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ABSTRACT

Least Mean Square (LMS) adaptive filtering is an extremely useful technique for the extraction of desired signals in a noisy environment. This is even more vital in severe noise pollution, where noise filtering is more complicated due to low signal to noise ratio (SNR). Such complications are faced by pilots and military communication personnel’s.   
This thesis analyses the performance of different LMS algorithms based on minimum time consuming and maximum SNR (signal to noise ratio) criteria and designs an automatic adaptive noise cancellation system for removing severe noise from a speech signal.
By utilizing the MATLAB package ,adaptive noise cancellation  using adjoint LMS algorithm is developed for a severely distorted real life speech signal SNR(-20 Db) . For a primary elimination  Dubieties wavelet was used.
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INTRODUCTION

Adaptive filtering techniques are used in a wide range of applications, including echo cancellation, adaptive equalization, and adaptive noise cancellation.

These applications involve processing of signals that are generated by systems whose characteristics are not known a priori. Under this condition, a significant improvement in performance can be achieved by using adaptive rather than fixed filters. An adaptive filter is a self-designing filter that uses a recursive algorithm (known as adaptation algorithm or adaptive filtering algorithm) to “design itself.” The algorithm starts from an initial guess, chosen based on the a priori knowledge available to the system, then refines the guess in successive iterations, and converges, eventually, to the optimal Wiener solution in statistical sense.

There are a lot of the noise cancellation methods with applications in civil, military, industrial and communication equipments and apparatus. Success of these noise cancellation methods and filters extremely depends on the so called noise factor signal to noise ratio (SNR).

Most of the publications in the field of noise cancellation methods and their applications deal with rather big signal to noise ratio (≈10 or noise << signal) .This result in good performance in commercial devices like cell phones and radio.
There are some cases when the signal to noise ratio is around 1 (noise ≈ signal) or even a bit more. There are also some special cases which deal with the signal to noise ratios less than 0.1 (noise is 10 times or more higher than useful signal).Such as communication between military command and control centers and jet pilots. 

As it will be shown, few of the noise cancellation methods present real-time noise filtering with good results for the mentioned  severe noise cases .Each case needs special study to find the best approach and the filtering method for a particular type of equipment. The thesis involves the study of the special severe cases which deal with signal to noise ratios less than 0.1 (noise is 10 times or more high than useful signal) to find the rational algorithm.

The main objective of the work presented is to develop an automatic adaptive noise cancellation system using the adjoint Least Mean Square (LMS) algorithm. The developed method removes the high amount of noise when it is ten times more than the useful signal. The wavelet transform is also used to cancel the tiny amount of noise which has been generated by the microphone and electricity.

This thesis is organized into four chapters .The first two chapters present background information on the adaptive filters, noise and different types of communication systems. The third chapter demonstrates the best performance LMS algorithm according to predetermined criteria. The final chapter describes the developed automatic adaptive noise cancellation system.
Chapter one presents different types of adaptive filters, and describes the factors that can be used for choosing adaptive filters and their applications. 

Chapter two presents different types of noise, where they are originating from and how they present in communication systems.

Chapter three describes the types of least mean square algorithm and their properties. The case is found best performing Least Mean Square algorithm for high amount of noise according to some criteria set.
Chapter four gives the suggested adaptive noise cancellation algorithm that is developed by the author. In this chapter the live speech signal is corrupted with high amount of noise. It is observed that after the developed adaptive filtering process, the output of the system reaches the wiener solution and the original signal is obtained.
CHAPTER ONE

ADAPTIVE FILTERS
1.1 Overview

An adaptive filter is a digital filter that performs digital signal processing and can adapt its performance based on the input signal. By way of contrast, a non-adaptive filter has static filter coefficients (which collectively form the transfer function). In this chapter an explanation about the filtering problem, adaptive filters and their algorithms will be discussed in detail.

1.2 The Filtering Problem

The term filter is often used to describe a device in the form of a piece of physical hard​ware or software that is applied to a set of noisy data in order to extract information about a prescribed quantity of interest. The noise may arise from a variety of sources. For exam​ple, the data may have been derived by means of noisy sensors or may represent a useful signal component that has been corrupted by transmission through a communication chan​nel. In any event, we may use a filter to perform three basic information-processing tasks:

· Filtering, which means the extraction of information about a quantity of interest at time t by using data measured up to and including time t.
· Smoothing, which differs from filtering in that information about the quantity of interest need not be available at time t, and data measured later than time t can be used in obtaining this information. This means that in the case of smoothing there is a delay in producing the result of interest. Since in the smoothing process we are able to use data obtained not only up to time t but also data obtained after time t, we would expect smoothing to be more accurate in some sense than filtering.

· Prediction, which is the forecasting side of information processing. The aim here is to derive information about what the quantity of interest will be like at some time t + ι in the future, for some ι > 0, by using data measured up to and includ​ing time t.

We may classify filters into linear and nonlinear. A filter is said to be linear if the filtered, smoothed, or predicted quantity at the output of the device is a linear function of the observations applied to the filter input. Otherwise, the filter is nonlinear.
In the statistical approach to the solution of the linear filtering problem as classified above, we assume the availability of certain statistical parameters (i.e., mean and correla​tion functions) of the useful signal and unwanted additive noise, and the requirement is to design a linear filter with the noisy data as input so as to minimize the effects of noise at the filter output according to some statistical criterion. A useful approach to this filter-optimization problem is to minimize the mean-square value of the error signal that is defined as the difference between some desired response and the actual filter output. For stationary inputs, the resulting solution is commonly known as the Wiener filter, which is said to be optimum in the mean-square sense. A plot of the mean-square value of the error signal versus the adjustable parameters of a linear filter is referred to as the error-performance surface. The minimum point of this surface represents the Wiener solution.
The Wiener filter is inadequate for dealing with situations in which nonstationarity of the signal and/or noise is intrinsic to the problem. In such situations, the optimum filter has to assume a time-varying form. A highly successful solution to this more difficult problem is found in the Kalman filter, a powerful device with a wide variety of engineer​ing applications.
Linear filter theory, encompassing both Wiener and Kalman filters, has been devel​oped fully in the literature for continuous-time as well as discrete-time signals. However, for technical reasons influenced by the wide availability of digital computers and the ever-increasing use of digital signal-processing devices, we find in practice that the discrete-time representation is often the preferred method. Accordingly, In discrete-time method of representation, the input and output signals, as well as the characteristics of the filters themselves, are all defined at discrete instants of time. In any case, a continuous-time sig​nal may always be represented by a sequence of samples that are derived by observing the signal at uniformly spaced instants of time. No loss of information is incurred during this conversion process provided, of course, we satisfy the well-known sampling theorem, according to which the sampling rate has to be greater than twice the highest frequency component of the continuous-time signal. We may thus represent a continuous-time signal u (t) by the sequence u (n), n = 0, ± 1, = ±2,. ., where for convenience we have normal​ized the sampling period to unity [1].
1.3 Adaptive Filters
The design of a Wiener filter requires a priori information about the statistics of the data to be processed. The filter is optimum only when the statistical characteristics of the input data match the a priori information on which the design of the filter is based. When this information is not known completely, however, it may not be possible to design the Wiener filter or else the design may no longer be optimum. A straightforward approach that we may use in such situations is the "estimate and plug" procedure. This is a two-stage process whereby the filter first "estimates" the statistical parameters of the relevant signals and then "plugs" the results so obtained into a nonrecursive formula for computing

For real-time operation, this procedure has the disadvantage of requiring excessively elaborate and costly hardware. A more efficient method is to use an adaptive filter. By such a device we mean one that is self-designing in that the adaptive fil​ter relies for its operation on a recursive algorithm, which makes it possible for the filter to perform satisfactorily in an environment where complete knowledge of the relevant signal characteristics is not available. The algorithm starts from some predetermined set of initial conditions, representing whatever we know about the environment. In a stationary environment, we find that after successive iterations of the algorithm it converges to the optimum Wiener solution in some statistical sense. In a nonstationary environment, the algorithm offers a tracking capability, in that it can track time variations in the statistics of the input data, provided that the variations are sufficiently slow.
As a direct consequence of the application of a recursive algorithm whereby the parameters of an adaptive filter are updated from one iteration to the next, the parameters become data dependent. This, therefore, means that an adaptive filter is in reality a nonlin​ear device, in the sense that it does not obey the principle of superposition. Notwithstand​ing this property, adaptive filters are commonly classified as linear or nonlinear. An adaptive filter is said to be linear if the estimate of a quantity of interest is computed adaptively (at the output of the filter) as a linear combination of the available set of observa​tions applied to the filter input. Otherwise, the adaptive filter is said to be nonlinear. A wide variety of recursive algorithms have been developed in the literature for the operation of linear adaptive filters. In the final analysis, the choice of one algorithm over another is determined by one or more of the following factors:

· Rate of convergence; this is defined as the number of iterations required for the
algorithm, in response to stationary inputs, to converge "close enough" to the opti-​
mum Wiener solution in the mean-square sense. A fast rate of convergence allows
the algorithm to adapt rapidly to a stationary environment of unknown statistics.
· Misadjustment; for an algorithm of interest, this parameter provides a quantitative measure of the amount by which the final value of the mean-squared error, aver​aged over an ensemble of adaptive filters, deviates from the minimum mean-squared error that is produced by the Wiener filter.
· Tracking; when an adaptive filtering, algorithm operates in a nonstationary environment, the algorithm is required to track statistical variations in the environ​ment. The tracking performance of the algorithm, however, is influenced by two contradictory features: (1) rate of convergence, and (b) steady-state fluctuation due to algorithm noise.
· Robustness; For an adaptive filter to be robust, small disturbances (i.e., disturbances with small energy) can only result in small estimation errors. The disturbances may arise from a variety of factors, internal or external to the filter.
· Computational requirements. Here the issues of concern include (a) the number of
operations (i.e., multiplications, divisions, and additions/subtractions) required to
make one complete iteration of the algorithm, (b) the size of memory location required to store the data and the program, and (c) the investment required to pro​gram the algorithm on a computer.
· Structure; this refers to the structure of information flow in the algorithm, deter-​
mining the manner in which it is implemented in hardware form. For example, an
algorithm whose structure exhibits high modularity, parallelism, or concurrency is
well suited for implementation using very large-scale integration (VLSI).
· Numerical properties; when an algorithm is implemented numerically, inaccura​cies are produced due to quantization errors. The quantization errors are due to
analog-to-digital conversion of the input data and digital representation of internal
calculations. Ordinarily, it is the latter source of quantization errors that poses a
serious design problem. In particular, there are two basic issues of concern; 
numerical stability and numerical accuracy. Numerical stability is an inherent
characteristic of an adaptive filtering algorithm. Numerical accuracy, on the other
hand, is determined by the number of bits (i.e., binary digits) used in the numeri​-
cal representation of data samples and filter coefficients. An adaptive filtering
algorithm is said to be numerically robust when it is insensitive to variations in the
word length used in its digital implementation. These factors, in their own ways, also enter into the design of nonlinear adaptive fil​ters, except for the fact that we now no longer have a well-defined frame of reference in the form of a Wiener filter. Rather, we speak of a nonlinear filtering algorithm that may converge to a local minimum or, hopefully, a global minimum on the error-performance surface. 
1.4 Linear Filter Structures
The operation of a linear adaptive filtering algorithm involves two basic processes: (1) a filtering process designed to produce an output in response to a sequence of input data, and (2) an adaptive process, the purpose of which is to provide a mechanism for the adap​tive control of an adjustable set of parameters used in the filtering process. These two pro​cesses work interactively with each other. Naturally, the choice of a structure for the filtering process has a profound effect on the operation of the algorithm as a whole.
'VLSI technology favors the implementation of algorithms that possess high modularity, parallelism, or concurrency. We say that a structure is modular when it consists of similar stages connected in cascade. By par​allelism we mean a large number of operations being performed side by side. By concurrency we mean a large number of similar computations being performed at the same time. 
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Figure 1.1 Transversal Filter
There are three types of filter structures that distinguish themselves in the context of an adaptive filter with finite memory or, equivalently, finite-duration impulse response. The three filter structures are as follows:
1. Transversal filter. The transversal fitter, also referred to as a tapped-delay line filter, consists of three basic elements, as depicted in Figure 1.1: (a) unit-delay element, (b) multiplier, and (c) adder. The number of delay elements used in the filter determines the finite duration of its impulse response. The number of delay elements, shown as M - 1 in Fig. 1.1 is commonly referred to as the, filter order. In this figure, the delay elements are each identified by the unit-delay operator (z-1). In particular, when z-1 operates on the input u (n), the resulting output is u (n — 1). The role of each multiplier in the filter is to multiply the tap input (to which it is connected) by a filter coefficient referred to as a tap weight. Thus a multiplier 
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connected to the kth tap input u(n -k) produces the scalar ver​sion of the inner product, w*k u(n-k), where wk is the respective tap weight and k = 0, 1, . . ., M - 1. The asterisk denotes complex conjugation, which assumes that the tap inputs and therefore the tap weights are all complex valued. The combined role of the adders in the filter is to sum the    individual multiplier outputs and produce an overall filter output.
The transversal filter was first described by Kallmann as a continuous-time device whose output is formed as a linear combination of voltages taken from uniformly spaced taps in a non dispersive delay line (Kall​mann, 1940)[1]. In recent years, the transversal filter has been implemented using digital circuitry, charge-coupled devices, or surface-acoustic wave devices. Owing to its versatility and ease of implementation, the transversal filter has emerged as an essential signal-processing structure in a wide variety of applications Equation (1.1) is called a finite convolution sum in the sense that it convolves the finite-duration impulse response of the filter, w*n, with the filter input u(n) to produce the filter output y(n).
2. Lattice predictor. A lattice predictor is modular in structure in that it consists of a number of individual stages, each of which has the appearance of a lattice, hence the name "lattice" as a structural descriptor. Figure 1.2 depicts a lattice predictor consisting of M - 1 stages; the number M - 1 is referred to as the predictor order. The mth stage of the lattice predictor in Figure1.2 is described by the pair of input-output relations (assuming the use of complex-valued, wide-sense stationary input data):    
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where m = 1, 2, .... M - 1, and M - 1 is the final predictor order. The variable fm (n) is the mth forward prediction error, and bm(n) is the mth backward prediction error. The coefficient Km is called the mth reflection coefficient. The forward prediction error fm (n) is defined as the difference between the input u(n) and its one-step predicted value; the latter is based on the set of m past inputs u(n-1), ...,u(n-m). Correspondingly, the back​ward prediction error bm (n) is defined as the difference between the input u (n - m) and its "backward" prediction based on the set of m "future" inputs u (n),..., u{n -m + 1). Con​sidering the conditions at the input of stage 1 in Figure 1.2, we have

