
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Electrical & Electronics
Engineering

Character Recognition Using Neural Networks

EE 400

Student: Sakeb Hussein (20034081)

Supervisor: Mr. Jamal Fathi

Lefkosa - 2007

(J)etficatetf 'To !My 9dotner

ACKNOWLEDGEMENTS

I could not have prepared this project without the generous help of my

supervisor, colleagues, friends, family and especially my mother and brothers

Hasheem, Bakir and Muatasim.Also I would like to thank my friend Mutleq

Qa'aqorah.

My deepest thanks are to my supervisor Mr. Jamal fathi for his help and

answering any question I asked him.

I would like to express my gratitude to Prof. Dr. Fakhraddin Mamedov.

Also I would like to express my gratitude to Mr. Tayseer Alshanableh

and his family.

Finally, I could never have prepared this project without the

encouragement and support of my mum, brothers and sister.

ABSTRACT

In this project we will see that the neural network behaves like a baby because it is

learning from what we are teaching it such as the examples which are giving to it. Also we

will show how a neural network can recognize the alphabet letters as we teach it.

II

CONTENTS

DEDICATED

AKNOWLEDEMENTS

ABSTRACT

CONTENTS

1. ARTIFICIAL NEURAL NETWORKS

1.1 Overview

1.2 Neural Network Definition

1.3 History of Neural Networks

1.3 .1 Conception (1890-1949)

1.3.2 Gestation (1950s)

1.3 .3 Birth (1956)

1.3.4 Early Infancy (Late l 950s-1960s)

1.3.5 Excessive Hype

1.3 .6 Stunted Growth (1969-1981)

1.3. 7 Late Infancy (1982 -Present)

1.4 Analogy to the Brain

1.4.1 Natural Neuron

1.4.2 Artificial Neuron

1.5 Model of a Neuron

1.6 Back-Propagation

1.6.1 Back-Propagation Learning

1. 7 Learning Processes

1. 7 .1 Memory-Based Learning

1.7.2 Hebbian Learning

1. 7 .2.1 Synaptic Enhancement and Depression

1.7.2.2 Mathematical Models of Hebbian Modifications

1.7.2.3 Hebbian Hypothesis

1.7.3 Competitive Learning

1.7.4 Boltzmann Learning

1.8 Learning Tasks

II

iii

1

1

4

4

4

4

5

5

5

6

9

10

11

12

13

13

16

16

17

17

18

18

19

21

22

111

3.1 Overview

3.2 Introduction

3.3 Image Processing Algorithms

3.4 Neural Networks in Image Processing

3.4.1 Preprocessing

3.4.2 Image Reconstruction

24

26

27

27

27

28

29

31

31

32

32

32

33

35

36

36

37

38

40

40

41

43

43

44

45

45

45

46

49

49

49

1.9 Activation Functions

1.9.1 A.N.N.

1.9.2 Unsupervised Learning

1.9.3 Supervised Learning

1.9.4 Reinforcement Learning

1.10 Back propagation Model

1.10.1 Back Propagation Algorithm

1.10 .2 Strengths and Weaknesses

1.11 Summary

2. IMAGE PROCESSING

2.1 Overview

2.2 Introduction

2.3 Elements of Image Analysis

2.4 Patterns and Pattern Classes

2.5 Error Matrices

2.6 The Outline

2.6.1 Classifying Image Data

2.6.2 The DWT of an Image

2.7 The Inverse DWT of an Image

2. 7 .1 Bit Allocation

2.7.2 Quantization

2.8 Object Recognition

2.8.1 Optical Character Recognition

2.9 Summary

3. IMAGE PROCESSING AND NEURAL NETWORKS

IV

3.4.3 Image Restoration

3.4.4 Image Enhancement

3.4.5 Applicability of Neural Networks in Preprocessing

3.5 Data Reduction and Feature Extraction

3.5.1 Feature Extraction Applications

3.6 Image Segmentation

3 .6.1 Image Segmentation Based on Pixel Data

3.7 Real-Life Applications ofNeural Networks

3.7.1 Character Recognition

3.8 Summary

4. CHARECTER RECOGNITION SYSTEM USING N.N

4.1 Overview

4.2 Input Data Presentation

4.3 Output Data Presentation

4.4 Neural Network Design

4.5 Setting the weights

4.6 Bias Unit

4.7 Training the N.N.

4.7.1 Forward- pass

4.8 Summary

5. PRACTICAL CONSIDERATION USING MATLAB

5 .1 Overview

5.2 Problem Statement

5.3 Neural Network

5.4 Architecture

5.5 Initialization

5.6 Training

5.6.1 Training without Noise

5.6.2 Training with Noise

5.7 System Performance

5.8 MATLAB Program

5.9 Practical Example

50

51

52

54

54

56

56

57

58

60

61

61

61

64

65

67

68

69

69

73

74

74

74

74

75

76

76

76

77

77

78

81

V

5.10 Summary

6. CONCLUSION

7. APPENDIX I

8. APPENDIX II

9. REFERENCES

83

84

85

99

112

VI

Artificial Neural Networks

1. ARTIFICIAL NEURAL NETWORKS

1.1 Overview

This chapter presents an overview of neural networks, its history, simple structure,

biological analogy and the Back propagation algorithm.

In both the Perceptron Algorithm and the Back propagation Producer, the correct output

for the current input is required for learning. This type of learning is called supervised

learning. Two other types of learning are essential in the evolution of biological

intelligence: unsupervised learning and reinforcement learning. In unsupervised

learning a system is only presented with a set of exemplars as inputs. The system is not

given any external indication as to what the correct responses should be nor whether the

generated responses are right or wrong. Statistical clustering methods, without

knowledge of the number clusters, are examples of unsupervised learning.

Reinforcement learning is somewhere between supervised learning, in which the

system is provided with the desired output, and unsupervised learning, in which the

system gets no feedback at all on how it is doing. In reinforcement learning the system

receivers a feedback that tells the system whether its output response is right or wrong,

but no information on what the right output should be is provided.[27]

1.2 Neural Network Definition

First of all, when we are talking about a neural network, we should more properly say

"artificial neural network" (ANN) because that is what we mean most of the time.

Biological neural networks are much more complicated than the mathematical models

we use for ANNs, but it is customary to be lazy and drop the "A" or the "artificial".

An Artificial Neural Network (ANN) is an information-processing paradigm that is

inspired by the way biological nervous systems, such as the brain, process information.

The key element of this paradigm is the novel structure of the information processing

system. It is composed of a large number of highly interconnected processing elements

(neurons) working in unison to solve specific problems. ANNs, like people, learn by

example. An ANN is configured for a specific application, such as pattern recognition

or data classification, through a learning process. Learning in biological systems

1

Artificial Neural Networks

involves adjustments to the synaptic connections that exist between the neurons. This is

true of ANNs as well.

• Definition:
A machine that is designed to model the way in which the brain preference a

particular taste or function. The neural network is usually implemented using

electronic components or simulated as software.

• Simulated:
A neural network is a massive, parallel-distributed processor made up of simple

processing units, which has neural propensity for storing experiential knowledge

and making it available for use. It resembles the brain in two respects:

1. The network from its environment through a learning process acquires

knowledge.

2. Interneuron connection strength, known as synaptic weights, are used to

store the acquired knowledge.

• Simulated:
A neural network is a system composed of many simple processing elements

operating in parallel whose function is determined by network structure,

connection strengths, and the processing performed at computing elements or

nodes.

• Simulated:
A neural network is a massive, parallel-distributed processor that has a natural

propensity for storing experiential knowledge and making it available for use. It

resembles the brain in two respects:

1. Knowledge is acquired by the network through a learning process.

2. Interneuron connection strengths, known as synaptic weights are used to

store the knowledge.

2

Artificial Neural Networks

• Simulated:

A neural network is a computational model that shares some of the properties of

the brain. It consists of many simple units working in parallel with no central

control; the connections between units have numeric weights that can be

modified by the learning element.

• Simulated:

A new form of computing inspired by biological models, a mathematical model

composed of a large number of processing elements organized into layers.

:'A computing system made up of a number of simple ,highly interconnected

elements, which processes information by its dynamic state response to external

inputs"

Neural networks go by many aliases. Although by no means synonyms the names listed

in figure 1.1 below.

• Parallel distributed processing models
• Connectivist /connectionism models
• Adaptive systems
• Self-organizing systems
• Neurocomputing
• Neuromorphic systems

Figure 1.1 Neural Network Aliases

All refer to this new form of information processing; some of these terms again when

we talk about implementations and models. In general though we will continue to use

the words "neural networks" to mean the broad class of artificial neural systems. This

appears to be the one most commonly used

3

Artificial Neural Networks

1.3 History of Neural Networks

1.3.1 Conception (1890-1949)

Alan Turing was the first to use the brine as a computing paradigm, a way of looking at

the world of computing. That was in 1936. In 1943, a Warren McCulloch, a

neurophysiologist, and Walter Pitts, an eighteen-year old mathematician, wrote a paper

about how neurons might work. They modeled a simple neural network with electrical

circuits. John von Neumann used it in teaching the theory of computing machines.

Researchers began to look to anatomy and physiology for clues about creating

intelligent machines.

Another important book was Donald Hebb's the Organization of Behavior (1949) [2],

which highlights the connection between psychology and physiology, pointing out that

a neural pathway is reinforced each time it is used. Hebb's "Leaming Rule", as it is

sometime known, is still used and quoted today.

1.3.2 Gestation (1950s)

Improvements in hardware and software in the 1950s ushered in the age of computer

simulation. It became possible to test theories about nervous system functions. Research

expanded and neural network terminology came into its own.

1.3.3 Birth (1956)

The Dartmouth Summer Research Project on Artificial Intelligence (AI) in the summer

of 1956 provided momentum for both the field of AI and neural computing. Putting

together some of the best minds of the time unleashed a whole raft of new work. Some

efforts took the "high-level" (AI) approach in trying to create computer programs that

could be described as "intelligent" machine behavior; other directions used mechanisms

modeled after "low-level" (neural network) processes of the brain to achieve

"intelligence". [7]

4

Artificial Neural Networks

1.3.4 Early Infancy (Late 1950s-1960s)

The year following the Dartmouth Project, John von Neumann wrote material for his

book The Computer and the Brain (Yale University Press, 1958). Here he makes such

suggestions as imitating simple neuron function by using telegraph relays or vacuum.

The Perceptron, a neural network model about which we will hear more later, built in

hardware, is the oldest neural network and still has use today in various form for

applications such as character recognition.

In 1959, Bernard Widrow and Marcian Hoff (Stanford) developed models for

ADALINE, then MADALINE (Multiple Adaptive Liner Elements). This was the first

neural network applied to real-world problem-adaptive filers to eliminate echoes on

phone lines. As we mentioned before, this application has been in commercial use for

several decades.

One of the major players in the neural network reach from to the 1960s to current time

is Stephen Grossberg (Boston University). He has done considerable writing (much of it

tedious) on his extensive physiological research to develop neural network models. His

1967 network, Avalanche, uses a class of networks to perform activities such as

continuous-speech recognition and teaching motor commands to robotic arms.[10]

1.3.5 Excessive Hype

Some people exaggerated the potential of neural networks. Biological comparisons were

blown out of proportion in the October 1987 issue of the "Neural Network Review",

newsletter editor Craig Will quoted Frank Rosenblatt from a 1958 issue of the "New

Yorker".

1.3.6 Stunted Growth (1969-1981)

In 1969 in the midst of such outrageous claims, respected voices of critique were raised

that brought a halt too much of the funding for neural network research. Many

researchers turned their attention to AI, which looked more promising at the time.

• Amari (1972) independently introduced the additive model of a neural and used

it to study the dynamic behavior of randomly connected neuron like elements.

• Wilson and Cowan (1972) derived coupled nonlinear differential equations for

the dynamic of spatially localized populations containing both excitatory and

inhibitory model neurons.

5

Artificial Neural Networks

• Little and Shaw (1975) described a probabilistic of a neuron, either firing or not

firing an action potential and used the model to develop a theory of short term

memory.

• Anderson Silverstein Ritz and Jones (1977) proposed the brain state in a box

(BSB) model consisting of simple associative network coupled to nonlinear

dynamics. [14]

1.3. 7 Late Infancy (1982 -Presentj

Important development in 1982 was the publication of Kohonen's paper on self­

organizing maps "Kohonen 1982", which used a one or two dimensional lattice

structure.

In 1983 ,Kirkpatrick, Gelatt, and Vecchi described a new procedure called simulated

annealing, for solving combinatorial optimization problems. Simulated annealing is

rooted in statistical mechanics.

Jordan (1996) by used a mean-field theory a technique also in statistical mechanics.

A paper by Bator, Sutton and Anderson on reinforcement learning was published in

1983. Although, they were not the first to use reinforcement learning (Minsky

considered it in his 1954 Ph.D. thesis for example).

In 1984 Braitenberg's book, Vehicles: Experiments in Synthetic Psychology, was

published.

In 1986 the development of the back-propagation algorithm was reported by Rumelhart

Hinton and Williams (1986).

In 1988 Linsker described a new principle for self-organization in a perceptual network

(Linsker, 1988a) Also in 1988, Broomhead and Lowe described a procedure for the

design of layered feed-forward networks using radial basis functions (RBF) which

provide an alter native to multiplayer perceptrons.

In 1989 Mead's book, Analog VLSI and Neural Systems, was published. This book

provides an unusual mix of concepts drawn from neurobiology and VLSI technology.

6

Artificial Neural Networks

In the early 1990s, Vapnik and coworkers invented a computationally powerful class of

supervised leaning networks called Support Vector Machines, for solving pattern

recognition regression, and the density estimation problem. "Boser, Guyon and Vapnik,

1992, Cortes and Vapnik, 1995; Vapnik, 1995,1998."

In 1982 the time was rip for renewed interest in neural networks. Several events

converged to make this a pivotal year.

John Hopfield (Caltech) presented his neural network paper to the National Academy of

Sciences. Abstract ideas became the focuse as he pulled together previous work on

neural networks.

But there were other threads pulling at the neural network picture as well. Also in 1982

the U.S. - Japan Joint Conference on Cooperative Competitive Neural Network, was

held in Kyoto Japan.

In 1985 the American Institute of Physics began what has become an annual Neural

Networks for computing meeting. This was the first of many more conference to come

in 1987 the institute of Electrical and Electronic Engineers (IEEE). The first

international conference on neural networks drew more than 1800 attendees and 19

vendors (although there were few products yet to show). Later the same year, the

International Neural Network Society (INNS), was formed under the leadership of

Grossberg in the U.S., Kohonen in Finland, and Amari in Japan.

AI though there were two competing conferences in 1988, the spirit of cooperation in

this new technology has resulted in joint spontional Joint Conference on Neural

Networks (IJCNN) held in Japan in 1989 which produce 430 papers, 63 of which

focused on application development. January 1990 IJCNN in Washington, D.C. clouded

an hour's concert of music generated by neural networks. The Neural Networks for

Defense meeting, held in conjunction with the June 1989 IJCNN above, gathered more

than 160 represntives of government defense and defense contractors giving

presentations on neural network efforts. When the U.S. Department of Defense

announced its 1990 Small Business Innovation Program 16 topics specifically targeted

neural networks. An additional 13 topics mentioned the possibility of using neural

network approaches. The year of 1989 was of unfolding application possibilities. On

7

Artificial Neural Networks

September 27, 1989, the IEEE and the Learning Neural Networks Capabilities created

applications for today and the Future.

The ICNN in 1987 included attendees from computer science electrical engineering,

physiology cognitive psychology, medicine and even a philosopher of two. In May of

1988 the North Texas Commission Regional Technology Program convened a study

group for the purpose of reviewing the opportunities for developing the field of

computational neuroscience. Their report of October 1988 concluder that the present is

a critical time to establish such a center. [1]

Believing that a better scientific understanding of the brain and the subsequent

application to computing technology could have significant impact. They assess their

regional strength in electronics and biomedical science and their goals are both

academic and economic. You can sense excitement and commitment in their plans.

Hecht-Nielsen (1991) attributes a conspiratorial motive to Minsky and Papert. Namely,

that the MIT AI Laboratory had just been set up and was focussing on LISP based AI,

and needed to spike other consumers of grants. A good story, whatever the truth, and

given extra spice by the coincidence that Minsky and Rosenblatt attended the same class

in high-school. Moreover, any bitterness is probably justified because neural network

researchers spent the best part of 20 years in the wilderness.

Work did not stop however, and the current upsurge of interest began in 1986 with the

famous PDP books which announced the invention of a viable training algorithm (back

propagation) for multilayer networks (Rumelhart and McClelland, 1986). [23]

8

Artificial Neural Networks

Table 1.1. Summarize the history of the development ofN.N.

Table 1.1 Development ofN.N.

Present Late 80s to now Interest explodes with conferences, articles,

~ simulation, new companies, and

government funded research.

Late Infancy 1982 Hopfiled at National Academy of Sciences

Stunted Growth 1969 Minsky & Papert's critique Perceptrons

Early Infancy Late 50s, 60s Excessive Hype Research efforts expand

Birth 1956 AI & Neural computing Fields launched

Dartmouth Summer Research Project

Gestation 1950s Age of computer simulation

1949 Hebb, the Organization of Behavior

1943 McCulloch & Pitts paper on neurons

1936 Turing uses brain as computing paradigm

Conception 1890 James, Psychology (Briefer Curse)

1.4 Analogy to the Brain
The human nervous system may be viewed as a three stage system, as depicted in the

block diagram of the block diagram representation of the nervous system.

Stimu - Respo._n !us ~ ~ ~ Receptors Neural Net Effectors ~ ~
~ ~ ~ ~

se

Figure 1.2 Block Diagram of the Nervous System.

(Arbib,1987) Central to the system is the brain, represented by the neural (nerve)

network which continually receives information, perceives if, and makes appropriate

decisions. Two sets of arrows are shown in the block diagram. Those pointing from left

9

Artificial Neural Networks

to right indicate the forward transmission of information-bearing signals through the

system. The receptors convert stimuli from the human body or the external environment

into electrical impulses which convey information to the neural network (brain). The

effectors convert electrical impulses by the neural network into discernible responses as

system outputs.

