
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

Dormitory Automation System by Using Delphi

Graduation Project

COM 400

Student: Ünal TAŞDİZEN (20041238)

Supervisor: Assist. Professor Dr. İmanov ELBRUS

Nicosia - 2008

ÜNAL TAŞDİZEN

ACKNOWLEDGEMENT

First of all, I would like give my special thanks to my supervisor Assist. Prof Dr.

İmanov ELERUS He helped and supported me to complete my project by any means of

necessary. In addition to this he never doubted about me, he always believed in me that

I willfulfill and succeed on myproject. I am glad to that I did not disappoint him.

Furthermore, I want to give my special thanks and best regards to my parents. They

were always kind andpatient to me. I wouldn't be here without their endless support.

Finally, I want to give my special thanks to my friends whose are Cenk ÜNDAŞ, Ebru

GÜLTEK and Nurten ÖZTÜRK. They are supported and helped me to complete my
project. I am very happy to have suchfriends.

ABSTRACT

The aim of this program is to develop automation software which deals with large scale

dormitory residential areas. As a programming language Delphi was used and as a

database MySQL Database Server was used.

I chose Delphi as programming language because Delphi speeds Win32 development by

combining Delphi's proven visual Rapid Application Development approach for

accelerated Win32 development with support for Windows Vista, AJAX, and

streamlined database connectivity. In the real world, developers need to be able to

develop applications that run on multiple platforms, not just the latest and greatest. Most

new machines come with Windows Vista, while existing machines will continue

running Windows 2000 or XP. Developers must support this mixed-use environment,

because they can't count on their organization or customers upgrading en masse. They

have to meet the demand for critical new technologies and trends in marketplace by

including support for these technologies in their applications, but they want to retain the

flexibility of developing on the platform that is most productive for them.

The MySQL database has become the world's most popular open source database

because of its consistent fast performance, high reliability and ease of use. It's used on

every continent, even Antarctica and by individual Web developers as well as many of

the world's largest and fastest-growing organizations such as Yahoo!, Alcatel-Lucent,

Google, Nokia, YouTube, and Zappos.com. Not only is MySQL the world's most

popular open source database, it's also become the database of choice for a new

generation of applications built on the Linux, Apache, MySQL, PHP I Perl I Python,

Delphi.,MySQL runs on more than 20 platforms including Linux, Windows, OS/X, HP­

UX, AIX, Netware, giving you the kind of flexibility that puts you in control.

11

Table of Contents

ACKNOWLEDGEMENT I
ABSTRACT II
TABLE OF CONTENTS III
INTRODUCTION 1

CHAPTER ONE : BASIC CONCEPT OF DELPHI

1.1 Introduction to Delphi 2
1.2 What is Delphi? 2

1.2.1 Delphi Compliers 2
1.2.2 What kind of programming can you do with Delphi? 3
1.2.3 History of Delphi 4
1.2.4 Advantages & Disadvantages Delphi 6

1.3 Delphi 6 Editions 7
1.3.1 Delphi 6 Architect. 7
1.3.2 Installation Delphi 6 8

1.4 A Tour of the Environment.. 10
1.4.1 Running Delphi for the First Time 10
1.4.2 The Delphi IDE 11
1.4.3 The Menus & Toolbar. 12
1.4.4 The Component Palette 12
1.4.5 The Code Editor 13
1.4.6 The Object Inspector 14
1.4.7 The Object TreeView 15
1.4.8 Class Completion 16
1.4.9 Debugging applications 17
1.4. 10 Exploring Databases 18
1.4.11 Templates and the Object Repository 19

1.5 Programming with Delphi 20
1.5.1 Starting a New Application 20
1.5.2 Setting Property Values 21
1.5.3 Adding objects to the form 22
1.5.4 Add a Table and a StatusBar to the Form 22
1.5.5 Connecting to a Database 24

CHAPTER TWO : THE RA VE REPORTING

2.1 Project Tree 28
2.2 Design Tools 29
2.3 Reuse and Maintenance Tools 32
2.4 Standard Components 34
2.5 Drawing Components 35
2.6 Reporting Components : 35
2.7 Barcode Components 39
2.8 Anchors 39
2.9 Code Based Reports 40

lll

2.9.1 Simple Code Base Report 40
2.9.2 Tabular Code Based Report 41
2.9.3 Graphical Code Based Report 43

2.1 O Visually Designed Reports 45
2.10.1 The Visual Designer 45
2.10.2 Interacting with the Project 48

2.11 Data Aware Reports 55
2.11.1 The Database Connection 55
2.11.2 The Driver Data View 55
2.11.3 Regions and Bands 58
2.11.4 Adding Fields 59
2.11.5 Adding the Report to Your Project 60

CHAPTER THREE : USER MANUAL

3 .1 Database Connection Screen 61
3.2 Main Menu 62
3 .3 Buildings Menu · 62

3.3.1 Building Organize Form 62
3.3.2 Floor Organize Form 64
3.3.3 Room Organize Form 66

3.4 Customers Menu 67
3.4.1 Customer Organize 67

3.5 Cafeteria Menu 70
3.5.1 Product Organize Form 70
3.5.2 Sales Form 72

3.6 Visitors Menu 73
3.6.1 Visitor Organize Form 73

3.7 About Menu 75
3.8 Exit Menu 75

CONCLUSION 76
REFERENCES : 77
APPENDIX 78

ıv

INTRODUCTION

Donni vl.0 Dormitory Automation Software has a client - server architecture design.

This means that there is no need to install any additional software or make

configurations on client side. Just copy the Dormi vl.0 program anywhere in client's

computer and execute it. Even server may not be placed in the same building or city. As

long as the client has internet connection, it is possible to use Donni vl.0 Dormitory

Automation Software. As a database server Donni vl.0 uses MySQL Server. There is

no restriction about server version but it is recommended to use v4. l or later. MySQL

Database server is today's one of the most popular and powerful database server. More
of it, it is free.

Donni vl .O is designed as simple as possible. You can't see fancy animations which

drains CPU and reduces system performance or fully painted and rendered forms which

allocates more memory and causes delay on execution. Also this kind of things distracts

the user and it gets annoying on long term use. In addition to this Donni vl.O hasn't got

any modal form restrictions. This means that you can work with more then one form at

the same time and you can access your desktop any time you want. Main menu

consumes very small space on desktop and user may open another program without
closing the program.

Donni vl.0 has related table structure. This means that information on different tables

has relation with each other. In other words consider a customer is staying on building

A and you updated building A's name as B, after update, if you check customer's

information you will notice that building name will be shown as B.

1

CHAPTER!

1 BASIC CONCEPT OF DELPHI

1.1 Introduction to Delphi

Although I am not the most experienced or knowledgeable person on the forums I

thought it was time to write a good introductory article for Delphi

1.2 What is Delphi?

Delphi is a Rapid Application Development (RAD) environment. It allows you to drag

and drop components on to a blank canvas to create a program. Delphi will also allow

you to use write console based DOS like programs.

Delphi is based around the Pascal language but is more developed object orientated

derivative. Unlike Visual Basic, Delphi uses punctuation in its basic syntax to make the

program easily readable and to help the compiler sort the code. Although Delphi code is

not case sensitive there is a generally accepted way of writing Delphi code. The main

reason for this is so that any programmer can read your code and easily understand what

you are doing, because they write their code like you write yours.

2

For the purposes of this series I will be using Delphi 6. Delphi 6 provides all the tools

you need to develop test and deploy Windows applications, including a large number of

so-called reusable components.

Borland Delphi provides a cross platform solution when used with Borland Kylix -

Borland's ~ tool for the Linux platform.

1.2.1 Delphi Compliers

There are two types complier for Delphi

• Turbo Delphi: Free industrial strength Delphi RAD (Rapid Application

Development) environment and compiler for Windows. It comes with 200+

components and its own-Visua1-Component-Fr-amework.

3

• Turbo Delphi for .NET: Free industrial strength Delphi application development

environment and compiler for the Microsoft .NET platform.

1.2.2 What kind of programming can you do with Delphi?

The simple answer is "more or less anything". Because the code is compiled, it runs

quickly, and is therefore suitable for writing more or less any program that you would

consider a candidate for the Windows operating system.

You probably won't be using it to write embedded systems for washing machines,

toasters or fuel injection systems, but for more or less anything else, it can be used (and

the chances are that probably someone somewhere hasl)

Some projects to which Delphi is suited:

• Simple, single user database applications

• Intermediate multi-user database applications

• Large scale multi-tier, multi-user database applications

• Internet applications

• Graphics Applications

• Multimedia Applications

• Image processing/Image recognition

• Data analysis

• System tools

• Communications tools using the Internet, Telephone or LAN

• Web based applications

This is not intended to be an exhaustive list, more an indication of the depth and breadth

of Delphi's applicability. Because it is possible to access any and all of the Windows

API, and because if all else fails, Delphi will allow you to drop a few lines of assembler

code directly into your ordinary Pascal instructions, it is possible to do more or less

anything. Delphi can also be used to write Dynamically Linked Libraries (DLLs) and

can call out to DLLs written in other programming languages without difficulty.

Because Delphi is based on the concept of self contained Components (elements of code

that can be dropped directly on to a form in your application, and exist in object form,

performing their function until they are no longer required), it is possible to build

applications very rapidly. Because Delphi has been available for quite some time, the

number of pre-written components has been increasing to the point that now there is a

component to do more or less anything you can imagine. The job of the programmer has

become one of gluing together appropriate components with code that operates them as

required.

1.2.3 History of Delphi

Delphi was one of the first of what came to be known as "RAD" tools, for Rapid

Application Development, when released in 1995 for the 16-bit Windows 3 .1. Delphi 2,

released a year later, supported 32-bit Windows environments, and a C++ variant, C++

Builder, followed a few years after.

The chief architect behind Delphi, and its predecessor Turbo Pascal , was Anders

Hejlsberg until he was headhunted in 1996 by Microsoft , where he worked on Visual

J++ and subsequently became the chief designer of C Sharp programming language C#

and a key participant in the creation of the Microsoft .NET Framework.

In 2001 a Linux version known as Kylix programming tool Kylix became available.

However, due to low quality and subsequent lack of interest, Kylix was abandoned after

version 3.

Support for Linux and Windows cross platform development (through Kylix and the

CLX,component library) was added in 2002 with the release of Delphi 6.

Delphi 8, released December 2003, was a .NET -only release that allowed developers to

compile Delphi Object Pascal code into .NET Microsoft Intermediate Language MSIL.

It was also significant in that it changed its IDE for the first time, from the multiple­

floating-window-on-desktop style IDE to a look and feel similar to Microsoft's Visual

Studio.NET.

4

Although Borland fulfilled one of the biggest requests from developers (.NET support),

it was criticized both for making it available too late, when a lot of former Delphi

developers had already moved to C#, and for focusing so much on backward

compatibility that it was not very easy to write new code in Delphi. Delphi 8 also lacked

significant high-level features of the c sharp, C# language, as well as many of the more

appealing features of Microsoft's Visual Studio IDE. (There were also concerns about

the future of Delphi Win32 development. Because Delphi 8 did not support Win32,

Delphi 7.1 was included in the Delphi 8 package.)

The next version, Delphi 2005 (Delphi 9), included the Win32 and .NET development

in a single IDE, reiterating Borland's commitment to Win32 developers. Delphi 2005

includes design-time manipulation of live data from a database. It also includes an

improved IDE and added a "for ... in" statement (like C#'s for each) to the language.

However, it was criticized by some for its bugs; both Delphi 8 and Delphi 2005 had

stability problems when shipped, which were only partially resolved in service packs.

In late 2005, Delphi 2006 was released and federated development of C# and

Delphi.NET, Delphi Win32 and C++ into a single IDE. It was much more stable than

Delphi 8 or Delphi 2005 when shipped, and improved even more after the service packs

and several hot fixes.

On February 8, 2006, Borland announced that it was looking for a buyer for its IDE and

database line of products, which include Delphi, to concentrate on its Application

Lifecycle Management ALM line. The news met with voluble optimism from the

remaining Delphi users.

On September 6, 2006, The Developer Tools Group (the working name of the not yet

spun off company) of Borland Software Corporation released single language versions

of Borland Developer Studio, bringing back the popular "Turbo" moniker. The Turbo

product set includes Turbo Delphi for Win32, Turbo Delphi for .NET, Turbo C++, and

Turbo C#. Each version is available in two editions: "Explorer" a free downloadable

version and "Professional" a relatively cheap (US$399) version which opens access to

5

1.2.4 Advantages & Disadvantages Delphi

Delphi exhibits the following advantages:

• Rapid Application Development (RAD)

• Based on a well-designed language - high-level and strongly typed, with low­

level escapes for experts

• A large community on Usenet and the World Wide Web (e.g.

news://newsgroups.borland.com and Borland's web access to Delphi)

• Can compile to a single executable, simplifying distribution and reducing DLL

thousands of third-party components. Unlike earlier "Personal" editions of Delphi, new

"Explorer"editions can be used for commercial development.

On November 14, 2006, Borland announced the cancellation of the sale of its

Development tools; instead of that it would spin them off into an independent company

named "CodeGear"

. . .versıonıng ıssues

• Many VCL and third-party components (usually available with full source code)

and tools (documentation, debug tools, etc.)

• Quick optimizing compiler and ability to use assembler code

• Multiple platform native code from the same source code

• High level of source compatibility between versions

• Cross Kylix - a third-party toolkit which allows you to compile native

Kylix/Linux applications from inside the Windows Delphi IDE, hence easily

enabling dual-platform development and deployment

• .Cross FBC - a sister project to Cross Kylix, which enables you to cross-compile

your Windows Delphi applications to multi-platform targets - supported by the

Free Pascal compiler - without ever leaving the Delphi IDE

• Class helpers to bridge functionality available natively in the Delphi RTL, but

not available in a new platform supported by Delphi

• The language's object orientation features only class- and interface-based

Polymorphism in object-oriented programming polymorphism

6

Disadvantages:

• Limited cross-platform capability for Delphi itself. Compatibles provide more

architecture/OS combinations

• Access to platform and third party libraries require header files to be translated

to Pascal. This creates delays and introduces the possibilities of errors in

translation.

• There are fewer published books on Delphi than on other popular programming

languages such as C++ and C#

• A reluctance to break any code has lead to some convoluted language design

choices, and orthogonally and predictability have suffered

1.3 Delphi 6 Editions

There are 3 editions in Delphi 6:

• Delphi Personal - makes learning to develop non-commercial Windows

applications fast and fun. Delphi 6 Personal makes learning Windows

development easy with drag-and-drop visual programming.

• Delphi Professional - adds the tools necessary to create applications with the

latest Windows® ME/2000 look-and-feel. Dramatically enhance functionality

with minimal code using the power and flexibility of SOAP and XML to easily

integrate Web Services into client-side applications.

• Delphi Enterprise - includes additional tools, extensive options for Internet.

Delphi 6 makes next-generation e-business development with Web Services a
snap.

This Program will concentrate on the Enterprise edition.

1.3.1 Delphi 6 Architect

Delphi 6 Architect is designed for professional enterprise developers who need to adapt

quickly to changing business rules and manage sophisticated applications that

synchronize with multiple database schemas. Delphi 2006 Architect includes an

advanced ECO III framework that allows developers to rapidly deploy scalable external

facing Web applications with executable state diagrams, object-relational mapping, and
transparent persistence.

7

Delphi 6 Architect includes all of the capabilities of the Enterprise edition, and includes

the complete ECO III framework, including new support for ECO State Machines

powered by State Chart visual diagrams, and simultaneous persistence to multiple and

mixed database servers.

• State Chart Diagrams

• Executable ECO State Machines

• Multi- and Mixed- ECO database support

1.3.2 Installation Delphi 6

To install Delphi 6 Enterprise, run INSTALL.EXE (default location C:\Program

Files\Borland Delphi) and follow the installation instructions.

We are prompted to select a product to install; you only have one choice "Delphi 6":

Figure 1.1 The Select Page For Start Installation

While the setup runs, you'll need to enter your serial number and the authorization key

(the two you got from inside a CdRom driver).

8

Figure 1.2 Serial Number And Authorization Screen

Later, the License Agreement screen will popup:

Figure 1.3 License Agreement Screen

After that, you have to pick the Setup Type, choose Typical. This way Delphi 6

Enterprise will be installed with the most common options. The next screen prompts

you to choose the Destination folder.

Figure 1.4 SetUp Type and Destination Folder Screen

At the end of the installation process, the set-up program will create a sub menu in the

Programs section of the Start menu, leading to the main Delphi 6 Enterprise program

plus some additional tools.

9

fm' Borlan~ Delphi 6. .,

Figure 1.5 Start Menu

1.4 A Tour of the Environment

This chapter explains how to start Delphi and gives you a quick tour of the main parts

and tools of the Integrated Development Environment (IDE)

1.4.1 Running Delphi for the First Time

You can start Delphi in a similar way to most other Windows applications:

• Choose Programs I Borland Delphi 6 I Delphi 6 from the Windows Start menu

• Choose Run from the Windows Start menu and type Delphi32

• Double-click Delphi32.exe in the $(DELPHI)\Bin folder. Where $(DELPHI) is a

folder where Delphi was installed. The default is C:\Program

Files\Borland\Delphi6.

• Double-click the Delphi icon on the Desktop (if you've created a shortcut)

•w,=•,sw·-~=....,.,,,,,=m,=,~mnn=m•wmm,•,,=w••,•mn n

I; Borland Delphi 6 1!11!1 f3

Borland Delphi 6
~a p

Help Delphi 6 I rnage Editor Register N ovıı

Figure 1.6 Borland Delphi 6 Folder

10

1.4.2 The Delphi IDE

As explained before, one of the ways to start Delphi is to choose Programs I Borland

Delphi 6 I Delphi 6 from the Windows Start menu.

When Delphi starts (it could even take one full minute to start - depending on your

hardware performance) you are presented with the IDE: the user interface where you

can design, compile and debug your Delphi projects.

Figure 1.7 IDE

Like most other development tools (and unlike other Windows applications), Delphi

IDE comprises a number of separate windows.

ome of the facilities that are included in the "Integrated Development Environment"

(IDE) are listed below:

• A syntax sensitive program file editor

• A rapid optimizing compiler

• Built in debugging /tracing facilities

• A visual interface developer

• Syntax sensitive help files

o Database creation and editing tools

11

speed bar component palette

• Image/Icon/Cursor creation I editing tools

• Version Control CASE tools

1.4.3 The Menus & Toolbar

The main window, positioned on the top of the screen, contains the main menu, toolbar

and Component palette.

Figure 1.8 Menu, Title, Speed Bar & Component Palette

The title bar of the main window contains the name of the current project (you'll see in

some of the future chapters what exactly is a Delphi project). The menu bar includes a

dozen drop-down menus - we'll explain many of the options in these menus later

through this course. The toolbar provides a number of shortcuts to most frequently used

operations and commands - such as running a project, or adding a new form to a project.

To find out what particular button does, point your mouse "over" the button and wait for

the tool tip. As you can see from the tool tip (for example, point to [Toggle Form/Unit]),

many tool buttons have keyboard shortcuts ([F12]).

The menus and toolbars are freely customizable. I suggest you to leave the default

arrangement while working through the chapters of this course.

1.4.4 The Component Palette

You are probably familiar with the fact that any window in a standard Windows

application contains a number of different (visible or not to the end user) objects, like:

buttons, text boxes, radio buttons, check boxes etc. In Delphi programming terminology

such objects are called controls (or components). Components are the building blocks of

every Delphi application. To place a component on a window you drag it from the

component palette. Each component has specific attributes that enable you to control

your application at design and run time.

12

click the at-row to see more controls on a page

click to see \1'1/in32 controls

Figure 1.9 Component Palates

Depending on the version of Delphi (assumed Delphi 6 Personal through this course),

you start with more than 85 components at your disposal - you can even add more

components later (those that you create or from a third party component vendor).

The components on the Component Palette are grouped according to the function they

perform. Each page tab in the Component palette displays a group of icons representing

the components you can use to design your application interface. For example, the

Standard and Additional pages include controls such as an edit box, a button or a scroll

box.

To see all components on a particular page (for example on the Win32 page) you simply

click the tab name on the top of the palette. If a component palette lists more

components that can be displayed on a page an arrow will appear on a far right side of

the page allowing you to click it to scroll right. If a component palette has more tabs

(pages) that · can be displayed, more tabs can be displayed by clicking on the arrow

buttons on the right-hand side.

1.4.5 The Code Editor

Each time you start Delphi, a new project is created that consists of one *empty*

window. A typical Delphi application, in most cases, will contain more than one

window - those windows are referred to as forms.

In our case this form has a name, it is called Form1. This form can be renamed, resized

and moved, it has a caption and the three standard buttons which are minimize,

maximize and close. As you can see a Delphi form is a regular-Windows window

13

Ut.ı\(:fQo.,·.,. ~¥:~N\ôJJı1bt, $f~!Jt0;if 'i.!~-;ı~·~·.,ic'i-lıtı. ÇJ.&,~J,¢4.r -Cf

()i:f.l,,lOı;'ec·;

!'.F o::rJ~ ,~ cı \l.::1:.1 i !£">:a:.rnJ
p,tl~;.t,i;

Figure 1.10 Code Editor Window

If the Fornı 1 is the active window and you press [F 12], the Code Editor window will be

placed on top. As you design user interface of your application, Delphi automatically

generates the underlying Object Pascal code. More lines will be added to this window as

you add your own code that drives your application. This window displays code for the

current form (Forml); the text is stored in a (so-called) unit - Unitl. You can open

multiple files in the Code Editor. Each file opens on a new page of the Code editor, and

each page is represented by a tab at the top of the window.

1.4.6 The Object Inspector

Each component and each form has a set of properties - such as color, size, position,

caption - that can be modified in the Delphi IDE or in your code, and a collection of

events - such as a mouse click, keypress, or component activation - for which you can

specify some additional behavior. The Object Inspector displays the properties and

events (note the two tabs) for the selected component and allows you to change the

property value or select the response to some event.

14

15

Figure 1.11 Object Inspector

For example, each form has a Caption (the text that appears on it's title bar). To change

the captions of Forml first activate the form by clicking on it. In the Object Inspector

find the property Caption (in the left column), note that it has the 'Forml' value (in the

right column). To change the captions of the form simply type the new text value, like

'My Form' (without the single quotes). When you press [Enter] the caption of the form

will change to My Form.

ote that some properties can be changed more simply, the position of the form on the

screen can be set by entering the value for the Left and Top properties - or the form can

be simply dragged to the desired location.

1.4.7 The Object TreeView

bove the Object Inspector you should see the Object TreeView window. For the

moment its display is pretty simple. As you add components to the form, you'll see that

it displays a component's parent-child relationships in a tree diagram. One of the great

features of the Object TreeView is the ability to drag and drop components in order to

change a component container without losing connections with other components.

Object TreeYiew . ~

'i]
L, :.;ı DataSource1

ffi- ~ Default {Session}
L Ii] Edit1
L lij Edit2
L,, -Ii] E dit3
· - l§ll lrnage1
L .. ~ lmage3
L l§ll I rnage4
' -~ lrnage5
L 4 lmageld1
L,,.4 lrnageld2

· l;3 Label1
L ~ Label2
L l§ll Label3
L,,.m I ~holi

Figure 1.12 Object Tree View

The Object TreeView, Object Inspector and the Form Designer (the Forml window)

work cooperatively. If you have an object on a form (we have not placed any yet) and

click it, its properties and events are displayed in the Object Inspector and the

component becomes focused in the Object TreeView.

1.4.8 Class Completion

Class Completion generates skeleton code for classes. Place the cursor anywhere within

a class declaration; then press Ctrl+Shift+C, or right-click and select Complete Class at

Cursor. Delphi automatically adds private read and write specifies to the declarations

for any properties that require them, and then creates skeleton code for all the class's

methods. You can also use Class Completion to fill in class declarations for methods

you've already implemented.

To configure Class Completion, choose Tools I Environment Options and click the

Explorer tab.

16

-En;ıronment Ôptio~~ - _: · :_ -_ "- · : - - .-·_ a)
Type Library

Preferences I
I E nvironrnent \/ariables I

Designer j Object inspector i
Delphi Direct I

Palette I Library
Internet

Explorer

E xplorer options----·-·------.

P b~it~;;~itiijıı~>F;;;::~J·.~F,ı~r.e.~
P Highlight jncornplete class items

Explorer sorting -
r.· .6.lphat)etical
r- 2ource

Explorer ca!egories:ı~ı ıuıwam
G2J i Protected
G2J j Public
G2J i Published
.G2J :l Field
G2J i Properties
G2l :l Methods

Classes
r.;.,ı :l Interfaces
G2l i Procedures
G2l :l Types
l~ l \/ariables/Constants
G2J :l Uses

b \/irtuals

Show _çjeclar etion syntax

Class completion option -------.

P finish incomplete properties

(" §lobals

~ Introduced

(ô' froject symbols only

(' Ajl symbols

Fig.1.13 Class Completion

1.4.9 Debugging applications

The IDE includes an integrated debugger that helps you locate and fix errors in your

code. The debugger lets you control program execution, watch variables, and modify

data values while your application is running. You can step through your code line by

line, examining the state of the program at each breakpoint.