fo(n) = bo(n) = u(n)                                                                                                (1.4)
Where u(n) is the lattice predictor input at time n. Thus, starting with the initial conditions of Equation (1.4) and given the set of reflection coefficients k1, k2. . . km-1_,, we may determine the final pair of outputs fm-j(n) and bm-j(n) by moving through the lattice predictor, stage by stage.
For a correlated input sequence u(n), u{n - 1),..., u(n — M + 1) drawn from a sta​tionary process, the backward prediction errors b0,, b1(n), ... , bM-1 (n) form a sequence of uncorrelated random variables. Moreover, there is a one-to-one correspondence between these two sequences of random variables in the sense that if we are given one of them, we may uniquely determine the other, and vice versa. Accordingly, a linear combination of the backward prediction errors ba(n), b(n), . . . , bM_1(n) may be used to provide an esti​mate of some desired response d(n), as depicted in the lower half of Figure1.2. The arithmetic difference between d(n) and the estimate so produced represents the estimation error e(n). The process described here is referred to as joint-process estimation. Naturally, we may use the original input sequence u (n), u (n-1), . .., u (n-M + 1) to produce an esti​mate of the desired response d(n) directly. The indirect method depicted in Figure1.2, how​ever, has the advantage of simplifying the computation of the tap weights h0, h1,..., hM-1.










Figure 1.2 Multistage Lattice Filters.
By exploiting the uncorrelated nature of the corresponding backward prediction errors used in the estimation.
3. Systolic array
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Figure 1.3   Two basic cells of a systolic array: (a) boundary cell; (b) internal cell,
A systolic array represents a parallel computing network ideally suited for mapping a number of important linear algebra computations, such as matrix multiplication, triangularization, and back substitution. Two basic types of processing elements may be distinguished in a systolic array: boundary cells and internal cells. Their functions are depicted in Figures1.3 (a) and 1.3(b), respectively. In each case, the parameter r represents a value stored within the cell. The function of the boundary cell is to produce an output equal to the input u divided by the number r stored in the cell. The function of the internal cell is twofold: (a) to multiply the input z (coming in from the top) by the number r stored in the cell, subtract the product rz from the second input (coming in from the left), and thereby produce the difference ( u – rz)  as an output from the right-hand side of the cell, and (b) to transmit the first input z downward without alteration.
Consider, for example, the 3-by-3 triangular array shown in Fig.1.4. This systolic array involves a combination of boundary and internal cells. In this case, the triangular array computes an output vector y related to the input vector u as follows: 
y = R-Tu                                                                   (1.5)

where the R-T is the inverse of the transposed matrix RT. The elements of RT are the respective cell contents of the triangular array. The zeros added to the inputs of the array in Fig.1.4 are   intended to provide the delays necessary for pipelining the computation described in Equation (1.5).
Systolic array architecture, as described herein, offers the desirable features of modularity, local interconnections, and highly pipelined and synchronized parallel pro​cessing; the synchronization is achieved by means of a global clock.
We note that the transversal filter of Figure 1.1, the joint-process estimator of Figure 1.2 based on a lattice predictor, and the triangular systolic array of Figure1.4 have a common systolic array was pioneered by Kung and Leiserson. 

In particular, the use of systolic arrays has made it possible to achieve a high throughput, which is required for many advanced signal processing algo​rithms to operate in real lime.



Figure 1.4 Triangular systolic array

All three of them are characterized by an impulse response of finite duration. In other words, they are examples of a finite-duration impulse response (FIR) filter, whose structures contain feed forward paths only. On the other hand, the filter structure shown in Fig.1.5 is an example of an infinite-duration impulse response (IIR) filter. The feature that distinguishes an IIR filter from an FIR filter is the inclusion of feedback paths. Indeed, it is the presence of feedback that makes the duration of the impulse response of an IIR filter infinitely long. Furthermore, the presence of feedback introduces a new problem, namely, that of stability. In particular, it is possible for an IIR filter to become unstable (i.e., break into oscillation), unless special precaution is taken in the choice of feedback coefficients. By contrast, an FIR filter is inherently stable. This explains the reason for the popular use of FIR filters, in one form or another, as the structural basis for the design of linear adap​tive filters.

                                                                                  
 


                                                   





Figure 1.5  IIR Filter

1.5 Approaches to the Development of Linear Adaptive Filtering Algorithms
There is no unique solution to the linear adaptive filtering problem. Rather, we have a "kit of tools" represented by a variety of recursive algorithms, each of which offers desirable features of its own. The challenge facing the user of adaptive filtering is, first, to under​stand the capabilities and limitations of various adaptive filtering algorithms and, second, to use this understanding in the selection of the appropriate algorithm for the application at hand. Basically, we may identify two distinct approaches for deriving recursive algorithms for the operation of linear adaptive filters, as discussed next .
1.5.1 Stochastic Gradient Approach
Here we may use a tapped-delay line or transversal filter as the structural basis for imple​menting the linear adaptive filter. For the case of stationary inputs, the cost function also referred to as the index of performance, is defined as the mean-squared error (i.e., the mean-square value of the difference between the desired response and the transversal filter output). This cost function is precisely a second-order function of the tap weights in the transversal filter. The dependence of the mean-squared error on the unknown tap weights may be viewed to be in the form of a multidimensional parabolic with a uniquely defined bottom or minimum point. As mentioned previously, we refer to this parabolic as the error-performance surface; the tap weights corresponding to the mini​mum point of the surface define the optimum Wiener solution.
To develop a recursive algorithm for updating the tap weights of the adaptive trans​versal filter, we proceed in two stages. We first modify the system of Wiener equa​tions (i.e., the matrix equation defining the optimum Wiener solution) through the use of the method of steepest descent, a well-known technique in optimization theory. This mod​ification requires the use of a gradient vector, the value of which depends on two parame​ters: the correlation matrix of the tap inputs in the transversal filter, and the cross-correlation vector between the desired response and the same tap inputs. Next, we use instantaneous values for these correlations so as to derive an estimate for the gradient vec​tor, making it assume a stochastic character in general. The resulting algorithm is
 

widely known as the least-mean-square (LMS) algorithm, the essence of which may be described in words as follows for the case of a transversal filter operating on real-valued data where the error signal is defined as the difference between some desired response and the actual response of the transversal filter produced by the tap-input vector.
The LMS algorithm is simple and yet capable of achieving satisfactory performance under the right conditions. Its major limitations are a relatively slow rate of convergence and sensitivity to variations in the condition number of the correlation matrix of the tap inputs; the condition number of a Hermitian matrix is defined as the ratio of its largest eigenvalue to its smallest eigenvalue.
ln the general definition of a function, we speak of a transformation from a vector space into the space of real (or complex) scalars. A cost function provides a quantitative measure for assessing the quality of performance; hence the restriction of it to a real scalar.
Nevertheless, the LMS algorithm is highly popular and widely used in a variety of applications.
In a no stationary environment, the orientation of the error-performance surface varies continuously with time. In this case, the LMS algorithm has the added task of con​tinually tracking the bottom of the error-performance surface. Indeed, tracking will occur provided that the input data vary slowly compared to the learning rate of the LMS algo​rithm.
The stochastic gradient approach may also be pursued in the context of a lattice structure. The resulting adaptive filtering algorithm is called the gradient adaptive lattice (GAL) algorithm. In their own individual ways, the LMS and GAL algorithms are just two members of the stochastic gradient family of linear adaptive filters, although it must be said that the LMS algorithm is by far the most popular member of this family [3].
1.5.2 Least-Squares Estimation
The second approach to the development of linear adaptive filtering algorithms is based on the method of least squares. According to this method we minimize a cost function or index of performance that is defined as the sum of weighted error squares, where the error or residual is itself defined as the difference between some desired response and the actual filter output. The method of least squares may be formulated with block estimation or recursive estimation in mind. In block estimation the input data stream is arranged in the form of blocks of equal length (duration), and the filtering of input data proceeds on a block-by-block basis. In recursive estimation, on the other hand, the estimates of interest (e.g., tap weights of a transversal filter) are updated on a sample-by-sample basis. Ordi​narily, a recursive estimator requires less storage than a block estimator, which is the rea​son for its much wider use in practice.
Recursive least-squares (RLS) estimation may be viewed as a special case of Kal-man filtering. A distinguishing feature of the Kalman filter is the notion of state, which provides a measure of all the inputs applied to the filter up to a specific instant of time. Thus, at the heart of the Kalman filtering algorithm we have a recursion that may be described in words as follows:


Where the innovation vector represents new information put into the filtering process at the time of the computation. For the present, it suffices to say that there is indeed a one-to-one correspondence between the Kalman variables and RLS variables. This correspon​dence means that we can tap the vast literature on Kalman filters for the design of linear adaptive filters based on recursive least-squares estimation. Moreover, we may classify the recursive least-squares family of linear adaptive filtering algorithms into three distinct categories, depending on the approach taken:
1. Standard RLS algorithm, which assumes the use of a transversal filter as the
structural basis of the linear adaptive filter. Derivation of the standard RLS algo​-
rithm relies on a basic result in linear algebra known as the matrix inversion
lemma. Most importantly, it enjoys the same virtues and suffers from the same
limitations as the standard Kalman filtering algorithm. The limitations include
lack of numerical robustness and excessive computational complexity. Indeed, it
is these two limitations that have prompted the development of the other two cat​-
egories of RLS algorithms, described next.
2. Square-root RLS algorithms, which are based on QR-decomposition of the
incoming data matrix. Two well-known techniques for performing this decomposition are the Householder transformation and the Givens rotation, both of which
are data-adaptive transformations. At this point in the discussion, we need to
merely say that RLS algorithms based on the Householder transformation or given rotation are numerically stable and robust. The resulting linear adaptive filters are referred to as square-root adaptive filters, because in a matrix sense they represent the square-foot forms of the standard RLS algorithm.
3. Fast RLS algorithms. The standard RLS algorithm and square-root RLS algorithms have a computational complexity that increases as the square of M, where
M is the number of adjustable weights (i.e., the number of degrees of freedom) in
the algorithm. Such algorithms are often referred to as 0 (M2) algorithms, where
O(-) denotes "order of." By contrast, the LMS algorithm is an O(M) algorithm, in
that its computational complexity increases linearly with M. When M is large, the
computational complexity of 0(M2) algorithms may become objectionable from hardware implementation point of view. There is therefore a strong motivation
to modify the formulation of the RLS algorithm in such a way that the computa-​
tional complexity assumes an O(M) form. This objective is indeed achievable, in
the case of temporal processing, first by virtue of the inherent redundancy in the
Toeplitz structure of the input data matrix and, second, by exploiting this redundancy through the use of linear least-squares prediction in both the forward and
backward directions. The resulting algorithms are known collectively as fast RLS
algorithms; they combine the desirable characteristics of recursive linear least-
squares estimation with an O(M) computational complexity. Two types of fast
RLS algorithms   may   be identified, depending on the filtering   structure
employed:
· Order-recursive adaptive filters, which are based on a lattice like structure for
making linear forward and backward predictions.
· Fast transversal filters, in which the linear forward and backward predictions
are performed using separate transversal filters.
Certain (but not all) realizations of order-recursive adaptive filters are known to be numerically stable, whereas fast transversal filters suffer from a numerical stability problem and therefore require some form of stabilization for them to be of practical use. An introductory discussion of linear adaptive filters would be incomplete without saying something about their tracking behavior. In this context, we note that stochastic gradient algorithms such as the LMS algorithm are model-independent; generally speak​ing, we would expect them to exhibit good tracking behavior, which indeed they do. In contrast, RLS algorithms are model-dependent; this, in turn, means that their tracking behavior may be inferior to that of a member of the stochastic gradient family, unless care is taken to minimize the mismatch between the mathematical model on which they are based and the underlying physical process responsible for generating the input data.
1.5.3 How to Choose an Adaptive Filter
Given the wide variety of adaptive filters available to a system designer, how can a choice be made for an application of interest. Clearly, whatever the choice, it has to be cost-effec​tive. With this goal in mind, we may identify three important issues that require attention: computational cost, performance, and robustness. The use of computer simulation pro​vides a good first step in undertaking a detailed investigation of these issues. We may begin by using the LMS algorithm as an adaptive filtering tool. The LMS algorithm is relatively simple to implement. Yet it is powerful enough to evaluate the practical benefits that may result from the application of adaptivity to the problem at hand. Moreover, it provides a practical frame of reference for assessing any further improve​ment that may be attained through the use of more sophisticated adaptive filtering algo​rithms. Finally, the study must include tests with real-life data, for which there is no substitute. Practical applications of adaptive filtering are very diverse, with each application having peculiarities of its own. The solution for one application may not be suitable for another. Nevertheless, to be successful we have to develop a physical understanding of the environment in which the filter has to operate and thereby relate to the realities of the application of interest.

1.6 Real and Complex Forms of Adaptive Filters
In the development of adaptive filtering algorithms, regardless of their origin, it is custom​ary to assume that the input data are in baseband form. The term "base band" is used to designate the band of frequencies representing the original (message) signal as generated by the source of information.
In such applications as communications, radar, and sonar, the information-bearing signal component of the receiver input typically consists of a message signal modulated on to a carrier wave. The bandwidth of the message signal is usually small compared to the carrier frequency, which means that the modulated signal is a narrow-band signal.

 To obtain the baseband representation of a narrow-band signal, the signal is translated down in frequency in such a way that the effect of the carrier wave is completely removed, yet the information content of the message signal is fully preserved. In general, the base band signal so obtained is complex. In other words, a sample of the signal may be writ​ten as
U(n) = u(n) + juQ(n)                                            ( 1.6)

where u,(n) is the in-phase (real) component, and uQ(n) is the quadrature (imaginary) component. Equivalently, we may express u(n) as
u(n) = |u(n)| ejФ(n)                                            ( 1.7 )    

where |u (n)| is the magnitude and Ф (n ) the phase angle.
Assume we use complex signals. An adaptive filtering algorithm so developed is said to be in complex form. The important virtue of complex adaptive filters is that they preserve the mathematical formulation and elegant structure of complex signals encountered in the aforementioned areas of application. If the signals to be processed are real, we naturally use the real form of the adaptive-filtering algorithm of interest. Given the complex form of an adaptive filtering algorithm, it is straightforward to deduce the corresponding real form of the algorithm. Specifically, we do two things:
1. The operation of complex conjugation, wherever in the algorithm, is simply
removed.
2. The operation of Hermitian transposition (i.e., conjugate transposition) of a
matrix, wherever in the algorithm, is replaced by ordinary transposition.
Simply put, complex adaptive filters include real adaptive filters as special cases.
1.7 Nonlinear Adaptive Filters
The theory of linear optimum filters is based on the mean-square error criterion. The Wiener filter that results from the minimization of such a criterion, and which represents the goal of linear adaptive filtering for a stationary environment, can only relate to second-order statistics of the input data and no higher. This constraint limits the ability of a linear adaptive filter to extract information from input data that are non-Gaussian. Despite its theoretical importance, the existence of Gaussian noise is open to question. Moreover, non-Gaussian processes are quite common in many signal process​ing applications encountered in practice. The use of a Wiener filter or a linear adaptive fil​ter to extract signals of interest in the presence of such non-Gaussian processes will therefore yield suboptimal solutions. We may overcome this limitation by incorporating some form of nonlinearity in the structure of the adaptive filter to take care of higher-order statistics. Although by so doing, we no longer have the Wiener filter as a frame of reference and so complicate the mathematical analysis, we would expect to benefit in two sig​nificant ways: improving learning efficiency and a broadening of application areas.
Fundamentally, there are two types of nonlinear adaptive filters, as described next.
1.7.1 Volterra-based Nonlinear Adaptive Filters
In this type of a nonlinear adaptive filter, the nonlinearity is localized at the front end of the filter. It relies on the use of a Volterra series that provides an attractive method for describing the input-output relationship of a nonlinear device with memory. This special form of a series derives its name from the fact that it was first studied by Vito Volterra around 1880 as a generalization of the Taylor series of a function. But Norbert Wiener (1958) was the first to use the Volterra series to model the input-output relationship of a nonlinear system [8].
Let the time series xn denote the input of a nonlinear discrete-time system. We may then combine these input samples to define a set of discrete Volterra kernels as follows:     
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and so on for higher-order terms. Ordinarily, the nonlinear model coefficients, the h's, are fixed by analytical methods. We may thus decompose a nonlinear adaptive filter as follows: A nonlinear Volterra state expander that combines the set of input values x0, x1.. . , xn to produce a larger set of outputs u0,u1,…….uqfor which q is larger than n. For example, the extension vector for a system has the form
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A linear FIR adaptive filter that operates on the uk (i.e., elements of u) as inputs to produce an estimate dn of some desired response drt.
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The important thing to note here is that by using a scheme similar to that described in Figure 1.6, we may expand the use of linear adaptive filters to include Volterra filters.

1.7.2 Neural Networks
An artificial neural network, or a neural network as it is commonly called, consists of the interconnection of a large number of nonlinear processing units called neurons; that is, the nonlinearity is distributed throughout the network. The development of neural networks, right from their inception, has been motivated by the way the human brain performs its operations; hence their name.
Here we are interested in a particular class of neural networks that learn about their environment in a supervised manner. In other words, as with the conventional form of a linear adaptive filter, we have a desired response that provides a target signal, which the neural network tries to approximate during the learning process. The approxi​mation is achieved by adjusting a set of free parameters, called synaptic weights, in a sys​tematic manner. In effect, the synaptic weights provide a mechanism for storing the information content of the input data.
In the context of adaptive signal processing applications, neural networks offer the following advantages:
· Nonlinearity, which makes it possible to account for the nonlinear behavior of physical phenomena responsible for generating the input data.

· The ability to approximate any prescribed input-output mapping of a continuous nature.

· Weak statistical assumptions about the environment, in which the network is embedded.

· Learning capability, which is accomplished by undertaking a training session with input-output examples that are representative of the environment .
Generalization, which refers to the ability of the neural network to provide a satis​-
factory performance in response to test data never seen by the network before.

· Fault tolerance, which means that the network continues to provide an acceptable
performance despite the failure of some neurons in the network
· VLSI implement ability, which exploits the massive parallelism built into the
design of a neural network.
This is indeed an impressive list of attributes, which accounts for the widespread interest in the use of neural networks to solve signal-processing tasks that are too difficult for con​ventional (linear) adaptive filters.
1.8 Applications
The ability of an adaptive filter to operate satisfactorily in an unknown environment and track time variations of input statistics make the adaptive filter a powerful device for sig​nal-processing and control applications. Indeed, adaptive filters have been successfully applied in such diverse fields as communications, radar, sonar, seismology, and biomedical-cal engineering. Although these applications are indeed quite different in nature, neverthe​less, they have one basic common feature: an input vector and a desired response are used to compute an estimation error, which is in turn used to control the values of a set of adjustable filter coefficients. The adjustable coefficients may take the form of tap weights, reflection coefficients, rotation parameters, or synaptic weights, depending on the filter structure employed. However, the essential difference between the various applications of adaptive filtering arises in the manner in which the desired response is extracted. In this context, we may distinguish four basic classes of adaptive filtering applications, as depicted in Fig.1.7. For convenience of presentation, the following notations are used in this figure:
u = input applied to the adaptive filter 
y = output of the adaptive filter 

d = desired response 

e = d — y = estimation error.
The functions of the four basic classes of adaptive filtering applications depicted herein are as follows:

I.   Identification [Fig. 1.7(a)]. The notion of a mathematical model is fundamental to sciences and engineering. In the class of applications dealing with identifica​tion, an adaptive filter is used to provide a linear model that represents the best fit (in some sense) to an unknown plant. The plant and the adaptive filter are driven by the same input. The plant output supplies the desired response for the adaptive filter. If the plant is dynamic in nature, the model will be time varying.

II. Inverse modeling [Fig. 1.7(b)]. In this second class of applications, the function of the adaptive filter is to provide an inverse model that represents the best fit (in some sense) to an unknown noisy plant. Ideally, in the case of a linear sys​tem, the inverse model has a transfer function equal to the reciprocal (inverse) of the plant's transfer function, such that the combination of the two constitutes an ideal transmission medium. A delayed version of the plant (system) input constitutes the desired response for the adaptive filter. In some applications, the plant input is used without delay as the desired response.
III. Prediction [Fig. 1.7(c)]. Here the function of the adaptive filter is to provide the
best prediction (in some sense) of the present value of a random signal. The
present value of the signal thus serves the purpose of a desired response for the
adaptive filter. Past values of the signal supply the input applied to the adaptive
filter. Depending on the application of interest, the adaptive filter output or the
estimation (prediction) error may serve as the system output. In the first case, 
the system operates as a predictor, in the latter case; it operates as a prediction-
error filter.
IV. Interference canceling [Fig. 1.7(d)]. In this final class of applications, the adap-​
tive filter is used to cancel unknown interference contained (alongside an infor​-
mation-bearing signal component) in a primary signal, with the cancellation
being optimized in some sense. The primary signal serves as the desired
response for the adaptive filter. A reference (auxiliary) signal is employed as
the input to the adaptive filter. The reference signal is derived from a sensor or
set of sensors located in relation to the sensor(s) supplying the primary signal
in such a way that the information-bearing. 


