = 'Fred'; II String constant

I I Integer constant

II Decimal constant

YOUNG AGE = 23;
TALL : Single= 196.9;

NO = False; I I Boolean constant

var

FirstName, SecondName : String; II String variables

Age : Byte; I I Integer variable

Height : Single; II Decimal variable

IsTall : Boolean; II Boolean variable

OtherName : String; II String variable

Week : TWeek; II A set variable

Suit : TSuit; II An enumeration variable

begin I I Begin starts a block of code statements

FirstName := FRED; I I Assign from predefined constant

31

SecondName := 'Bloggs'; I I Assign from a literal constant

Age := YOUNG_AGE; II Assign from predefined constant

Age := 55; II Assign from constant - overrides YOUNG_AGE

Height := TALL - 5.5; II Assign from a mix of constants

IsTall := NO; II Assign from predefined constant

OtherName := FirstName; II Assign from another variable

Week := [1,2,3,4,5]; II Switch on the first 5 days of the week

Suit := Diamonds; II Assign to an enumerated variable

end; II End finishes a block of code statements

FirstName is now set to 'Fred'

SecondName is now set to 'Bloggs'

Age is now set to 55

Height is now set to 191.4

IsTall is now set to False

OtherName is now set to 'Fred'

Week is now set to 1,2,3,4,5

Suit is now set to Diamonds (Notice no quotes)

Note that the third constant, TALL, is defined as a Single type. This is called a typed

constant. It allows you to force Delphi to use a type for the constant that suits your need.

Ohterwise, it will make the decision itself.

3.1.4.Compound data types

The simple data types are like single elements. Delphi provides compound data types,

comprising collections of simple data types.

These allow programmers to group together variables, and treat this group as a single

variable. When we discuss programming logic, you will see how useful this can be.

3.1.4.1.Arrays

Array collections are accessed by index. An array holds data in indexed 'slots'. Each slot

holds one variable of data. You can visualise them as lists. For example:

32

var

Suits : array[1 . .4] of String; I I A list of 4 playing card suit names

begin

Suits[l] := 'Hearts'; II Assigning to array index 1

Suits[2] := 'Diamonds'; II Assigning to array index 2

Suits[3] := 'Clubs'; II Assigning to array index 3

Suits[4] := 'Spades'; II Assigning to array index 4

end;

The array defined above has indexes 1 to 4 (1..4). The two dots indicate a range. We

have told Delphi that the array elements will be string variables. We could equally have

defined integers or decimals.

For more on arrays, see the Arrays tutorial.

3 .1.4.2 .Records

Records are like arrays in that they hold collections of data. However, records can hold

a mixture of data types. Ther are a very powerful and useful feature of Delphi, and one that

distinguishes Delphi from many other languages.

Normally, you will define your own record structure. This definition is not itself a variable. It

is called a data type (see Types for further on this). It is defined in a type data section. By

convention, the record type starts with a T to indicate that it is a type not real data (types are

like templates). Let us define a customer record:

type

TCustomer Record

firstName: string[20];

lastName : string[20];

age : byte;

33

end;

Note that the strings are suffixed with (20]. This tells Delphi to make a fixed space

for them. Since strings can be a variable length, we must tell Delphi so that it can make a

record of known size. Records of one type always take up the same memory space.

Let us create a record variable from this record type and assign to it:

var

customer : TCustomer;

begin

customer.firstName := 'Fred'; II Assigning to the customer record

customer.lastName := 'Bloggs';

II Our customer variable

customer.age := 55;

end;

customer.firstName is now set to 'Fred'

customer.lastName is now set to 'Bloggs'

customer.age is now set to 55

Notice how we do not use an index to refer to the record elements. Records are very

friendly - we use the record element by its name, separated from the record name by a

qualifying dot. See the Records tutorial for further on records.

3.1.4.3.0bjects

Objects are collections of both data and logic. They are like programs, but also like

data structures. They are the key part of the Object oriented nature of Delphi. See the Object

orientation tutorial for more on this advanced topic.

3.1.5.0ther data types

The remaining main object types in Delphi are a mixed bunch:

3.1.5.1.Files

34

File variables represent computer disk files. You can read from and write to these files

using file access routines. This is a complex topic covered in Files.

3.1.5.2.Pointers

Pointers are also the subject of an advanced topic - see Pointer reference. They allow

variables to be indirectly referenced.

3.1.5.3. Variants

Variants are also an advanced topic - see Variant. They allow the normal Delphi rigid

type handling to be avoided. Use with care!

3.1.6.Type definitions

When we discussed Records above, we introduced the concept of types. Delphi has

many predefined data types - both simple, such as string, and compound, such as TPoint

(which holds X and Y coordinates of a point). See Type for further details.

3.2.Integer and Floating point numbers

3.2.1.The different number types in Delphi

Delphi provides many different data types for storing numbers. Your choice depends

on the data you want to handle. In general, smaller number capacities mean smaller variable

sizes, and faster calculations. Ideally, you should use a type that comfortably copes with all

possible values of the data it will store.

3.2.2.Assigning to and from number variables

Number variables can be assigned from constants, other numeric variables, and

expressions:

const

YOUNG_AGE = 23; I I Small integer constant

35

MANY

RICH

= 300; II Bigger integer constant

= 100000.00; II Decimal number : note no thousand commas

var

Age : Byte; II Smallest positive integer type

Books : Smallint; II Bigger signed integer

Salary : Currency; II Decimal used to hold financial amounts

Expenses : Currency;

TakeHome : Currency;

begin

Age := YOUNG_AGE; II Assign from a predefined constant

Books :=MANY+ 45; II Assign from a mix of constants (expression)

Salary := RICH; II Assign from a predefined constant

Expenses := 12345.67; II Assign from a literal constant

TakeHome := Salary; II Assign from another variable

TakeHome := TakeHome - Expenses; II Assign from an expression

end;

Age is set to 23

Books is set to 345

Salary is set to 100000.00

Expenses is set to 12345.67

TakeHome is set to 87654.33

3.2.3.Numerical operators

Number calculations, or expressions, have a number of primitive operators available:

+ : Add one number to another

- : Subtract one number from another

* : Multiply two numbers

I : Divide one decimal number by another

div : Divide one integer number by another

mod : Remainder from dividing one integer by another

36

3.2.4.Numeric functions and procedures

Delphi provides many builtin functions and procedures that can perform numeric

calculations. Some examples are given below - click on any to discover more. Note that these

routines are stored in Units that are shipped with Delphi, and which form part of the standard

delphi Run Time Library. You will need to include a reference to the Unit in order to use it

(the code example provided with each gives the unit name and shows how to refer to it).

Abs Returns the absolute value of a signed number

Max Gives the maximum of two integer values

Min Gives the minimum of two integer values

Mean Gives the average of a set of numbers

Sqr Gives the square of a number

Sqrt Gives the square root of a number

Exp Gives the exponent of a number

Shl Shifts the bits in a number left

Shr Shifts the bits in a number right

Tan Gives the Tangent of a number

Cos Gives the Cosine of a number

Sin Gives the Sine of a number

3.2.5.Converting from numbers to strings

Delphi also provides routines that convert numbers into strings. This is often useful for

display purposes.

Str Converts a number to a string in a simple manner

CurrToStr Converts a Currency variable to a string

Format Number to string conversion with formatting

IntToStr Converts an integer to a string

IntToHex Converts a number into a hexadecimal string

3.2.6.Converting from strings to numbers

Finally, Delphi provides string to number conversion utilities. Here are some examples:

37

StrTolnt Converts an integer string into an integer

StrTolntDef Fault tolerant version of StrTolnt

StrToFloat Converts a decimal string to a number

3.3.Strings and Characters

3.3.1.Text types

Like many other languages, Delphi allows you to store letters, words, and sentences in

single variables. These can be used to store and display such things as user details, screen

titles and so on. A letter is stored in a single character variable type, such as Char, and words

and sentences stored in string types, such as String.

3.3.2.Characters

Single character variables hold a single character of text. Normally, this can be held in

one byte. AnsiChar types are exactly one byte in size, and can hold any of the characters in

the Ansi character set.

3.3.2.1. The Ansi character set

Char Code Description
I,,

9 Tab
,,

10 Line feed

13 Carriage return

'' 32 Space

33 Exclamation mark

" 34 Quotation mark

35 Number sign

$ 36 Dollar sign

% 3 7 Percent sign

& 38 Ampersand

' 39 Apostrophe

(40 Left parenthesis

) 41 Right parenthesis

* 42 Asterisk

38

+ 43 Plus sign

44 Comma

- 45 Hyphen-minus

46 Full stop

I 47 Solidus

0 48 Digit zero

1 49 Digit one

2 50 Digit two

3 51 Digit three

4 52 Digit four

5 53 Digit five

6 54 Digit six

7 55 Digit seven

8 56 Digit eight

s 83 Latin capital letter S

T 84 Latin capital letter T

U 85 Latin capital letter U

V 86 Latin capital letter V9 57 Digit nine

58 Colon
'I 59 Semicolon

< 60 Less-than sign

61 Equals sign

> 62 Greater-than sign

? 63 Question mark

@ 64 Commercial at

A 65 Latin capital letter A

B 66 Latin capital letter B

C 67 Latin capital letter C

D 68 Latin capital letter D

E 69 Latin capital letter E

F 70 Latin capital letter F

G 71 Latin capital letter G

H 72 Latin capital letter H

I 73 Latin capital letter I

39

J 74 Latin capital letter J

K 75 Latin capital letter K

L 76 Latin capital letter L

M 77 Latin capital letter M

N 78 Latin capital letter N

0 79 Latin capital letter 0

p 80 Latin capital letter P

Q 81 Latin capital letter Q

R 82 Latin capital letter R

W 87 Latin capital letter W

X 88 Latin capital letter X

Y 89 Latin capital letter Y

Z 90 Latin capital letter Z

91 Left square bracket

\ 92 Reverse solidus

93 Right square bracket

A 94 Circumflex accent

95 Low line

96 Grave accent

a 97 Latin small letter a

b 98 Latin small letter b

c 99 Latin small letter c

d 100 Latin small letter d

e 101 Latin small letter e

f 102 Latin small letter f

g 103 Latin small letter g

h 104 Latin small letter h

105 Latin small letter i

j 106 Latin small letter j

k 107 Latin small letter k

1 108 Latin small letter 1

m 109 Latin small letter m

n 110 Latin small letter n

40

o 111 Latin small letter o

p 112 Latin small letter p

q 113 Latin small letter q

r 114 Latin small letter r

s 115 Latin small letter s

t 116 Latin small letter t

u 11 7 Latin small letter u

v 118 Latin small letter v

w 119 Latin small letter w

x 120 Latin small letter x

y 121 Latin small letter y

z 122 Latin small letter z

{ 123 left curly bracket

I 124 Vertical line

} 125 Right curly bracket

- 126 Tilde

D 127 (not used)

