NEAR EAST UNIVERSITY

Graduate School Applied and SOCIAL SCIENCE

Navigation of mobile robot by using fuzzy logic 

Ayman Ibraheem Afaneh

Master Thesis
Department of Computer Engineering

Nicosia – 2007
Abstract

One of the key challenges in application of mobile robots is navigation in environments that are densely cluttered with obstacles. In this thesis the hardware scheme and software are developed for the navigation of mobile robot. Using developed navigation system robot can move in the environment avoiding obstacles.

The control of robots in complicated situations by using traditional control algorithm is not enough satisfy such characteristics of control systems, as accuracy, efficiency on time. The most popular control methods for such systems are based on reactive local navigation schemes that tightly couple the robot actions to the sensor information. In these conditions one of actual way of constructing control system is the use of fuzzy system. Because of the environmental uncertainties, fuzzy behavior systems have been proposed. The most difficult problem in applying fuzzy behavior based navigation control systems is that of arbitrating or fusing the reactions of the individual behaviors.

The navigation system of mobile robot in the condition of uncertainty is developed. The structure and control algorithm of mobile robot is presented. Also by using fuzzy logic, the development of control system of mobile robot is carried out. The control rules of speed, steer action is described. This design allows the robot to thoroughly use the available ultrasonic sensor information when choosing the control action to be taken. For navigation of robot the knowledge base that includes fuzzy terms are created.  These fuzzy knowledge bases describe the relation between distance from obstacle and speed, control rules of speed and steer action. Using developed algorithm the development of navigation system is carried out by using Parallax Boe-bot robot and Basic Stamp software.
Acknowledgment

 It has been a highly eventful year at the Department of Computer Engineering, working with a highly devoted teaching community, and will probably remain one of the most memorable experiences of my life. Hence this acknowledgement is a humble attempt to earnestly thank all those who have directly or indirectly helped me during this course.

I would like to take special privilege to thank my supervisor Ass.Prof Rahib Abiyev who allocated me a thesis in the area of my interest. It was because of his invaluable suggestions, motivation, cooperation and timely help in overcoming problems that the work is successful.

Last but not the least, I would thank ''Ibraheem'' the father and the son and the most important two women in my life, my mother and my wife. A lot of people deserve to be thanked but the person whose name must be reminded my dear brother Feras. 

DEDICATION

To my country that I have never seen, to my home that I have never lived in, to my land that was stolen, to Palestine   

TABLE OF CONTENTS

ABSRACT………………………………………………………………………………...i
Acknowledgment ……………………………...………………………………...II
Dedication …………………………………………................…………………….III
CONTENTS………………………………………………………………………….…IV
1. Introduction.........................................................................................................1
 
1.1. Background…………………………………………………………..……….1
1.2. Advantages and disadvantage………………………………………………...4 

1.3. Statement of the problem of mobile robot navigation ……………………….5
 2. Review on Mobile Robot Navigation…………………………………7
2.1. Overview ……………………………………………………………………..7
2.2. Robot components……………………………………………………………7
2.3. Robot application……………………………………………………………..9
2.4. Review on control and navigation of robot………………………………….11
2.4.1. Navigation of mobile robot………………………………………..14
2.4.2. Active perception …………………………………………………20
2.4.3. Sensor modeling and fusion……………………………………….21
2.4.4. Robust tracking of landmark………………………………………22
2.4.5. Review on fuzzy navigation of robot……………………………...23
2.5 Summary……………………………………………………………………..26
 3. THE Boe-Bot Mobile robot……………...………………………………. .27
3.1. Overview…………………………………………………………………….27
3.2 Control system of Boe-Bot mobile robot………………………………….…27
3.2.1 BASIC Stamp 2 Microcontroller Components and Their 
         Functions…………………………………………………………...29
3.2.2. Carrier Board Components and Their Functions………………….30
3.2.3. Servos Motors……………………………………………………..31
3.2.3.1. Type of servos…………………………………………...31
3.2.4. Block Diagram of the Control System of Boe-Bot………………..31
3.3. The activities ………………………………………………………………..32
3.4. Boe-bot robot navigation using ultrasonic sensor…………………………...46
3.4.1 Sensors in general………………………………………………….46
3.4.2 Range Finder ………………………………………………………47
3.4.3 What is the ultrasonic………………………………………………49
3.4.4 Ultra Sonic Range Finders…………………………………………49
3.4.5 Ultrasonic in Boe-Bot (Ping))) Ultra sonic sensor)………………..51
3.5. Summary………………………………………………………………….…58
4. Fuzzy Navigation of Mobile Robot.......................................................59
4.1. Overview………………………………………………………………….…59
4.2. Structure of fuzzy system……………………………………...…………….59
4.2.1. Fuzzy logic control………………………………………………..59
4.2.1.1. Fuzzy Knowledge Base…………….……………………60
4.2.2. Fuzzy inference Process…………………………………………...59
4.2.2.1. Fuzzification………………………………………….…61
4.2.2.2. Inference Mechanism …………………………………...61
4.2.2.3. Composition …………………………………………….63
 
4.2.2.4. Defuzzification…………………………………………..64
4.3. Application of fuzzy logic on robotics………………………………………65
4.4. Constructing Fuzzy Rules Base for Navigation of Mobile Robot…………..69
4.4.1. The First Stage…………………………………………………….69
4.4.2. The Second Stage …………………………………………………70

4.5. Meeting the shortest line…………………………………………………….71
4.6. Summary…………………………………………………………………….71
5. Simulation of navigation OF mobile robot using Boe-Bot        robot.............................................................................................................................72
5.1. Overview…………………………………………………………………….72
5.2. The algorithm………………………………………………………………..72
5.3. Flow Chart…………………………………………………………………..76
5.4. Comparing between simulation and practical results of robot navigation......77
5.5. Limitations and problems causes differences between theoretical and      practical results......................................................................................................84
5.6. Summary…………………………………………………………………….85
6. CONCLUSION………………………………………………………………………86
7. REFRENCES..……………………………………………………………………….87
8. APPENDICES………....………………………………………………………......…91
APPENDIX A........................................................................................................91
APPENDIX B......................................................................................................101
Chapter 1. Introduction

1.1 . Background

The use of the industrial robot along with computer-aided design (CAD) systems and computer-aided manufacturing (CAM) systems, characterizes the latest trends in the automation of the manufacturing process. They replace human’s works in industry. Robots are becoming more effective-faster, more accurate, more flexible. Robot become able to do more and more tasks that might be dangerous or impossible for human workers to perform.

One of the major cost factors involved in robotic applications is the development of robot control. Especially the use of advanced sensor systems and existence of strong requirement with respect to the robot’s flexibility ask for very skilful programmer and sophisticated programming environment. These circumstances let the interest in a new programming paradigm, namely Robot Programming by Demonstration (RPD) grow rapidly. RPD is an intuitive method to program a robot. The programmer shows how a particular task is performed, using an interface device that allows the measurement and recording of the human’s motion and the data simultaneously perceived by the robot’s sensors.

Autonomous mobile systems have to convert their sensor data in real time into meaningful data structures in order to meet specific tasks with their help through their environment. One of the most important tasks that need sensor data is the navigation.   In order to navigate without collisions in an environment initially unknown to an autonomous mobile robot (AMR), obstacles must be detected and represented in maps.

A robot may act under the direct control of a human (eg. the Canadarm on the space shuttle) or autonomously under the control of a programmed computer. Robots may be used to perform tasks that are too dangerous, difficult or tedious for humans to implement directly (e.g. nuclear waste clean up or sorting wires according to colour) or may be used to automate mindless repetitive tasks that should be performed with more precision by a robot than by a mere human (e.g. automobile production.)

Robot can also be used to describe an intelligent mechanical device in the form of a human, a humanoid robot. This form of robot (commonly referred to as an android) is common in science fiction stories. However, such robots have yet to become commonplace in reality, especially with the difficulties (and expenses) involved in making a bipedal machine balance itself or move in human-like ways without losing balance.

The word robot is used to refer to a wide range of machines, the common feature of which is that they are all capable of movement and can be used to perform physical tasks. Robots take on many different forms, ranging from humanoid, which mimic the human form and way of moving, to industrial, whose appearance is dictated by the function they are to perform. Robots can be grouped generally as mobile robots (eg. autonomous vehicles), manipulator robots (eg. industrial robots) and self reconfigurable robots, which can conform themselves to the task at hand.

Robots may be controlled directly by a human, such as remotely-controlled bomb-disposal robots, robotic arms, or shuttles, or may act according to their own decision making ability, provided by artificial intelligence. However, the majority of robots fall in-between these extremes, being controlled by pre-programmed computers. Such robots may include feedback loops such that they can interact with their environment, but do not display actual intelligence.

The word "robot" is also used in a general sense to mean any machine which mimics the actions of a human (biomimicry), in the physical sense or in the mental sense. It comes from the Czech and Slovak word robota, labour or work (also used in a sense of a serf). The word robot first appeared in Karel Čapek's science fiction play R.U.R. (Rossum's Universal Robots) in 1921, and was probably invented by the author's brother, painter Josef Čapek. The word was brought into popular Western use by famous science fiction writer Isaac Asimov. See the article about Karel Čapek for more detailed etymological explanation.
Robotics is the art, knowledge base, and the know-how of designing, applying, and using robot in human endeavors. Robotics system consists of not just robots, but also other devices and systems that are used together with the robots to perform the necessary tasks. Robots may be used in manufacturing environment, in underwater and space exploration, for aiding the disabled, or even for fun. In any capacity, robots can be useful, but need to be programmed and controlled. Robotics is an interdisciplinary subject that benefits from mechanical engineering, computer science, biology, and many other disciplines. 

Although the appearance and capabilities of robots vary vastly, all robots share the features of a mechanical, movable structure under some form of control. The structure of a robot is usually mostly mechanical and can be called a kinematic chain (its functionality being akin to the skeleton of a body). The chain is formed of links (its bones), actuators (its muscles) and joints which can allow one or more degrees of freedom. Most contemporary robots use open serial chains in which each link connects the one before to the one after it. These robots are called serial robots and often resemble the human arm. Some robots, such as the Stewart platform, use closed parallel kinematic chains. Other structures, such as those that mimic the mechanical structure of humans, various animals and insects, are comparatively rare. However, the development and use of such structures in robots is an active area of research (e.g. biomechanics). Robots used as manipulators have an end effector mounted on the last link. This end effector can be anything from a welding device to a mechanical hand used to manipulate the environment.

The mechanical structure of a robot must be controlled to perform tasks. The control of a robot involves three distinct phases - perception, processing and action (robotic paradigms). Sensors give information about the environment or the robot itself (e.g. the position of its joints or its end effector). Using strategies from the field of control theory, this information is processed to calculate the appropriate signals to the actuators (motors) which move the mechanical structure. The control of a robot involves various aspects such as path planning, pattern recognition, obstacle avoidance, etc. More complex and adaptable control strategies can be referred to as artificial intelligence.

Any task involves the motion of the robot. The study of motion can be divided into kinematics and dynamics. Direct kinematics refers to the calculation of end effector position, orientation, velocity and acceleration when the corresponding joint values are known. Inverse kinematics refers to the opposite case in which required joint values are calculated for given end effector values, as done in path planning. Some special aspects of kinematics include handling of redundancy (different possibilities of performing the same movement), collision avoidance and singularity avoidance. Once all relevant positions, velocities and accelerations have been calculated using kinematics, methods from the field of dynamics are used to study the effect of forces upon these movements. Direct dynamics refers to the calculation of accelerations in the robot once the applied forces are known. Direct dynamics is used in computer simulations of the robot. Inverse dynamics refers to the calculation of the actuator forces necessary to create prescribed end effector acceleration. This information can be used to improve the control algorithms of a robot.

In each area mentioned above, researchers strive to develop new concepts and strategies, improve existing ones and improve the interaction between these areas. To do this, criteria for "optimal" performance and ways to optimize design, structure and control of robots must be developed and implemented.

1.2.  Advantages and disadvantage 

1- Robotics and automation can, in many situation, increase productivity, safety, efficiency, quality, and consistency of product.

2- Robots can work in hazardous environment with out the need for life support, comfort, or concern about safety.

3- Robots need no environmental comfort, such as lighting, air conditioning, ventilation, and noise protection.

4- Robot works continuously without experiencing fatigue or boredom, do not get mad, do not have hangovers, and need no medical insurance or vacation.

5- Robots have repeatable precision at all times, unless something happens to them or unless they wear out.

6- Robots can be much accurate than humans, typical linear accuracies are few thousands of an inch; new wafer-handling robots have micro inch accuracies.

7- Robots and their accessories and sensors can have capabilities beyond that of human.

8- Robot can process multiple stimuli or task simultaneously. Human can only process one active stimulus.

9- Robots replace human workers creating economics problem, such as lost of salaries, and social problem, such as dissatisfaction and resentment among workers.

10- Robot lack capability to respond in emergencies, unless the situation is predicted and the responds is included the system. Safety measures are needed to ensure that they do not injure operators and machines working with them.

And this includes:

· Inappropriate or wrong responses.

· A lack of decision-making power.

· A loss of power.

· Damage to the robot and other devices.

· Human injuries.

11- robots although superior in certain senses, have limited capabilities in:

· Degree of freedom.

· Dexterity.

· Sensors.

· Vision system.

· Real-time response.

12- robots are costly, due to:

· Initial cost of equipment.

· Installation cost.

· Need for peripherals.

· Need for training.

· Need for programming.

1.3.  Statement of the problem of mobile robot navigation 

Robots have already been used in many industries and for many purposes. There are some applications where robots are useful. One of important area is navigation of mobile robot. Robot Navigation is considered as the main application of robot, this application can be applied in all the environment but it is important  in hazardous environment exploring, like underwater, space, and remote location, that are dangerous for human to be in. navigation is the main topic that will be discussed in this thesis.

There are different technologies and different algorithms used for robot navigation. 

Robot can meet infinite number of situation during navigation of mobile robot. The algorithms based on traditional technoplogies are complicated to handle all situations. To handle infinite navigation situations with a finite set of rules fuzzy navigation systems are simpler to implement than other navigation systems. Fuzzy navigation systems for path finding in an unknown environment tend to find the shortest path obstacle avoidance.

The aim    of this thesis is a development fuzzy navigation system for mobile Boe-bot robot, which will escape from obstacle fields in an unknown environment. The thesis includes five chapters, conclusion, references and appendices. 

In chapter two the robot component, review on navigation of mobile robots, and review on fuzzy navigation of mobile robot are considered.

In the third chapter the control system of Boe-Bot Robot including microprocessor, Carrier Board, and servos, is discussed. Review to sensors in general and range finders sensor especially, were reminded. Finally the ultrasonic sensor used in this thesis was discussed.

Chapter four includes structure of fuzzy system in general, and the use of fuzzy system for robot navigation is presented. The examples of rule base are given, the rules base used in navigation are described.

In chapter five algorithm and flow chart used for mobile robot navigation are described, the implementation of the algorithms using number of examples is presented.     

Conclusion includes important results obtained from this thesis

Chapter 2. Review on Mobile RobotS Navigation
2.1. Overview 

In this chapter the basic components and application areas of robots, their navigation and control problems are considered. A state of art understanding of navigation and control problem of mobile robot is described. Using fuzzy logic the navigation problem of mobile robot is considered.

2.2. Robot components

A robot, as a system, consists of the following elements, which are integrated to gather to form a whole:

Manipulator or rover: this is the main body of the robot and consists of the links, the joints, and other structural elements of the robot. Without other elements, the manipulator alone is not robot.

End effector: this is the part that is connected to the last joint of manipulator; wich generally makes connection to other machine, or perform the required task. Robot manufacturers generally do not design or sell the End effector. In most cases, all they supply is a simple gripper. Generally, the hand of robot has provision for connecting specialty end effectors that are specifically designed for a purpose. This is the job of a company’s engineers or outside consultants to design and install the end effectors on the robot and to make it work for the given situation. A welding torch, a paint spray gun, a glue-laying device, and a parts handler are but a few of the possibilities. In most cases, the action of the end effectors is either controlled by the robot’s controller, or the controller communicates with the end effector’s controlling device.