                   (a)


    (b)


(c)



Figure 1.7: Four basic classes of adaptive filtering Applications:
   (a) Class I identification ;( b) Class II inverse modeling; (c) Class III Prediction;

             (d)   Class IV interference canceling
1.9 Summary
Firstly the filtering problem, adaptive filters and their types were discussed in this chapter. Then the differences and the functions of linear and nonlinear adaptive filters has been discussed. Finally some applications of adaptive filters has been explained. As a corollary the adaptive filters, their types, algorithms and their application has been learned.  

CHAPTER TWO

TYPES OF NOISE IN COMMUNICATION

SYSTEMS

2.1 Overview

Noise can be defined as an unwanted signal that interferes with the communication or measurement of another signal. A noise itself is a signal that conveys information regarding the source of the noise. In this chapter the noise type in communication systems and their types will be discussed in details.

2.2 Noise

Noise may be defined as any unwanted signal that interferes with the communication, measurement or processing of an information-bearing signal. Noise is present in various degrees in almost all environments. For example, in a digital cellular mobile telephone system, there may be several variety of noise that could degrade the quality of communication, such as acoustic background noise, thermal noise, electromagnetic radio-frequency noise, co-channel interference, radio-channel distortion, echo and processing noise. Noise can cause transmission errors and may even disrupt a communication process; hence noise processing is an important part of modern telecommunication and signal processing systems. The success of a noise processing method depends on its ability to characterize and model the noise process, and to use the noise characteristics advantageously to differentiate the signal from the noise. Depending on its source, a noise can be classified into a number of categories, indicating the broad physical nature of the noise, as follows:

a. Acoustic noise: emanates from moving, vibrating, or colliding sources and is the most familiar type of noise present in various degrees in everyday environments. Acoustic noise is generated by such sources as moving cars, air-conditioners, computer fans, traffic, people talking in the background, wind, rain, etc.

b. Electromagnetic noise: present at all frequencies and in particular at the radio frequencies. All electric devices, such as radio and television transmitters and receivers, generate electromagnetic noise.

c. Electrostatic noise: generated by the presence of a voltage with or without current flow. Fluorescent lighting is one of the more common sources of electrostatic noise.

d. Channel distortions, echo, and fading: due to non-ideal characteristics of communication channels. Radio channels, such as those at microwave frequencies used by cellular mobile phone operators, are particularly sensitive to the propagation characteristics of the channel environment.

e. Processing noise: the noise that results from the digital/analog processing of signals, e.g. quantization noise in digital coding of speech or image signals, or lost data packets in digital data communication systems.

Depending on its frequency or time characteristics, a noise process can be classified into one of several categories as follows:

a. Narrowband noise: a noise process with a narrow bandwidth such as a 50/60 Hz ‘hum’ from the electricity supply.

b. White noise: purely random noise that has a flat power spectrum. White noise theoretically contains all frequencies in equal intensity.

c. Band-limited white noise: a noise with a flat spectrum and a limited bandwidth that usually covers the limited spectrum of the device or the signal of interest.

d. Coloured noise: non-white noise or any wideband noise whose spectrum has a non-flat shape; examples are pink noise, brown noise and autoregressive noise.

e. Impulsive noise: consists of short-duration pulses of random amplitude and random duration.

f. Transient noise pulses: consists of relatively long duration noise pulses.

2.3 White Noise

White noise is defined as an uncorrelated noise process with equal power at all frequencies (Figure 2.1). A noise that has the same power at all frequencies in the range of ±∞ would necessarily need to have infinite power, and is therefore only a theoretical concept. However a band-limited noise process, with a flat spectrum covering the frequency range of a band limited communication system, is to all intents and purposes from the point of view of the system a white noise process. For example, for an audio system with a bandwidth of 10 kHz, any flat-spectrum audio noise with a bandwidth greater than 10 kHz looks like a white noise.
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Figure 2.1 Illustration of (a) white noise, (b) its autocorrelation, and

(c) Its power spectrum.

The autocorrelation function of a continuous-time zero-mean white noise process with a variance of 
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The power spectrum of a white noise, obtained by taking the Fourier transform of Equation (2.1), is given by
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Equation (2.2) shows that a white noise has a constant power spectrum. A pure white noise is a theoretical concept, since it would need to have infinite power to cover an infinite range of frequencies. Furthermore, a discrete-time signal by necessity has to be band-limited, with its highest frequency less than half the sampling rate. A more practical concept is band limited white noise, defined as a noise with a flat spectrum in a limited bandwidth. The spectrum of band-limited white noise with a bandwidth of B Hz is given by
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Thus the total power of a band-limited white noise process is 2B
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 the autocorrelation function of a discrete-time band-limited white noise process is given by
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where Ts is the sampling period. For convenience of notation Ts is usually assumed to be unity. For the case when Ts=1/2B, i.e. when the sampling rate is equal to the Nyquist rate, Equation (2.4) becomes
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In Equation (2.5) the autocorrelation function is a delta function.

2.4 Coloured Noise

Although the concept of white noise provides a reasonably realistic and mathematically convenient and useful approximation to some predominant noise processes encountered in telecommunication systems, many other noise processes are non-white. The term coloured noise refers to any broadband noise with a non-white spectrum. For example most audio frequency noise, such as the noise from moving cars, noise from computer fans, electric drill noise and people talking in the background, has a nonwhite predominantly low-frequency spectrum. Also, a white noise passing through a channel is “coloured” by the shape of the channel spectrum. Two classic varieties of coloured noise are so-called pink noise and brown noise, shown in Figures 2.2 and 2.3.
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Figure 2.2 (a) A pink noise signal and (b) its magnitude spectrum.
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Figure 2.3 (a) A brown noise signal and (b) its magnitude spectrum.

2.5 Impulsive Noise

Impulsive noise consists of short-duration “on/off” noise pulses, caused by a variety of sources, such as switching noise, adverse channel environment in a communication system, drop-outs or surface degradation of audio recordings, clicks from computer keyboards, etc. Figure 2.4(a) shows an ideal impulse and its frequency spectrum. In communication systems, a real impulsive-type noise has a duration that is normally more than one sample long. For example, in the context of audio signals, short-duration, sharp pulses, of up to 3 milliseconds (60 samples at a 20 kHz sampling rate) may be considered as impulsive noise. Figures 2.4(b) and (c) illustrate two examples of short-duration pulses and their respective spectra. In a communication system, an impulsive noise originates at some point in time and space, and then propagates through the channel to the receiver. The received noise is time-dispersed and shaped by the channel, and can be considered as the channel impulse response. In general, the characteristics of a communication channel may be linear or non-linear, stationary or time varying. Furthermore, many communication systems, in response to a large amplitude impulse, exhibit a non-linear characteristic.
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Figure 2.4 Time and frequency sketches of: (a) an ideal impulse, (b) and (c) short duration

pulses.
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Figure 2.5 Illustration of variations of the impulse response of a non-linear system

with the increasing amplitude of the impulse.

Figure 2.5 illustrates some examples of impulsive noise, typical of those observed on an old gramophone recording. In this case, the communication channel is the playback system, and may be assumed to be time-invariant. The figure also shows some variations of the channel characteristics with the amplitude of impulsive noise. For example, in Figure 2.5(c) a large impulse excitation has generated a decaying transient pulse. These variations may be attributed to the non-linear characteristics of the playback mechanism.

2.6 Transient Noise Pulses

Transient noise pulses often consist of a relatively short sharp initial pulse followed by decaying low-frequency oscillations as shown in Figure 2.6. The initial pulse is usually due to some external or internal impulsive interference, where as the oscillations are often due to the resonance of the averaged profile of a gramophone record scratch pulse.
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Figure 2.6 (a) A scratch pulse and music from a gramophone record. (b) The corrupted pulse by transient noise
communication channel excited by the initial pulse, and may be considered as the response of the channel to the initial pulse. In a telecommunication system, a noise pulse originates at some point in time and space, and then propagates through the channel to the receiver. The noise pulse is shaped by the channel characteristics, and may be considered as the channel pulse response. Thus we should be able to characterize the transient noise pulses

with a similar degree of consistency as in characterizing the channels through which the pulses propagate. As an illustration of the shape of a transient noise pulse, consider the scratch pulses from a damaged gramophone record shown in Figures 2.6(a) and (b). Scratch noise pulses are acoustic manifestations of the response of the stylus and the associated electro-mechanical playback system to a sharp physical discontinuity on the recording medium. Since scratches are essentially the impulse response of the playback mechanism, it is expected that for a given system, various scratch pulses exhibit a similar characteristics. As shown in Figure 2.6(b), a typical scratch pulse waveform often exhibits two distinct regions:

(a) The initial high-amplitude pulse response of the playback system to the physical discontinuity on the record medium, followed by;

(b) Decaying oscillations that cause additive distortion. The initial pulse is relatively short and has duration on the order of 1–5 ms, whereas the oscillatory tail has a longer duration and may last up to 50 ms or more.

Note in Figure 2.6(b) that the frequency of the decaying oscillations decreases with time. This behavior may be attributed to the non-linear modes of response of the electro-mechanical playback system excited by the physical scratch discontinuity. Observations of many scratch waveforms from damaged gramophone records reveals that they have a well-defined profile, and can be characterized by a relatively small number of typical templates. 

2.7 Thermal Noise

Thermal noise, also referred to as Johnson noise (after its discoverer J. B. Johnson), is generated by the random movements of thermally energized particles. The concept of thermal noise has its roots in thermodynamics and is associated with the temperature-dependent random movements of free particles such as gas molecules in a container or electrons in a conductor. Although these random particle movements average to zero, the fluctuations about the average constitute the thermal noise. For example, the random movements and collisions of gas molecules in a confined space produce random fluctuations about the average pressure. As the temperature increases, the kinetic energy of the molecules and the thermal noise increase.

Similarly, an electrical conductor contains a very large number of free electrons, together with ions that vibrate randomly about their equilibrium positions and resist the movement of the electrons. The free movement of electrons constitutes random spontaneous currents, or thermal noise, that average to zero since in the absent of a voltage electrons move in all different directions. As the temperature of a conductor, provided by its surroundings, increases, the electrons move to higher-energy states and the random current flow increases. For a metallic resistor, the mean square value of the instantaneous voltage due to the thermal noise is given by
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where k=1.38×10-23 joules per degree Kelvin is the Boltzmann constant, T is the absolute temperature in degrees Kelvin, R is the resistance in ohms and B is the bandwidth. From Equation (2.6) and the preceding argument, a metallic resistor sitting on a table can be considered as a generator of thermal noise power, with a mean square voltage 2 v and an internal resistance R. From circuit theory, the maximum available power delivered by a “thermal noise generator”, dissipated in a matched load of resistance R, is given by
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where rms v is the root mean square voltage. The spectral density of thermal noise is given by
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From Equation (2.8), the thermal noise spectral density has a flat shape, i.e. thermal noise is a white noise. Equation (2.8) holds well up to very high radio frequencies of 1013 Hz.

2.8 Shot Noise

The term shot noise arose from the analysis of random variations in the emission of electrons from the cathode of a vacuum tube. Discrete electron particles in a current flow arrive at random times, and therefore there will be fluctuations about the average particle flow. The fluctuations in the rate of particle flow constitute the shot noise. Other instances of shot noise are the flow of photons in a laser beam, the flow and recombination of electrons and holes in semiconductors, and the flow of photo electrons emitted in photo diodes. The concept of randomness of the rate of emission or arrival of particles implies that shot noise can be modeled by a Poisson distribution. When the average number of arrivals during the observing time is large, the fluctuations will approach a Gaussian distribution. Note that where as thermal noise is due to “unforced” random movement of particles, shot noise happens in a forced directional flow of particles. Now consider an electric current as the flow of discrete electric charges. If the charges act independently of each other the fluctuating current is given by
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where B is the measurement bandwidth. Equation (2.9) assumes that the charge carriers making up the current act independently. That is the case for charges crossing a barrier, as for example the current in a junction diode, where the charges move by diffusion; but it is not true for metallic conductors, where there are long-range correlations between charge carriers.

