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ABSTRACT 

Two-dimensional laminar natural convection heat transfer in air around an isothermal 

vertical plate, an isothermal horizontal flat plate subjected to heat from both sides, and also 

isothermal horizontal ducts with rectangular and square cross sections are examined 

numerically.  

The computational procedures are based on the finite difference technique. Finite 

difference scheme based on the integration of the governing equations over finite cells is 

applied to the two dimensional, steady state problem. Different aspect ratios are used for a 

wide range of Rayleigh number. Results are presented in the form of streamlines, velocity 

vectors, and isotheral plots around the circumference of the ducts. Software for this purpose 

was developed using Java language for the numerical solution. 

Circulation and separation are observed at high aspect ratios. The value of                    

y-component of velocities near the vertical wall of the duct is found to be higher than the 

values of y-component of velocities near a vertical plate having the same height. Heat transfer 

data is generated and presented in terms of Nusselt numbers versus Rayleigh numbers for 

different aspect ratios. The correlation covering the aspect ratios used is obtained in 

dimensionless form of Nusselt number, Rayleigh number, and aspect ratio. The results of the 

correlation are in close agreement with the data from the numerical analysis with a maximum 

deviation of 10.34%. 

Keywords: Finite difference scheme, Natural convection, Rectangular duct, Aspect ratio, 

Horizontal plate, Vertical plate. 
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ÖZET 

Her iki yüzeyinden soğutulan sabit sıcaklıktaki düşey bir levha, yatay bir levha ve 

ayrıca dikdörtgen kesitli yatay bir kanal üzerindeki iki boyutlu laminer doğal taşınım ısı 

transferi sayısal olarak incelenmiştir. 

Sayısal çözümlemede sonlu farklar tekniği kullanımıştır. Korunum denklemlerini sonlu 

hücrelerde entegre etme esasına dayanan sonlu farklar yönetimi iki boyutlu kararlı probleme 

uygulanmıştır. Sayısal çözümleme için Java programlama dili kullanılarak bir yazılım 

geliştirilmiştir. Hesaplamalarda geniş bir Rayleigh sayısı aralığında farklı aspekt oranı 

kullanılmıştır ve elde edilen sonuçlar akım çizgileri, hız vektörleri ve sabit sıcaklık konturları 

olarak verilmiştir. 

Dikdörtgen kesitli yatay kanallarda yüksek aspekt oranında sirkülasyon ve 

seperasyonun yaşandığı gözlenmiştir. Bununla birlikte düşey yüzey boyunca düşey hızın 

düşey levhaya ait düşey hızlardan daha yüksek olduğu belirlenmiştir. Farklı aspekt oranları 

için taşınım ısı tansferi katsayıları elde edilmiş ve Rayleigh sayısının fonksiyonu olarak 

Nusselt sayısı şekilinde grafikler halinde verilmiştir. Bu çalışmada kullanılan aspekt oranı ve 

Rayleigh sayısı aralığı için, Nusselt sayısını Rayleigh sayısı ve aspekt oranının bir fonksiyonu 

olarak veren bir korelasyon elde edilmiştir. Bu korelasyon ve sayısal çözümleme ile elde 

edilen değerler karşılatırıldığında bunların, aralarında en fazla %10.34’lük bir farkla, 

birbirlerine yakın değerler oldukları görünmektedir.  

 

Anahtar kelimeler: Sonlu farklar, Doğal taşınım, Dikdörtgen kanal, Aspekt oranı, Düşey 

levha, Yatay levha. 
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CHAPTER 1  

INTRODUCTION 

 

Convective heat transfer is the study of heat transport process affected by the flow of 

fluids. In convective heat transfer problems, the flow usually is classified as forced convection 

flow in which the flow is caused by external forces, such as pumps or fans, or free convection 

flow which observed as a result of the motion of the fluid due to density changes arising from 

heating process. A hot radiator used for heating a room is one example of a practical device 

which transfers heat by free convection. The movement of the fluid in free convection, 

whether it is a gas or a liquid, results from the buoyancy forces imposed on the fluid when its 

density in the proximity of heat transfer surface is decreased as a result of the heating process. 

The buoyancy forces would not be present if the fluid were not acted upon by some external 

force field such as the gravity. 

Natural convection heat transfer has increasingly attracting the interest of researchers. 

This is due to its importance in many engineering applications. Among various problems of 

natural convection, laminar convection from heated rectangular or square ducts is an important 

problem in heat transfer. It is used to simulate a wide range of engineering applications as well 

as provide a better insight into more new systems of heat transfer. Accurate knowledge of the 

overall natural convection heat transfer around ducts is important; while it appears in variety 

of natural circumstances such as thermal plums and meteorological phenomena, including heat 

exchangers, design of solar collectors, and cooling of electronic circuit boards. Because of its 

industrial importance, this class of heat transfer has been extensively studied experimentally, 

but the numerical investigations are not so many as expected, due to the larger theoretical 

complexities involved, where the mass flow rate is unknown , the momentum and energy 

equations are coupled, and  the fluid flow cannot be assumed to be fully developed. 
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In this study, natural convection over three different geometries; isothermal horizontal 

duct, vertical plate and an isothermal horizontal flat plate subjected to heat transfer from both 

sides, surrounded by a fluid reservoir is assumed to be at constant temperature T∞, will be 

investigated numerically using finite difference method and applying the current numerical 

techniques, successive over relaxation iteration method were chosen, which performed by 

developing a software using Java language. The buoyancy which induces the flow is 

considered to be steady and laminar, the geometries are assumed to be much longer than their 

heights and widths, which implies that the end effects can reasonably be neglected and 

temperature and velocity profiles can be considered to be two dimensional. The fluid is air and 

the physical properties were assumed as constants at the film temperature, and negligible 

viscous dissipation and pressure work. The buoyancy effects on the momentum transfer are 

taken into account through the Boussinesq approximation. These considerations are employed 

in the conservation equations of mass, momentum and energy. 
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CHAPTER 2  

LITERATURE SURVEY 

2.1 Over view  

Prior to World War II, convective heat and mass transfers were largely empirical 

sciences, and engineering design was accomplished almost by the use of experimental data 

generalized to some degree by dimensional analysis. During the past two decades great studies 

have been made in developing analytical methods of convection analysis. While today 

experiment is assumed to be more classical role of testing the validity of the theoretical models 

[1]. This is not to say that direct experimental data are not still of vital importance in 

engineering design, but there is no question that the area of complete dependence on direct 

experimental data has been greatly diminished. Most studies concern the nature of the portions 

of such flows attached to the surface of a body. These may be described by simplified 

mathematical models, such as the boundary layer theory, the subsequent regions where the 

flow may be separate from the surface and rise perhaps as a buoyant plume have not been 

considered in details. The laminar boundary layer equations are physically only meaningful for 

large Grashof numbers 10
9
 for which they represent asymptotic solutions to the continuity, 

momentum and energy equations. For air in free convection on a vertical flat plate, the critical 

Grashof number has been observed by Eckert and Soehngen [2] to be approximately 4×10
8
. 

Values ranging between 10
8
 and 10

9
 may be observed for different fluids and environment 

―turbulence levels‖.  

Due to the nonlinearities arise from the fluid acceleration terms and the coupling of the 

momentum energy equations; the exact solution of the boundary layer equations for natural 

convection is complicated by the nonlinear nature of the problem. Because of the analytical 
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difficulties, there has been a heavy reliance on empirical information to solve many problems 

of engineering importance. The empirical approach, however, is not completely satisfactory 

since, when complicated geometries are involved, it is not always clear which dimensionless 

parameters should be used to correlate experimental results. Another difficulties arise in the 

empirical approach because of the velocities are usually so small that they are very difficult to 

measure in the free convection problems. Despite of that, velocity measurements have been 

performed using hydrogen-bubble techniques [3], hot-wire anemometry [4]. Temperature field 

measurements have been obtained through the use of the Zehender-Mach interferometer. The 

laser anemometer [5] is particularly useful for free convection measurements because it does 

not disturb the flow field. 

 Several techniques; for flow measurements have been discussed by Jensen [6]. Basic 

theory and implementation of those techniques is provided. The intent of this study is to 

provide enough detail to enable a novice user to make an informed decision in selecting the 

proper equipment to solve a particular flow measurement problem. 

Additionally, many flows of practical interest involve geometries and boundary 

conditions which do not permit similarity solutions where the complete Navier Stokes and 

energy equations have to be considered.   

The problem laminar natural convection received continuous attention since the early 

work of Churchill and Chu; a theoretical solution using boundary layer theory obtained for 

laminar and turbulent free convection from a vertical plate [7] and from horizontal cylinder 

[8]. The expression is applicable to uniform heating as well as to uniform wall temperature 

and for mass transfer and simultaneous heat and mass transfer. The correlation provides a 

basis for estimating transfer rates for non-Newtonian fluids and for inclined plates and 

cylinders.    

The first work used to test the numerical methods for computation of laminar natural 

convection in enclosures is referred to Churchill and Chu[9], the model represents two 

dimensional, laminar, and natural convection in a rectangular cross section of a long channel is 

developed in terms of the stream function and the vorticity. The Grashof number, the Prandtl 

number, the aspect ratio and the boundary conditions are adjustable parameters. The effects of 
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initial conditions, grid size and the order of the various finite difference representations were 

investigated. Computed values of the steady-state heat flux over various planes were 

compared.  

A survey of the literature shows that correlations for external natural convection from 

different geometries have been reported for different thermal boundary conditions. 

Furthermore, numerical studies on heat transfer inside horizontal ducts, cavities, and 

enclosures have been reported by many authors for various boundary conditions. For the 

current study, in the literature survey; for results comparison three geometries were considered 

vertical flat plate, horizontal flat plate, and rectangular ducts, and for the numerical techniques 

followed to solve the problems horizontal circular cylinder has been studied.  

2.2 Vertical Plate 

Natural convection heat transfer from flat surfaces continues to be an area of study that 

requires further research. Many scientific and engineering applications, such as meteorological 

thermal rises or plumes emanating from the Earth's surface, are driven by natural convection 

heat transfer. Investigations of this mode of heat transfer from flat surfaces have been 

conducted for a variety of plan forms and orientations, and using a variety of techniques. 

Extensive published studies on the literature, deal with isothermal vertical 

plate; Dachun and Jianjun [10] experimentally studied the instability of the isothermal natural 

convection boundary layer around a vertical heated flat plate, T. Zitzmann, Malcolm C., and P. 

Peter [11], investigated the air flow and heat transfer over a heated vertical plate and in a 

differentially heated cavity using Computational Fluid Dynamics (CFD). 

 Recently in 2005 a numerical and standard experimental study of the interaction 

natural convection in an isothermal vertical plate finite-sized, with a neighborhood vertical 

back side and horizontal down placed surface has been carried out by Comunelo and Güths 

[12]. The problem was solved using the finite volume method on a two-dimensional structured 

grid built using ANSYS BUILD grid and mesh generator software. The full governing 

elliptical equations was solved using ANSYS CFX 5.7.1 solver, results obtained show the 
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increasing caused by back side influence is around 23 % while the wall down is 30 % 

indicating that wall down approximation is slightly more efficient. 

2.3 Horizontal Plate 

Goldstein et. al. [13] investigated the natural convection mass transfer adjacent to a 

horizontal downward facing plate. Using a naphthalene sublimation technique, a common 

correlation for horizontal plates with specific characteristic lengths in the Sherwood and 

Rayleigh numbers was obtained. The results were compared to a number of other studies and 

some differences were noted due to deviations in geometry and experimental technique. Lloyd 

and Moran [14] used an electrochemical technique to measure mass transfer. They developed 

correlations for turbulent and laminar mass transfer, the latter agreeing with Goldstein et. al. 