Actuators: actuators are the “muscles” of the manipulators. Common types of actuators are servomotors, stepper motors, pneumatic cylinder, and hydraulic cylinders. There are also other actuators that are more novel and are used in specific situation. Actuators are controlled by the controller.

Sensors: sensors are used to collect information about the internal state of the robot or to communicate with the outside environment. As in human, the robot controller needs to know where each link of the robot is in order to know the end legs are. This is because feedback sensors in your central nervous system embedded in your muscles tendons send information to your brain. The brain uses this information to determine the length of your muscles, and thus, the state of your arms, legs, etc. the same is true for robot. Sensors integrated into the robot send information about each joint or link to the controller, which determines the configuration of the robot. Robots are often equipped with external sensory device such as a vision system, touch and tactile sensor, speech synthesis, etc. which enable the robot to communicate with the outside world.      

Controller: the controller is rather similar to your cerebellum, and although it does not have the power of your brain, it still controls your motion. The controller receives its data from the computer, controls the motion of the actuators, and coordinates the motion with the sensory feedback information. Suppose that in order for the robot to pick up a part from a bin, it is necessary that its first joint be at 35 Degree. If the joint is not already at this magnitude, the controller will send signal to the actuator (a current to an electrical motor, air to a pneumatic cylinder, or signal to hydraulic servo valve), causing it to move. It will then measure the change in the joint angle through the feed back sensor attached to the joint (a potentiometer, an encoder, etc), when the joint reaches the desired value, the signal is stopped. In more sophisticated robot, the velocity and the force exerted by the robot are also controlled by the controller.

Processor: the processor is the brain of robot. It calculates the motion of robot’s joints, determine how much and how fast each joint must move to achieve the desired location and speeds, and oversees the coordinated action of the controller and the sensor. The processor is generally a computer, which works like all other computers, but is dedicated to single purpose. It requires an operating system, programs, peripheral equipment such as monitors, and has many of the same limitation and capabilities of a PC processor.

Software: there are perhaps three groups of software that are used in a robot. One is the operating system, which operates the computer. The second is the robotic software, which calculates the necessary motion of each joint based on the kinematic equation of the robot. The third group is the collection of routines and application program that are developed in order to use the peripheral devices of the robots, such as vision routines, or to perform specific task.

It’s important to note that in many systems, the controller and the processor are placed in the same unit. Although these two units are in the same box, and even if they are integrated into the same circuit, they have two separate functions. [1]   

2.3. Robot application

Robots have already been used in many industries and for many purposes. They can often perform better than humans and at lower costs. For example, welding robots can probably weld better than human welder, because the robot can move more uniformly and more consistently. In addition, robots don not need protective goggles, protective clothing, ventilation and many other necessities that their human counterparts do. As a result robots can be more productive and better suited for the job, as long as the welding job is set up for the robot for automatic operation and nothing changes sand as long as the welding job is not too complicated.

Similarly, a robot exploring the ocean bottom would require far less attention than a human diver also; the robot can stay underwater for long period and can go to very large depths and still survive the pressure: it also does not require oxygen.

There are some applications where robots are useful:

1- Machine loading, where robots supply parts to or remove parts from other machines. In his type of work. The robot may not even perform any operation on the part, but is only a means of handling parts within a set of operation.

2- Pick and place operation, where the robot picks up parts and places them else where. This may include palletizing, placing cartridges, simple assembly where two parts are put together (such as placing tablets into a bottle), placing parts in an oven and removing the treated part form oven, or other similar routines.

3- Welding, where the robot along with proper set ups and a welding end effectors is used to weld parts together. This is one of the most common applications of robots in the auto industry due to the robots consistent movements; the welds are very uniform and accurate. Welding robots are usually large and powerful.

4- Inspection of parts, circuits' boards and other similar products is also a very common application for robots. In general, some other device is integrated into the system for inspection. This may be a vision system, an X-ray device an ultrasonic detector, or other similar devices. In one application a robot equipped with an ultra sound crack detector was given the computer-aided design (CAD).

5- Sampling, with robots is used in many industries, including in agriculture. Sampling can be similar to pick and place and inspection. Except that it is performed only on a certain number of products.

6- Manufacturing, by robots may include many different operations such as material removal, drilling, laying glue, cutting, etc. it also includes insertion of parts, such as electronic components into circuit boards, installation of boards into electronic device and other similar operation. Insertion robots are also very common and are extensively used in electronic industry.

7- Medical application are also becoming increasingly common for example, the Robodoc was design to assist a surgeon in a total-joint-replacement operations. Since many of the functions that are performed during this procedure, such as cutting of the head of the bone, drilling a hole in the bone’s body.

8- Robot Navigation is considered the main application of robot, this application can be applied in the entire environment but it is important in hazardous environment exploring, like underwater, space, and remote location, that are dangerous for human to be in. Navigation is the main topic that will be discussed in this thesis.

 In this thesis the navigation problem of robot is considered.

2.4. Review on control and navigation of robot

Robotic mechanisms are usually designed according to the applications and tasks to which they are destined. A coarse classification distinguishes three important categories, namely

• i)   manipulator arms, frequently present in manufacturing environments dealing with parts assembly and handling.

• ii) wheeled mobile robots, whose mobility allows to address more diversified applications (manufacturing robotics, but also robotics for servicing and transportation).

• iii) legged robots, whose complexity and more recent study contribute to explain why they are still largely confined to laboratory experimentation.

This common classification does not entirely suffice to account for the large variety of robotic mechanisms. Each category infers specific motion characteristics and control problems. The mathematical formalisms (of Newton, Euler-Lagrange,...), universally utilized to devise  generically nonlinear dynamic body model equations for these systems, are classical and reasonably well mastered by now. At this level, the differences between manipulator arms and wheeled vehicles mostly arise from the existence of two types of kinematics linkages. In a general manner, these linkages (or constraints) are exclusively holonomic, i.e. completely integrable, in the case of manipulator arms, while the wheel-to-ground contact linkage which is common to all wheeled mobile robots is nonholonomic, i.e. not completely integrable. For this reason, it is often said that manipulators are holonomic mechanical systems, and that wheeled mobile robots are nonholonomic. A directly related structural property of a holonomic mechanism is the equality of the dimension of the configuration space and the number of degrees of freedom, i.e. the dimension of possible instantaneous velocities, of the system. The fact that the dimension of the configuration space of a nonholonomic system is, by contrast, strictly larger than the number of degrees of freedom is the core of the greater difficulty encountered to control this type of system.

The application of classical theorems in differential geometry, in the framework of control theory, nevertheless allows us to infer an important functional property shared by these two types of systems when they are completely actuated, i.e. when they have one actuator per degree of freedom. This is the property of being (kinematically) locally controllable at every point in the state space. It essentially means that, given an arbitrary small period of time, the set of points which can be reached by applying bounded control inputs contains a whole neighbourhood of the initial point. This is a strong controllability property. It implies in particular that any point in the state space can be reached within a given amount of time, provided that the control inputs are allowed to be large enough. In other words, the robotic mechanism can reach any point in its configuration space, and it can do it as fast as required provided that the actuators are powerful enough. The case of under actuated systems, which may correspond to a ship which does not need lateral propellers to fulfil its nominal missions, or a manipulator with an actuator no longer responding, is much more complex and has, until now, resisted attempts (not yet many, one must add) of classification based on the various notions of controllability. Let us just mention that some of these systems remain controllable in the sense evoked previously, while others lose this property but are still controllable in a weaker sense and others just become uncontrollable for all practical purposes.
The controllability of a completely actuated robotic system does not yet imply that the design of adequate control laws is simple. In the most favourable case of holonomic manipulators, the system’s equations are static state feedback linearizable so that it can be said that these systems are “weakly” nonlinear. The transposition of classical control techniques for linear systems then constitutes a viable solution, often used in practice. By contrast, the linearized model of a nonholonomic mobile robot, determined at an arbitrary fixed configuration, is not controllable. The exact input-to-state linearization of the equations of such a robot via a dynamic feedback transformation, when it is possible, always presents singularities at equilibrium points. The perhaps most striking point, as for its theoretical and practical implications, is that there does not exist pure-state continuous feedback controls capable of asymptotically stabilizing a desired fixed configuration.

This underlies the fundamentally nonlinear character of this type of system and the necessity to work with control techniques that depart sharply from the classical methods used for linear or linearizable systems. The case of legged robots and of articulated locomotion in general, is yet very different in that most of these systems do not fit in the holonomic/nonholonomic classification mentioned previously. 
Setting them in equations requires decomposing their motion into several phases (according to the number of legs in contact with the ground). Ballistic phases (when no leg touches the ground) often involve non-holonomic constraints arising from the conservation of the kinetic momentum, and also the modelling of impact phenomena occurring at time instants when a leg hits the ground. The analysis of the way these systems work is astonishingly complex, even for the simplest ones (like the walking –biped– compass and the hopping –single legged– monopod). It becomes even more involved when further exploring the correspondence between some nominal modes of motion of these systems and various gaits of biological systems (such as walking, running, trotting, galloping,...) with a comparable structure.
It is now commonly accepted, although imperfectly understood, that the existence of such pseudo-periodic gaits, and the mechanisms of transition between them, are closely related to energy consumption aspects. Following this point of view, the control strategy relies on the “identification” of the trajectories for which energy consumption is minimal, prior to stabilizing them. One of the research objectives of the project ICARE is to make the control solutions for these different robotic systems progress [28]. This research has in the past produced collaborations with other Inria projects, such as MIAOU at Sophia Antipolis, and the former project BIP in Grenoble.
Since robotic, or “robotizable”, mechanisms are structurally nonlinear systems which, in practice, need to be controlled in an efficient and robust manner, the project ICARE has natural interest and activities in the domain of Automatic Control related to the theory of control of nonlinear systems. Concerning fundamental and methodological developments conducted around the world in this domain, the study of mechanical systems and their automatization which is the core of Robotics, has played, and continues to play, a privileged role. More recently, the manipulator arms have been used as a model to illustrate the interest of feedback control linearization. 
The studies of robustness with respect to modelling errors (arising from uncertainties about the mechanical parameters, the exteroceptive sensors’ parameters, or the environment observed via the sensors) have allowed to refine the stability analyses based on Lyapunov functions and to illustrate the interest of approaches which exploit the structural passivity properties associated with hamiltonian systems. Even more recently, the study of nonholonomic mobile robots has been the starting point for the development of new approaches, such as the characterization of differential flatness [4], used to solve trajectory planning problems and time-varying feedback control techniques [5], and used to solve the problem of asymptotic stabilization of a fixed point. In this context, the done research in the ICARE project mainly focuses on feedback control stabilization issues. In the case of the manipulator arms, it has produced the so-called task function approach [6] which is a general framework for addressing sensor-based control problems. As for our studies about mobile robot control [7], they have given birth to the theory of stabilization of nonlinear systems via time-varying continuous state feedback and, even more recently, to a new approach of practical stabilization for “highly” nonlinear systems.[8]
2.4.1. Navigation of mobile robot

Navigation is nothing more than plotting an efficient route from point A to point B. fundamentally; robot navigation includes just two things: the ability to move and a means to determine whether or not the goal has been reached. The trick is finding the most efficient way to reach a destination. There are several aspects to this seemingly simple problem and several ways to solve it. 

In the age of sailing, navigating means finding the ship’s position using the stars, charting the position on a map, drawing a line from present position to destination, and deriving the compass heading for the ship to follow. Today’s ship navigation uses Global Positioning System readings rather than the stars and electronic maps rather than paper ones, but the principle is the same. 

Many application fields (transportation, individual vehicles, aerial robots, observation underwater devices,...) involve navigation issues, especially when the main goal is to make a robotic vehicle move safely in a partially unknown environment. This is done by monitoring the interaction between the vehicle and its environment. This interaction may take different forms: actions from the robot (positioning with respect to an object, car parking maneuvers,...), reactions to events coming from the environment (obstacle avoidance,...), or a combination of actions and reactions (target tracking). The degree of autonomy and safety of the system resides in its capacity to take this interaction into account at all the task levels. At a higher level, it also requires the definition of a planning strategy for the robot actions during the navigation [14]. The spectrum of possible situations is large, ranging from the case when the knowledge about the environment is sufficient to allow for off-line planning of the task, to the case when no information is available in advance so that on-line acquisition of a model of the environment during an initial exploration phase is required [15].

The problems of navigation addressed by the ICARE team concern both indoor and outdoor environments (urban-like). The approaches that we develop are based on three ideas : i) combine the information contained in available sensory data, ii) use sensor-based control laws for robot motion and also to enforce constraints which can in turn be used for the localization of the robot and the geometrical modelling of the environment, and iii) combine locally precise metrical models of the environment with a global, more flexible, topological model in order to optimize the mapping process.

The main problems of navigation found by researchers can be summarized within two problems:  

1- Exploration and map building:
Given a set of sensory measurements, scene modelling (or map building, depending on the context of the application) consists in constructing a geometrical and/or topological representation of the environment. When the sensors are mounted on the mobile robot, several difficulties have to be dealt with. For instance, the domain in which the robot operates can be large and its localization within this domain often uncertain. Also, the elements in the scene can be unstructured natural objects, and their complete observation may entail moving the sensors around and merging partial information issued from several data sequences. Finally, the robot positions and displacements during data acquisition are not known precisely. With these potential difficulties in mind, one is brought to devise methods relying almost exclusively on measured data and the verification of basic object properties, such as the rigidity of an object. The success of these methods much depends on the quality of the algorithms used (typically) for feature extraction and/or line-segmentation purposes. Also, particular attention has to be paid to avoid problems when the observability of the structure eventually becomes ill-conditioned (e.g. pure rotation of the camera which collects the data). When no prior knowledge is available, the robot has to explore and incrementally build the map on line. For indoor environments, this map can often be reduced to polygonal representations of the obstacles calculated from the data acquired by the on board sensors (vision, laser range finder, odometry ...). Despite this apparent simplicity, the construction and updating of such models remain difficult, in particular at the level of managing the uncertainties in the process of merging several data acquisitions during the robot’s motion. Complementary to the geometrical models, the topological models are more abstract representations which can be obtained by structuring the information contained in geometrical models (segmentation into connected regions defining locations) or directly built on-line during the navigation task. Their use infers another kind of problem which is the search and recognition of connecting points between different locations (like doors in an indoor scene) with the help of pattern recognition techniques.
2- Localization and guidance: 
In the case of perception for localization purposes, the problems are slightly different. It matters then to produce and update an estimation of the robot’s state (in general, its position and orientation) along the motion. The techniques employed are those of filtering. In order to compensate for drifts introduced by most proprioceptive sensors (odometry, inertial navigation systems,...), most so-called hybrid approaches use data acquired from the environment by means of exteroceptive sensors in order to make corrections upon characteristic features of the scene (landmarks). Implementing this type of approach raises several problems about the selection, reliable extraction, and identification of these characteristic features. Moreover, critical real time constraints impose the use of low computational cost and efficient algorithms. In the same way as it is important to take perception aspects into account very early at the task planning level, it is also necessary to control the interaction between the robot and its environment during the task execution [13]. This entails the explicit use of perceptual information in the design of robust control loops (continuous aspect) and also in the detection of external events which compel to modify the system’s actions (reactive aspect). In both cases it matters to make more robust the system’s behaviour with respect to the variability of the task execution conditions. This variability may arise from measurement errors or from modelling errors associated either with the sensors or the controlled systems themselves, but it may also arise from poor knowledge of the environment and uncertainties about the way the environment changes with time. At the control level, one has to design feedback control schemes based on the perceptual information and best adapted to the task objectives. For the construction of suitable sensor-based control laws one can apply the task function approach which allows translating the task objectives into the regulation of an output vector-valued function to zero. Reactivity with respect to external events which modify the robot’s operating conditions requires detecting these events and adapting the robot’s behaviour accordingly. By associating a desired logical behaviour with a dedicated control law, it becomes possible to define sensor-based elementary actions (wall following, for instance) which can in turn be manipulated at a higher planning level while ensuring robustness at the execution level. The formalisms is generic enough to suggests that they can be applied to various sensors used in Robotics (odometry, force sensors, inertial navigation systems, proximity, local vision...).