17

F9

· o" Step Over F8

6 Trace Into F7

·~± Trace to Next Source Line Shift+F7

[]± Run to Cursor F4

Purı UnU Pc'.u:n Shift+FS

InsrJBCl: . ,
~ Evaluate/Modify ...

~ Add Watch ...

Add Breekpoirıt

Ctrl+F7

Ctd+F5

Figurel.14 Run

To use the debugger, you must compile your program with debug information. Choose

Project I Options, select the Compiler page, and check Debug Information. Then you

can begin a debugging session by running the program from the IDE. To set debugger

options, choose Tools I Debugger Options.

Many debugging windows are available, including Breakpoints, Call Stack, Watches,

Local Variables, Threads, Modules, CPU, and Event Log. Display them by choosing

View I Debug Windows. To learn how to combine debugging windows for more

convenient use, see "Docking tool windows".

1.4.10 Exploring Databases

The SQL Explorer (or Database Explorer in some editions of Delphi) lets you work

directly with a remote database server during application development. For example,

ou can create, delete, or restructure tables, and you can import constraints while you

are developing a database application.

18

Dalabases İ Dict~_y 1 Defırition
1 1

•

j. .. :fj ISlocalt: I o:;i,w e •.• ;.......,.. r;......; ''-·' - ''-''
l Ö MS Access Database

I ~~] sen'ha
:::")~Tables

; " C!ill ARC?A.<bı 'f:) !'.ffll aıizaWı.m.ı.DB

l J;·C!ill ONS<b
,••..'.',. m.tı GIAIS.ctı
'i' C!ill lLCE.<b

ı ::+:·tlrn k<1$a.DB
! 4) rn!I k,ual.08

I, +..Hın:1 kcısacikis.DB
!fi·ffll KULLAN!lAN.08

l f rn11 KUR.ı:b
I c.c rıi11 MI\RM.db
! ; C!ill MODELoo

I
:+: ı!ffl PAACAGIAIS.08
+ ffi'!I Paswoıd db
+.c ıjffl peı db
•. IE! srnvıs db

I •lli'ıl!ml':m
·~ smem

Lt hi1JA;l
,t

Figure 1.15 SQL Explorer

1.4.11 Templates and the Object Repository

The Object Repository contains forms, dialog boxes, data modules, wizards, DLLs,

sample applications, and other items that can simplify development. Choose File I New

to display the New Items dialog when you begin a project. Check the Repository to see

if it contains an object that resembles one you want to create.

Business İ WebSnap

New I Active>< J Mufttier J Projectl
I

j Forms
WebServices
I Dialogs I Projects

Corba
İ Data Modules

~ Newllems - .. iJ

Ii [ii]
Batch Fae

~ G'} ~
CLX Component Console

Appücation Application

~ ~ ~.

.
Form Frame Package

~r:; . ffl.
Service Text Thread Object

Application

Contıo/Pemel
App6cation

Control Panel
Modele

Data Module DLL Wizaıd Pıoject Group Repoıl

Resource DLL
Wizard

Service Unit Web Server
tı.ppliccıtion

ml~F
XML Data

Binding

Figure 1.16New Item

19

You can add your own objects to the Repository to facilitate reusing them and sharing

them with other developers. Reusing objects lets you build families of applications with

common user interfaces and functionality; building on an existing foundation also

reduces development time and improves quality. The Object Repository provides a

central location for tools that members of a development team can access over a

network.

1.5 Programming with Delphi

The following section provides an overview of software development with Delphi.

1.5.1 Starting a New Application

Before beginning a new application, create a folder to hold the source files.

1. Create a folder in the Projects directory off the main Delphi directory.

2. Open a new project.

Each application is represented by a project. When you start Delphi, it opens a blank

project by default. If another project is already open, choose File / New Application

to create a new project. When you open a new project, Delphi automatically creates

the following files.

• Projectl.DPR : a source-code file associated with the project. This is

called a project file.

• Unitl .PAS : a source-code file associated with the main project form.

This is called a unit file.

• Unitl.DFM : a resource file that stores information about the marn

project form. This is called a form file.

3. Choose File / Save All to save your files to disk. When the Save dialog appears,

navigate to your folder and save each file using its default name.

20

Later on, you can save your work at any time by choosing File / Save All.

When you save your project, Delphi creates additional files in your project directory.

You don't need to worry about them but don't delete them.

When you open a new project, Delphi displays the project's main form, named Forml

by default. You'll create the user interface and other parts of your application by placing

components on this form.

i_; Form1 ' - - [fj~~

.....

. .. ·

Figure 1.17 Form Screen

The default form has maximize, minimize buttons and a close button, and a control

menu

• Jext to the form, you'll see the Object Inspector, which you can use to set property

values for the form and components you place on it.

The drop-down list at the top of the Object Inspector shows the current selected object.

When an object is selected the Object Inspector shows its properties.

1.5.2 Setting Property Values

ıVhen you use the Object Inspector to set properties, Delphi maintains your source code

for you. The values you set in the Object Inspector are called design-time settings.

For Example; set the background color of Forml to Aqua.

21

Find the form's Color property in the Object Inspector and click the drop-down list

displayed to the right of the property. Choose clAqua from the list.

1.5.3 Adding objects to the form

The Component palette represents components by icons grouped onto tabbed pages.

Add a component to a form by selecting the component on the palette, then clicking on

the form where you want to place it. You can also double-click a component to place it

in the middle of the form.

, Eıe ~dit 2earch ~iew Eroject &ın ı;;omporıent Qatabase [ools \l.ı'.indow tıelp ' ;J<None> .::J I .~ IY# !
······.·.~·· ti ~ iı..·····.T~ ~ i ~., iii'.! ~Jj)···i'.;d~ıd··ı·A~:'.'.0~]·w,~jzfs,~i~f ı-o..ata Access ı Dat:C..on.. '.:.ı.'.Yd~E;~.-.'e. '., ı...-. ·D·····at;Snao l"HD~]ADD ı

lJ'l1 ml \TI, ::8 ! : ;; · H İ o rs: ,/1), IE5J ~ .~ A.~ i '.i!.l rx @ ~ ~ =/ , I,=: ~
....... --------···-·-··:..... 1.:2......•.......................:•............•:. ·-· . •

Components

Component palette tabs

Figure 1.18 Standard Bar

1.5.4 Add a Table and a StatusBar to the Form

Drop a Table component onto the form. Click the BDE tab on the Component palette.

To find the Table component, point at an icon on the palette for a moment; Delphi

displays· a Help hint showing the name of the component.

Figure 1.19 BDE Component palette

nen you find the Table component, click it once to select it, and then click on the

form to place the component. The Table component is non visual, so it doesn't matter

22

Figure 1.20 Table in the Form

where you put it. Delphi names the object Table1 by default. (When you point to the

component on the form, Delphi displays its name--Table1--and the type of object it is-­

Table.)

.

. Table!: TTable I •

Each Delphi component is a class; placing a component on a form creates an instance of

that class. Once the component is on the form, Delphi generates the code necessary to

onstruct an instance object when your application is running.

et the DatabaseName property ofTable1 to DBDEMOS. (DBDEMOS is an alias to the

sample database that you're going to use.)

Select Tablel on the form, and then choose the DatabaseName property in the Object

pcctor. Select DBDEMOS from the drop-down list.

23

,ml Form1
E: ·~ Default {Session}

E: ı+ij DBDEMOS {t,.lias}
31·? .\ <?> {T able1}

, t~~;;'Qeı~\tJ:~:I:; _
Properties I Events !

Table1

Constraints f T CheckConstraints
Databaset·Jame DBDEMOS
Defaultlndex l~JBASE Filesı~:=ı•mzg1Exclusive
FieldDefs DefaultDD
Fi~r · · · · · · ·· E xcel Files
Fiİt~;~d ··········ıs Local

MasterFields
'"·""•""'•''

M asterSource
Name

·;..ıı <"h(",1).1 •..•

Figure 1.21 Select DatabaseName

Double-click the StatusBar component on the Win32 page of the Component palette.

This adds a status bar to the bottom of the application.

et the AutoHint property of the status bar to True. The easiest way to do this is to

double-click on False next to AutoHint in the Object Inspector. (Setting AutoHint to

True allows Help hints to appear in the status bar at runtime.)

1.5.5 Connecting to a Database

The next step is to add database controls and a DataSource to your form.

24

1. From the Data Access page of the Component palette, drop a DataSource

component onto the form. The DataSource component is non visual, so it doesn't

matter where you put it on the form. Set its DataSet property to Table 1.

2. From the Data Controls page, choose the DBGrid component and drop it onto

your form. Position it in the lower left comer of the form above the status bar,

and then expand it by dragging its upper right comer.

If necessary, you can enlarge the form by dragging its lower right comer. Your form

should now resemble the following figure:

The Data Control page on Component palette holds components that let you vıew

database tables .

. . . •··.~L . --~r

Figure 1.22 DBGrid in the Form

25

3. Set DBGrid properties to align the grid with the form. Double-click Anchors in

the Object Inspector to display akLeft, akTop, akRight, and akBottom; set them
all to true.

4. Set the DataSource property of DBGrid to DataSourcel (the default name of the

DataSource component you just added to the form).

Now you can finish setting up the Table! object you placed on the form earlier.

5. Select the Table! object on the form, and then set its TableName property to

BIOLIFE.DB. (Name is still Table L) Next, set the Active property to True.

When you set Active to True, the grid fills with data from the BIOLIFE.DB database

table. If the grid doesn't display data, make sure you've correctly set the properties of all

the objects on the form, as explained in the instructions above. (Also verify that you

copied the sample database files into your ... \Borland Shared\Data directory when you
installed Delphi.)

Giant Maori Wrasse
Blue
Lunartail Rockcod

.........
'

Figure 1.23 Show Table

26

data-aware control
(Grid) DataSource

dataset
(Table) BDE database

The DBGrid control displays data at design time, while you are working in the IDE.

This allows you to verify that you've connected to the database correctly. You cannot,

however, edit the data at design time; to edit the data in the table, you'll have to run the

application.

6. Press F9 to compile and run the project. (You can also run the project by

clicking the Run button on the Debug toolbar, or by choosing Run from the Run

menu.)

7. In connecting our application to a database, we've used three components and

several levels of indirection. A data-aware control (in this case, a DBGrid)

points to a DataSource object, which in turn points to a dataset object (in this

case, a Table). Finally, the dataset (Table1) points to an actual database table

(BIOLIFE), which is accessed through the BDE alias DBDEMOS. (BDE aliases

are configured through the BDE Administrator.)

This architecture may seem complicated at first, but in the long run it simplifies

development and maintenance. For more information, see "Developing database

applications" in the Developer's Guide or online Help.

27

CHAPTER2

2 THE RAVE REPORTING

2.1 Project Tree

The Project Tree provides an efficient way to visually manage all of the reports in your

project. It quickly tells you the structure of your reporting project and the types of

components contained on each page with icons that are the same as the component

buttons. The Project Tree also visually shows parent-child relationships, the print order

of component as well as the current selection (green check marks). You can select

components by clicking on the component on the Page in the Visual Designer or on the

Project Tree. Non-visual components appear only in the Project Tree in order not to

clutter up your report design.

]?f'ı aveProıect
El-<@; Report Library

, ~- [{ffiJ Report1
[ill] Page1

~-Global Page Catalog
8,,. Data View D \ctionary

• ..,iti Database1

Figure 2.1 Project Tree

There are three main sections in the Project Tree:

• The Report Library

• The Global Page Catalog

• The Data View Dictionary

Reports themselves can contain any number of page definitions. Global Pages are used

to hold items that you want accessible to multiple reports. Data Views contain your field

definitions and provide a link to the data in your application.

28

2.2 Design Tools

Rave is all about easy management. Besides making reporting easy and organized, Rave

likes to keep itself organized and all according to what you want.

Figure 2.2 Toolbars

Since Rave is designed to be of ease to you there are three easy three ways for you to

manage the many toolbars within Rave, which are:

• Tab-docking

• Normal docking

• Free-floating

Rave's many toolbars make it easy to design even the most complicated report. The

toolbars include: Project, Designer, Zoom, Alignment, Color, Line, Font, Standard,

Drawing, Report and Barcode component toolbars. Since it is possible to create and

install new components, you may have other component toolbar buttons in your

designer.

Figure 2.3 Project Toolbar

The Project toolbar provides quick access to project level functions such as New

Project, Project Open, Project Save, New Report, New Global Page, New Data View,

New Report Page or Execute Report.

29

Figure 2.4 Designer Toolbar

The Designer toolbar allows you to change the characteristics of the Page in the Visual

Designer. Characteristics such as whether the grid is being shown, snap to grid, draw

grid on top, show band headers, show rulers, and show the waste area of the page. The
'

last button brings up Rave's extensive Preferences dialog, which is described later.

Figure 2.5 Zoom Toolbar

Vhen you are working on a report with a complex design, you will find it much easier

~ you become familiar with the Zoom toolbar, which gives you quick access to Rave's

extensive zooming capabilities. Select the zoom percent from a drop down list, type it in

ruse the Zoom Tool, Zoom In, Zoom Out, Zoom Selected, Zoom Page Width or Zoom

,,nole Page buttons.

Figure 2.6 Alignment Toolbar

o help keep your report looking professional, Rave's Alignment toolbar provides

access to a whole host of options to micro-manage the components on your page. The

eft/Top, Center, Right/Bottom, Center In Parent, Space Equally, Equate

"idths/Heights options offer the traditional alignment options. The Move Forward,

ove Behind, Bring to Front and Send to Back order movement buttons allow you to

nange the print order of components and are visually backed up by the listing of the

romponents in the Project Tree. Lastly, the buttons Tap Left, Tap Right, Tap Up and

30

Tap Down allow you to micro-adjust the position of components to the exact position

you need.

Figure 2.7 Colors Toolbar

The Color toolbar allows you to quickly select the primary and secondary colors of your

components. There are 8 color spots that you can use to store any custom colors that

you will be reusing throughout the project. If the colors available aren't enough, you can

double click on the custom color palettes and create a different color using Rave's Color

Editor (shown at right). With the Color Editor, you can select from a wider variety or

colors or create your own combination of Red, Green and Blue and even select a

percent saturation for the current color.

Figure 2.8 Colors Editor

The Line toolbar is a useful tool for changing the line/border thickness and style for

omponents such as Line and Circle. Sizes are listed in points instead of pixels so that

your lines will always be the same thickness on your reports no matter the resolution of

the printer that you are using.

Eigııre-2.9 Line Toolbar

31

32

The Font toolbar provides quick access to a text component's font and alignment

properties. It can also be useful for quickly viewing the font options for the currently

elected text component(s).

Figure 2.10 Fonts Toolbar

2.3 Reuse and Maintenance Tools

Reports often take a large part of the development time for an application. Many times,

there are many similarities between the design of separate reports.

This is where Rave's Mirroring technology comes in. When a component is set to mirror

other, it assumes the appearance and properties of the component it is mirroring. The

vo components can be on the same page, across pages within the same report or on a

global page. This is the primary purpose of a global page. You can almost think of it

e an Object Repository, a central location for you to store reporting items that you

·ant accessible to more than one report. If the component is a container control like

-:RaveSection (similar to Delphi's TPanel), all child components are mirrored as well.

nen the original component changes, all mirroring components will also change.

'hile the mirrored component cannot change it properties, you can add additional

components if it is a container control.

rıere are just a few examples of where Mirroring would be useful:

.our customer wants a standard page header and footer on every page of their 50

reports. Now imagine you have all the reports done and your customer wants to change

layout of the headers and footers.

-~e Old Way - You would need to open up all 50 report definitions and change them

ne at a time.

I • - - - - - - I

ICompıny ~
Addı1)ıotv+'··.·sı~fı, :., •.•-zıp- - - • -- - - • ıı== ..ı·· ---------

The Rave Way - You would mirror the standard header and footer on each report you

create and then any changes would only have to be done in one location. Also, if the

standard header included a large bitmap, your reporting project would only contain a

single copy rather than the many copies that a traditional report designer would require.

You have to replicate a pre-printed form. The problem is there are 6 different variations

of this form with only minor differences between each.

The Old Way - Assuming a traditional report designer could even handle this type of

report, you would create the first form, cut and paste it into the second, make the minor

modifications, then repeat for the other 4 forms, ending up with 6 reports that would be

hard to maintain and take up a lot more memory.

The Rave Way - You would first create the common items of the form on a separate

page, then mirror those on each form and add the unique parts for each as needed. If

anything ever needed to be changed in the common section of the form, you would only

need to change it in one place and since you're sharing most of the form's content, the

report definitions take up much less room.

RaveProjeci

Repo,11~~::,mı,po,1
M!lS!er0e1eiRepoı1
Gl'oupirıgRepoı1
MirrorRf:1)or1
DattıMiırorRep(l(t

::~ .1 :::;
lt- fl," USSectiorı
E;) ,- lnlt.rSection. =ı Recl&1"1Q!e2

'.-..,,.t:ı- Sect005
L. t1ı, De1rılcxt2

T1;x1,
: 'J"lext2

{£,- :~-- Addr1()r;ySectiOrı
Et> , •• Adli"1Addr2Seciion
r£ · f"' AddressSectiorı

I M"'P_ ogeRepon
hıleillıı1eıgeReport
TwoDelNIS
VV2Tı::ıxforın
ınvoıce

Globe/ Ptı9e Ctılııbg
ffiİI GJoOOIPtıge1
filtı G1otıt,1Peıge2

Figure 2.11 Mirror Report Example

33

Every text component has a FontMirror property which you can assign to a FontMaster

component. This will allow you to change the fonts of many text controls from a single

location. Imagine having Header, Body and Footer FontMaster components on a global

page and changing the appearance of all of your reports with just a few mouse clicks.

Another important aspect of maintaining any large project is documentation. The

Project and every Report, Page, Data View and Data Field component has a multi-line

Description Property that can be used to comment the intended usage or other

information. This can be useful if you are coming back to a project that you last worked

on 6 months ago or especially if another programmer or your end user will be

modifying reports that you created.

2.4 Standard Components

Figure 2.12 Standard Tool Bar

Text - This component is used to display fixed text on your report for items such as

column headers or report titles .

.. Iemo - This component is used to display fixed text in a word wrapped fashion on your

report. Using the MailMergeltems property and the Mail Merge Editor shown below,

_ ou can create a mail merge type of report where Rave will replace tokens in the memo

.ext with a replacement string. Note that this replacement string can be edited with the

Edit button, which will display the Data Text Editor for quite a bit of extra functionality.

Section - This component is a terrific component manager. It acts as a container for

ther components, in other words it help you to group components together. By

=uperly using section components and mirroring, you can create reusable and

zaaintainable reports in no time flat.

34

Bitmap - This component is used to display a bitmap (*.bmp). Through the FileLink

property you can reference a file on the hard disk.

Metafile - This component is used to display a metafile (* .wmf). Through the FileLink

property you can reference a file on the hard disk.

FontMaster - This component is used to control the font characteristics of any text

control through their FontMirror properties. See Reuse and Maintenance for more

information.

2.5 Drawing Components

Line - Draws a diagonal line. (This may not seem like a unique feature but did you

know that most Delphi reporting tools cannot create a diagonal line visually.)

Figure 2.13 Drawing Tool Bar

· HLine - Draws a horizontal line.

VLine - Draws a vertical line.

Rectangle - Draws a rectangle.

Square - Draws a square.

Ellipse - Draws an ellipse.

Circle - Draws a circle.

2.6 Reporting Components

Region - This component acts as a container for Band and DataBand components. To

create a composite or sub-report, simply drop more than one region on a page and add

the appropriate bands to each.

35

Figure 2.14 Report Tool Bar

Band - This component is primarily used to create header and footer bands in a banded

style report. A Band component can only be created within a region and it's purpose is

controlled through the Band Style Editor shown below. The Band Style Editor displays

a virtual layout of all of your bands for the given print locations of each band or data

band. Note that you can create as many Bands as you like and a Band may print in

multiple locations if the report design requires it. So for example, if you want a solid

horizontal line to appear above and below a detail body, you could create a single band

and set it to print on both the Body Header and Body Footer. You can also control the

Print Occurrence for a Band, having it continue on a new page or column or any

combination of occurrence settings. You can set a Band to group on specific fields and

can create as many different types of group headers or footers as your report requires.

Basically, with Rave's Band and DataBand components, you'll be able to create just

about any banded style layout that you can imagine.

. DataBı

Band Ştyle Editor ~

DemoT ex!Band (B)
T Band1 (R)+ DataBand1 (Master)
T Band2 (B)
T Band3 CB)+ D,ıtaBand2. jDet,1ilj+ D,1taBand2 (Detail)+ D,1t,1Band2 (Detail)
i Band4 (b)

T Barıcn (F:)+ DataBand1 (Master)
T Band2 (B)
T Band3 (B)+ DataBand2 (Detail)+ DataBand2. (Detail)+ DataBand2. (Detail)
i Band4 (b)

T Band1 (R)+ DataBand1 (Master)
f Band2 (B)
f Band3 (B)+ DataBand2 (Detail)+ DataBand2. (Detail)+ DataBand2. (Detail)
i Bancl4 (b)

QK. I
Çancel]

Print l_ocatiorı

O ~ody Header (B)

O Q_roup Header (G)

O B_ow Header (R)

0Qetail (D)

Figure-ı~rs-Band Style Editor

36

DataBand - The DataBand component is fairly similar to a band component except that

it is tied to a particular Data View and iterates across the rows in the Data View. You can

link DataBands together for Master-Detail to unlimited levels or multiple details on the

same level. Some advanced features that are supported by a DataBand include

eepBodyTogether, KeepRowTogther, StartNewPage, MaxRows and Orphan/Widow

"ontrol.

DataText - The DataText component is the primary means to output fields from your

atabase. You can quickly select a specific Data View and DataField with Property

?anel or use the Data Text Editor shown below to create any combination of string

constants, data fields, report variables or project parameters. The & concatenation

perator is the same as the + operator, except that it also inserts a space. Report

'· ariables are items such as total pages or current date and time in a variety of formats.

Project Parameters are custom variables that you create and initialize from your Delphi

zpplication. Project Parameters can be used for items such as user defined report titles,

:mnting the current user name or other custom information,

Qf< · I [2r,cel

Figure 2.16-Data 'Fext-Editor

37

DataMemo - This component is very similar to the Memo component except that it

retrieves data from a DataField. DataMemo component's print text data out in a word

wrapped fashion and the DataField can be any text type, not just memo fields. It also

has RTF and mail merge support.

CalcText - This component is used to perform simple operations such as Sum, Average,

Count, Min and Max on a data field. You can set the value as a running total and place

it in any type of band or anywhere on the page) you need it.

DataMirrorSection - The data mirror section component is similar to Rave's section

component (found in the Standard Toolbar) with one major difference, it will

dynamically mirror another section depending upon the value of a DataField. You

configure the data mirror section using the Data Mirror Editor (shown below). This

component is very useful for printing out data that has different formats depending upon

the type of data. One example is an address field that could print a US format if the

ountry field is "US" and an international format otherwise (using the Default option in

the Data Mirror Editor). You could also print Boolean field values with your own

ustom bitmaps.

Data Mirrnrs

US (Page2.USSection) • · ·
' Default• (Page2.lrıterSectiorı)

...................•..•..........•....•..•............•................ _]

6dd .. l ı l
O Default

· Data Mirror Settirı9s

Field Value

Mirrored Section

Çarıcel

Figure 2.17 Data Mirror Editor

38

2.7 Barcode Components

Figure 2.18 Barcode Toolbar

PostNetBarCode - Prints a US PostNet bar code.

I2of5BarCode - Prints Interleaved 2 of 5 barcodes.

Code39BarCode - Prints standard and extended Code 39 barcodes.

Code128BarCode - Prints A, Band C Code 128 barcodes.

UPCBarCode - Prints UPC- 12 barcodes.

EANBarCode - Prints EAN-13 barcodes.

2.8 Anchors
Anchors are a powerful way to create a report that dynamically adjusts to changing

sizes. This allows you to create reports that can print well whether the user selects

andscape or portrait, 8.5" by 11" or A4. There are 6 different anchor values for both the

rizontal and vertical dimensions to allow you to control each component in exactly

-:..e manner that it needs. The Anchor Editor (shown at right) even shows you a helpful

cirmap of how each anchor setting works.
AnchorEditor r • • f!!l

Figure 2.19--:A.:nchorEditor

39

40

2.9 Code Based Reports

Lately Delphi has decided to include Rave Reports as the default reporting solution,

replacing Quick Reports. Since they work in very different paradigms, many people

were confused by the new environment. This is intended as an introduction for people

who haven't worked with Rave yet, and would like to start.

_ .owadays Delphi ships with Rave Reports 5.0.8. If you haven't already, download the

update from the registered users page, since it fixes some important problems.

·ou can develop reports with Rave using two different ways: Code Based or with the

"isual Designer.

·ith Code Based, you write reports using plain Delphi code. That provides a very

flexible way displaying any kind of data, allowing any kind of complex layouts.