Wei, Yu and Tao [15] studied numerically the simultaneous natural convection heat 

transfer from both sides of uniformly heated thin plate with arbitrary inclination, correlations 

surrounded by air. Finite volume method was adopted to descretize the governing equations. 

The SIMPLE algorithm was used for treating the coupling between the velocity and pressure, 

and QUICK scheme and first order upwind difference scheme were used to descretize the 

convective terms in momentum and energy equations, respectively. Average Nusselt number 

on the upper and lower surfaces is expressed in terms of Rayleigh number and the inclination 

angle as: 

 
(2.1) 

and  

 
(2.2) 

for 4.8×10
6 

≤ Ra ≤ 1.87×10
8
. 

The results show that for Ra ≤ 7.5×10
7
, average Nusselt number on the lower surface is larger 

than the corresponding Nusselt number on the upper surface. 
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In the field of meteorology, natural convection in a large body of fluid leading to freely 

rising plumes is of great concern. This led Pera and Gebhart [16] to conduct analysis and 

experiment for horizontal and slightly inclined surfaces. Using interfere grams, a comparison 

was made between analytical and experimental results which were found to be in fair 

agreement depending on Prantl and Grashof numbers. Pera and Gebhart [17] then repeated 

their investigation to include small disturbances. Their goal was to compare an analysis of the 

stability of flow subjected to small disturbances using inter ferograms,, to experimental results 

in order to provide greater insight into instability and flow transition. 

Zakerullah and Ackroyd [18] investigated natural convection over circular disk 

numerically, using the Runge-Kutta-Merson integration procedure, taking into the account the 

properties variation of the fluid. They found that the behavior is close to the flow over flat 

plate. Kobus and Wedekind [19] experimentally presented heat transfer data and 

dimensionless correlations were proposed for natural convection from heated, stationary, 

isothermal, horizontal disks over a wide range of Rayleigh number. 

Al-Arabi and El-Reidy [20] studied natural convection over heated isothermal plates. 

Investigating a number of plan forms, they developed new local and average heat transfer 

correlations for both laminar and turbulent boundary layers. 

2.4 Horizontal Circular Cylinder 

 One of the recent studies done by; Molla, Hossain, and Pual [21] analysis of natural 

convection laminar boundary layer flow from a horizontal circular cylinder is done with a 

uniform surface temperature at presence of heat generation. The governing boundary layer 

equations are transformed into a non-dimensional form and the resulting nonlinear systems of 

partial differential equations are solved numerically applying two distinct methods; implicit 

finite difference method together with the Keller box scheme and series solution technique. 

The results of the surface shear stress in terms of the local skin friction and the surface rate of 

heat transfer in terms of the local Nusselt number for a selection of the heat generation 

parameter c = 0.0, 0.2, 0.5, 0.8 and 1.0 are obtained and presented in both tabular and 

graphical formats. Without effect of the internal heat generation inside the fluid domain the 
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parameter c has been taken to be 0, as a result of this study the effect of heat generation both 

the velocity and temperature distributions, increased significantly and the thickness of the 

thermal boundary layer enhanced. 

Corcione [22], numerically studied the free convection from flat vertical arrays of 

equally spaced horizontal isothermal cylinders to derive heat transfer dimensionless 

correlating equations for any individual cylinder in the array and for the whole tube array, 

spanning across a range of the Rayleigh number definitely wider than those of other empirical 

equations. The study is performed under the assumption of steady laminar flow, for arrays of 

2–6 circular cylinders, for center-to-center separation distances from 2 up to more than 50 

cylinder diameters, and for values of the Rayleigh number based on the cylinder diameter in 

the range between 5 × 10
2
 and 5 ×10

5
. At any Rayleigh number, and for any tube array, the 

heat transfer rate at the bottom cylinder is substantially identical to that for a single cylinder is 

obtained as result of this work. 

Then, in 2006, Corcione [23], improved his work by an investigation on both the 

nature and the effects of the free convective interactions which occur between a pair of flat 

vertical arrays of horizontal isothermal cylinders set parallel to each other in free space. The 

study was performed numerically under the assumption of steady laminar flow, for pairs of 

tube-arrays consisting of 1–4 circular cylinders, for center-to-center horizontal and vertical 

spacing from 1.4 to 24 cylinder-diameters, and from 2 to 12 cylinder-diameters, respectively, 

and for values of the Rayleigh number based on the cylinder diameter in the range between 

10
2
 and 10

4
. 
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2.5 Horizontal Ducts 

Experiments on convective heat transfer from side walls of a vertical square cylinder in 

air were done by Popiel
 
and Wojtkowiak [24]. It was found that the experimental data 

obtained; below some Rayleigh numbers depending on the ratio between the height and the 

width of the cylinder, due to the curvature effects, the average natural convective heat transfer 

from side walls of the vertical square cylinder is higher in comparison with the data for a 

vertical flat plate. The boundary layer curvature effects on the average heat transfer coefficient 

for a square cylinder (prism) are represented in the correlating equation by the factor . 

Two dimensional laminar natural convection heat transfers in air around horizontal 

ducts with rectangular and square cross sections was studied numerically by Zeitoun and Ali 

[25]. Different aspect ratios were used for wide ranges of Rayleigh numbers. Results were 

presented in the form of streamlines and isothermal plots around the circumference of the 

ducts. The computational procedure was based on the finite-element technique. Temperature 

and velocity profiles were obtained near each surface of the ducts. Reverse flow and 

circulations are observed at high aspect ratios. Heat transfer data were generated and presented 

in terms of Nusselt number versus Rayleigh number for different aspect ratios. Correlation 

covering the aspect ratios used was obtained in dimensionless form of Nusselt number, 

Rayleigh number, and aspect ratio. They showed that as Rayleigh number increases, the 

velocity boundary layer thickness decreases and the maximum velocity shifts toward the 

surface of the body. The correlation for Nusselt number they got in terms of Ra number was:  

 
(2.3) 

 where Γ represents the aspect ratio between height and width. 
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CHAPTER 3  

METHODOLOGY 

3.1 Introduction  

Most of the earlier studies related with the solution of convective flow problems have 

been concerned with two dimensional forced boundary layer flows. These have one 

predominant direction of flow. The shear stress and heat flux are significant only in the 

directions perpendicular to the main flow. Such simplification enables the partial differential 

equations to be reduced to the parabolic form which are simpler to solve than the elliptic ones. 

Patankar and Spalding [26] surveyed these investigations and pointed out the categories of the 

methods used. 

Hellums and Churchil [7, 8] were the first to solve natural convection problems by 

using finite difference method. They employed the boundary layer type assumptions and use 

an explicit method to obtain the numerical solutions.   

The effect of recirculation flows and interaction of flow fields make the equations 

elliptic and so their reduction to the parabolic form is not applicable. In spite of the large 

number of papers which have been produced on parabolic flows, relatively little has been done 

in the field of elliptic flows. Moreover, related studies were generally on forced convection 

flow. 

An improved numerical solution technique of predicting flows was developed by 

Gosman et. al. [27]. The method of solution avoids the instabilities arising from central 

difference scheme at high Reynolds numbers by using an upwind difference technique. This 

technique regards the direction of the fluid flow when formulating the finite difference 

representation of conservation equations. Lounder and Massey [28] have applied this method 

to the prediction of forced convective flow through tube banks. After that, Farouk [29] has 
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successfully adapted this method to laminar and turbulent natural convection heat transfer 

from horizontal cylinders. Bezzazoglu [30] also used the same method to solve the laminar 

natural convective heat transfer over two vertically spaced horizontal cylinders .Govsa [31] 

adapted the above method for laminar natural convective heat transfer in a cavity . 

After reviewing available numerical techniques, the above finite difference technique 

was selected to solve the strongly coupled equations of natural convection. The method is 

capable of predicting two dimensional, laminar, and turbulent re-circulating natural 

convection; for a wide range of flow situations; this feature makes it attractive in the presence 

study.     

3.2 The Conservation Equations  

The fundamental conservation laws of mass, momentum and energy provide the 

differential equation. Then auxiliary relations for the thermodynamics and transport properties 

and for the boundary conditions, make the mathematical problem complete. All that is needed 

to obtain solution to the equations and to deduce information. The present method of solution 

is finite difference one. It confines attention to finite number of points, distributed regularly 

through the flow field as the nodes of a grid. The differential equations should be replaced by 

algebraic ones in order to calculate the values of variables on these nodes. The simultaneous 

algebraic equations thus obtained are non-linear. Therefore, an iterative procedure of solution 

can be devised.  

Considering the particular flow problem, the natural convective flow induced by a 

heated vertical flat plate, heated horizontal plate and horizontal isothermal rectangular duct in 

free space, the grid to be used is schematically illustrated in Figure3.1.  

The equations required are in the Cartesian coordinate system. The conservation 

equations for two-dimensional steady-state laminar flow, employing Boussinesq 

approximation i.e. the density variations are negligible in the continuity, momentum and 

energy equations except in the buoyancy terms as follows:  

 



12 

 

1) Conservation of Mass 

 
(3.1) 

2) Conservation of Momentum 

 x-direction 

 

(3.2) 

 

 y-direction  

 

(3.3) 

Since , the volume expansion coefficient of the fluid  

 

(3.4) 

 then, 

 
(3.5) 

substituting the value of    into the body force term, the conservation of momentum equation 

in y-direction becomes  

 

(3.6) 

3) Conservation of Energy 

 

(3.7) 
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Figure 3.1  Right symmetry Cartesian grid used for flow calculations (not to scale). 

 

In this study, it is assumed that there are no heat sources due to chemical reaction, 

kinetic heating or any other means of heat loss, or gain by radiation is also ignored. The 

boundary conditions of the problem are given in Figure 3.2. 
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Figure 3.2  Boundary conditions, field boundaries (left), object (right) 

 

These three conservation equations; conservation of mass, momentum and energy 

equation with the appropriate boundary conditions will be enough to obtain a solution for four 

unknowns, namely, two components of velocity, temperature and pressure at any point in the 

flow domain. However, the solution of the three flow equations will not be so simple since 

there is no equation for the pressure and the construction of finite difference equation will be 

very complicated. 

Fortunately, before setting up the finite difference equations, the two velocity 

components and the pressure can be replaced by another two unknowns namely, stream 

function (ψ), and vorticity (ω), then the pressure term will be eliminated since the fluid flow 

can be considered as two dimensional flow. 

Introducing the stream function and vorticity 
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(3.8) 

According to the above arrangements, the governing equations take the following forms: 

 

(3.9) 

 

(3.10) 

 

(3.11) 

 

Now, the number of equations and unknowns are reduced to three, after 

rearrangements, namely vorticity, stream function and temperature. 

The simultaneous solution of the flow and energy equations will yield distributions of 

vorticity, stream function and temperature. The velocity field can obtained from the stream 

function distribution. Since the driving force for the flows comes from the buoyancy term, the 

pressure distribution is generally not sought for the natural convection problems. Once the 

velocity and temperature fields have been solved the pressure distribution can be obtained.    

In the derivation of these flow equations certain assumptions were made concerning 

the behavior of the shear stresses (τ). In laminar flows, the assumption that the fluid is 

Newtonian means that the shear stresses can be related to the rate of strain as follows: 

 

(3.12) 

The heat flux q can be related to the temperature gradient in a like manner for laminar 

flows. In this case, the thermal conductivity k rather than the laminar viscosity is the 

proportionality constant. 
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(3.13) 

3.3 Boundary Conditions 

The full equations governing the fluid motion are of elliptic type; therefore they require 

that the boundary conditions for each of the dependent variable be specified along the entire 

boundary enclosing the physical solution domain. However, for the problem considered there 

is no physical boundary enclosing the flow domain completely.  