1.4.1 Natural Neuron

A neuron is a nerve cell with all of its processes. Neurons are one of the mam

distinctions of animals (plants do not have nerve cells). Between seven and one hundred

different classes of neurons have been identified in humans. The wide variation is

related to how restrictively a class is defined. We tend to think of them as being

microscopic, but some neurons in your legs are as long three meters. The type of neuron

found in the retina is shown in figure 1.3.

Figure 1.3 Neuron Natural. [23]

An example is a bipolar neuron. Its name implies that has two processes. The cell body

contains the nucleus, and leading into the nucleus are one or more dendrites. These

branching, tapering processes of the nerve cell, as a rule, conduct impulses toward the

cell body. The axon is the nerve cell process that conducts the impulse type of neurons.

This one gives us the functionality and vocabulary we need to make analogies.

10

Artificial Neural Networks

1.4.2 Artificial Neuron

Our paper and pencil model starts by copying the simplest element the neuron call our

artificial neuron a processing element or PE for short. The word node is also used for

this simple building block, which is represented by circle in the figure 1.4 "a single

mode or processing element PE or Artificial Neuron"

Inputs

I~

Outputs 2----

N

Figure 1.4 Artificial Neuron

The PE handles several basic functions: (1) Evaluates the input signals and determines

the strength of each one, Calculates the total for the combined input signals and

compare that total to some threshold level, and (3) Determines what the output should

be.

Input and Output: Just as there are many inputs (stimulation levels) to a neuron there

should be many input signals to our PE. All of them should come into our PE

simultaneously. In response a neuron either "fires" or "doesn't fire" depending on some

threshold level. The PE will be allowed a single output signal just as is present in a

biological neuron. There are many inputs and only one output.

Weighting Factors: Each input will be given a relative weighting which will affect the

impact of that input. In figure 1. 5, "a single mode or processing element PE or Artificial

Neuron" with weighted inputs.

11

Artificial Neural Networks

Inputs

Outputs= Sum ofinputs*Weights
------•'Note: Many inputs one output'

Figure 1.5 Single Mode Artificial Neuron

This is something like the varying synaptic strengths of the biological neurons. Some

inputs are more important than others in the way that they combine to produce an

impulse.

1.5 Model of a Neuron

The neuron is the basic processor in neural networks. Each neuron has one output,

which generally related to the state of the neuron -its activation, which may fan out to

several other neurons. Each neuron receives several inputs over these connections,

called synapses. The inputs are the activations of the neuron. This is computed by

applying a threshold function to this product. An abstract model of the neuron is shown

in figure 1.6.

Incoming Activation

L I e
adder I thmhald\ Outgoing

function activation
activation

functin

Figure 1.6 Diagram of Abstract Neuron Model. [23]

12

Artificial Neural Networks

1.6 Back-Propagation

The most popular method for learning in the multiplayer network is called "back­

propagation." It was first invented in 1996 by Bryson, but was more or less ignored

until the mid-1980s. The reason for this may be sociological, but may also have to do

with the computational requirements of the algorithm on nontrivial problems.

The back-propagation learning algorithm works on multiplayer feed-forward

networks, using gradient descent in weight space to minimize the output error. It

converges to a locally optimal solution, and has been used with some success in a

variety of applications. As with all hill-climbing techniques, however, there is no

guarantee that it will find a global solution. Furthermore, its converge is often very

slow.

1.6.1 Back-Propagation Learning
Suppose we want to construct a network for the restaurant problem. So we will try a

two-layer network. We have ten attributes describing each example, so we will need ten

input units. In figure 1. 7, we show a network with four hidden nits. This turns out to be

about right for this problem.

w J,1

Output units O,

Hidden units ai

Input units I k

Figure 1.7 A two layer feed forward network for the restaurant problem. [23]

13

Artificial Neural Networks

Example inputs are presented to the network, and if the network computes an output

vector that matches the target, nothing is done. If there is an error (a difference between

the output and target), then weights are adjusted to reduce this error. The trick is to

assess the blame for an error and divide it among the contributing weights. In

Perceptrons, this is easy, because there is only one weight connecting each input and

output. But in multiplayer networks, there are many weights connecting each input to an

output and each of these weights contributes to more than one output.

The back-propagation algorithm is a sensible approach to dividing the contribution of

each weight. As in the Perceptron Learning Algorithm, we try to minimize the error

between each target output and the output actually computed by the network. At the

output layer the weight update rule is very similar to the rule for the perceptron.

However, there are two differences. The activation of the hidden unit aj is used instead

of the input value; and the rule contains a term for the gradient of the activation

function. If Em is the error (Ti-Or) at the output node, then the weight update rule for the

link from unit j to unit i is

(1.1)

Where g' is the derivative of the activation g will find it convenient to define a new

error term ~; which for output node is defined as ~; = Err.g'(in.), The update rule

then becomes:

(1.2)

For updating the connections between the input and the hidden units, we need to define

a quantity analogous to the error term for output node. The propagation rule so the

following:

(1.3)

Now the weight update rule for the weights between the inputs and the hidden layer is

almost identical to the update rule for the output layer.

14

Artificial Neural Networks

(1.4)

Function Back-Prop-UPDATE (network, examples,a) returns a network with
modified weights.
Inputs: network, a multiplayer network
Examples, asset of input/output pairs a, the learning rate.
Repeat
For each e in example do
0 ~ TUN -NETWORK(network,Ie)
Err' ~ ye -0
W . ~ W . + a x a . x Err e x g '(in)

}J JJ } I I

for each subsequent layer in network do
l':.j ~ g'(in)I,;wJ,il':.j

wk,} ~ wk,; + a X I k X I':. j

end
end
until network has converged
return network

Figure 1.8 Back propagation algorithm for updating weights in a multiplayer network

Back-propagation provides a way of dividing the calculation of the gradient among the

unit so the change in each weight can be calculated by the unit to which the weight is

attached using only local information.

We use the sum of squared errors over the output values:

E = i I (T, - O;)2
I

(1.5)

The key insight again is that the output values O, are a function of the weights for

general two-layer network, we can write:

(1.6)

15

Artificial Neural Networks

E(W) = ± Icri -g(Iwj,ig(Iwk,Jk)))2
I }

(1.7)

1. 7 Learning Processes

Learning is a process by which the free parameters of a neural network are a adapted

through a process of stimulation by the environment in which the network is embedded.

The type of learning is determined by a manner in which the parameter change takes

place.

This definition of the learning process implies the following sequence of events:

• The neural network is stimulated by an environment.

• The neural network undergoes changes in its parameters as a result of this

stimulation.

• The neural network responds in a new way to the environment because of the

changes that have occurred in its internal structure.

A prescribed set of well-defined rules for the solution of a learning problem is called a

"learning algorithm."

Basically learning algorithms differ from each other in the way in which the adjustment

to a synaptic weight of neurons is formulated. Another factor to be considered is the

manner in which a neural network (learning machine) is made up of a set of

interconnected neurons. Learning paradigm refers to a model of the environment in

whish the neural network operates.

1.7.1 Memory-Based Learning

In memory-based learning, all (or most) of the past experiences are explicitly stored in a

large memory of correctly classified input-output examples.

(1.8)

Where xi denotes an input vector and di denotes the corresponding desired response.

16

Artificial Neural Networks

1.7.2 Hebbian Learning

When an axon of cell A is near enough to excite a cell B, it repeatedly or persistently

takes part in firing it. Some growth processes or metabolic changes take place in one or

both cell such that A is efficiency as one of the cells firing Bis increased.

1. If two neurons on either side of a synapse are selectively (connection) activated

simultaneously (i.e. then the strength of that synapse is selectively increased).

2. If two neurons on either side of a synapse are active asynchronously, then that

synapse is selectively weakended or eliminated.

The following are four key mechanisms that characterize a Hebbian Synapse:

1. Time-dependent mechanism. This mechanism refers to the fact that the

modification in the Hebbian synapse depend on the exact time of occurrence of

the presynaptic and postsynaptic signals.

2. Local mechanism. By its nature a synapse is the transmission site where

information-bearing signals (representing ongoing activity in the presynaptic

and postsynaptic units) are in spatiotemporal congtiguity.

3. Interactive mechanism. The occurrence of a change in the Hebbian synapse

depends on signals on both sides of the synapse.

4. Conjunctional or correlational mechanism. One interpretation of Hebb's

postulate of learning is that the condition for a change in synaptic efficiency is

the conjunction of presynaptic and posynaptic signals.

1.7.2.1 Synaptic Enhancement and Depression

The conception of a Hebbian modification by is recognizing that positively correlated

activity produces synaptic weakening; synaptic for depression may also be of a

noninteractive type. The classification of modifications such as Hebbian, anti-Hebbian,

and non-Hebbian, according to this scheme, increases its strength when these signals are

either uncorrelated or negatively correlated.

17

Artificial Neural Networks

1.7.2.2 Mathematical Models of Hebbian Modifications

To formulate Hebbian learning in mathematical terms, consider a synaptic weight Wkj

of neuron k with presynaptic and postsynaptic signals denoted by Xj and Yk respectively.

The adjustment applied to the synaptic weight Wkj, at time step n, is expressed in the

general form:

!iwkJ(n) = f(y (n),x;(n)) (1.9)

Where F(.,.) is a function of both postsynaptic and presynaptic signals the signals xj(n)

and Yk(n) are often treated as dimensionless.

1.7.2.3 Hebbian Hypothesis

The simplest form of Hebbian learning is described by:

(1.10)

Where T/ is a positive constant that determine the rate of learning, it clearly emphasizes

the correlational nature of a Hebbian synapse. It is sometimes referred to as the activity

product rule. (The top curve of figure 1.9).

Postsvnaotic activitv V1r

Hebb's hypothesis

!iwk;

nee hypothesis

0

-17(xJ -x)y
Maximum depression

point

Figure 1.9 Illustration of Hebb's Hypothesis and the Covariance Hypothesis. [23]

18

Artificial Neural Networks

With the change ~wk/ plotted, versus the output signal (postsynaptic activity) Yk,

therefore exponential growth finally drives the synaptic connection into staturation. At

that point no information will be stored in the synapse and selectivity is lost.

Covariance hypothesis: One way of overcoming the limitation of Hebb's hypothesis is

to use covariance hypothesis introduced by Sejnowski. In this hypothesis, the

presynaptic and postsynaptic signals in are replaced by the departure of presynaptic and
-

postsynaptic signals from their respective values over a certain time interval. Let x and

y denote the time average values of the presynaptic signal Xj, and postsynaptic signal Yk

respectively according to the covariance hypothesis. The adjustment applied to the

synaptic weight Wkj is defined by:

-
~wk1 = JJ(x1 - x)(yk - y) (1.11)

Where 1J is the learning rate parameter, the average values x and y constitute

presynaptic and postsynaptic thresholds. This determines the sign of synaptic

modification.

1.7.3 Competitive Learning

In competitive learning as the name implies the output neurons of a neural network

compete among themselves to become active (fired). The several output neurons may be

active simultaneously in completive learning; only a signal output neuron is active at

any time. It is this features that may be used to classify a set of input patterns.

The three basic elements to a competitive learning rule.

• A set of neurons that are all the same except for some randomly distributed

synaptic weight and which therefore respond differently to a given set of input

patterns

• A limit imposed on the strength of each neuron.

• A mechanism that permits the neurons to compete for the right to respond to a

given subset of input; such that only one output neurons.

19

Artificial Neural Networks

In the simplest form of competitive learning the neuronal network has a single layer of

output neurons. Each of which is fully connected to the input nodes. The network may

include feedback connection among the neurons as indicated in figure 1.10.

x,

X, -
Layer of source node

Single layer of
output neurons

Figure 1.10 Feedback Connections Among the Neurons. [23]

For a neuron k, to be the winning neuron, its induced local field Vk for a specified input

pattern. X must be the largest among all the neurons in the network. The output signal

Yk, of winning neurons k is set equal to one. The output signals of all the neurons that

lose the competition are set equal to zero. We thus write:

-{1 ifv, > vJforallj,j "* k
Yk -

o otherwise
(1.12)

The induced local field vk represents the combined action of all the forward and

feedback inputs to neuron k.

Let Wkj denote the synaptic weight connecting input node j to neuron k. Suppose that

each neurons is allotted a fixed amount of synaptic weight, which is distributed among

its input node that is:

L wkJ = 1 For all k
j

(1.13)

20

Artificial Neural Networks

The change Liwk1 applied to synaptic weight wkJ is defined by:

-{"7 (xl - wk)if neuron k wins the compention
wk -

" 0 if neuron k loses the compention
(1.14)

Where ry is the learning rate parameter this has the overall effect of moving the synaptic

weight vector Wk of winning neurons k toward the input pattern x-

1.7.4 Boltzmann Learning

The Boltzmann learning rule named in honor of Ludwig Boltzmann is a stochastic

learning algorithm derived from ideas rooted in statistical mechanics. In a Boltzmann

machine, the neurons constitute a recurrent structure and they operate in a binary

manner. Since, for example, they are either in an on state denoted by + 1 or in an off
state denoted of which is determined by the particular states occupied by the individual

neurons of the machine as shown by:

(1.15)

Where Xj is the state of neuron j and Wkj is the synaptic weight connecting neuron j to

neuron k, the fact that j * k means simply that none of the neurons in the machine has

self feedback. The machine operates by choosing a neuron at random, for example

neuron k at some step of the learning process then flipping the state of neuron k from

state x, at some temperature T with probability.

(1.16)

Where Mk is the energy change resulting from such a flip notice that T is not physical

temperature but rather a pseudo temperature.

The neurons of a Boltzmann machine partition into two functional groups: visible and

hidden. The visible neurons provide an interface between the network and the

21

Artificial Neural Networks

environment in which it operates, whereas the hidden neurons always operate freely.

There are two modes of operation to be considered.

• Clamped condition in which the visible neurons are all clamped onto specific

states determined by the environment.

• Free running condition in which all the neurons visible and hidden are allowed

to operate freely.

According to the Boltzmann learning rule, the change L).Wk1 applied to the synaptic

weight w k] from neuron j to neuron k by:

L).Wkj = 77CP+ - p .), J * k
k; kj

(1.17)

Where 77 is a learning rate parameter, note that both p + and p _ range in value from -1
k; k;

to +l.

1.8 Learning Tasks
In this context we will identify six learning tasks that apply to the use of neural network

in one form or another.

a. Pattern Association

An associative memory is a brain-like, distributed memory that learns by association.

Association has been known to be a prominent feature of human memory since

Aristotle and all models of cognition use in one form or another as the basic

operation. There are two phases involved in the operation of an associative memory:
<

• Storage phase, which refers to the training of the network in accordance

with xk ~ Yk, k = 1,2,3 q

• Recall phase, which involves the retrieval of a memorized pattern in

response to the presentation of a noisy or distorted version of a key

pattern to the network.

22

Artificial Neural Networks

b. Pattern Recognition

Humans are good at pattern recognition. We receive data from the world around

us via our senses and are able to recognize the source of the data.

Pattern recognition is formally defined as the process whereby a received

pattern/signal is assigned to one of a prescribed number of classes (categories).

c. Function Approximation

The third learning task of interest is that of function approximation.

d. Control

The control of a plant is another learning task that can be done by a neural

network; by a plant we mean a process or critical part of a system that is to be

maintained in a controlled condition.

e. Filtering

The term filter often refers to a device of algorithm used to extract information

about a prescribed quantity of interest from a set of noisy data.

f. Beamforming
Beamforming is a spatial form of filtering and is used to distinguish between the

spatial properties of a target signal and background noise. The device used to do

the beamforming is called a "beamformer."

23

Artificial Neural Networks

1.9 Activation Functions

This threshold function is generally some form of nonlinear function. One simple

nonlinear function that is appropriate for discrete neural nets is the step function. One

variant of the step function is:

-I

Figure 1.11 Hard Activation Functions

f(x) = {~1 (x)
-1

x>O

x=O
x<O

(1.18)

Where /' (x) refers to the previous value of f(x) (that is the activation of the neuron will

not change)

Where x is the summation (over all the incoming neurons) of the product of the

incoming neuron's activation, and the connection:
/1

X= IA;W;
i=O

(1.19)

The number of incoming neurons, is A the vector of incoming neurons and w is the

vector of synaptic weights connecting the incoming neurons to the neurons we are

examining. One more appropriate to analog is the sigmoid, or squashing, function; an

example is the logistic functions illustrated in figure 1.12.

24

Artificial Neural Networks

Figure 1.12 Sigmoid Functions

1
J(x)= . + e (1.20)

Another popular alternative is:

f (x) = tanh(x) (1.21)

The most important characteristic of our activation function is that it is nonlinear. If we

wish to use activation function as a multiplayer network, the activation function must be

nonlinear, or the computational will be equivalent to a single-layer network.

25

Artificial Neural Networks

1.9.1 A.N.N.

All of the knowledge that a neural network possesses is stored in the synapses. The

weights of the connections between the neurons of diagram of the synapse layer model.

Figure 1.13 Diagram of Synapse Layer Model

However the network acquires that knowledge, this happens during training aa g

pattern associations are presented to the network in sequence, and the weights are

adjusted to capture this knowledge. The weight adjustment scheme is known as the

"learning law". One of the first learning methods formulated was Hebbian Leaming.

Donald Hebb, in his organization of behavior formulated the concept of "correlation

learning". This is the idea that the weight of a connection is adjusted based on the

values of the neurons its connects:

(1.22)

Where a is the learning rate a, is the activation of the ith neuron in one neuron layer, aj

is the activation of the jth neuron in another layer, and Wij is the connection strength

between the two neurons. A variant of this learning rule is the signal Hebbian Law:

(1.23)

S is a sigmoid

26

Artificial Neural Networks

1.9.2 Unsupervised learning

One method of learning is the unsupervised learning method. In general, an

unsupervised learning method is one in which weight adjustments are not made based

on comparison with some target output. There is no teaching signal feed into the weight

adjustments. This property is also known as self - organization.

1.9.3 Supervised learning

In many models, learning takes the form of supervised training. I present input pattern

one after the other to the neural network and observe the recalled output pattern in

comparison with our desired result, there is needed some way of adjusting the weights

which takes into account any error in the output pattern.

