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ABSTRACT 

In this project we will see that the neural network behaves like a baby because it is 

learning from what we are teaching it such as the examples which are giving to it. Also we 

will show how a neural network can recognize the alphabet letters as we teach it. 
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Artificial Neural Networks 

1. ARTIFICIAL NEURAL NETWORKS 

1.1 Overview 

This chapter presents an overview of neural networks, its history, simple structure, 

biological analogy and the Back propagation algorithm. 

In both the Perceptron Algorithm and the Back propagation Producer, the correct output 

for the current input is required for learning. This type of learning is called supervised 

learning. Two other types of learning are essential in the evolution of biological 

intelligence: unsupervised learning and reinforcement learning. In unsupervised 

learning a system is only presented with a set of exemplars as inputs. The system is not 

given any external indication as to what the correct responses should be nor whether the 

generated responses are right or wrong. Statistical clustering methods, without 

knowledge of the number clusters, are examples of unsupervised learning. 

Reinforcement learning is somewhere between supervised learning, in which the 

system is provided with the desired output, and unsupervised learning, in which the 

system gets no feedback at all on how it is doing. In reinforcement learning the system 

receivers a feedback that tells the system whether its output response is right or wrong, 

but no information on what the right output should be is provided.[27] 

1.2 Neural Network Definition 

First of all, when we are talking about a neural network, we should more properly say 

"artificial neural network" (ANN) because that is what we mean most of the time. 

Biological neural networks are much more complicated than the mathematical models 

we use for ANNs, but it is customary to be lazy and drop the "A" or the "artificial". 

An Artificial Neural Network (ANN) is an information-processing paradigm that is 

inspired by the way biological nervous systems, such as the brain, process information. 

The key element of this paradigm is the novel structure of the information processing 

system. It is composed of a large number of highly interconnected processing elements 

(neurons) working in unison to solve specific problems. ANNs, like people, learn by 

example. An ANN is configured for a specific application, such as pattern recognition 

or data classification, through a learning process. Learning in biological systems 
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Artificial Neural Networks 

involves adjustments to the synaptic connections that exist between the neurons. This is 

true of ANNs as well. 

• Definition: 
A machine that is designed to model the way in which the brain preference a 

particular taste or function. The neural network is usually implemented using 

electronic components or simulated as software. 

• Simulated: 
A neural network is a massive, parallel-distributed processor made up of simple 

processing units, which has neural propensity for storing experiential knowledge 

and making it available for use. It resembles the brain in two respects: 

1. The network from its environment through a learning process acquires 

knowledge. 

2. Interneuron connection strength, known as synaptic weights, are used to 

store the acquired knowledge. 

• Simulated: 
A neural network is a system composed of many simple processing elements 

operating in parallel whose function is determined by network structure, 

connection strengths, and the processing performed at computing elements or 

nodes. 

• Simulated: 
A neural network is a massive, parallel-distributed processor that has a natural 

propensity for storing experiential knowledge and making it available for use. It 

resembles the brain in two respects: 

1. Knowledge is acquired by the network through a learning process. 

2. Interneuron connection strengths, known as synaptic weights are used to 

store the knowledge. 

2 



Artificial Neural Networks 

• Simulated: 

A neural network is a computational model that shares some of the properties of 

the brain. It consists of many simple units working in parallel with no central 

control; the connections between units have numeric weights that can be 

modified by the learning element. 

• Simulated: 

A new form of computing inspired by biological models, a mathematical model 

composed of a large number of processing elements organized into layers. 

:'A computing system made up of a number of simple ,highly interconnected 

elements, which processes information by its dynamic state response to external 

inputs" 

Neural networks go by many aliases. Although by no means synonyms the names listed 

in figure 1.1 below. 

• Parallel distributed processing models 
• Connectivist /connectionism models 
• Adaptive systems 
• Self-organizing systems 
• Neurocomputing 
• Neuromorphic systems 

Figure 1.1 Neural Network Aliases 

All refer to this new form of information processing; some of these terms again when 

we talk about implementations and models. In general though we will continue to use 

the words "neural networks" to mean the broad class of artificial neural systems. This 

appears to be the one most commonly used 
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Artificial Neural Networks 

1.3 History of Neural Networks 

1.3.1 Conception (1890-1949) 

Alan Turing was the first to use the brine as a computing paradigm, a way of looking at 

the world of computing. That was in 1936. In 1943, a Warren McCulloch, a 

neurophysiologist, and Walter Pitts, an eighteen-year old mathematician, wrote a paper 

about how neurons might work. They modeled a simple neural network with electrical 

circuits. John von Neumann used it in teaching the theory of computing machines. 

Researchers began to look to anatomy and physiology for clues about creating 

intelligent machines. 

Another important book was Donald Hebb's the Organization of Behavior (1949) [2], 

which highlights the connection between psychology and physiology, pointing out that 

a neural pathway is reinforced each time it is used. Hebb's "Leaming Rule", as it is 

sometime known, is still used and quoted today. 

1.3.2 Gestation (1950s) 

Improvements in hardware and software in the 1950s ushered in the age of computer 

simulation. It became possible to test theories about nervous system functions. Research 

expanded and neural network terminology came into its own. 

1.3.3 Birth (1956) 

The Dartmouth Summer Research Project on Artificial Intelligence (AI) in the summer 

of 1956 provided momentum for both the field of AI and neural computing. Putting 

together some of the best minds of the time unleashed a whole raft of new work. Some 

efforts took the "high-level" (AI) approach in trying to create computer programs that 

could be described as "intelligent" machine behavior; other directions used mechanisms 

modeled after "low-level" (neural network) processes of the brain to achieve 

"intelligence". [7] 
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Artificial Neural Networks 

1.3.4 Early Infancy (Late 1950s-1960s) 

The year following the Dartmouth Project, John von Neumann wrote material for his 

book The Computer and the Brain (Yale University Press, 1958). Here he makes such 

suggestions as imitating simple neuron function by using telegraph relays or vacuum. 

The Perceptron, a neural network model about which we will hear more later, built in 

hardware, is the oldest neural network and still has use today in various form for 

applications such as character recognition. 

In 1959, Bernard Widrow and Marcian Hoff (Stanford) developed models for 

ADALINE, then MADALINE (Multiple Adaptive Liner Elements). This was the first 

neural network applied to real-world problem-adaptive filers to eliminate echoes on 

phone lines. As we mentioned before, this application has been in commercial use for 

several decades. 

One of the major players in the neural network reach from to the 1960s to current time 

is Stephen Grossberg (Boston University). He has done considerable writing (much of it 

tedious) on his extensive physiological research to develop neural network models. His 

1967 network, Avalanche, uses a class of networks to perform activities such as 

continuous-speech recognition and teaching motor commands to robotic arms.[10] 

1.3.5 Excessive Hype 

Some people exaggerated the potential of neural networks. Biological comparisons were 

blown out of proportion in the October 1987 issue of the "Neural Network Review", 

newsletter editor Craig Will quoted Frank Rosenblatt from a 1958 issue of the "New 

Yorker". 

1.3.6 Stunted Growth (1969-1981) 

In 1969 in the midst of such outrageous claims, respected voices of critique were raised 

that brought a halt too much of the funding for neural network research. Many 

researchers turned their attention to AI, which looked more promising at the time. 

• Amari (1972) independently introduced the additive model of a neural and used 

it to study the dynamic behavior of randomly connected neuron like elements. 

• Wilson and Cowan (1972) derived coupled nonlinear differential equations for 

the dynamic of spatially localized populations containing both excitatory and 

inhibitory model neurons. 
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Artificial Neural Networks 

• Little and Shaw (1975) described a probabilistic of a neuron, either firing or not 

firing an action potential and used the model to develop a theory of short term 

memory. 

• Anderson Silverstein Ritz and Jones (1977) proposed the brain state in a box 

(BSB) model consisting of simple associative network coupled to nonlinear 

dynamics. [14] 

1.3. 7 Late Infancy (1982 -Presentj 

Important development in 1982 was the publication of Kohonen's paper on self­ 

organizing maps "Kohonen 1982", which used a one or two dimensional lattice 

structure. 

In 1983 ,Kirkpatrick, Gelatt, and Vecchi described a new procedure called simulated 

annealing, for solving combinatorial optimization problems. Simulated annealing is 

rooted in statistical mechanics. 

Jordan (1996) by used a mean-field theory a technique also in statistical mechanics. 

A paper by Bator, Sutton and Anderson on reinforcement learning was published in 

1983. Although, they were not the first to use reinforcement learning (Minsky 

considered it in his 1954 Ph.D. thesis for example). 

In 1984 Braitenberg's book, Vehicles: Experiments in Synthetic Psychology, was 

published. 

In 1986 the development of the back-propagation algorithm was reported by Rumelhart 

Hinton and Williams ( 1986). 

In 1988 Linsker described a new principle for self-organization in a perceptual network 

(Linsker, 1988a) Also in 1988, Broomhead and Lowe described a procedure for the 

design of layered feed-forward networks using radial basis functions (RBF) which 

provide an alter native to multiplayer perceptrons. 

In 1989 Mead's book, Analog VLSI and Neural Systems, was published. This book 

provides an unusual mix of concepts drawn from neurobiology and VLSI technology. 
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In the early 1990s, Vapnik and coworkers invented a computationally powerful class of 

supervised leaning networks called Support Vector Machines, for solving pattern 

recognition regression, and the density estimation problem. "Boser, Guyon and Vapnik, 

1992, Cortes and Vapnik, 1995; Vapnik, 1995,1998." 

In 1982 the time was rip for renewed interest in neural networks. Several events 

converged to make this a pivotal year. 

John Hopfield (Caltech) presented his neural network paper to the National Academy of 

Sciences. Abstract ideas became the focuse as he pulled together previous work on 

neural networks. 

But there were other threads pulling at the neural network picture as well. Also in 1982 

the U.S. - Japan Joint Conference on Cooperative Competitive Neural Network, was 

held in Kyoto Japan. 