? 128 Euro sign Currency Symbols

? 129 (not used)

? 130 Single low-9 quotation mark General Punctuation

? 131 Latin small letter f with hook Latin Extended-B

? 132 Double low-9 quotation mark General Punctuation

? 133 Horizontal ellipsis General Punctuation

? 134 Dagger General Punctuation

? 135 Double dagger General Punctuation

? 136 Modifier letter circumflex accent Spacing Modifier Letters

? 137 Per mille sign General Punctuation

? 138 Latin capital letter S with caron Latin Extended-A

? 139 Single left-pointing angle quotation mark General Punctuation

? 140 Latin capital ligature OE Latin Extended-A

? 141 (not used)

? 142 Latin capital letter Z with caron Latin Extended-A

? 143 (not used)

? 144 (not used)

41

? 145 Left single quotation mark General Punctuation

? 146 Right single quotation mark General Punctuation

? 14 7 Left double quotation mark General Punctuation

? 148 Right double quotation mark General Punctuation

? 149 Bullet General Punctuation

? 150 En dash General Punctuation

? 151 Em dash General Punctuation

? 152 Small tilde Spacing Modifier Letters

? 153 Trade mark sign Letterlike Symbols

? 154 Latin small letter s with caron Latin Extended-A

? 155 Single right-pointing angle quotation mark General Punctuation

? 156 Latin small ligature oe Latin Extended-A

? 157 (not used)

? 158 Latin small letter z with caron Latin Extended-A

? 159 Latin capital letter Y with diaeresis Latin Extended-A

160 No-break space

? 161 Inverted exclamation mark

? 162 Cent sign

? 163 Pound sign

? 164 Currency sign

? 165 Yen sign

3.3.2.2.Assigning to and from character variables

Here are some examples of characters, along with assignments to and from them:

var

lower, upper, copied, fromNum : AnsiChar;

begin

lower := 'a'; II Assign a lower case letter

upper := 'Q'; II Assign an upper case letter

copied := lower; I I Assign from another character variable

fromNum := Chr(65); II Assign using a function

end;

42

var

myNum : Byte;

begin

myNum := Ord('A'); I I myNum is set to 65

end;

3.3.2.3.What are Wide Char types?

The ansi character set derived from the earlier ascii character set. Both were designed

around European characters, which comfortably fitted into 256 values, the capacity of a single

byte. For a long time, this was the easy way to handle text. But this left many countries,

especially in Asia, out of the picture.

The WideChar type can support double-byte characters, which can hold numeric

representations of the vast alphabets of China, Japan and so on. These are called International

characters. International applications must use WideChar and WideString types.

3.3.3.Strings

A single character is useful when parsing text, one character at a time. However, to

handle words and sentences and screen labels and so on, strings are used. A string is literally a

string of characters. It can be a string of Char, AnsiChar or WideChar characters.

3.3.3.1.Assigning to and from a string

A ShortString is a fixed 255 characters long. A String (by default) is the same as an

AnsiString, and is of any length you want. WideStrings can also be of any length. Their

storage is dynamically handled. In fact, if you copy one string to another, the second will just

point to the contents of the first.

43

Here are some assignments:

var

source, target, last : String;

begin

source:= 'Hello World'; II Assign from a string literal

target:= source; II Assign from another variable

last := 'Don"t do that'; II Quotes in a string must be doubled

end;

. source is now set to : Hello World

target is now set to : Hello World

last is now set to : Don't do that

3.3.3.2.String operators

There are a number of primitive string operators that are commonly used:

+ Concatenates two strings together

= Compares for string equality

< Is one string lower in sequence than another

<= Is one string lower or equal in sequence with another

> Is one string greater in sequence than another

>= Is one string greater or equal in sequence with another

<> Compares for string inequality

Here are some examples using these operators:

var

myString : string;

begin

myString :='Hello'+ 'World'; II String concatenation

44

if 'ABC' = 'abc' II Equality

then ShowMessage('ABC = abc');

if 'ABC' = 'ABC' II Equality

then ShowMessage('ABC = ABC');

if 'ABC' < 'abc' II Less than

then ShowMessage('ABC < abc');

if 'ABC' <= 'abc' II Less than or equal

then ShowMessage('ABC <= abc');

if 'ABC'> 'abc' II Greater than

then ShowMessage('ABC > abc');

if 'ABC' >= 'abc' II Greater than or equal

then ShowMessage('ABC >= abc');

if 'ABC' <> 'abc' II Inequality
then ShowMessage('ABC <> abc');

end;

ABC=ABC

ABC< abc

ABC<= abc

ABC<> abc

3.3.3.3.String processing routines

There are a number of string manipulation routines that are given by example below.

Click on any of them to learn more (and also click on WrapText for another, more involved
routine).

var

Source, Target : string;

begin

Source:= '12345678';

Target:= Copy(Source, 3, 4); II Target now= '3456'

Target:= '12345678';

Insert('-+-', Target, 3); II Target now= '12-+-345678'

45

Target:= '12345678';

Delete(Target, 3, 4); II Target now= '1278'

Target:= StringOfChar('S', 5); II Target now= 'SSSSS'

Source := 'This is a way to live A big life';

II Target set to 'This is THE way to live THE big life'

Target:= StringReplace(before, 'a',' THE',

[rfReplaceAll, rflgnoreCase]);

end;

AnsiLeftStr

AnsiMidStr

AnsiRightS tr

Returns leftmost characters of a string

Returns middle characters of a string

Returns rightmost

characters of a string

AnsiStartsStr Does a string start with a substring?

AnsiContainsStr Does a string contain another?

AnsiEndsStr Does a string end with a substring?

AnsilndexStr Check substring list against a string

AnsiMatchStr Check substring list against a string

AnsiReverseString Reverses characters in a string

AnsiReplacStr Replaces all substring occurences

Dupe String

StrScan

StuffString

Trim

TrimLeft

TrimRight

Repeats a substring n times

Scans a string for a specific character

Replaces part of a string text

Removes leading and trailing white space

Removes leading white space

Removes trailing white space

3.3.3.4.Converting from numbers to strings

CurrToStrF Convert a currency value to a string with formatting

DateTimeToStr Converts TDateTime date and time values to a string

46

Date Time To String Rich formatting of a TDateTime variable into a string

DateToStr Converts a TDateTime date value to a string

FloatToStr Convert a floating point value to a string

FloatToStrF Convert a floating point value to a string with formatting

Format Rich formatting of numbers and text into a string

FormatCurr Rich formatting of a currency value into a string

FormatDateTime Rich formatting of a TDateTime variable into a string

FormatFloat , Rich formatting of a floating point number into a string

IntToHex

IntToStr

Str

Convert an Integer into a hexadecimal string

Convert an integer into a string

Converts an integer or floating point number to a string

3.3.3.5.Converting from strings to numbers

StringTo WideChar Converts a string into a WideChar O terminated buffer

StrToCurr Convert a number string into a currency value

StrToDate Converts a date string into a TDateTime value

StrToDateTime Converts a date+time string into a TDateTime value

StrToFloat Convert a number string into a floating point value
StrToint Convert an integer string into an Integer value

StrToint64 Convert an integer string into an Int64 value

StrToint64Def Convert a string into an Int64 value with default

StrTointDef Convert a string into an Integer value with default

StrToTime Converts a time string into a TDateTime value

Val Converts number strings to integer and floating point values

3.4.Enumerations, SubRanges and Sets

3.4.1.En umerations

The provision of enumerations is a big plus for Delphi. They make for readable and

reliable code. An enumeration is simply a fixed range of named values. For example, the

Boolean data type is itself an enumeration, with two possible values : True and False. If you

47

_,- to assign a different value to a boolean variable, the code will not compile.

3.4.1.1.Defining Enumerations

When you want to use an enumeration variable, you must define the range of possible

values in an enumeration type first (or use an existing enumeration type, such as boolean).
Here is an example:

type

TSuit = (Hearts, Diamonds, Clubs, Spades); II Defines enumeration range
var

suit : TSuit;

begin

suit := Clubs;

end;

I I Defines enumeration variable

I I Set to one of the values

The TSuit type definition creates a new Delphi data type that we can use as a type for any

new variable in our program. (If you define types that you will use many times, you can place

them in a Unit file and refer to this in a uses statement in any program that wants to use them).

We have defined an enumeration range of names that represent the suits of playing cards.

We have also defined a suit variable of that TSuit type, and have assigned one of these

values. Note that there are no quote marks around these enumeration values - they are not strings,
and they take no storage.

In fact, each of the enumeration values is equated with a number. The TSuit enumeration
will have the following values assigned :

Hearts = 0 , Diamonds = 1 , Clubs = 2 , Spades = 3

48

3.4.1.2.Using Enumerations numbers

Since enumeration variables and values can also be treated as numbers (ordinals), we
can use them in expressions :

type

TDay = (Mon=l, Tue, Wed, Thu, Fri, Sat, Sun); II Enumeration values

var

today : TDay;

weekend : Boolean;

begin

today:= Wed; II Set today to be Wednesday

if today> Fri I I Ask if it is a weekend day

then weekend := true

else weekend := false;

end;

today is set to Wed which has ordinal value = 3

weekend is set to false since Wed (3) <= Fri (5)

3.4.1.3.A word of warning

One word of warning: each of the values in an enumeration must be unique in a

program. This restriction allows you to assign an enumeration value without having to qualify

the type it is defined in.

3.4.2.SubRanges

SubRange data types take a bit of getting used to, although they are simple in

principle. With the standard ordinal (integer and character) types you are allowed a finite

range of values. For example, for the byte type, this is Oto 255. SubRanges allow you to

define your own type with a reduced range of values.

49

3.4.3.1.What is a set?

3.4.3.Sets

Sets are another way in which Delphi is set apart from other languages. Whereas

enumerations allow a variable to have one, and only one, value from a fixed number of values,

sets allow you to have any combination of the given values - none, 1, some, or all.

A set variable therefore holds a set of indicators. Up to 255 indicators. An indicator is set

on when the variable has that value defined. This may be a bit tricky to understand, so here is an

example:

type

TDigits = set of' l ' . .'9'; II Set of numeric digit characters

var

digits : TDigits;

myChar: char;

begin

II At the start, digits has all set values switched off

II Set variable

II So let us switch some on. Notice how we can switch on single

II values, and ranges, all in the one assignment:

digits:= ['2', '4' . .'7'];
i!
1t

II Now we can test to see what we have set on:

for myChar := '1' to '9' do

if myChar In digits
then ShowMessageFmt("'o/os" is in digits',[myChar])

else ShowMessageFmt("'o/os" is not in digits',[myChar])

end;

3.4.3.2.Including and Excluding set values

Notice in the code above that we assigned (switched on) a set of values in a set variable.