To write a code based report, just drop a TRvSystem component on the form and write

e report on the OnPrint event handler. Sender is the report you are creating, and can

typecasted to TBaseReport. It contains all the methods you need to output

:nforrnation to that particular report.

-.9.1 Simple Code Base Report

ere's a simple report using the code based mechanism:

crocedure TForrnMain.RvSysternPrint(Sender: Tübject);

gm

vith Sender as TBaseReport do

gm

SetFont('Arial', 15);

GotoXY(l,1);

Print('Welcome to Code Based Reporting in Rave');

end;

-~d;

To execute this report, call RvSystem.Execute method.

So, what does that simple code do? First, it calls SetFont to select the font and size of

the text that will be printed from that point on. Then it positions the cursor on the

coordinates (1, 1). These coordinates are expressed using the units set in the

SystemPrinter. Units property of the RvSystem object, and it defaults to Inches. You can

set it to unUser and set a number relative to Inches in the SystemPrinter.UnitsFactor

property. For example, if UnitsFactor was set to 0.5 then 1 unit would correspond to

half an inch. Finally, the code calls the Print method to output the text. Here's the

output:

Welcome to Code Based Reporting in Rave

Figure 2.20 Report Preview

2.9.2 Tabular Code Based Report

Here's another example. It displays a list of the folders in the root of the current drive,

along with a recursive count of number of files and folder, and total size of the files

included in each folder.

procedure TFormMain.PrintTabularReport(Report: TBaseReport);

var

FolderList : TStringList;

: Integer;

NurnFiles : Cardinal;

NumFolders: Cardinal;

41

PrintCenter('List of Folders in the Drive Root', 4);

Newline;

Newline;

SizeFiles : Cardinal;

Root : string;

begin

with Report do

begin

SetFont('Arial', 15);

Newline;

Clear Tabs;

SetTab(0.2, pjl.eft, 1.7, O, O, O);

SetTab(l.7, pjRight, 3.1, O, O, O);

SetTab(3.1, pjRight, 3.5, O, O, O);

SetTab(3.5, pjRight, 4.5, O, O, O);

SetFont('Arial', 10);

Bold := True;

PrintTab('Folder Name');

PrintTab('Number of Files');

PrintTab('Number of Folders');

PrintTab('Size of Files');

Bold := False;

''\
I~~

Newline;

Folderl.ist := TStringList.Create;

try

Root := IncludeTrailingPathDelimiter(ExtractFileDrive(ParamStr(O)));

EnumFolders(Folderlist, Root);

for i := O to FolderList.Count - 1 do

begin

PrintTab(FolderList[i]);

GetFolderlnfo(IncludeTrailingPathDelimiter(Root+Folderlist[i]),

NumFiles, NumFolders, SizeFiles);

P-rintTab(Fo-rmatt'o/ou',[NumFifosjJJ;-

42

PrintTab(Fom1at('%u',[NumFolders]));

PrintTab(Format('%u bytes',[SizeFiles]));

New Line;

end;

finally

Folder List.Free;

end;

end;

end;

Notice that a different approach has been taken: instead of specifying the coordinates of

each text output, the printing was done using Lines and Columns as references. The line

heigh depends on the size of the current font: each unit represents 1/72nds of an inch, so

each line printed with a size 10 font will have, aproximatelly, a height of 0.138 inches.

Lines are advanced after calls to PrintLn or NewLine. Colums are defined using calls to

the SetTabs method, and the PrintTab method will print the text in the current column

and advance to the next one. Here's the output:

',.
'
'

List of Folders in the Drive Root

Folder Name
Arquivos de progrsmss
D.ocuments and Settings
wır.mows

Numbeı of Files
984
899

5205.

thıııılıer of Folders Size of Files
1571 289576931 bytes
1359 431507112 bytes
6407 1544102897 bytes

Figure 2.21 Report Preview

_.9.3 Graphical Code Based Report

You can include shapes and images in your code based report, along with the text. The

followingexample demonstrates that:

. rocedure TFormMain.PrintGraphicsReport(Report: TBaseReport);

Bitmap : TBitmap;

43

begin

with Report do

begin

Canvas.Brush.Color := clGray;

Rectangle(0.3, 0.3, 4.7, 3.3);

SetFont('Arial', 15);

FontColor := clRed;

PrintXY(0.5,0.5, 'Just look at all the graphics!');

Bitmap := TBitmap.Create;

try

Bitmap.LoadFromFile('delphi.bmp');

PrintBitmap(3.5,0.3,1,1, Bitmap);

PrintBitmap(l,2,3,3, Bitmap);

Canvas.Pen.Color := clBlue;

Canvas.Brush.Bitmap := Bitmap;

Ellipse(5,0.3,6,3 .3);

Ellipse(2, 1,4,1.9);

finally

Bitmap.Free;

end; ,,,

Canvas.Pen.Color := clBlack;

Canvas.Brush.Style := bsSolid;

Canvas.Brush.Color := clYellow;

Pie(0.7,0.7, 1. 7, 1.7, 1, 1, 1,2);

Canvas.Brush.Color:= clGreen;

Pie(O.7,0.7, 1. 7, 1. 7, 1,2, 1, 1);

end;

end;

- this example the methods Rectangle, Ellipse and Pie have been used draw shapes

'ith different fills. Bitmaps were outputted using PrintBitmap and as the brush of the

::Jipses. Here's the output:

raphies-Report Example

44

Figure 2.22 Report Preview

2.1 O Visually Designed Reports

-.10.1 The Visual Designer

If you are used to work with Quick Reports, the default reporting engine included in the

• revious versions of Delphi, you created your reports using Delphi's own form designer,

:ınd they were save in the DFM, included as resources in your executable. Rave works a

it differently in this aspect: it has it's own report designer, and saves the report using

t's own file format. This has some advantages, including the fact that your reports can

made "standalone", and be used or updated independently of your application, or

even made available in a Intranet or in the Internet, using Nevrona's Rave Report

Server.Of course, you can still have it saved in a form's bFM.

: I

o get started with the Rave Visual Designer, drop a TRvProject in a form. This will be

- ...e link from your application to the reports you are developing. If you want, you can

d a TRvSystem and link your RvProject to it, through it's Engine property. The

System is the object responsible for the general configuration of the reports: the

rrinter that is going to be used, the margins, the number of pages, and so on. To start a

ew project, double click the RvProject you added to the form, or select "Rave Visual

Designer'' from its context menu.

45

This is the interface that you will be working on:

Figure 2.23 Rave Visual Designer

The interface is simple, and you might be familiar with some parts of it from Delphi's

IDE. On the top there's the menu, the toolbar, and the component pallete that contain the

components that will be used in the reports. In the left there's the Object Inpector, which

will be used to adjust the properties of the components of the report. In the middle

there's the Page Designer or the Event Editor, and in the left there's the very usefull

Project Treeview. For a quick overview of the components in the pallete, you can go to

. levrona's Visual Designer page.

;,ı.

A Rave Project File can have one or more reports. That way you can keep common

items between them in a single location, called Global Pages. If you expand the Report

Library node of the Project Treeview, you can see that right now you are working on

Report}. Clicking on it, its properties will show on the Inspector. Let's change it's name

and call it SimpleReport. Next, go to the Standard tab on the Component Pallete, and

ick a Text component and add it to the page. Change its text property, and adjust its

size and position. Here's how it looks like:

46

Figure 2.24 Component Palette: Standard Tab

As you can see, the properties that were changed from the default values are shown in

bold. In this case, I changed the Font, Text and Truncate properties. By default it does

not highlight Name, Pos and Size changes. If you'd like to see them, right click the

Inspector and uncheck "Exclude Name, Size and Pos changes" in the context menu.

You might have also noticed that Rave does not have an auto size property. You can use

the Truncate property to have that effect: if truncate is false, the design time size will

have no effect.
: ı.
'. 'I

You can see the result of this simple report right on the designer: Press F9 or use

File/Execute Report to run it. Now let's do it in our application. Save your project and

etum to Delphi. Change to ProjectFile property of RvProject to point to the file you

just saved. To run the report, add a call to the Execute method of the RvProject object in

button click, for example.

vProject.Execute will only work for now because we only have one report in this

roject. If we had multiple reports, we'd have to call SelectReport to choose one before

alling Execute, or calling ExecuteReport directly.

47

- ~-~

Here's the output:

Welcome to Rave Reports Visual Designer

Figure 2.25 Report Preview

Tip: If you Close and Open your project before executing, you won't need to to

recompile your application or restart it to see the changes you just made in the designer.

.... 10.2 Interacting with the Project

If you worked with Quick Reports, you might be used to manipulating the objects in

runtime, changing their Position, Text and Visibility. After all, they were just TObjects!

hile this is possible with Rave, and I'll cover it in a later article, it's a little harder than

was with QR. But don't worry, Rave provides a different answer to this kind of

roblems.

Parameters

If you can use parameters in your reports. They can be defined using the parameters

:;roperty of either the Project, a Report or a Page. Parameters can be defined in either of

taese places, they are just in multiple places for easier access.

.ou can only select the Project and a Report through the Project Treeview. A page,

ıowever, can be selected using the Project Treeview or clicking on it's title above the

__ge designer.

-smong other uses, you can print parameters. So, for instance, if the title of your report

be user-defined, you could pass it from your application into the report as a

rarameter.

48

Let's add a new report to this project to see how parameters work. To do that, click the

fourth button on the toolbar or choose File/New Report. Call it ParametrizedReport,

changing its name through the object inspector. This report is going to be very similar to

the first one, except the text is going to be user-defined.

Now we need to define the parameter that is going to be printed. To do that, still having

the report as the selected object, open the property editor the the parameters property.

There should be listed all parameters of this report, each on a separate line. Add a

parameter called Name, like this:

Iıı.
ı,

Figure 2.26 Strings Editor

Parameters can be printed using a DataText component, available in the Report tab of

the component pallete. Add a Data Text to the page, and open the property editor of the

DataField property. There you can choose which field is going to be printed, when

working with DataAware reports. You can also choose Project Variables, Parameters

and Post-Initialize Variables from there.

o choose the parameter added previously from the Parameters drop-down combo and

ress the Insert Parameter button. The data text expression is now Param.Name. Press

49

OK and try to execute the report, as before. Nothing is printed, since the parameter has

not been set.

We need to set this parameter before printing. Don't forget to save your changes, and

return to Delphi, adding a call to SelectReport before Execute, so we can see the right

report. Before executing, though, we need to set the parameter we added. That is made

using RvProject's SetParam method. This is how my code looks like right now:

procedure TFormMain.btnExecuteClick(Sender: TObject);

begin

RvProject. Open;

RvProject. SelectReport('ParametrizedReport' ,False);

RvProject.SetParam('Name','Leonel');

RvProject.Execute;

RvProject.Close;

end;

Now, when we execute the report, we are going to see the string we set as a parameter

printed. Iı ..

Tip: You can use RvProject.GetReportList to get a list of avaible projects, and add them

to a ComboBox, or a RadioGroup, for example. That makes selecting the report easier.

But this is too simple. Let's change the expression that is going to be printed. Return to

Rave Designer and open the property editor for the DataText we added. You can add

any text you want, combining text, fields, parameters and variables. I changed it to this:

to meet you.'

Figure 2.27 Data Text Sample

50

Here's the result:

Hello, Leonel, nice to meet you.

Figure 2.28 Report Preview

Post-Initialize Variables

Post-Initialize Variables, or simply PI Vars, are variables whose value is only known

after the report has already been printed. It may sound strange, at first, but think about

the number of pages of a report, for example. We can only know it's value after the

report is ready. Actually TotalPages is a report variable that acts like a PI var, and can

easily be printed using DataTexts as we did with Parameters.

'"'lobal Pages

1ıen you have parts of reports that are common to two or more reports, you can put

ıaese in a global page. Let's supose we have a header with our company name, the date

d time that report is being printed, the current page and the number of pages of that

ort. We want that header to be in every report. How can we do it?

ı ..
I,
'

--rst, add a global page to the project, using File/New Global Page, or the Toolbar

saortcut. In that page, add a section component, available in the standard tab of the

mponent palette.

tions are logical groupings of components. They can be used to group component so

~y can be easily moved around the report or as containers for Mirrors, as we are doing

--ht now.

51

Inside that section we add what we want to be printed. In this case, a few DataTexts.

My header looks like this:
' ... -- - - - - - - . ·- - - ~- ·- . - .. - •· - . - .., - . - . - - - - - - . •: ·- - ...·- - .. - - - -- ·: - - - ·.. -· - - ·- ·:- - - - ... - - -·: - - - ... - .. -- - "' ... - .. - ·,

Introduction to Rave Repqı1,s
[Report.DateShort + .' '.+Report:TimeShörtJ ['Pa;,e'+ Report.CurrerıtP~g·e +'.,c,1'.+ Report.TotalPages+'.'J• . < l

--~-----------------------------·

Figure 2.29 Header Sample

Hint: Instead of changing the font property of several components to the same font, link

them to a FontMaster component, available in the standard tab, and set the font on it.

That way is easier to change the font in the future, in case it's needed.

Now add another section to the Pagel of SimpleReport. Set its Mirror property to

GlobalPagel.Sectionl. You will see a copy of the header you created in the global page.

Do the same thing to ParametrizedReport. Now both reports share the same header.

Here how it looks like:

Introduction to Rave Reports
31 /0812003 1 6: 42

F'aı;Je 1 c,f 1,

Hello,Leonel, nice to meet-you.

Figure 2.30 Report Preview

Conditional Printing
Sometimes we need to print certain parts of a reporting depending of some conditions.

Rave has a very powerful way of dealing with this. We can conditionally mirror

sections depending on field values or parameters. Let's create a new Report, calling it a

ConditionalReport.

52

53

Let's pretend that this new report is a trick one. The user can choose the header that is

going to be printed, from two different kinds of headers. He can also choose for the

report to be printed without a header. We are going to use a parameter to tell the report

what kind of header is going to be printed, and a DataMirrorSection to select the proper

header at runtime.

First, add a parameter to this new report called HeaderKind. Let's assume that it will

have the values HO (for no header), Hl (for the first header), H2 (for the second kind of

header). Now add a new section to the global page (you can reach it through the Project

Treeview), with the second kind of header layout. I created a header similar to the first

one, changing the font title and adding a border around the values. It looks like this:

: - - -· - - ,. - - - - - - - - - - - - - - .. - - - "": ·- -· - -· - -:, - - - -· - ~ - - -· - - - - -- - - -· .. - - - - - - ·- - - - - - - - - - - - - - - - - "' - - - -- - - -· - - - - "' - - - - - ,
introduction to Reeve· f:?eports

; I [ReportDateShort + '' + Report.TirrıeShort] ['Page'+ Report.CurrentPage +'of'+ Report.TotalPages+ '.'J 1!
- - .. -- - -- - -- - - - -- - -· - - - -- - - - - ·- - - - - - . -- - - .• ·- - - -- •. - - - ·- -- - - - - - ·- - - - - ·- - - - - - - - - - - - ·- - - .. - - - - - .. -- - - -- - . - - -- -- - - - -

Figure 2.31 Header Sample

. [ow return to the Page1 of ConditionalReport, and add a DataMirrorSection, available

at the Report tab of the component pallete. Go to its DataField property editor, and set

Param.HeaderKind as the expression. Now go to the DataMirrors property editor, and

add two Data Mirrors: if the value is Hl, it should point to the first header, H2, to the

econd. Since HO does not match any mirrors, nothing will be printed. It should look
·· e this:

Figure 2.32 Data Mirror Editor

_;otice that I gave more meaningful names to each of the sections earlier.

int: You can use the OnMirrorValue event of the DataMirrorSection to work on

ranges of values.

_ ıow return to Delphi and add the code to set the parameter according to the user's

choice. Iadded a ComboBox with the options and my code looks like this:

rocedure TFormMain.btnExecuteClick(Sender: TObject);

egın

RvProject.Open;

RvProject.SelectReport(cmbReports.Text,False);

case cmbReports.Itemlndex of

1: RvProject.SetParam('Name',edName.Text);

2: RvProject.SetParam('HeaderKind',Format('Ho/od',[cmbHeaderKind.Itemlndex]));

end;

RvProject.Execute;

RvProject.Close;

end;

ow the proper header will be printed according to the user's choice.

Embedding the Project in the Executable

When you deploy your application, you must include you project file. You can have it

as a separated file, so you can update it in a easier way, only shipping a new one,

without recompiling your application, or include it in your executable. It's easy to do

that: open the property editor for the StoreRAV property of RvProject. There you can

press Load to include the file in the DFM, Save to extract a previously saved file, and

Clear to remove an embedded file: When there's a file loaded in this property, you don't

.::ıeed to ship the project file separately.

54

------~-~ -

55

2.11 Data Aware Reports

2.11.l The Database Connection

There are two ways to access data from inside a report: you can share the same

connection established by your application, fetching records from Datasets that exists in

_ our Forms or Datamodules, or you can configure a new connection on the report,

allowing it to be independent of a paıticular application. For the first method you would

use a Direct Data View, and a Driver Data View for the second. Data View is the analog

of a DataSource/DataSet combination inside the report.

f you intend to deploy your application using Nevrona's Rave Report Server, you

should use Driver Data Views.

-.11.2 The Driver Data View

=._et's create a simple database report using a Driver Data View. Start the Rave Visual

Designer, and start a new project. We need to define the database connection. To do

.ais, choose File/New Database Object, or press the sixth button in the toolbar (the

purple cube). The Data Connections window will appear:

Data

i Data LcokupSecuritv Controller

i!J Database Corırıection

lllJ Direct Data 'ı/ie•,ıiı

fil Driver Data View

/i SitfıpleSecui·rtyController

Figure 2.33 Data Connection Window

Choose Database Connection, and you will be asked which Data Link you are going to

be using. There is a folder called DataLinks where Rave has been installed, containing

some files with the .rvd extensions, responsible from the connection mechanism. By

default, you can choose between BDE, DbExpress and ADO. I'll be using BDE for this

example. Choose BDE, press Finish, and the Database Connection Parameters window

will show up. Every Data Link has a different set of connection parameters available,

similar to those available in the Delphi IDE. For now, just set Alias to DbDemos and

press OK. Notice that a Database object has been added to the Project Treeview, under

Data View Dictionary:

"if R,3veProject
ı:;ı-<& Report Library

) @ [Im] Report1

llifil Page1
l,,-~· G'Jobal Page.Catalog
[;3,. Data View Dictionery

L yf ffl) Database 1

Figure 2.34 Project Tree View

_ Iotice that the settings you configured in the Database Connection Parameters, after the

izard, including usemame and password, if applicable, were saved in the AuthDesign

roperty of the Database component. In the AuthRun property you can use different

settings to be used at runtime, when your report has been deployed.

e are going to create now the Driver Data View. Click on New Data Object, and then

hoose Driver Data View. You should now choose the Database Connection that is

going to be used by this Data View: choose the Database created in the previous step. A

uery Advanced Designer will show up. Drag and Drop the table customer.db from the

ble list to the Layout window. It should look like this:

56

Tables
eriirnels. dbf
biolife.db
clients. dbf

customer.db [Tl)
·~

Custho
Company
Addr l
Addr2
City
Stete

master dbf
rıextcust.db

·' nexlilerrı db
nextord db
orders.db
perts.db
ıeservet.do
vendors.db
venues.db

Figure 2.35 Query Advanced Designer Window

If you have more than one table, you should drag and drop fields that should be joined

etween tables. If you press the Editor button you can check the generated SQL, or

pe-in a more complex query. Let's keep the simple Customer Listing for now. Press

OK and a Driver Data View will be added to the Project Treeview, below the Database

omponents, having the selected fields as subitems:

\:il ..• Data View Dictiorıery
. ffl D büemos

t3· II, D vCustomer
It D vCustomerCustt~ !J

~ D \ıCustomerCorn~,ar,y
~• D·iCustorner.6.ddr1
:®: D vCustomer.6.ddr2
,fi D vCustc,merCity
~ D 'v"CustomerS.tate
'tip D ·iCustc,rrıerZip
~ D ı,ü..ıstorrıerCountry
ifi D vCustorrıerPhohe
'ii D'ı·Üdı:ımerF.6.'X:
It D vCustorner T a:,:R cite
'ii D vCustorrıerContact
tsJ D -Cuslomerl.sstlrıvoiceD ate

Figure 2.36-Project Tree View

57

Notice that I renamed the Database Connection and the Data Viewto more appropriate

names. It's in the Treeview where properties of the fields should be set, like the Display

Label (FullName property), and the DisplayFormat.

2.11.3 Regions and Bands

Report components that should be printed in a fixed position in every page, like fixed

headers and footers can be put directly in page. Components, whose position will be

dependent of previously printed items, should be put in bands. DataBands will be

printed once for every record in the linked Data View, while regular Bands will only be

printed once, regardless of how many records have been selected. Both can contain

Data-Aware components (like DataText), or regular components (like Text).

Bands should be put inside Regions. Regions delimitate the width of the bands, and the

maximum height that bands can use before starting a new page. One page can have

many Regions, and one Region can contain many Bands.

Add a Region to the Page covering its whole area. Inside the region add a Band, to be

ed as the report header, a DataBand, to print the customer information, and another

Band, the report footer.

-- you wish to change the ordering of existing bands in a report, use the Move Forward

d Move Behind buttons in the Aligment Toolbar.

ename the bands to more meaningful names (I used Header, CustomerData and

oter). Set the Data View property of Customer Data to DvCustomer, and set

stomerData as the Controller Band of the Header and Footer bands. You should also

'"'111 the Band Style Editor, from the Object Inspector, and set the Print Location of those

·o bands to Body Header and Body Footer, respectively. You can have an idea on how

ae report is going to be printed observing the Band Display as you change the settings.

: shows iterating bands repeated three times, and other bands only once:

58

T Header (8)+ Custornerbeta (Master)+ CustomerData (Master)+ CustomerData (Master)
i Footer fbl

Figure 2.37 Band Display

We also want the Header to be printed in other pages in case the listing spans more than

one page: check the New Page option in the Print Occurrence groupbox, in that same

dialog.

The Footer band will only print when DvCustomers has reached its end. If you want it

printed in every page, regardless of that, just put the components directly on the page,

below the region, and not in a Band.

In the editor, you can quickly identify the relationship between bands, their styles and

their print occurrences:

P 4 ·+-&Pllffl • &MfttfAfEWi

Figure 2.38 Editor Sample

_.11.4 Adding Fields

- ~ not hard to add fields to a report. You can Ctrl+Drag the fields from the DataView,

- the Project Treeview, to add DataText components to the report, and Alt+Drag them

add Text components containing the Fullname property. This allows you to quickly

reate the layout of the report. Now add some fields to CustomerData and their title to

e Header. I added CustNo, Company, Phone, TaxRate and LastlnvoiceDate.

n't forget that you can use the tools on the Alignment Toolbar to align the

mponents, even if they are in different bands.

59

I added a title to the Header band and a simple text to the Footer band, indicating that

the listing has ended. Later on the series we are going to see how to use the Calcüp and

CalcTotal components to be able to add totals, averages and other calculated values to

the Footer.

2.11.5 Adding the Report to Your Project

To add this report to your project you should use use the same approach as seen in Part

II: just use a RvProject in a Form or DataModule, link it to the report file, and call it's

Execute method. But there is one gotcha when using Driver Data Views: your

application must load the apropriate driver. To do that, just add the unit RvDLBDE to

our uses clause, if using BDE, RvDLDBX if using DbExpress, or RvDLADO if using

ADO.

60

fdorrrıi ı...:..3

CHAPTER3

3 USER MANUAL

3.1 Data base Connection Screen

When user executes program, first database server connection screen appears. In this

screen user enters user name, password, address of database server and database name

which contains dormitory information's in it. In order to use the program user must

have a valid user name and password. Also user must have appropriate privileges on

database; such as view, add, update, delete.

User Neme jro~t

Password (""'1

Server jıo~~lhost

Connect :I Cancel

Figure 3.1 Database Connection Screen

61

3.2 Main Menu

Buildings-Rooms

Figure 3.2 Main Menu

When the connection has been made and user granted to access database; "Main Menu"

hows up. As you can see in the figure there are 6 main sections on main menu. 4 of

them have sub menus (Dormitory, Customer, Cafeteria, Visitors) and two of them are

accessed directly (About, Exit).

3.3 Buildings Menu

In this menu user can manage and organize the dormitory buildings, their floors and

rooms.

3.3.1 Building Organize Form

ill this form user can add, update, or delete buildings. As you may see in the figure

elow, there is a command bar in the center of form. This is called standard bar. In

_.der to increase understandability, simple icons are added according to buttons'

-:Jnctions. In addition to this all buttons has keyboard shortcut key. If you press

derlined latter shown on button, together with "ALT" button on keyboard, program

ill automatically consider that you clicked that button and will execute its function. As

example you entered a building name and you want to add it. No need to remove

ur hand from keyboard and reach to mouse than move it over the Add button and

lick it. Just simply press "ALT" and "A" buttons together on keyboard. That's it. You

ve done it. Building has been added.

62

~ Building Organize

Building f'Jarne : j
...........,.·-··----·-···--

<o> !2_elete <> C!ear<o>,l:\,dd Qçıose

Building Name
~I Dormi_Main

Dorrni No 2
Dormi No 3

Figure 3.3 Building Organize Form

Also all database processes related with building can be done in single form. You don't

ve to open another form and enter building name then search it, after you find it enter

ze-» information and update then come back again previous form. No need to do this .