Since the objects are in open air; the location of the boundaries far from the objects is 

not clear. Therefore, a pseudo boundary has to be employed to limit the solution domain and 

boundary conditions have to be defined also in this pseudo boundary. In general there are three 

types of boundaries in this problem, these are the symmetry plane, solid walls and open 

surfaces which allow the flow to go through. 

3.3.1 Boundary Conditions on the Symmetry Plane  

Since the boundary conditions as well as the physical geometry of the flow field are 

symmetrical and the gravity vector is along one of the independent coordinates, symmetric 

solution, therefore a symmetry plane can be employed for this problem. Furthermore, since 

these conditions are satisfied, it can easily be seen that there will be no flow across the 

symmetry plane AB, thus the stream function along the coordinates which coincides with the 

symmetry plane can be zero. It also follows from the reasoning that the vorticity along the 

symmetry plane can be zero. The same rule applies to the temperature making its gradient 

across the symmetry plane equal to zero. These boundary conditions can mathematically be 

stated as 

 

(3.14) 

3.3.2 Boundary Conditions on the Surface of the Duct  



17 

 

By definition of this type boundary, the objects surfaces are not-permeable; there is no 

flow across it. Therefore, the stream function value is constant along the solid boundary. Its 

value is same as along the adjacent symmetry plane. The thermal boundary conditions applied 

in the present study is constant surface temperature.  

The specification of the boundary condition for vorticity is generally difficult and 

follows mathematical treatment rather than physical reasoning since it requires information on 

the gradients of velocities which are not known a priori. A common practice is to use Taylor 

series expansion type expression to evaluate the vorticity at wall node in terms of the flow 

variables at the nodes inside the flow field and making use of the continuity and the no-slip 

condition. This is generally done by considering the first node in the flow field next to the 

solid boundary. One such expression is given as [32] 

 

(3.15) 

Here ∆h represents the distance between the wall and the node at which stream function, is 

evaluated. If the wall is vertical then ∆h represents ∆x, if its horizontal ∆h represents ∆y. 

3.3.3 Boundary Conditions at the Far Field  

The necessity to limit the size of the solution domain requires that a pseudo boundary 

be defined in the far field. To establish these conditions a common way that the flow can be 

assumed to be perpendicular to the sections in which case the gradient condition namely that 

the derivative of the stream function with respect to the coordinate perpendicular to the pseudo 

boundary is zero. If the domain is large circle, the stream lines becomes normal to the 

boundary hence the boundary conditions of the stream function at the right pseudo boundary 

(CD) in Figure 3.2 become: 

 
(3.16) 

 and at the upper and lower pseudo boundaries BC and DA in Figure 3.2 are : 
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(3.17) 

The boundary conditions of the vorticity also should be determined at the pseudo 

boundaries; which can be given in two regions. The first one is where the fluid is coming to 

the flow bounadry CD and DA. At this region effect of the heated object is negligible, and it is 

reasonable to assume that the fluid there is stationary, thus the vorticity along the coordinates 

which coincides with this region can be zero, . The second region where the fluid 

is leaving the flow boundary BC, However, the y-component of the velocity of the fluid is not 

known in a priori, but it is known that the x-component of the velocity at this region is zero, 

thus the applicable boundary condition for the vorticity is the gradient of the vorticity is zero, 

 

In the present study, however, the selected Cartesian grid does not allow the use of 

such a large circle because of the rectangular shape of the flow domain. Since the radius of this 

large circle has no fixed value, instead of trying to obtain such a circular pseudo boundary, the 

rectangular shape of the pseudo boundary was not changed and the above form of the 

boundary conditions was applied for each grid node on rectangular pseudo boundary. Center 

of this circle of the pseudo boundary was thought to be in the middle of the left symmetry 

plane. The radius of the pseudo boundary was determined as follows. First, a large radius was 

selected and the problem was solved using this radius, then this radius was reduced gradually 

up to a length for which the local Nusselt numbers was not significantly affected.  

The temperature of the fluid coming to the flow field is the same as the ambient 

temperature. However, the temperature of the fluid leaving the pseudo boundary is not known 

a priori. It is assumed that, as in the case of stream function and vorticity boundary conditions, 

the temperature gradient normal to the pseudo boundary is zero, implying that, heat transfer on 

this boundary is purely by convection rather than by conduction.  

The boundary conditions of this study for the flow field and the heated walls in terms 

of  and ω are illustrated in Figure 3.3. 



19 

 

 

Figure 3.3  Boundary conditions in terms of stream function and vorticity,  

                             pseudo boundaries (left), object (right), ωp is given by Eq. (3.15) 

3.4 Finite Difference Formulation 

It is mathematically possible to find a solution for three dependent variables for any 

required conditions since the conservation laws governing the flow and heat transfer for 

laminar natural convection have been reduced to three partial differential equations for stream 

function, vorticity and temperature. Thus, the problem became three equations with three 

unknowns.  

It is impossible to solve three strongly coupled equations analytically, if the flow 

geometry and Grashof numbers are considered, since it is necessary to make some 

assumptions and approximations with which the solution will be destroyed. 

Therefore, these three elliptical partial differential equations have to be solved by the 

means of numerical methods. For this purpose, the numerical solution technique developed by 
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Gosman et. al. [27]. For dealing primarily with forced convection flows and modified for 

solving natural convection problems by Farouk [29] will be used in this study. 

For both polar and Cartesian coordinate systems the independent variables, the radii of 

curvature, metric coefficients and the angle α (used only for the body force term) are as shown 

in the table below: 

Table 3.1  Table of Equivalences for Cartesian and Polar Coordinates 

System 
      

α 

Cartesian z x y 1 1 1 
 

Polar z r Ө 1 1 r Ө 

 

The three governing equations can be expressed in the form of a single general elliptic 

equation proposed by Gosman et. al. [27] 

 

(3.18) 

Where  represents the dependent variables ,  and T, the multipliers and   take 

the forms as shown in the following table. 

Table 3.2  The Functions and Associated with Equation 3.18 

     
 

 

 

1 

 

1 

 

  
 

 

 

 

0 

 

 

1  

T 1 

 

1                    0 
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Figure 3.4  Portion of the finite difference grid, dotted lines enclose the area of integration 

For the purpose of the derivation of the finite difference equations, the field of interest 

has been covered by an orthogonal grid network and the nodes of finite difference grid 

correspond with the intersections of the grid lines. The figure above displays a part of such a 

grid, a typical node p, and the four surrounding nodes N, S, E and W are shown. The finite 

difference equation will be eventually expressed primarily in terms of the values of the 

variables at these nodes, and to lesser extent in terms of the values on the nodes labeled NE, 

NW, SE, and SW. 

Instead of using standard Taylor series expansions, the finite difference equations are obtained 

by integration over a micro-cell shown by the dotted lines which enclose the point p. 

The general equation is then integrated over the cell area to give: 
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(3.19) 

   

Where the integration limits are the coordinates of the sides of the rectangle. 

By formal integration, one obtains: 

 

 

 

 

 

   (3.20)  

 

 

 

 

The names convection, diffusion and source are assigned to various groups of terms. In 

order to proceed further, we must introduce additional assumptions which will differ according 

to the nature of the terms; therefore, each group will be considered separately. 
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3.4.1 Convection Term 

There are four integrals to be evaluated in the convection terms; however it will be 

sufficient to outline the procedure for only one of these in detail. The first of the integrals 

which denoted by the symbol , is  

 

(3.21) 

Since  and are well behaved functions, there exists an average value of  which is 

donated by , such that: 

 

(3.22) 

Then  can be expressed as: 

 

 

(3.23) 

To express the values of , and in terms of the values of the variables at the nodes of 

the grid, we make three assumptions as follow: 

1-  is uniform within each rectangle and has the value which prevails at particular 

node which the rectangle encloses. 

2-   takes on the value possessed by the fluid upstream of e-face of the 

rectangle. 

3- The value of stream function at a particular corner of the rectangle is equal to the 

average of the values on the four neighboring nodes. 
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For example: 

 

(3.24) 

For later convenience, Eq. (3.25) is expressed in a new way in which the upwind difference 

scheme has been introduced. 

 

(3.25) 

In this equation the presence of the difference, first within a bracket and then within a 

modulus sign, ensures that one of the terms in the curly brackets in the equation will be zero 

and the term which remains will be that which represents the contribution from the node 

upstream of e-face of the rectangle. In this way upwind differences are introduced into finite 

difference scheme. 

When the other terms are also treated in similar fashion, after minor rearrangements the sum of 

the integrals of all the convection terms  can be expressed as: 

 
(3.26) 

where, 

 

 

 

 

(3.27) 
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3.4.2 Diffusion Term 

Again because of similarity of the terms, only one term is considered  

 

(3.28) 

The following assumptions can be made to evaluate this integral 

 
(3.29) 

 

(3.30) 

 

(3.31) 

These assumptions are, of course correct if the quantities:  ,  and ) vary linearly 

with . The integration then yields: 

 

(3.32) 

The other diffusion terms are evaluated in similar arguments and the following expression for 

, the sum of the integrals of all four terms, is obtained. 

 

(3.33

) 

where, 

 

(3.34) 
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3.4.3 Source Term 

The final integral which must be evaluated is: 

 

 

(3.35) 

Here, integration of the source terms depends on the form of function . Therefore, it has to be 

done separately for each of the two variables  and ω, it is assumed that  is uniform over 

the area of integration and takes on the value at p. 

For the stream function’s equation 

 

(3.36) 

 
(3.37) 

For the vorticity equation, 

 

(3.38) 

The above equation can be integrated by parts. After integrating once, when the temperature T 

appears as a multiplier within the integrand, it is assigned the value   
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For Cartesian coordinates  

 
(3.39) 

The integrated expressions for the convective, diffusive and source terms can now be written 

in such a way that the function  can be expressed as a successive substitution formula. 

 

(3.40

) 

By taking  to the left-hand side, the following general form obtained: 

 

(3.41) 

Where, 

 

 

 

 

(3.42) 

 

and 

 
(3.43) 
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Before proceeding, it will be useful to put the general substitution formula (3.43) into a form 

which is more suitable for programming. 

 

(3.44) 

 

Here the symbol  denotes the summation over the nodes E, W, N and S, 

and . Now dividing both the numerator and denominator by , and rearranging, 

the following equation is obtained: 

 

(3.45) 

Where  are related to  by: 

 

(3.46) 

 

(3.47) 

 
(3.48) 

 

Equation (3.45) shows the substitution formula in the form which is needed for 

programming purpose. It must of course be remembered that this formula can only be applied 

at the interior nodes of the grid. In order to obtain a complete set of algebraic equations, 

additional substitution formula for those nodes which lie on the boundaries must be derived. 
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3.5 Solution of the Set of Algebraic Equations 

The differential equations have already been converted into algebraic ones. These are 

simpler in form but their simplicity is balanced by their number since they have to be solved 

for each grid node. When the equations are linear and few in number, standard matrix 

inversion techniques can be used; but this case is rare. Usually, either because the equations 

are very numerous or because of non-linearity, successive substitution technique must be 

employed. 

There is a choice of several alternatives; thus there is the Jacobi method, where in each 

cycle of iterations use is only made of values of the variables from the previous one; and there 

is the Gauss-Seidel method, in which the new values are used as soon as they become 

available. The second method has been chosen, for it is known to yield more rapid 

convergence than the Jacobi method and it places less demands on computer storage. Initial 

guesses for the values of the variables are substituted into the successive substitution formulae 

which have been derived from algebraic equations; and new values are computed. Then these 

values are used as new guesses to the solution and so on. 

There is also a third method which is closely related to the Gauss-Seidel method. It is 

called ―Successive over Relaxation, SOR‖; and it is known in certain circumstances to be 

more rapid than the Gauss-Seidel method. However, there are certain difficulties associated 

with its applications. The under or over relaxation parameters have to be specified by trial and 

error while the value of the relaxation parameter is between 0 and 2; if the values are less than 

1, it is under relaxation if more then it is, over relaxation . For this case study under relaxation 

parameter is used only for the vorticity to obtain convergence. 