An example of a supervised learning law is the Error Correction Law:

(1.24)

A before a is again the learning rate, ai the activation of the ith neuron, bj is the

activation of the jth neuron in the recalled pattern, and cj is the deired activation of the

jth neuron.

1.9.4 Reinforcement learning

Another learning method, known as reinforcemnet learing fits into the general category

of supervised learning. However, its formula differs from the error correction formula

just presented. This type of learning is similar to supervised learning except that each

ouput neuron gets an error value. Only one error value is computed for each ouput

neuron. The weight adjustment formula is then:

~wu = a[v -8} Jeu (1.25)

Again a is the learning rate, v is the single value indicting the total error of the output

pattern, and 8 is the threshold value for the jth output neuron. We need to spread out

this generalized error for the jth output neuron to each of the incoming i neurons, is a

value representing the eligibility of the weight for updating. This may be computed as:

27

Artificial Neural Networks

dlngi
dwu

Where g, is the probability of the output being correct given the input from the ith

(1.26)

incoming neuron. (This is vague description; the probability function is of necessity a

heuristic estimate and manifests itself differently from specific model to specific

model).

1.10 Back propagation Model

Back propagation of errors is a relatively generic concept. The Back propagation model

is applicable to a wide class of problems. It is certainly the predominant supervised

training algorithm. Supervised learning implies that we must have a set of good pattern

associations to train with. The back propagation model presented in figure 1.14.

0 output
layer

neurons

W2 weight
matrix

h Hidden-layer
neurons

WI Weight
matrix

I input layer
neurons

Figure 1.14 Diagram of Back propagation Topology. [23]

28

Artificial Neural Networks

It has three layers of neurons: an input layer, a hidden layer, and an output layer. There

are two layers of synaptic weights. There is a learning rate term, a in the subsequent

formulas indicating how much of the weight changed to effect on each pass this is

typically a number between O and 1. There is a momentum term e indicating how much

a previous weight change should influence the current weight change. There is also a

term indicating within what tolernce we can accept an output as good.

1.10.1 Back Propagation Algorithm

Assign random values between -1 and + 1 to the weghts between the input and hidden
layers, the weights between the hidden and output layers, and the thershold for the

hidden layer and output layer neurnos train the network by preforming the following

procedure for all pattern pairs:

Forward Pass.

I. Computer the hidden layer neuron activations:

h=F(iWl) (1.27)

Where h is the vector of hidden layer neurons i is the vector of input layer

neurons, and Wl the weight matrix between the input and hidden layers.

2. Compute the output layer neuron activation:

O=F(hW2) (1.28)

Where o represents the output layer, h the hidden layer, W2 the matrix of

synapses connecting the hidden and output layers, and FO is a sigmoid

activation function we will use the logistic function:

1
f(x) = - + e (1.29)

Backward Pass.

3. Compute the output layer error (the difference between the target and the

observed output):

d = 0(1- 0)(0-t) (1.30)

Where d is the vector of errors for each output neuron, o is the output layer, and

t is the target correct activation of the output layer.

29

Artificial Neural Networks

4. Compute the hidden layer error:

e = h(I- h)W2d (1.31)

Where is e is the vector of errors for each hidden layer neuron.

5. Adjust the weights for the second layer of synapses:

W2 = W2+ f..W2 (1.32)

Where f..W2 is a matrix representing the change in matrix W2. It is computed

as follows:

(1.33)

Where a is the learning rate, and 8 is the momentum factor used to allow the

previous weight change to influence the weight change in this time period. This

does not mean that time is somehow incorporated into the mode. It means only

that a weight adjustment has been made. This could also be called a cycle.

6. Adjust the weights for the first layer of synapses:

WI= WI+WI, (1.34)

Where

WI, = aie + EMWI,_1 (1.35)

Repeat step I to 6 on all pattern pairs until the output layer error (vector d) is within

the specified tolerance for each pattern and for each neuron.

Recall:

Present this input to the input layer of neurons of our back propagation net:

• Compute the hidden layer activation:

h = F(Wii) (1.36)

30

Artificial Neural Networks

• Computer the output layer:

0 = F(W2h) (1.37)

The vector o is our recalled pattern.

1.10.2 Strengths and Weaknesses

The Back Propagation Network has the ability to learn any arbitrarily complex

nonlinear mapping this is due to the introduction of the hidden layer. It also has a

capacity much greater than the dimensionality of its input and output layers as we will

see later. This is not true of all neural net models.

However Back propagation can involve extremely long and potentially infinite training

time. If you have a strong relationship between input and outputs and you are willing to

accept results within a relatively broad time, your training time may be reasonable.

1.11 Summary
In this chapter the followings were discussed Perceptron Algorithm, supervised and

unsupervised algorithms, Neural network definition, some history of the Neural

network, Natural Neuron, Artificial Neuron, the Back propagation algorithm and their

models, Leaming processes and their tasks, and the Activation function.

31

Image Processing

2. IMAGE PROCESSING

2.1 Overview

This chapter presents an overview of image processing, image analysis systems, dividing

the spectrum of techniques in image analysis into three basic areas is conceptually useful.

Finally, high-level processing involves recognition and interpretation, the principal

subjects of this chapter.

2.2 Introduction

Image analysis is a process of discovering, identifying, and understanding patterns that

are relevant to the performance of an image-based task. One of the principal goals of

image analysis by computer is to endow a machine with the capability to approximate, in

so me sense, a similar capability in human beings. For example, in a system for

automatically reading images of typed documents, the patterns of interest are

alphanumeric characters, and the goal is to achieve character recognition accuracy that is

as close as possible to the superb capability exhibited by human beings for performing

such tasks.

Thus an automated image analysis system should be capable of exhibiting various

degrees of intelligence. The concept of intelligence is somewhat vague, particularly with

reference to a machine. However, conceptualizing various types of behavior generally

associated with intelligence is not difficult. Several characteristics come immediately to

mind: (1) the ability to extract pertinent information from a background of irrelevant

details; (2) the capability to learn from examples and to generalize this knowledge so that

it will apply in new and different circumstances; and (3) the ability to make inferences

from incomplete information.

Image analysis systems with these characteristics can be designed and implemented for

limited operational environments. However, we do not yet know how to endow these

systems with a level of performance that comes even close to emulating human

capabilities in performing general image analysis functions. Research in biological and

computational systems continually is uncovering new and promising theories to explain

32

Image Processing

human visual cognition. However, the state of the art in computerized image analysis for

the most part is based on heuristic formulations tailored to solve specific problems. For

example, some machines are capable of reading printed, properly formatted documents at

speeds that are orders of magnitude faster than the speed that the most skilled human

reader could achieve. However, systems of this type are highly specialized and thus have

little or no extendability.

2.3 Elements of Image Analysis

Dividing the spectrum of techniques in image analysis into three basic areas is

conceptually useful. These areas are (1) low-level processing, (2) intermediate level

processing, and (3) high-level processing. Although these subdivisions have no definitive

boundaries, they do provide a useful framework for categorizing the various processes

that are inherent components of an autonomous image analysis system. Figure 2.1

illustrates these concepts, with the overlapping dashed lines indicating that clear-cut

boundaries between processes do not exist For example, thresholding may be viewed as

an enhancement (preprocessing) or a segmentation tool, depending on the application.

Low-level processing deals with functions that may be viewed as automatic reactions,

requiring no intelligence on the part of the image analysis system. We treat image

acquisition and preprocessing as low-level functions. This classification encompasses

activities from the image formation process itself to compensations, such as noise

reduction or image deblurring. Low-level functions may be compared to the sensing and

adaptation processes that a person goes through when trying to find a seat immediately

after entering a dark theater from bright sunlight. The (intelligent) process of finding an

unoccupied seat cannot begin until a suitable image is available. The process followed by

the brain in adapting the visual system to produce such an image is an automatic,

unconscious reaction.

Intermediate-level processing deals with the task of extracting and characterizing

components (say, regions) in an image resulting from a low-level process. As figure 2.1

indicates, intermediate-level processes encompass segmentation and description, using

techniques. Some capabilities for intelligent behavior have to be built into flexible

segmentation procedures. For example, bridging small gaps in a segmented boundary

33

Image Processing

involves more sophisticated elements of problem solving than mere low-level automatic

reactions.

Intermediate-level processing

Segmentation Representation
and description

I

~-------t
I
I
I

I
-1------------1 _

I I
I

Preprocessing I -----------------------------~-

Knowledge base
Recognition and
interpretation

Result

Image
acquisition

Low-level processing High-level processing

Figure 2.1 Elements of Image Analysis

Finally, high-level processing involves recognition and interpretation, the principal

subjects of this chapter. These two processes have a stronger resemblance to what

generally is meant by the term intelligent cognition. The majority of techniques used for

low- and intermediate-level processing encompass a reasonably well-defined set of

theoretic formulations. However, as we venture into recognition, and especially into

interpretation, our knowledge and understanding of fundamental principles becomes far

less precise and much more speculative. This relative lack of understanding ultimately

results in a formulation of constraints and idealizations intended to reduce task

complexity to a manageable level. The end product is a system with highly specialized

operational capabilities.

34

Image Processing

The material in the following sections deals with: (1) decision-theoretic methods for

recognition, (2) structural methods for recognition, and (3) methods for image

interpretation. Decision-theoretic recognition is based on representing patterns in vector

form and then seeking approaches for grouping and assigning pattern vectors into

different pattern classes. The principal approaches to decision-theoretic recognition are

minimum distance classifiers, correlators, Bayes classifiers, and neural networks. In

structural recognition, patterns are represented in symbolic form (such as strings and

trees), and recognition methods are based on symbol matching or on models that treat

symbol patterns as sentences from an artificial language. Image interpretation deals with

assigning meaning to an ensemble of recognized image elements. The predominant

concept underlying image interpretation methodologies is the effective organization and

use of knowledge about a problem domain. Current techniques for image interpretation

are based on predicate logic, semantic networks, and production (in particular, expert)

systems.

2.4 Patterns and Pattern Classes

As stated in Section 2.2, the ability to perform pattern recognition at some level is

fundamental to image analysis. Here, a pattern is a quantitative or structural description

of an object or some other entity of interest in an image. In general, a pattern is formed by

one or more descriptors. In other words, a pattern is an arrangement of descriptors. (The

name features is of ten used in the pattern recognition literature to denote descriptors.) A

pattern class is a family of patterns that share some common properties. Pattern classes

are denoted w1, «», , WM where M is the number of classes. Pattern recognition by

machine involves techniques for assigning patterns to the irrespective classes­

automatically and with as little human intervention as possible.

35

Image Processing

2.5 Error Matrics

Two of the error metrics used to compare the various image compression techniques are

the Mean Square Error (MSE) and the Peak Signal to Noise Ratio (PSNR). The MSE is

the cumulative squared error between the compressed and the original image, whereas

PSNR is a measure of the peak error. The mathematical formulae for the two are

MN
~ L L [I (x,y) - I' (x,y)]2

y=l x=l (2.1)

PSNR = 20 * loglO (255 I sqrt(MSE))

Where l(x,y) is the original image, I'(x,y) is the approximated version (which is actually

the decompressed image) and M,N are the dimensions of the images. A lower value for

MSE means lesser error, and as seen from the inverse relation between the MSE and

PSNR, this translates to a high value of PSNR. Logically, a higher value of PSNR is good

because it means that the ratio of Signal to Noise is higher. Here, the 'signal' is the

original image, and the 'noise' is the error in reconstruction. So, if you find a compression

heme having a lower MSE (and a high PSNR), you can recognize that it is a better one .

. 6 The Outline

'e'Il take a close look at compressing grey scale images. The algorithms explained can

easily extended to color images, either by processing each of the color planes

sparately, or by transforming the image from RGB representation to other convenient

sentations like YUV in which the processing is much easier.

usual steps involved in compressing an image are

l. Specifying the Rate (bits available) and Distortion (tolerable error) parameters for

the target image.

. Dividing the image data into various classes, based on their importance.

36

Image Processing

3. Dividing the available bit budget among these classes, such that the distortion is a

muumum.

4. Quantize each class separately using the bit allocation information derived in step

3.

5. Encode each class separately using an entropy coder and write to the file.

Remember, this is how 'most' image compression techniques work. But there are

exceptions. One example is the Fractal Image Compression technique, where possible

self similarity within the image is identified and used to reduce the amount of data

required to reproduce the image. Traditionally these methods have been time consuming,

but some latest methods promise to speed up the process.

Reconstructing the image from the compressed data is usually a faster process than

compression. The steps involved are

1. Read in the quantized data from the file, using an entropy decoder. (Reverse of

step 5).

2. Dequantize the data. (Reverse of step 4).

3. Rebuild the image. (Reverse of step 2).

2.6.1 Classifying Image Data

An image is represented as a two-dimensional array of coefficients, each coefficient

representing the brightness level in that point. When looking from a higher perspective,

we can't differentiate between coefficients as more important ones, and lesser important

ones. But thinking more intuitively, we can. Most natural images have smooth color

variations, with the fine details being represented as sharp edges in between the smooth

variations. Technically, the smooth variations in color can be termed as low frequency

variations and the sharp variations as high frequency variations.

37

Image Processing

The low frequency components (smooth variations) constitute the base of an image, and

the high frequency components (the edges which give the detail) add upon them to refine

the image, thereby giving a detailed image. Hence, the smooth variations are demanding

more importance than the details.

Separating the smooth variations and details of the image can be done in many ways. One

such way is the decomposition of the image using a Discrete Wavelet Transform (DWT).

2.6.2 The DWT of an Image

The procedure goes like this. A low pass filter and a high pass filter are chosen, such that

they exactly halve the frequency range between themselves. This filter pair is called the

Analysis Filter pair. First, the low pass filter is applied for each row of data, thereby

getting the low frequency components of the row. But since the LPF is a half band filter,

the output data contains frequencies only in the first half of the original frequency range.

So, by Shannon's Sampling Theorem, they can be sub-sampled by two, so that the output

data now contains only half the original number of samples. Now, the high pass filter is

applied for the same row of data, and similarly the high pass components are separated,

and placed by the side of the low pass components. This procedure is done for all rows.

Next, the filtering is done for each column of the intermediate data. The resulting two­

dimensional array of coefficients contains four bands of data, each labeled as LL (low­

low), HL (high-low), LH (low-high) and HH (high-high). The LL band can be

decomposed once again in the same manner, thereby producing even more sub-bands.

This can be done up to any level, thereby resulting in a pyramidal decomposition as

shown below.

38

Image Processing

LL HL
HL

LH HH

LH HH

LL Hl
HL

lH HH HL
LH HH

LH HH

LL HL

LH HH

(a) Single level Decomposition (b) Two level Decomposition (c) Three level Decomposition

Figure 2.2 Pyramidal Decomposition of an Image

As mentioned above, the LL band at the highest level can be classified as most important,

and the other 'detail' bands can be classified as of lesser importance, with the degree of

importance decreasing from the top of the pyramid to the bands at the bottom.

Figure 2.3 The Three Layer

Decomposition of the 'Lena' Image.

39

Image Processing

2. 7 The Inverse DWT of an Image

Just as a forward transform used to separate the image data into various classes of

importance, a reverse transform is used to reassemble the various classes of data into a

reconstructed image. A pair of high pass and low pass filters is used here also. This filter

pair is called the Synthesis Filter pair. The filtering procedure is just the opposite - we

start from the topmost level, apply the filters column-wise first and then row-wise, and

proceed to the next level, till we reach the first level.

2.7.1 Bit Allocation

The first step in compressing an image is to segregate the image data into different

classes. Depending on the importance of the data it contains, each class is allocated a

portion of the total bit budget, such that the compressed image has the minimum possible

distortion. This procedure is called Bit Allocation.

The Rate-Distortion theory is often used for solving the problem of allocating bits to a set

of classes, or for bit-rate control in general. The theory aims at reducing the distortion for

a given target bit-rate, by optimally allocating bits to the various classes of data. One

approach to solve the problem of Optimal Bit Allocation using the Rate-Distortion theory

is given in [1], which is explained below.

1. Initially, all classes are allocated a predefined maximum number of bits.

2. For each class, one bit is reduced from its quota of allocated bits, and the

distortion due to the reduction of that 1 bit is calculated.

3. Of a\\ the classes, the class with minimum distortion for a reduction of l bit is

noted, and 1 bit is reduced from its quota of bits.

4. The total distortion for all classes D is calculated.

5. The total rate for all the classes is calculated as R = p(i) * B(i), where p is the
probability and B is the bit allocation for each class.

40

Image Processing

6. Compare the target rate and distortion specifications with the values obtained

above. If not optimal, go to step 2.

In the approach explained above, we keep on reducing one bit at a time till we achieve

optimality either in distortion or target rate, or both. An alternate approach which is also

mentioned in [l] is to initially start with zero bits allocated for all classes, and to find the

class which is most 'benefited' by getting an additional bit. The 'benefit' of a class is

defined as the decrease in distortion for that class.

DO t
Bl

n11----- t
1'
B2

I

D2 I- - - - - ~ - - - - - - - - - - _-.-., •... --..:..:.:::~--'------
'

0 2
Bits Allocation

3 4

Figure 2.4 'Benefit' of a Bit is the Decrease in Distortion Due to Receiving that Bit.

As shown above, the benefit of a bit is a decreasing function of the number of bits

allocated previously to the same class. Both approaches mentioned above can be used to

the Bit Allocation problem.

2.7.2 Quantization

Quantization refers to the process of approximating the continuous set of values in the

image data with a finite (preferably small) set of values. The input to a quantizer is the

original data, and the output is always one among a finite number of levels. The quantizer

is a function whose set of output values are discrete, and usually finite. Obviously, this is

a process of approximation, and a good quantizer is one which represents the original

signal with minimum loss or distortion.

41

Image Processing

There are two types of quantization - Scalar Quantization and Vector Quantization. In

scalar quantization, each input symbol is treated separately in producing the output, while

in vector quantization the input symbols are clubbed together in groups called vectors,

and processed to give the output. This clubbing of data and treating them as a single unit

increases the optimality of the vector quantizer, but at the cost of increased computational

complexity. Here, we'll take a look at scalar quantization.