2.9 Electromagnetic Noise

Virtually every electrical device that generates, consumes or transmits power is a potential source of electromagnetic noise and interference for other systems. In general, the higher the voltage or the current level, and the closer the proximity of electrical circuits/devices, the greater will be the induced noise. The common sources of electromagnetic noise are transformers, radio and television transmitters, mobile phones, microwave transmitters, ac power lines, motors and motor starters, generators, relays, oscillators, fluorescent lamps, and electrical storms. Electrical noise from these sources can be categorized into two basic types: electrostatic and magnetic. These two types of noise are fundamentally different, and thus require different noise-shielding measures. Unfortunately, most of the common noise sources listed above produce combinations of the two noise types, which can complicate the noise reduction problem.

Electrostatic fields are generated by the presence of voltage, with or without current flow. Fluorescent lighting is one of the more common sources of electrostatic noise. Magnetic fields are created either by the flow of electric current or by the presence of permanent magnetism. Motors and transformers are examples of the former, and the Earth's magnetic field is an instance of the latter. In order for noise voltage to be developed in a conductor, magnetic lines of flux must be cut by the conductor. Electric generators function on this basic principle. In the presence of an alternating field, such as that surrounding a 50/60 Hz power line, voltage will be induced into any stationary conductor as the magnetic field expands and collapses. Similarly, a conductor moving through the Earth's magnetic field has a noise voltage generated in it as it cuts the lines of flux.

2.10 Channel Distortions

On propagating through a channel, signals are shaped and distorted by the frequency response and the attenuating characteristics of the channel. There are two main manifestations of channel distortions: magnitude distortion and phase distortion. In addition, in radio communication, we have the
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Figure 2.7 Illustration of channel distortion: (a) the input signal spectrum, (b) the

channel frequency response, (c) the channel output.

multi-path effect, in which the transmitted signal may take several different routes to the receiver, with the effect that multiple versions of the signal with different delay and attenuation arrive at the receiver. Channel distortions can degrade or even severely disrupt a communication process, and hence channel modeling and equalization are essential components of modern digital communication systems. Channel equalization is particularly important in modern cellular communication systems, since the variations of channel characteristics and propagation attenuation in cellular radio systems are far greater than those of the landline systems. Figure 2.7 illustrates the frequency response of a channel with one invertible and two non-invertible regions. In the non-invertible regions, the signal frequencies are heavily attenuated and lost to the channel noise. In the invertible region, the signal is distorted but recoverable. This example illustrates that the channel inverse filter must be implemented with care in order to avoid undesirable results such as noise amplification at frequencies with a low SNR. 
2.11 Modeling Noise

The objective of modeling is to characterize the structures and the patterns in a signal or a noise process. To model a noise accurately, we need a structure for modeling both the temporal and the spectral characteristics of the noise. Accurate modeling of noise statistics is the key to high-quality noisy signal classification and enhancement. Even the seemingly simple task of signal/noise classification is crucially dependent on the availability of good signal and noise models, and on the use of these models within a Bayesian framework. 

One of the most useful and indispensable tools for gaining insight into the structure of a noise process is the use of Fourier transform for frequency The models are then used for the decoding of the underlying states of the signal and noise, and for noisy signal recognition and enhancement.

2.11.1 Additive White Gaussian Noise Model (AWGN)

In communication theory, it is often assumed that the noise is a stationary additive white Gaussian (AWGN) process. Although for some problems this is a valid assumption and leads to mathematically convenient and useful solutions, in practice the noise is often time-varying, correlated and non-Gaussian. This is particularly true for impulsive-type noise and for acoustic noise, which is non-stationary and non-Gaussian and hence cannot be modeled using the AWGN assumption. 

2.11.2 Hidden Markov Model for Noise

Most noise processes are non-stationary; that is the statistical parameters of the noise, such as its mean, variance and power spectrum, vary with time. An HMM is essentially a finite state Markov chain of stationary sub processes. The implicit assumption in using HMMs for noise is that the noise statistics can be modeled by a Markovian chain of stationary sub processes. Note that a stationary noise process can be modeled by a single-state HMM. For a non-stationary noise, a multistage HMM can model the time variations of the noise process with a finite number of stationary states. For non-Gaussian noise, a mixture Gaussian density model can be used to model the space of the noise within each state. In general, the number of states per model and number of mixtures per state required to accurately model a noise process depends on the non-stationary character of the noise.
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Figure 2.8 (a) An impulsive noise sequence. (b) A binary-state model of impulsive noise.

An example of a non-stationary noise is the impulsive noise of Figure 2.8(a). Figure 2.8(b) shows a two-state HMM of the impulsive noise sequence: the state S0 models the “impulse-off” periods between the impulses, and state S1 models an impulse. In those cases where each impulse has a well-defined temporal structure, it may be beneficial to use a multistage HMM to model the pulse itself. 

2.12 Summary

 
The discussion of noise and their types has been taken into consideration in this chapter. As a corollary, the effect of each type of noise and how they present on the system has been learned.

CHAPTER THREE

PERFORMANCE ANALYSIS OF LMS ALGORITHM

3.1 Overview

In this chapter we develop the theory of a widely used algorithm named the least-mean-square (LMS) algorithm by its originators, Widrow and Hoff (1960) [15]. The LMS algorithm is an important member of the family of stochastic gradient algorithms. In this chapter the least mean square (LMS) algorithm and all their types, properties used for adaptive noise cancellation will be discussed in details, and finally we will find the optimal algorithm according to the time concerning to use it for our noise cancellation system which will be discuss in the next chapter.
3.2 Criteria for Optimum LMS Adaptive Filters  

To choose the optimal algorithm for severe noise cancellation, two criteria will be applied the maximum signal to noise ratio and the speed of convergence (minimum time consuming). 
3.3 Types of Least-mean-square Algorithm (LMS)

The least-mean-square (LMS) algorithm is a linear adaptive filtering algorithm that con​sists of two basic processes:

1. A filtering process, which involves (a) computing the output of a transversal fil​ter produced by a set of tap inputs, and (b) generating an estimation error by com​paring this output to a desired response.

2. An adaptive process, which involves the automatic adjustment of the tap weights of the filter in accordance with the estimation error.
In the following sections, different types of LMS algorithm are analyzed. Figures 3.1 – 3.9 show the convergence of adaptive filters using the various LMS algorithms. The plots shown in blue color are the signal with no noise added to their (original signal), the greens are the output of the adaptive filter and the reds are the difference between the original signal and the filter output (errors).

3.3.1 Normalized least mean square (LMS) 
Here in this section the properties  and the tested output of  normalized LMS will be discussed in details.

a) Description

The normalized LMS function creates an adaptive algorithm object that you can use with the linear function. 

b) Properties

The table below describes the properties of the normalized LMS adaptive algorithm object. To learn how to view or change the values of an adaptive algorithm object.
Table 3.1 Properties of Normalized least mean square (LMS)

	Property
	Description

	Alg Type
	Fixed value, 'Normalized LMS'

	Step Size
	LMS step size parameter, a nonnegative real number

	Leakage Factor
	LMS leakage factor, a real number between 0 and 1. A value of 1 corresponds to a conventional weight update algorithm, while a value of 0 corresponds to a memory less update algorithm.


To test normalized LMS algorithm, the program given in the appendix was executed. The parameters for the program were selected as: the input signal to noise ratio is (-20 db), number of filter coefficients are 32 and LMS step size is 0.008. 
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Figure 3.1 Tested output for Normalized LMS
Figure 3.1 shows the convergence of the adaptive filter using the normalized LMS algorithm. The output SNR of this filter is (7 db) and it converges in 500 sec.
3.3.2 Adjoint least mean square (LMS)

Adjoint least mean square (LMS) is a FIR adaptive filter algorithm that adapts using adjoint LMS algorithm. In this section the properties and the tested output of adjoint LMS will be discussed in details.

 a) Properties
The table below lists the properties for the adjoint LMS object, their default values, and a brief description of the property.

Table 3.2 Properties of Adjoint least mean square (LMS)

	Property
	Default Value
	Description

	Algorithm
	None
	Specifies the adaptive filter algorithm the object uses during adaptation

	Coefficients
	Length l vector with zeros for all elements
	Adjoint LMS FIR filter coefficients. Should be initialized with the initial coefficients for the FIR filter prior to adapting. You need l entries in coefficients. Updated filter coefficients are returned in coefficients when you use s as an output argument.

	Error States
	[0,...,0]
	A vector of the error states for your adaptive filter, with length equal to the order of your secondary path filter

	Filter Length
	10
	The number of coefficients in your adaptive filter

	Leakage
	1
	Specifies the leakage parameter. Allows you to implement a leaky algorithm. Including a leakage factor can improve the results of the algorithm by forcing the algorithm to continue to adapt even after it reaches a minimum value. Ranges between 0 and 1.

	Secondary Path Coeffs
	No default
	A vector that contains the coefficient values of your secondary path from the output actuator to the error sensor

	Secondary Path Estimate
	Path coeffs values
	An estimate of the secondary path filter model

	Secondary Path States
	Length of the secondary path filter. All elements are zeros.
	The states of the secondary path filter, the unknown system

	States
	l+ne+1, where ne is length(errstates)
	Contains the initial conditions for your adaptive filter and returns the states of the FIR filter after adaptation.If omitted, it defaults to a zero vector of length equal to l+ne+1. When you use adaptfilt.adjlms in a loop structure, use this element to specify the initial filter states for the adapting FIR filter.

	Step size
	0.1
	Sets the adjoint LMS algorithm step size used for each iteration of the adapting algorithm. Determines both how quickly and how closely the adaptive filter converges to the filter solution.

	Persistent Memory
	false or true
	Determine whether the filter states get restored to their starting values for each filtering operation. The starting values are the values in place when you create the filter. Persistent Memory returns to zero any state that the filter changes during processing. States that the filter does not change are not affected. Defaults to false.


To test adjoint LMS algorithm, the program given in the appendix was executed. The parameters for the program were selected as: the input signal to noise ratio is (-20 db), number of filter coefficients are 32 and LMS step size is 0.008. 
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Figure 3.2 Tested output for Adjoint least mean square (LMS)
Figure 3.2 shows the convergence of the adaptive filter using the adjoint LMS algorithm. The output SNR of this filter is (10 db) and it converges in 180 sec.
3.3.3 Block LMS (BLMS)
This section presents the properties and tested output of block LMS algorithm.

a) Properties
The table below lists the properties for the Block LMS object, their default values,
and a brief description of the property.

Table 3.3 Properties of Block LMS (BLMS)

	Property
	Default Value
	Description

	Algorithm
	None
	Defines the adaptive filter algorithm the object uses during adaptation

	Filter Length
	Any positive integer
	Reports the length of the filter, the number of coefficients or taps

	Coefficients
	Vector of elements
	Vector containing the initial filter coefficients. It must be a length l vector where l is the number of filter coefficients. coeffs defaults to length l vector of zeros when you do not provide the argument for input.

	States
	Vector of elements
	Vector of the adaptive filter states. states defaults to a vector of zeros which has length equal to l

	Leakage
	
	Specifies the leakage parameter. Allows you to implement a leaky algorithm. Including a leakage factor can improve the results of the algorithm by forcing the algorithm to continue to adapt even after it reaches a minimum value. Ranges between 0 and 1. 

	Block Length
	Vector of length l
	Size of the blocks of data processed in each iteration

	Step Size
	0.1
	Sets the block LMS algorithm step size used for each iteration of the adapting algorithm. Determines both how quickly and how closely the adaptive filter converges to the filter solution. Use max step to determine the maximum usable step size.

	Persistent Memory
	false or true
	Determine whether the filter states get restored to their starting values for each filtering operation. The starting values are the values in place when you create the filter. Persistent Memory returns to zero any state that the filter changes during processing. States that the filter does not change are not affected. Defaults to false.