In 1985 the American Institute of Physics began what has become an annual Neural 

Networks for computing meeting. This was the first of many more conference to come 

in 1987 the institute of Electrical and Electronic Engineers (IEEE). The first 

international conference on neural networks drew more than 1800 attendees and 19 

vendors (although there were few products yet to show). Later the same year, the 

International Neural Network Society (INNS), was formed under the leadership of 

Grossberg in the U.S., Kohonen in Finland, and Amari in Japan. 

AI though there were two competing conferences in 1988, the spirit of cooperation in 

this new technology has resulted in joint spontional Joint Conference on Neural 

Networks (IJCNN) held in Japan in 1989 which produce 430 papers, 63 of which 

focused on application development. January 1990 IJCNN in Washington, D.C. clouded 

an hour's concert of music generated by neural networks. The Neural Networks for 

Defense meeting, held in conjunction with the June 1989 IJCNN above, gathered more 

than 160 represntives of government defense and defense contractors giving 

presentations on neural network efforts. When the U.S. Department of Defense 

announced its 1990 Small Business Innovation Program 16 topics specifically targeted 

neural networks. An additional 13 topics mentioned the possibility of using neural 

network approaches. The year of 1989 was of unfolding application possibilities. On 
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September 27, 1989, the IEEE and the Learning Neural Networks Capabilities created 

applications for today and the Future. 

The ICNN in 1987 included attendees from computer science electrical engineering, 

physiology cognitive psychology, medicine and even a philosopher of two. In May of 

1988 the North Texas Commission Regional Technology Program convened a study 

group for the purpose of reviewing the opportunities for developing the field of 

computational neuroscience. Their report of October 1988 concluder that the present is 

a critical time to establish such a center. [ 1] 

Believing that a better scientific understanding of the brain and the subsequent 

application to computing technology could have significant impact. They assess their 

regional strength in electronics and biomedical science and their goals are both 

academic and economic. You can sense excitement and commitment in their plans. 

Hecht-Nielsen (1991) attributes a conspiratorial motive to Minsky and Papert. Namely, 

that the MIT AI Laboratory had just been set up and was focussing on LISP based AI, 

and needed to spike other consumers of grants. A good story, whatever the truth, and 

given extra spice by the coincidence that Minsky and Rosenblatt attended the same class 

in high-school. Moreover, any bitterness is probably justified because neural network 

researchers spent the best part of 20 years in the wilderness. 

Work did not stop however, and the current upsurge of interest began in 1986 with the 

famous PDP books which announced the invention of a viable training algorithm (back 

propagation) for multilayer networks (Rumelhart and McClelland, 1986). [23] 
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Table 1.1. Summarize the history of the development ofN.N. 

Table 1.1 Development ofN.N. 

Present Late 80s to now Interest explodes with conferences, articles, 

~ simulation, new companies, and 

government funded research. 

Late Infancy 1982 Hopfiled at National Academy of Sciences 

Stunted Growth 1969 Minsky & Papert's critique Perceptrons 

Early Infancy Late 50s, 60s Excessive Hype Research efforts expand 

Birth 1956 AI & Neural computing Fields launched 

Dartmouth Summer Research Project 

Gestation 1950s Age of computer simulation 

1949 Hebb, the Organization of Behavior 

1943 McCulloch & Pitts paper on neurons 

1936 Turing uses brain as computing paradigm 

Conception 1890 James, Psychology (Briefer Curse) 

1.4 Analogy to the Brain 
The human nervous system may be viewed as a three stage system, as depicted in the 

block diagram of the block diagram representation of the nervous system. 

Stimu - Respo._n !us ~ ~ ~ Receptors Neural Net Effectors ~ ~ 
~ ~ ~ ~ 

se 

Figure 1.2 Block Diagram of the Nervous System. 

(Arbib,1987) Central to the system is the brain, represented by the neural (nerve) 

network which continually receives information, perceives if, and makes appropriate 

decisions. Two sets of arrows are shown in the block diagram. Those pointing from left 
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to right indicate the forward transmission of information-bearing signals through the 

system. The receptors convert stimuli from the human body or the external environment 

into electrical impulses which convey information to the neural network (brain). The 

effectors convert electrical impulses by the neural network into discernible responses as 

system outputs. 

1.4.1 Natural Neuron 

A neuron is a nerve cell with all of its processes. Neurons are one of the mam 

distinctions of animals (plants do not have nerve cells). Between seven and one hundred 

different classes of neurons have been identified in humans. The wide variation is 

related to how restrictively a class is defined. We tend to think of them as being 

microscopic, but some neurons in your legs are as long three meters. The type of neuron 

found in the retina is shown in figure 1.3. 

Figure 1.3 Neuron Natural. [23] 

An example is a bipolar neuron. Its name implies that has two processes. The cell body 

contains the nucleus, and leading into the nucleus are one or more dendrites. These 

branching, tapering processes of the nerve cell, as a rule, conduct impulses toward the 

cell body. The axon is the nerve cell process that conducts the impulse type of neurons. 

This one gives us the functionality and vocabulary we need to make analogies. 

10 
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1.4.2 Artificial Neuron 

Our paper and pencil model starts by copying the simplest element the neuron call our 

artificial neuron a processing element or PE for short. The word node is also used for 

this simple building block, which is represented by circle in the figure 1.4 "a single 

mode or processing element PE or Artificial Neuron" 

Inputs 

I~ 

Outputs 2---- 

N 

Figure 1.4 Artificial Neuron 

The PE handles several basic functions: (1) Evaluates the input signals and determines 

the strength of each one, Calculates the total for the combined input signals and 

compare that total to some threshold level, and (3) Determines what the output should 

be. 

Input and Output: Just as there are many inputs (stimulation levels) to a neuron there 

should be many input signals to our PE. All of them should come into our PE 

simultaneously. In response a neuron either "fires" or "doesn't fire" depending on some 

threshold level. The PE will be allowed a single output signal just as is present in a 

biological neuron. There are many inputs and only one output. 

Weighting Factors: Each input will be given a relative weighting which will affect the 

impact of that input. In figure 1. 5, "a single mode or processing element PE or Artificial 

Neuron" with weighted inputs. 

11 
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Inputs 

Outputs= Sum ofinputs*Weights 
------•'Note: Many inputs one output' 

Figure 1.5 Single Mode Artificial Neuron 

This is something like the varying synaptic strengths of the biological neurons. Some 

inputs are more important than others in the way that they combine to produce an 

impulse. 

1.5 Model of a Neuron 

The neuron is the basic processor in neural networks. Each neuron has one output, 

which generally related to the state of the neuron -its activation, which may fan out to 

several other neurons. Each neuron receives several inputs over these connections, 

called synapses. The inputs are the activations of the neuron. This is computed by 

applying a threshold function to this product. An abstract model of the neuron is shown 

in figure 1.6. 

Incoming Activation 

L I e 
adder I thmhald\ Outgoing 

function activation 
activation 

functin 

Figure 1.6 Diagram of Abstract Neuron Model. [23] 
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1.6 Back-Propagation 

The most popular method for learning in the multiplayer network is called "back­ 

propagation." It was first invented in 1996 by Bryson, but was more or less ignored 

until the mid-1980s. The reason for this may be sociological, but may also have to do 

with the computational requirements of the algorithm on nontrivial problems. 

The back-propagation learning algorithm works on multiplayer feed-forward 

networks, using gradient descent in weight space to minimize the output error. It 

converges to a locally optimal solution, and has been used with some success in a 

variety of applications. As with all hill-climbing techniques, however, there is no 

guarantee that it will find a global solution. Furthermore, its converge is often very 

slow. 

1.6.1 Back-Propagation Learning 
Suppose we want to construct a network for the restaurant problem. So we will try a 

two-layer network. We have ten attributes describing each example, so we will need ten 

input units. In figure 1. 7, we show a network with four hidden nits. This turns out to be 

about right for this problem. 

w J,1 

Output units O, 

Hidden units ai 

Input units I k 

Figure 1.7 A two layer feed forward network for the restaurant problem. [23] 
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Example inputs are presented to the network, and if the network computes an output 

vector that matches the target, nothing is done. If there is an error ( a difference between 

the output and target), then weights are adjusted to reduce this error. The trick is to 

assess the blame for an error and divide it among the contributing weights. In 

Perceptrons, this is easy, because there is only one weight connecting each input and 

output. But in multiplayer networks, there are many weights connecting each input to an 

output and each of these weights contributes to more than one output. 

The back-propagation algorithm is a sensible approach to dividing the contribution of 

each weight. As in the Perceptron Learning Algorithm, we try to minimize the error 

between each target output and the output actually computed by the network. At the 

output layer the weight update rule is very similar to the rule for the perceptron. 

However, there are two differences. The activation of the hidden unit aj is used instead 

of the input value; and the rule contains a term for the gradient of the activation 

function. If Em is the error (Ti-Or) at the output node, then the weight update rule for the 

link from unit j to unit i is 

(1.1) 

Where g' is the derivative of the activation g will find it convenient to define a new 

error term ~; which for output node is defined as ~; = Err.g'(in.), The update rule 

then becomes: 

(1.2) 

For updating the connections between the input and the hidden units, we need to define 

a quantity analogous to the error term for output node. The propagation rule so the 

following: 

(1.3) 

Now the weight update rule for the weights between the inputs and the hidden layer is 

almost identical to the update rule for the output layer. 
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(1.4) 

Function Back-Prop-UPDATE (network, examples,a) returns a network with 
modified weights. 
Inputs: network, a multiplayer network 
Examples, asset of input/output pairs a, the learning rate. 
Repeat 
For each e in example do 
0 ~ TUN -NETWORK(network,Ie) 
Err' ~ ye -0 
W . ~ W . + a x a . x Err e x g '(in ) 

}J JJ } I I 

for each subsequent layer in network do 
l':.j ~ g'(in)I,;wJ,il':.j 

wk,} ~ wk,; + a X I k X I':. j 

end 
end 
until network has converged 
return network 

Figure 1.8 Back propagation algorithm for updating weights in a multiplayer network 

Back-propagation provides a way of dividing the calculation of the gradient among the 

unit so the change in each weight can be calculated by the unit to which the weight is 

attached using only local information. 