. ust simply select building that you want to update in list then click edit or press "ALT"

znd "E" together on your keyboard. Your form will transform its self to do update

crocess like figure below. As you can see in the figure, only the buttons related with

zndate is enabled. Rest of them is disabled.

···- - ..•.......... «··~.

Buildin,~ Organize

Building Name : r;rı)fa;t,@if--

~ave <.::s> R_efresh ~cancel

Figure 3.4 Building Organize Form in Edit Mode

63

If you try to delete a building which has floors related with it you will get an error

message as shown in figure below. To delete a building there must be no floors related

with it.

a To delete this building you must delete all related floors with it.

Figure 3.5 Delete Error Message

If building has no relation with floors table then you will get a confirmation as shown in

figure below. If you confirm that process with clicking OK button record will be deleted

ermanently form database. If you don't confirm with clicking Cancel button no change
vill be done. Record will remain in table.

Record will be deleted. Please Confirm,

Buildingr~ame : DorrniNo 2

Figure 3.6 Delete Confirmation Message

_ 3.2 Floor Organize Form

- this form user can add, update, or delete floors related to a building. As you may see

the figure below, there is same command bar in the center of the form which was
mlained in previous form.

64

r-: Floor Organize ··· ···---·············-········-·-··

Building I\Jame : r
Floor Name :

/""'
<~>Qelete ~gefresh Qı;;ıose

Dornıi Main
-·-NY-YYYYYYY.-,vYYY

Dormi No 1
Dormi No 1 , ·--· _
DormiNo1 ·· : ·. ·

Dormi No 1

Figure 3.7 Floor Organize Form

ill the figure below form is transformed to edit mode. In addition to previous editing

explanations, in this form you can change floor's building name. That means you can

ove a floor and all related information to another building with one click.

•.•.••.., ••.•.o.,.<,M, #'-M"~ -·~-<R<0'-~.-,. ="'··. ,.,

-Floor Organize·· · ---·- .. ··-·--· --·- ··--···---··· - ·· - ···-··-···-- --·-···········-·······-···---·-··

Building I\Jarrıe : joormi Main

Floor Name: limJ

~ave
//'_··:~,,,,
"Q/Pe!ete <:)ctear <$)Refresh ~cancel

Figure 3.8 Floor Organize Form in Edit Mode

65

3.3.3 Room Organize Form

In this form user can add, update, or delete rooms related to a floor. As you may see in

the figure below, there is same command bar in the center of the form which was

explained previously. To add a room, user selects a building after that floors related

with selected building is added to list and floor list becomes enabled. Then user selects

floor name and enters a room name and defines room capacity. After all information has

been entered to form, user clicks Add button or just simply presses "ALT" and "A"

keys together on keyboard.

Dorrni !,lain

Çlose

- Room Organize

Building ı,ıame :

Floor I\Jame :

Room i"Jame

Room Capacity : 11 ~·

--···--·,,·,.hh•"•hoohhhA<ono,"hh,•hh•"·••••-hhh ,------------·•••hhhn-nn-nn"nnoShhh ,--------=---···•"•••nnn·nnnho•hhh-.··--------- ı-M•••hhh•••• ••'"••"'• nn• r--··-----·--•-••"••ho,,,nnh,,,.. f"nnnnu,,nn,·<o,,,nn-nn,,nn,,n,,,,nh~••

/r"'

~_,./ Clear

. ~oorn capacity

Dorrni l~ain

Dornıi !·,lain
Dorrni !,lain
Dorrni Main
Dorrni Main

Figure 3.9 Room Organize Form

66

In the figure below form is transformed to edit mode.
--------.,,,,.~~««____ -- -------

Room Organize

Room Organize

Building Name : loor~ıi Main

Floor Name : !Floor ı

Room Name : [:i•MiıliıH
Roorn Capacity : lı 1]

ı:;_ave Qp!ete Qc!ear ~)Refresh $ı'. Cancel

8 uildıng Name Floor Name R oonı Capacity

Doımi Main Floor 1
Dormi l~ain 1 , ,w,,, , ~~

D ormi t,I ain Floor 1
D ormi Main Floor 1

Figure 3.10 Room Organize Form in Edit Mode

3.4 Customers Menu

_.-ı.ı Customer Organize

~ this form user can add, update, or delete customers. Customer may not be related

ith a room. You can clear room information of customer and leave it in database for

·:nure use. As you may see in the figure below, there is same command bar in the center

f the form which was explained previously. There is only one difference from previous

.ommand bar. Print button was added and Clear button removed from this bar.

add a customer user must fill bold areas which are name, surname and gender. Other

formations are optional. After the informations has been entered to form, user clicks

.id button or just simply presses "ALT" and "A" keys together on keyboard.

67

Customer Infcrmations ··-·· ······ ····-·"·-····-···--·-·-­

Name: jm
Surname : 1-rAŞDİZEN - ·--"-'""

Gender : IMale il
Birl/ı Dare :21.08. 1982 --:-1,

Place Of Bırl/ı : IKJRKLARELİ

Bkıod Group : [B Rh (+) ·]

Cıtizen Nurrber : 145418514732

Cell Phone : ~13171 ·

01/ıer Phone : 105332221133

ContactAddress:

.,. Cutomer'sFatlıerInformatons Cutomer'sMJttıerInfcrmab:ns----------ı

Fal/ıer's Name : jMıı Mol/ıer's Name : yiac;ye
1 . . Molter's Jd:ı : ~i---W-ife _

Molter's Pluıe : ~4777=

: Mother's Adcress : I Kocasnan Mah, D,.tiu<
Sok. Kartuer Apt. No
I 0/2 Li:Aebuga;z /

Fal/ıer's Job :

Fal/ıer's Phone :

Fal/ıer's Address :

,, ~

CustomerInfo'"mations I
Name:

r·-,----·m,_,,,,,,, ,~·.········

Surname:
Gender: r-=·u-·,,,,-~.,,-u,,,..,,,=-~~.~

Birl/ı Dare: 103.05.1983 ,,,oJ
,,.J

Place OfBirl/ı: r___,,__,,,,,,_,,,,__,,.,
Blood Group : [, ,,,,,,_,, , ,,, ;.l

CitizenNumber:

Cell Phone :

01/ıer Phone:

Contact Address :

I
¥

r
<Ô)Md 0Edit

Cutı:ırner'sFatherInformations .

Fal/ıer's Name :

Fal/ıer's Job :

Fal/ıer 's Phone :

Fal/ıer's Address

r ,..,,,,__
r-,.,__,,,_,_

I
RentInformations··· ···························--··----- ·········-··----··-······.

BuildingName : r-· ,,,,,,, ··--il Nores :

Floor Name : j _::J
RoomName: r -· -~~-,,,..,.., 3
Rent Status : I il

Rent txranon : r-------
<)cıear

/'""-..

'$)Refresh <·~ ~erint Qı::.ıose

Suıname
'ÇELİK .
TtiŞ.O"iziN ··········=·M ["o"?;~;_·_~:.-.f_i_~_?i.".?I~-_?.·~-~.---~f?T:~;_jj

Place Ol BuıhjBlood GroupjCilizen Numbe,JCelphone JOtheı Phone !Falheıs Nomojf"
, O Rh(·) :43453478431 05335556677, 054=3344 Alrneı C

ELi,,iiRFEı f4541BSi4iii ffi355613171 053322211llMI. -

.. ~r>
,?:\

Figure 3.11 Customer Organize Form

the figure below form is transformed to edit mode.
• - • •·• -r·~-~~·~··--v-. ,.-.,,,·-c·vv.•.<'«~~.w··~-

\~tNo 1;',::.b

\~!

BuildingName : loormi Main i]
Floor Name : ~ --·· ,,,,, ·- ..::J

RoomName : !Room203 _:J
I,,_,,_,, ""'-"':l

Rent Status : JStayin;ı ,,,:,ı
Rent Dı.ration : pı.ıo,2007/31.01.2008

l'lllBS : I First Payment Done, Second
Payment wlbe 15.12.2CXl7

Figure 3.12 Customer Organize Form in Edit Mode

68

---·--~----· -·--. --· -··---

If user clicks Print button Output Options Screen appears. In this screen user decides

what to do with output. There are three choices

I. Send To Disk

2. Send To Screen

3. Send To Printer

r-SelectedPrinter--­
. Microsoft Office DocumerrtImage Wrrter _J

j: ::::::~(::::::::ı
Canceı)

Destination------·---,
r !)inter

r.· Pre~iew..-~~~~~~~
i- [ile

.S,etup

Çopies
~
!'

r (Q\Jte

r Q_ımie,:

Figure 3.13 Output Options Window

- user selects Preview option sample of printing paper appears on the screen. With the

celp of this screen user has an idea when really has printed the list.

of1 ~ El,. @ı ~ Zoorn

Customer List
Name Surname Gender Building Floor Room

1 İsmail
2 Una!

ÇELİK
TAŞDİZEN

M Dormi Main
M Dormi Main

Floor 1
Floor 2

Room 103
Room 203

Figure 3_L4-Print Preview of Customer List

69

Product Quantity [Product Price !Product Barcode

.5 Cafeteria Menu

his menu contains two forms which are Product Organize and Sale form.

5.1 Product Organize Form

D sell something in cafeteria user must enter some products to be sold. In this form

ıer can add, update, or delete products. As you may see in the figure below, there is

ıme command bar in the center of the form which was explained customer organize

rm.

) add a product user enters the information and defines the quantity of goods in stock.

fter the informations has been entered to form, user clicks Add button or just simply

esses "ALT" and "A" keys together on keyboard.

Product Informations - ····-··

Product Na me :

Product Price : I~,[)[) (eg: 2,13)

Product BarTode

Product Quentity : jo iJ
,·········-! Qçıose

I
<(i>~dd !;.dit /=-""' ·,wQelete

<~·
~e.rint

Product Name
Coca Cola 1 Lt
Coca Cola 1 Lt Diet
Coca Cola 2Lt
Coca Cola 450ml
ranta 1 Lt

... , .

ranta 2Lt
fanla 330ml

Figure 3.15 Product Organize Form

70

In the figure below form is transformed to edit mode.

Product Jnfumıations ···-·························-··················· ·······································-·-······--···············-························,.··········

Product Name 18•/İfitMl•Kl .
Product Price : !2 (eg: 2, 13)

Product Barcode : [867544325

Product Quantity : !20 iJ

s_ave ~erint .)e Cancel

Product ı,ıa me

Figure 3.16 Product Organize Form in Edit Mode

If user selects Preview option after clicking Print button the figure below will be shown

on screen. With the help of this screen user has an idea when really has printed the list.

J,' Report Preview ~~f?f}
File Page Zoom

'=l 1iJ 'iiJ / ls% <4 I> I>! Pag f of 1 l ~ 8, ""1 ~ Zoom IIIl!illl % J Iii
~
,.--;\:

?if
Product Report ~_;_:]

Product Name Quanti!t Price Barcode
1 Coca Cola 1 Lt 20 2,00 867544325
2 Coca Cola 1 Lt Diet 7 2,25 862243556
3 Coca Cola 2Lt 10 3,50 876655432
4 Coca Cola 450ml 28 1,50 860506073
5 Fanta 1 Lt 8 2,00 867754321
6 Fanta 2Lt 10 3,50 865546898
7 Fanta 330ml 5 1,50 865432567 :~

/,%

Figure 3.17 Print Preview ofProduct Report

71

3.5.2 Sales Form

In this form user can make sale as long as the goods are in stock. As you may see in the

figure below, there is same command bar in the center of the form which was explained

customer organize form. Only one difference is Edit button was removed due to security

ıssues.

To make a sale user selects a product form list and adjusts the sale quantity as desired.

After the informations has been entered to form, user clicks Add button or just simply

presses "ALT" and "A" keys together on keyboard. Sale time automatically assigned by

system.

Sales

In Stock : 25

Sale Quantity : !3 -!J
Barcode: 860506073

Customer In fur mations -·- ·· -··-­

BuiId ing Name : joormi Main
Floor Name: ;..IF_l_o-or-··-;-·····-···-··-------'3=·:::···

Room Name jRoorn 203

Customer r~ame : r···

, Sa le Informations --·· .•........... ..•..... . ,

Product Name: [coca Cola 450ml

Show Sales : [All

Product Price : 1,5

Total : 4,5

<ci) Q.elete <i>· !3cefresh
,,•'\,,r-.,

~e_rint Çlose

Customer· lnfu [Product Info jPricı:JQuantity!TotallSale Time
>I Not From Dormitory lcoca Cola 1Lt Diet \ 2,251 ... 1 i 2,25107 01.200818 4806 ·

--- -~·~A---~apo·,A···-~=-~<NNNoA·-==·~·N~w~---N~,---~~··~=A·=·-·· ~~-=-' A=.u=~-~ . : - -- - .
NotFromDormitory iFanta330ml : 1,5! 2: 3!0401.200818:47:23
~,.,NAoW~~~~--=•uu.~--,_~,.wmA·--~-=~=--~-=,.,,,· ~-~,,-=,,=-~AA~-~o- mN,,A=A-~o,· =~-.!-.,--~ -. . --- __ .. -

Dormi Main> Floor 1 > Room 103 > İsmail ÇELİI([Fents 2Lt · 3,51 3: 10.5)04.01.200818:45:43...................... ,., , .. ·. . t : , _
Dorrrıi Main> Floor 2 > Room 203 > Unal TAŞDIZEN Toca Cola 450ml 1,51 3: 4.5[04.01.200818:44:26

~?İfr~00?;0it?r},··· (Coca Cola 1Lt Diet ··2:25j 3! 6:fü~~~1.200~}Bi~~ ··'

Figure 3.18 Sales Form

72

f user selects Preview option after clicking Print button the figure below will be shown

n screen. With the help of this screen user has an idea when really has printed the list.

ile ------ --------·--··-···---· ----·

)

Sale Report
Customer Info Product Info Ouanti_ty_ Price Total Price Sale Time

1 Not From Dormitory
-2 Not From Dormitory
3 Dormi Main> Floor 1 > Room 103 > Ismail ÇELiK
4 Dormi Main > Floor 2 > Room 203 > Ünal T AŞDİZEN
5 Not From Dormitory

Coca Cola 1Lt Diet
Fanta 330ml
Fanta 2Lt
Coca Cola 450ml
Coca Cola 1Lt Diet

2.25
1,50
3.50
1,50
2.25

2.25
3.00

10.50
4,50
6.75

07.01.2008 18:48:06
04.01.200818:47:23
04.01 2008 18:45·43
04.01.2008 18:44:26
04.012008 18:43:37

Figure 3.19 Print Preview of Sales Report

,.6 Visitors Menu

ı.6.1 Visitor Organize Form

N'ith the help of this form it is possible to track visitors entered and leaved the

lormitorybuildings. As you may see in the figure below, there is same command bar in

he center of the form which was explained customer organize form.

~o record a visit user must give the building, floor and room and visitor informations.

:ustomer info is optional. After that user may adjust the entrance time as desired or

nay get the current time of system. After the informations has been entered to form,

er clicks Add button or just simply presses "ALT" and "A" keys together on

reyboard.

"o end visit user simply selects related visit record and presses edit. In this mode only

- e exiting time field is enabled. User adjusts the exiting time as desired or gets the

rurrentsystem time and then presses the save button.

73

visited Customer Informations ·· Visitor Informations··· ·,

BuildingName:

Floor Name:

Visitor (s) Info :

"'' I
RoomName:

Entering Time: !ı9:Cl9:20 ~
Exitiııq Time :

Customer r,ıame : r'f"',.f "'},' i !]_et Current Time, __ j

/' <,;)> !)_elete ~erint Qçıose

Show Visits : [Todey

Visited Customer I rılo
~

Dormi Main> Floor 1 > Room 101
Dormi Hain> Floor 3 > Room 301
D ormi Main > Floor 2 > Room 203 >

Figure 3.20 Visitor Organize Form

user selects Preview option after clicking Print button the figure below will be shown

n screen. With the help of this screen user has an idea when really has printed the list.

•.,, ı'!Gl\83
,t Poı;,ıe Zoom

':j g ;) 14 ·~ & N Pace :1 of1 ,&,8,.r>, ol Zoom!ITi1ilil%\ii g
Dormitory Visitor Report

Visited Customer Info Visitor Info Entering Time Exiting Time

' 1 DormiMain, Floor2, Room203, UnalTAŞDİZEN TamerKUKLEN.Ali HARP 08.01.2008 21!06 05 08.01.2008 23!07!23

2 Oormi Main> Floor 1 > Room 101 5 Classmates 08.01 2008 19!07!30 08.01.2008 23!15! 14

3 Oormi Main> Floor 3 > Room 301 SevilayGÜNER 08.01.2008 19!07!30 08.01.2008 22!08!56
4 DormiMain, Floor2, Room203, ÜnalTAŞDİZEN ÜmitYÜCEL.UtukYILDIRIM 08.01.200819!03!06 08.01.2008 21,05,59 c:r,

Figure 3.21 Print Preview of Dormitory Visitor Report

74

3.7 About Menu

This form gives some information about the program and the writer of it.

Donni vı.o
Dor m itory Automation Software

Written By Ünal TAŞDİZEN

[\Jear East University

Facult)" Of Engineering

Departrnent Of Cornputer Engineering

f\licosia - 2007

Figure 3.22 About Form

3.8 Exit Menu

'nee clicked, program immediately terminates it self where ever its or what ever it is

icing.

75

CONCLUSION

Since I am experienced on Delphi and SQL languages I did not had too much

difficulties on this project. When I get stuck, mostly I used internet but also I searched

some books. It was a really good decision to choose Delphi as programming language

and MySQL as a database server. Because when the project was finished I achieved

everything that I have planned before starting to project and I was satisfied with the

result that I have got at the end.

Although I have experience on Delphi and MySQL separately, I haven't used Delphi

and MySQL together before. It was a really good opportunity for me to use them

together in such a project because I was planning to learn them and to do such a project

for a very long time.

For future implementations I tried to make design and programming back bone as

flexible as possible. Any additional modules can be added to automation without much

effort. Printing templates are also stored external in order to make them updateable

according to needs.

76

REFERENCES

http://www.codegear.com

http://www.scalabium.com/faq/dc_tips.htm

http://www.nevrona.com/
Delphi Programming Explorer, JeffDontemann - Jim Mischel ISBN 1-883-57725-X

Database Application Developers Book for Delphi (e Book)

Borland Delphi 6 for Windows (e Book)

Mastering Delphi 6 - Marco Cantu

77

APPENDIX

Program Codes

unit Main;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Grids, DBGrids, DB, DBAccess, MyDacVcl, MemDS, MyAccess, Menus,
StdCtrls;

type
TMainFonn = class(TFonn)
MyConnection: TMyConnection;
MyConnectDialog: TMyConnectDialog;
MainMenul: TMainMenu;
DormitoryManagernentl: TMenultern;
Buildings 1: TMenultern;
Floors 1: TMenultern;
Roornsl: TMenultern;
CustornerManagernentl: TMenultem;
Organize 1 : TMenultern;
Cafeterial: TMenultem;
Visitorsl: TMenultern;
Organize2: TMenuitem;
ProductOrganize 1 : TMenultern;
Salel: TMenultem;
Exitl: TMenultem;
Aboutl: TMenultern;
procedure FormCreate(Sender: TObject);
procedure Buildingsl Click(Sender: TObject);
procedure Floors 1 Click(Sender: TObject);
procedure Roomsl Click(Sender: TObject);
procedure Organize 1 Click(Sender: TObject);
procedure Organize2Click(Sender: TObject);
procedure ProductOrganizel Click(Sender: TObject);
procedure Salel Click(Sender: TObject);
procedure Exitl Click(Sender: TObject);
procedure Aboutl Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

ar

78

MainForm: TMainForm;

implementation

uses Buildings, Floors, Rooms, Customers, Visitors, Products, Sales, About;

{$R *.dfm}

procedure TMainForm.FormCreate(Sender: Tübject);
begin

MainForm.Top := O;
MainForm.ClientHeight := O;
MyConnection. Connect;

end;

procedure TMainF orm.Buildings 1 Click(Sender: Tübject);
begin
BuildingsF orm.Show;

end;

procedure TMainF orm.Floors 1 Click(Sender: Tübject);
begin
FloorsF orm.Show;

end;

procedure TMainForm.Roomsl Click(Sender: Tübject);
begin
RoomsF orm. Show;

end;

rocedure TMainForm.OrganizelClick(Sender: Tübject);
egm
CustomersF orm. Show;

end;

rocedure TMainForm.Organize2Click(Sender: Tübject);
egm
VisitorsF orm. Show;

end;

ırocedure TMainF orm.Productürganize 1 Click(Sender: Tübject);
gm

ProductsF orm. Show;
end;

rocedure TMainForm.SalelClick(Sender: Tübject);
gm
alesForm.Show;

end;

79

procedure TMainForm.Exitl Click(Sender: TObject);
begin
Close;

end;

procedure TMainForm.Aboutl Click(Sender: TObject);
begin
AboutF orm. Show;

end;

end.

unit Buildings;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, DB, MemDS, DBAccess, MyAccess, StdCtrls, Mask, DBCtrls,
ExtCtrls, Grids, DBGrids, Buttons;

type
TBuildingsForm = class(TForm)
MyQuery: TMyQuery;
DataSource: TDataSource;
DBGrid: TDBGrid;
CommandPanel: TPanel;
AddBevel: TBevel;
EditSaveBevel: TBevel;
ClearBevel: TBevel;
DeleteBevel: TBevel;
CloseBevel: TBevel;
AddBtn: TSpeedButton;
SaveBtn: TSpeedButton;
EditBtn: TSpeedButton;
ClearBtn: TSpeedButton;
DeleteBtn: TSpeedButton;
BuildingGroup: TGroupBox;
Label 1: TLabel;
BuildingName: TEdit;
CloseBtn: TSpeedButton;
RefreshBevel: TBevel;
RefreshBtn: TSpeedButton;
MyListQuery: TMyQuery;
CancelBtn: TSpeedButton;
procedure EditBtnClick(Sender: TObject);
procedure SaveBtnClick(Sender: TObject);
procedure ClearBtnClick(Sender: TObject);

80

procedure AddBtnClick(Sender: TObject);
procedure RefreshBtnClick(Sender: TObject);
procedure CloseBtnClick(Sender: TObject);
procedure DeleteBtnClick(Sender: TObject);
procedure DBGridTitleClick(Column: TColumn);
procedure DBGridMouseMove(Sender: TObject; Shift: TShiftState; X,

Y: Integer);
procedure FormShow(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure CancelBtnClick(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

--

var
BuildingsForm: TBuildingsForm;
SortingField, SortingMethod: String;
PreviousColumnlndex : Integer = O;

implementation

81

{$R *.dfm}

procedure TBuildingsForm.EditBtnClick(Sender: TObject);
begin
BuildingN ame. Text := My ListQuery .Fields [1] .AsString;
BuildingName.SetFocus;
BuildingN ame. SelectAll;
EditBtn.Visible := False;
CloseBtn.Visible := False;
CancelBtn.Visible := True;
SaveBtn.Visible := True;
AddBtn.Enabled := False;
DeleteBtn.Enabled := False;
RefreshBtn.Enabled := False;

end;

rocedure TBuildingsForm.SaveBtnClick(Sender: TObject);
·ar
BuildingID: String;
gm

BuildingID := My ListQuery .Fields[O] .AsString;
BuildingName.Text := Trim(BuildingName.Text);
If (BuildingName.Text =")Then
Begin
MessageDlg('You must enter a valid Building Name to save this record.', mtError,

[mbük]~O);-

~-------

With MyQuery Do
Begin

SQL.Clear;
Params.Clear;
SQL.Text := 'Insert Into buildings Set building_name=:building_name';
Params[O].AsString := BuildingName.Text;
Execute;

End;
ClearBtn. Click;
RefreshBtn.Click;

Exit;
End;
With MyQuery Do
Begin

SQL.Clear;
Params. Clear;
SQL.Text := 'Update buildings Set building_name=:building_name Where

id=:building_ id';
Params[O].AsString := BuildingName.Text;
Params[l].AsString := BuildingID;
Execute;

End;
SaveBtn.Visible := False;
EditBtn.Visible := True;
CancelBtn.Visible := False;
CloseBtn.Visible := True;
AddBtn.Enabled := True;
DeleteBtn.Enabled := True;
RefreshBtn.Enabled := True;
ClearBtn.Click;
RefreshBtn.Click;

end;

procedure TBuildingsForm.ClearBtnClick(Sender: TObject);
begin
BuildingName.Text := ";

end;

procedure TBuildingsForm.AddBtnClick(Sender: TObject);
begin
BuildingName.Text := Trim(BuildingName.Text);

If (BuildingName.Text =")Then
Begin
MessageDlg('You must enter a valid Building Name to save this record.', mtError,

[mbük], O);
Exit;

End;

82

end;

procedure TBuildingsForm.RefreshBtnClick(Sender: TObject);
begin
With MyListQuery Do
Begin