To test block LMS algorithm, the program given in the appendix was executed. The parameters for the program were selected as: input signal to noise ratio is (-20 db), number of filter coefficients are 32 and LMS step size is 0.008. 
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Figure 3.3 Tested output for Block LMS (BLMS)
Figure 3.3 shows the convergence of the adaptive filter using the block LMS algorithm. The output SNR of this filter is (9 db) and it converges in 260 sec.
3.3.4 Delayed LMS
Here, the input arguments, properties and tested output for delayed LMS algorithm will be discussed in details. 
a) Input Arguments
Entries in the following table describe the input arguments for delayed LMS.

Table 3.4 Input Arguments of Delayed LMS

	Input Argument
	Description

	L
	Adaptive filter length (the number of coefficients or taps) and it must be a positive integer. l defaults to 10.

	step
	LMS step size. It must be a nonnegative scalar. You can use maxstep to determine a reasonable range of step size values for the signals being processed. step defaults to 0.

	leakage
	Your LMS leakage factor. It must be a scalar between 0 and 1. When leakage is less than one, adaptfilt.lms implements a leaky LMS algorithm. When you omit the leakage property in the calling syntax, it defaults to 1 providing no leakage in the adapting algorithm.

	delay
	Update delay given in time samples. This scalar should be a positive integer--negative delays do not work. delay defaults to 1.

	Err states
	Vector of the error states of your adaptive filter. It must have a length equal to the update delay (delay) in samples. errstates defaults to an appropriate length vector of zeros.

	coeffs
	Vector of initial filter coefficients. it must be a length l vector. coeffs defaults to length l vector with elements equal to zero.

	states
	Vector of initial filter states for the adaptive filter. It must be a length l-1 vector. states defaults to a length l-1 vector of zeros.


b) Properties
The table below lists the properties for the Delayed LMS object, their default values, and a brief description of the property.

Table 3.5 Properties of Delayed LMS

	Property
	Default Value
	Description

	Algorithm
	None
	Defines the adaptive filter algorithm the object uses during adaptation

	Coefficients
	Vector of elements
	Vector containing the initial filter coefficients. It must be a length l vector where l is the number of filter coefficients. coeffs defaults to length l vector of zeros when you do not provide the argument for input. LMS FIR filter coefficients. Should be initialized with the initial coefficients for the FIR filter prior to adapting. You need l entries in coeffs.

	Delay
	1
	Specifies the update delay for the adaptive algorithm.

	Error States
	Vector of zeros with the number of elements equal to delay
	A vector comprising the error states for the adaptive filter.

	Filter Length
	Any positive integer
	Reports the length of the filter, the number of coefficients or taps.

	Leakage
	1
	Specifies the leakage parameter. Allows you to implement a leaky algorithm. Including a leakage factor can improve the results of the algorithm by forcing the algorithm to continue to adapt even after it reaches a minimum value. Ranges between 0 and 1. 

	Persistent Memory
	false or true
	Determine whether the filter states get restored to their starting values for each filtering operation. The starting values are the values in place when you create the filter if you have not changed the filter since you constructed it. Persistent Memory returns to zero any state that the filter changes during processing. States that the filter does not change are not affected. Defaults to false.

	Step Size
	0.1
	Sets the LMS algorithm step size used for each iteration of the adapting algorithm. Determines both how quickly and how closely the adaptive filter converges to the filter solution.

	States
	Vector of elements, data type double
	Vector of the adaptive filter states. states defaults to a vector of zeros which has length equal to (l + projectord - 2).


To test delayed LMS algorithm, the program given in the appendix was executed. The parameters for the program were selected as: the input signal to noise ratio is (-20 db), number of filter coefficients are 32 and LMS step size is 0.008. 
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Figure 3.4 Tested output for Delayed LMS 
Figure 3.4 shows the convergence of the adaptive filter using the delayed LMS algorithm. The output SNR of this filter is (10 db) and it converges in 340 sec.
3.3.5 FFT-based block LMS FIR

 The Construction of FFT-based block LMS FIR adaptive filter, their properties and tested output of FFT-based blocked LMS algorithm will be discussed in details. 
a) Properties
The table below lists the properties for the FFT-based block LMS object, their default values, and a brief description of the property.

Table 3.6 Properties of FFT-based block LMS FIR

	Property
	Default Value
	Description

	Algorithm
	None
	Defines the adaptive filter algorithm the object uses during adaptation

	Filter Length
	Any positive integer
	Reports the length of the filter, the number of coefficients or taps

	Coefficients
	Vector of elements
	Vector containing the initial filter coefficients. It must be a length l vector where l is the number of filter coefficients. Coefficients defaults to length l vector of zeros when you do not provide the argument for input.

	States
	Vector of elements of length l
	Vector of the adaptive filter states. states defaults to a vector of zeros which has length equal to l

	Leakage
	1
	Specifies the leakage parameter. Allows you to implement a leaky algorithm. Including a leakage factor can improve the results of the algorithm by forcing the algorithm to continue to adapt even after it reaches a minimum value. Ranges between 0 and 1. 

	Block Length
	Vector of length l
	Size of the blocks of data processed in each iteration

	Step Size
	0.1
	Sets the block LMS algorithm step size used for each iteration of the adapting algorithm. Determines both how quickly and how closely the adaptive filter converges to the filter solution. Use max step to determine the maximum usable step size.

	Persistent Memory
	false or true
	Determine whether the filter states get restored to their starting values for each filtering operation. The starting values are the values in place when you create the filter. Persistent   Memory returns to zero any state that the filter changes during processing. States that the filter does not change are not affected. Defaults to false.


To test FFT-based block LMS algorithm, the program given in the appendix was executed. The parameters for the program were selected as: the input signal to noise ratio is (-20 db), number of filter coefficients are 32 and LMS step size is 0.008. 
[image: image34.png]Signal Value

System Identification of an FIR Filter

Desired
Output
Error

0 50 100 150 200 250 300 350 400 450 500
Time Index




Figure 3.5 Tested output for FFT-based block LMS FIR
 
Figure 3.5 shows the convergence of the adaptive filter using the FFT-based block LMS algorithm. The output SNR of this filter is (8 db) and it converges in 260 sec.
3.3.6   LMS FIR adaptive filter
This section presents the input arguments, properties, and tested output of LMS FIR adaptive filter.

a) Input Arguments
Entries in the following table describe the input arguments for LMS FIR adaptive filter. 

Table 3.7 Input Arguments LMS FIR adaptive filters

	Input Argument
	Description

	L
	Adaptive filter length (the number of coefficients or taps) and it must be a positive integer. L defaults to 10.

	Step
	Filtered LMS step size. it must be a nonnegative scalar. step defaults to 0.1.

	Leakage
	is the filtered-x LMS leakage factor. it must be a scalar between 0 and 1. If it is less than one, a leaky version of adaptfilt.filtxlms is implemented. leakage defaults to 1 (no leakage).

	Path coeffs
	is the secondary path filter model. this vector should contain the coefficient values of the secondary path from the output actuator to the error sensor.

	Path est
	is the estimate of the secondary path filter model. pathest defaults to the values in pathcoeffs.

	Fstates
	is a vector of filtered input states of the adaptive filter. fstates defaults to a zero vector of length equal to (l - 1).

	Pstates
	are the secondary path FIR filter states. it must be a vector of length equal to the (length(path coeffs) - 1). pstates defaults to a vector of zeros of appropriate length.

	Coeffs
	is a vector of initial filter coefficients. it must be a length l vector. coeffs defaults to length l vector of zeros.

	States
	Vector of initial filter states. states defaults to a zero vector of length equal to the larger of (length(path coeffs) - 1) and (length(path est) - 1).


b) Properties
The table below lists the properties for the LMS FIR object, their default values, and a brief description of the property.

Table 3.8 Properties of LMS FIR adaptive filter

	Property
	Default Value
	Description

	Algorithm
	None
	Defines the adaptive filter algorithm the object uses during adaptation

	Coefficients
	Vector of elements
	Vector containing the initial filter coefficients. It must be a length l vector where l is the number of filter coefficients. coeffs defaults to length l vector of zeros when you do not provide the argument for input.

	Filtered Input States
	l-1
	Vector of filtered input states with length equal to l - 1.

	Filter Length
	Any positive integer
	Reports the length of the filter, the number of coefficients or taps

	States
	Vector of elements
	Vector of the adaptive filter states. states defaults to a vector of zeros which has length equal to (l + projectord - 2)

	Secondary Path Coeffs
	No default
	A vector that contains the coefficient values of your secondary path from the output actuator to the error sensor

	Secondary Path Estimate
	Path coeffs values
	An estimate of the secondary path filter model

	Secondary Path States
	Vector of size (length (path coeffs)-1) with all elements equal to zero.
	The states of the secondary path FIR filter--the unknown system

	Step Size
	0.1
	Sets the filtered-x algorithm step size used for each iteration of the adapting algorithm. Determines both how quickly and how closely the adaptive filter converges to the filter solution.


To test LMS FIR algorithm, the program given in the appendix was executed. The parameters for the program were selected as: the input signal to noise ratio is (-20 db), number of filter coefficients are 32 and LMS step size is 0.008. 
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Figure 3.6 Tested output for LMS FIR adaptive filter
Figure 3.6 shows the convergence of the adaptive filter using the LMS FIR algorithm. The output SNR of this filter is (9 db) and it converges in 420 sec.
3.3.7 Sign-data LMS FIR adaptive filter algorithm

The Construction FIR adaptive filter object that uses sign-data algorithm, their input arguments, properties and tested output of Sign-data LMS algorithm will be discussed  in details. 
a) Input Arguments
Entries in the following table describe the input arguments for sign-data LMS FIR adaptive filter.
Table 3.9 Input Arguments of Sign-data LMS FIR adaptive filter

	Input Argument
	Description

	l
	Adaptive filter length (the number of coefficients or taps) and it must be a positive integer. l defaults to 10.

	step
	SD step size. It must be a nonnegative scalar. step defaults to 0.1

	leakage
	Your SD leakage factor. It must be a scalar between 0 and 1. When leakage is less than one, adaptfilt.sd implements a leaky SD algorithm. When you omit the leakage property in the calling syntax, it defaults to 1 providing no leakage in the adapting algorithm.

	coeffs
	Vector of initial filter coefficients. it must be a length l vector. coeffs defaults to length l vector with elements equal to zero.

	states
	Vector of initial filter states for the adaptive filter. It must be a length l-1 vector. states defaults to a length l-1 vector of zeros.


b) 
Properties
The table below lists the properties for sign-data objects, their default values, and a brief description of the property.

Table 3.10 Properties of Sign-Data LMS FIR adaptive filter

	Property
	Default Value
	Description

	Algorithm
	Sign-data
	Defines the adaptive filter algorithm the object uses during adaptation

	Coefficients
	zeros(1,l)
	Vector containing the initial filter coefficients. It must be a length l vector where l is the number of filter coefficients. coeffs defaults to length l vector of zeros when you do not provide the argument for input. Should be initialized with the initial coefficients for the FIR filter prior to adapting. You need l entries in coefficients. 

	Filter Length
	10
	Reports the length of the filter, the number of coefficients or taps

	Leakage
	0
	Specifies the leakage parameter. Allows you to implement a leaky algorithm. Including a leakage factor can improve the results of the algorithm by forcing the algorithm to continue to adapt even after it reaches a minimum value. Ranges between 0 and 1. Defaults to 0

	Persistent Memory
	false or true
	Determine whether the filter states and coefficients get restored to their starting values for each filtering operation. The starting values are the values in place when you create the filter. Persistent Memory returns to zero any property value that the filter changes during processing. Property values that the filter does not change are not affected. Defaults to false.

	States
	zeros(l-1,1)
	Vector of the adaptive filter states. states defaults to a vector of zeros which has length equal to (l - 1).

	Step Size
	0.1
	Sets the SD algorithm step size used for each iteration of the adapting algorithm. Determines both how quickly and how closely the adaptive filter converges to the filter solution.


To test Sign-data LMS algorithm, the program given in the appendix was executed. The parameters for the program were selected as: the input signal to noise ratio is (-20 db), number of filter coefficients are 32 and LMS step size is 0.008. 