A quantizer can be specified by its input partitions and output levels (also called

reproduction points). If the input range is divided into levels of equal spacing, then the

quantizer is termed as a Uniform Quantizer, and if not, it is termed as a Non-Uniform

Quantizer. A uniform quantizer can be easily specified by its lower bound and the step

size. Also, implementing a uniform quantizer is easier than a non-uniform quantizer.

Take a look at the uniform quantizer shown below. If the input falls between n*r and

(n+ l)*r, the quantizer outputs the symbol n.

n-2 <--- Output n-! n+l n+2 n

(n-2)r (n-l)r nr (n+l)r (n+2)r (n+3)r <--- Input

Figure 2.5 a Uniform Quantizer

Just the same way a quantizer partitions its input and outputs discrete levels, a

Dequantizer is one which receives the output levels of a quantizer and converts them into

normal data, by translating each level into a 'reproduction point' in the actual range of

data. It can be seen from literature, that the optimum quantizer (encoder) and optimum

dequantizer (decoder) must satisfy the following conditions.

• Given the output levels or partitions of the encoder, the best decoder is one that

puts the reproduction points x' on the centers of mass of the partitions. This is

known as centroid condition.

• Given the reproduction points of the decoder, the best encoder is one that puts the

partition boundaries exactly in the middle of the reproduction points, i.e. each xis

42

Image Processing

translated to its nearest reproduction point. This is known as nearest neighbour
condition.

The quantization error (x - x') is used as a measure of the optimality of the quantizer and

dequantizer.

2.8 Object Recognition

Object recognition consists of locating the positions and possibly orientations and scales

of instances of objects in an image. The purpose may also be to assign a class label to a

detected object. Our survey of the literature on object recognition using ANNs indicates

that in most applications, ANNs have been trained to locate individual objects based

direction pixel data. Another less frequently used approach is to map the contents of a

window onto a feature space that is provided as input to a neural classifier.

2.8.1 Optical Character Recognition

The recognition of handwritten or printed text by computer is referred to as Optical

Character Recognition. When the input device is a digitizer tablet that transmits the signal

in real time (as in pen-based computers and personal digital assistants) or includes timing

information together with pen position (as in signature capture) we speak of dynamic

recognition. When the input device is a still camera or a scanner, which captures the

position of digital ink on the page but not the order in which it was laid down, we speak

of static or image-based OCR.

Dynamic OCR is an increasingly important modality in Human Computer I interaction,

and the difficulties encountered in the process are largely similar to those found in other

HCI modalities, in particular, Speech Recognition. The stream of position/pen pressure

values output by the digitizer tablet is analogous to the stream of speech signal vectors

output by the audio processing front end, and the same kinds of lossy data compression

techniques, including cepstral analysis, linear predictive coding, and vector quantization,

are widely employed for both.

tatic OCR encompasses a range of problems that have no counterpart in the recognition

of spoken or signed language, usually collected under the heading of page decomposition

layout analysis. These include both the separation of linguistic material from photos,

43

Image Processing

line drawings, and other non-linguistic information, establishing the local horizontal and

vertical axes (deskewing), and the appropriate grouping of titles, headers, footers, and

other material set in a font different from the main body of the text. Another OCR­

specific problem is that we often find different scripts, such as Kanji and Kana, or

Cyrillic and Latin, in the same running text.

While the early experimental OCR systems were often rule-based, by the eighties these

have been completely replaced by systems based on statistical, Pattern Recognition. For

clearly segmented printed materials such techniques offer virtually error-free OCR for the

most important alphabetic systems including variants of the Latin, Greek, Cyrillic, and

Hebrew alphabets.

However, when the number of symbols is large, as in the Chinese or Korean writing

systems, or the symbols are not separated from one another, as in Arabic or Devanagari

print, OCR systems are still far from the error rates of human readers, and the gap

between the two is also evident when the quality of the image is compromised e.g. by fax

transmission. Until these problems are resolved, OCR can not play the pivotal role in the

transmission of cultural heritage to the digital age that it is often assumed to have.

In the recognition of handprint, algorithms with successive segmentation, classification,

and identification (language modeling) stages are still in the lead, as shown in the later

chapters.

2.9 Summary

This chapter presented an introduction to the image processing, Elements of image

analysis, Patterns and pattern classes, Classifying of image data, The DWT of an image

Bit allocation, Quantization, Optical Character Recognition, and Character Recognition.

44

Image Processing and Neural Networks

3. IMAGE PROCESSING AND NEURAL NETWORKS

3.1 Overview

This chapter presents an overview of image processing with neural networks, history,

taxonomy for image processing algorithms, neural networks in image processing,

preprocessing, image reconstruction, image restoration, image enhancement, applicability of

neural networks in preprocessing, data reduction and feature extraction, image compression

applications, feature extraction applications, image segmentation, image segmentation based

on pixel data, image segmentation based on features, open issues in applications of neural

networks, segmentation by ANNs, object recognition, and real-world.

3.2 Introduction

Techniques from statistical pattern recognition have, since the revival of neural networks,

obtained a widespread use in digital image processing. Initially, part recognition problems

were often solved by linear and quadratic discriminants [3] or the (nonparametric) k-nearest

neighbor classifier and the Parzen density estimator [4,5]. In the mid-eighties, the PDP group

together with others introduced the back-propagation learning algorithm for neural networks.

This algorithm for the first time made it feasible .to train a non-linear neural network equipped

with layers of the so-called hidden nodes. Since then, neural networks with one or more

hidden layers can, in theory, be trained to perform virtually any regression or discrimination

task. Moreover, no assumptions are made as with respect to the type of underlying

(parametric) distribution of the input variables, which may be nominal, ordinal, real or any

combination hereof in their 1993 review article on image segmentation, Pal and Pal predicted

that neural networks would become widely applied in image processing [5]. This prediction

turned out to be right. In this review article, we survey applications of neural networks

developed to solve different problems in image processing (for a review of neural networks

45

Image Processing and Neural Networks

used for ID signal processing, [1]). There are two central questions which we win try to

answer in this review article:

1. What are major applications of neural networks in image processing now and in the nearby

future?

2. Which are the major strengths and weaknesses of neural networks for solving image

processing tasks?

To facilitate a systematic review of neural networks in image processing, we propose a two­

dimensional taxonomy for image processing techniques. This taxonomy establishes a

framework in which the advantages and unresolved problems can be structured in relation to

the application of neural networks in image processing.

3.3 Image Processing Algorithms

Traditional techniques from statistical pattern recognition like the Bayesian discriminant and

the Parzen windows were popular until the beginning of the 1990s. Since then, neural

networks (ANNs) have increasingly been used as an alternative to classic pattern classifiers

and clustering techniques. Non-parametric feed-forward ANNs quickly turned out to be

attractive trainable machines for feature-based segmentation and object recognition. When no

gold standard is available, the self-organizing feature map (SOM) is an interesting alternative

to supervised techniques. It may learn to discriminate, e.g., deferent textures when provided

with powerful features. The current use of ANNs in image processing exceeds the

aforementioned traditional applications. The role of feed-forward ANNs and SOMs has been

extended to encompass also low-level image processing tasks such as noise suppression and

image enhancement. Hopfield ANNs were introduced as a tool for finding satisfactory

solutions to complex (NP-complete) optimization problems. This makes them an interesting

alternative to traditional optimization algorithms for image processing tasks that can be

formulated as optimization problems. The deferent problems addressed in the field of digital

image processing can be organized into what we have chosen to call the image processing

hain. We make the following distinction between steps in the image processing chain as in

gure 3.1.

46

Image Processing and Neural Networks

Noise suppression
Deblurring Image
enhancement Edge

Detection

Template matching
Feature-based
recognition

Texture segregation
Color recognition

Clustering
Compression Feature

extraction
Scene analysis Object

arrangement

Data Object ~ Image Preprocessing --- H Segmentation --- Recognition Understanding Reduction

l ~ Jl l

Optimization

Figure 3.1 Graphs Matching Automatic Thresholding

Figure 3.1. The image processing chain containing the five deferent tasks: preprocessing, data

reduction, segmentation, object recognition and image understanding. Optimization techniques

are used as a set of auxiliary tools that are available in all steps of the image processing chain.

I. Preprocessing/filtering. Operations that give as a result a modified image with the same

dimensions as the original image (e.g., contrast enhancement and noise reduction).

-· Data reduction/feature extraction. Any operation that extracts significant components from

an image (window). The number of extracted features is generally smaller than the number

of pixels in the input window .

. Segmentation. Any operation that partitions an image into regions that are coherent with

respect to some criterion. One example is the segregation of deferent textures.

. Object detection and recognition. Determining the position and, possibly, also the

orientation and scale of specific objects in an image, and c 1 assifying these objects.

Image understanding. Obtaining high level (semantic) knowledge of what an image shows.

Optimization. Minimization of a criterion function which may be used for, e.g., graph

matching or object delineation.

47

Image Processing and Neural Networks

Optimization techniques are not seen as a separate step in the image processing chain but as a

set of auxiliary techniques, which support the other steps. Besides the actual task performed by

an algorithm, its processing capabilities are partly determined by the abstraction level of the

input data. We distinguish between the following abstraction levels:

A. Pixel level. The intensities of individual pixels are provided as input to the algorithm.

B. Local feature level. A set of derived, pixel-based features constitutes the input.

C. Structure (edge) level. The relative location of one or more perceptual features (e.g.,

edges, comers, junctions, surfaces, etc.).

D. Object level. Properties of individual objects.

E. Object set level. The mutual order and relative location of detected objects.

F. Scene characterization. A complete description of the scene possibly including lighting

conditions, context, etc.

Table 3.1 contains the taxonomy of image processing algorithms that results from combining

the steps of the image processing chain with the abstraction level of the input data.

Table 3.1 Image Processing Tasks Categorized into a Two-Dimensional Taxonomy

Preprocessing I Compression/feature I Segmentation I Recognition

2 6

Image I Optimization

understanding

3 5

2 3
-
5
-
1

2

26 25 39 51

4 2 19 38

2

48

Image Processing and Neural Networks

3.4 Neural Networks in Image Processing

In this section, we will review neural networks trained to perform one of the six tasks in the

image processing chain (3.1-3.6).

3.4.1 Preprocessing

The first step in the image processing chain consists of preprocessing. Loosely defined, by

preprocessing we mean any operation of which the input consists of sensor data, and of which

the output is a full image. Preprocessing operations generally fall into one of three categories:

image reconstruction (to reconstruct an image from a number of sensor measurements), image

restoration (to remove any aberrations introduced by the sensor, including noise) and image

enhancement (accentuation of certain desired features, which may facilitate later processing

steps such as segmentation or object recognition).

Applications of ANNs in these three preprocessing categories win be discussed separately

below. The majority of the ANNs were applied directly to pixel data (level A); only four

networks were applied to more high-Level data (features, level B).

3.4.2 Image Reconstruction

Image reconstruction problems often require quite complex computations and a unique

approach is needed for each application. An ADALINE network is trained to perform an

electrical impedance tomography (EIT) reconstruction, i.e., a reconstruction of a 2D, image

based on ID measurement on the circumference of the image. Srinivasan et al. [9] trained a

modified Hopfield network to perform the inverse Radon transform (e.g., for reconstruction of

computerized tomography images). The Hopfield network contained "summation" layers to

avoid having to interconnect all units. Meyer and Heindl [10] used regression feed-forward

networks (that learn the mapping Etyjx), with x the vector of input variables and y the desired

output vector) to reconstruct image s from electron holograms. Wang and Wahl trained a

Hopfield ANN for reconstruction of 2D images from pixel data obtained from projections

[11].

49

Image Processing and Neural Networks

3.4.3 Image Restoration

The majority of applications of ANNs in preprocessing can be found in image restoration. In

general, one wants to restore an image that is distorted by the (physical) measurement system.

The system might introduce noise, motion blur, out-of-focus blur, distortion caused by low

resolution, etc. Restoration can employ all information about the nature of the distortions

introduced by the system, e.g., the point spread function. The restoration problem is ill-posed

because conflicting criteria need to be fulfilled: resolution versus smoothness.

The neural-network applications we reviewed had various designs ranging from relatively

straightforward to highly complex, modular approaches. In the most basic image restoration

approach, noise is removed from an image by simple filtering. Greenhil and Davies [18] used

a. regression feed-forward network in a convolution-like way to suppress noise (with a 5 x 5

pixel window as input and one output node). De Ridder et al. built a modular feed-forward

ANN approach that mimics the behavior of the Kuwahara filter, an edge-preserving smoothing

filter [16]. Their experiments showed that the mean squared error used in ANN training may

not be representative of the problem at hand. Furthermore, unconstrained feed-forward

networks often ended up in a linear approximation to the Kuwahara filter.

Chua and Yang [14, 15] used cellular neural networks (CNNs) for image processing. A CNN

is a system in which nodes are locally connected. Each node contains a feedback template and

a control template, which to a large extent determine the .functionality of the network. For

noise suppression, the templates implement an averaging function; for edge detection, a

Laplacian operator. The system operates locally, but multiple iterations allow it to distribute

global information throughout the nodes.

Although quite fast in application, a disadvantage is that the parameters influencing the

network behavior (the feedback and control templates) have to be set by hand.

50

Image Processing and Neural Networks

Others have proposed methods for training CNNs, e.g., using gradient descent or genetic

algorithms (grey-value images, Zamparelli). CNNs were also applied for restoration of color

images by Lee and Degyvez.

Another interesting ANN architecture is the generalized adaptive neural filter (GANF) which

has been used for noise suppression. A GANF consists of a set of neural operators, based on

stack a filter that uses binary decompositions of grey-value data. Finally, fuzzy ANNs and the

neurochips have been applied to image restoration as well. Traditional methods for more

complex restoration problems such as deblurring and diminishing out-of-focus defects are

maximum a posteriori estimation (MAP) and regularization. Applying these techniques entails

solving high dimensional convex optimization tasks. The objective functions of MAP

estimation or the regularization problem can both be mapped onto the energy function of the

Hopfield network. Often, mapping the problem turned out to be difficult, so in some cases the

network architecture had to be modified as well.

Other types of networks have also been applied to image restoration. Qian et al. developed a

hybrid system consisting of order statistic filters for noise removal and a Hopfield network for

deblurring (by optimizing a criterion function). The modulation transfer function had to be

measured in advance. Guan et al. developed a so-called network-of-networks for image

restoration. Their system consists of loosely coupled modules, where each module is a

separate ANN. Phoha and Oldham proposed a layered, competitive network to reconstruct a

distorted image.

3.4.4 Image Enhancement

The goal of image enhancement is to amplify specific (perceptual) features. Among the

applications where ANNs have been developed for image enhancement, one would expect

most applications to be based on regression ANNs. However, several enhancement approaches

rely on a classifier, typically resulting in a binary output image. The most well-known

enhancement problem is edge detection. A straightforward application of regression feed-

51

Image Processing and Neural Networks

forward ANNs, trained to behave like edge detectors, was reported by Pugmire et al.

Chandresakaran et al. used a novel feed-forward architecture to classify an input window as

containing an edge or not. The weights of the network were set manually instead of being

obtained from training. A number of more complex, modular systems were also proposed.

Formulating edge detection as an optimization problem made it possible for Tsai et al. to train

a Hopfield network for enhancement of end cardiac borders. Some enhancement approaches

utilize other types of ANNs. Shih et al. applied an ART network for binary image

enhancement. Moh and Shih describe a general approach for implementation of morphological

image operations by a modified feed-forward ANN using shunting mechanisms, i.e., neurons

acting as switches. Waxman et al. consider the application of a centre-surround shunting feed­

forward ANN (proposed by Grossberg) for contrast enhancement and color night vision.

3.4.5 Applicability of Neural Networks in Preprocessing

There seem to be three types of problems in preprocessing (unrelated to the three possible

operation types) to which ANNs can be applied:

• Optimization of an objective function defined by a traditional preprocessing problem;

• Approximation of a mathematical transformation used for image reconstruction, e.g.,

by regression;

• Mapping by an ANN trained to perform a certain task, usually based directly on pixel

data (neighborhood input, pixel output).

To solve the first type of problems, traditional methods for optimization of some objective

function may be replaced by a Hopfield network. For a further discussion of the suitability of

Hopfield networks for solving optimization problems.

For the approximation task, regression (feed-forward) ANNs could be applied. Although

some applications such ANNs were indeed successful, it would seem that these applications

call for more traditional mathematical techniques, because a guaranteed (worst-case)

performance is crucial in preprocessing.

52

Image Processing and Neural Networks

In several other applications, regression or classilcation (mapping) networks were trained to

perform image restoration or enhancement directly from pixel data. A remarkable finding was

that non-adaptive ANNs (e.g., CNNs) were often used for preprocessing.

Secondly, when networks were adaptive, their architectures usually differed much from those

of the standard ANNs: prior knowledge about the problem was used to design the networks

that were applied for image restoration or enhancement (e.g., by using shunting mechanisms to

force a feed-forward ANN to make binary decisions). The interest in non adaptive ANNs

indicates that the fast, parallel operation and the ease with which ANNs can be embedded in

hardware may be important criteria when choosing for a neural implementation of a specific

preprocessing operation. However, the ability to learn from data is apparently of less

importance in preprocessing. While it is relatively easy to construct a linear filter with a

certain, desired behavior, e.g., by specifying its frequency profile, it is much harder to obtain a

large enough data set to learn the optimal function as a high-dimensional regression problem.

This holds especially when the desired network behavior is only critical for a small subset of

all possible input patterns (e.g., in edge detection). Moreover, it is not at all trivial to choose a

suitable error measure for supervised training, as simply minimizing the mean squared error

might give undesirable results in an image processing setting.

An important caveat is that the network parameters are likely to become tuned to one type of

ge (e.g., a specific sensor, scene setting, scale, etc.), which limits the applicability of the

ed ANN. When the underlying conditional probability distributions, p(x/wj) or p(y/x),

ge, the c 1 assifieation or regression network-like all statistical models-needs to be

53

Image-Processing and Neural Networks

3.5 Data Reduction and Feature Extraction

Two of the most important applications of data reduction are image compression and feature

extraction. In general, an image compression algorithm, used for storing and transmitting

images, contains two steps: encoding and decoding. For both these steps, ANNs have been

used. Feature extraction is used for subsequent segmentation or object recognition. The kind of

features one wants to extract often correspond to particular geometric or perceptual

characteristics in an image (edges, comers and junctions), or application dependent ones, e.g.,

facial features.