We use the sum of squared errors over the output values: 

E = i I (T, - O; )2 
I 

(1.5) 

The key insight again is that the output values O, are a function of the weights for 

general two-layer network, we can write: 

(1.6) 

15 
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E(W) = ± Icri -g(Iwj,ig(Iwk,Jk)))2 
I } 

(1.7) 

1. 7 Learning Processes 

Learning is a process by which the free parameters of a neural network are a adapted 

through a process of stimulation by the environment in which the network is embedded. 

The type of learning is determined by a manner in which the parameter change takes 

place. 

This definition of the learning process implies the following sequence of events: 

• The neural network is stimulated by an environment. 

• The neural network undergoes changes in its parameters as a result of this 

stimulation. 

• The neural network responds in a new way to the environment because of the 

changes that have occurred in its internal structure. 

A prescribed set of well-defined rules for the solution of a learning problem is called a 

"learning algorithm." 

Basically learning algorithms differ from each other in the way in which the adjustment 

to a synaptic weight of neurons is formulated. Another factor to be considered is the 

manner in which a neural network (learning machine) is made up of a set of 

interconnected neurons. Learning paradigm refers to a model of the environment in 

whish the neural network operates. 

1.7.1 Memory-Based Learning 

In memory-based learning, all (or most) of the past experiences are explicitly stored in a 

large memory of correctly classified input-output examples. 

(1.8) 

Where xi denotes an input vector and di denotes the corresponding desired response. 
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1.7.2 Hebbian Learning 

When an axon of cell A is near enough to excite a cell B, it repeatedly or persistently 

takes part in firing it. Some growth processes or metabolic changes take place in one or 

both cell such that A is efficiency as one of the cells firing Bis increased. 

1. If two neurons on either side of a synapse are selectively ( connection) activated 

simultaneously (i.e. then the strength of that synapse is selectively increased). 

2. If two neurons on either side of a synapse are active asynchronously, then that 

synapse is selectively weakended or eliminated. 

The following are four key mechanisms that characterize a Hebbian Synapse: 

1. Time-dependent mechanism. This mechanism refers to the fact that the 

modification in the Hebbian synapse depend on the exact time of occurrence of 

the presynaptic and postsynaptic signals. 

2. Local mechanism. By its nature a synapse is the transmission site where 

information-bearing signals (representing ongoing activity in the presynaptic 

and postsynaptic units) are in spatiotemporal congtiguity. 

3. Interactive mechanism. The occurrence of a change in the Hebbian synapse 

depends on signals on both sides of the synapse. 

4. Conjunctional or correlational mechanism. One interpretation of Hebb's 

postulate of learning is that the condition for a change in synaptic efficiency is 

the conjunction of presynaptic and posynaptic signals. 

1.7.2.1 Synaptic Enhancement and Depression 

The conception of a Hebbian modification by is recognizing that positively correlated 

activity produces synaptic weakening; synaptic for depression may also be of a 

noninteractive type. The classification of modifications such as Hebbian, anti-Hebbian, 

and non-Hebbian, according to this scheme, increases its strength when these signals are 

either uncorrelated or negatively correlated. 
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1.7.2.2 Mathematical Models of Hebbian Modifications 

To formulate Hebbian learning in mathematical terms, consider a synaptic weight Wkj 

of neuron k with presynaptic and postsynaptic signals denoted by Xj and Yk respectively. 

The adjustment applied to the synaptic weight Wkj, at time step n, is expressed in the 

general form: 

!iwkJ(n) = f(y (n),x;(n)) (1.9) 

Where F(.,.) is a function of both postsynaptic and presynaptic signals the signals xj(n) 

and Yk(n) are often treated as dimensionless. 

1.7.2.3 Hebbian Hypothesis 

The simplest form of Hebbian learning is described by: 

(1.10) 

Where T/ is a positive constant that determine the rate of learning, it clearly emphasizes 

the correlational nature of a Hebbian synapse. It is sometimes referred to as the activity 

product rule. (The top curve of figure 1.9). 

Postsvnaotic activitv V1r 

Hebb's hypothesis 

!iwk; 

nee hypothesis 

0 

-17(xJ -x)y 
Maximum depression 

point 

Figure 1.9 Illustration of Hebb's Hypothesis and the Covariance Hypothesis. [23] 
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With the change ~wk/ plotted, versus the output signal (postsynaptic activity) Yk, 

therefore exponential growth finally drives the synaptic connection into staturation. At 

that point no information will be stored in the synapse and selectivity is lost. 

Covariance hypothesis: One way of overcoming the limitation of Hebb's hypothesis is 

to use covariance hypothesis introduced by Sejnowski. In this hypothesis, the 

presynaptic and postsynaptic signals in are replaced by the departure of presynaptic and 
- 

postsynaptic signals from their respective values over a certain time interval. Let x and 

y denote the time average values of the presynaptic signal Xj, and postsynaptic signal Yk 

respectively according to the covariance hypothesis. The adjustment applied to the 

synaptic weight Wkj is defined by: 

- 
~wk1 = JJ(x1 - x)(yk - y) (1.11) 

Where 1J is the learning rate parameter, the average values x and y constitute 

presynaptic and postsynaptic thresholds. This determines the sign of synaptic 

modification. 

1.7.3 Competitive Learning 

In competitive learning as the name implies the output neurons of a neural network 

compete among themselves to become active (fired). The several output neurons may be 

active simultaneously in completive learning; only a signal output neuron is active at 

any time. It is this features that may be used to classify a set of input patterns. 

The three basic elements to a competitive learning rule. 

• A set of neurons that are all the same except for some randomly distributed 

synaptic weight and which therefore respond differently to a given set of input 

patterns 

• A limit imposed on the strength of each neuron. 

• A mechanism that permits the neurons to compete for the right to respond to a 

given subset of input; such that only one output neurons. 
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In the simplest form of competitive learning the neuronal network has a single layer of 

output neurons. Each of which is fully connected to the input nodes. The network may 

include feedback connection among the neurons as indicated in figure 1.10. 

x, 

X, - 
Layer of source node 

Single layer of 
output neurons 

Figure 1.10 Feedback Connections Among the Neurons. [23] 

For a neuron k, to be the winning neuron, its induced local field Vk for a specified input 

pattern. X must be the largest among all the neurons in the network. The output signal 

Yk, of winning neurons k is set equal to one. The output signals of all the neurons that 

lose the competition are set equal to zero. We thus write: 

-{1 ifv, > vJforallj,j "* k 
Yk - 

o otherwise 
(1.12) 

The induced local field vk represents the combined action of all the forward and 

feedback inputs to neuron k. 

Let Wkj denote the synaptic weight connecting input node j to neuron k. Suppose that 

each neurons is allotted a fixed amount of synaptic weight, which is distributed among 

its input node that is: 

L wkJ = 1 For all k 
j 

(1.13) 
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The change Liwk1 applied to synaptic weight wkJ is defined by: 

-{"7 (xl - wk)if neuron k wins the compention 
wk - 

" 0 if neuron k loses the compention 
(1.14) 

Where ry is the learning rate parameter this has the overall effect of moving the synaptic 

weight vector Wk of winning neurons k toward the input pattern x- 

1.7.4 Boltzmann Learning 

The Boltzmann learning rule named in honor of Ludwig Boltzmann is a stochastic 

learning algorithm derived from ideas rooted in statistical mechanics. In a Boltzmann 

machine, the neurons constitute a recurrent structure and they operate in a binary 

manner. Since, for example, they are either in an on state denoted by + 1 or in an off 
state denoted of which is determined by the particular states occupied by the individual 

neurons of the machine as shown by: 

(1.15) 

Where Xj is the state of neuron j and Wkj is the synaptic weight connecting neuron j to 

neuron k, the fact that j * k means simply that none of the neurons in the machine has 

self feedback. The machine operates by choosing a neuron at random, for example 

neuron k at some step of the learning process then flipping the state of neuron k from 

state x, at some temperature T with probability. 

(1.16) 

Where Mk is the energy change resulting from such a flip notice that T is not physical 

temperature but rather a pseudo temperature. 

The neurons of a Boltzmann machine partition into two functional groups: visible and 

hidden. The visible neurons provide an interface between the network and the 
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environment in which it operates, whereas the hidden neurons always operate freely. 

There are two modes of operation to be considered. 

• Clamped condition in which the visible neurons are all clamped onto specific 

states determined by the environment. 

• Free running condition in which all the neurons visible and hidden are allowed 

to operate freely. 

According to the Boltzmann learning rule, the change L).Wk1 applied to the synaptic 

weight w k] from neuron j to neuron k by: 

L).Wkj = 77CP+ - p . ), J * k 
k; kj 

(1.17) 

Where 77 is a learning rate parameter, note that both p + and p _ range in value from -1 
k; k; 

to +l. 

1.8 Learning Tasks 
In this context we will identify six learning tasks that apply to the use of neural network 

in one form or another. 

a. Pattern Association 

An associative memory is a brain-like, distributed memory that learns by association. 

Association has been known to be a prominent feature of human memory since 

Aristotle and all models of cognition use in one form or another as the basic 

operation. There are two phases involved in the operation of an associative memory: 
< 

• Storage phase, which refers to the training of the network in accordance 

with xk ~ Yk, k = 1,2,3 ..... q 

• Recall phase, which involves the retrieval of a memorized pattern in 

response to the presentation of a noisy or distorted version of a key 

pattern to the network. 
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b. Pattern Recognition 

Humans are good at pattern recognition. We receive data from the world around 

us via our senses and are able to recognize the source of the data. 