Robot navigation is similar to human navigation. Suppose a person is left alone in an unknown place in a new city with just a map of the city. The person must first locate their current position in map to move ahead for a specific position. To determine the current position the person must move around and compare the landmarks with those on the map. These landmarks can be buildings, shops or road signs. After finding any one landmark they try to find their current position in map. But sometimes it may happen that there are two shops or buildings at different locations with same name. 

This gives them a rough idea that they are at either one of these positions. To find the correct position out of the two the person must move round further and find some more landmarks and try to match it in the map near to these two locations. This will help in finding the current position for them. Once the current position is found, the person moves in the direction in which he has to go but at the same time they keep track of their current position with respect to the map otherwise they will get lost again. Tracking can be done by comparing the landmarks passed along the way with the ones shown in the map. If by chance the person loses the track on the map and gets lost then they have to relocate their current position as they did before and then move ahead towards their destination. Robots face the same difficulties while finding their position in unknown environments. They also follow the same steps for finding their position in the map.

There are three major types of robot navigation.
1- Big picture: A robot that uses map navigation must have a global representation of its environment. The robot makes some kind of measurement to find its position, and plots a course to its destination. The robot has knowledge of all the locations in the environment and how they are related to each other, and knowledge of its own relationship to the locations. If the robot is initially given its position on the map, it doesn’t need any information about its surroundings to reach a destination. 

2- Bread crumbs: A robot that uses waypoint navigation follows a sequence of recognizable landmarks to reach a destination. The robot is aware of locations beyond its sensor range, but does not know the relationships among the locations. It finds its way from one landmark to the next using local navigation techniques. Robots can also use waypoint navigation to build maps for subsequent map navigation. When multiple sets of waypoints can be used, the robot must be able to plan a route. 

3- How it looks from here: A robot that uses local navigation taps sensor data to determine its position relative to observable landmarks and compares this to the destination’s position relative to the same landmarks. The robot changes its position until it matches the destination. Local navigation requires robots to be able to recognize destinations, aim for them, and hold a course. 

During recent years much of the work is carried out in the field of robot navigation. 

There are different technologies and different algorithms used for robot navigation. Different methods are tested; in some cases a method is used in coordination with some other method to navigate the robot successfully. Sensors are used as primary source in most of the robots for collecting the data which is used for navigation. It has been noted that sensor based localization is a key problem in mobile robotics.
 So this problem of localization is divided into two parts namely global localization and position tracking. The problem of global localization is of major concern as in this case the robot does not know its position in the environment. It is also referred to as hijacked robot problem. [5] In case of position tracking, if the starting position is known it's easy to estimate the current position with the help of error calculation in the odometer observations. The ability of the robot to localize itself both locally and globally is one of the challenging tasks in the field of robot navigation.

In [20]  autonomous capabilities of a mobile robot are provided by grouping its basic modules, such as motion planner, motion executor, motion assistant, and behaviour arbitrator. The primitive motion executors such as obstacle avoidance, goal following, wall following, docking, and path tracking for mobile robot navigation are developed in this paper. They are integrated with motion planner, motion assistants, and behaviour arbitrator together based on decentralized control architecture with a hierarchical shared information memory. The mobile robot navigation is capable of efficiently performing motion behaviour and detecting environmental event in parallel to adapt dynamically changed environment. It also allows the human to program the motion behaviours in high level to complete a task. 
A local navigation technique with obstacle avoidance, called adaptive navigation, is proposed for mobile robots in which the dynamics of the robot are taken into consideration [12]. The only information needed about the local environment is the distance between the robot and the obstacles in three specified directions. The navigation law is a first-order differential equation and navigation to the goal and obstacle avoidance is achieved by switching the direction angle of the robot. The effectiveness of the technique is demonstrated by means of simulation examples.

In [21] the background to the Rabavolc volcano exploration robot and details the developments of the autonomous navigation system are given. The treatment of the navigation system includes analysis of the volcanic terrain, description of the robot's sensors, the robot navigation drivers and plans the development of the navigation tactics and system structure.

2.4.2. Active perception 

Perception involves data acquisition, via sensors endowed with various characteristics and properties, and data processing in order to extract the information needed to plan and execute actions. In this respect, the fusion of complementary information provided by different sensors is a central issue. Much research effort is devoted to the modelling of the environment and the construction of maps used, for instance, for localization estimation and motion planning purposes. 
Another important category of problems concerns the selection and treatment of the information used by low-level control loops. Much of the processing must be performed in real-time, with a good degree of robustness so as to accommodate with the large variability of the physical world. Computational efficiency and well-posedness of the algorithms are constant preoccupations. Low-level sensor-based control laws must be designed in accordance with the specificities of the considered sensors and the nature of the task to be performed. Complex behaviours, such as robot navigation in an unknown environment, are typically obtained by sequencing several such elementary sensor-based tasks. The sequencing strategy is itself reactive. It involves, for instance, the recognition and tracking of landmarks, in association with the construction and updating of models of the robot’s environment. Among the multitude of issued related to perception in Robotics, ICARE has been addressing a few central ones with a more particular focus on visual and range sensing [12].

The main task for the perception is obstacle detection, which is essential for a safe autonomous vehicle. Detecting obstacles implies an active perception of the environment. Typical sensors for this kind of task include cameras, millimetre wave radar, and laser rangefinders. Laser rangefinders have the great advantage of providing accurate depth information that has to be computed from calibrated stereo images if using cameras for the same task. Radar has the advantage of working better in rain, mist and snow, and also sees beyond light vegetation such as bushes. 
Ultrasonic sensors are also common sensors for obstacle detection. While the spatial resolution is rather low (a wide sensitivity cone) they are useful for determining the existence/non existence of obstacles in front of the vehicle. Infra-red detectors can be used to detect human presence by detection of heat radiating from the human body.

2.4.3. Sensor modelling and fusion

The important variability of the environment (e.g. large variations in the lightning conditions for outdoor artificial vision) is one of the elements which make robustness a key issue in Robotics. The combination of realistic sensor models and sensor fusion is an answer (among many others) to this preoccupation.
• Realistic sensors models: The simple models commonly employed to describe the formation of sensor data (i.e. pinhole camera, Lambertian reflection...) may fail to accurately describe the physical process of sensing. Improvement in this respect is possible and useful [12, 13].
• Sensor Fusion: The integration of several complementary sensory information can yield more reliable constructions of models of the environment and more accurate estimations of various position/velocity-related quantities. This can be done by mixing proprioceptive and exteroceptive data. Sensor fusion is an important, still very open, domain of research which calls for more formalization.

Perception aspects have to be taken into account very early at the task planning level. An outcome of this planning phase is the design and selection of a set of sensor-based control loops in charge of monitoring the interaction between the robot and its environment during the task execution. Another one is the specification of external events the occurrence of which signals, among other things, when the system’s actions have to be modified by replacing the currently running sensor-based control by another one (reactive aspect). In both cases, it matters to use perception information so that the success of the resulting control strategy is not jeopardized when the task execution conditions are slightly modified (robustness).
 In ICARE, the formalisms of task-functions and virtual linkages often used [15] for the design of such sensor-based control laws, each of them corresponding to an elementary sensor-based action (wall following, for example). These formalisms are general so that they apply to various sensors used in Robotics (odometry, force sensors, inertial navigation systems, proximity, and local vision).

2.4.4. Robust tracking of landmark

Mobile robots move in complex, often dynamic, environments. To build models of the environment, or to implement sensor-based control laws, it is often useful to extract and track landmarks from sensory data. In particular, the localization of the robot in the environment is greatly simplified. Landmark tracking is done in real-time, and it should be robust with respect to apparent modifications (occlusions, shadows,...) of the environment. Outlier’s rejection in landmark tracking, and parameter estimation and filtering involved in robot localization, are two complementary aspects of a generic problem.
• Outliers rejection: Outliers, which do not correspond to anything in the physical world, have to be filtered out as much as possible. Standard Least-Squares or Kalman filtering techniques are inefficient in this respect, and they can in fact produce catastrophic results when the rate of outliers increases. Robust estimators (voting, M-estimators, Least Median Squares,...) have been specifically developed to solve this problem.

• Parameter estimation and filtering: Extended Kalman Filtering techniques (EKF) are commonly used in robotics to deal with noisy sensory data. However, in some cases, depending for instance on the noise distribution characteristics, the stability of such a filter can be jeopardized. An alternative consists in using bounded-error methods [11] whose stability is independent of the noise distribution.
These techniques have been successfully applied to robot motion estimation when using a laser range finder [12].

In [22] A Biosonar based mobile robot navigation system is presented for the natural landmark classification using acoustic image matching. The aim of this approach is to take advantage of the perceived properties of bats' prey and landmark identification mechanisms for mobile robots' tracking of natural landmarks. Recognizing natural landmarks like trees through sequential echolocation and acoustic image analyzing allows mobile robot to update its location in the natural environment. In this work, a working implementation of the Biosonar system on a mobile robot is shown. It collects sequential echoes to produce acoustic images through Digital Signal Processing (DSP), and then compresses images with Discrete Cosine Transform or Pyramid algorithm. Fast Normalized Cross Correlation (FNCC) and Kernel Principal Component Analysis (KPCA) are respectively used to make the final classification. 

2.4.5. Review on fuzzy navigation of robot

Nowadays fuzzy logic extensively is used for navigation of robot.  Fuzzy navigation systems control a robot by implementing a fuzzy logic controller (FLC). Fuzzy navigation systems are simpler to implement than other navigation systems because they can handle infinite navigation situations with a finite set of rules. Existing fuzzy navigation systems for path finding in an unknown environment tend to find the shortest path obstacle avoidance. This project presents a fuzzy navigation system that can escape from maze-like obstacle fields in an unknown environment. The system combines a tangent algorithm for path planning with sets of linguistic fuzzy control rules. In particular, we introduce the control rules for a Tracking mode of the FLC.

Motivated by the fact that human performance is reliable in driving the ground vehicle, fuzzy logic navigation methods have been proposed to substitute the human performance. More ever, the fuzzy logic has the feature to make it a useful tool to cope with the large amount of uncertainty that is inherent of natural environments, most of the existing fuzzy approaches, tend to design toward-target mode and avoid-obstacle mode. The navigator switches between the two modes according to the distance to the obstacles.

Behaviour-based control shows potentials for reactive robot navigation as it does not require exact world maps. Nevertheless, one key issue of behaviour-based control remains how to efficiently co-ordinate different behaviours together.

In Brooks [19], co-ordination of multiple reactive behaviours is done by according different levels of activation depending on behaviour priorities: one behaviour is fired and other behaviours are inhibited according to their suitability. Artificial potential field is another traditional approach for implementing reactive behaviours. This approach suffers from a drawback as much effort must be made prior to simulation to test and adjust thresholds regarding potential fields for collision avoidance, target steering, edge following and etc… [16].

Fuzzy logic also has been used as one approach in behaviour-based control as it provides the opportunity to decompose each relevant behaviour and quantitatively formulate it in the shape of fuzzy sets and rules. It allows also co-ordinating conflicts between different types of behaviours. Unlike traditional approaches where appropriate behaviours are chosen by inhibiting other behaviours, the fuzzy logic based approach fuses different types of behaviour using fuzzy reasoning. Fuzzy logic gives the advantage of firing all types of behaviours simultaneously [17, 18].

[23] Describes a fuzzy navigational algorithm for a robot, which uses a layered motion controller. The platform developed for this robot is modular. It consists of a supervisor, a motor driver, and a sensor module. The developed motion controller is made up of four layers. The first layer, which is the Protection layer, is used to produce a corrective action based on the absolute distance measured by the robot's side sensors (ultrasonic sensors). The second layer, which is the Orientation layer, maintains the robot pointed in the general direction of the goal frame to achieve the final destination. The orientation layer output control action depends on the sensor input and on the difference between the robot's current orientation and that of the goal frame. The third layer, which is the PD (Proportional-plus-Derivative) control layer, directs the robot through passageways efficiently. The fourth layer is the Obstacle Avoidance layer, which utilizes ultrasonic sensors to detect obstacles and correct for unexpected changes in the environment.

In [24] a novel real-time fuzzy navigation algorithm of the off-road autonomous ground vehicle is presented. The navigator’s goal is to direct the AGV safely, continuously and smoothly across nature terrain en route to a goal. The proposed navigator consists of two fuzzy controllers, the steering controller and the speed controller. These two controllers are designed separately by mimicking the human performances, yet they work collaboratively. Both the simulation and the demonstration of our AGV in the Grand Challenge justify the performance of our navigator.

A fuzzy algorithm is proposed to navigate a mobile robot in a completely unknown environment [25]. The mobile robot is equipped with an electronic compass and two optical encoders for dead-reckoning, and two ultrasonic modules for self-localization and environment recognition. From the readings of sensors at every sampling instant, the proposed fuzzy algorithm will determine the priorities of thirteen possible heading directions. Then the robot is driven to an intermediate configuration along the heading direction that has the highest priority. The navigation procedure will be iterated until the final configuration is reached. To show the feasibility of the proposed method, experimental results will be given.

A navigation system based on fuzzy logic controllers is developed for a mobile robot in an unknown environment [26]. The structure of this fuzzy navigation system features the combination of sensor system, fuzzy controllers for motion planning and the motion control system for real-time execution. Six ultrasonic sensors on-board the mobile robot is used for distance measurement to the immediate obstacles. Sensor data are fuzzified to be the inputs of the fuzzy controller. Three states, each with five quantized levels are used to define the fuzzy set. Two fuzzy controllers are designed to handle the navigation problem. Each fuzzy controller, which corresponds to the turn right or turn left condition, has four inputs, two outputs and 81 rules. The outputs are the command velocities to the left and right wheels, which drive the mobile robot. These command velocities are sent to the lower level motion control system. The performance of this navigation system is tested by computer simulation.

In [27], some problems found in fuzzy logic-based algorithms for mobile robot navigation systems have been described. Then, a new algorithm is developed to solve one of the problems, i.e., a problem with nearby obstacles. The resulting navigation system has been implemented on a real mobile robot, Koala, and tested in various environments. Experimental results are presented which demonstrate the effectiveness and improvement of the resulting fuzzy navigation system over conventional fuzzy logic navigation algorithms.

Fuzzy navigation systems can handle infinite navigation situations with a finite set of rules. This thesis presents a fuzzy navigation system that can escape from the uncertain environment having multiple obstacles. 

2.5 Summary

Robots can be used for many purposes, including industrial applications, entertainment, and other specific and unique applications such as in space, underwater and hazardous environments. In this chapter, the some fundamental ideas about robotics, navigation problems of mobile robot are considered. Navigation and how can it be useful for human were considered. Fuzzy navigation of mobile robot was discussed. 

Chapter 3.  THE Boe-Bot Mobile robot

3.1. Overview  

Building and programming a robot is a combination of mechanics, electronics, and problem solving. The structure of Boe-bot robot and the functions of its main components will be described in this chapter. The mechanical principles, program listings of simple examples and circuits will be described.

Using the Parallax Boe-Bot robot the navigation of mobile robot will be considered. The activities and projects in this chapter begin with an introduction to the Boe-Bot’s brain, the BASIC Stamp 2 microcontroller, and then move on to construction, testing, and calibration of the Boe-Bot servos that consider from control system of Boe- Bot.

 In this chapter, instead of navigating from a pre-programmed list, the Boe-Bot was programmed to navigate based on sensory inputs. The sensory inputs used in this chapter are ultrasound sensor that can detect on long distance comparing with other detected sensor, and I talk about its component and how it is connected to the Boe-Bot.

3.2. Control system of Boe-Bot mobile robot:

The robot is a mechanical system that must be controlled in order to accomplish a useful task. The task involves the movement of the boe-bot wheels so the primary function of the robot control system is to position and orient with a specified speed and precision.

The control system can be divided into three major components:  Microcontroller (Basic stamp2 model), carrier board and servos (motor).

Microcontroller: It’s a programmable device that is designed into digital wrist watch, cell phone, calculator, clock radio, etc. In these devices, the microcontroller has been programmed to sense when you press a button, make electronic beeping noises, and control the device’s digital display. They are also built into factory machinery, cars,         submarines, and spaceships because they can be programmed to read sensors, make decisions, and orchestrate devices that control moving parts.