3.5.1 Feature Extraction Applications

Feature extraction can be seen as a special kind of data reduction of which the goal is to find a

subset of informative variables based on image data. Since image data are by nature very high

dimensional, feature extraction is often a necessary step for segmentation or object recognition

to be successful. Besides lowering the computational cost, feature extraction is also a means

for controlling the so-called curse of dimensionality. When used as input for a subsequent

segmentation algorithm, one wants to extract those features that preserve the class separability

well. There is a wide class of ANN s that can be trained to perform mappings to a lower­

dimensional space. A well-known feature-extraction ANN is Oja's neural Implementation of a

one-dimensional principal component analysis (PCA), later extended to multiple dimensions.

In, Baldi and Hornik proved that training three-layer auto-associator networks corresponds to

applying PEA to the input data. Later, auto-associator networks with five layers were shown to

be able to perform non-linear dimensionality reduction (i.e., finding principal surfaces). It is

also possible to use a mixture of linear subspaces to approximate a non-linear subspace.

Another approach to feature extraction is first to cluster the high-dimensional data, e.g., by a

SOM, and then use the cluster centers as prototypes for the entire cluster. Among the ANNs

that have been trained to perform feature extraction, feed-forward ANNs have been used in

most of the reviewed applications. SOMs and Hopfield ANNs have also been trained to

perform feature extraction.

54

Image Processing and Neural Networks

Most of the ANNs trained for feature extractions obtain pixel data as input. Neural network

feature extraction was performed for

• Subsequent automatic target recognition in remote sensing (accounting for orientation)

and character recognition;

• Subsequent segmentation of food images and of magnetic resonance (MR) images;

• Finding the orientation of objects (coping with rotation);

• Finding control points of deformable models;

• Clustering low-Level features found by the Gabor filters in face recognition and wood

defect detection;

• Subsequent stereo matching;

• Clustering the local content of an image before it is encoded.

In most applications, the extracted features were used for segmentation, image matching or

object recognition. For (anisotropic) objects occurring at the same scale, rotation causes the

largest amount of intra-class variation. Some feature extraction approaches were designed to

cope explicitly with (changes in) orientation of objects. It is important to make a distinction

between application of supervised and unsupervised ANNs for feature extraction. For a

supervised auto-associator ANN, the information loss implied by the data reduction can be

measured directly on the predicted output variables, which is not the cage for unsupervised

feature extraction by the SOM. Both supervised and unsupervised ANN feature extraction

methods have advantages compared to traditional techniques such as PCA Feed-forward

ANNs with several hidden layers can be trained to perform non-linear feature extraction, but

lack a formal, statistical basis.

55

Image Processing and Neural Networks

3.6 Image Segmentation

Segmentation is the partitioning of an image into parts that are coherent according to some

criterion. When considered as a classification task, the purpose of segmentation is to assign

labels to individual pixels or voxels. Some neural-based approaches perform segmentation

directly on the pixel data, obtained either from a convolution window (occasionally from more

bands as present in, e.g., remote sensing and MR images), or the information is provided to a

neural classifier in the form of local features.

3.6.1 Image Segmentation Based on Pixel Data

Many ANN approaches have been presented that segment images directly from pixel or voxel

data. Several deferent types of ANNs have been trained to perform pixel based segmentation:

feed-forward ANNs. SOMs Hopfield networks, probabilistic ANNs, radial basis function

networks, CNNs, constraint satisfaction ANNs and RAM-networks. A self-organizing

architecture with fuzziness measures was used in. Also, biologically inspired neural-network

approaches have been proposed: the perception model developed by Grossberg, which is able

to segment images from surfaces and their shading, and the brain-like networks proposed by

Opara and Worgotter. Hierarchical segmentation approaches have been designed to combine

ANNs on deferent abstraction levels. The guiding principles behind hierarchical approaches

are specialization and bottom-up processing: one or more ANNs are dedicated to low level

feature extraction/segmentation, and their results are combined at a higher abstraction level

where another (neural) classifier performs the final image segmentation. Reddick et al.

developed a pixel-based two-stage approach where a SOM is trained to segment multi-spectral

MR images. The segments are subsequently classified into white matter, grey matter, etc., by a

feed-forward ANN. Non-hierarchical, modular approaches have also been developed.

56

Image Processing and Neural Networks

In general, pixel-based (often supervised) ANNs have been trained to classify the image

content based on

• Texture;

• A combination of texture and local shape.

ANNs have also been developed for pre- and post processing steps in relation to segmentation,

e.g., for

• Delineation of contours;

• Connecting edge pixels;

• Identification of surfaces;

• Deciding whether a pixel occurs inside or outside a segment;

• Defuzzifying the segmented image; and for

• Clustering of pixels;

• Motion segmentation.

In most applications, ANNs were trained as supervised classifiers to perform the desired

segmentation. One feature that most pixel-based segmentation approaches lack is a structured

way of coping with variations in rotation and scale. This shortcoming may deteriorate the

segmentation result.

3.7 Real-Life Applications of Neural Networks
This review has concentrated on applications of ANNs to image processing problems, which

were reported in scientific literature. However, as the field matured, ANNs have gradually

found their way into a large range of commercial applications. Unfortunately, commercial and

other considerations often impede publication of scientific and technical aspects of such

systems. In some research programmes, an overview of commercial applications of ANNs has

been given, and one of its applications is, character recognition.

57

' Image Processing and Neural Networks

3.7.1 Character Recognition

Two essential components in a character recognition algorithm are the feature extractor and

the classifier. Feature analysis determines the descriptors, or feature set, used to describe all

characters. Given a character image, the feature extractor derives the features that the character

possesses. The derived features are then used as input to the character classifier.

Template matching, or matrix matching, is one of the most common classification methods. In

template matching, individual image pixels are used as features. Classification is performed by

comparing an input character image with a set of templates (or prototypes) from each character

class. Each comparison results in a similarity measure between the input character and the

template. One measure increases the amount of similarity when a pixel in the observed

character is identical to the same pixel in the template image. If the pixels differ the measure

of similarity may be decreased. After all templates have been compared with the observed

character image, the character's identity is assigned as the identity of the most similar
template.

Template matching is a trainable process because template characters may be changed. In

many commercial systems, PROMs (programmable read-only memory) store templates

containing single fonts. To retrain the algorithm the current PROMs are replaced with PROMs

that contain images of a new font. Thus, if a suitable PROM exists for a font then template

matching can be trained to recognize that font. The similarity measure of template matching

may also be modified, but commercial OCR systems typically do not allow this.

Structural classification methods utilize structural features and decision rules to classify

characters. Structural features may be defined in terms of character strokes, character holes, or

other character attributes such as concavities. For instance, the letter P may be described as a

vertical stroke with a hole attached on the upper right side. For a character image input, the

structural features are extracted and a rule-based system is applied to classify the character.

tructural methods are also trainable but construction of a good feature set and a good rule­
base can be time-consuming.

58

Image Processing and Neural Networks

Character localization and segmentation. After the document has been located, the relative

image portion is quantized to binary values according to an adaptive threshold established

directly through a two-class clustering of tones. The characters are segmented by finding white

areas between columns with higher density of black pixels as illustrated in figures 3.2, and 3.3.

Figure 3.2 Character Localization

B
Figure 3.2 Character Segmentation

Isolated black pixels are wiped out and the character is resized to the standard measure of (10

by 6) pixels after a factor-of-two decimation as shown in figure 3.3.

Figure 3.2 'B' extracted and digitized.

59

Image Processing and Neural Networks

The next chapter describes an algorithm that attemptsto work with a subset of the features in a

character that a human would typically see for the identification of machine-printed English

characters.

3.8 Summary

In this chapter the followings were discussed in details; an overview f image processing with

neural networks, history, taxonomy for image processing algorithms, neural networks in image

processing, preprocessing, image reconstruction, image restoration, image enhancement,

applicability of neural networks in preprocessing, and real-world applications of neural

networks.

60

Character Recognition System Using N.N

4. CHARACTER RECOGNITION SYSTEM USING NEURAL

NETWORK

4.1 Overview

This chapter reviewed the work developed by the author. The architecture of the neural

network used for character recognition. Data encoding & decoding presentation of the

alphabets to the Neural Network.

N.N. Classification Method.

Let us consider the design at a computer program that must translate 20x20 matrixes in

binary file which represent all the alphabets

{ A,B,C,D,E,F ,G,H,I,J,K,L,M,N,O,P ,Q,R,S,T,U,V ,W,X,Y,Z}

The most common training scenarios utilize supervised learning during which the

network is presented with an input pattern together with the target output for the correct

answer, or correct classification for the input pattern.

4.2 Input Data Presentation

The input it's the file of DAT A to Z matrix 20x20 which is an array of black white

pixels is used to represent individual characters. Each of these characters can be

represented as 0/1 vector. In total 400 values representing a character will be ready to be

presented to the input layers of the N.N.

61

Character Recognition System Using N.N

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0

The input at an array of character A it can be as an array input

=={0000000000000000000000000000011000000000000000001111000000000000000

1111110000000000000111111110000000000011100001110000000001110000001110

0000001110000000011100000111000000000011100001110000000000111000011100

0000000011100001111111111111111000011111111111111110000111000000000011

1000011100000000001110000111000000000011100001110000000000111000011100

00000000111000011100000000001110000111000000000011100}

62

Character Recognition System Using NN

Table 4.1 The Patterns of these Characters.

The matrix of character The matrix of character
for the first trainings forthe second trainings

This is for code A 00000000000000000000 00000000000000000000
00000000011000000000 00111111111111111100
00000000111100000000 00111111111111111100
00000001111110000000 00111111111111111100
00000011111111000000 00111000000000011100
00000111000011100000 00111000000000011100
00001110000001110000 00111000000000011100
00011100000000111000 00111000000000011100
00111000000000011100 00111111111111111100
00111000000000011100 00111111111111111100
00111000000000011100 00111000000000011100
00111111111111111100 00111000000000011100
00111111111111111100 00111000000000011100
00111000000000011100 00111000000000011100
00111000000000011100 00111000000000011100
00111000000000011100 00111000000000011100
00111000000000011100 00111000000000011100
00111000000000011100 00111000000000011100
00111000000000011100 00111000000000011100
00111000000000011100 00000000000000000000

This is for code Z 00000000000000000000 00000000000000000000
00111111111111111110 00011111111111111110
00111111111111111110 00111111111111111110
00111111111111111110 00011111111111111110
00000000000000011110 00000000000000111110
00000000000000111000 00000000000001111000
00000000000001110000 00000000000011110000
00000000000011100000 00000000000111100000
00000000000111000000 00000000001111000000
00000000001110000000 00000000011110000000
00000000011100000000 00000000111100000000
00000000111000000000 00000001111000000000
00000001110000000000 00000011110000000000
00000011100000000000 00000111100000000000
00000111000000000000 00001111000000000000
00001110000000000000 00111110000000000000
00111111111111111110 00111111111111111100
00111111111111111110 00111111111111111110
00111111111111111110 00111111111111111100
00000000000000000000 00000000000000000000

63

Character Recognition System Using N.N

4.3 Output Data Presentation
Output of the neurons will be matched with the different types of patterns of the

network and it will identify whether it is A or B or C and so on up to Z. The output

presentation will be binary, where 26 values of input/output will identify each character

as shown in table 4.2.

Table 4.2 Binary Identification for Each Character

the matrix of character for the
target matching trainings

The target of the output to be 123456 26
compared AlOOOOOOOOOOOOOOOOOOOOOOOO

B0100000000000000000000000
COOlOOOOOOOOOOOOOOOOOOOOOO
D0001000000000000000000000
EOOOOlOOOOOOOOOOOOOOOOOOOO
FOOOOOlOOOOOOOOOOOOOOOOOOO
GOOOOOOlOOOOOOOOOOOOOOOOOO
HOOOOOOOlOOOOOOOOOOOOOOOOO
JOOOOOOOOlOOOOOOOOOOOOOOOO
KOOOOOOOOOlOOOOOOOOOOOOOOO
LOOOOOOOOOOlOOOOOOOOOOOOOO
:M:0000000000010000000000000
NOOOOOOOOOOOOlOOOOOOOOOOOO
00000000000000100000000000
POOOOOOOOOOOOOOlOOOOOOOOOO
QOOOOOOOOOOOOOOOlOOOOOOOOO
ROOOOOOOOOOOOOOOOlOOOOOOOO
SOOOOOOOOOOOOOOOOOlOOOOOOO
TOOOOOOOOOOOOOOOOOOlOOOOOO
UOOOOOOOOOOOOOOOOOOOlOOOOO
VOOOOOOOOOOOOOOOOOOOOlOOOO
\VOOOOOOOOOOOOOOOOOOOOOlOOO
XOOOOOOOOOOOOOOOOOOOOOOlOO
YOOOOOOOOOOOOOOOOOOOOOOOlO
ZOOOOOOOOOOOOOOOOOOOOOOOOl

64

Character Recognition System Using NN

Table 4.3 The Output of the Neurons how it will be Match the Patterns

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
A 0
B 0
C 0
D 0
E 0
F 0
G 0
H 0
I 0
J 0
K 0
L 0
M 0
N 0
0
p 0
Q 0
R 0
s 0
T 0
u 0
V 0
w 0
X 0
y 0
z 0

4.4 Neural Network Design

Neural Network Design is shown in figure 4.1 below which shows the number of input,

hidden & output layers.

65

Character Recognition System Using NN

Bias neuron Bias neuron

Input layer Hidden Layer Output Layer

Figure 4.1 Back Propagation of Network Structure

66

Character Recognition System Using NN

4.5 Setting the Weights
There are two sets of weights; input-hidden layer weights and hidden-output layer

weights. These weights represent the memory of the neural network, where final

training weights can be used when running the network.

Initial weights are generated randomly there, after; weights are updated using the error

(difference) between the actual output of the network and the desired (target) output.

Weight updating occurs each iteration, and the network learns while iterating repeatedly

until a net minimum error value is achieved.

First we must define notion for the patterns to be stored Pattern p. a vector of 0/1

usually binary-valued. Additional layers of weights may be added but the additional

layers are unable to adopt.

Inputs arrive from the left and each incoming interconnection has an associated weight,

Wji· The perception processing unit performs a weighted sum at its input value.
n

The sum takes the form net = Lo; W;
i=l

Weights associated with each inter connection are adjusted during learning .The weight

to unit J from unit j from unit I is denoted as Wi after learning is completed the weights

are fixed from O to 1.

There is a matrix of weight values that corresponds to each layer at inter connections as

shown bellow These matrices are indexed with superscripts to distinguish weights in

different layers.

67

Character Recognition System Using N.N

0.2,0.3,0.4,0.5,0.6,0.7,0.9,0.2,0.4,0.5,0.9,0.7,0.2,0.3,0.2,0.9,0.0,0.4,0.7,0.8
0.2,0.3,0.2,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7.4,0.7,0.8,0.2,0.4,0.0,3,0.2
0.4,0.5,0.6,0.7,0.8,0.2,0.4,0.5,0.9,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.8
0.2,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.4,0.8,0.0,0.7,0.5,0.1,0.2,0.5,0.8
0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.7,0.8,0.2,0.4,0.0,0.3,0.2,0.5,0.6,0.4,0.7,0.9
0.4,0.5,0.6,0.7,0.8,0.2,0.4,0.5,0.9,0.9,0.0,0.4,0.7,0.8,0.7,0.5,0.l,0.2,0.5,0.8
0.2,0.3,0.2,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7.4,0.7,0.8,0.2,0.4,0.0,3,0.2
0.4,0.5,0.6,0.7,0.8,0.2,0.4,0.5,0.9,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.8
0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.7,0.8,0.2,0.4,0.0,0.3,0.2,0.5,0.6,0.4,0.7,0.9

.)0.2,0.3,0.4,0.5,0.6,0.7,0.9,0.2,0.4,0.5,0.9,0.7,0.2,0.3,0.2,0.9,0.0,0.4,0.7,0.8
Weights, .

0.2,0.3,0.4,0.5,0.6,0.7,0.9,0.2,0.4,0.5,0.9,0.7,0.2,0.3,0.2,0.9,0.0,0.4,0.7,0.8
0.4,0.5,0.6,0.7,0.8,0.2,0.4,0.5,0.9,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.8
0.2,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.4,0.8,0.0,0.7,0.5,0.1,0.2,0.5,0.8
0.4,0.5,0.6,0.7,0.8,0.2,0.4,0.5,0.9,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.8
0.2,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.4,0.8,0.0,0.7,0.5,0.l,0.2,0.5,0.8
0.8,0.2,0.4,0.5,0.9,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.9,0.0,0.4,0.7,0.2,0.3
0.2,0.3,0.2,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.7,0.8,0.2,0.4,0.0,0.3,0.2
0.7,0.8,0.2,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.4,0.8,0.0,0.7,0.5,0.l,0.2
0.5,0.8,0.4,0.5,0.6,0.7,0.8,0.2,0.4,0.5,0.9,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9
0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.7,0.8,0.2,0.4,0.0,0.3,0.2,0.5,0.6,0.4,0.7,0.9

4.6 Bias Unit
Some back-propagation networks employ a bias unit as part of every layer but the

output layer, this unit has a constant activation value at 1. Each bias unit is connected to

all units in the next higher layer, and its weights to them are adjusted during the back­

error propagation. The bias units provide a constant term in the weighted sum of the

units in the next layer. The bios unit also provides a others hold effect on each unit it

targets.

68

Character Recognition System Using NN

4.7 Training the N.N.
4.7.1 Forward- pass

The forward - pass phase is initiated when an input pattern is presented to the network,

each input unit corresponds to an entry in the input pattern vector, and each unit takes

on the value of this entry.

Incoming connection to unit J are at the left and originate at units in the layer below.

The function F(x), a sigmoid curve is illustrated as bellows.