Delphi provides a couple of routines that allow you to include (switch on) or exclude (switch

so

off) individual values without affecting other values:

type

II We define a set by type - bytes have the range: 0 to 255

TNums = set of Byte;

var

nums : TNums;

begin

nums := [20 .. 50]; II Switch on a range of 31 values

Include(nums, 12); II Switch on an additional value : 12

Exclude(nums, 35); II Switch off a value : 35

end;

3.4.3.3.Set operators

Just as with numbers, sets have primitive operators:

+ The union of two sets
* The intersection of two sets
- The difference of two sets

= Tests for identical sets

<> Tests for non-identical sets

>= Is one set a subset of another

3.5.Arrays

3.5.1.About arrays

Arrays are ordered collections of data of one type. Each data item is called an element,

and is accessed by its position (index) in the array. They are very useful for storing lists of data,

such as customers, or lines of text.

There are a number of types of array, and array may be single or multidimensional (lists

oflists in effect).

51

3.5.2.Constant arrays

It is probably easiest to introduce arrays that are used to hold fixed, unchangeable

information. Constant arrays. These can be defined in two kinds of ways:

con st

Days: array[l..7] of string= ('Mon','Tue','Wed','Thu','Fri','Sat','Sun');

type

TDays = array[l..7] of string;

con st

Days · TDays = ('Mon' 'Tue' 'Wed' 'Thu' 'Fri' 'Sat' 'Sun')· . ' ' ' ' ' ' '
In both cases, we have defined an array of constants that represent the days of the week. We

can use them by day number:

const

Days: array[l..7] of string= ('Mon','Tue','Wed','Thu','Fri','Sat','Sun');

var

i: Integer;

begin

for i := 1 to 5 do // Show the weekdays

3.5.3.Different ways of defining array sizes

The Days array above was defined with a fixed 1.. 7 dimension. Such an array is

indexable by values 1 to 7. We could have used other ways of defining the index range

3.5.3.1.Using enumerations and subranges to define an array size

SubRanges are covered in the Enumerations and sets tutorial. Below, we define an

enumeration, then a subrange of this enumeration, and define two arrays using these.

type

TCars = (Ford, Vauxhall, GM, Nissan, Toyota, Honda);

var

52

cars : array[TCars] of string; II Range is 0 .. 5

japCars : array[Nissan .. Honda] of string; II Range is 3 .. 5

begin

II We must use the appropriate enumeration value to index our arrays:

japCars[Nissan] := 'Bluebird'; II Allowed

japCars[4] := 'Corolla'; II Not allowed

japCars[Ford] := 'Galaxy'; II Not allowed

end;

3.5.3.2.Using a data type

Ifwe had used Byte as the array size, our array would be the size of a byte - 256

elements - and start with the lowest byte value - 0. We can use any ordinal data type as the

definition, but larger ones, such as Word make for large arrays!

3.5.4.Static arrays

There are other ways that arrays vary. Static arrays are the easiest to understand, and

have been covered so far. They require the size to be defined as part of the array definition.

They are called static because their size is static, and because they use static memory

3.5.5.Dynamic arrays

Dynamic arrays do not have their size defined in their declaration:

var

wishes : array of string; II No size given

begin

SetLength(wishes, 3); II Set the capacity to 3 elements

end;

Here we have defined a wishes array containing string elements. We use the SetLength

routine (click on it to find out more) to set the array size. Such arrays are called dynamic because

their size is determined dynamically (at run time). The SetLength routine can be used to change

the array size more than once - decresaing or increasing the size as desired. My wishes array (list)

may indeed grow quite large over time.

53

Note that we have not given the starting index of the array. This is because we cannot -

dynamic arrays always start at index 0.

3.5.6.0pen arrays to routines

This is a more specialised use. Open array parameters allow a routine to receive an

array of unknown number of dimensions. Delphi silently passes the size to the routine as a

hidden parameter. Full example code can be found in Array.

3.5. 7.Multi-dimensional arrays

So far, we have only seen lists - single dimensional arrays. Delphi supports arrays of

any numbers of dimensions. In reality, a multidimensional array is a collection of arrays -

each element of the first array is another array. each element of that array is in tum another

array and so on.

3.5.8.Copying arrays

When copying single dimension arrays, we can use the Copy routine. It allows us to

copy all or part of one array to another, as in this example:

var

i: Integer;

Source, Target : array of Integer;

begin

SetLength(Source, 8);

for i := 1 to 8 do // Build the dynamic source array

Source[i-1] := i; // Remember that arrays start at index 0

54

Target:= Copy(Source, 3, 4);

for i := 0 to Length(Target) -1 do II Display the created array

ShowMessage('Target['+IntToStr(i)+'] : '+lntToStr(Target[i]));

When we try to copy a multi-dimensional array, we can still use copy, but it will only copy

the First dimension array. Each element in the new array will still refer to the old array

subelements. Change one, and the other is changed. This is the cause of many a problem when

using complex arrays.

3.6.Records

3.6.1.What are the records?

Records are a useful and distinguishing feature of delphi. They provide a very neat

way of having named data structures - groups of data fields. Unlike arrays, a record may

contain different types of data.

Records are fixed in size - the definition of a record must contain fixed length fields.

We are allowed to have strings, but either their length must be specified (for example a:

String[20]), or a pointer to the string is stored in the record. In this case, the record cannot be

used to write the string to a file. The TPoint type is an example of a record. Before we go any

further, let us look at a simple example.

type

TCustomer = record

name : string[30];

age : byte;

end;

var

customer : TCustomer;

begin

II Set up our customer record

55

customer.name := 'Fred Bloggs';

customer.age := 23;

end;

When we define a record, each field is simply accessed by name, separated by a dot

from the record variable name. This makes records almost self documenting, and certainly
easy to understand.

Above, we have created one customer, and set up the customer record fields.

3.6.2.Using the with keyword

When we are dealing with large records, we can avoid the need to type the record

variable name. This avoidance, however, is at a price - it can make the code more difficult to

read:

type

TCustomer = record
name : string[30];

age : byte;

end;

var

John, Nancy : TCustomer;

begin

I I Set up our customer records

with John do

begin

name := 'John Moffatt';

age := 67;

;end

I I Only refer to the record fields

56

with Nancy do

begin

name:= 'Nancy Moffatt';

age := 77;

end;

end;

I I Only refer to the record fields

3.6.3.A more complex example

In practice, records are often more complex. Additionally, we may also have a lot of

them, and might store them in an array. The following example is a complete program that

you may copy and paste into your Delphi product, making sure to follow the instructions at
the start of the code.

Please note that this is quite a complex piece of code - it uses a procedure that takes a

variable number of parameters, specially passed in square brackets (see Procedure for more
on procedures).

II Full Unit code.

II---

11 You must store this code in a unit called Unitl with a form

II called Forml that has an OnCreate event called FormCreate.

unit Unitl;

interface

uses

Forms, Dialogs;

type

TForml = class(TForm)

procedure FormCreate(Sender: TObject);

procedure ShowCustomer(const fields: array of

57

3.6.4.Packing record data

By default, Delphi will pad out the record with fillers, where necessary, to make sure

that fields are aligned on 2, 4 or 8 byte boundaries to improve performance. You can pack the

data with the packed keyword to reduce the record size if this is more important than
performance. See Packed for more on this topic.

string);

end;

var

Forml: TForml;

implementation

{$R *.dfm} II Include form definitions

procedure TForml.FormCreate(Sender: TObject);
type

I I Declare a customer record

TCustomer = Record

firstName : string[20];

lastName : string[20];

address! : string[lOO];

address2 : string[lOO];

address3 : string[100];

city : string[20];

postCode : string[8];

end;

var

58

59

customers: array[l..3] of TCustomer;

i: Integer;

begin

I I Set up the first customer record

with customers] l] do

begin

firstName := 'John';

lastName := 'Smith';

addressl := '7 Park Drive';

address2 := 'Branston';

address3 := 'Grimworth';

city := 'Banmore';

postcode := 'BNM lAB';

end;

I I Set up the second and third by copying from the first

customers[2] := customersj l];

customers[3] := customersj l];

I I And then changing the first name to suit in each case

customers[2].firstName := 'Sarah';

customers[3].firstName := 'Henry';

II Now show the details of these customers

for i := 1 to 3 do

with customers[i] do ShowCustomer([firstName,

lastName,

address 1,

address2,

address3,

city,

postf.odej);

end;

II A procedure that displays a variable number of strings

procedure TForml.ShowCustomer(const fields: array of string);

var

i: Integer;

begin

II Display all fields passed - note : arrays start at 0

for i := 0 to Length(fields)-1 do

ShowMessage(fields[i]);

ShowMessage(");

end;

end.

The Show Message procedure is used to display the customer details.

Click on it in the code to learn more.

The displayed data is as follows:

John

Smith

7 Park Drive

Brans ton

Grim worth

Banmore

BNM lAB

Sarah

Smith

7 Park Drive

Brans ton

Grim worth

Banmore

BNM IAB

60

Henry

Smith

7 Park Drive

Branston

Grim worth

Banmore

BNM lAB

3.6.5.Records with variant parts

Things get very interesting now. There are times when a fixed format record is not

useful. First, we may wish to store data in the record in different ways. Second, we may want

to store different types of data in a part of a record.

The Delphi TRect type illustrates the first concept. It is defined like this:

type

TRect = packed record
case Integer of

0: (Left, Top, Right, Bottom: Integer);

1: (TopLeft, BottomRight: TPoint);

end;

Here we have a record that holds the 4 coordinates of a rectangle. The Case clause tells

Delphi to map the two following sub-sections onto the same area (the end) of the record.

These variant sections must always be at the end of a record. Note also that the case statement

has no end statement. This is omitted because the record finishes at the same point anyway.

The record allows us to store data in two ways:

var

rect 1, rect2 : TRect;

begin

II Setting up using integer coordinates

61

rectl.Left := 11;

rectl.Top := 22;

rectl.Right := 33;

rectl .Bottom := 44;

I I Seting up rect2 to have the same coordinates, but using points instead

rect2.TopLeft := Point(l 1,22);

rect2.BottomRight := Point(33,44);

end;

The TRect record showed two methods of reading from and writing to a record. The

second concept is to have two or more record sub-sections that have different formats and

lengths.