[image: image36.png]signal Value

B System Identification of an FIR Fitter Desired
Output

) Error

0

2

50 100 150 200 250 a0 350 400 480 00
Time Indexc





Figure 3.7 Tested output for Sign-data LMS FIR adaptive filter 
Figure 3.7 shows the convergence of the adaptive filter using the Sign-data LMS FIR algorithm. The output SNR of this filter is (10 db) and it converges in 380 sec.
3.3.8 Sign-error LMS FIR adaptive filter algorithm
The Construction FIR adaptive filter object that uses sign-error algorithm, their input arguments, properties and tested output of Sign-error LMS algorithm will be discussed  in details. 
a) Input Arguments
Entries in the following table describe the input arguments for sign-error LMS FIR adaptive filter.

Table 3.11 Input Arguments of Sign-error LMS FIR adaptive filter algorithm
	Input Argument
	Description

	L
	Adaptive filter length (the number of coefficients or taps) and it must be a positive integer. l defaults to 10.

	Step
	SE step size. It must be a nonnegative scalar. You can use missteps to determine a reasonable range of step size values for the signals being processed. step defaults to 0.1

	leakage
	Your SE leakage factor. It must be a scalar between 0 and 1. When leakage is less than one, adaptfilt.se implements a leaky SE algorithm. When you omit the leakage property in the calling syntax, it defaults to 1 providing no leakage in the adapting algorithm.

	coeffs
	Vector of initial filter coefficients. it must be a length l vector. coeffs defaults to length l vector with elements equal to zero.

	states
	Vector of initial filter states for the adaptive filter. It must be a length l-1 vector. states defaults to a length l-1 vector of zeros.


b) Properties
The table below lists the properties for the sign-error SD object, their default values, and a brief description of the property.
Table 3.12 Properties of Sign-error LMS FIR adaptive filter algorithm

	Property
	Default Value
	Description

	Algorithm
	Sign-error
	Defines the adaptive filter algorithm the object uses during adaptation

	Coefficients
	zeros(1,l)
	Vector containing the initial filter coefficients. It must be a length l vector where l is the number of filter coefficients. coeffs defaults to length l vector of zeros when you do not provide the argument for input. Should be initialized with the initial coefficients for the FIR filter prior to adapting.

	Filter Length
	10
	Reports the length of the filter, the number of coefficients or taps

	Leakage
	1
	Specifies the leakage parameter. Allows you to implement a leaky algorithm. Including a leakage factor can improve the results of the algorithm by forcing the algorithm to continue to adapt even after it reaches a minimum value. Ranges between 0 and 1. Defaults to one if omitted.

	Persistent Memory
	false or true
	Determine whether the filter states and coefficients get restored to their starting values for each filtering operation. The starting values are the values in place when you create the filter. Persistent Memory returns to zero any property value that the filter changes during processing. Property values that the filter does not change are not affected. Defaults to false.

	States
	zeros(l-1,1)
	Vector of the adaptive filter states. states defaults to a vector of zeros which has length equal to (l -1).

	Step Size
	0.1
	Sets the SE algorithm step size used for each iteration of the adapting algorithm. Determines both how quickly and how closely the adaptive filter converges to the filter solution


To test Sign-error LMS algorithm, the program given in the appendix was executed. The parameters for the program were selected: the input signal to noise ratio is  (-20 db), number of filter coefficients are 32 and LMS step size is 0.008. 
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Figure 3.8 Tested Sign-error LMS FIR adaptive filter output 
Figure 3.8 shows the convergence of the adaptive filter using the Sign- error LMS FIR algorithm. The output SNR of this filter is (9db) and it converges in 480 sec.
3.9 Sign-sign LMS FIR adaptive filter algorithm

Here in this section the sign-sign LMS algorithm, input arguments, properties and tested output of the algorithm will be discussed in details.

a) Input Arguments
Entries in the following table describe the input arguments for sign-sign LMS FIR adaptive filter.

Table 3.13 Input Arguments of sign-sign LMS FIR adaptive filter algorithm

	Input Argument
	Description

	L
	Adaptive filter length (the number of coefficients or taps) and it must be a positive integer. l defaults to 10.

	Step
	SS step size. It must be a nonnegative scalar. step defaults to 0.1.

	Leakage
	Your SS leakage factor. It must be a scalar between 0 and 1. When leakage is less than one, adaptfilt.lms implements a leaky SS algorithm. When you omit the leakage property in the calling syntax, it defaults to 1 providing no leakage in the adapting algorithm.

	coeffs
	Vector of initial filter coefficients. it must be a length l vector. coeffs defaults to length l vector with elements equal to zero.

	States
	Vector of initial filter states for the adaptive filter. It must be a length l-1 vector. states defaults to a length l-1 vector of zeros.


b) Properties
The table below lists the properties for sign-sign objects, their default values, and a brief description of the property.
Table 3.14 Properties of sign-sign LMS FIR adaptive filter algorithm

	Property
	Default Value
	Description

	Algorithm
	Sign-sign
	Defines the adaptive filter algorithm the object uses during adaptation

	Coefficients
	zeros(1,l)
	Vector containing the initial filter coefficients. It must be a length l vector where l is the number of filter coefficients. coeffs defaults to length l vector of zeros when you do not provide the argument for input. Should be initialized with the initial coefficients for the FIR filter prior to adapting.

	Filter Length
	10
	Reports the length of the filter, the number of coefficients or taps

	Leakage
	1
	Specifies the leakage parameter. Allows you to implement a leaky algorithm. Including a leakage factor can improve the results of the algorithm by forcing the algorithm to continue to adapt even after it reaches a minimum value. Ranges between 0 and 1. 1 is the default value.

	Persistent Memory
	false or true
	Determine whether the filter states and coefficients get restored to their starting values for each filtering operation. The starting values are the values in place when you create the filter. Persistent Memory returns to zero any property value that the filter changes during processing. Property values that the filter does not change are not affected. Defaults to false.

	States
	zeros(l-1,1)
	Vector of the adaptive filter states. states defaults to a vector of zeros which has length equal to (l -1).

	Step Size
	0.1
	Sets the SE algorithm step size used for each iteration of the adapting algorithm. Determines both how quickly and how closely the adaptive filter converges to the filter solution


To test Sign-Sign LMS algorithm, the program given in the appendix was executed. The parameters for the program were selected as: the input signal to noise ratio is (-20 db), number of filter coefficients are 32 and LMS step size is 0.008. 
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Figure 3.9 Tested Sign-sign LMS FIR adaptive filter algorithm output 
Figure 3.9 shows the convergence of the adaptive filter using the Sign-Sign LMS FIR algorithm. The output SNR of this filter is (10db) and it converges in 480 sec.
3.3 Analysis of Results

The following table shows the LMS Performance results for severe noise. The two criteria, minimum time concern and maximum SNR, will be used when deciding for satisfactory performance of the algorithm. The conditions used for determining the best performing algorithm are (a) at least 8 db output signal to noise ratio (b) 200 sec. convergence. If one or both of these conditions is not satisfied, then the performance is regarded as unsatisfactory. Otherwise, the performance is satisfactory.

Table 3.15 Table of LMS Performance for High Noise Rate
	Type of LMS
	Time Concern (sec)
	SNR (Signal to Noise Ratio)
	Performance

	Normalized LMS
	500
	7db
	Unsatisfactory 

	Adjoint LMS
	180
	10db
	Satisfactory

	Block LMS
	260
	9db
	Unsatisfactory

	Delayed LMS
	340
	10db
	Unsatisfactory

	FFT-Based Block LMS FIR
	260
	8db
	Unsatisfactory

	LMS FIR
	420
	9db
	Unsatisfactory

	Sign-data LMS FIR
	380
	10db
	Unsatisfactory

	Sign Error LMS FIR
	480
	9db
	Unsatisfactory

	Sign-Sign LMS FIR
	480
	10db
	Unsatisfactory


According to the data shown in the previous table, the best performing algorithm is the adjoint LMS algorithm.
3.4 Summary 

In this chapter a detailed discussion was presented for all types of the least mean square algorithms, and as a result the optimal algorithm for severe noise according to the time concern and SNR, was the adjoint LMS algorithm. The time cost of the implement of the algorithm was 180 seconds, SNR=10 db, and it will be used to design the developed adaptive noise cancellation in the next chapter.
CHAPTER FOUR

 ADAPTIVE NOISE CANCELLATION SYSTEM
4.1 Overview  

           There are a lot of the noise cancellation methods and their applications in civil, military, industrial and communication equipments and apparatus. But success of these noise cancellation methods and filters extremely depends on the noise factor (noise/signal ratio). Most of the publications in the field of noise cancellation methods and their applications deal with low noise/signal ratio ≈10% and show good achievements for cell phones, radio/ TV technique, tape recorders, concert hall equipments.

This chapter presents a discussion of the thesis topic adaptive noise cancellation for severe noise cases (SNR=-20 db) using adjoint LMS algorithm.
4.2 Automatic adaptive noise cancellation system
The developed system by the author takes a real-life voice signal as input and yields the optimally filtered voice using the adjoint LMS.

 The features of the developed system:

· Automatic system.
· Takes real-life voice signal.

· Cancels the tiny noise coming from electricity and microphone which its about 50 Hz by using daubecies wavelet technology.
· Giving the cleaned input voice signal even after mixed with high amount of noise (noise is ten times signal).

· Real time operating (system has no delay).

· It gives the opportunity for the user to hear the noisy and the cleared signal. 
4.3 Adjoint adaptive filter configuration 
The block diagram below shows the configuration of the adaptive filter using adjoint LMS algorithm. In this diagram the input speech signal is assigned as desired response of the system. The input signal mixed with noise and is passed through an adaptive filter. The function of adjoint adaptive filter is to adapt the right parameters to produce the desired signal at the output.
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Figure 4.1 Adjoint Adaptive Filter Configuration
4.4 Adaptation of adaptive filters coefficients

The block diagram below shows how the adaptive filters adapt their parameters according to the desired signal and the actual output.   
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Figure 4.2 Adaptation of adaptive filters coefficients
4.5 Adaptive Noise Cancellation System

Figures 4.3 show the block diagram of the developed adaptive noise cancellation system. Real time speech signal is taken through the microphone; the tiny noise present in voice signal is removed by using Daubechies wavelet. Severe AWGN is added to low component of Daubechies wavelet. The resulting signal is passed through adaptive filtering using adjoint LMS algorithm described in section 3.4.The output of the filter is fed through the loud speakers which outputs the noise removed signal.
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Figure 4. 3 Block diagram of the developed system with example signal outputs at each stage

4.6 Daubechies wavelet overview
The wavelet transform is a tool for carving up functions, operators, or data into components of different frequency, allowing one to study each component separately.
Ingrid Daubechies, one of the brightest stars in the world of wavelet research, invented what are called compactly supported orthonormal wavelets -- thus making discrete wavelet analysis practicable. 

The names of the Daubechies family wavelets are written dbN, where N is the order, and db the "surname" of the wavelet. And the figure below will show the algorithm and how its work.
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Figure 4.4 Wavelet configuration

Starting from a signal s, two sets of coefficients are computed: approximation coefficients CA1, and detail coefficients CD1. These vectors are obtained by convolving s with the low-pass filter Lo_D for approximation and with the high-pass filter Hi_D for detail.
The length of each filter is equal to 2N. If n = length(s), the signals F and G are of length n + 2N – 1.

Here in our system we are using the second order of daubechies wavelet to cancel the tiny amount of noise which its around 50 hz then we are taking in our consideration the low component of it because practically for speech signal in PSTN the average range of frequencies about 500 hz as a maximum which its belong to the low component of he wavelet. 

Finally an example for second order daubechies wavelet noise cancellation has been done by the system is shown below 
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 Figure 4.5 Wavelet noise cancellations Example of the system
4.7 Example tested output of the system

The desired signal for the system is the speech the speech signal which has been taken from the microphone.
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Figure 4.6 Tested Output of the system

Here as we realize see from the figures above that our clear signal was cleared from high amount of noise (10 times) and we achieve our aim to have an understandable speech  for such a kind of communication system by using the optimal algorithm for such a kind of system which is adjoint LMS as we discussed before. 