Today’s microcontrollers are fast, cheap and low power machines that can handle just about any control or data processing application imaginable. However, with the wide array of microcontroller offerings available from over 25 manufacturers, it can be difficult to keep up with the features, market, theory, and terminology involved with the microcontroller world. The purpose of this application note is to bring users up-to-speed with the microcontroller market and bootstrap inexperienced users so that educated decisions can be made when choosing and using a microcontroller for their embedded system. 

Microcontrollers were developed out of the need for small, low power systems. Microcontrollers typically do not have the expandability or performance that microprocessors have. They are designed with control and consumer applications in mind, such as data logging, appliances, personal electronic devices such as walkmans and digital watches, etc. In the past, when a designer needed to design the electrical interface for a microwave, it was done with dedicated hardware. These days such control electronics are completely replaced with a small, fast, and cheap microcontroller. This allows software upgradeability and modularity of design. When the company decides to design their next microwave, they can use all the same hardware only needing to change the software. 

3.2.1. BASIC Stamp 2 Microcontroller Components and Their Functions

[image: image37.png]vdd (5 V)

Vss (0V)

(€= 0.13s

€= 0.13s

|[€&————— 20s

—





Figure 3.1 BS2 Microcontroller
1- Pins for programming and debugging through serial port.

2- 2K EEPROM retains your BPASIC source code even with power loss.

3- Filter capacitor for 5 V regulators.
4- I/O pins for general purpose I/O control

5- PBASIC interpreter executes your program at 4000 instruction per second. 

6- I/O pins for general purpose I/O control.

7- 20 MHz resonator provides a clock source for the interpreter.

8- Alternate positive power input pin for regulated 5 VCD.

 9- 5V regulator converts input power from 6-12 VCD to 5 VCD. 

10- Reset pin for quick shut down / restart.  

11- Power input pins for 6-12 VCD and ground.

12- Brownout detector shuts down the BASIC Stamp when power input drops below a safe level.

13- Communication circuit makes programming pins compatible with serial port.

3.2.2. Carrier Board Components and Their Functions

[image: image2.png]



Figure 3.2 Carrier Board of Boe-Bot Robot

1- 9 V Battery 

2- Filter capacitor for 5 VCD regulation 

3- Serial port connection for downloading PBASIC program and debug terminal runtime communication

4- Socket for any 24-pin BASIC Stamp module

5- Reset button may be pressed and released to restart basic stamp program 

6- Three position switch:

                           0 = power OFF

                                 1 = power ON / servo ports OFF

                                 2 = power ON / servo ports ON

      7-   Power indicator light

      8-   Header for connection BASIC Stamp I/O pins to circuit on the breadboard 

      9-   Breadboard rows are connected horizontally separated by the trough 

     10-   Header for connecting power (Vdd, Vin, Vss) to circuits on the breadboard

     11-   4 R/C servo connection ports for robotics projects 

     12-   Servo power selector:   

                 - Vdd regulated 5 VCD                           

                 - Vin connect directly to the board’s power supply

      13- Voltage regulator supplies Board with regulated 5 VCD (Vdd) and ground (Vss)

      14- Application module (AppMod) connector for add-on modules

      15- Power jack 2.1 mm centre positive 6-9 VCD

3.2.3. Servos Motors
3.2.3.1. Type of servos

There are two types of servo that are used in Boe-Bot robot which are:

1- Standard Servos: Standard servos are designed to receive electronic signals that tell them what position to hold. These servos control the positions of radio controlled airplane flaps, boat rudders, and car steering. 

2- Continuous Rotation Servos: Continuous rotation servos receive the same electronic signals, but instead of holding certain positions, they turn at certain speeds and directions. Continuous rotation servos are ideal for controlling wheels and pulleys.

3.2.4. Block Diagram of the Control System of Boe-Bot

Figure 3.3 show the block diagram of the relation between the components of the control system of Boe-Bot.

[image: image1.png]12

13




                                        
Figure 3.3 Block Diagram of Boe-Bot control system

3.3. The activities 

The control system of the boe-bot satisfied through connecting, adjusting, and testing the Boe-Bot’s motors. In order to do that, understanding certain PBASIC command and programming techniques that will control the direction, speed, and duration of servo motions needed to be understood. Therefore, activities will show you how to apply them to the servos.

Since precise servo control is key to the Boe-Bot’s performance, completing these activities before mounting the servos into the Boe-Bot chassis is both important and necessary.

Activity1: How to track time and repeat action

Controlling a servo motor’s speed and direction involves a program that makes the BASIC Stamp sends the same message, over and over again. The message has to repeat itself around 50 times per second for the servo to maintain its speed and direction. 

1- Displaying Messages at Human Speeds

We can use the PAUSE command to tell the BASIC Stamp to wait for a while before executing the next command.

PAUSE Duration

The number that we put to the right of the PAUSE command is called the Duration argument, and it’s the value that tells the BASIC Stamp how long it should wait before moving on to the next command. The units for the Duration argument are thousandths of a second (ms). 
For example if we want to wait for one second, use a value of 1000. Here’s how the command should look:

PAUSE 1000

If we want to wait for twice as long, try:

PAUSE 2000

2- Repeating action

One of the best things about both computers and microcontrollers is that they never complain about doing the same boring things over and over again. we can place the commands between the words DO and LOOP if you want them executed over and over again. 

For example, let’s say we want to print a message repeating once every second.

Simply place any command that wanted to be repeated between the words DO and LOOP like DEBUG and PAUSE commands like this:

DO

DEBUG "Hello!", CR

PAUSE 1000

LOOP

Activity 2: Tracking time and repeating action with a circuit

In this step, circuits that emit light that will allow to “see” the kind

of signals that are used to control the Boe-Bot’s servo motors will be built.

1- What are LED’s and Resistors?

A resistor is a component that ‘resists’ the flow of electricity. This flow of electricity is called current. Each resistor has a value that tells how strongly it resists current flow. This resistance value is called the ohm, and the sign for the ohm is the Greek letter omega. The resistor has two wires (called leads and pronounced “leeds”), one coming out of each end. There is a ceramic case between the two leads, and it’s the part that resists current flow.  

A diode is a one-way current valve, and a light emitting diode (LED) emits light when current passes through it. Unlike the color codes on a resistor, the color of the LED usually just tells you what color it will glow when current passes through it. The important markings on an LED are contained in its shape. Since an LED is a one-way current valve, you have to make sure to connect it the right way, or it won’t work as intended. 

An LED has two terminals. One is called the anode, and the other is called the cathode. In this step, we have to build the LED into a circuit, attention has to be paid and made sure the anode and cathode leads are connected to the circuit properly. 

2- LED test circuit:

The left side of Figure 3.4 shows the circuit schematic, and the right side shows a wiring diagram example of the circuit built on your board’s prototyping area.

[image: image3.png]P13

P12





Figure 3.4 Two LEDs Connected to BASIC Stamp I/O Pins P13 and P12

Schematic (left) and wiring diagram (right).

When these connections are made, 5 V of electrical pressure is applied to the circuit causing electrons to flow through and the LED to emit light. As soon as you disconnect the resistor lead from the battery’s positive terminal, the current stops flowing, and the LED stops emitting light. we can take it one step further by connecting the resistor lead to Vss, which has the same result. This is the action you will program the BASIC Stamp to do to make the LED turn on (emit light) and off (not emit light).

The HIGH and LOW commands can be used to make the BASIC Stamp connect an LED

Alternately to Vdd and Vss. The Pin argument is a number between 0 and 15 that tells

the BASIC Stamp which I/O pin to connect to Vdd or Vss.

HIGH Pin

LOW Pin

For example, if you use the command

HIGH 13

it tells the BASIC Stamp to connect I/O pin P13 to Vdd, which turns the LED on.

Likewise, if you use the command

LOW 13

It tells the BASIC Stamp to connect I/O pin P13 to Vss, which turns the LED off.

3- How High and Low Led Works

Figure 3.5 below shows how the BASIC Stamp can connect an LED circuit alternately to Vdd and Vss. When it’s connected to Vdd, the LED emits light. When it’s connected to Vss, the LED does not emit light. The command HIGH 13 instructs the BASIC Stamp to connect P13 to Vdd. The command PAUSE 500 instructs the BASIC Stamp to leave the circuit in that state for 500 ms. The command LOW 13 instructs the BASIC Stamp to connect the LED to Vss. Again, the command PAUSE 500 instructs the BASIC Stamp to leave it in that state for another 500 ms. Since these commands are placed between DO and LOOP, they execute over and over again.

[image: image4.png]BT T ol L G FT T

B VDD (+5v)

NS

BT T ol L B FT T





Figure 3.5 BASIC Stamp Switching
4- Timing Diagram

A timing diagram is a graph that relates high (Vdd) and low (Vss) signals to time. In Figure 3.6, time increases from left to right, and high and low signals align with either Vdd (5V) or Vss (0V). This timing diagram shows you a 1000 ms slice of the high/low signal you just experimented with. The line of dots (. . .) to the right of the signal is one way of indicating that the signal repeats itself.

[image: image5.png]"

Vdd (5V)

Vss (0V)

\\ //

L.

le— s00ms —»f

]

j« s00ms —»

|€———— 1000 ms ——

//

/\\\

\

ﬂ




Figure 3.6 Timing Diagram for high and low LEDs

5- Viewing a Servo Control Signal with an LED

The high and low signals we will program the BASIC Stamp to send to the servo motors must last for very precise amounts of time. That’s because the servo motors measure the amount of time the signal stays high, and use it as an instruction for where to turn. For accurate servo motor control, the time these signals stay high must be much more precise than we can get with a HIGH and a PAUSE command. we can only change the PAUSE command’s Duration argument by 1 ms at a time. There’s a different command called PULSOUT that can deliver high signals for precise amounts of time. These amounts of time are values we use in the Duration argument, and they are measured in units that are two millionths of a second!

PULSOUT Pin, Duration
For example:

A HIGH signal that turns the P13 LED on for 2 µs (that’s two millionths of a second) can be sent by using this command:

PULSOUT 13, 1

This command would turn the LED on for 4 µs

PULSOUT 13, 2

This command sends a high signal that you can actually view:

PULSOUT 13, 65000

How long does the LED circuit connected to P13 stay on when you send this pulse?

Let’s figure it out. The time it stays on is 65000 times 2 µs. That’s:

Duration=   65000*2µs

= 65000* 0.000002s

= 0.13 s

Which is still pretty fast, thirteen hundredths of a second  the timing diagram in Figure 3.7 shows the pulse train we are about to send to the LED with this command. This time, the high signal lasts for 0.13 seconds, and the low signal lasts for 2 seconds. This is 100 times slower than the signal that the servo will need to control its motion.

DO

PULSOUT 13, 65000

PAUSE 2000

LOOP


Figure 3.7 Timing Diagram for PulseP13Led.
To sends a pulse to the LED connected to P13, and then it sends a pulse to the LED connected to P12 as shown in Figure 3.8. After that, it pauses for two seconds.

DO

PULSOUT 13, 6500

PULSOUT 12, 6500

PAUSE 200

LOOP

[image: image6.png]P13

P12

[€— 0.13s

—» € 0.13s

(€= 0.13s

[€— 0.13s

[ e——————— 226s

R




Figure 3.8 Timing Diagram for Both LEDS Pulse

6- The Full Speed Servo Signal

In the last example the servo signal is 100 times as fast as the command we just shown. Now, let’s try running the program ten times as fast. That means divide all the Duration arguments (PULSOUT and PAUSE) by 10.

the command will be:

DO

PULSOUT 13, 6500

PULSOUT 12, 6500

PAUSE 200

LOOP

We noted after this modification that it makes the LEDs blink ten times as fast. Now, let’s try 100 times as fast (one hundredth of the duration). Instead of appearing to flicker, the LED will just appear to be not as bright as it would when you send it a simple high signal. That’s because the LED is flashing on and off so quickly and for such brief periods of time that the human eye cannot detect the actual on/off flicker, just a change in brightness.

In this case the command will be:

DO

PULSOUT 13, 650

PULSOUT 12, 650

PAUSE 20

LOOP

And this modification will make both LEDs about the same brightness. If we put 850 in the Duration argument for the PULSOUT command that goes to P13.

DO

PULSOUT 13, 850

PULSOUT 12, 650

PAUSE 20

LOOP

And this will make the P13 LED appears slightly brighter than the P12 LED. They are different because the amount of time the LED connected to P13 stays on is longer than the amount of time the LED connected to P12 stays on.

And if we put 750 in the Duration argument for the PULSOUT command that goes to both LEDs.

DO

PULSOUT 13, 750

PULSOUT 12, 750

PAUSE 20

LOOP

That will make the brightness of both LEDs is the same again. It may not be obvious, but the brightness level is between those given by Duration arguments of 650 and 850.

Activity 3- Connecting the servo motors
In this step, a circuit that connects the servo to a power supply and a BASIC Stamp I/O pin will be shown. The LED circuits were developed in the previous step will be used later to monitor the signals the BASIC Stamp sends to the servos to control their motion.

In the figure 3.9 below shows the connection of the servo to the boe-bot board

[image: image7.png]White
P13 D> Red

Black

<
@
»

<
S

White
P12 O Red

Black

<
@
»




Figure 3.9 Servo Connection Schematic and Wiring Diagram

Activity 4: Centering the servo:

 In this step the test program will send signal that make the servos turn clockwise and counter clockwise at various speed.

[image: image8.png]



Figure 3.10 Timing Diagram for centering the servo
In the Figure 3.10 above the signal that has to be sent to the servo connected to P12 to calibrate it. This is called the center signal, and after the servo has been properly adjusted, this signal instructs it to stay still. The instruction consists of a series of 1.5 ms pulses with 20 ms pauses between each pulse.

The program for this signal will be a PULSOUT command and a PAUSE command inside a DO…LOOP. Figuring out the PAUSE command from the timing diagram is easy, it's going to be PAUSE 20 for the 20 ms between pulses.

Figuring out the PULSOUT command's Pin argument isn't that hard either; it's going to be 12, for I/O pin P12. Next, let's figure out what the PULSOUT command's Duration argument has to be for 1.5 ms pulses. 1.5 ms is 1.5 thousandths of a second, or 0.0015 s. Remember whatever number is in the PULSOUT command's Duration argument, multiply that number by 2 µs (2 millionths of a second = 0.000002 s), and you will know how long the pulse will last. You can also figure out what the PULSOUT command's Duration argument has to be if you know how long you want the pulse to last. Just divide 2 µs into the time you want the pulse to last. With this calculation:

Argument Duration=duration Pulse/2µs = 0.0015s / 0.00000s2=750

We now know that the command for a 1.5 ms pulse to P12 will be PULSOUT 12, 750. It’s best to only center one servo at a time, because that way you can hear when the motor stops as you are adjusting it. This program will only send the center signal to the servo connected to P12, and these next instructions will guide you through adjusting it. After you complete the process with the servo connected to P12, you will repeat it with the servo connected to P13.

Activity 5:  Testing the servo

In this step, you will run programs that make the servos turn at different speeds and directions. By doing this, you will verify that your servos are working properly before you assemble your Boe-Bot.

Pulse Width Controls Speed and Direction

 1-Servo full speed clockwise:

Recall from centering the servos that a signal with a pulse width of 1.5 ms caused the servos to stay still. This was done using a PULSOUT command with Duration of 750.

What would happen if the signal’s pulse width is not 1.5 ms?

In the Turn section of Activity #2, the BASIC Stamp was programmed to send series of 1.3 ms pulses to an LED. Let’s take a closer look at that series of pulses and find out how it can be used to control a servo. Figure 3.11 shows how a Parallax Continuous Rotation servo turns full speed clockwise when you send it 1.3 ms pulses.

Full speed ranges from 50 to 60 RPM.

[image: image9.png]—>{ | 13ms
vdd (5V) H
Vss (0V)

f— 20ms ———»





Figure 3.11 1.3 ms pulse turns servo full speed clockwise

DEBUG "Program Running!"