The computation procedures can be summarized as: 

a. Each cycle of the iterative procedure is made up of three sub-cycles, each for one 

of the variables, namely vorticity, stream function and temperature. 

b. In each sub-cycle the solution domain is scanned row by row and a single variable 

is updated during the scanning process. 
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c. A new sub-cycle is then performed for a new dependent variable. The procedure 

allows the order, in which the variables are to be updated, to be arbitrarily chosen. 

Usually, however, the vorticity and stream functions are updated first, in the order 

of mention. 

d. When all of the sub-cycles have been completed, a new iteration cycle is 

commenced and new values are obtained. 

e. The procedures are repeated until the changes in the values of the variables 

between successive iterations are less than a small specified quantity, λ. 

     (3.49) 

 represents the value from the last iteration cycle and  is the value from the 

previous one. 

f. After the satisfaction of the convergence criterion, vertical and horizontal velocities 

are computed. Central difference approximation is used for the derivations of the 

stream function. 

g. Finally local heat transfer coefficients along the heated walls and also the average 

heat transfer coefficient are calculated. 
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3.6 Algorithm of the Software 

The computational procedures were implemented to a software using Java as a 

programming language. Figure 3.5 shows the flow chart followed to write the computer 

program.  

The interface of program is represented in Figure 3.6, a sample mesh also appears to 

the right of the interface. The text fields; Object Height, Object Width, Del-x, Del-y, Domain 

Diameter, i-Min, T-Surface and T-Infinity are changeable variables according to the problem 

to be solved.  In the progress monitor; the button Number of Iterations shows the number of 

iterations performed to achieve the convergence if it is occurred and the maximum number of 

iterations if the convergence not occurred. The button Maximum Residual represents the 

maximum error between two successive iterations.   

The mesh in Figure 3.6 represents a sample of a right symmetry of a rectangular duct 

with a height of 50 mm width of 50 mm, step size of 5 mm, and domain diameter of 150 mm.  
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Figure 3.5 Flow chart of computer program for numerical solution  
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Figure 3.6 Interfaces and sample mish 
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CHAPTER 4  

RESULTS AND DISCUSSION 

4.1 Over view 

In this chapter the results of the numerical computations for laminar convective heat 

transfer are presented for an isothermal vertical plate, isothermal horizontal plate subjected to 

heat transfer from both sides, and isothermal horizontal duct. The error λ between successive 

iterations is chosen to be less than 3×10
-4

. The parameters of problems are:  

 For the vertical plate the height of the plate (H) is the characteristic length. 

 For the horizontal plate the length of the plate (W) is the characteristic length. 

 For the rectangular duct aspect ratio (Γ) is defined as   and the characteristic 

length is used as Lc = H+L. 

4.2 Data Information 

The average Nusselt number is defined as: 

 
(4.1) 

where  is the average heat transfer coefficient of the heated wall, Lc represents the 

characteristic length of the geometry; for vertical plate Lc = H, horizontal plate Lc = W, and 
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for the rectangular duct Lc = H+W, and k is the thermal conductivity of surrounding air. The 

average heat transfer coefficient is defined as: 

 

(4.2) 

For the vertical plate η represents y-direction, for horizontal plate η is x-direction, but 

in the case of rectangular duct; h values are function of y for the vertical walls, and are 

function of x for horizontal walls, so for this case average heat transfer coefficient can be 

defined as:  

 
(4.4) 

Where the subscripts Ls, Us and Rs represent lower surface, upper surface, and right surface 

respectively, and N represents the number of nodes at these surfaces. 

The local heat transfer coefficient h(η) is evaluated from Newton’s cooling law. 

 

(4.4) 

where q, is the local convective heat flux from the heated surface to the fluid. Tw is the 

uniform surface temperature of the heated wall and T∞ is the ambient temperature. q is defined 

as: 

 

(4.5) 

The temperature gradient (dT/dη)η=0 is calculated by using the temperature distribution 

results of the numerical program and thermal conductivity of the air is evaluated at the wall 

temperature. 

The Grashof and Rayleigh numbers are calculated by using the following definitions: 

 

(4.6) 



36 

 

 
(4.7) 

 

The thermo-physical properties of air were evaluated at the film temperature  

Tf  = (Tw + T∞)/2, except for the thermal expansion coefficient β which was evaluated as (1/T∞) 

according to the perfect gas law. 

Temperature profiles near the heated walls, at various vertical and horizontal levels, 

stream lines, velocity vectors, and the relation between Ra number and Nu number for the 

three geometries will be introduced. 

4.3 Numerical Results for Isothermal Vertical Flat Plate 

The isothermal vertical plate problem has been solved for air, for surface temperature 

variation Ts =  320, 340 and 360 K and ambient temperature of 300 K, several solutions are 

obtained for 1.45×10
4
≤ Ra ≤ 2.6×10

6 
and for plate heights H = 50, 75 , and 100 mm. To limit 

the size of the solution domain R∞ which determine the domain size was taken as 3×H as a 

first guess. While it is known priori that the temperature values at the nodes near right pseudo 

and bottom pseudo should approach T∞, by checking the temperature values at those nodes; 

the guessed domain size  can be determined whether is it enough or not. Step size ∆x and ∆y 

were chosen to be equal to each other; 5mm was the first guess, then a smaller step size were 

chosen, average heat transfer coefficient   has been calculated for each step size, then the 

results were compared, these procedures were repeated until the changes in average heat 

transfer coefficients between two successive step sizes are negligible. Table 4.1 shows the 

average heat transfer coefficients for step sizes = 5, 2.5 and 2 mm for an isothermal vertical 

plate at Ts = 320 K, and T∞ = 300 K. The step size 2.5 was chosen, while the effect of 

decreasing it has a negligible effect.  

 

 



37 

 

Table 4.1  The Effect of Step Size on Average Heat Transfer Coefficient 

Step Size (mm) 
 

Error % 

5 9.451961 - 

2.5 10.73049 13.5 

2 10.50569 2.1 

 

Figure 4.1 shows the lines of constant temperature around an isothermal vertical plate, 

H= 50 mm, Ts = 320 K in an ambient temperature of 300 K. The lines are closest together near 

the flat surface, indicating a higher temperature gradient in the region.  

Figure 4.2 represents the stream lines near a vertical heated plate under the conditions 

specified above, it shows that the flow is perpendicular to the boundaries, closer lines indicates 

higher velocities at that region. 

Figure 4.3 shows the profile of y-component of velocity near isothermal vertical plate    

H = 50 mm, in air at Ts = 320 K. While, in Figure 4.4 velocity vectors near an isothermal 

vertical plate are represented, it shows the velocity is higher at the region closest to the plate, 

the fluid particles are moving up because of the buoyancy forces effect, the velocities at the 

pseudo boundaries at the right and bottom are approximately zeros. 

Figure 4.5 shows the variation of local heat transfer coefficients h(y) along an 

isothermal vertical plate with H = 50 mm, surface temperature Ts = 320 K, and the ambient 

temperature T∞ = 300 K, it shows that while y is increasing the value of h is decreasing and at 

the node at the leading edge of the plate it is approaching to infinity which agrees the 

conclusions in references [1, 34]. 

 



38 

 

 

Figure 4.1   Temperature profile near a heated vertical plate at Ts = 320 K, T∞ = 300 K,  

                             Pr = 0.726, and H =50 mm. 

 

In the figure above and the figures below; the axis are representing the index, i is the 

position of the node in the x-direction and j is the position of the node in the y-direction, while 

the distance between the nods in both directions is 2.5 mm. For example the black thin line in 

Figures 4.1, 4.2 and 4.4 is representing the position of the isothermal plate, which located 

between j = 21and j = 41, so H = 2.5× (41-21) = 50mm. 
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Figure 4.2 Streamlines near a heated vertical plate at Ts = 320K, T∞ = 300 K, Pr = 0.726, 

                           and H =50mm. 
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Figure 4.3   Velocity profile for flat plate with H = 50 mm at Ts = 320 K in air at   

                                  T∞ = 300 K along the y-axis. 



41 

 

 

Figure 4.4 Velocity vectors near a heated vertical plate at Ts = 320K, T∞ = 300 K,             

                                 Pr  = 0.726, and H =50mm. 

 

In the figure above, steps size ∆x = ∆y = 5mm, the plate is located between j = 11, and 

j = 21, which represents a vertical plate with height H = 50 mm. 
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Figure 4.5 Variation of local heat transfer coefficients h(y) along a heated vertical plate at 

                          Ts = 320 K, in air at T∞ = 300 K, an H = 50mm. 

 

The simple empirical correlations for the average Nusselt number Nu in natural 

convection, especially for the simple geometry as the vertical flat plate, are in the form  

 
(4.8) 

The values of the constants C and n depend on the geometry of the surface and the flow 

regime. 

 Nusselt number of the numerical results are plotted versus Rayleigh numbers for 

various heights of the vertical plate H = 50, 75 and 100 mm in Figure. 4.5 on a normal scale, 

the data presented in Figure 4.5 are correlated using Nu, Ra and H, using CurveExpert 1.3 

program the data was fitted, and the best fitting curve through these data is obtained as: 

 
(4.9) 
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A comparison between the results from the numerical solution, results using Eq. 4.9, 

and the results using Eq. 4.10 from references [1, 34] has been done as shown in Fig. 4.7. 

 

 

(4.10) 

 

Figure 4.6  Free convection heat transfer correlations for heat transfer from isothermal 

                             vertical plate 
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Figure 4.7 Results from Eq. (4.9) vs.  result from Eq. (4.10) 

4.4 Numerical Results for Horizontal Flat Plate Heated from Both Sides 

 

The isothermal horizontal plate subjected to heat transfer from both sides problem has 

been solved for air, for surface temperature variation Ts =  320, 340 and 360 K and ambient 

temperature of 300 K, several solutions are obtained for 1.45×10
4
≤ Ra ≤ 2.6×10

6 
and for plate 

widths W = 50, 75  and 100 mm. To limit the size of the solution domain same procedures for 

vertical plate were followed, also for the step size. 

Figure 4.8 shows the isothermal lines around an isothermal horizontal thin flat plate 

subjected to heat transfer from both sides, Ts = 320 K, ambient temperature T∞ = 300 K and                  

W = 50 mm. The air streams move inward along the plate from the two opposite edges while 

trading to rise due to buoyancy. Obviously it can be seen that the farthest inward penetration 

of the streams is at the symmetric line at x = W/2, where they collide and form an air plume 
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upward. While the isothermal lines are closest together at the bottom, it can be concluded that; 

the temperature gradient at the bottom is greater than of the top of the plate.   

 

Figure 4.8 Temperature Profile near an Isothermal Horizontal Flat Plate, Both Sides at          

                              Ts = 320K, T∞ = 300 K, Pr = 0.726, and W =50 mm. 
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Figure 4.9 Velocity vectors near an isothermal horizontal plate at Ts = 320K,               

                                     T∞ = 300 K, Pr = 0.726, and W =50mm. 

 

Figure 4.9 shows the velocity vectors near an isothermal horizontal plate subjected to 

heat transfer from both sides are represented. It shows that the velocity is higher at the region 

closest to the upper surface of the plate, since the fluid particles are moving up driven by the 

buoyancy forces. The velocities at the pseudo boundaries at the right and bottom are 

approximately zeros. 

Figure 4.10 represents the stream lines near a horizontal heated plate under the 

conditions specified above. It shows closer lines near to the upper surface of the plate, that 

indicates higher velocities at that region. 
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Figure 4.10 Stream lines near a heated horizontal flat plate, both sides at Ts = 320K,   

                               T∞ = 300 K, Pr = 0.726, and W = 50 mm. 