Pattern recognition is formally defined as the process whereby a received 

pattern/signal is assigned to one of a prescribed number of classes (categories). 

c. Function Approximation 

The third learning task of interest is that of function approximation. 

d. Control 

The control of a plant is another learning task that can be done by a neural 

network; by a plant we mean a process or critical part of a system that is to be 

maintained in a controlled condition. 

e. Filtering 

The term filter often refers to a device of algorithm used to extract information 

about a prescribed quantity of interest from a set of noisy data. 

f. Beamforming 
Beamforming is a spatial form of filtering and is used to distinguish between the 

spatial properties of a target signal and background noise. The device used to do 

the beamforming is called a "beamformer." 
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1.9 Activation Functions 

This threshold function is generally some form of nonlinear function. One simple 

nonlinear function that is appropriate for discrete neural nets is the step function. One 

variant of the step function is: 

-I 

Figure 1.11 Hard Activation Functions 

f(x) = {~1 (x) 
-1 

x>O 

x=O 
x<O 

(1.18) 

Where /' (x) refers to the previous value of f(x) (that is the activation of the neuron will 

not change) 

Where x is the summation ( over all the incoming neurons) of the product of the 

incoming neuron's activation, and the connection: 
/1 

X= IA;W; 
i=O 

(1.19) 

The number of incoming neurons, is A the vector of incoming neurons and w is the 

vector of synaptic weights connecting the incoming neurons to the neurons we are 

examining. One more appropriate to analog is the sigmoid, or squashing, function; an 

example is the logistic functions illustrated in figure 1.12. 
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Figure 1.12 Sigmoid Functions 

1 
J(x)= . + e (1.20) 

Another popular alternative is: 

f (x) = tanh(x) (1.21) 

The most important characteristic of our activation function is that it is nonlinear. If we 

wish to use activation function as a multiplayer network, the activation function must be 

nonlinear, or the computational will be equivalent to a single-layer network. 
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1.9.1 A.N.N. 

All of the knowledge that a neural network possesses is stored in the synapses. The 

weights of the connections between the neurons of diagram of the synapse layer model. 

Figure 1.13 Diagram of Synapse Layer Model 

However the network acquires that knowledge, this happens during training aa g 

pattern associations are presented to the network in sequence, and the weights are 

adjusted to capture this knowledge. The weight adjustment scheme is known as the 

"learning law". One of the first learning methods formulated was Hebbian Leaming. 

Donald Hebb, in his organization of behavior formulated the concept of "correlation 

learning". This is the idea that the weight of a connection is adjusted based on the 

values of the neurons its connects: 

(1.22) 

Where a is the learning rate a, is the activation of the ith neuron in one neuron layer, aj 

is the activation of the jth neuron in another layer, and Wij is the connection strength 

between the two neurons. A variant of this learning rule is the signal Hebbian Law: 

(1.23) 

S is a sigmoid 
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1.9.2 Unsupervised learning 

One method of learning is the unsupervised learning method. In general, an 

unsupervised learning method is one in which weight adjustments are not made based 

on comparison with some target output. There is no teaching signal feed into the weight 

adjustments. This property is also known as self - organization. 

1.9.3 Supervised learning 

In many models, learning takes the form of supervised training. I present input pattern 

one after the other to the neural network and observe the recalled output pattern in 

comparison with our desired result, there is needed some way of adjusting the weights 

which takes into account any error in the output pattern. 

An example of a supervised learning law is the Error Correction Law: 

(1.24) 

A before a is again the learning rate, ai the activation of the ith neuron, bj is the 

activation of the jth neuron in the recalled pattern, and cj is the deired activation of the 

jth neuron. 

1.9.4 Reinforcement learning 

Another learning method, known as reinforcemnet learing fits into the general category 

of supervised learning. However, its formula differs from the error correction formula 

just presented. This type of learning is similar to supervised learning except that each 

ouput neuron gets an error value. Only one error value is computed for each ouput 

neuron. The weight adjustment formula is then: 

~wu = a[v -8} Jeu (1.25) 

Again a is the learning rate, v is the single value indicting the total error of the output 

pattern, and 8 is the threshold value for the jth output neuron. We need to spread out 

this generalized error for the jth output neuron to each of the incoming i neurons, is a 

value representing the eligibility of the weight for updating. This may be computed as: 
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dlngi 
dwu 

Where g, is the probability of the output being correct given the input from the ith 

(1.26) 

incoming neuron. (This is vague description; the probability function is of necessity a 

heuristic estimate and manifests itself differently from specific model to specific 

model). 

1.10 Back propagation Model 

Back propagation of errors is a relatively generic concept. The Back propagation model 

is applicable to a wide class of problems. It is certainly the predominant supervised 

training algorithm. Supervised learning implies that we must have a set of good pattern 

associations to train with. The back propagation model presented in figure 1.14. 

0 output 
layer 

neurons 

W2 weight 
matrix 

h Hidden-layer 
neurons 

WI Weight 
matrix 

I input layer 
neurons 

Figure 1.14 Diagram of Back propagation Topology. [23] 
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It has three layers of neurons: an input layer, a hidden layer, and an output layer. There 

are two layers of synaptic weights. There is a learning rate term, a in the subsequent 

formulas indicating how much of the weight changed to effect on each pass this is 

typically a number between O and 1. There is a momentum term e indicating how much 

a previous weight change should influence the current weight change. There is also a 

term indicating within what tolernce we can accept an output as good. 

1.10.1 Back Propagation Algorithm 

Assign random values between -1 and + 1 to the weghts between the input and hidden 
layers, the weights between the hidden and output layers, and the thershold for the 

hidden layer and output layer neurnos train the network by preforming the following 

procedure for all pattern pairs: 

Forward Pass. 

I. Computer the hidden layer neuron activations: 

h=F(iWl) (1.27) 

Where h is the vector of hidden layer neurons i is the vector of input layer 

neurons, and Wl the weight matrix between the input and hidden layers. 

2. Compute the output layer neuron activation: 

O=F(hW2) (1.28) 

Where o represents the output layer, h the hidden layer, W2 the matrix of 

synapses connecting the hidden and output layers, and FO is a sigmoid 

activation function we will use the logistic function: 

1 
f(x) = - + e (1.29) 

Backward Pass. 

3. Compute the output layer error (the difference between the target and the 

observed output): 

d = 0(1- 0)(0-t) (1.30) 

Where d is the vector of errors for each output neuron, o is the output layer, and 

t is the target correct activation of the output layer. 
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4. Compute the hidden layer error: 

e = h(I- h)W2d (1.31) 

Where is e is the vector of errors for each hidden layer neuron. 

5. Adjust the weights for the second layer of synapses: 

W2 = W2+ f..W2 (1.32) 

Where f..W2 is a matrix representing the change in matrix W2. It is computed 

as follows: 

(1.33) 

Where a is the learning rate, and 8 is the momentum factor used to allow the 

previous weight change to influence the weight change in this time period. This 

does not mean that time is somehow incorporated into the mode. It means only 

that a weight adjustment has been made. This could also be called a cycle. 

6. Adjust the weights for the first layer of synapses: 

WI= WI+WI, (1.34) 

Where 

WI, = aie + EMWI,_1 (1.35) 

Repeat step I to 6 on all pattern pairs until the output layer error (vector d) is within 

the specified tolerance for each pattern and for each neuron. 

Recall: 

Present this input to the input layer of neurons of our back propagation net: 

• Compute the hidden layer activation: 

h = F(Wii) (1.36) 
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• Computer the output layer: 

0 = F(W2h) (1.37) 

The vector o is our recalled pattern. 

1.10.2 Strengths and Weaknesses 

The Back Propagation Network has the ability to learn any arbitrarily complex 

nonlinear mapping this is due to the introduction of the hidden layer. It also has a 

capacity much greater than the dimensionality of its input and output layers as we will 

see later. This is not true of all neural net models. 

However Back propagation can involve extremely long and potentially infinite training 

time. If you have a strong relationship between input and outputs and you are willing to 

accept results within a relatively broad time, your training time may be reasonable. 

1.11 Summary 
In this chapter the followings were discussed Perceptron Algorithm, supervised and 

unsupervised algorithms, Neural network definition, some history of the Neural 

network, Natural Neuron, Artificial Neuron, the Back propagation algorithm and their 

models, Leaming processes and their tasks, and the Activation function. 
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2. IMAGE PROCESSING 

2.1 Overview 

This chapter presents an overview of image processing, image analysis systems, dividing 

the spectrum of techniques in image analysis into three basic areas is conceptually useful. 

Finally, high-level processing involves recognition and interpretation, the principal 

subjects of this chapter. 

2.2 Introduction 

Image analysis is a process of discovering, identifying, and understanding patterns that 

are relevant to the performance of an image-based task. One of the principal goals of 

image analysis by computer is to endow a machine with the capability to approximate, in 

so me sense, a similar capability in human beings. For example, in a system for 

automatically reading images of typed documents, the patterns of interest are 

alphanumeric characters, and the goal is to achieve character recognition accuracy that is 

as close as possible to the superb capability exhibited by human beings for performing 

such tasks. 

Thus an automated image analysis system should be capable of exhibiting various 

degrees of intelligence. The concept of intelligence is somewhat vague, particularly with 

reference to a machine. However, conceptualizing various types of behavior generally 

associated with intelligence is not difficult. Several characteristics come immediately to 

mind: (1) the ability to extract pertinent information from a background of irrelevant 

details; (2) the capability to learn from examples and to generalize this knowledge so that 

it will apply in new and different circumstances; and (3) the ability to make inferences 

from incomplete information. 