DO

PULSOUT 13, 650

PAUSE 20

LOOP

Notice that a 1.3 ms pulse requires a PULSOUT command Duration argument of 650, which is less than 750. All pulse widths less than 1.5 ms, and therefore PULSOUT Duration arguments less than 750, will cause the servo to rotate clockwise.

2- Servo full speed counterclockwise: 

You have probably anticipated that making the PULSOUT command’s Duration argument greater than 750 will cause the servo to rotate counterclockwise. A Duration of 850 will send 1.7 ms pulses as shown in Figure 3.12. This will make the servo turn full speed counterclockwise.

[image: image10.png]vdd (5 V)

Vss(0V)

[€— 17ms

[€— 17ms

[——— 20ms ———>





Figure 3.12 1.7ms pulse turns full speed counterclockwise

DO

PULSOUT 12, 850

PAUSE 20

LOOP

 After ending these activities some tests were done to note the behaviors of servos when changing the values of PULSOUT command, the results are arranged in the next table:

Table 3.1 Servo behaviours

	Duration
	Description
	Behaviour

	P13
	P12
	
	

	850
	650
	Full speed, p13 counter clockwise, P12 servo clockwise
	Forward

	650
	850
	Full Speed

P13 CW, P12 CCW


	Backward

	850
	850
	Full Speed

P13 CCW, P12 CCW


	Right rotate

	650
	650
	Full Speed

P13 CW, P12 CW


	Left rotate

	750
	850
	P13 Stopped

P12 CCW Full speed


	Pivot back left

	750
	750
	P13 Stopped

P12 Stopped


	Stopped

	760
	740
	P13 CCW Slow

P12 CW Slow


	Forward slow 

	770
	730
	P13 CCW Med

P12 CW Med


	Foreword medium

	850
	700
	P13 CCW Full Speed

P12 CW Medium


	Veer right

	800
	650
	P13 CCW Medium

P12 CW Full Speed


	Veer left


3.4. Boe-bot robot navigation using ultrasonic sensor
3.4.1. Sensors in general

While we would like our robot to understand and be aware of its environment, in actuality, a robot is limited by the sensors we give it and the software we write for it. Sensing is not perceiving. Sensors are merely transducers that convert some physical phenomena into electrical signals that the microprocessor can read. 

There exist a variety of sensors for mobile robots, such as near-infrared proximity detectors, sonar rangefinders, microwave sensors, pyroelectric sensors, earthquake and flood sensors, force sensors, potentiometers, photo sensors, bump switches, microphones, bend sensors, gyroscopes, accelerometers, compasses, cameras, etc. 

Ultrasonic transducers help the robot detect and avoid obstacles. While a near-infrared detector only delivers proximity information (something is or is not there), a sonar transducer can actually provide distance information because it is possible to measure the time of flight between the initiation of a ping and the return of its echo. By measuring the time of flight and knowing the speed of sound in air, it is possible to calculate distance covered by the round trip of the ping. 

Two kinds of range-finding devices are available; they are laser range-findings and ultrasonic range transducers. The structure and configuration of laser range-finding systems are very complicated which makes the system itself very expensive. On the other hand, sonar systems are simple and low-cost, probably multiple orders of magnitude less expensive than laser-based systems.

The advantages of time-of-flight (TOF) systems arise from the direct nature of their straight-line active sensing. The returned signal follows essentially the same path back to a receiver with or in close proximity to the transmitter. In fact, it is possible in some cases for the transmitting and the receiving transducers to be the same device. The absolute range to an observed point is directly available as an output with no complicated analysis required. Furthermore, TOF sensors maintain range accuracy in a linear fashion as long as reliable echo detection is sustained, while triangulation schemes suffer diminishing accuracy as distance to the target increases.

Typical problems associated with ultrasonic sensors are variations in the speed of propagation, uncertainties in determining the exact time of arrival of the reflected pulse, interaction of the incident wave with the target surface, the equipment accuracy/resolution limitations, external interference from nearby sources, and the poor directionality characteristics of sonic waves.

In our boe–bot robot we used different type of sensor but in my research I will discuss and use the ultrasonic sensor which is type of the range finder sensors.

3.4.2. Range Finder 

Unlike proximity sensors range finders are used to find large distances, to detect obstacles, and to map surface of objects. Range finders are meant to provide advance information to the system. Range finder are generally based on light (visible lights, infrared lights, or laser) and ultrasonic. Two common methods of measurements are triangulation and time of flight or lapsed time.

Triangulation involves illuminating the object by a single ray of light that forms a spot on the object. The spot is seen by a receiver such as a camera or phototransistor. The range or depth is calculated from the triangle formed between the receiver, the light source and the spot and the object, as in Figure 3.13

[image: image11.png]



[image: image12.png]Receiver

Rotating
Emitter





Figure 3.13 Range finder sensors

As in evident from figure a, the particular arrangement between object, the light source, and the receiver only happens at one instants. This point, the distance d can be calculated b:

tan β = d / L1                       

tan ά = d / L2

L = L1 + L2 

Substituting and manipulating the equation yields:

d = (L tan ά * tan β) / (tan ά + tan β)

since L and β are known, if ά is measured d can be calculated we can see from figure b that except at that instant, the receiver will not see the reflected light. As a result it is necessary to rotate the emitter, and as soon as the reflected light is observed, record the angle of the emitter and use it to calculate rang. In practice, the emitter’s light (such as laser) is rotated continuously by a rotating mirror and the receiver is checked for signal. As soon as the signal is observed, the angle of the mirror is recorded.

Time of flight, lapsed time, ranging consists of sending a signal from a transmitter that bounces back from an object and is received by a receiver. The distance between the object and the sensor is half the distance travelled by the signal which can be calculated by measuring the time of flight of the signal and by knowing its speed of travel. This time measurement must be very fast to be accurate. For small distance measurement, the wavelength of the signal must be very small.

3.4.3. What is the Ultra Sonic

The term "ultrasonic" applied to sound refers to anything above the frequencies of audible sound, and nominally includes anything over 20,000 Hz. Frequencies used for medical diagnostic ultrasound scans extend to 10 MHz and beyond. 

Sounds in the range 20-100 kHz are commonly used for communication and navigation by bats, dolphins, and some other species. Much higher frequencies, in the range 1-20 MHz, are used for medical ultrasound. Such sounds are produced by ultrasonic transducers. A wide variety of medical diagnostic applications use both the echo time and the Doppler shift of the reflected sounds to measure the distance to internal organs and structures and the speed of movement of those structures.

3.4.4. Ultra Sonic Range Finders

Ultrasonic systems are rugged, simple, inexpensive and low powered. They are readily used in camera for focusing, In alarm systems for motion detection, and in robots for navigation and range measurement. Their disadvantage is in their limited resolution, which is limited by the wavelength of the sound and natural in homogeneities of temperature and velocity in medium, and their maximum range, which is limited by the absorption of the ultrasound energy in the medium. Current ultrasonic devices have a frequency range of 20 KHz to above 2 MHz.
Most ultrasonic devices measure the distance using the time-of-flight technique. In this technique, the transducer emits a pulse of high-frequency ultrasound, which travels a certain distance and is reflected back when it encounters a separation in the medium, it is then received by the receiver. The distance between the transducer and the object is half the distance travelled, which is equal to the time-of-flight times the speed of sound. Of course the accuracy of the measurement not only depends on the wavelength of the signal, but also to the accuracy of the time measurement and the speed of sound. The speed of sound in a medium is dependent on the frequency of the wave (at above 2MHz level), the density of the medium and the temperature of the medium. To increase the accuracy of the measurement, a calibration bar is usually placed about an inch in front of the transducer, which is supposed to calibrate the system for varying temperatures. This is only good if the temperature is uniform through out the travelled distance, which may or may not be true. 

Time measurement accuracy is also very important for accurately measuring the distance. usually, the worst-case error in time measurement is +0.5 or -0.5 wavelength if the clock stopped as soon as the receiver receives the returned signal at a minimum threshold thus, higher frequency ultrasound devices yield a better accuracy for example, for 20KHz and 200KHz systems, the wavelength will respectively be about 0.67 and 0.067 inches (17 and 1.7 mm), yielding minimum worst-case accuracy of 0.34 and 0.034 inches (8.5 and 0.85 mm). Cross correlation, phase comparison, frequency modulation and signal integration methods have been used to increase the resolution and accuracy of ultrasonic devices. It should be mentioned that although higher frequencies yield a better resolution, they attenuate much faster than the lower frequency signals, which severely limits their range. On the other hand the lower frequency transducers have wide beam angles and a severely deteriorated lateral resolution. Thus, there is a trade-off between the natural resolution and signal attenuation in relation with the beam frequency. Back ground noise is another problem with ultrasonic. Many different industrials and manufacturing operations and techniques produce sound waves that contain ultrasonic as high as 100KHz, which can interfere with the ultrasonic device operation. Thus, it has been recommended to use frequencies above 100KHz in industrial environment.

Ultrasonic can be used for distance measurement, mapping and flaw detection. A single-point distance measurement is called spot checking, as opposed to range array acquisition for multiple-data-point-acquisition techniques used for three-dimensional mapping. In this case, a large number of distances to different locations on an object are measured. The collection of distance data provides three-dimensional map of the surface of the object. It should be noted that since only half the surface area of a three-dimensional object can be ranged, these measurement are also referred to as two-and-one-half-dimensional. The backside of the object or areas obscured by other parts can not be ranged.               

3.4.5. Ultrasonic in Boe-Bot (Ping))) Ultra sonic sensor)

The Parallax PING))) ultrasonic distance sensor provides precise, non-contact distance measurements from about 2 cm (0.8 inches) to 3 meters (3.3 yards). It is very easy to connect to BASIC Stamp or Javelin Stamp microcontrollers, requiring only one I/O pin. The PING))) sensor works by transmitting an ultrasonic (well above human hearing range) burst and providing an output pulse that corresponds to the time required for the burst echo to return to the sensor. By measuring the echo pulse width the distance to target can easily be calculated. Since Ping))) sensor is fixed over the Boe-Bot robot, height of obstacle should be more than 15cm to be detected by Ping))) sensor.   

Features

• Supply Voltage – 5 VDC

• Supply Current – 30 mA typ; 35 mA max

• Range – 2 cm to 3 m (0.8 in to 3.3 yrds)

• Input Trigger – positive TTL pulse, 2 uS min, 5 µs typ.

• Echo Pulse – positive TTL pulse, 115 uS to 18.5 ms

• Echo Hold-off – 750 µs from fall of Trigger pulse

• Burst Frequency – 40 kHz for 200 µs

• Burst Indicator LED shows sensor activity

• Delay before next measurement – 200 µs

• Size – 22 mm H x 46 mm W x 16 mm D (0.84 in x 1.8 in x 0.6 in)

Dimensions:

[image: image13.png]1.8" (45.7mm) 5 105"
17" (43.2mm) —>| (3.1mm)

74"
(18.8mm)

(21.3mm)

(2.5mm'; _.] l<_

> | 1" (25mm)

.

1.64" (41.7mm)

st

3mm)

6
(15.3mm)

v




Figure 3.14 Ping))) Ultrasonic Sensor’s Dimension

Pin Definitions

GND   Ground (Vss)

5 V      5 VDC (Vdd)

SIG     Signal (I/O pin)

[image: image14.png]Vs

vdd




Figure 3.15 Ping))) sensor schematic 

The PING))) sensor has a male 3-pin header used to supply power (5 VDC), ground, and signal. The header allows the sensor to be plugged into a solderless breadboard, or to be located remotely through the use of a standard servo extender cable (Parallax part #805-00002). Standard connections are shown in the figure above.

Quick-Start Circuit

This circuit allows you to quickly connect your PING))) sensor to a BASIC Stamp® 2 via the Board. The PING))) module’s GND pin connects to Vss, the 5 V pin connects to

Vdd, and the SIG pin connects to I/O pin P15.

[image: image15.png]s

Vin





Figure 3.16 Ping))) sensor wiring diagram

Theory of Operation

The PING))) sensor detects objects by emitting a short ultrasonic burst and then "listening" for the echo. Under control of a host microcontroller (trigger pulse), the sensor emits a short 40 kHz (ultrasonic) burst. This burst travels through the air at about 1130 feet per second, hits an object and then bounces back to the sensor. The PING))) sensor provides an output pulse to the host that will terminate when the echo is detected; hence the width of this pulse corresponds to the distance to the target.

[image: image16.png]tour k e
Yowoors [
> ——5v
SIG pin —ov
Sonar TX
> = taugr
— HOST tour 2uS (min), 5 uS typical
s PING tuooore 750 uS

tarsr 200 uS @ 40 kHz
v 11508

tamax  18.5mS




Figure 3.17 Ping))) Timing diagram

 Test Data

The next test data is based on the PING))) sensor, tested in the Parallax lab, while connected to a BASIC Stamp microcontroller module. The test surface was a linoleum floor, so the sensor was elevated to minimize floor reflections in the data. All tests were conducted at room temperature, indoors, in a protected environment. The target was always centered at the same elevation as the PING))) sensor.

Test 1

Sensor Elevation: 40 in. (101.6 cm)

Target: 3.5 in. (8.9 cm) diameter cylinder, 4 ft. (121.9 cm) tall – vertical orientation

[image: image17.png]\%é

\ ) )





Figure 3.18 Test One

Test 2

Sensor Elevation: 40 in. (101.6 cm)

Target: 12 in. x 12 in. (30.5 cm x 30.5 cm) cardboard, mounted on 1 in. (2.5 cm) pole

● Target positioned parallel to backplane of sensor

[image: image18.png]



Figure 3.19 Test two

Program Example: BASIC Stamp 2 Microcontroller

The heart of the program that used to program ultrasonic is the Get_Sonar subroutine. This routine starts by making the output bit of the selected IO pin zero – this will cause the successive PULSOUT to be low-high-low as required for triggering the PING))) sensor. After the trigger pulse falls the sensor will wait about 200 microseconds before transmitting the ultrasonic burst. This allows the BS2 to load and prepare the next instruction. The instruction, PULSIN, is used to measure the high-going pulse that corresponds to the distance to the target object. The raw return value from PULSIN must be scaled due to resolution differences between the various members of the BS2 family. After the raw value is converted to microseconds, it is divided by two in order to remove the "return trip" of the echo pulse. The value now held in rawDist is the distance to the target in microseconds.

Conversion from microseconds to inches (or centimetres) is now a simple matter of math. The generally accepted value for the speed-of-sound is 1130 feet per second. This works out to 13,560 inches per second or one inch in 73.746 microseconds. The question becomes, how do we divide our pulse measurement value by the floating-point number 73.746?

Another way to divide by 73.746 is to multiply by 0.01356. For new BASIC Stamp users this may seem a dilemma but in fact there is a special operator, **, that allows us to do just that. The ** operator has the affect of multiplying a value by units of 1/65,536. To find the parameter for ** then, we simply multiply 0.01356 by 65,536; the result is 888.668 (we'll round up to 889).

Conversion to centimetres uses the same process and the result of the program is shown below:

[image: image19.png]“ Debug Terminal #1

covt = foo0 =] hone =]

Daabic  Fouloniel o 1 [~ oA [~ AT
2 [ <] ers wom ecrs

Macros,. | Pause Clear Cose | [ Echoil




Figure 3.20 Output window of Basic Stamp
Now we can calculate the distance between the robot and obstacles but in one direction so we need another hardware (PING))) Bracket Kit) that used to rotate the sensor in 180 degree that makes the navigation and obstacles avoidance more accurate.

The PING))) Bracket Kit includes a standard servo and all mounting hardware required to attach the PING))) ultrasonic sensor to the front of the Parallax Boe-Bot® robot.

Features

• Parallax Standard Servo provides 180 degrees of ultrasonic scanning ability

• Clean and sturdy connection provides reliable use on mobile robots

Using this hardware the robot can check the distance in different angles so the robot can decide after checking the best bath that it must go through.  

3.5. Summary

 The three major components which control the system of the boe-bot were discussed in this chapter. The brain of the Boe-bot is microcontroller; the second component is I/O pins and its location on the carrier board. Third components are rotation servos. Along the way, a variety of PBASIC commands that are used in navigation of robot were introduced. The important sensor (ultrasonic sensor) that has good feature is presented. This sensor is used with the boe-bot robot in navigation task. 