This time we will define a fruit record that has a different attribute section depending

on whether the fruit is round or long:

type

I I Declare a fruit record using case to choose the

II diameter of a round fruit, or length and height ohterwise.

TFruit = Record
name : string[20];

Case isRound : Boolean of I I Choose how to map the next section

True :

(diameter: Single); II Maps to same storage as length

False:

(length : Single; I I Maps to same storage as diameter

width : Single);

end;

var

apple, banana : TFruit;

begin

I I Set up the apple as round, with appropriate dimensions

apple.name := 'Apple';

62

apple.isRound := True;

apple.diameter := 3.2;

I I Set up the banana as long, with appropriate dimensions

banana.name := 'Banana';

banana.isRound := False;

banana.length := 7.65;

banana. width := 1.3;

II Let us display the fruit dimensions:

if apple.isRound

then ShowMessageFmt('Apple diameter= %f,[apple.diameter])

else ShowMessageFmt('Apple width= %f, length= %f,

[apple.width, apple.length]);

if banana.isRound

then ShowMessageFmt('Banana diameter= %f,[banana.diameter])

else ShowMessageFmt('Banana width = %f, length = %f,

[banana.width, banana.length]);

end;

Apple diameter= 3.2

Banana width= 3.20, length= 7.65

Note that the Case statement now defines a variable, isRound to hold the type of the

variant section. This is very useful, and recommended in variable length subsections, as seen

in the code above.

63

CHAPTER FOUR

4.SOME DESCRiPTiON ABOUT PROJECT

4.1.Password screen

Password:

Ca,u:el

Figure: 4.1.1 Password Screen

4.2.Main menu

64

Employees
Customers

Q. lnstaJlement Payment
Products
.Sales

Figure: 4.2.1 Main Menu

4.3.Customers form

The program takes customer's name, surname, member ID, address, city, telephone

number. Ifwe want we don't have to return to main menu we can directly sell that customer a

product.