Close;
SQL.Clear;
Params.Clear;
SQL.Text :='Select* From buildings Order By '+SortingField+SortingMethod;
Open;

End;
end;

procedure TBuildingsForm.CloseBtnClick(Sender: TObject);
begin
BuildingsForm.Close;

end;

procedure TBuildingsForm.DeleteBtnClick(Sender: Tübject);
var
BuildingID, BuildingName: String;

begin
BuildingID := MyListQuery.Fields[O].AsString;
BuildingName := MyListQuery.Fields[l].AsString;
With MyQuery Do
Begin
SQL.Clear;
Params. Clear;
SQL.Text := 'Select count(id) From floors Where building_id=:building_id';
Params[O].AsString := BuildingID;
Execute;
If (MyQuery.Fields[O].Aslnteger >O) Then
Begin
MessageDlg('To delete this building you must delete all related floors with it.',

mtError, [mbük], O);
End
Else
Begin
IfMessageDlg('Record will be deleted. Please Confirm. '#10#10' Building Name:

-BuildingName, mtConfirmation, [mbOK, mbCancel], O)= rnrOK Then
Begin

SQL.Clear;
Params.Clear;
SQL.Text := 'Delete From buildings Where id=:building_id';
Params[O].AsString := BuildingID;
Execute;

End;
End;

83

End;
RefreshBtn. Click;

end;

procedure TBuildingsForm.DBGridTitleClick(Column: TColumn);
begin
If SortingField <> DBGrid.Columns[Column.Index].FieldName Then

SortingMethod := "
Else
If SortingMethod <> 11 Then SortingMethod := 11 Else SortingMethod := ' Dese';

SortingField := DBGrid.Columns[Column.Index] .FieldN ame;
Try
DBGrid.Columns[PreviousColumnlndex] .title.Font.Style :=
DBGrid.Columns[PreviousColumnlndex] .title.Font.Style - [fsBold];

Except
End;
Column.title.Font.Style:= Column.title.Font.Style+ [fsBold];
PreviousColumnlndex := Column.Index;
RefreshBtn. Click;

end;

procedure TBuildingsForm.DBGridMouseMove(Sender: Tübject;
Shift: TShiftState; X, Y: Integer);

var
pt: TGridcoord;

begin
pt:= DBGrid.MouseCoord(x, y);
If pt.y=O Then
DBGrid.Cursor:=crHandPoint

Else
DBGrid.Cursor:=crDefault;

end;

procedure TBuildingsForm.FormShow(Sender: Tübject);
begin
SaveBtn.Visible := False;
CancelBtn.Visible := False;
ClearBtn.Click;
SortingField := 'building_name';
SortingMethod := ";
RefreshBtn.Click;

end;

procedure TBuildingsForm.FormClose(Sender: Tübject;
var Action: TCloseAction);

begin
DBGrid.Columns[PreviousColumnlndex].title.Font.Style :=
DBGrid.Columns[PreviousColumnlndex] .title.Font.Style - [fsBold];

end;

84

procedure TBuildingsForm.CancelBtnClick(Sender: Tübject);
begin

SaveBtn.Visible := False;
EditBtn.Visible := True;
CancelBtn.Visible := False;
CloseBtn.Visible := True;
AddBtn.Enabled := True;
DeleteBtn.Enabled := True;
RefreshBtn.Enabled := True;
DBGrid.Enabled := True;
DBGrid.SetFocus;
ClearBtn.Click;

end;

end.

unit Floors;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, DB, MemDS, DBAccess, MyAccess, Buttons, ExtCtrls,
Grids, DBGrids, ComCtrls;

pe
TFloorsForm = class(TForm)
FloorGroup: TGroupBox;
Label1: TLabel;
FloorName: TEdit;
DBGrid: TDBGrid;
ComrnandPanel: TPanel;
EditSaveBevel: TBevel;
SaveBtn: TSpeedButton;
EditBtn: TSpeedButton;
AddBevel: TBevel;
ClearBevel: TBevel;
DeleteBevel: TBevel;
CloseBevel: TBevel;
AddBtn: TSpeedButton;
ClearBtn: TSpeedButton;
DeleteBtn: TSpeedButton;
CloseBtn: TSpeedButton;
RefreshBevel: TBevel;
RefreshBtn: TSpeedButton;
MyQuery: TMyQuery;
DataSource: TDataSource;
Laoel2: TLabel;

85

BuildingsCmb: TComboBox;
MyListQuery: TMyQuery;
CancelBtn: TSpeedButton;
procedure RefreshBtnClick(Sender: TObject);
procedure ClearBtnClick(Sender: TObject);
procedure ForınShow(Sender: TObject);
procedure CloseBtnClick(Sender: TObject);
procedure AddBtnClick(Sender: TObject);
procedure DeleteBtnClick(Sender: TObject);
procedure DBGridCellClick(Colurnn: TColurnn);
procedure DBGridTitleClick(Colurnn: TColurnn);
procedure DBGridMouseMove(Sender: TObject; Shift: TShiftState; X,

Y: Integer);
procedure EditBtnClick(Sender: TObject);
procedure SaveBtnClick(Sender: TObject);
procedure CancelBtnClick(Sender: TObject);
procedure ForınClose(Sender: TObject; var Action: TCloseAction);

private
{ Private declarations }

public
{ Public declarations }

end;

.,

var
FloorsForın: TFloorsForın;
SortingField, SortingMethod: String;
PreviousColumnlndex : Integer = O;

implementation

{$R *.dfrn}

procedure TFloorsForm.ForınShow(Sender: TObject);
egın
SaveBtn.Visible := False;
CancelBtn.Visible := False;
ClearBtn.Click;
SortingField := 'building_ name, floor_ name';
SortingMethod := ";
RefreshBtn.Click;

end;

procedure TFloorsForm.ClearBtnClick(Sender: TObject);
begin
BuildingsCmb.Iternlndex := - 1;
FloorNarne.Text := ";
end;

arocedure TFloorsForm.RefreshBtnClick(Sender: TObject);

86

begin
BuildingsCmb.Clear;
II FloorName.Text := ";
With MyQuery Do
Begin
Close;
SQL.Clear;
Params.Clear;
SQL.Text :='Select* From buildings Order By building_name';
Execute;
While Not EofDo
Begin
BuildingsCmb.Items.AddObject(FieldByName('building_name').AsString,

TObject(FieldByName('id').Aslnteger));
Next;

End;
End;
With MyListQuery Do
Begin
Close;
SQL.Clear;
Params.Clear;
SQL.Text :='Select* From buildings, floors Where buildings.id=floors.building_id

Order By '+SortingField+SortingMethod;
Execute;

End;
end;

procedure TFloorsForm.CloseBtnClick(Sender: TObject);
begin
FloorsForm.Close;

end;

procedure TFloorsForm.AddBtnClick(Sender: TObject);
Var
BuildingID: String;

begin
FloorName.Text := Trim(FloorName.Text);
If (BuildingsCmb.Itemlndex < O) Then
Begin
MessageDlg('You must select a Building Name to save this record.', mtError,

[mbOk], O);
Exit;

End;
If (FloorName.Text =")Then
Begin
MessageDlg('You must enter a valid Floor Name to save this record.', mtError,

[mbOk], O);
Exit;

87

End;

BuildingID :=
IntToStr(Longlnt(BuildingsCmb.Items.Objects[BuildingsCmb.Itemlndex]));
With MyQuery Do
Begin

SQL.Clear;
Params. Clear;
SQL.Text := 'Insert Into floors Set building_id=:building_id,

floor_ name=:floor _name';
Params[OJ.AsString := BuildingID;
Params[l].AsString := FloorName.Text;
Execute;

End;
ClearBtn. Click;
RefreshBtn.Click;

end;

procedure TFloorsForm.DeleteBtnClick(Sender: Tübject);
var
FloorID, FloorName: String;

begin
With MyQuery Do
Begin
FloorID := MyListQuery.FieldByName('id_l ').AsString;
FloorName := MyListQuery.FieldByName('floor _name').AsString;
SQL.Clear;
Params.Clear;
SQL.Text := 'Select count(id) From rooms Where floor_id=:floor_id';
Params[OJ.AsString := FloorID;
Execute;
If (Fields[O].Aslnteger > O) Then
Begin
MessageDlg('To delete this building you must delete all related rooms with it.',

mtError, [mbük], O);
End
Else
Begin
IfMessageDlg('Record will be deleted. Please Confirm. '#10#10' Floor Name:

'+FloorName, mtConfirmation, [mbOK, mbCancel], O)= mrOK Then
Begin
SQL.Clear;
Params.Clear;
SQL.Text := 'Delete From floors Where id=:floor_id';
Params[O].AsString := FloorID;
Execute;

End;
End;

End;

,,
"•.. ,,,

88

RefreshBtn.Click;
end;

• rocedure TFloorsForm.EditBtnClick(Sender: Tübject);
'ar
I: Integer;
egın

FloorName.Text := IntToStr(BuildingsCmb.Items.Count);
For I:= O To BuildingsCmb.Items.Count-1 Do
Begin

If BuildingsCmb.Items.Strings[I] =
_JyListQuery.FieldByName('building_name').AsString

Then BuildingsCmb.Itemlndex := I;
End;
DBGrid.SetFocus;
DBGrid.Enabled := False;
FloorName.Text := MyListQuery.FieldByName('floor _name').AsString;
FloorN ame. SetFocus;
FloorName.SelectAll;
EditBtn.Visible := False;
CloseBtn.Visible :~ False;
CancelBtn.Visible := True;
SaveBtn.Visible := True;

ddBtn.Enabled := False;
DeleteBtn.Enabled := False;
RefreshBtn.Enabled := False;

end; .,. •...
rocedure TFloorsForm.SaveBtnClick(Sender: TObject);
laf

BuildingID, FloorID: String;
gm

FloorName.Text := Trim(FloorName.Text);
If (BuildingsCmb.Itemlndex < O) Then
Begin
MessageDlg('You must select a Building Name to save this record.', mtError,

'mbük], O);
Exit;

End;
If(FloorName.Text =")Then
Begin
MessageDlg('You must enter a valid Floor Name to save this record.', mtError,

mbük], O);
Exit;

End;

BuildingID :=
lntToStr(Longlnt(BuildingsCmb.Items.Objects[BuildingsCmb.Itemlndex]));
Floor ID := MyUstQuery .FieldByN amer'id _ 1 ').AsString;

89

With MyQuery Do
Begin

SQL.Clear;
Params.Clear;
SQL.Text := 'Update floors Set building_id=:building_id, floor_name=:floor_name

Where id=:floor_id';
Params[O].AsString := BuildingID;
Params[l].AsString := FloorName.Text;
Params[2].AsString := FloorID;
Execute;

End;
SaveBtn.Visible := False;
EditBtn.Visible := True;
CancelBtn.Visible := False;
CloseBtn.Visible := True;
AddBtn.Enabled := True;
DeleteBtn.Enabled := True;
RefreshBtn.Enabled := True;
DBGrid.Enabled := True;
ClearBtn.Click;
RefreshBtn.Click;

end;

procedure TFloorsForm.CancelBtnClick(Sender: Tübject);
begin
SaveBtn.Visible := False;
EditBtn.Visible := True;
CancelBtn.Visible := False;
CloseBtn.Visible := True;
AddBtn.Enabled := True;
DeleteBtn.Enabled := True;
RefreshBtn.Enabled := True;
DBGrid.Enabled := True;
DBGrid.SetFocus;
ClearBtn.Click;
nd;

.,.

.7

procedure TFloorsForm.DBGridCellClick(Colurnn: TColurnn);
· egin
I For Testing Purpose
end;

procedure TFloorsFonn.DBGridTitleClick(Column: TColumn);
· egin
If SortingField <> DBGrid.Columns[Column.Index].FieldName Then
SortingMethod := "

Else
If SortingMethod <> " Then SortingMethod := " Else SortingMethod := ' Dese';

90

SortingField := DBGrid.Columns[Column.Index] .FieldName;
Try
DBGrid.Columns[PreviousColumnlndex].title.Font.Style :=
DBGrid.Columns[PreviousColumnlndex] .title.Font.Style - [fsBold];

Except
End;
Column.title.Font.Style:= Column.title.Font.Style+ [fsBold];
PreviousColumnlndex := Column.Index;
RefreshBtn.Click;

end;

procedure TFloorsForm.DBGridMouseMove(Sender: TObject; Shift: TShiftState;
X, Y: Integer);

var
pt: TGridcoord;

begin
pt:= DBGrid.MouseCoord(x, y);
If pt.y=O Then
DBGrid.Cursor:=crHandPoint

Else
DBGrid.Cursor:=crDefault;

end;

procedure TFloorsForm.FormClose(Sender: TObject; var Action: TCloseAction);
begin
DBGrid.Columns[PreviousColumnlndex].title.Font.Style :=
DBGrid.Columns[PreviousColumnlndex].title.Font.Style - [fsBold];

end;

end.

unit Rooms;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, DB, MemDS, DBAccess, MyAccess, Buttons, ExtCtrls, Grids,
DBGrids, StdCtrls, Spin;

type
TRoomsForm = class(TForm)
RoomGroup: TGroupBox;
Label 1: TLabel;
Label2: TLabel;
RoomName: TEdit;
BuildingsCmb: TComboBox;
DBGrid: TDBGrid;
CommandPanel: TPanel;

91

92

CloseBevel: TBevel;
CancelBtn: TSpeedButton;
CloseBtn: TSpeedButton;
EditSaveBevel: TBevel;
SaveBtn: TSpeedButton;
EditBtn: TSpeedButton;
AddBevel: TBevel;
ClearBevel: TBevel;
DeleteBevel: TBevel;
AddBtn: TSpeedButton;
ClearBtn: TSpeedButton;
DeleteBtn: TSpeedButton;
RefreshBevel: TBevel;
RefreshBtn: TSpeedButton;
MyQuery: TMyQuery;
DataSource: TDataSource;
MyListQuery: TMyQuery;
FloorCpt: TLabel;
FloorsCmb: TComboBox;
RoomCapacity: TSpinEdit;
Label3: TLabel;
procedure CloseBtnClick(Sender: TObject);
procedure FormShow(Sender: TObject);
procedure ClearBtnClick(Sender: TObject);
procedure RefreshBtnClick(Sender: TObject);
procedure BuildingsCmbChange(Sender: TObject);
procedure AddBtnClick(Sender: TObject);
procedure DeleteBtnClick(Sender: TObject);
procedure EditBtnClick(Sender: TObject);
procedure CancelBtnClick(Sender: TObject);
procedure SaveBtnClick(Sender: TObject);
procedure DBGridMouseMove(Sender: TObject; Shift: TShiftState; X,

Y: Integer);
procedure DBGridTitleClick(Column: TColumn);
procedure FormClose(Sender: TObject; var Action: TCloseAction);

private
{ Private declarations }

public
{ Public declarations }

end;

var
RoomsForm: TRoomsForm;
SortingField, SortingMethod: String;
PreviousColumnindex :. Integer = O;

implementation

{$R *.dfm}

procedure TRoomsForm.FormShow(Sender: TObject);
begin

SortingField := 'building_name, floor_name, room_name';
SortingMethod := ";
SaveBtn.Visible := False;
CancelBtn.Visible := False;
ClearBtn.Click;
RefreshBtn. Click;

end;

procedure TRoomsFornı.ClearBtnClick(Sender: TObject);
begin
FloorsCmb.Enabled := False;
FloorsCmb.Itemlndex := -1;
BuildingsCmb.Itemlndex := -1;
RoomName.Text := ";
RoomCapacity.Text := '1 ';

end;

procedure TRoomsF orm.RefreshBtnClick(Sender: TObject);
begin
BuildingsCmb.Clear;
FloorsCmb.Enabled := False;
FloorsCmb.Itemlndex := -1;
With MyQuery Do
Begin

Close;
SQL.Clear;
Params.Clear;
SQL.Text := 'Select * From buildings Order By building , name';
Execute;
While Not EofDo
Begin
BuildingsCmb.Items.Addübject(FieldByName('building_name').AsString,

TObject(FieldByName('id').Aslnteger));
Next;

End;
End;
With MyListQuery Do
Begin

Close;
SQL.Clear;
Params. Clear;
SQL.Text :='Select* From buildings, floors, rooms Where'+
'buildings.id=floors. building_id And floors.id=rooms.floor _id '+
'Order By '+SortingField+SortingMethod;
Execute;

End;

93

nd;

ırocedure TRoomsForm.BuildingsCmbChange(Sender: TObject);
ıegın
FloorsCmb.Clear;
With MyQuery Do
Begin
Close;
SQL.Clear;
Params.Clear;
SQL.Text := 'Select * From floors Where building_id=:building_id '+
'Order By floor_name';
Params[O].AsString :=

IntToStr(Longlnt(BuildingsCmb.Items.Objects[BuildingsCmb.Itemlndex]));
Execute;
While Not EofDo
Begin
FloorsCmb.Items.AddObject(FieldByName('floor_name').AsString,

TObject(FieldByName('id').Aslnteger));
Next;

End;
End;
FloorsCmb.Enabled := True;

end;

procedure TRoomsForm.CloseBtnClick(Sender: TObject);
begin
RoomsForm.Close;

end;

procedure TRoomsForm.AddBtnClick(Sender: TObject);
Var
BuildingID, FloorID: String;

begin
RoornName.Text := Trim(RoomName.Text);
If (BuildingsCmb.Itemlndex < O) Then
Begin
MessageDlg('You must select a Building Name to save this record.', mtError,

[mbOk], O);
Exit;

End;
If (FloorsCmb.Itemlndex < O) Then
Begin
MessageDlg('You must select a Floor Name to save this record.', mtError, [mbOk],

O);
Exit;

End;
If (RoornName.Text =")Then
Begin

94

,

MessageDlg('You must enter a valid Room Name to save this record.', mtError,
[mbük], O);

Exit;
End;

BuildingID :=
IntToStr(Longint(BuildingsCmb.Items.Objects[BuildingsCmb.Itemindex]));
FloorID := IntToStr(Longint(FloorsCmb.Items.Objects[FloorsCmb.Itemlndex]));

With MyQuery Do
Begin

SQL.Clear;
Params.Clear;
SQL.Text := 'Select count(id) From rooms Where'+
'floor_id=:floor_id And room_name=:room_name';
Params[OJ.AsString := FloorID;
Params[l].AsString := RoomName.Text;
Execute;
If (Fields[OJ.Asinteger >O) Then
Begin
MessageDlg('This room already exist.', mtError, [mbük], O);
Exit;

End;
End;

With MyQuery Do
Begin

SQL.Clear;
Params.Clear;
SQL.Text := 'Insert Into rooms Set'+
'floor_id= :floor_ id, room_ name=:room _name, room_ capacity= :room_ capacity';
Params[O].AsString := FloorID;
Params[l].AsString := RoomName.Text;
Params[2].AsString := RoomCapacity.Text;
Execute;

End;
RoomName.Text := ";
RoomCapacity.Text := '1 ';
MyListQuery.Execute;

end;

procedure TRoomsForm.DeleteBtnClick(Sender: TObject);
var
RoomID, RoomName: String;

begin
With MyQuery Do
Begin
RoomID := MyListQuery.FieldByName('id_2').AsString;
RoomName := MyListQuery .Fieldfsylvamef'room _name'j.Asôtring;

95

procedure TRoornsForrn.EditBtnClick(Sender: Tübject);
Var

I: Integer;
begin
For I := O To BuildingsCrnb.Items.Count-1 Do
Begin

If BuildingsCrnb.Items.Strings[I] =
MyListQuery.FieldByName('building_name').AsString

Then BuildingsCmb.Iternlndex := I;
End;
BuildingsCmb.OnChange(Sender);
For I := O To FloorsCmb.Items.Count-1 Do
Begin
If FloorsCmb.Iterns.Strings[I] = MyListQuery.FieldByName('floor _name').AsString
Then FloorsCmb.Iternindex := I;

End; .t
ııı

IfMessageDlg('Record will be deleted. Please Confirm. '#10#10' Room Name:
'+RoornName,mtConfirmation, [rnbOK,mbCancel], O)= rnrOK Then

Begin
SQL.Clear;
Params.Clear;
SQL.Text := 'Delete From rooms Where id=:roorn_id';
Params[O].AsString := RoomID;
Execute;
MyListQuery.Execute;

End;
End;

end;

DBGrid.SetFocus;
DBGrid.Enabled := False;
RoomName.Text := MyListQuery.FieldByName('room_name').AsString;
RoomCapacity.Text := MyListQuery.FieldByNarne('room_capacity').AsString;
RoomName.SetFocus;
RoomName.SelectAll;
EditBtn.Visible := False;
CloseBtn.Visible := False;
CancelBtn.Visible := True;
SaveBtn.Visible := True;
AddBtn.Enabled := False;
DeleteBtn.Enabled := False;
RefreshBtn.Enabled := False;

end;

procedure TRoornsForrn.CancelBtnClick(Sender: Tübj ect);
begin
SaveBtn.Visible := False;

96

EditBtn.Visible := True;
CancelBtn.Visible := False;
CloseBtn.Visible := True;
AddBtn.Enabled := True;
DeleteBtn.Enabled := True;
RefreshBtn.Enabled := True;
DBGrid.Enabled := True;
DBGrid.SetFocus;
ClearBtn.Click;

end;

procedure TRoomsForm.SaveBtnClick(Sender: TObject);
Var

FloorID, RoomID: String;
begin

RoomName.Text := Trim(RoomName.Text);
If (BuildingsCmb.Itemindex < O) Then
Begin
MessageDlg('You must select a Building Name to save this record.', mtError,

[mbOk], O);
Exit;

End;
If (FloorsCmb.Itemindex < O) Then
Begin
MessageDlg('You must select a Floor Name to save this record.', mtError, [mbOk],

O);
Exit;

End;
If (RoomName.Text =")Then
Begin
MessageDlg('You must enter a valid Room Name to save this record.', mtError,

[mbOk], O);
Exit;

End;

ır
11::::

FloorID := IntToStr(Longlnt(FloorsCmb.Items.Objects[FloorsCmb.Itemindex]));
RoomID := MyListQuery.FieldByName('id_2').AsString;
With MyQuery Do
Begin
SQL.Clear;
Params.Clear;
SQL.Text := 'Select count(id) From rooms Where'+
'floor_id=:floor_id And room_name=:room_name And idl=ıroom id';
Params[O].AsString := FloorID;
Params[l].AsString := RoomName.Text;
Params[2].AsString := RoomID;
Execute;
If (Fields[O].Aslnteger > O) Then
Begin

97

With MyQuery Do
Begin

SQL.Clear;
Params.Clear;
SQL.Text := 'Update rooms Set floor_id=:floor_id, room_name=:room_name, '+
'room, capacity=:room_capacity Where id=:room_id';
Params[O].AsString := FloorID;
Params[l].AsString := RoomName.Text;
Params[2].AsString := RoomCapacity.Text;
Params[3].AsString := RoomID;
Execute;

End;
SaveBtn.Visible := False;
EditBtn.Visible := True;
CancelBtn.Visible := False;
CloseBtn.Visible := True;
AddBtn.Enabled := True;
DeleteBtn.Enabled := True;
RefreshBtn.Enabled := True;
DBGrid.Enabled := True;
ClearBtn.Click;
MyListQuery.Execute;

end;

MessageDlg('This room already exist.', mtError, [mbük], O);
Exit;

End;
End;

procedure TRoomsForm.DBGridTitleClick(Column: TColumn);
begin
If SortingField <> DBGrid.Columns[Colurnn.Index].FieldName Then

SortingMethod := " ·
Else
If SortingMethod <> " Then SortingMethod := " Else SortingMethod := ' Dese';

SortingField := DBGrid.Columns[Column.Index].FieldName;
Try
DBGrid.Columns[PreviousColumnlndex] .title.Fant.Style :=
DBGrid.Columns[PreviousColumnlndex] .title.Fant.Style - [fsBold];

Except
End;
Column.title.Font.Style :=Column.title.Font.Style+ [fsBold];
PreviousColumnlndex := Column.Index;
RefreshBtn.Click;

end;

procedure TRoomsForm.DBGridMouseMove(Sender: TObject; Shift: TShiftState;
X, Y: Integer);

var

98

pt: TGridcoord;
begin
pt:= DBGrid.MouseCoord(x, y);
If pt.y=O Then
DBGrid.Cursor:=crHandPoint

Else
DBGrid. Cursor:=cr Default;

end;

procedure TRoomsForm.FormClose(Sender: TObject; var Action: TCloseAction);
begin
DBGrid.Columns[PreviousColumnlndex].title.Font.Style :=
DBGrid.Columns[PreviousColumnlndex] .title.Font.Style - [fsBold];

end;

end.

unit Customers;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, ComCtrls, StdCtrls, DB, MemDS, DBAccess, MyAccess, Buttons,
ExtCtrls, Grids, DBGrids, RpCon, RpConDS, RpDefine, RpRave;

type
TCustomersForm = class(TForm)
DBGrid: TDBGrid;
CommandPanel: TPanel;
CloseBevel: TBevel;
CancelBtn: TSpeedButton;
CloseBtn: TSpeedButton;
EditSaveBevel: TBevel;
SaveBtn: TSpeedButton;
EditBtn: TSpeedButton;
AddBevel: TBevel;
ClearBevel: TBevel;
DeleteBevel: TBevel;
AddBtn: TSpeedButton;
ClearBtn: TSpeedButton;
DeleteBtn: TSpeedButton;
RefreshBevel: TBevel;
RefreshBtn: TSpeedButton;
MyQuery: TMyQuery;
DataSource: TDataSource;
GroupBox 1: TGroupBox;
Labell 9: TLabel;
FathersPhone: TEdit;