Chapter 4. Fuzzy Navigation of Mobile Robot
4.1. Overview

Fuzzy logic is a superset of conventional (Boolean) logic that has been extended to handle the concept of partial truth-truth values between completely true and completely false. About thirty year ago Lotfi Zadeh founded the theory of fuzzy sets, by extending the classical concept of a set. Unlike classical logic, in which element either do or do not belong to a set, the degree of member ship for element of a fuzzy set can take on any value of the interval (0,1). Fuzzy logic offers a framework for representing imprecise, uncertain knowledge. Similar to the way in which human beings make their decisions, fuzzy system are using a mode of approximate reasoning, which allows them to deal with the vagueness and incomplete information. Fuzzy Control (FC) provides a flexible method to a model the relationship among input information and control output. Fuzzy Logic Controllers (FLCs) prove their robustness with regard to noise and variations of system parameters.

In this chapter fuzzy logic is used in navigation of mobile robot. The structure of fuzzy system, the functions of its main blocks has been explained. The association between distance to collision and steer action, between distance and speed of mobile robot is constructed by using fuzzy terms. Using the developed fuzzy rule base the output action give to the robot input is determined.

4.2. Structure of fuzzy system

4.2.1. Fuzzy logic control

Fuzzy logic provides a means to deal with nonlinear function. A fuzzy controller was designed to simulate the performance of the model of obstacle avoidance of mobile robot. The membership functions were developed for the effect of position error and velocity parameters for two links of the robot. A membership function for the output of the controller i.e. the joint torque was also defined.

4.2.1.1. Fuzzy Knowledge Base

Fuzzy knowledge base uses fuzzy logic instead of Boolean logic. In other words a fuzzy knowledge base is a collection of a membership function and rules that are used to reason about data. Unlike deterministic knowledge base, which is mainly symbolic reasoning engines, fuzzy knowledge base is oriented toward numerical processing.

The rules in a fuzzy knowledge base are usually of a form similar to the following:

If x is low and y is high then z = medium 

Where x and y are input variables (names for know data values), z is an output variable (a name for a data value to be computed), low is a membership function (fuzzy subset) defined on x, high is a membership function defined on y, and medium is a membership function defined on z. the part of the rule between the IF and THEN is the rule’s premise or antecedent. This is a fuzzy logic expression that describes to what degree the rule is applicable. The part of the rule following the “then” is the rule’s conclusion or consequent. This part of the rule assigns a membership function to each of one or more output variables. Most tools for working with fuzzy knowledge base allow more then one conclusion per rule.

4.2.2. Fuzzy inference Process

With the definition of the rules and membership functions in hand, we now need to know how to apply this knowledge to specific values of the input variables to compute the values of the output variables. This process is referred to as inferencing. In a fuzzy system, the inference process is a combination of four subprocesses:

Fuzzification, Inference, Composition, and Defuzzification. 

The Defuzzification subprocess is optional.

 Assume that the variables distance, angle, and speed all take on values in the interval [0, 10], and that we have the following membership functions and rules defined. 

Low (t) = 1– t / 10 

High (t) = t/ 10   

Rule 1: if distance is short and angle is small then speed is low 

Rule 2: if distance is long and angle is large then speed is high

Notice that instead of assigning a single value to the output variable speed, each rule assigns an entire fuzzy subset (low or high).

Notes:

1- In this example, low (t) + high (t) =1.0 for all t. this is not required but it is fairly common.

2- The value of t at which low (t) is maximum is the same as the value of t at which high (t) is minimum, and vice-versa. This also not required but fairly common.

3- The membership functions are used for all variables this is not required, and is also not common.

4.2.2.1. Fuzzification

In the Fuzzification sub process, the membership function defined on the input variables are applied to their actual values, to determine the degree of truth for each rule premise. The degree of truth for a rules premise is sometimes referred to as its alpha. If a rule’s premise has a non-zero degree of truth (if the rule applies at all…..) then the rule is said to fire.

Table 4.1 Example describe fuzzifecation  process
	  X
	   Y
	 Low

   (x)
	High

(x)
	Low

(y)
	High

(y)
	Alpha

  1
	Alpha

  2
	Alpha

  3
	Alpha

 4

	0.0
	0.0        
	1.0
	0.0
	1.0
	0.0
	1.0
	0.0
	0.0
	0.0

	0.0
	3.2
	1.0
	0.0
	0.68
	0.32
	0.68
	0.32
	0.0
	0.0

	0.0
	6.1
	1.0
	0.0
	0.39
	0.61
	0.39
	0.61
	0.0
	0.0

	0.0
	10.0
	1.0
	0.0
	0.0
	1.0
	0.0
	1.0
	0.0
	0.0

	3.2
	0.0
	0.68
	0.32
	1.0
	0.0
	0.68
	0.0
	0.32
	0.0

	6.1
	0.0
	0.39
	0.61
	1.0
	0.0
	0.39
	0.0
	0.61
	0.0

	10.0
	0.0
	0.0
	1.0
	1.0
	0.0
	0.0
	0.0
	1.0
	0.0

	3.2
	3.1
	0.68
	0.32
	0.69
	0.31
	0.68
	0.0
	0.0
	0.32

	3.2
	3.3
	0.68
	0.32
	0.67
	0.33
	0.67
	0.33
	0.0
	0.0

	10.0
	10.0
	0.0
	1.0
	0.0
	1.0
	0.0
	0.0
	0.0
	1.0


4.2.2.2. Inference Mechanism 

In the subprocess, the truth value for the premise of each rule is computed, and applied to the conclusion part of each rule. This results in one fuzzy subset to be assigned to each output variable for each rule.

There are two inference methods or inference rules: MIN and PRODUCT. In MIN inferencing, the output membership function is clipped off at a height corresponding to the rule premise’s computed degree of truth. This corresponding to the traditional interpretation of the fuzzy logic AND operation. In PRODUCT inferencing, the output membership function is scaled by the rule premises computed degree of truth. 

Due to the limitations of posting this as raw ASCII, we can not draw a decent diagram of the results in the same functional notion we used for the membership functions above.

For example, lets look at rule 1 for x = 0.0 and y = 3.2. as shown in the table above, the premise degree of truth works out to 0.68. For this rule, MIN inferencing will assign z in the fuzzy subset defined by the membership function:

Rule1 (z) = {z/10, if z <=6.8     

               0,68, if z >=6,8}

For the same condition, PRODUCT inferencing will assign z the fuzzy subset defined by the membership function: 

Rule1 (z) = 0.68 *high(z) = 0.068 * z

4.2.2.3. Composition 

In the composition subprocess, all of the fuzzy subsets assigned to each output variable are combined together to form a single fuzzy set for each output variable. 

We are familiar with two composition rules: MAX composition and SUM composition. In MAX composition, the combined output fuzzy subset is constructed by taking the point wise maximum over all of the fuzzy subsets assigned to the output variables by the inference rule. In SUM composition the combined output fuzzy subset is constructed by taking the point wise sum over all of the fuzzy subset assigned to the output variable by the inference rule. Note that this can result in truth values greater than one! For this reason, SUM composition is only used when it will be followed by defuzzification method, such as the CENTROID method that does not have a problem with this odd case.

For example, assume x = 0.0 and y = 3.2 . MIN inference would assigne the following four fuzzy subsets to z:

Rule1 (z) = { z/10 , if z<=6.8

                     0.68 , if z>=6.8} 

Rule2 (z) = { 0.32 , if z<=6.8

                     1-z /10, if z>=6.8} 

rule3 (z) = 0.0

rule4 (z) = 0.0

MAX composition would result in the fuzzy subset:

Fuzzy(z) = { 0.32,         if z<=3.2

                     z/10,      if 3.2<=z<=6.8

                     0.68,           if z>=6.8}

PRODUCT inferencing would assign the following four fuzzy subsets to z:

Rule1 (z) = 0.068*z

Rule2 (z) = 0.32 – 0.032*z

Rule3 (z) = 0.0
Rule4 (z) = 0.0

SUM composition would result in the fuzzy subset:

Fuzzy (z) = 0.32 + 0.036*z

 4.2.2.4. Defuzzification

 Sometimes it’s useful to just examine the fuzzy subset that are the result of the composition process but more often, this fuzzy value need to be converted to a single number a crisp value this is what the defuzzifucation sub process does.

There are more defuzzification method than you can shake a stick at. A couple of years ago, Mizumoto did a short paper that compared roughly thirty defuzzification methods.

Two of the more common techniques are the CENTROID and MAXIMUM methods in the CENROID method, the crisp value of the output variable is computed by finding the variable value of the center of gravity of the membership function for the fuzzy value. In the MAXIMUM method, one of the variable values at which the fuzzy subset has its maximum truth value is chosen as the crisp value for the output variable. There are several variations of the MAXIMUM method that differ only in what they do when there is more than one variable value at which this maximum truth value occurs. One of these, the AVERAG OF MAXIMUM method, returns the average of the variables values at which the maximum truth value occurs for example, go back to our previous examples.

Using MAXIMUM inferencing and AVERAGE OF MAXIMUM defuzzufucation results in a crisp value of 8.4 for z.

Using PRODUT-SUM inferencing and CENTROID defuzzufication results in acrisp value of 6.7 for z.

Note: sometimes the composition and defuzzification processes are combined, taking advantage of mathematical relationship that simplifies the process of computing the final output variable values.     

4.3. Application of fuzzy logic on robotics

Fuzzy logic control system can be used for both controlling robots and, as well as for adding intelligence to applications where other system may be inadequate or difficult to use. For example, in one application, fuzzy logic was used to directly control the torque output of a switched reluctance motor by a current modulation scheme. Although fuzzy logic can be used for controlling robots in lieu of, or conjunction with, classical control systems, there are many other application where fuzzy logic may perhaps be more appropriate, If not the only way to control a function. It is for the reason that the discussion on fuzzy logic has been presented here. Through these applications, a robot can become unique, more intelligent, or more useful. For example, consider a mobile robot that is designed for row terrain. A fuzzy logic control system can be used to enhance the robot controller in deciding what action to take, depending on the speed of the robot, the terrain, robot’s power, etc. or imagine a robot whose end effecter must exert a force proportional to two other inputs, say the size of apart and its weight. In yet another example, suppose that robot is used to sort a bag of object based on their colors according to the colors of the rainbow. In these, and countless other similar examples, fuzzy logic may be the best choice to incorporate the intelligence needed to accomplish the task. In addition, many peripheral devices are added to robots or work with a robot through their own controller. In these cases, a separate microprocessor may be used to control the function of the device independent of the robot controller. When appropriate, fuzzy logic may be incorporated into the microprocessor for its own function.

Example1. Let design a fuzzy logic system for the motion control of a mobile robot on rough terrain.

Solution: Assume that the inputs to the system are the slope of the terrain and the terrain type, while the output is the robot’s speed. Let slope is changed in the range between +45 and -45 degrees, divided into Large-Negative, Negative, Level, Positive, and Large-Positive. We will further assume that the terrain can be Very-Rough, Rough, Moderate, and smooth. The output speed can range between 0 and 20 miles per hour and is divided into Very-Slow, Slow, Medium, Fast, and Very-Fast. Figures (4.1, 4.2, 4.3) below the fuzzy sets describing the above. The rules base, with its 20 rules, is shown below.

Table 4.2. Association between slope, terrain and speed

	             Terrain 

Slope
	Very-Rough
	Rough
	Moderate
	Smooth

	Large-Positive
	Very-Slow
	Slow
	Medium
	Medium

	Positive
	Very-Slow
	Slow
	Medium
	Fast

	Level
	Slow
	Medium
	Fast
	Very-Fast

	Negative
	Very-slow
	Slow
	Medium
	Fast

	Large-Negative
	Very-Slow
	Very-Slow
	Slow
	Medium


If slope is large-Positive and terrain is Very-Rough then speed is Very-Slow;

If slope is large-Positive and terrain is Rough then speed is Slow; 

If slope is large-Positive and terrain is Moderate then speed is Medium; 

If slope is large-Positive and terrain is Smooth then speed is Medium;

If slope is Positive and terrain is Very-Rough then speed is Very-Slow;                

If slope is Positive and terrain is Rough then speed is Slow; 

If slope is Positive and terrain is Moderate then speed is Medium; 

If slope is Positive and terrain is Smooth then speed is Fast;

If slope is Level and terrain is Very-Rough then speed is Slow; 

If slope is Level and terrain is Rough then speed is Medium; 

If slope is Level and terrain is Moderate then speed is Fast; 

If slope is Level and terrain is Smooth then speed is Very-Fast;

If slope is Negative and terrain is Very-Rough then speed is Very-Slow; 

If slope is Negative and terrain is Rough then speed is Slow; 

If slope is Negative and terrain is Moderate then speed is Medium; 

If slope is Negative and terrain is Smooth then speed is Fast;   

If slope is Large-Negative and terrain is Very-Rough then speed is Very-Slow; 

If slope is Large-Negative and terrain is Rough then speed is Very-Slow; 

If slope is Large-Negative and terrain is Moderate then speed is slow; 

If slope is Large-Negative and terrain is Smooth then speed is Medium;

[image: image20.png]0

Large-Negative Negative Level Positive

Large-Positive

Slope

45




Figure 4.1 Slope as input of the fuzzy set

[image: image21.png]0

Very
Rough  Rough Moderate Smooth

100%  60% 20%

Terrain




Figure 4.2 Terrain as input of the fuzzy set
[image: image22.png]Speed




Figure 4.3 Speed as output of the fuzzy set

Example2: Let design fuzzy knowledge base that describe association between distance, speed and change of speed.

Other set of rules that use distance to the obstacle or goal and simultaneously speed as input to determine the new speed, are taken as example. 

IF Distance is Very-Close and the Speed is Very Slow then Decrease-Speed 

IF Distance is Very-Close and the Speed is Slow then the Decrease-Speed 

IF Distance is Very-Close and the Speed is OK then No-Action 

      IF Distance is Very-Close and the Speed is Fast then Decrease-Speed 

      IF Distance is Very-Close and the Speed is Very-Fast then Decrease-Speed 

IF Distance is Close and the Speed is Very Slow then Increase-Speed 

IF Distance is Close and the Speed is Slow then Slightly-Increase-Speed 

IF Distance is Close and the Speed is OK then No-Action 

      IF Distance is Close and the Speed is Fast then Slightly Decrease-Speed 

      IF Distance is Close and the Speed is Very-Fast then Decrease-Speed

IF Distance is Far and the Speed is Very Slow then Slightly-Increase-Speed 

IF Distance is Far and the Speed is Slow then No-Action 

IF Distance is Far and the Speed is OK then No-Action 

      IF Distance is Far and the Speed is Fast then No-Action 

      IF Distance is Far and the Speed is Very-Fast then Slightly-Decrease-Speed 

These can be seen in the next table:

Table 4.3  Association between speed, distance and change of speed

	       Speed

Distance
	Very-Slow
	Slow
	OK
	Fast
	Very-Fast

	Very-close
	DS
	DS
	NA
	DS
	DS

	Close
	IS
	SIS
	NA
	SDS
	DS

	Far
	SIS
	NA
	NA
	NA
	SDS


4.4.  Constructing Fuzzy Rules Base for Navigation of Mobile Robot

In this section, the rules base used in this project will be discussed and appeared. In this project two stages of rules base that determine the basic criteria to make the robot get the goal with less possible errors are available. The first stage is the angle that used to make the robot avoid the obstacle in best form and shortest bath, and the second stage is the speed that the robot has to navigate with.