65

C.us1t .. o.me,r"5
IMcmb~r- ID I 27

lcu:tomcr H•~_J l,cfik
~~~ 
[~d~ - ... ] lc1m drc:ct 

l•ingopur 

MemberlD j Name 
,elik oztek 

281 beril olgun 
29 I mural shahrashoub 
30 I canan samir 
31 i XXX 222 

~ 

Figure: 4.3.1 Customers Form 

4.4 Employees 

The program takes employee name, surname, Id number, address, salary, date of birth, 

date of hired, telephone number. We can see our the add-ins at the table. We have a navigator 

at all forms of our program. 

66 



EmployeelD LastName FirstName BirthDate 

.-1 1 aksu bur cu 21.01.1980 
2 dursun ahmet 16051984 
3 ekrnekci piner 07.091983 I 05.12.2006 
4 samir canan 07091983 I 16.01.2007 

Figure: 4.4.1 Employees 

4.5.Installement Payment 

At this form first you have to choose which installment will be paid you choose with 

the previous and next button. Then you have to press update button and the payment button 

appears. When you press the payment button a datagrid, some labels and texts and a button of 

paid will appear. You just press the paid button and your installment will be paid. 

67 



Figure: 4.5.1 Installement Payment 

4.6.Products 

You can add a new product in this form. The form takes the book name, author, 

supplier name, quantity, and unit price. 

68 



~non t>oyo,~1lm 

J1.\ilon KundcN 

\suppli•~ _ -~ 

'quantity 

~ Unit Price 12 

6 I anlatmak icin ya;amak I gabriel garcia marquez 
71 denizler altinda 20 bin fersah jules verne 

Figure: 4.6.1 Products 

4.7.Sales And Installement Form 

In sales form we choose the customer name, product name, date and quantity the 

others are entering automaticly when we written the datas correctly you have to press sell 

button then two checkboxes came to the screen have to choose one of them to complete the 

sales process. If customer wants cash payment then the program automaticly goes to the 

payment form. But if you choose installment a panel comes to the screen this panel allows 

you to make an installemnt entry 

in this panel you have to enter number of installement and end date of the installment 

and your sales done successfully. 

69 



inslallmenll D no inslallmenl . StartDate 
40 4 11.12.2006 
41 5 18.12.2006 

* I 

LID r~-i 
!, 
~j 

>IIGU ~Ul., TU.R.E 
bi:!fJi,t !i!t.t' .:'.:>, ~ 

Figure: 4.7.1 Sales 

4.8. Payment form 

The datas will be automaticly taken from the sales form when you check checkbox this 

form appears in this form you just have to press the sell button. 

:f ,, 

70 



1;~~.;;::roJ 
[Mcm_b_~~!~~i------30-. 

J 1>otc lj11 12 ZOU 
jPoymcnt Amount 1148 

Figure: 4.8.1 Payment Form 

71 



4.9.Database Relationship 

Address 
City 
Country 
Phone 
Fax 

FirstName 
Bi rth Date 
Hire Date 
Address 
City 
HomePhone 
Siila111 

BookName· 
AuthorName 
Supplier!D 
QuantityPerUnit 
Unit Price 
UnitslnStock 

i11stallment 
~stallment!D~ 1 

· n,2 install1~1ent 
Sta1iDate· 
En,jDat;,· 
Membe.r!D 
totatamount 
remaini·n;;iins 
remaini11,;i111oney 

00 

sate, 
1l Sale!D 

Member!D 
product!D· 
date 
sale price 
salequantity 
total 

installmentp ayment 
Membe·rlD 

1l i nsta I I 111e11tp ai,m 
paymentemounr 
Date 

72 

Address 
City• 
Phone 

paymen:ti; r-,j P;,m~tlD 
MemlJer!D 
date 

• Pai1rnen~A111~~nt 



CONCLUSION 

Book Store Program is a useful program for register book. By using this program they 
can record and control register books and customers, employeers. 

The program is easy in use, and everything is in detail, I used borland Delphi 7 

Programming Language in building it, also ACCESS Database for storing information's. The 
program records register operation. 

I used many forms in this Project. The program records everything, we can see who is 

work in our book store and we can see abouth this. Also we can see all information about 
book. 

73 



REFERENCES 

[l] Yuksel inan - Nihat Demirli Delphi 7 Leaming Book 

[2] Ihsan Karagiille Delphi 7 Edition Book 

(3] Memik Yamk Borland Delphi- Sistem Yaymcihk 

[4] http://www.google.com 

[5] http://www.wikipedia.org 

(6]Ezel Balkan Borland Delphi 

[7] http://www.lkeydata.com/sql 

74 



APPENDIX 

SOURCE CODES 

Main Menu: 

unit unitl; 

interface 

uses 
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 

Dialogs, StdCtrls, bsSkinData, BusinessSkinForm, bsSkinCtrls, bsMessages, 

RzBorder, RzLabel, ExtCtrls, RzForms, jpeg; 

type 

TForml = class(TForm) 

Image 1: Tlmage; 

Image2: Tlmage; 

Image3: Tlmage; 

Image4: Tlmage; 

Image5: Tlmage; 

Image6: Tlmage; 

Image7: Tlmage; 

Image8: Tlmage; 

procedure Image2Click(Sender: TObject); 

procedure Image3Click(Sender: TObject); 

procedure Image4Click(Sender: TObject); 

procedure Image5Click(Sender: TObject); 

procedure Image6Click(Sender: TObject); 

procedure Image7Click(Sender: TObject); 

75 



private 

{ Private declarations } 

public 

{ Public declarations } 

end; 

var 

Forml: TForml; 

h:integer; 

implementation 

uses Unit3, Unit4, Unit5, Unit7, satis, ins_payment, Unit9; 

{$R *.dfm} 

procedure TForml .Image2Click(Sender: TObject); 

begin 

form 1. Close; 

end; 

procedure TForml .Image3Click(Sender: TObject); 

begin 

form3 .showmodal; 

end; 

procedure TF orm l .Image4Click(Sender: TObj ect ); 

begin 

F orm9 .showmodal; 

end; 

procedure TForml .Image5Click(Sender: TObject); 

76 



begin 

form5.showmodal; 

end; 

procedure TForml .Image6Click(Sender: TObject); 

begin 

form6.showmodal; 

end; 

procedure TForml.Image7Click(Sender: TObject); 

begin 

form4.showmodal; 

end; 

end. 

' ~ I, 

r 

77 



Password: 

unit Unit2; 

interface 

uses 

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 

Dialogs, StdCtrls, BusinessSkinForm, bsSkinData, bsSkinCtrls, Mask, 

bsSkinBoxCtrls, jpeg, ExtCtrls; 

type 

TForm2 = class(TForm) 

Editl: TEdit; 

Image 1: Tlmage; 

Image2: Tlmage; 

Image3: Tlmage; 

Image4: Tlmage; 

procedure FormCreate(Sender: TObject); 

procedure Image2Click(Sender: TObject); 

procedure Image3Click(Sender: TObject); 

private 

{ Private declarations } 

public 

{ Public declarations } 

end; 

var 

Form2: TForm2; 

hak:integer; 

implementation 

78 



R *.dfm} 

procedure TForm2.FormCreate(Sender: TObject); 

gm 

aption:='ENTER PASSWORD'; 

hak:=3; 

end; 

procedure TForm2.Image2Click(Sender: TObject); 

begin 

if editl.Text='l234' then 

begin 

modalresult:=mrok; 

end 

else 

begin 

showmessage('Y ou enter the wrong password ! '# 13 'Please check your password and enter 

again!'); 

hak:=hak-1; 

modalresult:=mrretry; 

edit I .Clear; 

editl.SetFocus; 

if hak=O then 

begin 

showmessage('Access Denied!'); 

modalresult:=mrcancel; 

end; 

end; 

end; 

procedure TForm2.Image3Click(Sender: TObject); 

begin 

79 



end. 

Customers: 

80 



unit Unit3; 

interface 

uses 

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 

Dialogs, ExtCtrls, DBCtrls, Grids, DBGrids, DB, ADODB, StdCtrls, 

bsSkinCtrls, bsdbctrls, bsSkinData, BusinessSkinForm, Mask, 

bsSkinBoxCtrls, bsSkinGrids, bsDBGrids, bsMessages, jpeg; 

type 

TForm3 = class(TForm) 

ADOConnectionl: TADOConnection; 

ADOTablel: TADOTable; 

DataSourcel: TDataSource; 

bsSkinDBGridl: TbsSkinDBGrid; 

bsSkinDBNavigatorl: TbsSkinDBNavigator; 

bsSkinScrollBar2: TbsSkinScrollBar; 

bsSkinScrollBarl: TbsSkinScrollBar; 

bsSkinLabell: TbsSkinLabel; 

bsSkinLabel2: TbsSkinLabel; 

bsSkinLabel3: TbsSkinLabel; 

bsSkinLabel4: TbsSkinLabel; 

bsSkinLabel5: TbsSkinLabel; 

DBEditl: TDBEdit; 

DBEdit2: TDBEdit; 

DBEdit3: TDBEdit; 

DBEdit4: TDBEdit; 

DBEdit5: TDBEdit; 

DBTextl: TDBText; 

bsSkinLabel6: TbsSkinLabel; 

Image 1: Tlmage; 

Image2: Tlmage; 

81 



Image3: Timage; 

procedure FormCreate(Sender: TObject); 

procedure Image2Click(Sender: TObject); 

private 

{ Private declarations } 

public 

{ Public declarations } 

end; 

var 

F orm3: TF orm3; 

implementation 

uses Unitl, satis; 

{$R *.dfm} 

procedure TForm3.FormCreate(Sender: TObject); 

begin 

adotable 1. Open; 

caption:='CUSTOMERS'; 

end; 

procedure TForm3.Image2Click(Sender: TObject); 

var 

a:integer; 

begin 

adotablel.Edit; 

adotable 1. UpdateRecord; 

adotable I .Refresh; 

82 



:=messagedlg('Do you want to sell product'#l3'to that customer?',mtwaming,[mbyes, 

no ],O); 

· .- a=mryes then 

gm 

form.I, Visible:=false; 

orm.6.show; 

end; 

if a=mmo then 

showmessage('Customer you have'#l3'entered is saved'); 

form3.Close; 

end; 

end. 

Employees: 

unit Unit4; 

83 



interface 

uses 

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 

Dialogs, ExtCtrls, DBCtrls, Grids, DBGrids, DB, ADODB, StdCtrls, RzForms, 

Mask, bsSkinCtrls, bsSkinGrids, bsDBGrids, bsdbctrls, bsSkinBoxCtrls, 

BusinessSkinForm, bsSkinData, jpeg; 

type 

TForm4 = class(TForm) 

ADOConnectionl: TADOConnection; 

ADOTablel: TADOTable; 

DataSource 1: TDataSource; 

bsSkinDBNavigatorl: TbsSkinDBNavigator; 

bsSkinDBGridl: TbsSkinDBGrid; 

bsSkinScro11Bar2: TbsSkinScrollBar; 

bsSkinScrollBarl: TbsSkinScrollBar; 

bsSkinLabel 1: TbsSkinLabel; 

bsSkinLabel2: TbsSkinLabel; 

bsSkinLabel3: TbsSkinLabel; 

bsSkinLabel4: TbsSkinLabel; 

bsSkinLabel5: TbsSkinLabel; 

bsSkinLabel6: TbsSkinLabel; 

bsSkinLabel7: TbsSkinLabel; 

bsSkinLabel8: TbsSkinLabel; 

DBEditl: TDBEdit; 

DBEdit2: TDBEdit; 

bsSkinDBDateEditl: TbsSkinDBDateEdit; 

bsSkinDBDateEdit6: TbsSkinDBDateEdit; 

DBEdit3: TDBEdit; 

DBEdit4: TDBEdit; 

DBEdit5: TDBEdit; 