Image analysis systems with these characteristics can be designed and implemented for 

limited operational environments. However, we do not yet know how to endow these 

systems with a level of performance that comes even close to emulating human 

capabilities in performing general image analysis functions. Research in biological and 

computational systems continually is uncovering new and promising theories to explain 
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human visual cognition. However, the state of the art in computerized image analysis for 

the most part is based on heuristic formulations tailored to solve specific problems. For 

example, some machines are capable of reading printed, properly formatted documents at 

speeds that are orders of magnitude faster than the speed that the most skilled human 

reader could achieve. However, systems of this type are highly specialized and thus have 

little or no extendability. 

2.3 Elements of Image Analysis 

Dividing the spectrum of techniques in image analysis into three basic areas is 

conceptually useful. These areas are (1) low-level processing, (2) intermediate level 

processing, and (3) high-level processing. Although these subdivisions have no definitive 

boundaries, they do provide a useful framework for categorizing the various processes 

that are inherent components of an autonomous image analysis system. Figure 2.1 

illustrates these concepts, with the overlapping dashed lines indicating that clear-cut 

boundaries between processes do not exist For example, thresholding may be viewed as 

an enhancement (preprocessing) or a segmentation tool, depending on the application. 

Low-level processing deals with functions that may be viewed as automatic reactions, 

requiring no intelligence on the part of the image analysis system. We treat image 

acquisition and preprocessing as low-level functions. This classification encompasses 

activities from the image formation process itself to compensations, such as noise 

reduction or image deblurring. Low-level functions may be compared to the sensing and 

adaptation processes that a person goes through when trying to find a seat immediately 

after entering a dark theater from bright sunlight. The (intelligent) process of finding an 

unoccupied seat cannot begin until a suitable image is available. The process followed by 

the brain in adapting the visual system to produce such an image is an automatic, 

unconscious reaction. 

Intermediate-level processing deals with the task of extracting and characterizing 

components (say, regions) in an image resulting from a low-level process. As figure 2.1 

indicates, intermediate-level processes encompass segmentation and description, using 

techniques. Some capabilities for intelligent behavior have to be built into flexible 

segmentation procedures. For example, bridging small gaps in a segmented boundary 
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involves more sophisticated elements of problem solving than mere low-level automatic 

reactions. 

Intermediate-level processing 

Segmentation Representation 
and description 

I 

~-------t 
I 
I 
I 

I 
-1------------1 _ 

I I 
I 

Preprocessing I -----------------------------~- 

Knowledge base 
Recognition and 
interpretation 

Result 

Image 
acquisition 

Low-level processing High-level processing 

Figure 2.1 Elements of Image Analysis 

Finally, high-level processing involves recognition and interpretation, the principal 

subjects of this chapter. These two processes have a stronger resemblance to what 

generally is meant by the term intelligent cognition. The majority of techniques used for 

low- and intermediate-level processing encompass a reasonably well-defined set of 

theoretic formulations. However, as we venture into recognition, and especially into 

interpretation, our knowledge and understanding of fundamental principles becomes far 

less precise and much more speculative. This relative lack of understanding ultimately 

results in a formulation of constraints and idealizations intended to reduce task 

complexity to a manageable level. The end product is a system with highly specialized 

operational capabilities. 
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The material in the following sections deals with: (1) decision-theoretic methods for 

recognition, (2) structural methods for recognition, and (3) methods for image 

interpretation. Decision-theoretic recognition is based on representing patterns in vector 

form and then seeking approaches for grouping and assigning pattern vectors into 

different pattern classes. The principal approaches to decision-theoretic recognition are 

minimum distance classifiers, correlators, Bayes classifiers, and neural networks. In 

structural recognition, patterns are represented in symbolic form (such as strings and 

trees), and recognition methods are based on symbol matching or on models that treat 

symbol patterns as sentences from an artificial language. Image interpretation deals with 

assigning meaning to an ensemble of recognized image elements. The predominant 

concept underlying image interpretation methodologies is the effective organization and 

use of knowledge about a problem domain. Current techniques for image interpretation 

are based on predicate logic, semantic networks, and production (in particular, expert) 

systems. 

2.4 Patterns and Pattern Classes 

As stated in Section 2.2, the ability to perform pattern recognition at some level is 

fundamental to image analysis. Here, a pattern is a quantitative or structural description 

of an object or some other entity of interest in an image. In general, a pattern is formed by 

one or more descriptors. In other words, a pattern is an arrangement of descriptors. (The 

name features is of ten used in the pattern recognition literature to denote descriptors.) A 

pattern class is a family of patterns that share some common properties. Pattern classes 

are denoted w1, «», .... , WM where M is the number of classes. Pattern recognition by 

machine involves techniques for assigning patterns to the irrespective classes­ 

automatically and with as little human intervention as possible. 
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2.5 Error Matrics 

Two of the error metrics used to compare the various image compression techniques are 

the Mean Square Error (MSE) and the Peak Signal to Noise Ratio (PSNR). The MSE is 

the cumulative squared error between the compressed and the original image, whereas 

PSNR is a measure of the peak error. The mathematical formulae for the two are 

MN 
~ L L [I (x,y) - I' (x,y)]2 

y=l x=l (2.1) 

PSNR = 20 * loglO (255 I sqrt(MSE)) 

Where l(x,y) is the original image, I'(x,y) is the approximated version (which is actually 

the decompressed image) and M,N are the dimensions of the images. A lower value for 

MSE means lesser error, and as seen from the inverse relation between the MSE and 

PSNR, this translates to a high value of PSNR. Logically, a higher value of PSNR is good 

because it means that the ratio of Signal to Noise is higher. Here, the 'signal' is the 

original image, and the 'noise' is the error in reconstruction. So, if you find a compression 

heme having a lower MSE (and a high PSNR), you can recognize that it is a better one . 

. 6 The Outline 

'e'Il take a close look at compressing grey scale images. The algorithms explained can 

easily extended to color images, either by processing each of the color planes 

sparately, or by transforming the image from RGB representation to other convenient 

sentations like YUV in which the processing is much easier. 

usual steps involved in compressing an image are 

l. Specifying the Rate (bits available) and Distortion (tolerable error) parameters for 

the target image. 

. Dividing the image data into various classes, based on their importance. 

36 



Image Processing 

3. Dividing the available bit budget among these classes, such that the distortion is a 

muumum. 

4. Quantize each class separately using the bit allocation information derived in step 

3. 

5. Encode each class separately using an entropy coder and write to the file. 

Remember, this is how 'most' image compression techniques work. But there are 

exceptions. One example is the Fractal Image Compression technique, where possible 

self similarity within the image is identified and used to reduce the amount of data 

required to reproduce the image. Traditionally these methods have been time consuming, 

but some latest methods promise to speed up the process. 

Reconstructing the image from the compressed data is usually a faster process than 

compression. The steps involved are 

1. Read in the quantized data from the file, using an entropy decoder. (Reverse of 

step 5). 

2. Dequantize the data. (Reverse of step 4 ). 

3. Rebuild the image. (Reverse of step 2). 

2.6.1 Classifying Image Data 

An image is represented as a two-dimensional array of coefficients, each coefficient 

representing the brightness level in that point. When looking from a higher perspective, 

we can't differentiate between coefficients as more important ones, and lesser important 

ones. But thinking more intuitively, we can. Most natural images have smooth color 

variations, with the fine details being represented as sharp edges in between the smooth 

variations. Technically, the smooth variations in color can be termed as low frequency 

variations and the sharp variations as high frequency variations. 
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The low frequency components (smooth variations) constitute the base of an image, and 

the high frequency components (the edges which give the detail) add upon them to refine 

the image, thereby giving a detailed image. Hence, the smooth variations are demanding 

more importance than the details. 

Separating the smooth variations and details of the image can be done in many ways. One 

such way is the decomposition of the image using a Discrete Wavelet Transform (DWT). 

2.6.2 The DWT of an Image 

The procedure goes like this. A low pass filter and a high pass filter are chosen, such that 

they exactly halve the frequency range between themselves. This filter pair is called the 

Analysis Filter pair. First, the low pass filter is applied for each row of data, thereby 

getting the low frequency components of the row. But since the LPF is a half band filter, 

the output data contains frequencies only in the first half of the original frequency range. 

So, by Shannon's Sampling Theorem, they can be sub-sampled by two, so that the output 

data now contains only half the original number of samples. Now, the high pass filter is 

applied for the same row of data, and similarly the high pass components are separated, 

and placed by the side of the low pass components. This procedure is done for all rows. 

Next, the filtering is done for each column of the intermediate data. The resulting two­ 

dimensional array of coefficients contains four bands of data, each labeled as LL (low­ 

low), HL (high-low), LH (low-high) and HH (high-high). The LL band can be 

decomposed once again in the same manner, thereby producing even more sub-bands. 

This can be done up to any level, thereby resulting in a pyramidal decomposition as 

shown below. 
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LL HL 
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LL HL 
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(a) Single level Decomposition (b) Two level Decomposition (c) Three level Decomposition 

Figure 2.2 Pyramidal Decomposition of an Image 

As mentioned above, the LL band at the highest level can be classified as most important, 

and the other 'detail' bands can be classified as of lesser importance, with the degree of 

importance decreasing from the top of the pyramid to the bands at the bottom. 

Figure 2.3 The Three Layer 

Decomposition of the 'Lena' Image. 
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2. 7 The Inverse DWT of an Image 

Just as a forward transform used to separate the image data into various classes of 

importance, a reverse transform is used to reassemble the various classes of data into a 

reconstructed image. A pair of high pass and low pass filters is used here also. This filter 

pair is called the Synthesis Filter pair. The filtering procedure is just the opposite - we 

start from the topmost level, apply the filters column-wise first and then row-wise, and 

proceed to the next level, till we reach the first level. 

2.7.1 Bit Allocation 

The first step in compressing an image is to segregate the image data into different 

classes. Depending on the importance of the data it contains, each class is allocated a 

portion of the total bit budget, such that the compressed image has the minimum possible 

distortion. This procedure is called Bit Allocation. 