4.4.1. The First Stage

This stage is to determine the angle that the robot needs to avoid crashing the obstacles and finally to get the goal, and this task almost is the main task in our project. In this stage the distance between the robot and obstacle will be as input and the angle β as output:

If the distance is Very-large then β is Very-Little (7) 

If the distance is large then β is little (12)
If the distance is Medium then β is moderate (20) 

If the distance is Small then β is Big (45)
If the distance is Very-Small then β is Very-Big (90)

Note: the values of β were determined experimentally to be the most suitable to avoid crashing with obstacles. 
[image: image23.png]0

Very Small

Small Medium  Large

Very Large

20

50 70

Distance am

110

>




Figure 4.4 Distance Intervals

[image: image24.png]Very Little Lite  Moderate  Big Very-Big
1
0.5~
Q
o 7 12 20 45 90

Angle

>




                                               Figure 4.5 Angle (θ) intervals

4.4.2. The Second Stage 
The speed is controlled by the rules base in this stage which determines and controls the speed that the robot performs in specific distance, the distance between the robot and the goal or obstacles will be as input and the speed of the robot as output.

If the distance is Very-Large then speed is Very Fast 

If the distance is Large then speed is Fast

If the distance is Medium then speed is Moderate

If the distance is small then speed is Slow

If the distance is Very-Small then speed is Very Slow

[image: image25.png]Very Slow Slow ~ Moderate  Fast Very Fast
1
0.5~
Q !
] 11 15 22

Speed co/sec




Figure 4.6 Speed Intervals

4.5.  Meeting the shortest line

Before starting the robot to navigate it should rotate to meet the line that goal lies over, so the angle between the robot and the goal must be found, this angle can be found by:

Cos-1 (X / Z) = θ

4.6.  Summary

The use of fuzzy logic to construct navigation rules that will control of mobile robot in uncertain environment. Although this method using input information coming from sensors will provide a smooth path to avoid from collisions and be able to manage situation with unexpected obstacle. Also noteworthy is that the method not only tries to reach points but does so at certain orientation and speed.  
Chapter5.  Simulation of navigation OF mobile robot using Boe-Bot robot

5.1. Overview

In this section the simulation of mobile robot navigation and Practical values were experimentally found are given. The differences and the limitations that caused these differences are discussed. The schematic structure and steps of implementation of navigation robot are described.  The simulation and experiments are performed by using the Parallax Boe-Bot mobile robot and Basic Stamp Editor. Simulation and experiments are performed by using ultrasonic sensor. The performance of Boe-bot robot with obstacles avoidance using fuzzy logic is implemented. The use of such approach allows decreasing cost and time comparing with approaches that don not use fuzzy.

5.2. The algorithm

Before starting this algorithm some variable have to be defined. In the Figure 5.1 below the entire variable can be described:

[image: image26.png]



Figure 5.1 General form of the used arena

The implementation of the operations shown in Figure 5.1 will includes the following steps: 

1-  The goal’s location (x, y) coordinate have to be known relative to the Boe-Bot location (0, 0) coordinate.

2- the shortest distance between the robot and the goal (Z) must be determined and calculated using  Z2 = x2 + y2    
3- Using the equation:                                                                                               cos-1 (x / Z) = θ                                                                                                            angle (angle between goal and robot) can be determined. That the robot has to turn to be on the beginning of the shortest line (Z).
      Note: using cos means that the area of implementing this algorithm is just in the first quarter of 2D-plane. To make this algorithm more effective, function called atan2 can be used, this function makes the algorithm able to be implemented in all quarters of 2D plane.          
4-  Ultrasound sensor will start to detect availability of obstacle (in case obstacle is available) between the robot and the goal and determine the exact distance between the robot and the obstacle K.(Assumption: the length of obstacle must not be more 15 cm)
5- In case absence obstacle the robot will drive directly to the goal using Z, depending on the rule base of speed in the previous chapter (stage two), then program will be terminated. 
                                                         Table 5.1

	Speed 
	Distance

	22 cm/s
	Very-Large

	17 cm/s
	Large

	15 cm/s
	Medium

	11 cm/s
	Small

	7 cm/s
	Very-Small


Where:

 
Very-Large >= 110cm

  
110 > Large >= 70

  
70 > medium >= 50

  
50 > small >= 20

   
Very-Small <20cm 
6- By using rule base (stage one in the previous chapter) and as shown in Table 5.2, find β angle which used to avoid crashing with the obstacle.                                                                                                                           
Table 5.2
	Angle β 
	Distance

	7°
	Very-Large

	12°
	Large

	20°
	Medium

	45°
	Small

	90°
	Very-Small


7- D1 can be calculated now using K and β:

                                                             D1= K / cos β.

8- Now R can be found:

                                                                R2 = D12 - K2    since R ┴ Z    
9- Some angles should be determined: 

                                                                          m = 180 – (90 + β1)

                                                                          D2 = (Z-K)2 + R2   

                                                                          β3 = cos-1   (R/D2) 

                                                                          β2 = 180 – (m+ β3)

    10- Z value will be modified:

                                                                          Z = D2

    11- The robot will rotate with β2 value to be on the same line with the goal.

    12- The algorithm will return to step 4. 
5.3. Flow Chart
Flowchart of the program for robot navigation is shown in Figure 5.2.
[image: image27.png]Find 2,8

——

Check obstacle

i

Find Distance
to the Obstacle

Drive Z value Based
on speed rule base

End

Find B, DR i,
Bus1Bre2. Dot

v

Rotate a Robot
with Bn

'

Drive Dn value
Based on speed rule

1

Z=Dyn1

!

Rotate a Robot

With Bret
ij





Figure 5.2 Flow chart of navigation
1- Input the coordinates x,y for the goal.

2- Using x,y find (Z2 = x2 + y2) and (cos-1 (x / Z) = θ)

3- Using ultrasonic find the distance to the first obstacle.

4- Now using the equation in 5.2 βn,Dn,Rn,mn, βn+1,βn+2,Dn+1  can be found

5- The robot will rotate with calculated angle βn.  

6- The robot moves distance Dn.

7- The robot will rotate again but with βn+1.  

8- The operation will be repeated in case of obstacle availability.

9- Else the robot will drive directly to the goal.

5.4. Comparing between simulation and practical results of robot navigation
In this section a simulation to method that was developed to optimize the performance of Boe-bot robot with obstacles avoidance and comparing with practical results will be given this method is different from the normal method because it needs less cost and time.
This simulation example will discuss three cases depending on the number of obstacles.
Obstacle is defined as any object detected by the ultrasound sensor when the robot has assumed the orientation of the goal frame. Obstacle detecting is achieved by examining the range values produced by the ultrasound sensor when the range value locates during the visibility area of ultrasound sensor avoidance control layer is activated.

Case 1: Without obstacle

Figure 5.3 below shows the coordinate of the goal and robot. Where the robot is placed at the origin (0,0) and the goal is placed at the (75,30) using this robot can calculate Z distance.

Distance Z = (752 + 302) ½ = 80.8 cm. This implement the shortest distance between the robot and goal.

Now find the angle for the navigating the robot to the goal (θ) by finding the result taken by: cos-1 (x / Z) = θ   = 20ْ                                                                                                                
From the origin position, then the ultrasound sensor start to detect the availability of obstacle. In this case there is no obstacle so the robot will go directly about 80 cm to the goal, the speed of driving to the goal is changed depending on the distance in this example the robot drives 10cm in with fast speed then 20cm with medium speed and 30cm with slow speed and last 20cm with very slow speed.
[image: image28.png]



Figure 5.3 Navigation without obstacle

Practical results of Case 1:

In practical as shown in the Figure 5.4 below where 1 is the expected path and 2 is the actual path, the values of parameters are:

1- Figure 5.4 shows that θ = 20°                          

2- Z = 75 cm
3- The end goal's coordinates (72,23) 

[image: image29.png](7223)




Figure 5.4 Actual image of case 1
Case 2: One obstacle

Figure 5.5 below shows the us case 2, robot in (0,0) and the goal (80,80) coordinate

The distance Z = (802+802)½   = 113 cm

The angle (θ) can be calculated:

cos-1 (x / Z) = θ  = 45ْ
In case 2 when the ultrasound will find obstacle the robot will determine obstacle after 65cm from the robot now the robot will rotate depending on this distance to avoid crashing with the obstacle, 65cm considered within “Medium” interval so the robot will rotate 20ْ  then the robot will start to drive with D1 that is calculated by:

D1= 65 / cos 20  = 69cm 

After driving 69 cm the robot will rotate with calculated angle β2 to put the robot on the same line with the robot, to find this angle R should be calculated:

R = (692- 652)½   = 23cm

After this step find D2:

D2 = ((Z-65)2+ 232)½   = 53cm

Another angle m should be calculated:

m = 180-(90+20) = 70

By finding D2, β3 is:

β3 = cos-1  (R/D2) = cos-1  (23/53) = 64ْ
Now find β2:

β2 = 180 – (64+70) = 46ْ
Then the sensor will check again obstacle availability, in this case no obstacle in the second level of checking. 

The final step to get the goal is to drive with 53cm (D2).

Note: the moving of the robot is according to the speed’s rule base in the previous chapter.

  [image: image30.png]



Figure 5.5 Navigation with one obstacle

Practical results of case 2:

In practical as shown in the Figure 5.6 below where 1 is the expected path and 2 is the actual path, the values of parameters are:
θ = 45°

β1 = 21.5

D1 = 65 cm

β2 = 45° 
D2 = 50 cm

Z = 107 cm

The end goal's coordinates (77,72)                     

[image: image31.png]



Figure 5.6 Actual image of case 2
Case 3: Multiple obstacles 
In this example, there are multiple obstacles and the goal has (50,150) coordinate as shown in Figure 5.7 below.

The distance Z = (502+1502)½ = 158 cm 

The θ angle = 71ْ 

In this case when the sensor checks the obstacle the robot will see obstacle after 20cm (K) from the robot, now the robot will rotate depending on this distance using rule base (stage 3) to avoid crashing with the obstacle, 20cm considered within “Small” interval so the robot will rotate β1 = 45ْ then the robot will start to drive with D1 that calculated by:

D1= 20 / cos 45  = 28cm 

After driving 28 cm the robot will rotate with calculated angle β2 to put the robot on the same line with the robot, to find this angle some variables must be calculated:

R1 = (282- 202)½   = 19cm

After this step find D2:

D2 = ((Z-K)2+R12)½   = ((158-20)2+192)½  = 139 cm
No we have to find another angle m:

m = 180-(90+45) = 45

By finding D2, β3 will be:

β3 = cos-1 (R1/D2) = cos-1 (19/139) = 82ْ
Now β2 can be calculated:

β2 = 180 – (β3+m) = 180 - (82+45) = 53ْ
Value of Z will modify:

Z = D2 =139

Then the sensor will check again obstacle availability, in this case obstacle is available after 48cm (K2). So:

β4= 45

D3= 48 / cos 45  = 68cm 

After driving 68 cm the robot will rotate with calculated angle β2 to make the robot with the same line with the robot, to find this angle calculate R2:

R2 = (682- 482)½   = 48cm

 Find D4:

D4 = ((Z-K2)2+R22)½   = ((139-48)2+202)½ = 77 cm
m2= 180-(90+45) = 45

By finding D2 we can find β3:

β6 = cos-1 (R2/D4) = cos-1 (48/77) = 51ْ
Now we can find β5:

β5 = 180 – (β5+m2) = 180 - (51+45) = 84ْ
Value of Z will modify:

Z = D4 =77
The previous steps will be repeated as long as there is obstacle that located between the robot and the goal even infinite obstacles. But in case there is no obstacle the robot will go directly to the goal with last modified Z distance.  

[image: image32.png]



Figure 5.7 Navigation with n obstacles
Note: the moving of the robot is according to the speed’s rules base in the previous chapter

5.5. Limitations and problems causes differences between theoretical and practical results

- The main problem in Boe-Bot Robot is that the processor used (BS2) has not the ability to deal with the floating point numbers, this problem caused some limitation for this project as will be discussed [29,30].
For Example- 100 cm can be navigated by Boe-Bot robot by sending the same signal to the robot 210 times which means each 1 cm needs to send the signal 2.1 time, so 2.1 automatically will be rounded to 2 which will cause to lose part of distance, for example if the distance is 90 cm the practical value of distance will be:

 Times of repeating signal = 90*2 =180 time

While 180 to robot mean to navigate 85 cm which means to lose 5 cm.

- Since the Boe-Bot robot is considered as Holonomic Robot (one that steers by changing the speed/direction of the two side wheels) it tends not to drive in a straight line. This is due to the two motors not quite reaching the same speeds; hence it will describe a curve, as a final result not to drive in straight line will decrease the actual distance and change the desired position [31]. 

5.6. Summary
The algorithm was developed for navigation of robot in the environment having obstacles. Using developed algorithm the implementation of the navigation of Boe-bot has been considered. Also using fuzzy logic the navigation of mobile robot in uncertain environment has been considered. The realization of developed system is done by using Basic stamp system and Parallax Boe-bot robot.

6. Conclusion
The control task becomes more complex when the configuration of obstacles is not known a priori. The most popular control methods for such systems are based on local navigation schemes that tightly couple the robot actions to the sensor information. 

The navigation system of mobile robot has been developed that includes sensors, hardware scheme and software. In case of availability of obstacles software generate control signals for servo motors of wheels. Using developed navigation system robot can move in the environment avoiding obstacles. 

Fuzzy navigation system has been proposed that control robot in uncertain environment. The most difficult problem in applying fuzzy reactive behavior based navigation control systems is that of arbitrating or fusing the reactions of the individual behaviors, which is addressed here. This thesis presents the design of a fuzzy system for navigation of robotic vehicles using the fuzzy logic framework. This design allows the robot thoroughly use the available ultrasonic sensor information when choosing the control action to be taken. For navigation of robot the knowledge base that includes fuzzy terms are created.  These fuzzy knowledge bases describe the relations between distances from obstacle and steer action which define turn angle of mobile robot, and also relation between speed and distance from obstacle. 

The development of navigation system is carried out by using Parallax Boe-bot robot and Basic Stamp software. Simulation and experimental results show that the proposed method can smoothly and effectively guide a robot through unknown environments.

7. References

[1] Saeed B. Niku. '' Introduction to Robotics Analysis, Systems, Applications ''.  Pearson education, Inc. Pearson Prentice Hall upper saddle river, New Jersey 07458. 2001
[2] Jonathan Dixon, Oliver Henlich. ''Mobile robot navigation''. By Imperial College,

London. 10/06/1997. Available at: http://www.doc.ic.ac.uk/~nd/surprise_97/journal/vol4/ jmd/

[3] Lee S.; Adams T.M.. '' A fuzzy navigation system for mobile construction robots'' In Proceedings of the 1998 IEEE ISIC/CIRA/ISAS Joint Conference, Gaithersburg, Maryland, USA, 1998. pp. 233-238.

[4] P. ROUCHON, M. FLIESS, J. LEVINE, PH. MARTIN. ''Flatness and motion planning: the car with -n- trailers''. In Proc. Int. Conf. ECC’93, Groningen, Holland, 1993.

[5] J.-M. CORON. ''Global asymptotic stabilization for controllable systems without drift''. in Mathematics of Control, Signals and Systems, New York: Springer-Verlag, vol. 5, 1992, pp. 295-312.

[6] C. SAMSON, M. LEBORGNE, B. ESPIAU. ''Robot control. The Task Function approach''. Oxford Engineering Series, vol. 22, Oxford University Press, 1991.

[7] C. SAMSON. ''Velocity and torque feedback control of a nonholonomic cart'' in Advanced Robot Control. Proceedings of the International Workshop on Nonlinear and Adaptive Control: Issues in Robotics, Grenoble, France, Nov. 21-23, 1990, Lecture 
[8] P. MORIN, C. SAMSON. ''Practical stabilization of a class of nonlinear systems. Application to chain systems and mobile robots''. in IEEE Conf. on Decision and Control, December 2000.

[9] B. PHONG. ''Illumination for computer-generated pictures''. in Communication of     ACM", vol. 18, no 6, June 1975, pp. 311–317.

[10] R. L. COOK, K. E. TORRANCE. "A Reflectance Model for Computer Graphics''. in ACM Trans. Graph., vol. 1, no 1, January 1982, pp. 7–24.

 [11] L. PRONZATO, E. WALTER. ''Minimum-volume ellipsoids containing compact sets: application to parameter bounding'', in Automatica, vol. 30, 1994, pp. 1731-1739.