DBEdit6: TDBEdit; 

84 



Image2: Tlmage; 

Image3: Tlmage; 

Image 1: Tlmage; 

procedure FormCreate(Sender: TObject); 

procedure bsSkinButtonl Click(Sender: TObject); 

procedure Image2Click(Sender: TObject); 

procedure DBEdit6KeyPress(Sender: TObject; var Key: Char); 

private 

{ Private declarations } 

public 

{ Public declarations } 

end; 

var 

Form4: TForm4; 

implementation 

{$R *.dfm} 

procedure TForm4.FormCreate(Sender: TObject); 

begin 

adotablel.Open; 

caption:='EMPLOYEES'; 

end; 

procedure TForm4.Image2Click(Sender: TObject); 

begin 

form4.Close; 

end; 

procedure TForm4.DBEdit6KeyPress(Sender: TObject; var Key: Char); 

85 



begin 

if not (key in ['0' .. '9',#8]) then 

begin 

Key:=#0; //girilen karakter rakam veya backspace degilse null(#O)'a donustur 

Beep; //bip sesi ile kullamciyi uyar. 

end; 

end; 

end. 

Products: 

unit Unit5; 

interface 

86 



uses 

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 

Dialogs, ExtCtrls, DBCtrls, Grids, DBGrids, DB, ADODB, StdCtrls, 

bsSkinCtrls, bsdbctrls, bsSkinData, Mask, bsMessages, BusinessSkinForm, 

bsSkinGrids, bsDBGrids, bsSkinBoxCtrls, jpeg; 

type 

TForm5 = class(TForm) 

ADOConnection 1: T ADOConnection; 

ADOTablel: TADOTable; 

DataSourcel: TDataSource; 

ADOTable2: TADOTable; 

DataSource2: TDataSource; 

bsSkinLabel 1: TbsSkinLabel; 

bsSkinLabel2: TbsSkinLabel; 

bsSkinLabel3: TbsSkinLabel; 

bsSkinLabel4: TbsSkinLabel; 

bsSkinLabel5: TbsSkinLabel; 

bsSkinDBGridl: TbsSkinDBGrid; 

bsSkinDBNavigatorl: TbsSkinDBNavigator; 

bsSkinScrollBarl: TbsSkinScrollBar; 

bsSkinScro11Bar2: TbsSkinScrollBar; 

DBEditl: TDBEdit; 

DBEdit2: TDBEdit; 

bsSkinDBLookupComboBox 1: TbsSkinDBLookupComboBox; 
DBEdit3: TDBEdit; 

DBEdit4: TDBEdit; 

Image 1: Timage; 

Image2: Timage; 

Image3: Timage; 

procedure FormCreate(Sender: TObject); 

procedure Image2Click(Sender: TObject); 

procedure DBEdit3KeyPress(Sender: TObject; var Key: Char); 

87 



procedure DBEdit4KeyPress(Sender: TObject; var Key: Char); 

private 

{ Private declarations } 

public 

{ Public declarations } 

end; 

var 

Form5: TForm5; 

implementation 

{$R *.dfm} 

procedure TForm5.FormCreate(Sender: TObject); 

begin 

adotable2.Active:=true; 

adotable 1. Open; 

caption:='PRODUCTS'; 

end; 

procedure TForm5.Image2Click(Sender: TObject); 

begin 

form5.Close; 

end; 

procedure TForm5.DBEdit3KeyPress(Sender: TObject; var Key: Char); 

begin 

88 



if not (key in ['0' .. '9',#8]) then 

begin 

Key:=#0; //girilen karakter rakam veya backspace degilse null(#O)'a donustur 

Beep; //bip sesi ile kullamciyi uyar. 

end; 

end; 

procedure TForm5.DBEdit4KeyPress(Sender: TObject; var Key: Char); 

begin 

if not (key in ['0' .. '9',#8]) then 

begin 

Key:=#0; //girilen karakter rakam veya backspace degilse null(#O)'a donustur 

Beep; //bip sesi ile kullamciyi uyar. 

end; 

end; 

end. 

Sales: 

unit satis; 

interface 

uses 

89 



Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 

Dialogs, StdCtrls, Mask, bsSkinBoxCtrls, bsdbctrls, bsSkinCtrls, DB, 

ADO DB, bsSkinGrids, bsDBGrids, bsSkinData, ExtCtrls, DBCtrls, jpeg; 

type 

TForm6 = class(TForm) 

bsSkinLabell: TbsSkinLabel; 

bsSkinLabel2: TbsSkinLabel; 

bsSkinLabel3: TbsSkinLabel; 

bsSkinLabel5: TbsSkinLabel; 

DataSource 1: TDataSource; 

ADOTable 1: T ADOTable; 

bsSkinLabel4: TbsSkinLabel; 

bsSkinLabel6: TbsSkinLabel; 
bsSkinDBLookupComboBox 1: TbsSkinDBLookupComboBox; 

bsSkinDBLookupComboBox2: TbsSkinDBLookupComboBox; 

bsSkinDBDateEditl: TbsSkinDBDateEdit; 

AD0Table2: TADOTable; 

AD0Table3: TADOTable; 

DataSource2: TDataSource; 

DataSource3: TDataSource; 

bsSkinLabel9: TbsSkinLabel; 

bsSkinDBGridl: TbsSkinDBGrid; 

bsSkinScrollBarl: TbsSkinScrollBar; 

bsSkinScrollBar2: TbsSkinScrollBar; 

GroupBox 1: TGroupBox; 
bsSkinCheckRadioBox 1: TbsSkinCheckRadioBox; 

bsSkinCheckRadioBox2: TbsSkinCheckRadioBox; 

DataSource4: TDataSource; 

AD0Table4: TADOTable; 

Panel 1: TPanel; 
bsSkinLabel 10: TbsSkinLabel; 

bsSkinLabel 11: TbsSkinLabel; 

bsSkinLabel12: TbsSkinLabel; 

90 



bsSkinLabel 13: TbsSkinLabel; 

bsSkinLabel14: TbsSkinLabel; 

bsSkinLabel 15: TbsSkinLabel; 

bsSkinLabell 6: TbsSkinLabel; 

bsSkinLabel 17: TbsSkinLabel; 

bsSkinDBDateEdit3: TbsSkinDBDateEdit; 

bsSkinDBGrid2: TbsSkinDBGrid; 

bsSkinScro11Bar3: TbsSkinScrollBar; 

bsSkinScro11Bar4: TbsSkinScrollBar; 

bsSkinDBText2: TbsSkinDBText; 

DBTextl: TDBText; 

DBEditl: TDBEdit; 

DBEdit2: TDBEdit; 

DBEdit3: TDBEdit; 

DBEdit4: TDBEdit; 

DBEdit5: TDBEdit; 

DBEdit6: TDBEdit; 

DBEdit7: TDBEdit; 

DBEdit8: TDBEdit; 

Edit3: TEdit; 

DBEdit9: TDBEdit; 

Buttonl: TButton; 

Label2: TLabel; 

Label3: TLabel; 

Editl: TEdit; 

DBEditlO: TDBEdit; 

Label 1 : TLabel; 

DBEdit13: TDBEdit; 

DBEditl 1: TDBEdit; 

Image 1: Tlmage; 

Image2: Tlmage; 

Image3: Tlmage; 

Image4: Tlmage; 

procedure bsSkinCheckRadioBoxlClick(Sender: TObject); 

91 



procedure FormCreate(Sender: TObject); 

procedure bsSkinDBLookupComboBoxlMouseMove(Sender: TObject; 

Shift: TShiftState; X, Y: Integer); 

procedure bsSkinButtonl Click(Sender: TObject); 

procedure bsSkinDBEdit3KeyPress(Sender: TObject; var Key: Char); 

procedure bsSkinDBEdit4KeyPress(Sender: TObject; var Key: Char); 

procedure bsSkinCheckRadioBox2Click(Sender: TObject); 

procedure DBEditl Change(Sender: TObject); 

procedure DBEdit2Change(Sender: TObject); 

procedure DBEdit5Change(Sender: TObject); 

procedure DBEdit7Change(Sender: TObject); 

procedure DBEdit9Change(Sender: TObject); 

procedure Buttonl Click(Sender: TObject); 

procedure Edit3Change(Sender: TObject); 

procedure Editl Change(Sender: TObject); 

procedure DBEdit3Change(Sender: TObject); 

procedure Button2Click(Sender: TObject); 

procedure DBEditl OChange(Sender: TObject); 

procedure bsSkinDBLookupComboBox2MouseMove(Sender: TObject; 

Shift: TShiftState; X, Y: Integer); 

procedure Edit3KeyPress(Sender: TObject; var Key: Char); 

procedure Image2Click(Sender: TObject); 

procedure Image3Click(Sender: TObject); 

procedure DBEdit2KeyPress(Sender: TObject; var Key: Char); 

private 

{ Private declarations } 

public 

{ Public declarations } 

end; 

var 

Form6: TForm6; 

92 



implementation 

uses Unit7, Unitl, ins_payment, Unit9; 

{$R *.dfm} 

procedure TForm6.bsSkinCheckRadioBoxl Click(Sender: TObject); 

begin 

form7.Editl.Text:=dbedit3.Text; 

form7.Show; 

end; 

procedure TForm6.FormCreate(Sender: TObject); 

begin 

dbedit4.Text:=editl .Text; 

adotable4.Append; 

adotable 1.Append; 

dbedi t 4. Text:=edi t 1. Text; 

dbedit7. Text:=dbedit3. Text; 

dbeditl .Text:=dbeditl O.Text; 

group box l .Visible:=false; 

panel 1. Visible:=false; 

end; 

procedure TF orm6.bsSkinDBLookupComboBox 1 MouseMove(Sender: TObject; 

Shift: TShiftState; X, Y: Integer); 

begin 

form6.AD0Table2.Active:=false; 

form6.AD0Table2.Active:=true; 

end; 

93 



procedure TForm6.bsSkinButtonl Click(Sender: TObject); 

begin 

form6.Close; 

forml.show; 

end; 

procedure TForm6.bsSkinDBEdit3KeyPress(Sender: TObject; var Key: Char); 

begin 

if not (key in ['0' .. '9',#8]) then 

begin 

Key:=#0; //girilen karakter rakam veya backspace degilse null(#O)'a donustur 

Beep; //bip sesi ile kullarucryi uyar. 

end; 

end; 

procedure TForm6.bsSkinDBEdit4KeyPress(Sender: TObject; var Key: Char); 

begin 

if not (key in ['0' .. '9',#8]) then 

begin 

Key:=#0; //girilen karakter rakam veya backspace degilse null(#O)'a donustur 

Beep; //bip sesi ile kullaruciyi uyar. 

end; 

end; 

procedure TForm6.bsSkinCheckRadioBox2Click(Sender: TObject); 

begin 

panell .Visible:=true; 

dbedit7.Text:=dbedit3.Text; 

editl .Text:=dbedit9.Text; 

dbeditl 1.Text:=dbedit13.Text; 

end; 

94 



procedure TForm6.DBEdit5Change(Sender: TObject); 

var 

. :integer; 

begin 

y:=strtointdef( dbedit5. Text,0)-1; 

dbedit6.Text:=inttostr(y); 

end; 

procedure TForm6.DBEditl Change(Sender: TObject); 

var 

x:integer; 

begin 

x:=strtointdef( dbeditl. Text,O)* strtointdef( dbedit2. Text,O); 

dbedit3.Text:=inttostr(x); 

end; 

procedure TForm6.DBEdit2Change(Sender: TObject); 

var 

x:integer; 

begin 

x:=strtointdef( dbeditl. Text,O)*strtointdef( dbedit2. Text,0); 

dbedit3. Text:=inttostr(x); 

end; 

procedure TForm6.DBEdit7Change(Sender: TObject); 

var 

x:real; 

begin 

x:=(strtointdef( dbedit7. Text, 1) I strtointdef( edit3 .text, 1 ))*strtointdef( dbedit6. Text, 1 ); 

dbedit8.Text:=floattostr(x); 

end; 

procedure TForm6.DBEdit9Change(Sender: TObject); 

begin 

editl. Text:=dbedit9. Text; 

95 



end; 

procedure TForm6.Button1Click(Sender: TObject); 

begin 

adotable4.Edit; 

adotable4. U pdateRecord; 

adotable4.Refresh; 

groupboxl .Visible:=false; 

panel 1.Visible:=false; 

adotable4.Append; 

adotable I .Append; 

dbedit4.Text:=editl .Text; 

dbedit7.Text:=dbedit3.Text; 

dbeditl .Text:=dbeditl O.Text; 

end; 

procedure TForm6.Edit3Change(Sender: TObject); 

var 

x:real; 

begin 

dbedit5.Text:=edit3.Text; 

x:=( strtointdef( dbedit7. Text, 1) I strtointdef( edi t3. text, 1)) * strtointdef( dbedi t6. Text, 1); 
dbedit8.Text:=floattostr(x); 

end; 

procedure TForm6.Edit1Change(Sender: TObject); 

begin 

dbedit4.Text:=editl .Text; 

end; 

procedure TForm6.DBEdit3Change(Sender: TObject); 

begin 

dbedit7.Text:=dbedit3.Text; 

end; 

96 



procedure TForm6.Button2Click(Sender: TObject); 