The Rate-Distortion theory is often used for solving the problem of allocating bits to a set 

of classes, or for bit-rate control in general. The theory aims at reducing the distortion for 

a given target bit-rate, by optimally allocating bits to the various classes of data. One 

approach to solve the problem of Optimal Bit Allocation using the Rate-Distortion theory 

is given in [1], which is explained below. 

1. Initially, all classes are allocated a predefined maximum number of bits. 

2. For each class, one bit is reduced from its quota of allocated bits, and the 

distortion due to the reduction of that 1 bit is calculated. 

3. Of a\\ the classes, the class with minimum distortion for a reduction of l bit is 

noted, and 1 bit is reduced from its quota of bits. 

4. The total distortion for all classes D is calculated. 

5. The total rate for all the classes is calculated as R = p(i) * B(i), where p is the 
probability and B is the bit allocation for each class. 
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6. Compare the target rate and distortion specifications with the values obtained 

above. If not optimal, go to step 2. 

In the approach explained above, we keep on reducing one bit at a time till we achieve 

optimality either in distortion or target rate, or both. An alternate approach which is also 

mentioned in [l] is to initially start with zero bits allocated for all classes, and to find the 

class which is most 'benefited' by getting an additional bit. The 'benefit' of a class is 

defined as the decrease in distortion for that class. 

DO t 
Bl 

n11----- t 
1' 
B2 

I 

D2 I- - - - - ~ - - - - - - - - - - _-.-., •... --..:..:.:::~--'------ 
' 

0 2 
Bits Allocation 

3 4 

Figure 2.4 'Benefit' of a Bit is the Decrease in Distortion Due to Receiving that Bit. 

As shown above, the benefit of a bit is a decreasing function of the number of bits 

allocated previously to the same class. Both approaches mentioned above can be used to 

the Bit Allocation problem. 

2.7.2 Quantization 

Quantization refers to the process of approximating the continuous set of values in the 

image data with a finite (preferably small) set of values. The input to a quantizer is the 

original data, and the output is always one among a finite number of levels. The quantizer 

is a function whose set of output values are discrete, and usually finite. Obviously, this is 

a process of approximation, and a good quantizer is one which represents the original 

signal with minimum loss or distortion. 
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There are two types of quantization - Scalar Quantization and Vector Quantization. In 

scalar quantization, each input symbol is treated separately in producing the output, while 

in vector quantization the input symbols are clubbed together in groups called vectors, 

and processed to give the output. This clubbing of data and treating them as a single unit 

increases the optimality of the vector quantizer, but at the cost of increased computational 

complexity. Here, we'll take a look at scalar quantization. 

A quantizer can be specified by its input partitions and output levels (also called 

reproduction points). If the input range is divided into levels of equal spacing, then the 

quantizer is termed as a Uniform Quantizer, and if not, it is termed as a Non-Uniform 

Quantizer. A uniform quantizer can be easily specified by its lower bound and the step 

size. Also, implementing a uniform quantizer is easier than a non-uniform quantizer. 

Take a look at the uniform quantizer shown below. If the input falls between n*r and 

(n+ l)*r, the quantizer outputs the symbol n. 

n-2 <--- Output n-! n+l n+2 n 

(n-2)r (n-l)r nr (n+l)r (n+2)r (n+3)r <--- Input 

Figure 2.5 a Uniform Quantizer 

Just the same way a quantizer partitions its input and outputs discrete levels, a 

Dequantizer is one which receives the output levels of a quantizer and converts them into 

normal data, by translating each level into a 'reproduction point' in the actual range of 

data. It can be seen from literature, that the optimum quantizer ( encoder) and optimum 

dequantizer (decoder) must satisfy the following conditions. 

• Given the output levels or partitions of the encoder, the best decoder is one that 

puts the reproduction points x' on the centers of mass of the partitions. This is 

known as centroid condition. 

• Given the reproduction points of the decoder, the best encoder is one that puts the 

partition boundaries exactly in the middle of the reproduction points, i.e. each xis 
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translated to its nearest reproduction point. This is known as nearest neighbour 
condition. 

The quantization error (x - x') is used as a measure of the optimality of the quantizer and 

dequantizer. 

2.8 Object Recognition 

Object recognition consists of locating the positions and possibly orientations and scales 

of instances of objects in an image. The purpose may also be to assign a class label to a 

detected object. Our survey of the literature on object recognition using ANNs indicates 

that in most applications, ANNs have been trained to locate individual objects based 

direction pixel data. Another less frequently used approach is to map the contents of a 

window onto a feature space that is provided as input to a neural classifier. 

2.8.1 Optical Character Recognition 

The recognition of handwritten or printed text by computer is referred to as Optical 

Character Recognition. When the input device is a digitizer tablet that transmits the signal 

in real time (as in pen-based computers and personal digital assistants) or includes timing 

information together with pen position (as in signature capture) we speak of dynamic 

recognition. When the input device is a still camera or a scanner, which captures the 

position of digital ink on the page but not the order in which it was laid down, we speak 

of static or image-based OCR. 

Dynamic OCR is an increasingly important modality in Human Computer I interaction, 

and the difficulties encountered in the process are largely similar to those found in other 

HCI modalities, in particular, Speech Recognition. The stream of position/pen pressure 

values output by the digitizer tablet is analogous to the stream of speech signal vectors 

output by the audio processing front end, and the same kinds of lossy data compression 

techniques, including cepstral analysis, linear predictive coding, and vector quantization, 

are widely employed for both. 

tatic OCR encompasses a range of problems that have no counterpart in the recognition 

of spoken or signed language, usually collected under the heading of page decomposition 

layout analysis. These include both the separation of linguistic material from photos, 
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line drawings, and other non-linguistic information, establishing the local horizontal and 

vertical axes ( deskewing), and the appropriate grouping of titles, headers, footers, and 

other material set in a font different from the main body of the text. Another OCR­ 

specific problem is that we often find different scripts, such as Kanji and Kana, or 

Cyrillic and Latin, in the same running text. 

While the early experimental OCR systems were often rule-based, by the eighties these 

have been completely replaced by systems based on statistical, Pattern Recognition. For 

clearly segmented printed materials such techniques offer virtually error-free OCR for the 

most important alphabetic systems including variants of the Latin, Greek, Cyrillic, and 

Hebrew alphabets. 

However, when the number of symbols is large, as in the Chinese or Korean writing 

systems, or the symbols are not separated from one another, as in Arabic or Devanagari 

print, OCR systems are still far from the error rates of human readers, and the gap 

between the two is also evident when the quality of the image is compromised e.g. by fax 

transmission. Until these problems are resolved, OCR can not play the pivotal role in the 

transmission of cultural heritage to the digital age that it is often assumed to have. 

In the recognition of handprint, algorithms with successive segmentation, classification, 

and identification (language modeling) stages are still in the lead, as shown in the later 

chapters. 

2.9 Summary 

This chapter presented an introduction to the image processing, Elements of image 

analysis, Patterns and pattern classes, Classifying of image data, The DWT of an image 

Bit allocation, Quantization, Optical Character Recognition, and Character Recognition. 
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3. IMAGE PROCESSING AND NEURAL NETWORKS 

3.1 Overview 

This chapter presents an overview of image processing with neural networks, history, 

taxonomy for image processing algorithms, neural networks in image processing, 

preprocessing, image reconstruction, image restoration, image enhancement, applicability of 

neural networks in preprocessing, data reduction and feature extraction, image compression 

applications, feature extraction applications, image segmentation, image segmentation based 

on pixel data, image segmentation based on features, open issues in applications of neural 

networks, segmentation by ANNs, object recognition, and real-world. 

3.2 Introduction 

Techniques from statistical pattern recognition have, since the revival of neural networks, 

obtained a widespread use in digital image processing. Initially, part recognition problems 

were often solved by linear and quadratic discriminants [3] or the (nonparametric) k-nearest 

neighbor classifier and the Parzen density estimator [4,5]. In the mid-eighties, the PDP group 

together with others introduced the back-propagation learning algorithm for neural networks. 

This algorithm for the first time made it feasible .to train a non-linear neural network equipped 

with layers of the so-called hidden nodes. Since then, neural networks with one or more 

hidden layers can, in theory, be trained to perform virtually any regression or discrimination 

task. Moreover, no assumptions are made as with respect to the type of underlying 

(parametric) distribution of the input variables, which may be nominal, ordinal, real or any 

combination hereof in their 1993 review article on image segmentation, Pal and Pal predicted 

that neural networks would become widely applied in image processing [5]. This prediction 

turned out to be right. In this review article, we survey applications of neural networks 

developed to solve different problems in image processing (for a review of neural networks 
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used for ID signal processing, [1]). There are two central questions which we win try to 

answer in this review article: 

1. What are major applications of neural networks in image processing now and in the nearby 

future? 

2. Which are the major strengths and weaknesses of neural networks for solving image 

processing tasks? 

To facilitate a systematic review of neural networks in image processing, we propose a two­ 

dimensional taxonomy for image processing techniques. This taxonomy establishes a 

framework in which the advantages and unresolved problems can be structured in relation to 

the application of neural networks in image processing. 

3.3 Image Processing Algorithms 

Traditional techniques from statistical pattern recognition like the Bayesian discriminant and 

the Parzen windows were popular until the beginning of the 1990s. Since then, neural 

networks (ANNs) have increasingly been used as an alternative to classic pattern classifiers 

and clustering techniques. Non-parametric feed-forward ANNs quickly turned out to be 

attractive trainable machines for feature-based segmentation and object recognition. When no 

gold standard is available, the self-organizing feature map (SOM) is an interesting alternative 

to supervised techniques. It may learn to discriminate, e.g., deferent textures when provided 

with powerful features. The current use of ANNs in image processing exceeds the 

aforementioned traditional applications. The role of feed-forward ANNs and SOMs has been 

extended to encompass also low-level image processing tasks such as noise suppression and 

image enhancement. Hopfield ANNs were introduced as a tool for finding satisfactory 

solutions to complex (NP-complete) optimization problems. This makes them an interesting 

alternative to traditional optimization algorithms for image processing tasks that can be 

formulated as optimization problems. The deferent problems addressed in the field of digital 

image processing can be organized into what we have chosen to call the image processing 

hain. We make the following distinction between steps in the image processing chain as in 

gure 3.1. 
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Noise suppression 
Deblurring Image 
enhancement Edge 
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Template matching 
Feature-based 
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Clustering 
Compression Feature 
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Scene analysis Object 

arrangement 

Data Object ~ Image Preprocessing --- H Segmentation --- Recognition Understanding Reduction 

l ~ Jl l 

Optimization 

Figure 3.1 Graphs Matching Automatic Thresholding 

Figure 3.1. The image processing chain containing the five deferent tasks: preprocessing, data 

reduction, segmentation, object recognition and image understanding. Optimization techniques 

are used as a set of auxiliary tools that are available in all steps of the image processing chain. 