99

Label 15: TLabel;
Labell 7: TLabel;
FathersJob: TEdit;
FathersName: TEdit;
Label3: TLabel;
GroupBox2: TGroupBox;
Label4: TLabel;
Labell 6: TLabel;
Labell 8: TLabel;
Label20: TLabel;
MothersName: TEdit;
MothersJob: TEdit;
MothersPhone: TEdit;
GroupBox3: TGroupBox;
Label9: TLabel;
Label22: TLabel;
Label23: TLabel;
Label24: TLabel;
Label25: TLabel;
PlaceOfBirth: TEdit;
Label26: TLabel;
Label27: TLabel;
CitizenNumber: TEdit;
CellPhone: TEdit;
Label28: TLabel;
Label29: TLabel;
OtherPhone: TEdit;
Label30: TLabel;
RentGroup: TGroupBox;
BuildingsCmb: TComboBox;
FloorsCmb: TComboBox;
RentDuration: TEdit;
Label5: TLabel;
Label6: TLabel;
RoomsCmb: TComboBox;
Label2: TLabel;
Label 7: TLabel;
Label 1: TLabel;
MyListQuery: TMyQuery;
GenderCmb: TComboBox;
BirthDatePicker: TDateTimePicker;
BloodGroupCmb: TComboBox;
ContactAddress: TMemo;
Notes: TMemo;
MothersAddress: TMemo;
FathersAddress: TMemo;
CustomerName: TEdit;
CutomerSurname: TEdit;
tabel8: TLabel;

100

101

RentStatusCmb: TComboBox;
RvProject: TRvProject;
RvDataSetConnection 1: TRvDataSetConnection;
PrintBtn: TSpeedButton;
Bevell: TBevel;
procedure ForrnShow(Sender: TObject);
procedure ClearBtnClick(Sender: TObject);
procedure RefreshBtnClick(Sender: TObject);
procedure BuildingsCmbChange(Sender: TObject);
procedure FloorsCmbChange(Sender: TObject);
procedure CloseBtnClick(Sender: TObject);
procedure AddBtnClick(Sender: TObject);
procedure EditBtnClick(Sender: TObject);
procedure CancelBtnClick(Sender: TObject);
procedure SaveBtnClick(Sender: TObject);
procedure DeleteBtnClick(Sender: TObject);
procedure PrintBtnClick(Sender: TObject);
procedure DBGridTitleClick(Colurnn: TColurnn);
procedure ForrnClose(Sender: TObject; var Action: TCloseAction);
procedure DBGridMouseMove(Sender: TObject; Shift: TShiftState; X,

Y: Integer);
private

{ Private declarations }
public

{ Public declarations }
end;

var
CustomersF orrn: TCustomersF orrn;
SortingField, SortingMethod: String;
PreviousColumnlndex : Integer = O;

implementation

{$R *.dfm}

procedure TCustomersForm.FormShow(Sender: TObject);
begin

SortingField := 'building_ name, floor , name, room_ name';
SortingMethod := ";
SaveBtn.Visible := False;
CancelBtn.Visible := False;
ClearBtn.Click;
RefreshBtn. Click;

end;

procedure TCustomersForm.ClearBtnClick(Sender: TObject);
begin

CustomerName.1'ext := ";

procedure TCustomersF orm.RefreshBtnClick(Sender: TObject);
begin

BuildingsCmb.Clear;
With MyQuery Do
Begin

Close;
SQL.Clear;
Params. Clear;
SQL.Text :='Select* From buildings Order By building_name';
Execute;
While Not EofDo
Begin
BuildingsCmb.Items.AddObject(FieldByName('building_name').AsString,

TObject(FieldByName('id').Aslnteger));

s.
,:::

CutomerSumame.Text := ";
GenderCmb.Itemlndex := -1;
PlaceOfBirth.Text := ";
BloodGroupCmb.Itemlndex := -1;
CitizenNumber.Text := ";
CellPhone.Text := ";
OtherPhone.Text := ";
ContactAddress.Text := ";

FathersName.Text := ";
FathersJob.Text := ";
FathersPhone.Text := ";
FathersAddress.Text := ";

MothersName.Text := ";
MothersJob.Text := ";
MothersPhone.Text := ";
MothersAddress.Text := ";

BuildingsCmb.Itemlndex := -1;
FloorsCmb.Enabled := False;
FloorsCmb.ltemlndex := -1;
RoomsCmb.Enabled := False;
RoomsCmb.Itemlndex := -1;
RentStatusCmb.Itemlndex := -1;
RentDuration.Text := ";
Notes.Text := ";

end;

Next;
End;

End;
FloorsCmb.Enabled := False;
FloorsCmb.Itemlndex := -1;
RoomsCmb.Enabled := False;

102

RoomsCmb.Itemlndex := -1;
With MyListQuery Do
Begin

Close;
SQL.Clear;
Params. Clear;
SQL.Text := 'Select customers.*,'+
' Coalesce(room _name,"") room _name,'+
'Coalesce(floor_name,"") floor_name,'+
'Coalesce(building_name,"") building_name From customers'+
' Left Join rooms On (customers.room _id=rooms.id)'+
'Left Join floors On (floors.id=rooms.floor_id)'+
' Left Join buildings On (buildings.id=floors.building_id)'+
' Order By '+SortingField+SortingMethod;
Execute;

End;
end;

procedure TCustomersF orm.BuildingsCmbChange(Sender: TObject);

begin
RoomsCmb.Enabled := False;
RoomsCmb.Itemlndex := -1;
FloorsCmb.Clear;
With MyQuery Do
Begin

Close;
SQL.Clear;
Params.Clear;
SQL.Text := 'Select * From floors Where building_id=:building_id '+
'Order By floor_name';
Params[O].AsString :=

IntToStr(Longlnt(BuildingsCmb.Items.Objects[BuildingsCmb.Itemlndex]));
Execute;
While Not EofDo
Begin
FloorsCmb.Items.Addübject(FieldByName('floor_name').AsString,

TObject(FieldByName('id').Aslnteger));
Next;

End;
End;
FloorsCmb.Enabled := True;

end;

procedure TCustomersForm.FloorsCmbChange(Sender: TObject);
begin

RoomsCmb.Clear;
With MyQuery Do
Begin

Close;

103

SQL.Clear;
Params.Clear;
SQL.Text :='Select* From rooms Where floor_id=:floor_id '+
'Order By room_name';
Params[O].AsString :=

IntToStr(Longlnt(FloorsCmb .I terns. Objects [FloorsCmb.I temlndex]));
Execute;
While Not EofDo
Begin

RoomsCmb.Items.Addübject(FieldByName('room_name').AsString,
TObject(FieldByName('id').Aslnteger));

Next;
End;

End;
RoomsCmb.Enabled := True;

end;

procedure TCustomersForm.CloseBtnClick(Sender: Tübject);
begin

CustomersForm.Close;
end;

procedure TCustomersF orm.AddBtnClick(Sender: Tübject);
Var
BuildingID, FloorID, RoomID: String;

begin
CustomerName.Text := Trim(CustomerName.Text);
CutomerSumame.Text := Trim(CutomerSumame.Text);

.. ,
'•

PlaceüfBirth.Text := Trim(PlaceüfBirth.Text);
CitizenNumber.Text := Trim(CitizenNumber.Text);
CellPhone.Text := Trim(CellPhone.Text);
OtherPhone.Text := Trim(OtherPhone.Text);
ContactAddress.Text := Trim(ContactAddress.Text);

FathersName.Text := Trim(FathersName.Text);
FathersJob.Text := Trim(FathersJob.Text);
FathersPhone.Text := Trim(FathersPhone.Text);
FathersAddress.Text := Trim(FathersAddress.Text);

MothersName.Text := Trim(MothersName.Text);
MothersJob.Text := Trim(MothersJob.Text);
MothersPhone.Text := Trim(MothersPhone.Text);
MothersAddress.Text := Trim(MothersAddress.Text);

RentDuration.Text := Trim(RentDuration.Text);
Notes.Text:= Trim(Notes.Text);

If (CustomerName.Text = ") Then

104

Begin
MessageDlg('You must enter a valid Customer Name to save this record.', mtError,

mbük], O);
Exit;

End;
If (CutomerSurname.Text =")Then
Begin
MessageDlg('You must enter a valid Customer Surname to save this record.',

mtError, [mbük], O);
Exit;

End;
If (GenderCmb.Itemlndex = -1) Then
Begin

MessageDlg('You must select Customer Gender to save this record.', mtError,
[mbük], O);

Exit;
End;

If (BuildingsCmb.Itemlndex > - 1) Then
BuildingID :=

IntToStr(Longlnt(BuildingsCmb.Items.Objects[BuildingsCmb.Itemlndex]))
Else BuildingID := 'O';
If (FloorsCmb.Itemlndex > - 1) Then
FloorID := IntToStr(Longlnt(FloorsCmb.Items.Objects[FloorsCmb.Itemlndex]))

Else FloorID := 'O';
If (RoomsCmb.Itemlndex > -1) Then
RoomID := IntToStr(Longlnt(RoomsCmb.Items.Objects[RoomsCmb.Itemlndex]))

Else RoomID := 'O';

With MyQuery Do
Begin

SQL.Clear;
Params.Clear;
SQL.Text := 'Select count(id) From customers Where'+
'customer_name=:customer_name And customer_sumame=:customer_surname';
Params[O].AsString := CustomerName.Text;
Params[l].AsString := CutomerSurname.Text;
Execute;
If (Fields[O].Aslnteger> O) Then
Begin
MessageDlg('This customer already exist.', mtError, [mbük], O);
Exit;

End;
End;

With MyQuery Do
Begin

SQL.Clear;
Params.Clear;

105

SQL.Text := 'Insert Into customers Set'+
'customer_ name=:customer _name, '+
'customer_ surname=: customer_ surname, '+
'customer _gender=:customer _gender, '+
'customer_ birthdate= :customer_ birthdate, '+
'customer _place_ of_birth=:customer _place_ of_birth, '+
'customer_ blood _group=:customer _blood _group, '+
'customer_ citizen _number=:customer _citizen_ number, '+
'customer_ cellphone=:customer _cellphone, '+
'customer_ otherphone=:customer _otherphone, '+
'customer_ contact_ address=:customer _contact_ address, '+
'fathers _name=:fathers _name, '+
'fathersjob=:fathersjob, '+
'fathers _phone=:fathers _phone, '+
'fathers_ address= :fathers_ address, '+
'mothers_name=:mothers_name, '+
'mothersjob=:mothersjob, '+
'mothers _phone=:mothers _phone, '+
'mothers_ address=:mothers _address, '+
'room_id=:room_id, '+
'rent_ status=:rent_ status, '+
'rent_ duration=:rent_ duration, '+
'notes=:notes';
Params[O].AsString := CustomerName.Text;
Params[l].AsString := CutomerSurname.Text;
If GenderCmb.Itemindex = O Then Params[2].AsString := 'M'
Else Params[2].AsString := 'F';
Params[3].AsString := FormatDateTime('yyyy-MM-dd', BirthDatePicker.Date);
Params[4].AsString := PlaceüfBirth.Text;
Params[5].AsString := BloodGroupCmb.Text;
Params[6].AsString := CitizenNumber.Text;
Params[7].AsString := CellPhone.Text;
Params[8].AsString := OtherPhone.Text;
Params[9].AsString := ContactAddress.Text;
Params[lO].AsString := FathersName.Text;
Params[l 1].AsString := FathersJob.Text;
Params[12].AsString := FathersPhone.Text;
Params[13].As String := FathersAddress. Text;
Params [14] .As String := MothersN ame. Text;
Params[15].AsString := MothersJob.Text;
Params [16].As String := MothersPhone. Text;
Params[l 7].AsString := MothersAddress.Text;
Params[18].AsString := RoomID;
Params[19].AsString := RentStatusCmb.Text;
Params[20].AsString := RentDuration.Text;
Params[21].AsString := Notes.Text;
Execute;

End;
MyListQuery .Execute;

,!Ii
'•

106

RefreshBtn.Click;
end;

procedure TCustomersF orm.EditBtnClick(Sender: TObject);
"ar

: Integer;
%,ill

rm\·.=~ 1'cı "Bu\\fal\%'::ıCm\)\\~m'::ı.Ccıul\\-\ 'Dcı
Begin
If BuildingsCmb.Items.Strings[I] =

MyList Query .FieldBy Name('building_ name').AsString
Then
Begin
BuildingsCmb.Itemlndex := I;
BuildingsCmb.OnChange(Sender);

End;
End;

For I:= O To FloorsCmb.Items.Count-1 Do
Begin
If FloorsCmb.Items.Strings[I] = MyListQuery.FieldByName('floor_name').AsString
Then
Begin

FloorsCmb.Itemlndex := I;
FloorsCmb.OnChange(Sender);

End;
End;

For I:= O To RoomsCmb.Items.Count-1 Do
Begin

IfRoomsCmb.Items.Strings[I] = MyListQuery.FieldByName('room_name').AsString
Then RoomsCmb.Itemindex := I;

End;

ırnııit
: :;:~·.

For I:= O To BloodGroupCmb.Items.Count-1 Do
Begin
If BloodGroupCmb.Items.Strings[I] =

MyListQuery.FieldByName('customer_blood_group').AsString
Then BloodGroupCmb.Itemlndex := I;

End;

For I:= O To RentStatusCmb.Items.Count-1 Do
Begin

If RentStatusCmb.Items.Strings[I] =
MyListQuery .FieldBy Name('rent_ status') .AsString

Then RentStatusCmb.Itemlndex := I;
End;

107

108

DBGrid.SetFocus;
DBGrid.Enabled := False;

CustornerN arne.Text := MyListQuery .FieldB yName('customer _name').AsString;
CutornerSurname.Text := MyListQuery.FieldByName('customer_surnarne').AsString;
If MyListQuery.FieldByNarne('customer_gender').AsString = 'M' Then

GenderCmb.Itemlndex := O
Else GenderCmb.Iternlndex := 1;

BirthDatePicker.Date :=
StrToDate(My ListQuery .FieldByN ame('customer _birthdate').AsString);
PlaceüfBirth.Text :=

MyListQuery.FieldByNarne('custorner _place_ of_birth').AsString;

CitizenNurnber.Text :=
MyListQuery.FieldByName('customer_citizen_number').AsString;

CellPhone. Text := My ListQuery .FieldByN arne('customer _cellphone').AsString;
OtherPhone.Text := MyListQuery.FieldByNarne('custorner_otherphone').AsString;
ContactAddress.Text :=

MyListQuery .FieldByNarne('custorner _contact_ address').AsString;

FathersName.Text := MyListQuery.FieldByName('fathers_name').AsString;
FathersJob.Text := MyListQuery.FieldByName('fathersjob').AsString;
FathersPhone.Text := MyListQuery.FieldByName('fathers_phone').AsString;
FathersAddress. Text := MyList Query .FieldB yN arne('fathers _address').AsString;

MothersNarne. Text := MyListQuery.FieldByName('mothers _narne').AsString;
MothersJob.Text := MyListQuery.FieldByName('rnothersjob').AsString;
MothersPhone.Text := MyListQuery.FieldByName('mothers_phone').AsString;
MothersAddress.Text := MyListQuery.FieldByName('mothers_address').AsString;

RentDuration.Text := MyListQuery.FieldByName('rent_duration').AsString;
Notes.Text:= MyListQuery.FieldByNarne('notes').AsString;

CustornerN ame. SetF ocus;
CustornerN ame. SelectAll;
EditBtn.Visible := False;
CloseBtn.Visible := False;
CancelBtn.Visible := True;
SaveBtn.Visible := True;
AddBtn.Enabled := False;
DeleteBtn.Enabled := False;
RefreshBtn.Enabled := False;

end;

procedure TCustomersForm.CancelBtnClick(Sender: TObject);
begin

SaveBtn.Visible := False;

EditBtn.Visible := True;
CancelBtn.Visible := False;
CloseBtn.Visible := True;
AddBtn.Enabled := True;
DeleteBtn.Enabled := True;
RefreshBtn.Enabled := True;
DBGrid.Enabled := True;
DBGrid.SetFocus;
ClearBtn.Click;

end;

procedure TCustomersForm.SaveBtnClick(Sender: TObject);
Var
BuildingID, FloorID, RoomID, CustomerID, BirthDate: String;

begin
CustomerName.Text := Trim(CustomerName.Text);
CutomerSumame.Text := Trim(CutomerSurname.Text);

PlaceOfBirth.Text := Trim(PlaceOfBirth.Text);
CitizenNumber.Text := Trim(CitizenNumber.Text);
CellPhone.Text := Trim(CellPhone.Text);
OtherPhone.Text := Trim(OtherPhone.Text);
ContactAddress.Text := Trim(ContactAddress.Text);

FathersName.Text := Trim(FathersName.Text);
FathersJob.Text := Trim(FathersJob.Text);
FathersPhone.Text := Trim(FathersPhone.Text);
FathersAddress.Text := Trim(FathersAddress.Text);

MothersName.Text := Trim(MothersName.Text);
MothersJob.Text := Trim(MothersJob.Text);
MothersPhone.Text := Trim(MothersPhone.Text);
MothersAddress.Text := Trim(MothersAddress.Text);

RentDuration.Text := Trim(RentDuration.Text);
Notes.Text:= Trim(Notes.Text);

If (CustomerName.Text =")Then
Begin
MessageDlg('You must enter a valid Customer Name to save this record.', mtError,

[mbük], O);
Exit;

End;
If (CutomerSumanıe.Text =")Then
Begin
MessageDlg('You must enter a valid Customer Surname to save this record.',

mtError, [mbük], O);
Exit;

End;

109

If (GenderCmb.Itemlndex = -1) Then
Begin

MessageDlg('You must select Customer Gender to save this record.', mtError,

[mbük], O);
Exit;

End;

If (BuildingsCmb.Itemlndex > -1) Then
BuildingID :=

IntToStr(Longlnt(B uildings Cmb .Iterns. Objects [BuildingsCmb .Iternlndex]))
Else BuildingID := 'O';
If (FloorsCmb.Itemlndex > -1) Then

FloorID := IntToStr(Longlnt(FloorsCmb.Items.Objects[FloorsCmb.Itemlndex]))

Else FloorID := 'O';
If (RoomsCmb.Itemlndex > -1) Then

RoomID := IntT oStr(Longlnt(RoomsCmb.Items. Objects [RoomsCmb.Itemlndex]))

Else RoornID := 'O';
CustomerID := MyListQuery .FieldByN arne('id').AsString;
With MyQuery Do
Begin

SQL.Clear;
Pararns.Clear;
SQL.Text := 'Select count(id) From customers Where'+
'customer name=:customer name And customer sumame=:customer surname And- - - -

id!=:customer _id';
Pararns[O].AsString := CustomerNarne.Text;
Params[l].AsString := CutomerSumame.Text;
Params[2].AsString := CustomerID;
Execute;
If (Fields[O].Aslnteger > O) Then
Begin

MessageDlg('This customer already exist.', mtError, [mbük], O);
Exit;

End;
End;

~ ...
, •.•....•.

With MyQuery Do
Begin

SQL.Clear;
Params.Clear;
SQL.Text := 'Update customers Set '+
'customer_ narne=:customer _narne, '+
'customer_ sumarne=:customer _sumame, '+
'customer _gender=:customer _gender, '+
'customer_ birthdate=:customer _birthdate, '+
'customer _place_ of_birth=:customer _place_ of_birth, '+
'customer_ blood _group=:customer _blood _group, '+
'customer_ citizen _number=:customer _citizen_ number, '+
'customer_ cellphone=:customer _cellphone, '+

110

111

'customer_ otherphone=:customer _otherphone, '+
'customer_ contact_ address=:customer _contact_ address, '+
'fathers_ name=:fathers _name, '+
'fathers job=:fathers job, '+
'fathers _phone=:fathers _phone, '+
'fathers_ address=:fathers _address, '+
'mothers_ name=:mothers _name, '+
'mothersjob=:mothersjob, '+
'mothers _phone=:mothers _phone, '+
'mothers_ address=:mothers _address, '+
'room _id=:room _id, '+
'rent_ status=:rent_ status, '+
'rent_ duration=:rent_ duration, '+
'notes=:notes '+
'Where id=:customer _id';
Params[O].AsString := CustomerName.Text;
Params[l].AsString := CutomerSumame.Text;
If GenderCmb.Itemlndex = O Then Params[2].AsString := 'M'
Else Params[2].AsString := 'F';
Params[3] .AsString := FormatDateTime('yyyy-MM-dd', BirthDatePicker.Date);
Params[4].AsString := PlaceOfBirth.Text;
Params[5].AsString := BloodGroupCmb.Text;
Params[6].AsString := CitizenNumber.Text;
Params[7].AsString := CellPhone.Text;
Params[8].AsString := OtherPhone.Text;
Params[9].AsString := ContactAddress.Text;
Params[l O].AsString := FathersName.Text;
Params[l 1].AsString := FathersJob.Text;
Params[12].AsString := FathersPhone.Text;
Params[13].AsString := FathersAddress.Text;
Params[14].AsString := MothersName.Text;
Params[15].AsString := MothersJob.Text;
Params[16].AsString := MothersPhone.Text;
Params[l 7].AsString := MothersAddress.Text;
Params[18].AsString := RoomID;
Params[l 9].AsString := RentStatusCmb.Text;
Params[20].AsString := RentDuration.Text;
Params[21] .AsString := Notes. Text;
Params[22].AsString := CustomerID;
Notes. Text := Date ToStr(BirthDatePicker.Date);
Execute;

End;
SaveBtn.Visible := False;
EditBtn.Visible := True;
CancelBtn.Visible := False;
CloseBtn.Visible := True;
AddBtn.Enabled := True;
DeleteBtn.Enabled := True;
Refreshlffn.Enabled := True;

112

)BGrid.Enabled := True;
tefreshBtn. Click;
vfyListQuery .Execute;
ıd;

'ocedure TCustomersF orm.DeleteBtn Click(Sender: TObject);
ar
:::ustomerID, CustomerNarne: String;
.gm
w'ith MyQuery Do
3egin
CustomerID := MyListQuery .FieldByN ame('id').AsString;
CustomerN ame := My ListQuery .FieldB yName('customer_narne').AsString+' '+

MyListQuery.FieldByName('customer_sumame').AsString;
If MessageDlg('Record will be deleted. Please Confirm. '# 1 O# 1 O' Customer :

CustomerName, mtConfirmation, [mbOK, mbCancel], 9) = rnrOK Then
Begin

SQL.Clear;
Params.Clear;
SQL.Text := 'Delete From customers Where id=:customer_id';
Params[O].AsString := CustomerID;
Execute;
MyListQuery.Execute;

End;
End;

1d;

rocedure TCustomersF orm.PrintBtnClick(Sender: Tübject);
egın
RvProject.Open;
RvProject.Execute;
RvProject.Close;
nd;

rocedure TCustomersF orm.DBGridTitleClick(Column: TColumn);
egın
If SortingField <> DBGrid.Columns[Column.Index].FieldName Then

SortingMethod := 11

Else
If SortingMethod <> 11 Then SortingMethod := 11 Else SortingMethod := ' Dese';

SortingField := DBGrid.Columns[Column.Index].FieldName;
Try
DBGrid.Columns[PreviousColurnnindex].title.Font.Style :=
DBGrid. Columns [PreviousColurnnindex] .title.Font. Sty le - [fsBold];

Except
End;

Column.title.Font.Style :=Column.title.Font.Style+ [fsBold];
PreviousColumnlndex := Column.Index;
RefreshBtn.Click;
nd;

rocedure TCustomersForm.DBGridMouseMove(Sender: TObject;
Shift: TShiftState; X, Y: Integer);
ar
pt: TGridcoord;
egın
pt:= DBGrid.MouseCoord(x, y);
If pt.y=O Then
DBGrid.Cursor:=crHandPoint

Else
DBGrid.Cursor:=crDefault;

rıd;

ırocedure TCustomersForm.FormClose(Sender: TObject;
var Action: TCloseAction);
ıegin
DBGrid.Columns[PreviousColumnlndex] .title.Font.Style :=
DBGrid.Columns[PreviousColumnlndex].title.Font.Style - [fsBold];

-nd;

md.

mit Products;

nterface

.ıses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Spin, StdCtrls, ExtCtrls, Buttons, Grids, DBGrids, DB, MemDS,
DBAccess, MyAccess, Mask, RpCon, RpConDS, RpDefine, RpRave;

type
TProductsForm = class(TForm)

DBGrid: TDBGrid;
CornmandPanel: TPanel;
ClearBtn: TSpeedButton;
PrintClearBevel: TBevel;
CloseBevel: TB evel;
CancelBtn: TSpeedButton;
CloseBtn: TSpeedButton;
EditSaveBevel: TBevel;
SaveBtn: TSpeedButton;
EditBtn: TSpeedButton;
AddBevel: TBevel;
DeleteBevel: TBevel;

113

..
I

........