F{x)

1

Sigmoid

a~~~~~~~~~~'---+
-5

X
0 5

Figure 4.2 Sigmoid Curve

There is a transition from O to 1 that takes place when x is approximately

(- 3 < x < 3) the sigmoid function performs assort at soft threshold that is rounded as

shown in figure 4.3 bellow.

F(x)

................................

Step
Function

0
-5

X

0 5

Figure 4.3 Step Function

69

Character Recognition System Using N.N

The equation for the sigmoid function is

1
f(x) = Ioiwi

l+ei~I
(4.1)

a. Input layer (i)

For input we have 26 inputs will be saved by the DAT file.

Input Layer at neuron = output layer of neuron I; = O;

b. Hidden layer (h)

Hidden-Layer input h = Ik = Iwk;O; as we have suggest that our weight is this and

we are taking the value at our input at character is A *I*S

Where A is the input-matrix,

I is the hidden-layer input matrix

And

S is the Sigmoid function matrix.

70

Character Recognition System Using N.N

0.2,0.3,0.4,0.5,0.6,0.7,0.9,0.2,0.4,0.5,0.9,0.7,0.2,0.3,0.2,0.9,0.0,0.4,0.7,0.8
0.2,0.3,0.2,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7.4,0.7,0.8,0.2,0.4,0.0,3,0.2
0.4,0.5,0.6,0.7,0.8,0.2,0.4,0.5,0.9,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.8
0.2,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.4,0.8,0.0,0.7,0.5,0.1,0.2,0.5,0.8
0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.7,0.8,0.2,0.4,0.0,0.3,0.2,0.5,0.6,0.4,0.7,0.9
0.4,0.5,0.6,0.7,0.8,0.2,0.4,0.5,0.9,0.9,0.0,0.4,0.7,0.8,0.7,0.5,0.1,0.2,0.5,0.8
0.2,0.3,0.2,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7.4,0.7,0.8,0.2,0.4,0.0,3,0.2
0.4,0.5,0.6,0.7,0.8,0.2,0.4,0.5,0.9,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.8
0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.7,0.8,0.2,0.4,0.0,0.3,0.2,0.5,0.6,0.4,0.7,0.9

.)0.2,0.3,0.4,0.5,0.6,0.7,0.9,0.2,0.4,0.5,0.9,0.7,0.2,0.3,0.2,0.9,0.0,0.4,0.7,0.8
Weights= Wh; 1 0.2,0.3,0.4,0.5,0.6,0.7,0.9,0.2,0.4,0.5,0.9,0.7,0.2,0.3,0.2,0.9,0.0,0.4,0.7,0.8

0.4,0.5,0.6,0.7,0.8,0.2,0.4,0.5,0.9,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.8
0.2,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.4,0.8,0.0,0.7,0.5,0.l,0.2,0.5,0.8
0.4,0.5,0.6,0.7,0.8,0.2,0.4,0.5,0.9,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.8
0.2,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.4,0.8,0.0,0.7,0.5,0.1,0.2,0.5,0.8
0.8,0.2,0.4,0.5,0.9,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.9,0.0,0.4,0.7,0.2,0.3
0.2,0.3,0.2,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.7,0.8,0.2,0.4,0.0,0.3,0.2
0.7,0.8,0.2,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.4,0.8,0.0,0.7,0.5,0.1,0.2
0.5,0.8,0.4,0.5,0.6,0.7,0.8,0.2,0.4,0.5,0.9,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9
0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.7,0.8,0.2,0.4,0.0,0.3,0.2,0.5,0.6,0.4,0.7,0.9

71

Character Recognition System Using N.N

00000000000000000000

00000000011000000000
00000000111100000000
00000001111110000000
00000011111111000000
00000111000011100000
00001110000001110000
00011100000000111000
00111000000000011100
00111000000000011100

A is Input = 0 ~ ~
I 00111000000000011100

00111111111111111100

00111111111111111100
00111000000000011100
00111000000000011100
00111000000000011100
00111000000000011100
00111000000000011100
00111000000000011100

00111000000000011100

h= I(0.2x0)+(0.3x0)+(0.4x0)+(0.5x0)+(0.6x0)+(0.7x0)+(0.9x0)+(0.2x0)+(0.4x0)+(0.

5x0)+(0.9x0)+(0.7x0)+(0.4x0)+(0.7x0)+(0.8x0)+(0.2x0)+(0.4x0)+(0.0x0)+(0.3x0)+(0.2

x0)+(2x0)+(O. 3 xO)+(0 .2x0)+(0. 9x0)+(0. OxO)+(0. 4 xO)+(0. 7x0)+(0. 8x0)+(0 .2x0)+(0. 4 x 1)

+(0.5xl)+(0.9x0)+(0.7x0)+(0.4x0)+(0.7x0)+(0.8x0)+(0.2x0)+(0.4x0)+(0.0x0)+(0.2x0)

...

(0.4x0)+(0. 7x0)+(0.8x 1)+(0.2xl)+(0.4x 1)+(0.5x0)+(0.9x0)+(0. 7x0)+(0. 7x0)+(0.8x0)+(

0.2x0)+(0.4x0)+(0.0x0)+(0.3x0)+(0.2x0)+(0.5xl)+(0.6x 1)+(0.4xl)+(O. 7x0)+(0.9x0)}

So after calculation we will get the value of Ih.

Each output at a hidden neuron is calculated using the sigmoid function.

Hidden-layer output h =oh=
1

_1 this calculation is for one neuron and the
l+e •

summation for the other output layer G).

72

Character Recognition System Using N.N

Now we are going to the second neuron which is the neuron in the output layer that is

equal to the sum at all the output at the hidden layer neurons multiplied by their

associated connection weights plus the bias weights at each neuron.

4.8 Summary
This chapter represents the most common training scenarios utilize supervised learning

during which the network is presented with an input pattern together with the target

output for the correct answer, or correct classification for the input pattern as will be

seen in the later chapters.

73

Practical Consideration using MATLAB

5. PRACTICAL CONSIDERATION USING MATLAB

5.1 Overview

It is often useful to have a machine perform pattern recognition. In particular, machines

that can read symbols are very cost effective. A machine that reads banking checks can

process many more checks than a human being in the same time. This kind of application

saves time and money, and eliminates the requirement that a human perform such a
repetitive task.

5.2 Problem Statement

A network is to be designed and trained to recognize the 26 letters of the alphabet. An

imaging system that digitizes each letter centered in the system's field of vision is

available. The result is that each letter is represented as a 20 by 20 grid of Boolean
values.

Perfect classification of ideal input vectors is required, and reasonably accurate

classification of noisy vectors. The target vectors are also defined in this file with a

variable called targets. Each target vector is a 26-element vector with a l in the position

of the letter it represents, and O's everywhere else. For example, the letter A is to be

represented by a l in the first element (as A is the first letter of the alphabet), and O's in
elements two through twenty-six as shown in table 4.3.

5.3 Neural Network

The network receives the 400 Boolean values as a 400-element input vector. It is then

required to identify the letter by responding with a 26-element output vector. The 26

elements of the output vector each represent a letter. To operate correctly, the network

should respond with a 1 in the position of the letter being presented to the network. All

other values in the output vector should be 0. In addition, the network should be able to

handle noise. In practice, the network does not receive a perfect Boolean vector as input.

Specifically, the network should make as few mistakes as possible when classifying

vectors with noise of mean O and standard deviation of 0.2 or less.

74

Practical Consideration using MATLAB

5.4 Architecture

The neural network needs 400 inputs and 26 neurons in its output layer to identify the

letters. The network is a two-layer log-sigmoid/log-sigmoid network. The log-sigmoid

transfer function was picked because its output range (0 to 1) is perfect for learning to

output Boolean values.

Hidden Layer Output Layer

a2=y
--I
26xl

pl a1~
1o";t~

26xl0

1--+I b2

26xl

26 35 10

Figure 5.1 Neural Network Architecture

The hidden (first) layer has 10 neurons. This number was picked by guesswork and

experience. If the network has trouble learning, then neurons can be added to this layer.

The network is trained to output a 1 in the correct position of the output vector and to fill

the rest of the output vector with O's. However, noisy input vectors may result in the

network not creating perfect 1 's and O's. After the network is trained the output is passed

through the competitive transfer function compet. This makes sure that the output

corresponding to the letter most like the noisy input vector takes on a value of 1, and all

others have a value of 0. The result of this post-processing is the output that is actually

used.

75

Practical Consideration using MATLAB

5.5 Initialization

The two-layer network is created with newff.

Sl = 10;
[R,Q] = size(pl);

[S2,Q] = size(targets);

P=pl;

net= newff(minmax(P),[Sl S2],{'logsig' 'logsig'},'traingdx');

5.6 Training

To create a network that can handle noisy input vectors it is best to train the network on

both ideal and noisy vectors. To do this, the network is first trained on ideal vectors until

it has a low sum-squared error. Then, the network is trained on 10 sets of ideal and noisy

vectors. The network is trained on two copies of the noise-free alphabet at the same time

as it is trained on noisy vectors. The two copies of the noise-free alphabet are used to

maintain the network's ability to classify ideal input vectors. Unfortunately, after the

training described above the network may have learned to classify some difficult noisy

vectors at the expense of properly classifying a noise-free vector. Therefore, the network

is again trained on just ideal vectors. This ensures that the network responds perfectly

when presented with an ideal letter. All training is done using backpropagation with both

adaptive learning rate and momentum with the function trainbpx.

5.6.1 Training without Noise

The network is initially trained without noise for a maximum of 5000 epochs or until the

network sum-squared error falls beneath 0.1. P = pl;

T = targets;

net.performFcn = 'sse';

net.trainParam.goal = 0.1;

net.trainParam.show = 20;

net.trainParam.epochs = 5000;

net.trainParam.mc = 0.95;

[net,tr] = train(net,P,T);

76

Practical Consideration using MATLAB

5.6.2 Training with Noise
To obtain a network not sensitive to noise, we trained with two ideal copies and two

noisy copies of the vectors in alphabet. The target vectors consist of four copies of the

vectors in target. The noisy vectors have noise of mean 0.1 and 0.2 added to them. This

forces the neuron to learn how to properly identify noisy letters, while requiring that it

can still respond well to ideal vectors. To train with noise, the maximum number of

epochs is reduced to 300 and the error goal is increased to 0.6, reflecting that higher error

is expected because more vectors (including some with noise), are being presented.

netn = net;

netn.trainParam.goal = 0.6;

netn.trainParam.epochs = 300;

T = [targets targets targets targets];

for pass= 1:10

p = [pl, pl, ...

(pl+ randn(R,Q)*O.l), ...

(pl+ randn(R,Q)*0.2)];

[netn, tr] = train(netn,P, T);

end

5. 7 System Performance
The reliability of the neural network pattern recognition system is measured by testing

the network with hundreds of input vectors with varying quantities of noise. The script

file appcr 1 tests the network at various noise levels, and then graphs the percentage of

network errors versus noise. Noise with a mean of O and a standard deviation from O to

0.5 is added to input vectors. At each noise level, 100 presentations of different noisy

versions of each letter are made and the network's output is calculated. The output is then

passed through the competitive transfer function so that only one of the 26 outputs

(representing the letters of the alphabet), has a value of 1.

77

Practical Consideration using MATLAB

5.8 MATLAB Program

[pl,targets] = prprob;

[R,Q] = size(pl);

[S2,Q] = size(targets);

Sl = 10;

net= newff(minmax(pl),[Sl S2],{'logsig' 'logsig'},'traingdx');
net.LW{2,1} = net.LW{2,1}*0.01;

net.b{2} = net.b{2}*0.01;

net.perforrnFcn = 'sse'; % Sum-Squared Error performance function

net.trainParam.goal = 0.1; % Sum-squared error goal.

net.trainParam.show = 20; % Frequency of progress displays (in epochs).

net.trainParam.epochs = 5000; % Maximum number of epochs to train.

net.trainParam.mc = 0.95; % Momentum constant.
% Training begins ... please wait...

P=pl;

T= targets;

[net,tr] = train(net,P,T);

% TRAINING THE NETWORK WITH NOISE
% ===============================

% A copy of the network will now be made. This copy will

% be trained with noisy examples ofletters of the alphabet.
netn = net;

netn.trainParam.goal = 0.6; % Mean-squared error goal.

netn.trainParam.epochs = 300; % Maximum number of epochs to train.

% The network will be trained on 10 sets of noisy data.

% Training begins ... please wait...

T = [targets targets targets targets];

for pass = 1 : 10

fprintf('Pass = %.Ot\n',pass);

78

Practical Consideration using MATLAB

Pass= 1

P = [alphabet, pl, ...

(pl+ randn(R,Q)*0.1), ...

(pl+ randn(R,Q)*0.2)];

[netn,tr] = train(netn,P,T);

% TRAINING THE SECOND NETWORK WITHOUT NOISE

%

% The second network is now retrained without noise to

% insure that it correctly categorizes non-noizy letters.

netn.trainParam.goal = 0.1; % Mean-squared error goal.

netn.trainParam.epochs = 500; % Maximum number of epochs to train.

net.trainParam.show = 5; % Frequency of progress displays (in epochs).

% Training begins ... please wait...

p =pl;

T = targets;

[netn,tr] = train(netn,P,T);

% TRAINING THE NETWORK

% --~~~~~~----~

% SET TESTING PARAMETERS

noise_range = 0:.05:.5;

max_test = 100;

network 1 = [];

network2 = [];

T = targets;

79

Practical Consideration using MATLAB

% PERFORM THE TEST

for noiselevel = noise_ range

fprintf('Testing networks with noise level of %.2f.\n',noiselevel);

% Testing networks with noise level of 0.00.

errors I= O;

errors2 = O;

for i= 1 :max test

P = pl + randn(35,26)*noiselevel;

% TEST NETWORK 1

A = sim(net,P);

AA = compet(A);

errors!= errorsl + sum(sum(abs(AA-T)))/2;

% TEST NETWORK 2

An= sim(netn,P);

AAn = compet(An);

errors2 = errors2 + sum(sum(abs(AAn-T)))/2;

% DISPLAY RES UL TS

% ---------

% Here is a plot showing the percentage of errors for

% the two networks for varying levels of noise.

plot(noise _ range,networkl * 1 OO,'--',n6ise _range,network2* 100);

titler'Percentage of Recognition Errors');

xlabel('Noise Level');

ylabel('Network 1 - - Network 2 ---');

80

Practical Consideration using MATLAB

5.9 Practical Example

The following input matrix represents the letter R inserted to the Neural Network shown

in figure 5 .1.

[111111111111111 1 1 1 1 1;

1111111111111111111 1;

11100000000000000011;

11100000000000000011;

11100000000000000011;

11100000000000000011;

11100000000000000011;

11100000000000000011;

1 1 1 1 1 11111111111111 1;

111111111111111 1 1 1 1 l;

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O;

1 1 1 0 1 l O O O O O O O O O O O O O O;

1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 O;

1 l 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 O;

1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 O;

1 1 1 0 0 0 0 0 l 1 0 0 0 0 0 0 0 0 0 O;

1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 O;

1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 O;

1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 O;

1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 O];

81

Practical Consideration using MATLAB

The above input was trained, and tested with the following specifications

Learning Rate Maximum Reached Alpha Goal Result
Epochs Epochs

0.75 5000 584 0.04 0.01 Performance Goal
met

0.75 5000 246 0.03 0.01 Performance Goal
met

103

102

f
..><'.

10' [
u
~
a;i
ro
0
(.9

100 Q)
:::,
CD
6,
C:
C: 10-1 -~
I--

10-2

10-3
0

Performance is 0.00936535, Goal is 0.01

50 100 150 200
246 Epochs

82

Practical Consideration using MATLAB

Figure 5.2 Result of Tested Character

5.10 Summary

This problem demonstrates how a simple pattern recognition system can be designed.

Note that the training process did not consist of a single call to a training function.

Instead, the network was trained several times on various input vectors. In this case,

training a network on different sets of noisy vectors forced the network to learn how to

deal with noise, a common problem in the real world.

83

CONCLUSION

In this thesis, we have presented the basic concept of back propagation in order to obtain

progressive compression of character recognition. We also presented a specific technique.

Some practical results are also included.

Chapter one presented as an overview of N.N's. it history simple structure, biological

analogy and the Back propagation Producer also noted that the Back Propagation

Network has the ability to learn any arbitrarily complex nonlinear mapping this is due to

the introduction of the hidden layer. It also has a capacity much greater than the

dimensionality of its input and output layers as we will see later. This is not true of all

neural net models.

However Back propagation can involve extremely long and potentially infinite training

time. If you have a strong relationships between input and outputs and you are willing to

accept results within a relatively broad time, your training time may be reasonable.

Chapter two has been noticed that Multimedia has rapidly become a buzzword of the

'90s, and, with it, digital video has gained enormous exposure. In digital video, two

technologies stand out. Resizing reduces the amount of video data required to transmit or

store, it allows users the option to choose what size they view video images at, and it may

also enhance compression. Compression, on the other hand, brings the bandwidth

requirements for digital video to more manageable proportions. Together, the two

technologies make digital video a reality.

Chapter four has been noticed that this technology is demonstrated in the

ICR/OCR/OMR/MICR demo application (which is installed with the product download)

and may be found within the MATLAB product.