I. Preprocessing/filtering. Operations that give as a result a modified image with the same 

dimensions as the original image ( e.g., contrast enhancement and noise reduction). 

-· Data reduction/feature extraction. Any operation that extracts significant components from 

an image (window). The number of extracted features is generally smaller than the number 

of pixels in the input window . 

. Segmentation. Any operation that partitions an image into regions that are coherent with 

respect to some criterion. One example is the segregation of deferent textures. 

. Object detection and recognition. Determining the position and, possibly, also the 

orientation and scale of specific objects in an image, and c 1 assifying these objects. 

Image understanding. Obtaining high level (semantic) knowledge of what an image shows. 

Optimization. Minimization of a criterion function which may be used for, e.g., graph 

matching or object delineation. 
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Optimization techniques are not seen as a separate step in the image processing chain but as a 

set of auxiliary techniques, which support the other steps. Besides the actual task performed by 

an algorithm, its processing capabilities are partly determined by the abstraction level of the 

input data. We distinguish between the following abstraction levels: 

A. Pixel level. The intensities of individual pixels are provided as input to the algorithm. 

B. Local feature level. A set of derived, pixel-based features constitutes the input. 

C. Structure (edge) level. The relative location of one or more perceptual features (e.g., 

edges, comers, junctions, surfaces, etc.). 

D. Object level. Properties of individual objects. 

E. Object set level. The mutual order and relative location of detected objects. 

F. Scene characterization. A complete description of the scene possibly including lighting 

conditions, context, etc. 

Table 3.1 contains the taxonomy of image processing algorithms that results from combining 

the steps of the image processing chain with the abstraction level of the input data. 

Table 3.1 Image Processing Tasks Categorized into a Two-Dimensional Taxonomy 

Preprocessing I Compression/feature I Segmentation I Recognition 

2 6 

Image I Optimization 

understanding 

3 5 

2 3 
- 
5 
- 
1 

2 

26 25 39 51 

4 2 19 38 

2 
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3.4 Neural Networks in Image Processing 

In this section, we will review neural networks trained to perform one of the six tasks in the 

image processing chain (3.1-3.6). 

3.4.1 Preprocessing 

The first step in the image processing chain consists of preprocessing. Loosely defined, by 

preprocessing we mean any operation of which the input consists of sensor data, and of which 

the output is a full image. Preprocessing operations generally fall into one of three categories: 

image reconstruction (to reconstruct an image from a number of sensor measurements), image 

restoration (to remove any aberrations introduced by the sensor, including noise) and image 

enhancement (accentuation of certain desired features, which may facilitate later processing 

steps such as segmentation or object recognition). 

Applications of ANNs in these three preprocessing categories win be discussed separately 

below. The majority of the ANNs were applied directly to pixel data (level A); only four 

networks were applied to more high-Level data (features, level B). 

3.4.2 Image Reconstruction 

Image reconstruction problems often require quite complex computations and a unique 

approach is needed for each application. An ADALINE network is trained to perform an 

electrical impedance tomography (EIT) reconstruction, i.e., a reconstruction of a 2D, image 

based on ID measurement on the circumference of the image. Srinivasan et al. [9] trained a 

modified Hopfield network to perform the inverse Radon transform (e.g., for reconstruction of 

computerized tomography images). The Hopfield network contained "summation" layers to 

avoid having to interconnect all units. Meyer and Heindl [10] used regression feed-forward 

networks (that learn the mapping Etyjx), with x the vector of input variables and y the desired 

output vector) to reconstruct image s from electron holograms. Wang and Wahl trained a 

Hopfield ANN for reconstruction of 2D images from pixel data obtained from projections 

[ 11]. 
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3.4.3 Image Restoration 

The majority of applications of ANNs in preprocessing can be found in image restoration. In 

general, one wants to restore an image that is distorted by the (physical) measurement system. 

The system might introduce noise, motion blur, out-of-focus blur, distortion caused by low 

resolution, etc. Restoration can employ all information about the nature of the distortions 

introduced by the system, e.g., the point spread function. The restoration problem is ill-posed 

because conflicting criteria need to be fulfilled: resolution versus smoothness. 

The neural-network applications we reviewed had various designs ranging from relatively 

straightforward to highly complex, modular approaches. In the most basic image restoration 

approach, noise is removed from an image by simple filtering. Greenhil and Davies [18] used 

a. regression feed-forward network in a convolution-like way to suppress noise (with a 5 x 5 

pixel window as input and one output node). De Ridder et al. built a modular feed-forward 

ANN approach that mimics the behavior of the Kuwahara filter, an edge-preserving smoothing 

filter [16]. Their experiments showed that the mean squared error used in ANN training may 

not be representative of the problem at hand. Furthermore, unconstrained feed-forward 

networks often ended up in a linear approximation to the Kuwahara filter. 

Chua and Yang [14, 15] used cellular neural networks (CNNs) for image processing. A CNN 

is a system in which nodes are locally connected. Each node contains a feedback template and 

a control template, which to a large extent determine the .functionality of the network. For 

noise suppression, the templates implement an averaging function; for edge detection, a 

Laplacian operator. The system operates locally, but multiple iterations allow it to distribute 

global information throughout the nodes. 

Although quite fast in application, a disadvantage is that the parameters influencing the 

network behavior (the feedback and control templates) have to be set by hand. 
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Others have proposed methods for training CNNs, e.g., using gradient descent or genetic 

algorithms (grey-value images, Zamparelli). CNNs were also applied for restoration of color 

images by Lee and Degyvez. 

Another interesting ANN architecture is the generalized adaptive neural filter (GANF) which 

has been used for noise suppression. A GANF consists of a set of neural operators, based on 

stack a filter that uses binary decompositions of grey-value data. Finally, fuzzy ANNs and the 

neurochips have been applied to image restoration as well. Traditional methods for more 

complex restoration problems such as deblurring and diminishing out-of-focus defects are 

maximum a posteriori estimation (MAP) and regularization. Applying these techniques entails 

solving high dimensional convex optimization tasks. The objective functions of MAP 

estimation or the regularization problem can both be mapped onto the energy function of the 

Hopfield network. Often, mapping the problem turned out to be difficult, so in some cases the 

network architecture had to be modified as well. 

Other types of networks have also been applied to image restoration. Qian et al. developed a 

hybrid system consisting of order statistic filters for noise removal and a Hopfield network for 

deblurring (by optimizing a criterion function). The modulation transfer function had to be 

measured in advance. Guan et al. developed a so-called network-of-networks for image 

restoration. Their system consists of loosely coupled modules, where each module is a 

separate ANN. Phoha and Oldham proposed a layered, competitive network to reconstruct a 

distorted image. 

3.4.4 Image Enhancement 

The goal of image enhancement is to amplify specific (perceptual) features. Among the 

applications where ANNs have been developed for image enhancement, one would expect 

most applications to be based on regression ANNs. However, several enhancement approaches 

rely on a classifier, typically resulting in a binary output image. The most well-known 

enhancement problem is edge detection. A straightforward application of regression feed- 
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forward ANNs, trained to behave like edge detectors, was reported by Pugmire et al. 

Chandresakaran et al. used a novel feed-forward architecture to classify an input window as 

containing an edge or not. The weights of the network were set manually instead of being 

obtained from training. A number of more complex, modular systems were also proposed. 

Formulating edge detection as an optimization problem made it possible for Tsai et al. to train 

a Hopfield network for enhancement of end cardiac borders. Some enhancement approaches 

utilize other types of ANNs. Shih et al. applied an ART network for binary image 

enhancement. Moh and Shih describe a general approach for implementation of morphological 

image operations by a modified feed-forward ANN using shunting mechanisms, i.e., neurons 

acting as switches. Waxman et al. consider the application of a centre-surround shunting feed­ 

forward ANN (proposed by Grossberg) for contrast enhancement and color night vision. 

3.4.5 Applicability of Neural Networks in Preprocessing 

There seem to be three types of problems in preprocessing (unrelated to the three possible 

operation types) to which ANNs can be applied: 

• Optimization of an objective function defined by a traditional preprocessing problem; 

• Approximation of a mathematical transformation used for image reconstruction, e.g., 

by regression; 

• Mapping by an ANN trained to perform a certain task, usually based directly on pixel 

data (neighborhood input, pixel output). 

To solve the first type of problems, traditional methods for optimization of some objective 

function may be replaced by a Hopfield network. For a further discussion of the suitability of 

Hopfield networks for solving optimization problems. 

For the approximation task, regression (feed-forward) ANNs could be applied. Although 

some applications such ANNs were indeed successful, it would seem that these applications 

call for more traditional mathematical techniques, because a guaranteed (worst-case) 

performance is crucial in preprocessing. 
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In several other applications, regression or classilcation (mapping) networks were trained to 

perform image restoration or enhancement directly from pixel data. A remarkable finding was 

that non-adaptive ANNs (e.g., CNNs) were often used for preprocessing. 