114

AddBtn: TSpeedButton;
DeleteBtn: TSpeedButton;
RefreshBevel: TBevel;
RefreshBtn: TSpeedButton;
PrintBtn: TSpeedButton;
Group Box 1: TGroupBox;
Label 1 : TLabel;
ProductNarne: TEdit;
Label2: TLabel;
ProductQuantity: TSpinEdit;
Label3: TLabel;
Label4: TLabel;
ProductBarcode: TEdit;
MyQuery: TMyQuery;
MyListQuery: TMyQuery;
DataSource: TDataSource;
Label5: TLabel;
ProductPrice: TEdit;
RvProjectProduct: TRvProject;
RvDataSetConnectionProduct: TRvDataSetConnection;
procedure FormShow(Sender: Tübject);
procedure ClearBtnClick(Sender: Tübject);
procedure RefreshBtnClick(Sender: Tübject);
procedure AddBtnClick(Sender: Tübject);
procedure EditBtnClick(Sender: Tübject);
procedure CancelBtnClick(Sender: Tübject);
procedure SaveBtnClick(Sender: Tübject);
procedure CloseBtnClick(Sender: Tübject);
procedure DeleteBtnClick(Sender: Tübject);
procedure PrintBtnClick(Sender: Tübject);
procedure DBGridTitleClick(Colurnn: TColurnn);
procedure DBGridMouseMove(Sender: Tübject; Shift: TShiftState; X,

Y: Integer);
procedure FormClose(Sender: Tübject; var Action: TCloseAction);

private
{ Private declarations }

public
{ Public declarations }

end;

var
ProductsForm: TProductsForm;
SortingField, SortingMethod: String;
PreviousColurnnlndex : Integer = O;

implementation

{$R *.dfm}

procedure TProductsForm.ClearBtnClick(Sender: TObject);

begin
ProductName.Text := ";
ProductPrice.Text := '0,00';
ProductBarcode.Text := ";
ProductQuantity.Text := 'O';

end;

procedure TProductsForm.FormShow(Sender: TObject);

begin
SortingField := 'product_name';
SortingMethod := ";
SaveBtn.Visible := False;
CancelBtn.Visible := False;
ClearBtn.Visible := False;
ClearBtn.Click;
RefreshBtn. Click;

end;

procedure TProductsForm.RefreshBtnClick(Sender: TObject);

begin
With MyListQuery Do
Begin

Close;
SQL.Clear;
Params.Clear;
SQL.Text :='Select* From products'+
' Order By '+SortingField+SortingMethod;
Execute;

End;
end;

,, ·;,

procedure TProductsForm.CloseBtnClick(Sender: TObject);
begin

ProductsF orm. Close;
end;

procedure TProductsForm.AddBtnClick(Sender: TObject);
Var

Product_Price: Double;
begin

ProductName.Text := Trim(ProductName.Text);
ProductPrice.Text := Trim(ProductPrice.Text);
ProductBarcode.Text := Trim(ProductBarcode.Text);

If (ProductName.Text =")Then
Begin
MessageDlg('You must enter a valid Product Name to save this record.', mtError,

[mbOk], O);

115

Exit;
End;
Try

Product_Price := StrToFloat(ProductPrice.Text);
Except

On EConvertError Do
Begin

MessageDlg('You must enter a numeric Product Price to save this record.', mtError,

[mbük], O);
Exit;

End;
End;
If (Product_Price < O) Then
Begin

MessageDlg('You must enter a pozitive Product Price to save this record.', mtError,

[mbük], O);
Exit;

End;
With MyQuery Do
Begin

SQL.Clear;
Params.Clear;
SQL.Text := 'Insert Into products Set'+
'product_ name=:product_ name, '+
'product_ quantity=:product_ quantity, '+
'product__price=:product__price, '+
'product_ barcode=:product_ barcode';
Params[O].AsString := ProductName.Text;
Params[l].AsString := ProductQuantity.Text;
Params[2].AsFloat := Product_Price;
Params[3].AsString := ProductBarcode.Text;
Execute;

End;
MyListQuery .Execute;
ClearBtn.Click;
RefreshBtn.Click;

end;

~··

procedure TProductsForm.EditBtnClick(Sender: Tübject);
begin

DBGrid.SetFocus;
DBGrid.Enabled := False;

ProductN ame. Text := MyListQuery .FieldB yName('product_ name').AsString;
ProductQuantity. Text := MyListQuery .FieldBy N ame('product_ quantity').AsString;
ProductPrice.Text := MyListQuery.FieldByName('product__price').AsString;
ProductBarcode. Text := MyListQuery .FieldByN ame('product_ barcode').AsString;

ProductName.SetFocus;

116

117

ProductN ame. SelectAll;
EditBtn.Visible :== False;
CloseBtn.Visible :== False;
CancelBtn.Visible :== True;
SaveBtn.Visible :== True;
AddBtn.Enabled :== False;
DeleteBtn.Enabled :== False;
RefreshBtn.Enabled :== False;

end;

procedure TProductsForm.CancelBtnClick(Sender: Tübject);
begin

SaveBtn.Visible :== False;
EditBtn.Visible :== True;
CancelBtn.Visible :== False;
CloseBtn.Visible :== True;
AddBtn.Enabled :== True;
DeleteBtn.Enabled :== True;
RefreshBtn.Enabled :== True;
DBGrid.Enabled :== True;
DBGrid.SetFocus;
ClearBtn.Click;

end;

procedure TProductsForm.SaveBtnClick(Sender: TObject);
Var

Product_Price: Double;
begin

ProductName.Text :== Trim(ProductName.Text);
ProductPrice.Text :== Trim(ProductPrice.Text);
ProductBarcode.Text :== Trim(ProductBarcode.Text);

If (ProductName.Text == ") Then
Begin

MessageDlg('You must enter a valid Product Name to save this record.', mtError,
[mbük], O);

Exit;
End;
Try

Product_Price :== StrToFloat(ProductPrice.Text);
Except

On EConvertError Do
Begin
MessageDlg('You must enter a numeric Product Price to save this record.', mtError,

[mbük], O);
Exit;

End;
End;
If (Product Price <-otThen

118

Begin
MessageDlg('You must enter a pozitive Product Price to save this record.', mtError,

[mbük], O);
Exit;

End;

With MyQuery Do
Begin

SQL.Clear;
Params.Clear;
SQL.Text := 'Update products Set'+
'product_narne=:product_ narne, '+
'product_ quantity=:product_ quantity, '+
'product_price=:product_price, '+
'product_ barcode=:product_ barcode '+
'Where id=:product_id';
Params[O].AsString := ProductName.Text;
Params[l].AsString := ProductQuantity.Text;
Params[2].AsFloat := Product_Price;
Params[3].AsString := ProductBarcode.Text;
Params[4] .AsString := MyListQuery .FieldByN ame('id').AsString;
Execute;

End;
SaveBtn.Visible := False;
EditBtn.Visible := True;
CancelBtn.Visible := False;
CloseBtn.Visible := True;
AddBtn.Enabled := True;
DeleteBtn.Enabled := True;
RefreshBtn.Enabled := True;
DBGrid.Enabled := True;
MyListQuery .Execute;
ClearBtn.Click;
RefreshBtn. Click;

end;

procedure TProductsForm.DeleteBtnClick(Sender: TObject);
Var

Productlnfo: String;
begin

Productlnfo := MyListQuery.FieldByN ame('Product_ narne').AsString;
With MyQuery Do
Begin
If MessageD lg('Record will be deleted. Please Confirm. '# 1 O# 1 O' Product :

'+Productlnfo, mtConfirmation, [mbOK, mbCancel], O)= mrOK Then
Begin

SQL.Clear;
Params. Clear;
s-QL.Text := 'Delete From products Where id=:product_id';

Params[O] .AsString := MyListQuery .FieldByN ame('id').AsString;

Execute;
MyListQuery .Execute;

End;
End;

end;

procedure TProductsForm.PrintBtnClick(Sender: Tübject);

begin
RvProjectProduct.Open;
RvProjectProduct.Execute;
RvProjectProduct. Close;

end;

procedure TProductsF orm.DBGridTitleClick(Column: TColurnn);

begin
If SortingField <> DBGrid.Columns[Colurnn.Index].FieldName Then

SortingMethod := 11

Else
If SortingMethod <> 11 Then SortingMethod := 11 Else SortingMethod :='Dese';

SortingField := DBGrid.Colurnns[Calumn.Index].FieldName;

Try
DBGrid.Calumns[PreviausColumnindex] .title.Fant.Style :=
DBGrid.Colurnns[PreviousColumnindex] .title.Fant.Style - [fsBold];

Except
End;
Column.title.Font.Style :=Column.title.Font.Style+ [fsBold];
PreviousColurnnlndex := Column.Index;
RefreshBtn.Click;

end;

:::~.

',tı,ı.,

procedure TProductsForm.DBGridMauseMove(Sender: TObject;
Shift: TShiftState; X, Y: Integer);

var
pt: TGridcoord;

begin
pt:= DBGrid.MouseCoord(x, y);
If pt.y=O Then

DBGrid.Cursor:=crHandPoint
Else

DBGrid.Cursor:=crDefault;
end;

procedure TProductsForm.FoımClose(Sender: TObject;
var Action: TCloseAction);

begin
DBGrid.Columns[PreviousColumnindex].title.Font.Style :=

DBGrid.Calurnns[PreviousColumnlndex] .title.Fant.Style - [fsBold];

end;

119

type
TSalesForrn = class(TForrn)
DBGrid: TDBGrid;
CommandPanel: TPanel;
ClearBtn: TSpeedButton;
PrintClearBevel: TBevel;
CloseBevel: TBevel;
CloseBtn: TSpeedButton;
AddBevel: TBevel;
DeleteBevel: TBevel;
AddBtn: TSpeedButton;
DeleteBtn: TSpeedButton;
RefreshBevel: TBevel;
RefreshBtn: TSpeedButton;
PrintBtn: TSpeedButton;
GroupBox1: TGroupBox;
Label1: TLabel;
ProductNameCmb: TComboBox;
CustomerlnfoGroup: TGroupBox;
BuildingsLbl: TLabel;
FloorsLbl: TLabel;
RoomsLbl: TLabel;
CustomersLbl: TLabel;
BuildingsCmb: TComboBox;
FloorsCmb: TComboBox;
RoomsCmb: TComboBox;
CustomersCmb: TComboBox;
Label5: TLabel;
SaleQuantity: TSpinEdit;
ShowVisitsLbl: TLabel;
ShowSalesCmb: TComboBox;
Bevel3: TBevel;
MyQuery: TMyQuery;
MyListQuery: TMyQuery;
DataSource: TDataSource;
Label6: TLabel;
SaleTotal: TLabel;

end.

unit Sales;

interface

usesWindows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Spin, ExtCtrls, Buttons, Grids, DBGrids, DB, MemDS,
DBAccess, MyAccess, DateUtils, RpCon, RpConDS, RpDefıne, RpRave;

:.:~t

120

ProductPrice: TLabel;
Label3: TLabel;
ProductQuantity: TLabel;
Label2: TLabel;
ProductBarcode: TLabel;
Label4: TLabel;
RvProjectSales: TRvProject;
RvDataSetConnectionSales: TRvDataSetConnection;
procedure ForrnShow(Sender: TObject);
procedure ClearBtnClick(Sender: TObject);
procedure RefreshBtnClick(Sender: TObject);
procedure BuildingsCmbChange(Sender: TObject);
procedure FloorsCmbChange(Sender: TObject);
procedure RoomsCmbChange(Sender: TObject);
procedure CloseBtnClick(Sender: TObject);
procedure ProductN ameCmbChange(Sender: TObject);
procedure SaleQuantityChange(Sender: TObject);
procedure AddBtnClick(Sender: TObject);
procedure DeleteBtnClick(Sender: Tübject);
procedure ShowSalesCmbChange(Sender: TObject);
procedure PrintBtnClick(Sender: TObject);
procedure DBGridTitleClick(Colurnn: TColurnn);
procedure DBGridMouseMove(Sender: TObject; Shift: TShiftState; X,

Y: Integer);
procedure ForrnClose(Sender: TObject; var Action: TCloseAction);

private
{ Private declarations }

public
{ Public declarations }

end;

var
SalesForrn: TSalesForrn;
SortingField, SortingMethod, SaleDateRange: String;
PreviousColurnnlndex: Integer= O;

implementation

{$R *.dfm}

procedure TSalesForrn.ForrnShow(Sender: TObject);
begin

SortingField := 'sale_time';
SortingMethod :='Dese';
SaleDateRange :=' sale_time Between "'+ForrnatDateTime('yyyy-MM-dd 00:00:00',

Date)+
"' And "'+ForrnatDateTime('yyyy-MM-dd 23:59:59', Date)+"";
ClearBtn.Visible := False;
ShowSalesCmb.Itemlndex := O;

121

122

''t

RefreshBtn.Click;
end;

procedure TSalesForm.ClearBtnClick(Sender: TObject);
begin
ProductNarneCmb.Itemlndex := -1;
SaleQuantity.Text := '1 ';
ProductPrice.Caption := ";
ProductQuantity.Caption := ";
ProductBarcode.Caption := ";
SaleTotal.Caption := ";
BuildingsCmb.ltemlndex := -1;
FloorsCmb.Enabled := False;
FloorsCmb.Itemlndex := -1;
RoomsCmb.Enabled := False;
RoomsCmb.ltemlndex := -1;
CustomersCmb.Enabled := False;
CustomersCmb.Itemlndex := -1;

end;

procedure TSalesForm.RefreshBtnClick(Sender: TObject);
begin
ProductNarneCmb.Clear;
With MyQuery Do
Begin

Close;
SQL.Clear;
Pararns.Clear;
SQL.Text :='Select* From products Order By product_name';
Execute;
While Not EofDo
Begin
ProductNameCmb.Items.AddObject(FieldByName('product_name').AsString,

TObject(FieldByName('id').Aslnteger));

,~!

'"

Next;
End;

End;
BuildingsCmb.Clear;
With MyQuery Do
Begin

Close;
SQL.Clear;
Pararns.Clear;
SQL.Text := 'Select * From buildings Order By building_naıne';
Execute;
While Not EofDo
Begin
BuildingsCmb.Items.AddObject(FieldByName('building_name').AsString,

TObject(FieldByNarne('id').Aslnteger));

With MyListQuery Do
Begin

Close;
SQL.Clear;
Pararns.Clear;
SQL.Text :='Select* From sales Where'+SaleDateRange+
' Order By '+SortingField+SortingMethod;
Execute;

End;

Next;
End;

End;
FloorsCmb.Enabled := False;
FloorsCmb.Itemlndex := -1;
RoomsCmb.Enabled := False;
RoomsCmb.Itemlndex := -1;
CustomersCmb.Enabled := False;
CustomersCmb.Itemlndex := -1;

ClearBtn.Click;
end;

procedure TSalesForm.ProductNameCmbChange(Sender: TObject);

begin
With MyQuery Do
Begin

Close;
SQL.Clear;
Params.Clear;
SQL.Text :='Select* From products Where id=:product_id';
Pararns(O].AsString :=

IntT o S tr(Longlnt(ProductN ameCmb .Iterns. Objects (ProductN ameCm b .Itemlndex]));

Execute;
ProductPrice.Caption := FieldByName('product_price').AsString;
ProductQuantity .Caption := FieldByN ame('product_ quantity').AsString;
SaleQuantity .Max Value := FieldByN ame('product_ quantity').Aslnteger;
If StrTolnt(SaleQuantity.Text) > FieldByName('product_quantity').Aslnteger Then

SaleQuantity.Text := FieldByName('product_quantity').AsString;
ProductBarcode.Caption := FieldByName('product_barcode') .AsString;

End;
SaleTotal.Caption :=

FloatToStr((StrTolnt(SaleQuantity.Text)*StrToFloat(ProductPrice.Caption)));
end;

procedure TSalesForm.BuildingsCmbChange(Sender: TObject);
begin
RoomsCmb.Enabled := False;
RoomsCmb.Itemlndex := -1;

123

FloorsCmb.Clear;
With MyQuery Do
Begin

Close;
SQL.Clear;
Params.Clear;
SQL.Text :='Select* From floors Where building_id=:building_id '+
'Order By floor_name';
Params[O].AsString :=

IntToStr(Longlnt(BuildingsCmb.Items.Objects[BuildingsCmb.ltemlndex]));
Execute;
While Not EofDo
Begin
FloorsCmb.Items.AddObject(FieldByName('floor_name').AsString,

TObject(FieldByName('id').Aslnteger));

Next;
End;

End;
FloorsCmb.Enabled := True;

end;

procedure TSalesForm.FloorsCmbChange(Sender: TObject);
begin
RoomsCmb.Clear;
With MyQuery Do
Begin

Close;
SQL.Clear;
Params.Clear;
SQL.Text :='Select* From rooms Where floor_id=:floor_id '+
'Order By room_name';
Params[O].AsString :=

IntToStr(Longlnt(FloorsCmb.ltems.Objects[FloorsCmb.Itenilndex]));
Execute;
While Not Eof Do
Begin

RoomsCmb.Items.AddObject(FieldByName('room_name').AsString,
TObject(FieldByName('id').Aslnteger));

\\I'
:;::

Next;
End;

End;
RoomsCmb.Enabled := True;

end;

procedure TSalesForm.RoomsCmbChange(Sender: TObject);
begin

CustomersCmb.Clear;
With MyQuery Do
Begin

124

Close;
SQL.Clear;
Params. Clear;
SQL.Text :='Select* From customers Where room_id=:room_id '+
'Order By customer_name';
Params[O].AsString :=

IntToStr(Longlnt(RoomsCmb.Items.Objects[RoomsCmb.Itemlndex]));
Execute;
While Not EofDo
BeginCustomersCmb.Items.AddObject(FieldByName('customer_name').AsString+'

'+FieldByName('customer_sumame').AsString,
TObject(FieldByName('id').Aslnteger));

Next;
End;

End;
CustomersCmb.Enabled := True;

end;

procedure TSalesForm.SaleQuantityChange(Sender: TObject);
begin
If ProductNameCmb.ltemlndex > -1 Then

SaleTotal.Caption :=
FloatToStr((StrTolnt(SaleQuantity.Text)*StrToFloat(ProductPrice.Caption)));

end;

procedure TSalesForm.CloseBtnClick(Sender: TObject);
begin

SalesForm.Close;
end;

!'I!
"'......_

procedure TSalesForm.AddBtnClick(Sender: TObject);
begin
If (ProductNameCmb.Itemlndex = -1) Then
BeginMessageDlg('You must select a Product Name to save this record.', mtError, [mbOk],

O);
Exit;

End;
If (BuildingsCmb.Itemlndex <> -1) Then
Begin
If (FloorsCmb.Itemlndex = - 1) Then
BeginMessageDlg('You must select a Floor Name to save this record.', mtError, [mbOk],

O);
Exit;

End;
If (RoomsCmb.Itemlndex = -1) Then
Begin

125

With MyQuery Do
Begin

SQL.Clear;
Params. Clear;
SQL.Text := 'Insert Into sales Set'+
'customer _info=:customer _info, '+
'product_info=:product_info, '+
'product_price=:product_price, '+
'sale_quantity=:sale_quantity, '+
'total_price=:total_price, '+
'sale_time=:sale _time';
If BuildingsCmb.Text <>"Then
Params[O].AsString := BuildingsCmb.Text+' > '+FloorsCmb.Text+' >

'+RoomsCmb.Text
Else
Params[O].AsString := 'Not From Dormitory';

If CustomersCmb.Itemindex > -1 Then Params[O].AsString := Params[O].AsString+'
> '+CustomersCmb.Text;

Params[l].AsString := ProductNameCmb.Text;
Params[2].AsFloat := StrToFloat(ProductPrice.Caption);
Params[3].AsString := SaleQuaiıtity.Text;
Params[4] .AsFloat := StrToFloat(Sale Total. Caption);
Params[S].AsString := FormatDateTime('yyyy-MM-dd', Date)+FormatDateTime('

hh:mm:ss', Time);
Execute;

End;
With MyQuery Do
Begin

SQL.Clear;
Params. Clear;
SQL.Text := 'Update products Set'+
'product_ quantity=product_ quantity-:sale _quantity '+
'Where id=:product_id';
Params[O].AsString := SaleQuantity.Text;
Params[l].AsString :=

IntToStr(Longint(ProductNameCmb.Items.Objects[ProductNameCmb.Itemindex]));
Execute;

MessageDlg('You must select a Room Name to save this record.', mtError, [mbük],
O);

Exit;
End;
If (CustomersCmb.Itemindex = -1) Then
Begin

MessageDlg('You must select a Customer Name to save this record.', mtError,
[mbük], O);

Exit;
End;

End;

126

End;
RefreshBtn. Click;

end;

procedure TSalesForm.DeleteBtnClick(Sender: Tübject);

Var
SalelD, Salelnfo, SaleQuantity: String;

begin
With MyQuery Do
Begin

SalelD := MyListQuery.FieldByName('id').AsString;
Salelnfo := MyListQuery.FieldByName('sale_time').AsString+' - '+

MyListQuery .FieldBy N ame('product_info').AsString;
SaleQuantity := MyListQuery .FieldByName('sale _quantity').AsString;
If MessageD lg('Record will be deleted. Please Confirm.'# 1 O# 1 O'Sale Info :

'+Salelnfo+# 1 O# 1 O'Y ou should manually increase this product"s quantity by '+SaleQuantity,
mtConfırmation, [mbOK, mbCancel), O)= rnrOK Then

Begin
SQL.Clear;
Params.Clear;
SQL.Text := 'Delete From sales Where id=:sale_id';
Params[O).AsString := SaleID;
Execute;
MyListQuery .Execute;

End;
End;

end;

procedure TSalesForm.ShowSalesCmbChange(Sender: TObject);

begin
Case ShowSalesCmb.Itemlndex Of
O: SaleDateRange :=' sale_time Between "'+FormatDateTime('yyyy-MM-dd

00:00:00', Date)+
"' And "'+FormatDateTime('yyyy-MM-dd 23:59:59', Date)+"";

1: SaleDateRange :=' sale_time Between "'+FormatDateTime('yyyy-MM-dd

00:00:00', Yesterday)+
'" And "'+FormatDateTime('yyyy-MM-dd 23:59:59', Yesterday)+'"';

2: SaleDateRange :=' sale_time Between '"+FormatDateTime('yyyy-MM-01

00:00:00', Date)+
"' And '"+FormatDateTime('yyyy-MM-31 23:59:59', Date)+"";

3: SaleDateRange :=' sale_time Between "'+FormatDateTime('yyyy-01-01 00:00:00',

Date)+
"' And '"+FormatDateTime('yyyy-12-31 23:59:59', Date)+"";

4: SaleDateRange :=' sale_time Between "0000-01-01 00:00:00" And "9999-12-31

23:59:59"';
end;
RefreshBtn.Click;

end;

127

128

procedure TSalesForm.PrintBtnClick(Sender: TObject);
begin
RvProj ectSales. Open;
RvProjectSales.Execute;
RvProjectSales. Close;

end;

procedure TSalesForm.DBGridTitleClick(Column: TColumn);
begin
If SortingField <> DBGrid.Columns[Column.Index].FieldNarne Then

SortingMethod := 11

Else
If SortingMethod <> 11 Then SortingMethod := 11 Else SortingMethod := ' Dese';

SortingField := DBGrid.Columns[Column.Index].FieldName;
Try
DBGrid.Columns[PreviousColumnlndex].title.Font.Style :=
DBGrid. Columns [PreviousColumnlndex]. title.Font. Style - [fsBold];

Except
End;
Column.title.Font.Style :=Column.title.Font.Style+ [fsBold];
PreviousColumnlndex := Column.Index;
RefreshBtn.Click;

end;

procedure TSalesForm.DBGridMouseMove(Sender: TObject; Shift: TShiftState;
X, Y: Integer);

var
pt: TGridcoord;

begin
pt:= DBGrid.MouseCoord(x, y);
If pt. y=O Then
DBGrid.Cursor:=crHandPoint

Else
DBGrid.Cursor:=crDefault;

end;

procedure TSalesForm.FormClose(Sender: TObject; var Action: TCloseAction);
begin

DBGrid.Columns[PreviousColumnlndex].title.Font.Style :=
DBGrid.Columns[PreviousColumnlndex].title.Font.Style - [fsBold];

end;

end.