gm 

adotable I .Edit; 

adotablel .UpdateRecord; 

adotable I .Refresh; 

adotable3 .Edit; 

adotable3. U pdateRecord; 

adotable3 .Refresh; 

form7.dbedit4.Text:=form6.dbedit3.Text; 

form 7 .dbedit5·. Text:=form6.dbedit9. Text; 

form7.DBEdit3.Text:=form6.DBEditI3.Text; 

groupbox l .Visible:=true; 

end; 

procedure TF orm6.DBEditl OChange(Sender: TObject); 

begin 

dbeditl .Text.=dbeditl O.Text; 

end; 

procedure TF orm6. bsSkinDBLookupComboBox2MouseMove(Sender: TObj ect; 

Shift: TShiftState; X, Y: Integer); 

begin 

form6.ADOTable3.Active:=false; 

form6.ADOTable3.Active:=true; 

end; 

procedure TForm6.Edit3KeyPress(Sender: TObject; var Key: Char); 

begin 

if not (key in ['0' .. '9',#8]) then 

begin 

Key:=#0; //girilen karakter rakam veya backspace degilse null(#O)'a donustur 

Beep; //bip sesi ile kullamciyi uyar. 

end; 

97 



end; 

nocedure TForm6.Image2Click(Sender: TObject); 

gm 

form6.Close; 

form 1.show; 

end; 

procedure TForm6.Image3Click(Sender: TObject); 

begin 

adotablel.Edit; 

adotable 1.UpdateRecord; 

adotable 1.Refresh; 

adotable3 .Edit; 

adotable3. UpdateRecord; 

adotable3 .Refresh; 

form7.dbedit4.Text:=form6.dbedit3.Text; 

form7.dbedit5.Text:=form6.dbedit9.Text; 

form7.DBEdit3.Text:=form6.DBEdit13.Text; 

groupboxl .Visible:=true; 

end; 

procedure TForm6.DBEdit2KeyPress(Sender: TObject; var Key: Char); 

begin 

if not (key in ['0' .. '9',#8]) then 

begin 

Key:=#0; //girilen karakter rakam veya backspace degilse null(#O)'a donustur 

Beep; //bip sesi ile kullamciyi uyar. 

end; 

end; 

end. 

98 



Payment: 

unit Unit7; 

interface 

uses 

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 

Dialogs, bsSkinBoxCtrls, bsdbctrls, StdCtrls, Mask, bsSkinCtrls, DB, 

ADO DB, DBCtrls, ExtCtrls, jpeg; 

type 

TForm7 = class(TForm) 

ADOTablel: TADOTable; 

DataSource 1: TDataSource; 

bsSkinLabel 1: TbsSkinLabel; 

bsSkinLabel2: TbsSkinLabel; 

bsxkinl.abel.I: TbsSkinLabel; 

bsSkinLabel4: TbsSkinLabel; 

AD0Table2: TADOTable; 

DataSource2: TDataSource; 

bsSkinDBTextl: TbsSkinDBText; 

DBEdit3: TDBEdit; 

Image 1: Tlmage; 

Image2: Tlmage; 

Image3: Tlmage; 

Image4: Tlmage; 

Editl: TEdit; 

DBEdit4: TDBEdit; 

DBEdit5: TDBEdit; 

procedure FormCreate(Sender: TObject); 

100 



procedure bsSkinButtonl Click(Sender: TObject); 

procedure Buttonl Click(Sender: TObject); 

procedure Image3Click(Sender: TObject); 

procedure Image4Click(Sender: TObject); 

procedure Editl Change(Sender: TObject); 

private 

{ Private declarations } 

public 

{ Public declarations } 

end; 

var 

Form7: TForm7; 

implementation 

uses satis, Unitl; 

{$R *.dfm} 

procedure TForm7.FormCreate(Sender: TObject); 

begin 

bsskindbtextl .caption:=inttostr( adotable 1.RecordCount+ 1 ); 

adotable I .Append; 

dbedit4.Text:=editl .Text; 

end; 

procedure TForm7.bsSkinButton1Click(Sender: TObject); 

begin 

form 7 .close; 

form6.Close; 

101 



end; 

procedure TForm7.Button1Click(Sender: TObject); 

begin 

adotable l .Edit; 

adotable 1. UpdateRecord; 

adotable I .Refresh; 

end; 

procedure TForm7.Image3Click(Sender: TObject); 

begin 

form7.close; 

form6.Close; 

end; 

procedure TForm7.Image4Click(Sender: TObject); 

begin 

adotable l .Edit; 

adotable 1. UpdateRecord; 

adotable I .Refresh; 

showmessage('Product is sold!!'); 

end; 

procedure TForm7.Edit1Change(Sender: TObject); 

begin 

dbedit4.Text:=editl.Text; 

end; 

end. 

102 



Installment Payment : 

unit Unit9; 

interface 

uses 

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 

Dialogs, DB, ADODB, bsSkinCtrls, bsSkinGrids, bsDBGrids, bsdbctrls, 

StdCtrls, Mask, bsSkinBoxCtrls, DBCtrls, Grids, DBGrids, ComCtrls, 

ExtCtrls, jpeg; 

type 

TF orm9 = class(TF orm) 

ADOTablel: TADOTable; 

ADOTable2: TADOTable; 

DataSource 1: TDataSource; 

DataSource2: TDataSource; 

DBEditl: TDBEdit; 

DBEdit2: TDBEdit; 

DBEdit3: TDBEdit; 

DBEdit4: TDBEdit; 

DBEdit5: TDBEdit; 

DBEdit6: TDBEdit; 

DBGridl: TDBGrid; 

Editl: TEdit; 

DBGrid2: TDBGrid; 

Edit3: TEdit; 

Edit4: TEdit; 

DateTimePickerl: TDateTimePicker; 

DBEdit7: TDBEdit; 

DBEdit8: TDBEdit; 

DBEdit9: TDBEdit; 

103 



DBTextl: TDBText; 

Image 1: Timage; 

Image2: Timage; 

Images: Timage; 

Image6: Timage; 

Image3: Timage; 

Image4: Timage; 

Image7: Timage; 

Image8: Timage; 

bsSkinLabel 1: TbsSkinLabel; 

bsSkinLabel2: TbsSkinLabel; 

bsSkinLabel3: TbsSkinLabel; 

bsSkinLabel4: TbsSkinLabel; 

bsSkinLabel5: TbsSkinLabel; 

bsSkinLabel6: TbsSkinLabel; 

bsSkinLabel 7: TbsSkinLabel; 

bsSkinLabel8: TbsSkinLabel; 

bsSkinLabel9: TbsSkinLabel; 

bsSkinLabell 0: TbsSkinLabel; 

procedure FormCreate(Sender: TObject); 

procedure DBEdit3Change(Sender: TObject); 

procedure D8Edit6Change(Sender: TObject); 

procedure DBEdit4Change(Sender: TObject); 

procedure DateTimePickerl Change(Sender: TObject); 

procedure Buttonl Click(Sender: TObject); 

procedure Button2Click(Sender: TObject); 

procedure Button3Click(Sender: TObject); 

procedure Button4Click(Sender: TObject); 

procedure Button5Click(Sender: TObject); 

procedure Image2Click(Sender: TObject); 

procedure Image3Click(Sender: TObject); 

procedure Image4Click(Sender: TObject); 

procedure Image5Click(Sender: TObject); 

procedure Image6Click(Sender: TObject); 

104 



procedure Image7Click(Sender: TObject); 

private 

{ Private declarations } 

public 

{ Public declarations } 

end; 

var 

Form9:TForm9; 

implementation 

{$R *.dfm} 

procedure TForm9.FormCreate(Sender: TObject); 

var 

g:real48; 

re:real48; 

mo:integer; 

hwndHandle : THANDLE; 

hMenuHandle : HMENU; 

iPos:Integer; 

begin 

hwndHandle := FindWindow(nil,PChar(Caption)); 

if (hwndHandle <> 0) then begin 

hMenuHandle := GetSystemMenu(hwndHandle, FALSE); 

if (hMenuHandle <> 0) then begin 

DeleteMenu(hMenuHandle, SC_ CLOSE, MF_ BYCOMMAND); 

105 



iPos := GetMenultemCount(hMenuHandle ); 

Dec(iPos); 

{ Make sure no errors occured i.e. -1 indicates an error } 

if iPos > -1 then 

DeleteMenu(hMenuHandle,iPos,MF _ BYPOSITION); 

end; 

end; 

adotable I .Refresh; 

re:=strtoint( dbedit4. Text)- I ; 

edit3. Text:=floattostr(re ); 

g:=strtointdef( dbedit6. Text, 1 )/strtointdef( dbedit3. Text, 1 ); 

editl .Text:=floattostr(g); 

mo:=strtointdef( editl .text,0)* strtointdef( edit3.text,O); 

edit 4. Text:=inttostr(mo ); 

end; 

procedure TForm9.DBEdit3Change(Sender: TObject); 

var 

g:real48; 

mo:integer; 

begin 

g:=strtointdef( dbedit6. Text, 1 )/strtointdef( dbedit3. Text, 1 ); 

editl .Text:=floattostr(g); 

mo:=strtointdef( editl .text,O)*strtointdef( edit3 .text,O); 

edit4.Text:=inttostr(mo ); 

end; 

procedure TForm9.DBEdit6Change(Sender: TObject); 

var 

106 



g:real48; 

mo:integer; 

begin 

g:=strtointdef( dbedit6. Text, 1 )/strtointdef( dbedit3. Text, 1 ); 

editl. Text:=floattostr(g); 

mo:=strtointdef( editl .text,O)*strtointdef( edit3.text,O); 

edit 4. Text:=inttostr(mo ); 

end; 

procedure TForm9.DBEdit4Change(Sender: TObject); 

var 

re:real48; 

mo:integer; 

begin 

re:=strtoint( dbedit4. Text)- I ; 

edi t3. Text: =fl oattostr( re); 

mo:=strtointdef( editl .text,O)*strtointdef( edit3 .text,0); 

edit 4. Text:=inttostr(mo ); 

end; 

procedure TForm9.DateTimePickerl Change(Sender: TObject); 

begin 

dbedit7. Text:=datetostr( datetimepicker I .date); 

end; 

procedure TF orm9 .Buttonl Click(Sender: TObject); 

begin 

adotable2.Append; 

adotable2.Edit; 

adotable I .edit; 

dbedit7. Text:=datetostr( datetimepickerl .Date); 

107 



dbedit4.Text:=edit3.Text; 

dbedit5.text:=edit4.text; 

image5.Visible:=false; 

image6. Visible:=false; 

end; 

procedure TForm9.Button2Click(Sender: TObject); 

begin 

adotable 1. UpdateRecord; 

adotable I .Refresh; 

dbedit9.Text:=editl .Text; 

dbedit8.Text:=dbeditl .Text; 

dbgridl .Visible:=true; 

dbtextl .Visible:=true; 

dbedit8.Visible:=true; 

dbedit9 .Visible:=true; 

datetimepickerl .Visible:=true; 

images. Visible:=false; 

image6.Visible:=false; 

end; 

procedure TForm9.Button3Click(Sender: TObject); 

var 

sil:integer; 

108 



begin 

adotable2.UpdateRecord; 

adotable2.Refresh; 

if strtoint( dbedit4.Text)<=O then 

begin 

sil:=messagedlg('All the Installment of that record is paid',mtwaming,[mbok],O); 

if sil=mrok then 

adotable I .Delete; 

end; 

end; 

procedure TForm9.Button4Click(Sender: TObject); 

begin 

adotable I .Prior; 

end; 

procedure TForm9.Button5Click(Sender: TObject); 

begin 

ADOTABLE l .Next; 

end; 

procedure TForm9.Image2Click(Sender: TObject); 

begin 

form9.Close; 

end; 

procedure TForm9.Image3Click(Sender: TObject); 

begin 

109 



dotable2.Append; 

adotable2.Edit; 

adotable I .edit; 

dbedit7. Text:=datetostr( datetimepickerl .Date); 

dbedit4.Text:=edit3.Text; 

dbedit5 .text:=edit4. text; 

image5.Visible:=false; 

image6. Visible:=false; 

image4. Visible:=true; 

end; 

procedure TForm9.Image4Click(Sender: TObject); 

begin 

adotable 1. UpdateRecord; 

adotable I .Refresh; 

dbedit9.Text:=editl .Text; 

dbedit8.Text:=dbeditl .Text; 

db grid 1. Visible:=true; 

dbtextl .Visible:=true; 

dbedit8. Visible:=true; 

dbedit9.Visible:=true; 

datetimepickerl. Visible:=true; 

bsskinlabel7.Visible:=true; 

bsskinlabel8.Visible:=true; 

bsskinlabel9.Visible:=true; 

bsskinlabel 1 O.Visible:=true; 

image5. Visible:=false; 

image6. Visible:=false; 

image7. Visible:=true; 