84

APPENDIX I

The matrix of character The matrix of character
for the first trainings for the second trainings

This is for code A 00000000000000000000 00000000000000000000
00000000011000000000 00111111111111111100
00000000111100000000 00111111111111111100
00000001111110000000 00111111111111111100
00000011111111000000 00111000000000011100
00000111000011100000 00111000000000011100
00001110000001110000 00111000000000011100
00011100000000111000 00111000000000011100
00111000000000011100 00111111111111111100
00111000000000011100 00111111111111111100
00111000000000011100 00111000000000011100
00111111111111111100 00111000000000011100
00111111111111111100 00111000000000011100
00111000000000011100 00111000000000011100
00111000000000011100 00111000000000011100
00111000000000011100 00111000000000011100
00111000000000011100 00111000000000011100
00111000000000011100 00111000000000011100
00111000000000011100 00111000000000011100
00111000000000011100 00000000000000000000

This is for code B 00000000000000000000 00000000000000000000
00111111111111000000 00111111111111000000
00111111111111100000 00111111111111110000
00111111111111110000 00111000000111111000
00111000000000111000 00111000000011111100
00111000000000011100 00111000000001111100
00111000000000111000 00111000000000111100
00111000000000110000 OOlllOOOOOOOOOlfllOO
00111111111111100000 00111111111111111100
00111111111111000000 00111111111111111100
00111111111111100000 00111000000000011100
00111000000001110000 00111000000000011100
00111000000000111000 00111000000000011100
00111000000000011100 00111000000000011100
00111000000000111000 00111000000000111100
00111000000000110000

'
00111000000001111100

00111000000001110000 00111000000011111000
00111111111111100000 00111111111111110000
00111111111111000000 00111111111111100000
00000000000000000000 00000000000000000000

85

The matrix of character The matrix of character
for the first trainings for the second trainings

This is for code C 00000000000000000000 00000000000000000000
00000001111110000000 00111111111111111100
00000011111111000000 00111111111111111100
00000111111111100000 00111000000000011100
00001110000001111000 00111000000000011100
00011100000000111100 00111000000000011100
00111000000000001100 00111000000000011100
00111000000000000100 00111000000000000000
00111000000000000000 00111000000000000000
00111000000000000000 00111000000000000000
00111000000000000000 00111000000000000000
00111000000000000000 00111000000000000000
00111000000000000000 00111000000000000000
00111000000000000100 00111000000000011100
00111000000000001100 00111000000000011100
00111000000000011100 00111000000000011100
00111000000001111000 00111000000000011100
00111111111111111000 00111111111111111100
00111111111111110000 00111111111111111100
00000000000000000000 00000000000000000000

This is for code D 00000000000000000000 00000000000000000000
00111111111000000000 00111111111111100000
00111111111100000000 00111111111111110000
00111111111110000000 00111111111111111000
00111000000111000000 00111000000011111100
00111000000011100000 00111000000001111100
00111000000001110000 00111000000000111100
00111000000000111000 00111000000000011100
00111000000000011100 00111000000000011100
00111000000000001110 00111000000000011100
00111000000000001110 00111000000000011100
00111000000000001110 00111000000000111100
00111000000000001110 00111000000001111100
00111000000000011100 00111000000011111100
00111000000000111000 00111111111111111000
00111000000001110000 00111111111111110000
00111111111111100000 00111111111111100000
00111111111111000000 00000000000000000000
00111111111100000000 00000000000000000000
00000000000000000000

The matrix of character The matrix of character
for the first trainings for the second trainings

This is for code E 00000000000000000000 00000000000000000000
00111111111111111100 00111111111111111100
00111111111111111110 00111111111111111100
00111111111111111100 00111111111111111100
00111000000000000000 00111000000000000000
00111000000000000000 00111000000000000000
00111000000000000000 00111000000000000000
00111000000000000000 00111000000000000000
00111111111100000000 00111000000000000000
00111111111110000000 00111111111111111100
00111111111100000000 00111111111111111100
00111000000000000000 00111000000000000000
00111000000000000000 00111000000000000000
00111000000000000000 00111000000000000000
00111000000000000000 00111000000000000000
00111000000000000000 00111000000000000000
00111111111111100000 00111111111111111100
00111111111111110000 00111111111111111100
00111111111111100000 00111111111111111100
00000000000000000000 00000000000000000000

This is for code F 00000000000000000000 00000000000000000000
00111111111111111000 00111111111111111100
00111111111111111100 00111111111111111100
00111111111111111000 00111111111111111100
00111000000000000000 00111000000000000000
00111000000000000000 00111000000000000000
00111000000000000000 00111000000000000000
00111000000000000000 00111000000000000000
00111111111111000000 00111000000000000000
00111111111111100000 00111111111111111100
00111111111111000000 00111111111111111100
00111000000000000000 00111000000000000000
00111000000000000000 00111000000000000000
00111000000000000000 00111000000000000000
00111000000000000000 00111000000000000000
00111000000000000000 00111000000000000000
00111000000000000000 00111000000000000000
00111000000000000000 00111000000000000000
00010000000000000000 00111000000000000000
00000000000000000000 00000000000000000000

87

The matrix of character The matrix of character
for the first trainings for the second trainings

This is for code G 00000000000000000000 00000000000000000000
00000001111110000000 00111111111111111100
00000011111111000000 00111111111111111100
00000111111111100000 00111000000000011100
00001110000001110000 00111000000000011100
00011100000000111000 00111000000000011100
00111000000000111000 00111000000000011100
00111000000000111000 00111000000000000000
00111000000000010000 00111000000000000000
00111000000000000000 00111000000000000000
00111000000000000000 00111000000000000000
00111000000000000000 00111000000000000000
00111000000111111000 00111000000000000000
00111000000111111000 00111000000011111100
00111100000000111000 00111000000011111100
00011111000000111000 00111000000000011100
00011111111111110000 00111000000000011100
00000111111111000000 00111111111111111100
00000011111110000000 00111111111111111100
00000000000000000000 00000000000000000000

This is for code H 00000000000000000000 00000000000000000000
00111000000000011100 00111000000000011100
00111000000000011100 00111000000000011100
00111000000000011100 00111000000000011100
00111000000000011100 00111000000000011100
00111000000000011100 00111000000000011100
00111000000000011100 00111000000000011100
00111000000000011100 00111000000000011100
00111111111111111100 00111111111111111100
00111111111111111100 00111111111111111100
00111000000000011100 00111000000000011100
00111000000000011100 00111000000000011100
00111000000000011100 00111000000000011100
00111000000000011100 00111000000000011100
00111000000000011100 00111000000000011100
00111000000000011100 00111000000000011100
00111000000000011100 00000000000000011100
00111000000000011100 00000000000000011100
00111000000000011100 00000000000000011100
00000000000000000000 00000000000000000000

The matrix of character The matrix of character
for the first trainings for the second trainings

This is for code I 00000000000000000000 00000000000000000000
00000111111111000000 00000000111000000000
00000111111111000000 00000000111000000000
00000000111000000000 00000000111000000000
00000000111000000000 00000000111000000000
00000000111000000000 00000000111000000000
00000000111000000000 00000000111000000000
00000000111000000000 00000000111000000000
00000000111000000000 00000000111000000000
00000000111000000000 00000000111000000000
00000000111000000000 00000000111000000000
00000000111000000000 00000000111000000000
00000000111000000000 00000000111000000000
00000000111000000000 00000000111000000000
00000000111000000000 00000000111000000000
00000000111000000000 00000000111000000000
00000111111111000000 00000111111111000000
00000111111111000000 00000111111111000000
00000000000000000000 00000000000000000000
00000000000000000000 00000000000000000000

This is for code J 00000000000000000000 00000000000000000000
00000111111111000000 00000111111111000000
00000111111111000000 00000111111111000000
00000000111000000000 00000000111000000000
00000000111000000000 00000000111000000000
00000000111000000000 00000000111000000000
00000000111000000000 00000000111000000000
00000000111000000000 00000000111000000000
00000000111000000000 00000000111000000000
00000000111000000000 00000000111000000000
00000000111000000000 00000000111000000000
00000000111000000000 00000000111000000000
00000000111000000000 00000000111000000000
00000000111000000000 00000000111000000000
00010000111000000000 00000000111000000000
00111000111000000000 00000000111000000000
00011111111000000000 00111111111000000000
00001111111000000000 00111111111000000000
00000000000000000000 00000000000000000000
00000000000000000000 00000000000000000000

89

The matrix of character The matrix of character
for the first trainings for the second traininzs

This is for code K 00000000000000000000 00000000000000000000
00111000000011110000 00111000000001111100
00111000000111100000 00111000000011111100
00111000001110000000 00111000000111000000
00111000011100000000 00111000001110000000
00111000111000000000 00111000011100000000
00111001110000000000 00111000111000000000
00111011100000000000 00111001110000000000
00111111000000000000 00111111110000000000
00111111100000000000 00111111110000000000
00111111110000000000 00111111110000000000
00111001111000000000 00111000111100000000
00111000111000000000 00111000011100000000
00111000011100000000 00111000001110000000
00111000001110000000 00111000000111000000
00111000000111000000 00111000000011100000
00111000000011100000 00111000000001110000
00111000000001110000 00111000000000111110
00111000000000111000 00111000000000011110
00000000000000000000 00000000000000000000

This is for code I 00000000000000000000 00000000000000000000
00111000000000000000 00111000000000000000
00111000000000000000 00111000000000000000
00111000000000000000 00111000000000000000
00111000000000000000 00111000000000000000
00111000000000000000 00111000000000000000
00111000000000000000 00111000000000000000
00111000000000000000 00111000000000000000
00111000000000000000 00111000000000000000
00111000000000000000 00111000000000000000
00111000000000000000 00111000000000000000
00111000000000000000 00111000000000000000
00111000000000000000 00111000000000000000
00111000000000000000 00111000000000000000
00111000000000000000 00111000000000000000
00111000000000000110 00111000000000000000
00111111111111111100 00111000000000000000
00111111111111111000 00111111111111111110
00111111111111110000 00111111111111111110
00000000000000000000 00000000000000000000

90

The matrix of character The matrix of character
for the first trainings for the second trainings

This is for code M 00000000000000000000 00000000000000000000
00111100000000011110 00111100000000011110
00111110000000111110 00111100000000011110
00111111000001111110 00111111000001111110
00111011100011101110 00111011000001101110
00111001110111001110 00111011100011101110
00111000111110001110 00111001110011001110
00111000011100001110 00111001111111001110
00111000001000001110 00111000111110001110
00111000000000001110 00111000011100001110
00111000000000001110 00111000001000001110
00111000000000001110 00111000000000001110
00111000000000001110 00111000000000001110
00111000000000001110 00111000000000001110
00111000000000001110 00111000000000001110
00111000000000001110 00111000000000001110
00111000000000001110 00111000000000001110
00111000000000001110 00111000000000001110
00000000000000000000 00000000000000000000
00000000000000000000 00000000000000000000

This is for code N 00000000000000000000 00000000000000000000
00111000000000001110 00111111000000001110
00111100000000001110 00111111000000001110
00111110000000001110 00111111100000001110
00111110000000001110 00111011100000001110
00111011100000001110 00111001110000001110
00111001110000001110 00111001110000001110
00111001110000001110 00111000111000001110
00111000111000001110 00111000111000001110
00111000111000001110 00111000011100001110
00111000011100001110 00111000011100001110
00111000001110001110 00111000000111001110
00111000000111001110 00111000000111001110
00111000000111001110 00111000000011101110
00111000000011101110 00111000000011101110
00111000000001111110 00111000000001111110
00111000000001111110 00111000000001111110
00111000000000111110 00111000000000111110
00000000000000000000 00000000000000000000
00000000000000000000 00000000000000000000

91

The matrix of character The matrix of character
for the first trainings for the second trainings

This is for code 0 00000000000000000000 00000000000000000000
00000111111111110000 00111111111111111110
00001111111111111000 00111111111111111110
00011111111111111100 00111111111111111110
00111111000001111110 00111111000001111110
00111110000000111110 00111110000000111110
00111100000000011110 00111100000000011110
00111000000000001110 00111000000000001110
00111000000000001110 00111000000000001110
00111000000000001110 00111000000000001110
00111000000000001110 00111000000000001110
00111000000000001110 00111000000000001110 ,
00111100000000001110 00111100000000001110
00111110000000111110 00111110000000111110
00111111000001111110 00111111000001111110
00011111111111111100 00111111111111111110
00001111111111111000 00111111111111111110
00000111111111110000 00111111111111111110
00000000000000000000 00000000000000000000

This is for code P 00000000000000000000 00000000000000000000
00111111111111100000 00111111111111111100
00111111111111110000 00111111111111111100
00111111111111111000 00111111111111111100
00111000000011111100 00111000000000011100
00111000000001111100 00111000000000011100
00111000000000111100 00111000000000011100
00111000000001111100 00111000000000011100
00111000000011111100 00111000000000011100
00111111111111110000 00111111111111111100
00111111111111100000 00111111111111111100
00111000000000000000 00111000000000000000
00111000000000000000 00111000000000000000
00111000000000000000 00111000000000000000
00111000000000000000 00111000000000000000
00111000000000000000 00111000000000000000
00111000000000000000 00111000000000000000
00111000000000000000 00111000000000000000
00111000000000000000 00111000000000000000
00000000000000000000 00000000000000000000

92

The matrix of character The matrix of character
for the first trainings for the second trainings

This is for code Q 00000000000000000000 00000000000000000000
00000111111111110000 00111111111111111100
00001111111111111000 00111111111111111100
00011111111111111100 00111000000000011100
00111111000001111110 00111000000000011100
00111110000000111110 00111000000000011100
00111100000000011110 00111000000000011100
00111000000000001110 00111000000000011100
00111000000000001110 00111000000000011100
00111000000000001110 00111000000000011100
00111000000000001110 00111000000000011100
00111000000000001110 00111000000000011100
00111100001100001110 00111100001100011100
00111110000111111110 00111110000111011100
00111111000111111110 00111111000011111100
00011111111111111100 00111111111111111100
00001111111111111110 00111111111111111110
00000111111100001111 00000000000000001111
00000000000000000000 00000000000000000000

This is for code R 00000000000000000000 00000000000000000000
00111111111111111100 00111111111111100000
00111111111111111100 00111111111111110000
00111111111111111100 00111111111111111000
00111000000000011100 00111000000011111100
00111000000000011100 00111000000001111100
00111000000000011100 00111000000000111100
00111000000000011100 00111000000001111100
00111000000000011100 00111000000011111000
00111111111111111100 00111111111111110000
00111111111111111100 00111111111111100000
00111111000000000000 00111111000000000000
00111011100000000000 00111011100000000000
00111001110000000000 00111001110000000000
00111000111000000000 00111000111000000000
00111000011100000000 00111000011100000000
00111000001110000000 00111000001110000000
00111000000111000000 00111000000111110000
00111000000011100000 00111000000011110000
00000000000000000000 00000000000000000000

The matrix of character The matrix of character
for the first trainings for the second trainings

This is for code S 00000000000000000000 00000000000000000000
00000000000000000000 00000000000000000000
00000011111111110000 00111111111111111100
00000111111111111000 00111111111111111100
00001110000000011100 00111110000000011100
00011100000000001000 00011100000000001000
00111000000000000000 00111000000000000000
00111000000000000000 00111000000000000000
00111100000000000000 00111100000000000000
00011111111111100000 00111111111111111100
00001111111111111000 00111111111111111100
00000000000000011100 00000000000000011100
00000000000000001110 00000000000000011100
00000000000000011100 00000000000000011100
00010000000000111000 00010000000000011100
00111000000001110000 00111000000000011100
00111111111111100000 00111111111111111100
00011111111111000000 00111111111111111100
00000000000000000000 00000000000000000000
00000000000000000000 00000000000000000000

This is for code T 00000000000000000000 00000000000000000000
00111111111111111100 00111111111111111100
00111111111111111100 00111111111111111100
00111111111111111100 00111111111111111100
00000000111000000000 00110000111000001100
00000000111000000000 00110000111000001100
00000000111000000000 00000000111000000000
00000000111000000000 00000000111000000000
00000000111000000000 00000000111000000000
00000000111000000000 00000000111000000000
00000000111000000000 00000000111000000000
00000000111000000000 00000000111000000000
00000000111000000000 00000000111000000000
00000000111000000000 00000000111000000000
00000000111000000000 00000000111000000000
00000000111000000000 00000000111000000000
00000000111000000000 00000000111000000000
00000000111000000000 00000111111111000000
00000000000000000000 00000111111111000000
00000000000000000000 00000000000000000000

94

The matrix of character The matrix of character
for the first trainings for the second trainings

This is for code U 00000000000000000000 00000000000000000000
00111000000000011100 00111000000000011100
00111000000000011100 00111000000000011100
00111000000000011100 00111000000000011100
00111000000000011100 00111000000000011100
00111000000000011100 00111000000000011100
00111000000000011100 00111000000000011100
00111000000000011100 00111000000000011100
00111000000000011100 00111000000000011100
00111000000000011100 00111000000000011100
00111000000000011100 00111000000000011100
00111000000000011100 00111000000000011100
00111000000000011100 00111000000000011100
00111000000000011100 00111000000000011100
00111000000000011100 00111100000000111100
00111000000000011100 00111110000001111100
00111000000000011100 00011111000011111000
00111111111111111100 00001111111111110000
00111111111111111100 00000111111111100000
00000000000000000000 00000000000000000000

This is for code V 00000000000000000000 00000000000000000000
00111000000000001110 00111000000000001110
00111000000000001110 00111000000000001110
00111000000000001110 00111000000000001110
00011100000000011100 00111100000000011110
00011100000000011100 00111100000000011110
00001110000000111000 00011100000000011110
00001110000000111000 00011110000000111110
00000111000001110000 00011110000000111100
00000111000001110000 00011110000000111100
00000011100011100000 00011110000000111000
00000011100011100000 00001111000001111000
00000001110111000000 00001111000001111000
00000001111111000000 00001111100011110000
00000000111110000000 00000111100011100000
00000000111110000000 00000011110111100000
00000000011100000000 00000011111111000000
00000000011100000000 00000001111110000000
00000000001000000000 00000000011000000000
00000000000000000000 00000000000000000000

The matrix of character The matrix of character
for the first trainings for the second trainings

This is for code w 00000000000000000000 00000000000000000000
01100000011000000110 01110000011000001110
01100000011000000110 01110000011000001110
01100000011000000110 01110000011000001110
01100000011000000110 01110000011000001110
00110000111100001100 01110000111100001110
00110000111100001100 00111000111100011100
00110000111100001100 00111000111100011100
00110000111100001100 00111000111100011100
00011001100110011000 00111001100110011100
00011001100110011000 00111001100110011100
00011001100110011000 00111001100110011100
00011001100110011000 00111001100110011100
00011111100111111000 00111111100111111100
00001111000011110000 00011111000011111000
00000110000001100000 00001110000001110000
00000110000001100000 00001110000001100000
00000000000000000000 00000100000000000000
00000000000000000000 00000000000000000000
00000000000000000000 00000000000000000000