unit Visitors;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Buttons, ComCtrls, StdCtrls, DB, MemDS, DBAccess, MyAccess,
Grids, DBGrids, ExtCtrls, DateUtils, RpCon, RpConDS, RpDefine, RpRave;

type
TVisitorsForm = class(TForm)
CustomerlnfoGroup: TGroupBox;
BuildingsLbl: TLabel;
FloorsLbl: TLabel;
RoomsLbl: TLabel;
CustomersLbl: TLabel;
BuildingsCmb: TComboBox;
FloorsCmb: TComboBox;
RoomsCmb: TComboBox;
CustomersCmb: TComboBox;
GroupBoxl: TGroupBox;
VisitorLbl: TLabel;
EnteringLbl: TLabel;
EnteringTimePicker: TDateTimePicker;
GetCurrentTimeBtn: TSpeedButton;
ExitingLbl: TLabel;
ExitingTimePicker: TDateTimePicker;
Bevel1: TBevel;
Visitorlnfo: TMemo;
CommandPanel: TPanel;
PrintClearBevel: TBevel;
CloseBevel: TBevel;
CancelBtn: TSpeedButton;
CloseBtn: TSpeedButton;
EditSaveBevel: TBevel;
SaveBtn: TSpeedButton;
EditBtn: TSpeedButton;
AddBevel: TBevel;
DeleteBevel: TBevel;
AddBtn: TSpeedButton;
DeleteBtn: TSpeedButton;
RefreshBevel: TBevel;
RefreshBtn: TSpeedButton;
PrintBtn: TSpeedButton;
DBGrid: TDBGrid;
MyQuery: TMyQuery;
MyListQuery: TMyQuery;
DataSource: TDataSource;
ShowVisitsCmb: TComboBox;
ShowVisitsLbl: TLabel;
Beve13:TBevel;
ClearBtn: TSpeedButton;
RvProjectVisitor: TRvProject;

129

RvDataSetConnection Visitor: TRvDataSetConnection;
procedure FormShow(Sender: TObject);
procedure ClearBtnClick(Sender: TObject);
procedure RefreshBtnClick(Sender: TObject);
procedure BuildingsCmbChange(Sender: TObject);
procedure FloorsCmbChange(Sender: TObject);
procedure CloseBtnClick(Sender: Tübject);
procedure RoomsCmbChange(Sender: Tübject);
procedure GetCurrentTimeBtnClick(Sender: TObject);
procedure AddBtnClick(Sender: TObject);
procedure EditBtnClick(Sender: Tübject);
procedure CancelBtnClick(Sender: TObject);
procedure SaveBtnClick(Sender: Tübject);
procedure DeleteBtnClick(Sender: TObject);
procedure ShowVisitsCmbChange(Sender: Tübject);
procedure PrintBtnClick(Sender: TObject);
procedure DBGridTitleClick(Column: TColumn);
procedure DBGridMouseMove(Sender: TObject; Shift: TShiftState; X,

Y: Integer);
procedure FormClose(Sender: TObject; var Action: TCloseAction);

private
{ Private declarations }

public
{ Public declarations }

end;

var
VisitorsForm: TVisitorsForm;
SortingField, SortingMethod, VisitDateRange: String;
PreviousColumnlndex : Integer= O;

implementation

{$R *.dfm}

procedure TVisitorsForm.FormShow(Sender: TObject);
begin

SortingField := 'entering_time';
SortingMethod := 'Dese';
VisitDateRange :=' entering_time Between "'+FormatDateTime('yyyy-MM-dd

00:00:00', Date)+
"' And "'+FormatDateTime('yyyy-MM-dd 23:59:59', Date)+"";
SaveBtn.Visible := False;
CancelBtn.Visible := False;
ClearBtn.Visible := False;
ClearBtn.Click;
RefreshBtn.Click;

end;

130

131

procedure TVisitorsFornı.ClearBtnClick(Sender: TObject);
begin
BuildingsCmb.Itemlndex := - 1;
FloorsCmb.Enabled := False;
FloorsCmb.Itemindex := -1;
RoomsCmb.Enabled := False;
RoomsCmb.Itemlndex := - 1;
CustomersCmb.Enabled := False;
CustomersCmb.Itemlndex := - 1;
ShowVisitsCmb.Itemlndex := O;
Visitorlnfo.Text := ";
EnteringTimePicker.Date := Date;
EnteringTimePicker.Time := Time;
ExitingLbl.Enabled := False;
ExitingTimePicker.Time := StrToTime('00:00:00');
ExitingTimePicker.Enabled := False;

end;

procedure TVisitorsFornı.RefreshBtnClick(Sender: TObject);
begin
BuildingsCmb.Clear;
With MyQuery Do
Begin

Close;
SQL.Clear;
Params.Clear;
SQL.Text :='Select* From buildings Order By building_name';
Execute;
While Not EofDo
Begin

BuildingsCm b.Items.AddObj ect(FieldBy N ame('building_ name').AsString,
TObject(FieldByName('id').Aslnteger));

Next;
End;

End;
FloorsCmb.Enabled := False;
FloorsCmb.Itemlndex := - 1;
RoomsCmb.Enabled := False;
RoomsCmb.Itemindex := - 1;
CustomersCmb.Enabled := False;
CustomersCmb.Itemlndex := - 1;

With MyListQuery Do
Begin
Close;
SQL.Clear;
Params.Clear;
SQL.Text :='Select* From visitors Where'+VisitDateRange+
' Order By +Sortingltield+Sortinglvlethod;

Next;
End;

End;

'i•..•..

Execute;
End;

end;

procedure TVisitorsF ornı .BuildingsCmbChange(Sender: TObj ect);
begin

RoomsCmb.Enabled := False;
RoomsCmb.Itemlndex := -1;
FloorsCmb.Clear;
With MyQuery Do
Begin

Close;
SQL.Clear;
Params. Clear;
SQL.Text :='Select* From floors Where building_id=:building_id '+
'Order By floor_name';
Params[O].AsString :=

lntToStr(Longlnt(BuildingsCmb.Items.Objects[BuildingsCmb.Itemlndex]));
Execute;
While Not EofDo
Begin

FloorsCmb.Items.AddObj ect(FieldBy N ame('floor _name').AsString,
TObject(FieldByName('id').Aslnteger));

Next;
End;

End;
FloorsCmb.Enabled := True;

end;

procedure TVisitorsF ornı.FloorsCmbChange(Sender: TObj ect);
begin
RoomsCmb.Clear;
With MyQuery Do
Begin

Close;
SQL.Clear;
Params.Clear;
SQL.Text :='Select* From rooms Where floor_id=:floor_id '+
'Order By room_name';
Params[O].AsString :=

IntToStr(Longlnt(FloorsCmb.ltems.Objects[FloorsCmb.Itemlndex]));
Execute;
While Not EofDo
Begin

RoomsCmb .Items .Add Object(F ieldB yName('room _name') .AsString,
TObject(FieldByName('id').Aslnteger));

132

procedure TVisitorsF orm.AddBtnClick(Sender: Tübject);
begin
Visitorlnfo.Text := Trim(Visitorlnfo.Text);
If (BuildingsCmb.Itemindex = -1) Then
Begin

MessageDlg('You must select a Building Name to save this record.', mtError,
[mbük], O);

Exit;
End;
If (FloorsCmb.Itemindex = -1) Then
Begin

::I'

RoomsCmb.Enabled := True;
end;

procedure TVisitorsForm.RoomsCmbChange(Sender: Tübject);
begin

CustomersCmb.Clear;
With MyQuery Do
Begin

Close;
SQL.Clear;
Params.Clear;
SQL.Text :='Select* From customers Where room id=:room id'+- -
'Order By customer _name';
Params[O].AsString :=

IntToStr(Longlnt(RoomsCmb.Items.Objects[RoomsCmb.Itemindex]));
.Execute;
While Not EofDo
Begin

CustomersCmb.Items.AddObject(FieldByName('customer_name').AsString+'
'+FieldByN ame('customer _sumame').AsString,

TObject(FieldByName('id').Aslnteger));
Next;

End;
End;
CustomersCmb.Enabled := True;

end;

procedure TVisitorsForm.CloseBtnClick(Sender: Tübject);
begin

VisitorsForm.Close;
end;

procedure TVisitorsF orm. GetCurrentTimeBtnClick(Sender: Tübject);
begin
If EnteringTimePicker.Enabled Then EnteringTimePicker.Time := Time
Else ExitingTimePicker.Time := Time;

end;

133

MessageDlg('You must select a Floor Name to save this record.', mtError, [mbük],
O);

Exit;
End;
If (RoomsCmb.Itemlndex = -1) Then
Begin

MessageDlg('You must select a Room Name to save this record.', mtError, [mbük],
O);

Exit;
End;
If (Visitorlnfo.Text =")Then
Begin

MessageDlg('You must enter valid Visitor(s) Information to save this record.',
mtError, [mbük], O);

Exit;
End;

With MyQuery Do
Begin

SQL.Clear;
Params. Clear;
SQL.Text := 'Insert Into visitors Set'+
'visited_ customer info=:visited _customer _info, '+
'visitor_info=:visitor_info, '+
'entering_time=:entering_time';

Params[O].AsString := BuildingsCmb.Text+' > '+FloorsCmb.Text+' >
'+RoomsCmb.Text;

If CustomersCmb.Itemindex > -1 Then Params[O].AsString := Params[O].AsString+'
> '+CustomersCmb.Text;

Params[l].AsString := Visitorlnfo.Text;
Params[2].AsString := FormatDateTime('yyyy-MM-dd hh:mm:ss',

Entering TimePicker .Date);
Execute;

End;
Visitorlnfo.Text := ";
RefreshBtn. Click;

end;

procedure TVisitorsForm.EditBtnClick(Sender: TObject);
Var

I: Integer;
begin

DBGrid.SetFocus;
DBGrid.Enabled := False;

Visitorlnfo.Text := MyListQuery.FieldByName('visitor_info').AsString;
EnteringTimePicker.Time :=

StrT oDate Time(My ListQuery .FieldBy Name('entering_ time').AsString);

134

ExitingTimePicker.Date := Date;
ExitingTimePicker.Time := Time;

BuildingsLbl.Enabled := False;
BuildingsCmb.Enabled := False;
FloorsLbl.Enabled := False;
FloorsCmb.Enabled := False;
RoomsLbl.Enabled := False;
RoomsCmb.Enabled := False;
CustomersLbl.Enabled := False;
CustomersCmb.Enabled := False;
ShowVisitsLbl.Enabled := False;
ShowVisitsCmb.Enabled := False;
VisitorLbl.Enabled := False;
Visitorlnfo.Enabled := False;
EnteringLbl.Enabled := False;
EnteringTimePicker.Enabled := False;
ExitingLbl.Enabled := True;
ExitingTimePicker.Enabled := True;

EditBtn.Visible := False;
CloseBtn.Visible := False;
CancelBtn.Visible := True;
SaveBtn.Visible := True;
AddBtn.Enabled := False;
DeleteBtn.Enabled := False;
RefreshBtn.Enabled := False;

end;

procedure TVisitorsForm.CancelBtnClick(Sender: Tübject);
begin
BuildingsLbl.Enabled := True;
BuildingsCmb.Enabled := True;
FloorsLbl.Enabled := True;
FloorsCmb.Enabled := True;
RoomsLbl.Enabled := True;
RoomsCmb.Enabled := True;
CustomersLbl.Enabled := True;
CustomersCmb.Enabled := True;
ShowVisitsLbl.Enabled := True;
ShowVisitsCmb.Enabled := True;
VisitorLbl.Enabled := True;
Visitorlnfo.Enabled := True;
ExitingLbl.Enabled := False;
ExitingTimePicker.Enabled := False;
EnteringLbl.Enabled := True;

135

136

EnteringTimePicker.Enabled := True;

SaveBtn.Visible := False;
EditBtn.Visible := True;
CancelBtn.Visible := False;
CloseBtn.Visible := True;
AddBtn.Enabled := True;
DeleteBtn.Enabled := True;
RefreshBtn.Enabled := True;
DBGrid.Enabled := True;
DBGrid. SetFocus;
ClearBtn.Click;

end;

procedure TVisitorsForm.SaveBtnClick(Sender: Tübject);
begin

With MyQuery Do
Begin

SQL.Clear;
Params.Clear;
SQL.Text := 'Update visitors Set exiting_time=:exiting_time Where id=:visit_id';
Params[O].AsString := FormatDateTime('yyyy-MM-dd hh:mm:ss',

ExitingTimePicker.Date);
Params[l].AsString := MyListQuery.FieldByName('id').AsString;
Execute;

End;
CancelBtn.Click;
RefreshBtn. Click;
//My ListQuery .Execute;

end;

procedure TVisitorsForm.DeleteBtnClick(Sender: Tübject);
Var

VisitID, Visitlnfo: String;
begin

With MyQuery Do
Begin
VisitID := My ListQuery .FieldByN ame('id').AsString;
Visitlnfo := MyListQuery.FieldByName('entering_time').AsString+' - '+

MyListQuery .FieldB yN ame('visitor _info').AsString;
If MessageDlg('Record will be deleted. Please Confirm. '# 1 O# 1 O' Visit Info :

'+Visitlnfo, mtConfırmation, [mbOK, mbCancel], O)= rnrOK Then
Begin

SQL.Clear;
Params.Clear;
SQL.Text := 'Delete From visitors Where id=:visit_id';
Params[O].AsString := VisitID;
Execute;
MyListQuery .Execute·

procedure TVisitorsForm.DBGridTitleClick(Column: TColumn);

beginIf SortingField <> DBGrid.Columns[Column.Index].FieldName Then
SortingMethod := "

ElseIf SortingMethod <> 11 Then SortingMethod := 11 Else SortingMethod := ' Dese';
SortingField := DBGrid.Columns[Column.Index].FieldName;

TryDBGrid.Columns[PreviousColumnlndex] .title.Fant.Style :=
DBGrid.Columns[PreviousColumnindex].title.Font.Style - lfsBold];

Except
End;Column.title.Font.Style :=Column.title.Font.Style+ [fsBold];
PreviousColumnindex := Column.Index;
RefreshBtn.Click;

end;

End;
End;

end;

procedure TVisitorsForm.ShowVisitsCmbChange(Sender: Tübject);

begin
Case ShowVisitsCmb.Iternlndex Of
O: VisitDateRange :=' entering_time Between 11'+FormatDateTime('yyyy-MM-dd

00:00:00', Date)+'" And '"+FormatDateTime('yyyy-MM-dd 23:59:59', Date)+"";
1: VisitDateRange :=' entering_time Between "'+FormatDateTime('yyyy-MM-dd

00:00:00', Yesterday)+"' And 11'+FormatDateTime('yyyy-MM-dd 23:59:59', Yesterday)+"";
2: VisitDateRange :=' entering_time Between "'+FormatDateTime('yyyy-MM-01

00:00:00', Date)+"' And 11'+FormatDateTime('yyyy-MM-3 l 23:59:59', Date)+"";
3: VisitDateRange :=' entering_time Between '"+FormatDateTime('yyyy-01-01

00:00:00', Date)+"' And '"+FormatDateTime('yyyy-12-31 23:59:59', Date)+"";
4: VisitDateRange :=' entering_time Between "0000-01-01 00:00:00" And "9999-12-

31 23:59:59'";
end;
RefreshBtn.Click;

end;

procedure TVisitorsForm.PrintBtnClick(Sender: Tübject);

begin
RvProjectVisitor.Open;
RvProjectVisitor.Execute;
RvProjectVisitor.Close;

end;

137

procedure TVisitorsForm.DBGridMouseMove(Sender: TObject;
Shift: TShiftState; X, Y: Integer);

var
pt: TGridcoord;

begin
pt:= DBGrid.MouseCoord(x, y);
If pt.y=O Then
DBGrid.Cursor:=crHandPoint

Else
DBGrid.Cursor:=crDefault;

end;

procedure TVisitorsForm.FormClose(Sender: TObject;
var Action: TCloseAction);

begin
DBGrid.Colurnns[PreviousColurnnlndex].title.Font.Style :=
DBGrid.Columns[PreviousColurnnlndex].title.Font.Style - [fsBold];

end;

end.

unit About;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, ExtCtrls, StdCtrls;

type
TAboutForm = class(TForm)
Image1: Tlmage;
Label1 : TLabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
Bevell: TBevel;
Label5: TLabel;
Label6: TLabel;
Bevel2: TBevel;
Label7: TLabel;
Label8: TLabel;

private
{ Private declarations }

public
{ Public declarations }

end;

var

138

	Page 1
	Titles
	NEAR EAST UNIVERSITY
	Faculty of Engineering

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 2
	Titles
	ACKNOWLEDGEMENT

	Images
	Image 1

	Page 3
	Titles
	ABSTRACT

	Images
	Image 1

	Page 4
	Titles
	Table of Contents

	Images
	Image 1

	Page 5
	Images
	Image 1
	Image 2

	Page 6
	Titles
	INTRODUCTION

	Images
	Image 1
	Image 2
	Image 3

	Page 7
	Titles
	CHAPTER!
	1 BASIC CONCEPT OF DELPHI
	1.1 Introduction to Delphi
	1.2 What is Delphi?

	Images
	Image 1

	Page 8
	Images
	Image 1

	Page 9
	Page 10
	Page 11
	Titles
	. . .

	Images
	Image 1
	Image 2
	Image 3

	Page 12
	Page 13
	Images
	Image 1
	Image 2
	Image 3

	Page 14
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 15
	Titles
	1.4 A Tour of the Environment
	Borland Delphi 6
	p

	Images
	Image 1
	Image 2

	Page 1
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 2
	Images
	Image 1
	Image 2
	Image 3

	Page 3
	Images
	Image 1
	Image 2
	Image 3

	Page 4
	Images
	Image 1
	Image 2
	Image 3

	Page 5
	Images
	Image 1
	Image 2

	Page 6
	Titles
	'i]

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 7
	Titles
	-En;ıronment Ôptio~~ - _: · :_ -_ "- · : - - .-·_ a)
	ı~ı ıuıwam
	P b~it~;;~itiijıı~>F;;;::~J·.~F,ı~r.e.~
	1.4.9 Debugging applications

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 8
	Images
	Image 1
	Image 2
	Image 3

	Page 9
	Titles
	Ii [ii]

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Tables
	Table 1

	Page 10
	Titles
	1.5 Programming with Delphi

	Images
	Image 1
	Image 2
	Image 3

	Page 11
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 12
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 13
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 14
	Titles
	ı~:=ı•mzg1
	Fiİt~;~d ··········ıs Local
	, t~~;;'Qeı~\tJ:~:I:; _

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 15
	Titles
	. . . •·
	·.~L
	. --~r

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 1
	Images
	Image 1
	Image 2
	Image 3

	Page 2
	Titles
	database
	BDE
	dataset
	DataSource
	data-aware control

	Images
	Image 1

	Page 3
	Titles
	CHAPTER2
	2 THE RAVE REPORTING
	2.1 Project Tree
	, ~- [{ffiJ Report1

	Images
	Image 1
	Image 2
	Image 3

	Page 4
	Titles
	2.2 Design Tools

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 5
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 6
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 7
	Titles
	2.3 Reuse and Maintenance Tools

	Images
	Image 1
	Image 2

	Page 8
	Titles
	::~ .1 :::;

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 9
	Titles
	2.4 Standard Components

	Images
	Image 1
	Image 2

	Page 10
	Titles
	2.5 Drawing Components
	2.6 Reporting Components

	Images
	Image 1
	Image 2
	Image 3

	Page 11
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 12
	Titles
	Qf< · I [2r,cel

	Images
	Image 1
	Image 2
	Image 3

	Page 13
	Images
	Image 1
	Image 2
	Image 3

	Page 14
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 15
	Titles
	2.9 Code Based Reports

	Images
	Image 1

	Page 1
	Titles
	Welcome to Code Based Reporting in Rave

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 2
	Titles
	'

	Images
	Image 1
	Image 2
	Image 3

	Page 3
	Titles
	'
	'

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 4
	Images
	Image 1

	Page 5
	Titles
	2.1 O Visually Designed Reports
	: I

	Images
	Image 1
	Image 2

	Page 6
	Titles
	;,ı.

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 7
	Titles
	: ı.
	. '

	Images
	Image 1

	Page 8
	Titles
	Welcome to Rave Reports Visual Designer

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 9
	Titles
	ıı.
	ı,

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 10
	Titles
	ı ..

	Images
	Image 1
	Image 2
	Image 3

	Page 11
	Titles
	ı ..

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 12
	Titles
	Introduction to Rave Repqı1,s
	Introduction to Rave Reports

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 13
	Titles
	introduction to Reeve· f:?eports

	Images
	Image 1
	Image 2
	Image 3

	Page 14
	Images
	Image 1

	Page 15
	Titles
	2.11 Data Aware Reports

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 1
	Images
	Image 1

	Page 2
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Page 3
	Images
	Image 1

	Page 4
	Titles
	•

	Images
	Image 1
	Image 2

	Page 5
	Images
	Image 1
	Image 2

	Page 6
	Titles
	CHAPTER3
	3 USER MANUAL
	3.1 Data base Connection Screen

	Images
	Image 1
	Image 2

	Page 7
	Titles
	3.2 Main Menu
	-
	3.3 Buildings Menu

	Images
	Image 1
	Image 2

	Page 8
	Titles
	<o>,l:\,dd
	Building Name : r;rı)fa;t,@if--

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10

	Page 9
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 10
	Titles
	//'_··:~,,,,

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Page 11
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10
	Image 11
	Image 12

	Page 12
	Titles
	Room Na me : [:i•MiıliıH
	--------.,,,,.~~««____ -- -------
	3.4 Customers Menu

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9

	Page 13
	Titles
	,, ~
	.. ~r>
	\~t
	\~!
	r , .. ,,,, __
	r-,., __ ,,,_,_
	I
	Room Name: r -· -~~-,,,..,.., 3
	TtiŞ.O"iziN ··········=·M ["o"?;~;_·_~:.-.f_i_~_?i.".?I~-_?.·~-~.---~f?T:~;_jj
	Figure 3.12 Customer Organize Form in Edit Mode
	Figure 3.11 Customer Organize Form
	68
	the figure below form is transformed to edit mode.

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9

	Tables
	Table 1

	Page 14
	Titles
	..-~~~~~~~
	j: ::::::~(::::::::ı
	Canceı)
	Customer List

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9

	Page 15
	Titles
	,·········-
	I
	<(i>~dd
	.5 Cafeteria Menu

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 1
	Titles
	Product Name 18•/İfitMl•Kl .

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Tables
	Table 1

	Page 2
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 3
	Titles
	,.6 Visitors Menu

	Images
	Image 1

	Page 4
	Titles
	"'' I
	r'f"',.
	/'
	Figure 3.20 Visitor Organize Form
	Figure 3.21 Print Preview of Dormitory Visitor Report
	user selects Preview option after clicking Print button the figure below will be shown
	~
	74

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Tables
	Table 1

	Page 5
	Titles
	3.7 About Menu
	Donni vı.o
	3.8 Exit Menu

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 6
	Titles
	CONCLUSION

	Images
	Image 1

	Page 7
	Titles
	REFERENCES

	Images
	Image 1
	Image 2

	Page 8
	Titles
	APPENDIX

	Page 9
	Titles
	79

	Images
	Image 1
	Image 2

	Page 10
	Page 11
	Images
	Image 1

	Page 12
	Images
	Image 1

	Page 13
	Images
	Image 1

	Page 14
	Page 15
	Images
	Image 1

	Page 1
	Images
	Image 1

	Page 2
	Images
	Image 1

	Page 3
	Titles
	,,

	Images
	Image 1

	Page 4
	Titles
	.,.

	Page 5
	Page 6
	Page 7
	Images
	Image 1

	Page 8
	Page 9
	Titles
	,

	Images
	Image 1
	Image 2

	Page 10
	Page 11
	Images
	Image 1

	Page 12
	Page 13
	Images
	Image 1
	Image 2

	Page 14
	Page 15
	Page 1
	Images
	Image 1

	Page 2
	Titles
	s.

	Images
	Image 1

	Page 3
	Images
	Image 1

	Page 4
	Images
	Image 1
	Image 2

	Page 5
	Images
	Image 1

	Page 6
	Images
	Image 1
	Image 2

	Page 7
	Images
	Image 1

	Page 8
	Images
	Image 1

	Page 9
	Images
	Image 1

	Page 10
	Images
	Image 1
	Image 2

	Page 11
	Images
	Image 1

	Page 12
	Titles
	1d;

	Images
	Image 1

	Page 13
	Titles
	..

	Images
	Image 1

	Page 14
	Images
	Image 1

	Page 15
	Images
	Image 1
	Image 2

	Page 16
	Titles
	~··

	Images
	Image 1

	Page 17
	Images
	Image 1

	Page 18
	Images
	Image 1

	Page 19
	Titles
	:::~.

	Images
	Image 1

	Page 20
	Images
	Image 1
	Image 2

	Page 21
	Images
	Image 1
	Image 2

	Page 22
	Images
	Image 1

	Page 23
	Images
	Image 1
	Image 2

	Page 24
	Images
	Image 1

	Page 25
	Images
	Image 1

	Page 26
	Images
	Image 1

	Page 27
	Images
	Image 1

	Page 28
	Images
	Image 1

	Page 29
	Images
	Image 1

	Page 30
	Images
	Image 1

	Page 31
	Images
	Image 1

	Page 32
	Titles
	•..

	Images
	Image 1
	Image 2

	Page 33
	Images
	Image 1

	Page 34
	Images
	Image 1

	Page 35
	Images
	Image 1
	Image 2

	Page 36
	Images
	Image 1

	Page 37
	Images
	Image 1
	Image 2

	Page 38
	Images
	Image 1
	Image 2