 

Nusselt number of the numerical results versus Rayleigh numbers for various lengths 

of the horizontal plate W = 50, 75 and 100 mm are plotted in Figure. 4.11 on a normal scale, 

the data presented in Figure 4.12 are correlated using Nu, Ra, and w, for the lower surface 

data, and the best fitting curve through these data is obtained as: 

 
(4.11) 

For the same conditions, the data presented in Figure 4.13 are correlated using Nu, Ra, and w, 

for the upper surface data, and the best fitting curve through these data is obtained as: 

0.37  

 

(4.12) 

In Figure 4.11, it can clearly be seen  that average Nu number on the lower surface  is 

greater than the corresponding Nu number on the upper surface. The diffrence between lower 
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and upper Nu numbers decreases with the increase of Ra number. This is dute to the 

thickening of the upper surface boundary layer generated from the fluid being preheated by the 

lower surface [15]. 

The total average Nusselt number versus Rayleigh number depending on the length of 

the plate (W) including both the upper and lower surfaces is presented in Figure 4.14. The best 

curve fitting through these data is obtained as:  

0.6569  (4.13) 

 

 

Figure 4.11 Variation of local heat transfer coefficient h(x) at lower and upper surface of a 

                           horizontal flat plate at Ts = 320K, T∞ = 300K, and W = 50mm. 
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Figure 4.12 Free convection heat transfer correlations for lower surface of heated 

                                  horizontal plate from both sides 

 

Figure 4.13 Free convection heat transfer correlations for upper surface of heated 

                                  horizontal plate from both sides. 
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Figure 4.14  Total average free convection heat transfer correlation for a heated 

                                     horizontal plate from both sides. 

4.5 Numerical Results for Horizontal Isothermal Rectangular Duct 

The problem of laminar convective heat transfer over a rectangular duct has been 

solved for air, and the run conditions are summarized in Table 4.2. Several solutions are 

obtained for  555 ≤ RaLc ≤ 9.6×10
6
, where the calculations of Ra number done using the 

characteristic length Lc = W+L, and for aspect ratios Γ= 0.2, 0.5, 1, 2, 3, 4, and 5. 

To limit the flow domain R∞ were chosen as a first guess according to the width of the 

duct in such a way that R∞ = 3×W, the step size for all cases were chosen to be                      

∆x = ∆y =1mm, except in Figure 4.22 the data were based on step size 5mm.  
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Table 4.2 Aspect Ratios Used as Run Conditions 

Γ=H/W W(mm) H(mm) Tw (K) T∞(K) 

 

100 20   

0.2 75 15 301 300K 

 

50 10 310  

 

20 10 320  

0.5 80 40 340  

 

100 50 360  

 

10 10 400  

1 50 50   

 

60 60   

 

75 75   

 

10 20   

2 40 80   

 

50 100   

3 90 30   

 

10 40   

4 20 80   

 

25 100   

5 100 20   

 

 

Samples of isotherms and streamlines for different aspect ratios are represented, Figure 

4.15, Figure 4.17, and Figure 4.19 show the isotherms for Ra = 1.2×10
5
 (∆T = 20 K) and for 

aspect ratio 0.2, 1, and 5 respectively. It can be seen in these figures that the isotherms hug the 

surface boundary at the bottom and vertical sides of the surface, where the thermal boundary 

layer thickness is thinner than it is at the upper surface of the body. These figures also show 

the effect of the aspect ratio on the isotherm especially at the upper surface of the duct, it can 

be observed that ; while the aspect ratio is increasing the isotherms near the middle of the 

upper surface start to concave down , and this is because of the circulation due to separation 

appears by increasing the aspect ratio near the top surface of the body ,which obviously can be 

seen in Figure 4.18 which represents the stream lines around a rectangular duct with aspect 

ratio of 5. This agrees with the results in Zeitoun and Ali [25]. 
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Figures 4.16, 4.18, and 4.20 show the stream lines under the same conditions for the 

isotherms respectively. Those figures; show that the separation starts to appear at the upper 

surface of the duct causing the circulation near this surface. 

The effect of the hot edges (upper and lower horizontal edges) on the y-component of 

the velocity is examined in Figure 4.21, the step size used to get the results in Figure 4.21 is       

2.5 mm. The figure shows the y-component of the velocity near the vertical side of a 

rectangular duct with an aspect ratio of 1 and height H = 50 mm heated to Ts=320 K. 

Comparing the results with those for the flat plate, higher velocities are obtained in the case of 

the rectangular duct. This is due to the hot air arising from the lower plate which enhances the 

motion of air near the vertical wall, which, can be noticed from the behavior of the hot air 

around an isothermal rectangular duct given in Figure 4.22. 

In Figure 4.22 the velocity vectors around a rectangular duct with aspect ratio of 1 in 

air, and the surface temperature is 320 K. It can be seen that the hot air is moving up driven by 

the buoyancy forces. 

Figure 4.23 shows the variation of the local heat transfer coefficient for a square duct 

with length 50 mm. For the vertical wall the maximum value of the local heat transfer 

coefficient is at the leading edge of the wall. Also it can be seen that higher values of the local 

heat transfer coefficients at the lower surface of the duct. 
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Figure 4.15 Isothermal Lines Over a Rectangular Duct with   = 0.2, H = 20 mm,              

                                     Ts =320 K, in Air at T∞ = 300 K. 
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Figure 4.16 Streamlines over a rectangular duct with  = 0.2, H = 20 mm, Ts=320 K, in air 

                             at T∞ = 300 K. 
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Figure 4.17 Isothermal lines over a rectangular duct with   = 1, H = 50 mm, Ts=320 K, in 

                             air at T∞ = 300 K. 
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Figure 4.18 Streamlines over a rectangular duct with  = 1, H = 50 mm, Ts=320 K, in 

                                 air at T∞ = 300 K. 
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Figure 4.19 Isothermal lines over a rectangular duct with   = 5, H = 100 mm, 

                                     Ts=320K, in air at T∞ = 300 K. 
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Figure 4.20 Streamlines over a rectangular duct with   = 5, H = 100 mm, Ts=320 K, in air 

                             at T∞ = 300 K. 
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Figure 4.21 Velocity profile for rectangular duct with H = 50 mm, and L = 50 mm, at         

                               Ts= 320 K along the y-axis. 
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Figure 4.22 Velocity vectors near a heated rectangular duct with  = 1 at Ts = 320K 

 

Figure 4.23 Local heat transfer coefficients for square duct, (a) at upper and lower surfaces  

                         and (b) at the vertical wall of the duct  
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Figure 4.24 Nusselt number vs. Raleigh number for different aspect ratios of rectangular 

                            duct, vertical plate, and horizontal plate. 

Figure 4.24 shows the effect of increasing aspect ratio on the average Nusselt number, 

it can be seen that; increasing the aspect ratio for fixed characteristic length is increasing 

average Nusselt number, for high aspect ratios it seems to be approaching the vertical plate 

solution, and approaching to horizontal flat plate for low aspect ratios. 

To correlate the results; Raleigh number and the average Nusselt number were based 

on (H+W) as a characteristic length Lc. For various aspect ratios; Nusselt number was 

correlated as function of Ra number in the form of power equation , in such a way 

that the value of Lc is same for all geometries, and then the constant coefficient C and the 

power coefficient n were represented as function of the aspect ratio.  
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Under these considerations; the characteristic length Lc is chosen as 120 mm for 

different aspect ratios, and for surface temperature Ts = 301, 310, 320, 340, 360 and 400 K. 

The corresponding Nu numbers obtained numerically are shown in Table 4.2. 

Table 4.3      Average Nusselt Number versus Rayleigh Number at various Aspect Ratios of 

                          Horizontal Ducts 

 

   

Nu 

   Ts(K) Ra(L+W) Γ=0.2 Γ=0.5 Γ=1 Γ=3 Γ=5 Γ=11 

301 119780.6 7.177384882 8.173136 8.809155 9.990177 10.18038 10.89241 

310 1099560 11.59046237 12.87545 14.906 16.43 16.99983 19.40155 

320 2001628 13.14631694 14.70356 17.23159 20.4361 21.01803 22.8576 

340 3327920 14.62449153 16.47318 19.59169 23.45932 24.17951 26.3351 

360 4170472 15.33045448 17.33777 20.72913 24.94292 25.71422 28.00217 

400 4930639 15.86264394 17.99602 21.61358 26.0875 26.90121 29.34088 

 

For each geometry, Ra numbers versus Nusselt numbers were plotted and the 

coefficients C and n were obtained. The effect of aspect ratio on these coefficients detected as 

in Table 4.3. These coefficients were represented as functions of Γ, so that average Nusselt 

number for any Γ can be in following form : 

 
(4.14) 

 

Table 4.4 Coefficients (n) and (C) as Function of Aspect Ratios 

Γ L H C n 

0.2 100 20 0.601056 0.212506 

0.5 80 40 0.654456 0.214817 

1 60 60 0.507754 0.243245 

3 30 90 0.392732 0.272039 

5 20 100 0.393238 0.273978 

11 10 110 0.460746 0.269372 

 

The best curve fitting of the these data has been obtained, which enables to correlate 

average Nusselt number as function of Ra number and the aspect ratio. 
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(4.15) 

 

Correlation 4.15 was examined for the results from most of the numerical results; the 

correlation is satisfying the numerical results with a maximum error 10.34%. Sample of the 

comparison is shown in Fig. 4.25. 

 

Figure 4.25 Correlated Nusselt number from Eq. (4.15) vs. numerically computed Nusselt 

                            number. 
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CONCLUSIONS 

Natural convection from isothermal vertical plates, horizontal flat plats heated from 

both sides, and isothermal horizontal ducts has been investigated numerically for ranges of 

Rayleigh numbers and various aspects ratios for the ducts. Streamlines show that for fixed 

Rayleigh number, as the aspect increases, separation and circulation occurs above the top 

surface of the duct, and the corresponding behavior is observed through the isotherm which 

starts to concave down near to the top surface of the duct. The effect of the upper and lower 

surfaces of the duct on the velocity in y-direction at the vertical side of the duct, comparison 

between a duct with aspect ratio Γ = 1, and flat plate with same height, the results show that 

the y-component of velocity near the duct is greater than those near the flat plate. The total 

heat transfer from circumference of the duct was obtained and the average heat transfer 

coefficients put in dimensionless form of Nusselt number for various aspect ratios. 

Correlations for the three geometries covering wide range of Raleigh numbers were obtained, 

a comparison for the case of the vertical plate has been done, and it shows a good fitting with 

the correlation valid in the literature. 