This is for code X 00000000000000000000 00000000000000000000
I

00111000000000001110 00111000000000001110
00011100000000011100 00011100000000011100
00001110000000111000 00001110000000111000
00000111000001110000 00000111000001110000
00000011100011100000 00000011100011100000
00000001111111000000 00000001110111000000
00000000111110000000 00000000111110000000
00000000111110000000 00000000011100000000
00000000111110000000 00000000111110000000
00000001111111000000 00000001110111000000
00000011100011100000 00000011100011100000
00000111000001110000 00000111000001110000
00001110000000111000 00001110000000111000
00011100000000011100 00011100000000011100
00111000000000011100 00111000000000001110
01110000000000001110 01110000000000000111
01110000000000001110 01110000000000000111
00000000000000000000 00000000000000000000
00000000000000000000 00000000000000000000

The matrix of character The matrix of character
for the first trainings for the second traininas

This is for code Y 00111100000000011110 00000000000000000000
00011110000000011110 00111000000000001110
00001111000000011110 00011100000000011100
00000111100000011100 00001110000000111000
00000011110001111000 00000111000001110000
00000001111011111000 00000011100011100000
00000000111111110000 00000011111111000000
00000000011111100000 00000001111110000000
00000000011111000000 00000000111100000000
00000000011111000000 00000000111100000000
00000000011110000000 00000000111100000000
00000000011110000000 00000000111100000000
00000000011110000000 00000000111100000000
00000000011110000000 00000000111100000000
00000000011110000000 00000000111100000000
00000000011110000000 00000000111100000000
00000000011110000000 00000000111100000000
00000000000000000000 00000000111100000000
00000000000000000000 00000000111100000000

00000000000000000000
This is for code Z 00000000000000000000 00000000000000000000

00111111111111111110 00011111111111111110
00111111111111111110 00111111111111111110
00111111111111111110 00011111111111111110
00000000000000011110 00000000000000111110
00000000000000111000 00000000000001111000
00000000000001110000 00000000000011110000
00000000000011100000 00000000000111100000
00000000000111000000 00000000001111000000
00000000001110000000 00000000011110000000
00000000011100000000 00000000111100000000
00000000111000000000 00000001111000000000
00000001110000000000 00000011110000000000
00000011100000000000 00000111100000000000
00000111000000000000 00001111000000000000
00001110000000000000 00111110000000000000
00111111111111111110 00111111111111111100
00111111111111111110 00111111111111111110
00111111111111111110 00111111111111111100
00000000000000000000 00000000000000000000

the matrix of character for the
target matching trainings

The target of the output to be 123456 26
compared AlOOOOOOOOOOOOOOOOOOOOOOOO

B0100000000000000000000000
COOlOOOOOOOOOOOOOOOOOOOOOO
D0001000000000000000000000
EOOOOlOOOOOOOOOOOOOOOOOOOO
FOOOOOlOOOOOOOOOOOOOOOOOOO
GOOOOOOlOOOOOOOOOOOOOOOOOO
HOOOOOOOlOOOOOOOOOOOOOOOOO
JOOOOOOOOlOOOOOOOOOOOOOOOO
KOOOOOOOOOlOOOOOOOOOOOOOOO
LOOOOOOOOOOlOOOOOOOOOOOOOO
:tv10000000000010000000000000
NOOOOOOOOOOOOlOOOOOOOOOOOO
00000000000000100000000000
POOOOOOOOOOOOOOlOOOOOOOOOO
QOOOOOOOOOOOOOOOlOOOOOOOOO
ROOOOOOOOOOOOOOOOlOOOOOOOO
SOOOOOOOOOOOOOOOOOlOOOOOOO
TOOOOOOOOOOOOOOOOOOlOOOOOO
UOOOOOOOOOOOOOOOOOOOlOOOOO
VOOOOOOOOOOOOOOOOOOOOlOOOO
\VOOOOOOOOOOOOOOOOOOOOOlOOO
XOOOOOOOOOOOOOOOOOOOOOOlOO
YOOOOOOOOOOOOOOOOOOOOOOOlO
ZOOOOOOOOOOOOOOOOOOOOOOOOl

APPENDIX II

99

rf7._·/
2SJ . . . ,

~--

100

101

___ . _ _;

A

~,. L~

102

~~--~--~~~~~~-

103

108

/

109

-----·-·---

110

111

REFERENCES

[l]. Pratt, William K. Digital Image Processing. New York: John Wiley & Sons, Inc.,
1991. p. 634.

[2]. Horn, Berthold P. K., Robot Vision. New York: McGraw-Hill, 1986. pp. 73-77.

[3]. Pratt, William K. Digital Image Processing. New York: John Wiley & Sons, Inc.,
1991. p. 633.

[4]. Haralick, Robert M., and Linda G. Shapiro. Computer and Robot Vision, Volume

I. Addison-Wesley, 1992.

[5]. Ardeshir Goshtasby, Piecewise linear mapping functions for image registration,

Pattern Recognition, Vol 19, pp. 459-466, 1986.

[6]. Ardeshir Goshtasby, Image registration by local approximation methods, Image

and Vision Computing, Vol 6, p. 255-261, 1988.

[7]. Jain, Anil K. Fundamentals of Digital Image Processing. Englewood Cliffs, NJ:

Prentice Hall, 1989. pp. 150-153.

[8]. Pennebaker, William B., and Joan L. Mitchell. JPEG: Still Image Data

Compression Standard. Van Nostrand Reinhold, 1993.

[9]. Gonzalez, Rafael C., and Richard E. Woods. Digital Image Processing. Addison­

Wesley, 1992. p. 518.

[10]. Haralick, Robert M., and Linda G. Shapiro. Computer and Robot Vision,

Volume I. Addison-Wesley, 1992. p. 158.

[11]. Floyd, R. W. and L. Steinberg. "An Adaptive Algorithm for Spatial Gray Scale,"

International Symposium Digest of Technical Papers. Society for Information

Displays, 1975. p. 36.

[12]. Lim, Jae S. Two-Dimensional Signal and Image Processing. Englewood Cliffs,

NJ: Prentice Hall, 1990. pp. 469-476.

[13]. Canny, John. "A Computational Approach to Edge Detection," IEEE

Transactions on Pattern Analysis and Machine Intelligence, 1986. Vol. PAMI-8,

No. 6, pp. 679-698.

[14]. Lim, Jae S. Two-Dimensional Signal and Image Processing. Englewood Cliffs,

NJ: Prentice Hall, 1990. pp. 478-488.

112

[15]. Parker, James R. Algorithms for Image Processing and Computer Vision. New

York: John Wiley & Sons, Inc., 1997. pp. 23-29.

[16]. Gonzalez, Rafael C., and Richard E. Woods. Digital Image Processing.

Addison-Wesley, 1992. p. 518.

[17]. Haralick, Robert M., and Linda G. Shapiro. Computer and Robot Vision,

Volume I. Addison-Wesley, 1992. p. 158.

[18]. Jain, Anil K. Fundamentals of Digital Image Processing. Englewood Cliffs, NJ:

Prentice Hall, 1989. pp. 150-153.

[19]. Pennebaker, William B., and Joan L. Mitchell. JPEG: Still Image Data

Compression Standard. New York: Van Nostrand Reinhold, 1993.

[20]. Robert M. Haralick and Linda G. Shapiro, Computer and Robot Vision, vol. I,

Addison-Wesley, 1992, pp. 158-205.

[21]. van den Boomgaard and van Balen, "Image Transforms Using Bitmapped

Binary Images," Computer Vision, Graphics, and Image Processing: Graphical

Models and Image Processing, vol. 54, no. 3, May, 1992, pp. 254-258.

[22]. Kak, A vinash C., and Malcolm Slaney, Principles of Computerized

Tomographic Imaging. New York: IEEE Press.

[23]. I. P. Lewis, "Fast Normalized Cross-Correlation", Industrial Light & Magic.

http://wv..;w.idiom.com/~zilla/Papers/nvisionJnterface/nip.html

[24]. Robert M. Haralick and Linda G. Shapiro, Computer and Robot Vision, Volume

II, Addison-Wesley, 1992, pp. 316-317.

[25]. Bracewell, Ronald N. Two-Dimensional Imaging. Englewood Cliffs, NJ:

Prentice Hall, 1995. pp. 505-537.

[26]. Lim, Jae S. Two-Dimensional Signal and Image Processing. Englewood Cliffs,

NJ: Prentice Hall, 1990. pp. 42-45.

[27]. Rein van den Boomgard and Richard van Balen, "Methods for Fast

Morphological Image Transforms Using Bitmapped Images," Computer Vision,

Graphics, and Image Processing: Graphical Models and Image Processing, vol. 54,

no. 3, May 1992, pp. 252-254.

1 I 3

[28). Rolf Adams, "Radial Decomposition of Discs and Spheres," Computer Vision,

Graphics, and Image Processing: Graphical Models and Image Processing, vol. 55,

no. 5, September 1993, pp. 325-332.

[29). Ronald Jones and Pierre Soille, "Periodic lines: Definition, cascades, and

application to granulometrie," Pattern Recognition Letters, vol. 17, 1996, 1057-

1063.

114

	Page 1
	Images
	Image 1
	Image 2

	Page 2
	Images
	Image 1
	Image 2

	Page 3
	Titles
	ACKNOWLEDGEMENTS

	Images
	Image 1

	Page 4
	Titles
	ABSTRACT

	Images
	Image 1

	Page 5
	Titles
	CONTENTS

	Images
	Image 1

	Page 6
	Images
	Image 1

	Page 7
	Images
	Image 1

	Page 8
	Images
	Image 1

	Page 9
	Titles
	1. ARTIFICIAL NEURAL NETWORKS
	1.1 Overview
	1.2 Neural Network Definition

	Images
	Image 1

	Page 10
	Images
	Image 1

	Page 11
	Images
	Image 1

	Page 12
	Titles
	1.3 History of Neural Networks

	Images
	Image 1

	Page 13
	Images
	Image 1

	Page 14
	Images
	Image 1

	Page 15
	Images
	Image 1
	Image 2
	Image 3

	Page 16
	Images
	Image 1

	Page 17
	Titles
	1.4 Analogy to the Brain

	Images
	Image 1

	Tables
	Table 1
	Table 2

	Page 18
	Images
	Image 1
	Image 2
	Image 3

	Page 19
	Images
	Image 1
	Image 2

	Page 20
	Titles
	1.5 Model of a Neuron

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Tables
	Table 1

	Page 21
	Titles
	1.6 Back-Propagation
	w

	Images
	Image 1
	Image 2

	Page 22
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 23
	Images
	Image 1
	Image 2

	Page 24
	Titles
	1. 7 Learning Processes

	Images
	Image 1
	Image 2

	Page 25
	Images
	Image 1

	Page 26
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 27
	Images
	Image 1
	Image 2
	Image 3

	Page 28
	Images
	Image 1
	Image 2
	Image 3

	Page 29
	Images
	Image 1
	Image 2
	Image 3

	Page 30
	Titles
	1.8 Learning Tasks

	Images
	Image 1

	Page 31
	Images
	Image 1
	Image 2

	Page 32
	Titles
	1.9 Activation Functions

	Images
	Image 1

	Page 33
	Titles
	1

	Images
	Image 1

	Page 34
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 35
	Titles
	~wu = a[v -8} Jeu

	Images
	Image 1
	Image 2
	Image 3

	Page 36
	Titles
	28
	Artificial Neural Networks
	dlngi
	1.10 Back propagation Model

	Images
	Image 1
	Image 2

	Page 37
	Titles
	d = 0(1- 0)(0-t)

	Images
	Image 1
	Image 2

	Page 38
	Images
	Image 1
	Image 2
	Image 3

	Page 39
	Titles
	1.11 Summary

	Images
	Image 1
	Image 2

	Page 40
	Titles
	2. IMAGE PROCESSING
	2.1 Overview
	2.2 Introduction

	Images
	Image 1
	Image 2

	Page 41
	Titles
	2.3 Elements of Image Analysis

	Images
	Image 1
	Image 2

	Page 42
	Titles
	~-------t

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 43
	Titles
	2.4 Patterns and Pattern Classes

	Images
	Image 1

	Page 44
	Titles
	. 6 The Outline
	MN
	2.5 Error Matrics

	Images
	Image 1

	Page 45
	Images
	Image 1

	Page 46
	Images
	Image 1

	Page 47
	Titles
	HL
	HH
	LL
	LH

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1
	Table 2

	Page 48
	Titles
	2. 7 The Inverse DWT of an Image

	Images
	Image 1

	Page 49
	Titles
	t
	1'
	D2 I- - - - - ~ - - - - - - - - - - _-.-., �... --..:..:.:::~--'------
	'

	Images
	Image 1
	Image 2
	Image 3

	Page 50
	Images
	Image 1

	Page 51
	Titles
	2.8 Object Recognition

	Images
	Image 1
	Image 2

	Page 52
	Titles
	2.9 Summary

	Images
	Image 1

	Page 53
	Titles
	3. IMAGE PROCESSING AND NEURAL NETWORKS
	3.1 Overview
	3.2 Introduction

	Images
	Image 1

	Page 54
	Titles
	3.3 Image Processing Algorithms

	Images
	Image 1

	Page 55
	Images
	Image 1

	Tables
	Table 1

	Page 56
	Images
	Image 1

	Tables
	Table 1

	Page 57
	Titles
	3.4 Neural Networks in Image Processing

	Images
	Image 1

	Page 58
	Images
	Image 1

	Page 59
	Images
	Image 1
	Image 2

	Page 60
	Images
	Image 1

	Page 61
	Images
	Image 1

	Page 62
	Titles
	3.5 Data Reduction and Feature Extraction

	Images
	Image 1

	Page 63
	Images
	Image 1

	Page 64
	Titles
	3.6 Image Segmentation

	Images
	Image 1

	Page 65
	Titles
	3.7 Real-Life Applications of Neural Networks

	Images
	Image 1

	Page 66
	Images
	Image 1
	Image 2

	Page 67
	Titles
	B

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 68
	Titles
	3.8 Summary

	Images
	Image 1

	Page 69
	Titles
	4. CHARACTER RECOGNITION SYSTEM USING NEURAL
	4.1 Overview
	4.2 Input Data Presentation

	Images
	Image 1

	Page 70
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1

	Page 71
	Images
	Image 1

	Tables
	Table 1

	Page 72
	Images
	Image 1

	Tables
	Table 1

	Page 73
	Titles
	Character Recognition System Using NN
	Table 4.3 The Output of the Neurons how it will be Match the Patterns
	4.4 Neural Network Design
	Neural Network Design is shown in figure 4.1 below which shows the number of input,
	65

	Images
	Image 1

	Tables
	Table 1

	Page 74
	Titles
	Figure 4.1 Back Propagation of Network Structure
	66

	Images
	Image 1

	Page 75
	Titles
	4.5 Setting the Weights

	Images
	Image 1

	Page 76
	Titles
	4.6 Bias Unit

	Images
	Image 1

	Page 77
	Titles
	5
	5
	69
	0
	a~~~~~~~~~~'---+
	-5
	0
	-5
	1
	4.7 Training the N.N.

	Images
	Image 1
	Image 2

	Page 78
	Titles
	Hidden-Layer input h = Ik = Iwk;O; as we have suggest that our weight is this and
	The equation for the sigmoid function is
	1
	l+ei~I
	a. Input layer (i)
	For input we have 26 inputs will be saved by the DAT file.
	b. Hidden layer (h)
	we are taking the value at our input at character is A *I*S
	I is the hidden-layer input matrix
	And
	S is the Sigmoid function matrix.
	70
	(4.1)

	Images
	Image 1

	Page 79
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 80
	Titles
	...

	Images
	Image 1

	Page 81
	Titles
	4.8 Summary

	Images
	Image 1

	Page 82
	Titles
	5. PRACTICAL CONSIDERATION USING MATLAB
	5.1 Overview
	5.2 Problem Statement
	5.3 Neural Network

	Images
	Image 1

	Page 83
	Titles
	1o";t~
	5.4 Architecture

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 84
	Titles
	5.5 Initialization
	5.6 Training

	Images
	Image 1

	Page 85
	Titles
	5. 7 System Performance

	Images
	Image 1

	Page 86
	Images
	Image 1

	Page 87
	Images
	Image 1

	Page 88
	Images
	Image 1

	Page 89
	Titles
	5.9 Practical Example

	Images
	Image 1

	Page 90
	Images
	Image 1
	Image 2

	Tables
	Table 1
	Table 2

	Page 91
	Titles
	5.10 Summary

	Images
	Image 1
	Image 2
	Image 3

	Page 92
	Titles
	CONCLUSION

	Images
	Image 1

	Page 93
	Titles
	APPENDIX I

	Images
	Image 1

	Tables
	Table 1

	Page 94
	Images
	Image 1

	Tables
	Table 1

	Page 95
	Images
	Image 1

	Tables
	Table 1

	Page 96
	Images
	Image 1

	Tables
	Table 1

	Page 97
	Images
	Image 1

	Tables
	Table 1

	Page 98
	Images
	Image 1

	Tables
	Table 1

	Page 99
	Images
	Image 1

	Tables
	Table 1

	Page 100
	Images
	Image 1

	Tables
	Table 1

	Page 101
	Images
	Image 1

	Tables
	Table 1

	Page 102
	Images
	Image 1

	Tables
	Table 1

	Page 103
	Images
	Image 1

	Tables
	Table 1

	Page 104
	Images
	Image 1

	Tables
	Table 1

	Page 105
	Images
	Image 1

	Tables
	Table 1

	Page 106
	Images
	Image 1

	Tables
	Table 1

	Page 107
	Images
	Image 1

	Page 108
	Images
	Image 1
	Image 2

	Page 109
	Titles
	A

	Images
	Image 1

	Page 110
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 111
	Titles
	103

	Images
	Image 1

	Page 112
	Images
	Image 1

	Page 113
	Images
	Image 1

	Page 114
	Images
	Image 1

	Page 115
	Images
	Image 1

	Page 116
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 117
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 118
	Titles
	110

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 119
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 120
	Titles
	REFERENCES

	Images
	Image 1

	Page 121
	Images
	Image 1

	Page 122
	Images
	Image 1
	Image 2
	Image 3