110 



end; 

procedure TForm9.Image5Click(Sender: TObject); 

begin 

adotable 1.Prior; 

end; 

procedure TForm9.Image6Click(Sender: TObject); 

begin 

ADOTABLE l .Next; 

end; 

procedure TForm9.Image7Click(Sender: TObject); 

var 

sil:integer; 

begin 

adotable2. U pdateRecord; 

adotable2.Refresh; 

if strtoint( dbedit4.Text)<=O then 

begin 

sil:=messagedlg('All the Installment of that record is paid',mtwaming,[mbok],O); 

if sil=mrok then 

adotable l .Delete; 

end; 

db grid 1.Visible:=false; 

bsskinlabel7 .Visible:=true; 

bsskinlabe18.Visible:=true; 

bsskinlabel9. Visible:=true; 

bsskinlabel 1 O.Visible:=true; 

dbtextl .Visible:=false; 

111 



dbedit8.Visible:=false; 

dbedit9. Visible:=false; 

DateTimePickerl .Visible:=false; 

image7. Visible:=false; 

image3. Visible:=true; 

image4. Visible:=false; 

image5.Visible:=true; 

image6.Visible:=true; 

bsskinlabel7 .Visible:=false; 

bsskinlabel8. Visible :=false; 

bsskinlabel9. Visible:=false; 

bsskinlabel 1 O.Visible:=false; 

end; 

end. 

112 


	Page 1
	Titles
	NEAR EAST UNIVERSITY 
	Faculty of Engineering 


	Page 2
	Titles
	ACKNOWLEDGEMENT 

	Images
	Image 1


	Page 3
	Titles
	ABSTRACT 


	Page 4
	Titles
	ACKNOWLEDGEMENT .i 
	ABSTRACT .ii 
	TABLE OF CONTENTS iii 
	INTRODUCTION .ix 
	CHAPTER ONE 1 
	1. DEFINITION OF DELPHI 1 
	fr 
	A 


	Page 5
	Titles
	Ii 
	[ill 
	rx 
	r-- 
	[fg] 
	CHAPTER TW0 10 
	2. ACCESS DATABASElO 10 


	Page 6
	Titles
	CHAPTER THREE 27 
	3. BASIC DOCUMENTS OF DELPHI 27 


	Page 7
	Page 8
	Page 9
	Titles
	CHAPTER FOUR 64 
	4. DESCRiPTiON ABOUT PROJECT 64 
	CONCLUSION 73 
	REFERENCES 74 
	APPENDIX 75 

	Images
	Image 1


	Page 10
	Titles
	INTRODUCTION 


	Page 11
	Titles
	CHAPTER ONE 
	1.1 what is Delphi? 


	Page 12
	Titles
	1.2.A Brief history of Borland's Delphi 
	1.2.1.Pascal 
	1.2.1.1.Beginnings 
	1.2.1.2.The 1970's 
	1.2.1.3.The 1980's 
	1.2.2.From Turbo Pascal to Delphi 

	Images
	Image 1


	Page 13
	Titles
	1.2.3. Delphi for Microsoft .Net 

	Images
	Image 1


	Page 14
	Titles
	1.3.Standard tab GUI components 
	1.3.1 GUI components 
	M@,E [$ 

	Images
	Image 1
	Image 2


	Page 15
	Titles
	1.3.2 iDIFrame objects 
	1.3.3 ff Menus 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 1
	Titles
	1.3.4 ~ Popup menus 

	Images
	Image 1


	Page 2
	Titles
	1.3.5 A Labels 
	1.3.6 f~f Edit boxes 
	1.3. 7 liJ Memo boxes 
	1.3.8 00 Buttons 
	1.3.9 rx Check boxes 
	1.3.10 ;@ Radio buttons 

	Images
	Image 1


	Page 3
	Titles
	1.3.11 ·~List boxes 
	1.3.12 ~ Combo boxes 
	1.3.13 m::m Scroll bars 
	1.3.14 [] Group boxes 


	Page 4
	Titles
	1.3.15 Is Radio group panels 
	1.3.16 Empty panels 
	1.3.17 ~ Action lists 

	Images
	Image 1


	Page 5
	Titles
	CHAPTER TWO 
	2. ACCESS DATABASE 
	2.1.what is Microsoft Access? 

	Images
	Image 1


	Page 6
	Images
	Image 1
	Image 2


	Page 7
	Titles
	2.1.1.Using Microsoft Access with Borland Delphi 

	Images
	Image 1


	Page 8
	Titles
	2.2 Microsoft Access Database Tables 

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1
	Table 2


	Page 9
	Titles
	lli~fflij,lu/,MJffl:M=m.aamfui illfflHftr111;11l~§.1aCl'JII 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 10
	Images
	Image 1
	Image 2
	Image 3


	Page 11
	Images
	Image 1
	Image 2
	Image 3


	Page 12
	Images
	Image 1


	Page 13
	Titles
	2.3 Benefits of a Primary Key 

	Images
	Image 1


	Page 14
	Titles
	2.3.1 Primary and Foreign key constraints are and what they are used for 
	2.3.1.1 Primary Key 
	2.3.1.2 Foreign Key 

	Images
	Image 1
	Image 2

	Tables
	Table 1


	Page 15
	Images
	Image 1

	Tables
	Table 1
	Table 2


	Page 16
	Images
	Image 1
	Image 2

	Tables
	Table 1
	Table 2


	Page 17
	Titles
	2.4 What is a Key field in a Database and how should I choose one? 

	Images
	Image 1


	Page 18
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1


	Page 19
	Titles
	2.5 Import Excel Data into Microsoft Access 
	2.5.1 Creating a new table using an Excel file 

	Images
	Image 1


	Page 20
	Titles
	2.5.2. Importing from Excel (.xis) 

	Images
	Image 1
	Image 2
	Image 3


	Page 1
	Page 2
	Titles
	CHAPTER THREE 
	3. BASIC DOCUMENTS OF DELPHI 
	3.1.Delphi data types 
	3.1.1.Storing data in computer programs 
	3.1.2.Simple delphi data types 

	Images
	Image 1


	Page 3
	Titles
	3.1.2.1.Number types 


	Page 4
	Titles
	3.1.2.2. Text types 
	3.1.2.3.Logical data types 


	Page 5
	Titles
	3.1.2.4.Sets,enumerations and sub types 
	3.1.3.Using these simple data types 

	Images
	Image 1
	Image 2


	Page 6
	Titles
	~v i.S,r\ 
	</ ~· 
	~~ <: . 
	I "-? :0 
	G,,, .).. 0 
	':.<s ' 
	/ro ~)' 
	3.1.3.1.Assigning to and from variables 

	Images
	Image 1
	Image 2


	Page 7
	Titles
	3.1.4.Compound data types 
	3.1.4.1.Arrays 

	Images
	Image 1


	Page 8
	Page 9
	Titles
	3.1.4.3.0bjects 
	3.1.5.0ther data types 
	3.1.5.1.Files 


	Page 10
	Titles
	3.1.5.2.Pointers 
	3.1.5.3. Variants 
	3.1.6.Type definitions 
	3.2.Integer and Floating point numbers 
	3.2.1.The different number types in Delphi 
	3.2.2.Assigning to and from number variables 

	Images
	Image 1


	Page 11
	Titles
	3.2.3.Numerical operators 


	Page 12
	Titles
	3.2.4.Numeric functions and procedures 
	3.2.5.Converting from numbers to strings 
	3.2.6.Converting from strings to numbers 

	Images
	Image 1


	Page 13
	Titles
	3.3.Strings and Characters 
	3.3.1.Text types 
	3.3.2.Characters 
	3.3.2.1. The Ansi character set 

	Images
	Image 1


	Page 14
	Images
	Image 1

	Tables
	Table 1


	Page 15
	Images
	Image 1

	Tables
	Table 1


	Page 16
	Images
	Image 1


	Page 17
	Titles
	3.3.2.2.Assigning to and from character variables 

	Images
	Image 1

	Tables
	Table 1
	Table 2


	Page 18
	Titles
	3.3.2.3.What are Wide Char types? 
	3.3.3.Strings 
	3.3.3.1.Assigning to and from a string 

	Images
	Image 1


	Page 19
	Titles
	3.3.3.2.String operators 

	Images
	Image 1


	Page 20
	Titles
	3.3.3.3.String processing routines 

	Images
	Image 1


	Page 1
	Titles
	3.3.3.4.Converting from numbers to strings 


	Page 2
	Titles
	3.3.3.5.Converting from strings to numbers 
	3.4.Enumerations, SubRanges and Sets 
	3.4.1.En umerations 

	Images
	Image 1


	Page 3
	Titles
	3.4.1.1.Defining Enumerations 

	Images
	Image 1
	Image 2
	Image 3


	Page 4
	Titles
	3.4.1.2.Using Enumerations numbers 
	3.4.1.3.A word of warning 
	3.4.2.SubRanges 


	Page 5
	Titles
	3.4.3.Sets 
	3.4.3.1.What is a set? 
	3.4.3.2.Including and Excluding set values 
	so 

	Images
	Image 1


	Page 6
	Titles
	3.4.3.3.Set operators 
	3.5.Arrays 
	3.5.1.About arrays 

	Images
	Image 1


	Page 7
	Titles
	3.5.2.Constant arrays 
	. ' ' ' ' ' ' ' 
	3.5.3.Different ways of defining array sizes 
	3.5.3.1.Using enumerations and subranges to define an array size 

	Images
	Image 1


	Page 8
	Titles
	3.5.4.Static arrays 
	3.5.3.2.Using a data type 
	3.5.5.Dynamic arrays 

	Images
	Image 1


	Page 9
	Titles
	3.5.6.0pen arrays to routines 
	3.5. 7.Multi-dimensional arrays 
	3.5.8.Copying arrays 

	Images
	Image 1
	Image 2


	Page 10
	Titles
	3.6.Records 
	3.6.1.What are the records? 

	Images
	Image 1


	Page 11
	Titles
	3.6.2.Using the with keyword 

	Images
	Image 1


	Page 12
	Titles
	3.6.3.A more complex example 

	Images
	Image 1


	Page 13
	Titles
	3.6.4.Packing record data 

	Images
	Image 1


	Page 14
	Images
	Image 1


	Page 15
	Images
	Image 1


	Page 16
	Titles
	3.6.5.Records with variant parts 

	Images
	Image 1
	Image 2


	Page 17
	Page 18
	Page 19
	Images
	Image 1
	Image 2
	Image 3


	Page 20
	Titles
	4.3.Customers form 

	Images
	Image 1
	Image 2


	Page 21
	Titles
	C.us1t .. o.me,r"5 
	4.4 Employees 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 22
	Titles
	4.5.Installement Payment 

	Images
	Image 1

	Tables
	Table 1


	Page 23
	Titles
	4.6.Products 

	Images
	Image 1
	Image 2


	Page 24
	Titles
	4.7.Sales And Installement Form 

	Images
	Image 1
	Image 2
	Image 3


	Page 25
	Titles
	4.8. Payment form 
	:f 

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1


	Page 1
	Titles
	Figure: 4.8.1 Payment Form 
	71 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7


	Page 2
	Titles
	4.9.Database Relationship 
	72 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8


	Page 3
	Titles
	CONCLUSION 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 4
	Titles
	REFERENCES 

	Images
	Image 1


	Page 5
	Page 6
	Images
	Image 1


	Page 7
	Images
	Image 1


	Page 8
	Images
	Image 1


	Page 9
	Images
	Image 1


	Page 10
	Images
	Image 1


	Page 11
	Images
	Image 1


	Page 12
	Images
	Image 1


	Page 13
	Images
	Image 1
	Image 2


	Page 14
	Images
	Image 1


	Page 15
	Images
	Image 1
	Image 2


	Page 1
	Page 2
	Images
	Image 1
	Image 2


	Page 3
	Images
	Image 1
	Image 2


	Page 4
	Images
	Image 1


	Page 5
	Images
	Image 1
	Image 2


	Page 6
	Images
	Image 1


	Page 7
	Images
	Image 1


	Page 8
	Images
	Image 1


	Page 9
	Images
	Image 1
	Image 2


	Page 10
	Images
	Image 1


	Page 11
	Images
	Image 1
	Image 2


	Page 12
	Images
	Image 1


	Page 13
	Images
	Image 1
	Image 2


	Page 14
	Images
	Image 1


	Page 15
	Images
	Image 1


	Page 16
	Images
	Image 1


	Page 17
	Images
	Image 1
	Image 2


	Page 18
	Images
	Image 1


	Page 19
	Images
	Image 1
	Image 2
	Image 3


	Page 20
	Images
	Image 1
	Image 2


	Page 21
	Images
	Image 1
	Image 2


	Page 22
	Images
	Image 1


	Page 23
	Images
	Image 1


	Page 24
	Images
	Image 1
	Image 2
	Image 3


	Page 25
	Images
	Image 1


	Page 26
	Images
	Image 1
	Image 2