Finally, for a future works the methodology adopted can be used to solve the problem 

of inclined ducts; also it can be used to obtain a solution for a vertical array of horizontal 

isothermal ducts.         
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APPENDIX 

 

//COMPUTER PROGRAM 

//Constant numerical data 

 

public class Constants  

{ 

 public static final double EXCOEF = 0.003332; 

 public static final double GCOEF = 9.81; 

 public static final double CC = 0.0003;; 

 public static final double RP = 0.8; 

 public static final int MAXITR = 200000;     

} 

 

//Generating the grid 

mport javax.swing.*; 

import java.io.*; 

import java.awt.*; 

 

public class Proc  

{ 

int iMin, imin, imax, jmax, iup, ibottom, jright, tSurface, tInfinity; 

double hght, wdth, delx, dely, domaind, ae, aw, an, ass, a1, a2, a3, a4, dv, ddv, source, rs, 

tAvg, muRef, roRef, pr, tk, z; 

double [ ] X1, X2, be, bw, bn, bs, rsdu, hup, hbottom, hright; 

double [ ][ ] Omega, Psi, Temp, u, v; 

  

 public Proc() 

 { 

  imin = 1; 

  imax = 31; 

  jmax = 16; 

  ibottom = 10; 

  iup = 20; 

  jright = 5; 

  delx = 0.005; 

  dely = 0.005; 

  z = 0.1; 

  tSurface = 320; 

  tInfinity = 300; 

  X1 = new double[1000]; 

  X2 = new double[1000]; 

  be = new double[1000]; 
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  bw = new double[1000]; 

  bn = new double[1000]; 

  bs = new double[1000]; 

  hup = new double[1000]; 

  hbottom = new double[1000]; 

  hright = new double[1000]; 

  rsdu = new double[3]; 

  Omega = new double[1000][1000]; 

  Psi = new double[1000][1000]; 

  Temp = new double[1000][1000]; 

  u = new double[1000][1000]; 

  v = new double[1000][1000]; 

 } 

  

public void setParams(int h, int w, double delX, double delY, int domainDiameter, int iMin) 

 { 

  hght = (double) h / 1000; 

  wdth = (double) w / 1000; 

  delx = delX / 1000; 

  dely = delY / 1000; 

  domaind = (double) domainDiameter / 1000; 

  jright = (int)(w / (2 * delX)); 

  imin = iMin; 

  imax = (int)(domainDiameter / delY) + 1; 

  jmax = (int)(0.5 * domainDiameter / delX) + 1; 

  ibottom = (int)((imax - (h / delY + 1)) / 2); 

  iup = ibottom + (int)(h / delY); 

 } 

 

//Initializing the problem 

 public void setTemperature(int x, int y) 

 { 

  if(x > 0) 

  { 

   tSurface = x; 

  } 

   

  if(y > 0) 

  { 

   tInfinity = y; 

  } 

   

 } 
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public void setCons() 

 { 

tAvg =(((tSurface+tInfinity)/2)-273); 

pr = 0.73633353-(0.000266754*tAvg)-(2.98*Math.pow(10, -7)*Math.pow(tAvg, 

2))+(4.45*Math.pow(10, -9)*Math.pow(tAvg, 3)); 

roRef = 1.2918381-(0.004686539*tAvg)+(1.52*Math.pow(10, -5)*Math.pow(tAvg, 2))-

(2.95*Math.pow(10, -8)*Math.pow(tAvg, 3)); 

muRef= (1.84*Math.pow(10, -5))+(1.12*Math.pow(10, -7)*tAvg)+(3.95*Math.pow(10, -

10)*Math.pow(tAvg, 2))-(1.13*Math.pow(10, -12)*Math.pow(tAvg, 3)); 

tk= 0.023633907+(7.56*Math.pow(10, -5)*tAvg)-(2.46*Math.pow(10, -8)*Math.pow(tAvg, 

2));  

 } 

 public void initRes() 

 { 

  for(int i=0; i<3; i++) 

  { 

   rsdu[i] = 0; 

  } 

 } 

 public double getRes(int i) 

 { 

  return rsdu[i]; 

 } 

   

 public void grid() 

 { 

  double dx1, dy1; 

  

  for(int i = imin - 1; i < imax; i++) 

  { 

   X1[i] = i * delx; 

  } 

  

  for(int j = 0; j < jmax; j++) 

  { 

   X2[j] = j * dely; 

  } 

   

  for (int i = imin; i < imax - 1; i++) 

  { 

   dx1 = 1 / (X1[i+1] - X1[i-1]); 

   bn[i] = dx1 / (X1[i+1] - X1[i]); 

   bs[i] = dx1 / (X1[i] - X1[i-1]); 

  } 

   

  for (int j = 1; j < jmax - 1; j++) 



72 

 

  { 

   dy1 = 1 / (X2[j+1] - X2[j-1]); 

   bw[j] = dy1 / (X2[j] - X2[j-1]); 

      be[j] = dy1 / (X2[j+1] - X2[j]); 

  } 

 } 

  

 public void init() 

 { 

  for (int i = imin - 1; i < imax; i++) 

  { 

   for (int j = 0; j < jmax; j++) 

   { 

    Psi[i][j] = 0.1; 

    Omega[i][j] = 0.1; 

    Temp[i][j] =tSurface;   

   } 

  } 

   

  for (int j = 0; j <= jright; j++) //Upper and lower surface of the sequare 

  { 

   Psi[iup][j] = 0; 

   Psi[ibottom][j] = 0; 

   Temp[iup][j] =tSurface; 

   Temp[ibottom][j] = tSurface ; 

  } 

   

  for (int i = ibottom + 1; i < iup; i++) //Right side of the sequare 

  { 

   Psi[i][jright] = 0; 

   Temp[i][jright] = tSurface; 

  } 

   

  for(int i = imin - 1; i < imax; i++) //Right far field temp condition 

  { 

   Temp[i][jmax-1] = tInfinity; 

  } 

   for (int j = 0; j < jmax; j++) //Bottom far field temp condition 

  { 

   Temp[imin - 1][j] = tInfinity; 

  } 

  a1 = 0.1; 

  a2 = 0.1; 

  a3 = 0.1; 

  a4 = 0.1; 

 } 
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//Source 

 public void sorce(int i, int j, int k) 

 { 

  dv = (X1[i + 1] - X1[i - 1]) * (X2[j + 1] - X2[j - 1]); 

  if (k == 1) 

  { 

   ddv = (X1[i + 1] - X1[i - 1]) * (Temp[i][j + 1] - Temp[i][j - 1]); 

   source = Constants.GCOEF * roRef * Constants.EXCOEF * ddv / dv; 

  } 

  if (k == 2) 

  { 

   source = Omega[i][j]; 

  } 

 } 

 

//Convection 

public void convec(int i, int j) 

 { 

  int myApp = 1; 

  double g1pe, g1pw, g2pn, g2ps; 

   

  dv = 2 * (X1[i + 1] - X1[i - 1]) * (X2[j + 1] - X2[j - 1]); 

   

  g1pw = (Psi[i + 1][j] - Psi[i - 1][j] + Psi[i + 1][j - 1] - Psi[i - 1][j - 1]) / dv; 

  g1pe = (Psi[i + 1][j] - Psi[i - 1][j] + Psi[i + 1][j + 1] - Psi[i - 1][j + 1]) / dv; 

  g2ps = (Psi[i][j - 1] - Psi[i][j + 1] + Psi[i - 1][j - 1] - Psi[i - 1][j + 1]) / dv; 

  g2pn = (Psi[i][j - 1] - Psi[i][j + 1] + Psi[i + 1][j - 1] - Psi[i + 1][j + 1]) / dv; 

   

  ae = myApp * (Math.abs(g1pe) - g1pe); 

  aw = myApp * (Math.abs(g1pw) + g1pw); 

  ass = myApp * (Math.abs(g2ps) + g2ps); 

  an = myApp * (Math.abs(g2pn) - g2pn); 

 } 

 

//Boundary conditions 

 public void bound() 

 { 

  double z; 

  for (int j = 0; j < jmax; j++) 

  { 

  Temp[imin - 1][j] = tInfinity; 

  Psi[imin - 1][j] = (4 * Psi[imin][j] - Psi[imin + 1][j]) / 3; 

  z = Omega[imin -1][j]; 

  Omega[imin - 1][j] = 0;//(4 * Omega[imin][j] - Omega[imin + 1][j]) / 3; 

  Omega[imin-1][j] = z + Constants.RP * (Omega[imin-1][j] - z); 

  Temp[imax - 1][j] = (4 * Temp[imax - 2][j] - Temp[imax - 3][j]) / 3; 
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  Psi[imax - 1][j] = (4 * Psi[imax - 2][j]- Psi[imax - 3][j]) / 3; 

  z = Omega[imax-1][j]; 

  Omega[imax - 1][j] = (4 * Omega[imax - 2][j] - Omega[imax - 3][j]) / 3; 

  Omega[imax-1][j] = z + Constants.RP * (Omega[imax-1][j] - z); 

  } 

  

  for (int i = imin; i < ibottom; i++) //left boundary flowin domain 

  { 

  Omega[i][0] = 0;// (4 * Omega[i][1] - Omega[i][2]) / 3; 

  Psi[i][0] = 0; 

  Temp[i][0] = (4 * Temp[i][1] - Temp[i][2]) / 3; 

  } 

  for (int i = iup + 1; i < imax - 1; i++) // Left  bounadry of  flowout domain 

  { 

  Omega[i][0] =0;//(4 * Omega[i][1] - Omega[i][2]) / 3; 

  Psi[i][0] = 0; 

  Temp[i][0] = (4 * Temp[i][1] - Temp[i][2]) / 3; 

  } 

  for(int i = imin; i < imax - 1; i++)  //Right boundary 

  { 

  z = Omega[i][jmax-1]; 

  Omega[i][jmax - 1] =0;//(4 * Omega[i][jmax - 2] - Omega[i][jmax - 3]) / 3; 

  Omega[i][jmax-1] = z + Constants.RP * (Omega[i][jmax-1] - z); 

  Psi[i][jmax - 1] = (4 * Psi[i][jmax - 2] - Psi[i][jmax - 3]) / 3; 

  Temp[i][jmax - 1] = tInfinity; 

  } 

  for (int j = 0; j <= jright; j++) //for object 

  { 

  z = Omega[ibottom][j]; 

 Omega[ibottom][j] = -2 * (Psi[ibottom - 1][j]- Psi[ibottom][j]) / (roRef * dely * dely); 

 Omega[ibottom][j] = z + Constants.RP * (Omega[ibottom][j] - z); 

 z = Omega[iup][j]; 

 Omega[iup][j] = -2 * (Psi[iup + 1][j] - Psi[iup][j]) / (roRef * dely * dely); 

 Omega[iup][j] = z + Constants.RP * (Omega[iup][j] - z); 

  } 

   

  for (int i = ibottom ; i <= iup; i++) 

  { 

 z = Omega[i][jright]; 

 Omega[i][jright] = -2 * (Psi[i][jright + 1] - Psi[i][jright]) / (roRef * dely * dely); 

 Omega[i][jright] = z + Constants.RP * (Omega[i][jright] - z); 

  } 

a1 = a1 + Constants.RP * ((-2 * Psi[ibottom - 1][jright] - Psi[ibottom][jright]) / (roRef 

* dely * dely) - a1); 

 a2 = a2 + Constants.RP * ((-2 * Psi[ibottom][jright + 1] - Psi[ibottom][jright]) / (roRef 

* delx * delx) - a2); 
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 a3 = a3 + Constants.RP * ((-2 * Psi[iup][jright + 1] - Psi[iup][jright]) / (roRef * delx * 

delx) - a3); 

 a4 = a4 + Constants.RP * ((-2 * Psi[iup + 1][jright] - Psi[iup][jright]) / (roRef * dely * 

dely) - a4); 

 Omega[ibottom][jright] = a2; 

 Omega[iup][jright] = a4; 

 } 

 

//Equation 

public void eqn() 

 { 

  int jstart; 

  double anum, adnm; 

  double bbe, bbw, bbn, bbs; 

  

  for (int i = imin; i < imax - 1; i++) //vorticity sub cycle 

  { 

   if (i >= ibottom && i <= iup) 

   { 

    jstart = jright + 1; 

   } 

  

   else 

   { 

    jstart = 1; 

   } 

  

   for (int j = jstart; j < jmax - 1; j++) 

   { 

    sorce(i, j, 1); 

    convec(i, j); 

     

    bbe = 2 * be[j]; 

    bbw = 2 * bw[j]; 

    bbn = 2 * bn[i]; 

    bbs = 2 * bs[i]; 

    if((i == ibottom - 1) && (j == jright)) 

    { 

     Omega[i+1][j] = a1; 

    } 

     

     

       if ((i == ibottom) && (j == jright + 1)) 