[12] A. VICTORINO, P. RIVES, J.-J. BORRELLY. ''Safe Navigation for Indoor Mobile Robots,PartI: A Sensor-Based Navigation Framework'', in Int. Journal of Robotics Research, vol. 22, no 12, December 2003, pp. 1005-1019.

[13] P. RIVES, M. DEVY. ''Perception pour la navigation et la commande'', in La robotique mobile, J.-P. LAUMOND (editor). , Hermes, 2001.

[14] B. KUIPERS, Y. T. BYUN. ''A robot exploration and mapping strategy based on semantic hierarchy of spatial representations'', in Robotics and Autonomous Systems, vol. 8, no 1-2, 1991, pp. 47-63.

[15] H. CHOSET, K. NAGATANI. ''Topological simultaneous localization and mapping (SLAM): toward exact localization without explicit localization'', in IEEE Trans. on Robotics and Automation, vol. 17, no 2, Avril 2001, pp. 125-137.

[16] T. Wang and B. Zhang, 1992 '' Time varying potential field based ''. Proceedings of the 1997 IEEE, Intl. Vol. 3, pp. 1626-1631

[17] Saffiotti A., 1997 '' The Uses of Fuzzy Logic in Autonomous Robot Navigation: a catalogue raisonne''. Proceedings of the 1998 IEEE-IRS, Intl. Conference on Intelligent Robots and Systems, Victoria, B.C., Canada October 1998
[18] Li W, Ma C and Wahl F, ''A Neuro-fuzzy system architecture for behaviour-  based control of a mobile robot in unknown environment ''. In Proceedings of the 3rd IEEE Conference on Fuzzy Systems, Vol. 3, pp 1626-1631

[19] R.A. Brooks, ''A robust layered control system for a mobile robot'', IEEE J. of Robotics and Automation, RA-2, PP.14-23, April 1986.

[20] Tse Min Chen and Ren C. Luo. ''Integrated Multi-behavior Mobile Robot Navigation Using Decentralized Control'' .Proceedings of the 1998 lEEERSJ Intl. Conference on Intelligent Robots and Systems Victoria, B.C., Canada October 1998

[21] Patrick Sim, Vincenzo Sacco, Guvinder S. Virk and Xunxian Wang. ''Robot Navigation in Volcanic Environments'' Proceedings 2005 IEEE International Symposium on Computational Intelligence in Robotics and Automation June 27-30, 2005, Espoo, Finland

[22] Maosen Wang, Hashem Tamimi and Andreas Zell. ''Robot Navigation Using Biosonar for Natural Landmark Tracking''. Computer Science Dept. University of Tiibingen Sand 1, 72076 Tiibingen, Germany

[23] Priti K. Gaonkar, Anthony DelSorbo and Kuldip S. ''Fuzzy Navigation for an Autonomous Mobile Robot'' Rattan NAFIPS 2005 - 2005 Annual Meeting of the North American Fuzzy Information Processing Society

[24] Qi Chen and U¨ mit O¨ zgu¨ner. ''Real-Time Navigation for Autonomous Vehicles: A Fuzzy Obstacle Avoidance and Goal Approach Algorithm'' 2005 American Control Conference' June 8-10, 2005. Portland, OR, USA

[25] Tsong-Li Lee, Li-Chun Lai, and Chia-Ju Wu. '' A Fuzzy Algorithm for Navigation of Mobile Robots in Unknown Environments'' Proceedings of the 1992 IEEE/RSJ International Conference on Intelligent Robots and Systems Raleigh, NC July 7-10,1992

[26] Kai-Tai Song and Jen-Chau Tai ''Fuzzy Navigation of a Mobile Robot''
Proceedings of the 2003 IEEURSJ InU. Conference on Intelligent Robots and Systems Las Vegas. Nevada ’ October 2003

[27] x. Yang M. Moallem R.V. Pate1 ''An Improved Fuzzy Logic Based Navigation System for Mobile Robots'' In Proceedings of the of IEEE Intl. Conference on Robotics and Automation, Detroit Michigan, volume 3, pp. 2482-2488.
[28] Sophia Antipolis. '' Instrumentation, Commande et Architecture des Robots Évolués''. Institute National De Recherche en Iofnrmatique Et en Autoamtique .Project-Team Icare
[29]  Andylindsay. "Robotics with the Boe-Bot".version 2.2 .ISBN 1-928982-03-4.
Available on: http://www.parallax.com/.
[30] PARALLAX. Looking for Basic Stamp microcontroller. http://www.parallax.com/.
[31] http://www.ntlworld.com/sam.wane

8. APPENDICES

APPENDIX A: Source code

1- Mobile Robot Navigation with absence of obstacles :

' {$STAMP BS2}

' {$PBASIC 2.5}

X_axis VAR Word

y_axis VAR Word

distance VAR Word

degr VAR Word

pulsCount VAR Byte

sine VAR Word

d VAR Word

pulseCount VAR Byte

time VAR Word

distance2 VAR Byte

main:

x_axis=150

y_axis=150

distance=SQR((x_axis*x_axis)+(y_axis*y_axis))

DEBUG "  distance    =",DEC distance

DEBUG distance,"."

sine=(x_axis*100)/distance

DEBUG "  sine    =",DEC sine

GOSUB firstangle

GOSUB forw
firstangle:

IF (99<sine)AND(sine=<100) THEN

   d=20
   GOSUB turn

      ELSEIF (98<sine)AND(sine<=99) THEN

      d=19

      GOSUB turn

      ELSEIF (64<sine)AND(sine<=70) THEN

      d=10

      GOSUB turn

     ELSEIF (96<sine)AND(sine<=98) THEN

      d=18

      GOSUB turn

     ELSEIF (93<sine)AND(sine<=96) THEN

      d=17
      GOSUB turn

     ELSEIF (90<sine)AND(sine<=93) THEN

      d=15

      GOSUB turn

     ELSEIF (86<sine)AND(sine<=90) THEN

      d=14

      GOSUB turn

     ELSEIF (81<sine)AND(sine<=86) THEN

      d=13

      GOSUB turn

     ELSEIF (76<sine)AND(sine<=81) THEN

      d=12

      GOSUB turn

     ELSEIF (70<sine)AND(sine<=76) THEN

      d=11

      GOSUB turn

     ELSEIF (57<sine)AND(sine<=64) THEN

      d=9

      GOSUB turn

     ELSEIF (50<sine)AND(sine<=57) THEN

      d=8

      GOSUB turn

     ELSEIF (42<sine)AND(sine<=50) THEN

      d=6

      GOSUB turn

     ELSEIF (34<sine)AND(sine<=42) THEN

      d=5

      GOSUB turn

     ELSEIF (25<sine)AND(sine<=34) THEN

      d=4

      GOSUB turn

     ELSEIF (17<sine)AND(sine<=25) THEN

      d=3

      GOSUB turn

     ELSEIF (sine<=17) THEN

      d=1

      GOSUB turn

        ENDIF

      turn:

 FOR pulscount=0 TO d

 PULSOUT 12,850

 PULSOUT 13,850

 PAUSE 20

 NEXT

forw:

    esraa:

IF (distance>=175)THEN

 GOSUB veryfast

ELSEIF (distance<175) AND (distance>=150)THEN

 GOSUB Fast

ELSEIF (distance<150)AND(distance>=100)THEN

GOSUB moderate

ELSEIF (distance2<100)AND(distance2>=50)THEN

GOSUB slow

ELSE

GOSUB veryslow

 ENDIF

veryfast:

FOR pulscount = 0 TO 8

PULSOUT 12,650

PULSOUT 13,850

NEXT

distance=distance
GOTO esraa

fast:

FOR pulscount = 0 TO 8

PULSOUT 12,675

PULSOUT 13,825

NEXT

distance=distance-10

GOTO esraa

moderate:

FOR pulscount = 0 TO 8

PULSOUT 12,700

PULSOUT 13,800

NEXT

distance=distance-10

GOTO esraa

slow:

FOR pulscount = 0 TO 8

PULSOUT 12,725

PULSOUT 13,775

NEXT

distance=distance-10

GOTO esraa

veryslow:

FOR pulscount= 0 TO distance*2

PULSOUT 12,735

PULSOUT 13,765

NEXT
2- 1- Mobile Robot Navigation with multiple obstacles:
' {$STAMP BS2}

' {$PBASIC 2.5}

X_axis VAR Word

y_axis VAR Word

 distance VAR Word

degr VAR Word

pulsCount VAR Byte

sine VAR Word

d VAR Word

pulseCount VAR Byte

time VAR Word

distance2 VAR Byte

Ping            PIN     15

main:

DEBUG "enter value of x axis"

DEBUGIN DEC1 x_axis

DEBUG "enter value of y axis"

DEBUGIN DEC1 y_axis
distance=SQR((x_axis*x_axis)+(y_axis*y_axis))

DEBUG "  distance    =",DEC distance

DEBUG distance,"."

sine=(x_axis*100)/distance

   DEBUG "  sine    =",DEC sine

     GOSUB firstangle

  time=0

     again:

        distance=distance-(time)

        DO WHILE (time<distance)

         GOSUB wait
         GOSUB sound

      LOOP

   firstangle:

   IF (99<sine)AND(sine=<100) THEN

    d=20

     GOSUB turn

      ELSEIF (98<sine)AND(sine<=99) THEN

      d=19

      GOSUB turn

      ELSEIF (64<sine)AND(sine<=70) THEN

      d=10

      GOSUB turn

     ELSEIF (96<sine)AND(sine<=98) THEN

      d=18

      GOSUB turn

        ELSEIF (93<sine)AND(sine<=96) THEN

      d=17

      GOSUB turn

       ELSEIF (90<sine)AND(sine<=93) THEN

      d=15

      GOSUB turn

       ELSEIF (86<sine)AND(sine<=90) THEN

      d=14

      GOSUB turn

       ELSEIF (81<sine)AND(sine<=86) THEN

      d=13

      GOSUB turn

       ELSEIF (76<sine)AND(sine<=81) THEN

      d=12

      GOSUB turn

       ELSEIF (70<sine)AND(sine<=76) THEN

      d=11

      GOSUB turn

       ELSEIF (57<sine)AND(sine<=64) THEN

      d=9

      GOSUB turn

       ELSEIF (50<sine)AND(sine<=57) THEN

      d=8

      GOSUB turn

       ELSEIF (42<sine)AND(sine<=50) THEN

      d=6

      GOSUB turn

       ELSEIF (34<sine)AND(sine<=42) THEN

      d=5

      GOSUB turn

       ELSEIF (25<sine)AND(sine<=34) THEN

      d=4

      GOSUB turn

       ELSEIF (17<sine)AND(sine<=25) THEN

      d=3

      GOSUB turn

       ELSEIF (sine<=17) THEN

      d=1

      GOSUB turn

        ENDIF

      turn:

 FOR pulscount=0 TO d

 PULSOUT 12,850

 PULSOUT 13,850

 PAUSE 20

 NEXT

 wait:

    FOR pulscount=0 TO 0

 PULSOUT 12,750

 PULSOUT 13,750

 PAUSE 200

 NEXT

      sound:

  PULSOUT 15, 5

PULSIN 15, 1, time

DEBUG HOME, "time = ", DEC5 time

time = time ** 2251

DEBUG CR, "Distance to the obstacle = ", DEC4 time, " cm"

PAUSE 100

   IF (distance<time) THEN

GOSUB goal

ELSE

GOSUB turnangle

ENDIF

goal:

   FOR pulscount=0 TO distance*2

 PULSOUT 13,850

 PULSOUT 12,650

 PAUSE 20

 NEXT

     END

     turnangle:

     IF (time>=150) THEN

     GOSUB turn15

     distance2=distance/(972*1000)

     GOSUB forw

     ELSEIF (time<150)AND(time>=100)THEN

     distance2=distance/(951*1000)

     GOSUB  turn18

     GOSUB forw

     ELSEIF (time<100)AND(time>=50)THEN

     distance2=distance/(891*1000)

     GOSUB turn25

     GOSUB forw

     ELSEIF (time<50)AND(time>25)THEN

     distance2=distance/(852*1000)

     GOSUB turn30

     GOSUB forw

     ELSE

     distance2=distance/(707*1000)

     GOSUB turn45

     GOSUB forw

       ENDIF

     turn15:

     FOR pulscount=0 TO 3

     PULSOUT 13,850

     PULSOUT 12,850

     PAUSE 20

 NEXT

 turn18:

     FOR pulscount=0 TO 4

 PULSOUT 13,850

 PULSOUT 12,850

 PAUSE 20

 NEXT

 turn25:

     FOR pulscount=0 TO 6

 PULSOUT 13,850

 PULSOUT 12,850

 PAUSE 20

 NEXT

 turn30:

     FOR pulscount=0 TO 7

 PULSOUT 13,850

 PULSOUT 12,850

 PAUSE 20

 NEXT

 turn45:

     FOR pulscount=0 TO 10

 PULSOUT 13,850

 PULSOUT 12,850

 PAUSE 20

 NEXT

forw:

    esraa:

IF (distance2>=175)THEN

GOSUB veryfast

ELSEIF (distance2<175) AND (distance2>=150)THEN

GOSUB Fast

ELSEIF (distance2<150)AND(distance2>=100)THEN

GOSUB moderate

ELSEIF (distance2<100)AND(distance2>=50)THEN

GOSUB slow

ELSE

GOSUB veryslow

GOSUB secondangle

 ENDIF

veryfast:

FOR pulscount = 0 TO 8

PULSOUT 12,650

PULSOUT 13,850

NEXT

distance2=distance2-10

GOTO esraa

fast:

FOR pulscount = 0 TO 8

PULSOUT 12,675

PULSOUT 13,825

NEXT

distance2=distance2-10

GOTO esraa

moderate:

FOR pulscount = 0 TO 8

PULSOUT 12,700

PULSOUT 13,800

NEXT

distance2=distance2-10

GOTO esraa

slow:

FOR pulscount = 0 TO 8

PULSOUT 12,725

PULSOUT 13,775

NEXT

distance2=distance2-10

GOTO esraa

veryslow:

FOR pulscount= 0 TO distance2*2

PULSOUT 12,735

PULSOUT 13,765

NEXT

secondangle:

R=SQR((distance2*distance2)-(time*time))

distance3=SQR((distance-time)*(distance-time))+(R*R))

sine=(R*100)/distance3

M= 40-(20+d)

IF (99<sine)AND(sine=<100) THEN

      d=20

      GOSUB turn

      ELSEIF (98<sine)AND(sine<=99) THEN

      d=19

      ELSEIF (64<sine)AND(sine<=70) THEN

      d=10

      ELSEIF (96<sine)AND(sine<=98) THEN

      d=18

      GOSUB turn

      ELSEIF (93<sine)AND(sine<=96) THEN

      d=17

      ELSEIF (90<sine)AND(sine<=93) THEN

      d=15

      ELSEIF (86<sine)AND(sine<=90) THEN

      d=14

      ELSEIF (81<sine)AND(sine<=86) THEN

      d=13

      ELSEIF (76<sine)AND(sine<=81) THEN

      d=12

      ELSEIF (70<sine)AND(sine<=76) THEN

      d=11

      ELSEIF (57<sine)AND(sine<=64) THEN

      d=9

      ELSEIF (50<sine)AND(sine<=57) THEN

      d=8

      ELSEIF (42<sine)AND(sine<=50) THEN

      d=6

      ELSEIF (34<sine)AND(sine<=42) THEN

      d=5

      ELSEIF (25<sine)AND(sine<=34) THEN

      d=4

      ELSEIF (17<sine)AND(sine<=25) THEN

      d=3

      ELSEIF (sine<=17) THEN

      d=1

        ENDIF

      T=40-(d+m)

      GOSUB turntogoal

      GOTO Again

       turn:

 FOR pulscount=0 TO T

 PULSOUT 12,650

 PULSOUT 13,650

 PAUSE 20

 NEXT

APPENDIX B: Actual images of the practical work for the algorithm used  

[image: image33.jpg]



[image: image34.jpg]



[image: image35.jpg]



[image: image36.jpg]



Other Serial


I/O





Peripheral Interface I/O 





Microprocessor


CPU 





Sensors and Control Interface 





Memory 





Actuator 


Servos 





Power Supply 





Sensor Input








PAGE  
III