4.8 Coefficients of adaptive filter -Tested example
Initially we assumed the input coefficients of adaptive filters are zeros and as we can see follow that our adaptive filter adapting the parameters:
·  Initially as we mentioned above its start with zeros
0    0  0  0 0 0………………………… 0  0  0

· Here an example  of the adaptive filter coefficients adaptation  
b =

  Columns 1 through 12 

   -0.0012   -0.0014    0.0020    0.0029   -0.0044   -0.0064    0.0090    0.0125   -0.0169   -0.0227    0.0305    0.0412

  Columns 13 through 24 

   -0.0573   -0.0850    0.1472    0.4501    0.4501    0.1472   -0.0850   -0.0573    0.0412    0.0305   -0.0227   -0.0169

  Columns 25 through 32 

    0.0125    0.0090   -0.0064   -0.0044    0.0029    0.0020   -0.0014   -0.0012
4.9 Summary

This chapter explained in detail the developed adaptive noise cancellation system. The experiment was successful and showed good results, which demonstrated the successful implementation of the developed method.

CONCLUSION
Not all of the traditional noise cancellation methods show good results especially in the close to real-time noise filtering and need a special study to find the best filtering method among the existing methods. The special cases are some severe ones which deals with the signal to noise ratios are less than 0.1 (noise is 10 times or more higher than useful signal) – military command-and-control communication systems between centers and jet pilots, aircraft carrier pilots and their service teams, different metallurgical and especially arc furnaces operators, etc. 

 In this thesis, an enhanced hybrid wavelet and adaptfilt.adjlms model for the adaptive noise canceller has been developed to enhance the speech and have shown good results compared to the classical adaptive noise cancellers.
Detailed studies of filtering problems like linear, nonlinear and stochastic approach to design of adaptive filter were considered.
Standard form of Least Mean Square (LMS) algorithm, its convergence and filter realization problems were analyzed.

Various form of noise in communication system were examined including  thermal noise ,impulse noise, transients noise model of Additive White Gaussian Noise (AWGN) were examined in details for development of the noise cancellation system.

Comparative analysis for different LMS algorithms using bench mark voice signal corrupted by high amount of noise were examined.Based on output and signal to noise ratio and speed of convergence of LMS algorithm.
Analysis of  nine types of LMS  algorithm  show that adjoint LMS  algorithm provides maximum  speed of convergence (180 sec) and signal to noise ratio(10 dB).Block diagram of noise cancellation system was developed and tested using real voice signal, testing of system were realized using matlab package with severe input signal to noise ratio equal to (-20 dB).
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APPENDICES
Development of Adaptive Filter using Matlab Package
APPENDIX I
LMS FIR adaptive filter

x  = randn(1,500);     % Input to the filter

b  = fir1(31,0.5);     % FIR system to be identified

n  = randn(1,500); % Observation noise signal

d  = filter(b,1,x)+n;  % Desired signal

mu = 0.008;            % LMS step size.

ha = adaptfilt.lms(32,mu);

[y,e] = filter(ha,x,d);

subplot(2,1,1); plot(1:500,[d;y;e]);

title('System Identification of an FIR Filter');

legend('Desired','Output','Error');

xlabel('Time Index'); ylabel('Signal Value');

subplot(2,1,2); stem([b.',ha.coefficients.']);

legend('Actual','Estimated');

xlabel('Coefficient #'); ylabel('Coefficient Value'); grid on;

y =awgn(x,10,`measured`)
Adjoint LMS FIR adaptive filter

x  = randn(1,500);     % Input to the filter

b  = fir1(31,0.5);     % FIR system to be identified

n  = randn(1,500); % Observation noise signal

d  = filter(b,1,x)+n;  % Desired signal

mu = 0.008;            % LMS step size.

ha = adaptfilt.adjlms(32,mu);

[y,e] = filter(ha,x,d);

subplot(2,1,1); plot(1:500,[d;y;e]);

title('System Identification of an FIR Filter');

legend('Desired','Output','Error');

xlabel('Time Index'); ylabel('Signal Value');

subplot(2,1,2); stem([b.',ha.coefficients.']);

legend('Actual','Estimated');

xlabel('Coefficient #'); ylabel('Coefficient Value'); grid on;   

y =awgn(x,10,`measured`)
Block LMS FIR adaptive filter 

x  = randn(1,500);     % Input to the filter

b  = fir1(31,0.5);     % FIR system to be identified

n  = randn(1,500); % Observation noise signal

d  = filter(b,1,x)+n;  % Desired signal

mu = 0.008;            % LMS step size.

ha = adaptfilt.blms(32,mu);

[y,e] = filter(ha,x,d);

subplot(2,1,1); plot(1:500,[d;y;e]);

title('System Identification of an FIR Filter');

legend('Desired','Output','Error');

xlabel('Time Index'); ylabel('Signal Value');

subplot(2,1,2); stem([b.',ha.coefficients.']);

legend('Actual','Estimated');

xlabel('Coefficient #'); ylabel('Coefficient Value'); grid on;  

y =awgn(x,10,`measured`)
FFT-based block LMS FIR adaptive filter  

x  = randn(1,500);     % Input to the filter

b  = fir1(31,0.5);     % FIR system to be identified

n  = randn(1,500); % Observation noise signal

d  = filter(b,1,x)+n;  % Desired signal

mu = 0.008;            % LMS step size.

ha = adaptfilt.adjlms(32,mu);

[y,e] = filter(ha,x,d);

subplot(2,1,1); plot(1:500,[d;y;e]);

title('System Identification of an FIR Filter');

legend('Desired','Output','Error');

xlabel('Time Index'); ylabel('Signal Value');

subplot(2,1,2); stem([b.',ha.coefficients.']);

legend('Actual','Estimated');

xlabel('Coefficient #'); ylabel('Coefficient Value'); grid on;

y =awgn(x,10,`measured`)
Delayed LMS FIR adaptive filter   

x  = randn(1,500);     % Input to the filter

b  = fir1(31,0.5);     % FIR system to be identified

n  = randn(1,500); % Observation noise signal

d  = filter(b,1,x)+n;  % Desired signal

mu = 0.008;            % LMS step size.

ha = adaptfilt.dlms(32,mu);

[y,e] = filter(ha,x,d);

subplot(2,1,1); plot(1:500,[d;y;e]);

title('System Identification of an FIR Filter');

legend('Desired','Output','Error');

xlabel('Time Index'); ylabel('Signal Value');

subplot(2,1,2); stem([b.',ha.coefficients.']);

legend('Actual','Estimated');

xlabel('Coefficient #'); ylabel('Coefficient Value'); grid on;

y =awgn(x,10,`measured`)
Normalized LMS FIR adaptive filter 

x  = randn(1,500);     % Input to the filter

b  = fir1(31,0.5);     % FIR system to be identified

n  = randn(1,500); % Observation noise signal

d  = filter(b,1,x)+n;  % Desired signal

mu = 0.008;            % LMS step size.

ha = adaptfilt.nlms(32,mu);

[y,e] = filter(ha,x,d);

subplot(2,1,1); plot(1:500,[d;y;e]);

title('System Identification of an FIR Filter');

legend('Desired','Output','Error');

xlabel('Time Index'); ylabel('Signal Value');

subplot(2,1,2); stem([b.',ha.coefficients.']);

legend('Actual','Estimated');

xlabel('Coefficient #'); ylabel('Coefficient Value'); grid on;

y =awgn(x,10,`measured`)
Sign-data LMS FIR adaptive filter  

x  = randn(1,500);     % Input to the filter

b  = fir1(31,0.5);     % FIR system to be identified

n  = randn(1,500); % Observation noise signal

d  = filter(b,1,x)+n;  % Desired signal

mu = 0.008;            % LMS step size.

ha = adaptfilt.sd(32,mu);

[y,e] = filter(ha,x,d);

subplot(2,1,1); plot(1:500,[d;y;e]);

title('System Identification of an FIR Filter');

legend('Desired','Output','Error');

xlabel('Time Index'); ylabel('Signal Value');

subplot(2,1,2); stem([b.',ha.coefficients.']);

legend('Actual','Estimated');

xlabel('Coefficient #'); ylabel('Coefficient Value'); grid on;

y =awgn(x,10,`measured`)
Sign-error LMS FIR adaptive filter 

x  = randn(1,500);     % Input to the filter

b  = fir1(31,0.5);     % FIR system to be identified

n  = randn(1,500); % Observation noise signal

d  = filter(b,1,x)+n;  % Desired signal

mu = 0.008;            % LMS step size.

ha = adaptfilt.se(32,mu);

[y,e] = filter(ha,x,d);

subplot(2,1,1); plot(1:500,[d;y;e]);

title('System Identification of an FIR Filter');

legend('Desired','Output','Error');

xlabel('Time Index'); ylabel('Signal Value');

subplot(2,1,2); stem([b.',ha.coefficients.']);

legend('Actual','Estimated');

xlabel('Coefficient #'); ylabel('Coefficient Value'); grid on;

y =awgn(x,10,`measured`)
Sign-sign LMS FIR adaptive filter  

x  = randn(1,500);     % Input to the filter

b  = fir1(31,0.5);     % FIR system to be identified

n  = randn(1,500); % Observation noise signal

d  = filter(b,1,x)+n;  % Desired signal

mu = 0.008;            % LMS step size.

ha = adaptfilt.se(32,mu);

[y,e] = filter(ha,x,d);

subplot(2,1,1); plot(1:500,[d;y;e]);

title('System Identification of an FIR Filter');

legend('Desired','Output','Error');

xlabel('Time Index'); ylabel('Signal Value');

subplot(2,1,2); stem([b.',ha.coefficients.']);

legend('Actual','Estimated');

xlabel('Coefficient #'); ylabel('Coefficient Value'); grid on;
APPENDIX II
MAIN PROGRAM FOR ADAPTIVE NOİSE CANCELLATION

clear all, close all               % CLEARING and CLOSING everything 

recorder = audiorecorder(8000,16,1);  % Opening Audio Recorder 

recordblocking(recorder,5);           % Recording signal from microphone for 5 sec

audioarray = getaudiodata(recorder);  % Transforms signal into matrix form

speechplayer = play(recorder);        % Check Playing back signal from microphone

s =(audioarray);                      % s - is Recording signal in matrix form       

m=size(audioarray,1);                 % Matrix size determination of s

[cA,cD] = dwt(s,'db2'); %WAVELET High & Low filter to avoid 50Hz and microphone whistle

k=size(cA,1);                         % Matrix size determination of cA and cD

figure(1);

subplot(3,1,1);plot(1:m,s);          % S(t) signal vector plotting

ylabel('Signal');  grid on;

subplot(3,1,2);plot(1:k,cA);          % WAVELET Low component cA signal vector plotting

ylabel('W/L Low Fr. com');  grid on;

subplot(3,1,3);plot(1:k,cD);          % WAVELET High component cD signal vector plotting

ylabel('W/L High Fr. com');  grid on;

x =(cA(1:k,1))';                      % Input cA to the adaptive filter

b  = fir1(31,0.5);                    % FIR system to be identified

n  = randn(1,k);                      % Observation noise signal

d  = filter(b,1,x)+n;                 % Signal mixed 10 time higher noise

ha = adaptfilt.adjlms(32,mu);         % Adaptive filter type

[y,e] = filter(ha,x,d);               % Adaptive filter coefficients

figure(2)

subplot(3,1,1);plot(1:k,x);            %Input

ylabel('Signal');  grid on;

subplot(3,1,2);plot(1:k,d)            %Input+ noise

ylabel('Signal+noise');grid on;

subplot(3,1,3);plot(1:k,y);           %output

ylabel('Filtered Signal'); grid on;

sound(y*150,4096);                    %Final Check Playing back filtered signal
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Figure 1.6 Volterra-based nonlinear adaptive filter.expande
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