       { 

        Omega[i][j-1] = a2; 

       } 
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       if ((i == iup) && (j == jright + 1)) 

       { 

        Omega[i][j-1] = a3; 

       } 

        

       if ((i == iup + 1) && (j == jright)) 

       { 

        Omega[i - 1][j] = a4; 

       } 

     

 anum = (ae + muRef * bbe) * Omega[i][j+1] + (aw + muRef * bbw) * Omega[i][j-1] +  

 (an + muRef * bbn) * Omega[i+1][j] + (ass + muRef * bbs) * Omega[i-1][j] + source; 

 adnm = ae + aw + ass + an + muRef * (bbe + bbw + bbs + bbn); 

    

    if (adnm != 0) 

    {  

     z = Omega[i][j]; 

     Omega[i][j] = anum / adnm; 

    } 

    

    if (Omega[i][j]!= 0) 

    { 

     rs = 1 - z / Omega[i][j]; 

     Omega[i][j] = z + Constants.RP * (Omega[i][j] - z); 

    }        

    

    if (Math.abs(rs) > rsdu[0]) //store max residual 

    { 

     rsdu[0] = rs; 

    } 

   } 

  } 

  

  for(int i = imin; i < imax-1; i++) //stream function sub cycle 

  { 

   if ((i >= ibottom) && (i <= iup))  

   { 

    jstart = jright + 1; 

   } 

   

   else 

   { 

    jstart = 1; 

   } 
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   for(int j = jstart; j < jmax - 1; j++) 

   { 

    sorce(i, j, 2); 

     

    bbe = (2 / roRef) * be[j]; 

    bbw = (2 / roRef) * bw[j]; 

    bbn = (2 / roRef) * bn[i]; 

    bbs = (2 / roRef) * bs[i]; 

     

    anum = bbe * Psi[i][j + 1] + bbw * Psi[i][j - 1]  

     + bbs * Psi[i - 1][j] + bbn * Psi[i + 1][j] + source; 

    adnm = bbe + bbw + bbn + bbs; 

     

    if (adnm != 0)  

    { 

     z = Psi[i][j]; 

     Psi[i][j] = anum / adnm; 

    } 

     

    if (Psi[i][j] != 0) 

    { 

     rs = 1 - z / Psi[i][j]; //store max residual 

    } 

     

    if (Math.abs(rs) > rsdu[1])  

    { 

     rsdu[1] = rs; 

    } 

   } 

  } 

   

  for (int i=imin; i < imax-1; i++) 

  { 

   if (i >= ibottom && i <= iup) 

   { 

    jstart = jright + 1; 

   } 

    

   else 

   { 

    jstart = 1; 

   } 

    

   for(int j = jstart; j < jmax - 1; j++) 

   { 
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    convec(i, j); 

     

    bbe = (2 * muRef / pr) * be[j]; 

    bbw = (2 * muRef / pr) * bw[j]; 

    bbn = (2 * muRef / pr) * bn[i]; 

    bbs = (2 * muRef / pr) * bs[i]; 

     

anum = (ae + bbe) * Temp[i][j + 1] + (aw + bbw) * Temp[i][j - 1] + (an + bbn)  

* Temp[i + 1][j] + (ass + bbs) * Temp[i - 1][j]; 

adnm = ae + aw + an + ass + bbe + bbw + bbn + bbs; 

      

    if (adnm != 0) 

    { 

     z = Temp[i][j]; 

     Temp[i][j] = anum / adnm; 

    } 

     

    if (Temp[i][j] != 0 ) 

    { 

     rs = 1 - z / Temp[i][j]; 

    } 

     

    if (Math.abs(rs) > rsdu[2])   //store max residual 

    { 

     rsdu[2] = rs; 

    } 

   } 

  } 

 } 

 

// Saving the result 

 public void saveAs(int a) 

 { 

  String filePath; 

   

  try 

  { 

  FileDialog fd = new FileDialog(new Frame(), "Save As", FileDialog.SAVE); 

    

      fd.setFile("*.csv"); 

      fd.setDirectory(".\\"); 

      fd.setLocation(50, 50); 

      fd.show(); 

       

      filePath = fd.getDirectory() + fd.getFile(); 
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   FileWriter writer = new FileWriter(filePath); 

   int k = 0; 

   for(int i = imin - 1; i <= imax - 1; i++) 

   { 

    for(int j = 0; j < jmax; j++) 

    { 

     if(a == 1) 

     { 

      writer.write(String.format("%.4f", Temp[i][j])); 

     } 

      

     if(a == 2) 

     { 

      writer.write(String.format("%.4f", Omega[i][j])); 

     } 

      

     if(a == 3) 

     { 

      writer.write(String.format("%g", Psi[i][j])); 

     } 

      

     if(a == 4) 

     { 

      writer.write(String.format("%.4f", u[i][j])); 

     } 

      

     if(a == 5) 

     { 

      writer.write(String.format("%.4f", v[i][j])); 

     } 

      

     if(a == 6) 

     { 

      if(i == ibottom) 

      { 

     if(j <= jright) 

     writer.write(String.format("%g", hbottom[j])); 

      } 

       

      else if(i == iup) 

      { 

     if(j <= jright) 

     writer.write(String.format("%g", hup[j])); 

      } 

        

     else if((i > ibottom) && (i < iup)) 
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      { 

     if(j == jright) 

     writer.write(String.format("%g", hright[k])); 

      } 

     } 

      

     if(j < jmax - 1) 

     { 

      writer.write(','); 

     } 

    } 

     

    writer.write('\n'); 

    k++; 

   } 

    

   writer.close(); 

  } 

   

  catch (IOException e)  

  { 

   System.out.println("Error — " + e.toString()); 

  }  

 } 

 

//Velocity components 

public void vel() 

 { 

  int jstart; 

  double conx = roRef * 2 * delx; 

  double cony = roRef * 2 * dely;    

  for(int i =imin ; i < imax-1; i++) 

  { 

   if( (i >= ibottom) && (i <= iup) ) 

   { 

    jstart = jright+1 ; 

   } 

        

   else 

   { 

    jstart = 1; 

   }     

   for(int j = jstart; j < jmax-1 ; j++)  

    {    

    u[i][j] = (Psi[i +1][j] - Psi[i - 1][j]) / cony; 

       v[i][j] = -(Psi[i][j + 1] - Psi[i][j -1]) / conx;               
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     }   

   }    

  //velocity components on the surface are zero 

  for(int j = 0; j <= jright; j++) 

  { 

   u[ibottom][j] = 0; 

      v[ibottom][j]= 0; 

      u[iup][j] = 0; 

      v[iup][j] = 0; 

  } 

       

  for(int i = ibottom; i <= iup; i++) 

  { 

   u[i][jright] = 0; 

      v[i][jright] = 0; 

  } 

   // velocity components on the boundaries should be calculated 

    for (int j = 1 ; j<jmax - 1;j++) 

    { 

        u[0][j] = (-3 * Psi[0][j] + 4 * Psi[1][j] - Psi[2][j]) / cony; 

        v[0][j] = -(Psi[0][j + 1] - Psi[0][j - 1]) / conx; 

        u[imax-1][j] = (3 * Psi[imax-1][j] - 4 * Psi[imax - 2][j] + Psi[imax - 3][j]) / cony; 

        v[imax-1][j] = -(Psi[imax-1][j + 1] - Psi[imax-1][j - 1]) / conx; 

    } 

        u[0][0] = (-3 * Psi[0][0] + 4 * Psi[1][0] - Psi[2][0]) / cony; 

        v[0][0] = -(-3 * Psi[0][0] + 4 * Psi[0][1] - Psi[0][2]) / conx; 

        u[imax-1][0] = (3 * Psi[imax-1][0] - 4 * Psi[imax - 2][0] + Psi[imax - 3][0]) / cony; 

        v[imax-1][0] = -(-3 * Psi[imax-1][0] + 4 * Psi[imax-1] [1] - Psi[imax-1][2]) / conx; 

 

        u[0][jmax-1] = (-3 * Psi[0][jmax-1] + 4 * Psi[1][jmax-1] - Psi[2][jmax-1]) / cony; 

        v[0][jmax-1] = -(3 * Psi[0][jmax-1] - 4 * Psi[0][jmax - 2] + Psi[0][ jmax]) / conx; 

        u[imax-1][jmax-1] = (3 * Psi[imax-1][jmax-1] - 4 * Psi[imax - 2][jmax-1] + Psi[imax - 

3][jmax-1]) / cony; 

        v[imax-1][jmax-1] = -(3 * Psi[imax-1][jmax-1] - 4 * Psi[imax-1][jmax - 2] + Psi[imax-

1][jmax - 3]) / conx; 

 

//Left Boundary 

 

for (int i = imin ;i< ibottom ;i++) 

 { 

 u[i][0] = (Psi[i + 1][0] - Psi[i - 1][0]) / cony; 

    v[i][0] = -(-3 * Psi[i][0] + 4 * Psi[i][1] - Psi[i][2]) / conx; 

 } 

for (int i = iup + 1; i<imax - 1;i++) 

 { 

    u[i][0] = (Psi[i + 1][0] - Psi[i - 1][0]) / cony; 
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    v[i][0] = -(-3 * Psi[i][0] + 4 * Psi[i][1] - Psi[i][2]) / conx; 

 } 

//Right BoundPsiry 

for(int i = imin; i<imax - 1;i++) 

 { 

u[i][jmax-1] = (Psi[i][jmax-1] - Psi[i - 1][jmax-1]) / cony; 

    v[i][jmax-1] = -(3 * Psi[i][jmax-1] - 4 * Psi[i][jmax - 2] + Psi[i][jmax - 3]) / conx; 

 } 

      

 } 

//Local heat transfer coefficient  

 public void heat() 

 { 

  //for local heat transfer coefficients 

   

  for(int i = ibottom; i <= iup; i++) 

  { 

hright[i] = (-1 * tk* (4 * Temp[i][jright + 1] - 3 * Temp[i][jright] - Temp[i][jright + 

2]))/ (2* delx * (tSurface - tInfinity)); 

  } 

 

  for(int j = 0; j <= jright; j++) 

  { 

 hup[j] = (-1 * tk * (4 * Temp[iup + 1][j] - 3 * Temp[iup][j] - Temp[iup + 2][j])) 

               / (2* dely * (tSurface - tInfinity)); 

   

hbottom[j] = (-1 * tk * (4 * Temp[ibottom - 1][j] - 3 * Temp[ibottom][j] -  

Temp[ibottom 2][j])) / (2* dely * (tSurface - tInfinity)); 

    

  } 

 } 

} 

 

//Printing the results 

 

import javax.swing.*; 

import java.awt.*; 

import java.awt.event.*; 

 

public class Test extends JFrame 

{ 

 Proc obj = new Proc(); 

 drawGrid drawGridObj = new drawGrid(obj); 

  

 String sBar; 
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 JLabel statusBar; 

    

 JTextField objHeight; 

 JTextField objWidth; 

 JTextField delX; 

 JTextField delY; 

 JTextField domainDiameter; 

 JTextField iMin; 

  

 JTextField tSurface; 

 JTextField tInfinity; 

  

 JTextField nItr; 

 JTextField maxRes; 

  

 public Test() 

 { 

  super(); 

  setDefaultCloseOperation(EXIT_ON_CLOSE); 

  setLayout(new GridBagLayout()); 

  GridBagConstraints c = new GridBagConstraints(); 

   

  sBar = String.format("iMin: %d iMax: %d jMax: %d iUp: %d iBottom: %d 

jRight: %d",  

   obj.imin, obj.imax, obj.jmax, obj.iup + 1, obj.ibottom + 1, obj.jright + 

1); 

   

  JPanel gridCharacteristicsPane = new JPanel(new GridLayout(6, 2, 5, 5)); 

  gridCharacteristicsPane.setBorder(BorderFactory.createTitledBorder("Grid 

Characteristics")); 

   

  JPanel temperaturePane = new JPanel(new GridLayout(2, 1, 5, 5)); 

  temperaturePane.setBorder(BorderFactory.createTitledBorder("Temperature")); 

   

  JPanel progressMonitorPane = new JPanel(new GridLayout(2, 1, 5, 5)); 

  progressMonitorPane.setBorder(BorderFactory.createTitledBorder("Progress 

Monitor")); 

   

   

  JMenu m1 = new JMenu("File"); 

   

  JMenu saveAs = new JMenu("Save Results"); 

  m1.add(saveAs); 

   

  JMenuItem temperatureItem = new JMenuItem("Temperature"); 

  saveAs.add(temperatureItem); 
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  temperatureItem.addActionListener( 

    

   new ActionListener() 

   { 

    public void actionPerformed(ActionEvent event) 

    { 

     obj.saveAs(1); 

    } 

   } 

  ); 

   

  JMenuItem vorticityItem = new JMenuItem("Vorticity"); 

  saveAs.add(vorticityItem); 

   

  vorticityItem.addActionListener( 

    

   new ActionListener() 

   { 

    public void actionPerformed(ActionEvent event) 

    { 

     obj.saveAs(2); 

    } 

   } 

  ); 

   

  JMenuItem streamFunction = new JMenuItem("Stream Function"); 

  saveAs.add(streamFunction); 

   

  streamFunction.addActionListener( 

    

   new ActionListener() 

   { 

    public void actionPerformed(ActionEvent event) 

    { 

     obj.saveAs(3); 

    } 

   } 

  ); 

   

  JMenuItem xVelocity = new JMenuItem("X-Velocity"); 

  saveAs.add(xVelocity); 

   

  xVelocity.addActionListener( 

    

   new ActionListener() 
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   { 

    public void actionPerformed(ActionEvent event) 

    { 

     obj.saveAs(4); 

    } 

   } 

  ); 

   

  JMenuItem yVelocity = new JMenuItem("Y-Velocity"); 

  saveAs.add(yVelocity); 

   

  yVelocity.addActionListener( 

    

   new ActionListener() 

   { 

    public void actionPerformed(ActionEvent event) 

    { 

     obj.saveAs(5); 

    } 

   } 

  ); 

   

  JMenuItem heatTC = new JMenuItem("Heat Transfer Coefficient"); 

  saveAs.add(heatTC); 

   

  heatTC.addActionListener( 

    

   new ActionListener() 

   { 

    public void actionPerformed(ActionEvent event) 

    { 

     obj.saveAs(6); 

    } 

   } 

  ); 

   

  m1.addSeparator(); 

   

  JMenuItem exit = new JMenuItem("Exit"); 

  m1.add(exit); 

  exit.addActionListener( 

    

   new ActionListener() 

   { 

    public void actionPerformed(ActionEvent event) 

    { 
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     System.exit(0); 

    } 

   } 

  ); 

   

  JMenuBar menubar = new JMenuBar(); 

  menubar.add(m1); 

  setJMenuBar(menubar); 

   

  JLabel progressMonitorLabel = new JLabel("Progress Monitor"); 

  JLabel objHeightLabel = new JLabel("Object Height"); 

  JLabel objWidthLabel = new JLabel("Object Width"); 

  JLabel delXLabel = new JLabel("Del-X"); 

  JLabel delYLabel = new JLabel("Del-Y"); 

  JLabel domainDiameterLabel = new JLabel("Domain Diameter"); 

  JLabel iMinLabel = new JLabel("i-Min"); 

   

  JLabel tSurfaceLabel = new JLabel("T-Surface"); 

  JLabel tInfinityLabel = new JLabel("T-Infinity"); 

   

  JLabel nItrLabel = new JLabel("Number of Iterations"); 

  JLabel maxResLabel = new JLabel("Maximum Residual"); 

   

  statusBar = new JLabel(sBar); 

   

  objHeight = new JTextField(5); 

  objWidth = new JTextField(5); 

  delX = new JTextField(5); 

  delY = new JTextField(5); 

  domainDiameter = new JTextField(5); 

  iMin = new JTextField(5); 

   

  tSurface = new JTextField(5); 

  tInfinity = new JTextField(5); 

   

  nItr = new JTextField(5); 

  nItr.setEditable(false); 

  maxRes = new JTextField(5); 

  maxRes.setEditable(false); 

   

  JButton changeCharacteristics = new JButton("Change Characteristics"); 

  changeCharacteristics.addActionListener( 

    

   new ActionListener() 

   { 

    public void actionPerformed(ActionEvent event) 
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    { 

obj.setParams(Integer.parseInt(objHeight.getText()), Integer.parseInt(objWidth.getText()), 

Double.parseDouble(delX.getText()), Double.parseDouble(delY.getText()),  

Integer.parseInt(domainDiameter.getText()), Integer.parseInt(iMin.getText())); 

       

sBar = String.format("iMin: %d iMax: %d jMax: %d iUp: %d iBottom: %d jRight: %d",  

obj.imin, obj.imax, obj.jmax, obj.iup + 1, obj.ibottom + 1, obj.jright + 1); 

       

statusBar.setText(sBar); 

    } 

   } 

  ); 

   

  JButton changeTemperature = new JButton("Change Temperature"); 

  changeTemperature.addActionListener( 

    

   new ActionListener() 

   { 

    public void actionPerformed(ActionEvent event) 

    { 

     obj.setTemperature(Integer.parseInt(tSurface.getText()), 

Integer.parseInt(tInfinity.getText())); 

    } 

   } 

  ); 

   

  JButton startCalculation = new JButton("Start Calculation"); 

  startCalculation.addActionListener( 

    

   new ActionListener() 

   { 

    public void actionPerformed(ActionEvent event) 

    { 

     calculate(); 

    } 

   } 

  ); 

   

  JButton redrawMesh = new JButton("Redraw Mesh"); 

  redrawMesh.addActionListener( 

    

   new ActionListener() 

   { 

    public void actionPerformed(ActionEvent event) 

    { 

     drawGridObj.setGridParams(obj); 
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     drawGridObj.repaint(); 

    } 

   } 

  ); 

   

  gridCharacteristicsPane.add(objHeightLabel); 

  gridCharacteristicsPane.add(objHeight); 

  gridCharacteristicsPane.add(objWidthLabel); 

  gridCharacteristicsPane.add(objWidth); 

  gridCharacteristicsPane.add(delXLabel); 

  gridCharacteristicsPane.add(delX); 

  gridCharacteristicsPane.add(delYLabel); 

  gridCharacteristicsPane.add(delY); 

  gridCharacteristicsPane.add(domainDiameterLabel); 

  gridCharacteristicsPane.add(domainDiameter); 

  gridCharacteristicsPane.add(iMinLabel); 

  gridCharacteristicsPane.add(iMin); 

   

  c.gridx = 0; 

  c.gridy = 0; 

  c.fill = GridBagConstraints.HORIZONTAL; 

  add(gridCharacteristicsPane, c); 

   

  c.gridx = 0; 

  c.gridy = 1; 

  c.fill = GridBagConstraints.CENTER; 

  c.insets = new Insets(5,0,0,0); 

  add(changeCharacteristics, c); 

   

  temperaturePane.add(tSurfaceLabel); 

  temperaturePane.add(tSurface); 

  temperaturePane.add(tInfinityLabel); 

  temperaturePane.add(tInfinity); 

   

  c.gridx = 0; 

  c.gridy = 2; 

  c.fill = GridBagConstraints.HORIZONTAL; 

  add(temperaturePane, c); 

   

  c.gridx = 0; 

  c.gridy = 3; 

  c.fill = GridBagConstraints.CENTER; 

  add(changeTemperature, c); 

   

  progressMonitorPane.add(nItrLabel); 

  progressMonitorPane.add(nItr); 
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  progressMonitorPane.add(maxResLabel); 

  progressMonitorPane.add(maxRes); 

   

  c.gridx = 0; 

  c.gridy = 4; 

  c.fill = GridBagConstraints.HORIZONTAL; 

  add(progressMonitorPane, c); 

   

  c.gridx = 0; 

  c.gridy = 5; 

  c.fill = GridBagConstraints.CENTER; 

  add(redrawMesh, c); 

   

  c.gridx = 0; 

  c.gridy = 6; 

  c.fill = GridBagConstraints.CENTER; 

  add(startCalculation, c); 

   

  c.gridx = 0; 

  c.gridy = 7; 

  c.fill = GridBagConstraints.CENTER; 

  c.anchor = GridBagConstraints.PAGE_END; 

  add(statusBar, c); 

   

  c.gridx = 2; 

  c.gridy = 0; 

  c.gridheight = 8; 

  c.fill = GridBagConstraints.VERTICAL; 

  add(drawGridObj, c); 

   

  pack(); 

  setVisible(true); 

 } 

  

 public void calculate() 

 { 

  int nitr = 0;  

     double res = 1; 

     String maxR; 

     final int nmax =200000; 

     obj.setCons(); 

     obj.grid(); 

     obj.init(); 

      

     while((Math.abs(res) > Constants.CC) && (nitr < nmax)) 

     { 
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      obj.initRes(); 

      obj.eqn(); 

      obj.bound(); 

       

      res = 0; 

       

      for(int i=0; i<3; i++)  

      { 

       if(Math.abs(res) < Math.abs(obj.getRes(i))) 

       { 

        res = obj.getRes(i); 

       } 

      } 

       

      nitr = nitr + 1; 

       

      if( (nitr % 100) == 0) 

      { 

       nItr.setText(String.valueOf(nitr)); 

      } 

       

      maxR = String.format("%.4f", Math.abs(res)); 

      maxRes.setText(maxR); 

     } 

      

     nItr.setText(String.valueOf(nitr)); 

      

     obj.vel(); 

     obj.heat(); 

 } 

  

    public static void main(String[] args)  

    { 

     Test t = new Test();  

    }  

} 

 

 

 

 

 

// Drawing mesh 

import javax.swing.*; 

import java.awt.*; 

import java.awt.geom.Line2D; 
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public class drawGrid extends JPanel 

{ 

 int imax, jmax, iup, ibottom, jright; 

  

 public drawGrid() 

 { 

  setBackground(Color.WHITE); 

  setPreferredSize(new Dimension(340, 640)); 

 } 

  

 public drawGrid(Proc obj) 

 { 

  setBackground(Color.WHITE); 

  setPreferredSize(new Dimension(340, 640)); 

   

  imax = obj.imax; 

  jmax = obj.jmax; 

  iup = obj.iup; 

  ibottom = obj.ibottom; 

  jright = obj.jright; 

 } 

  

 public void setGridParams(Proc obj) 

 { 

  imax = obj.imax; 

  jmax = obj.jmax; 

  iup = obj.iup; 

  ibottom = obj.ibottom; 

  jright = obj.jright; 

 } 

  

 public void paintComponent(Graphics g) 

 { 

  super.paintComponent(g); 

   

  int xScale = 600 / (imax - 1); 

  int yScale = 300 / (jmax - 1); 

   

  g.drawRect(20, 20, 300, 600); 

   

  for(int i = 0; i < imax; i++) 

  { 

   g.drawLine(20, i*xScale + 20, 320, i*xScale + 20); 

  } 

   

  for(int j = 0; j < jmax; j++) 
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  { 

   g.drawLine(j*yScale + 20, 20, j*yScale + 20, 620); 

  } 

  

g.drawArc(-280, 20, 600, 600, 90, -180); 

   

g.setColor(Color.RED); 

   

g.fillRect(20, 18 + (ibottom * xScale), (jright * yScale) + 2, ( (iup - ibottom) * xScale ) + 2 ); 

 } 

} 