Secondly, when networks were adaptive, their architectures usually differed much from those 

of the standard ANNs: prior knowledge about the problem was used to design the networks 

that were applied for image restoration or enhancement ( e.g., by using shunting mechanisms to 

force a feed-forward ANN to make binary decisions). The interest in non adaptive ANNs 

indicates that the fast, parallel operation and the ease with which ANNs can be embedded in 

hardware may be important criteria when choosing for a neural implementation of a specific 

preprocessing operation. However, the ability to learn from data is apparently of less 

importance in preprocessing. While it is relatively easy to construct a linear filter with a 

certain, desired behavior, e.g., by specifying its frequency profile, it is much harder to obtain a 

large enough data set to learn the optimal function as a high-dimensional regression problem. 

This holds especially when the desired network behavior is only critical for a small subset of 

all possible input patterns ( e.g., in edge detection). Moreover, it is not at all trivial to choose a 

suitable error measure for supervised training, as simply minimizing the mean squared error 

might give undesirable results in an image processing setting. 

An important caveat is that the network parameters are likely to become tuned to one type of 

ge ( e.g., a specific sensor, scene setting, scale, etc.), which limits the applicability of the 

ed ANN. When the underlying conditional probability distributions, p(x/wj) or p(y/x), 

ge, the c 1 assifieation or regression network-like all statistical models-needs to be 
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3.5 Data Reduction and Feature Extraction 

Two of the most important applications of data reduction are image compression and feature 

extraction. In general, an image compression algorithm, used for storing and transmitting 

images, contains two steps: encoding and decoding. For both these steps, ANNs have been 

used. Feature extraction is used for subsequent segmentation or object recognition. The kind of 

features one wants to extract often correspond to particular geometric or perceptual 

characteristics in an image (edges, comers and junctions), or application dependent ones, e.g., 

facial features. 

3.5.1 Feature Extraction Applications 

Feature extraction can be seen as a special kind of data reduction of which the goal is to find a 

subset of informative variables based on image data. Since image data are by nature very high 

dimensional, feature extraction is often a necessary step for segmentation or object recognition 

to be successful. Besides lowering the computational cost, feature extraction is also a means 

for controlling the so-called curse of dimensionality. When used as input for a subsequent 

segmentation algorithm, one wants to extract those features that preserve the class separability 

well. There is a wide class of ANN s that can be trained to perform mappings to a lower­ 

dimensional space. A well-known feature-extraction ANN is Oja's neural Implementation of a 

one-dimensional principal component analysis (PCA), later extended to multiple dimensions. 

In, Baldi and Hornik proved that training three-layer auto-associator networks corresponds to 

applying PEA to the input data. Later, auto-associator networks with five layers were shown to 

be able to perform non-linear dimensionality reduction (i.e., finding principal surfaces). It is 

also possible to use a mixture of linear subspaces to approximate a non-linear subspace. 

Another approach to feature extraction is first to cluster the high-dimensional data, e.g., by a 

SOM, and then use the cluster centers as prototypes for the entire cluster. Among the ANNs 

that have been trained to perform feature extraction, feed-forward ANNs have been used in 

most of the reviewed applications. SOMs and Hopfield ANNs have also been trained to 

perform feature extraction. 
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Most of the ANNs trained for feature extractions obtain pixel data as input. Neural network 

feature extraction was performed for 

• Subsequent automatic target recognition in remote sensing (accounting for orientation) 

and character recognition; 

• Subsequent segmentation of food images and of magnetic resonance (MR) images; 

• Finding the orientation of objects ( coping with rotation); 

• Finding control points of deformable models; 

• Clustering low-Level features found by the Gabor filters in face recognition and wood 

defect detection; 

• Subsequent stereo matching; 

• Clustering the local content of an image before it is encoded. 

In most applications, the extracted features were used for segmentation, image matching or 

object recognition. For (anisotropic) objects occurring at the same scale, rotation causes the 

largest amount of intra-class variation. Some feature extraction approaches were designed to 

cope explicitly with ( changes in) orientation of objects. It is important to make a distinction 

between application of supervised and unsupervised ANNs for feature extraction. For a 

supervised auto-associator ANN, the information loss implied by the data reduction can be 

measured directly on the predicted output variables, which is not the cage for unsupervised 

feature extraction by the SOM. Both supervised and unsupervised ANN feature extraction 

methods have advantages compared to traditional techniques such as PCA Feed-forward 

ANNs with several hidden layers can be trained to perform non-linear feature extraction, but 

lack a formal, statistical basis. 
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3.6 Image Segmentation 

Segmentation is the partitioning of an image into parts that are coherent according to some 

criterion. When considered as a classification task, the purpose of segmentation is to assign 

labels to individual pixels or voxels. Some neural-based approaches perform segmentation 

directly on the pixel data, obtained either from a convolution window ( occasionally from more 

bands as present in, e.g., remote sensing and MR images), or the information is provided to a 

neural classifier in the form of local features. 

3.6.1 Image Segmentation Based on Pixel Data 

Many ANN approaches have been presented that segment images directly from pixel or voxel 

data. Several deferent types of ANNs have been trained to perform pixel based segmentation: 

feed-forward ANNs. SOMs Hopfield networks, probabilistic ANNs, radial basis function 

networks, CNNs, constraint satisfaction ANNs and RAM-networks. A self-organizing 

architecture with fuzziness measures was used in. Also, biologically inspired neural-network 

approaches have been proposed: the perception model developed by Grossberg, which is able 

to segment images from surfaces and their shading, and the brain-like networks proposed by 

Opara and Worgotter. Hierarchical segmentation approaches have been designed to combine 

ANNs on deferent abstraction levels. The guiding principles behind hierarchical approaches 

are specialization and bottom-up processing: one or more ANNs are dedicated to low level 

feature extraction/segmentation, and their results are combined at a higher abstraction level 

where another (neural) classifier performs the final image segmentation. Reddick et al. 

developed a pixel-based two-stage approach where a SOM is trained to segment multi-spectral 

MR images. The segments are subsequently classified into white matter, grey matter, etc., by a 

feed-forward ANN. Non-hierarchical, modular approaches have also been developed. 
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In general, pixel-based (often supervised) ANNs have been trained to classify the image 

content based on 

• Texture; 

• A combination of texture and local shape. 

ANNs have also been developed for pre- and post processing steps in relation to segmentation, 

e.g., for 

• Delineation of contours; 

• Connecting edge pixels; 

• Identification of surfaces; 

• Deciding whether a pixel occurs inside or outside a segment; 

• Defuzzifying the segmented image; and for 

• Clustering of pixels; 

• Motion segmentation. 

In most applications, ANNs were trained as supervised classifiers to perform the desired 

segmentation. One feature that most pixel-based segmentation approaches lack is a structured 

way of coping with variations in rotation and scale. This shortcoming may deteriorate the 

segmentation result. 

3.7 Real-Life Applications of Neural Networks 
This review has concentrated on applications of ANNs to image processing problems, which 

were reported in scientific literature. However, as the field matured, ANNs have gradually 

found their way into a large range of commercial applications. Unfortunately, commercial and 

other considerations often impede publication of scientific and technical aspects of such 

systems. In some research programmes, an overview of commercial applications of ANNs has 

been given, and one of its applications is, character recognition. 
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3.7.1 Character Recognition 

Two essential components in a character recognition algorithm are the feature extractor and 

the classifier. Feature analysis determines the descriptors, or feature set, used to describe all 

characters. Given a character image, the feature extractor derives the features that the character 

possesses. The derived features are then used as input to the character classifier. 

Template matching, or matrix matching, is one of the most common classification methods. In 

template matching, individual image pixels are used as features. Classification is performed by 

comparing an input character image with a set of templates (or prototypes) from each character 

class. Each comparison results in a similarity measure between the input character and the 

template. One measure increases the amount of similarity when a pixel in the observed 

character is identical to the same pixel in the template image. If the pixels differ the measure 

of similarity may be decreased. After all templates have been compared with the observed 

character image, the character's identity is assigned as the identity of the most similar 
template. 

Template matching is a trainable process because template characters may be changed. In 

many commercial systems, PROMs (programmable read-only memory) store templates 

containing single fonts. To retrain the algorithm the current PROMs are replaced with PROMs 

that contain images of a new font. Thus, if a suitable PROM exists for a font then template 

matching can be trained to recognize that font. The similarity measure of template matching 

may also be modified, but commercial OCR systems typically do not allow this. 

Structural classification methods utilize structural features and decision rules to classify 

characters. Structural features may be defined in terms of character strokes, character holes, or 

other character attributes such as concavities. For instance, the letter P may be described as a 

vertical stroke with a hole attached on the upper right side. For a character image input, the 

structural features are extracted and a rule-based system is applied to classify the character. 

tructural methods are also trainable but construction of a good feature set and a good rule­ 
base can be time-consuming. 
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Character localization and segmentation. After the document has been located, the relative 

image portion is quantized to binary values according to an adaptive threshold established 

directly through a two-class clustering of tones. The characters are segmented by finding white 

areas between columns with higher density of black pixels as illustrated in figures 3.2, and 3.3. 

Figure 3.2 Character Localization 

B 
Figure 3.2 Character Segmentation 

Isolated black pixels are wiped out and the character is resized to the standard measure of (10 

by 6) pixels after a factor-of-two decimation as shown in figure 3.3. 

Figure 3.2 'B' extracted and digitized. 
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The next chapter describes an algorithm that attemptsto work with a subset of the features in a 

character that a human would typically see for the identification of machine-printed English 

characters. 

3.8 Summary 

In this chapter the followings were discussed in details; an overview f image processing with 

neural networks, history, taxonomy for image processing algorithms, neural networks in image 

processing, preprocessing, image reconstruction, image restoration, image enhancement, 

applicability of neural networks in preprocessing, and real-world applications of neural 

networks. 
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4. CHARACTER RECOGNITION SYSTEM USING NEURAL 

NETWORK 

4.1 Overview 

This chapter reviewed the work developed by the author. The architecture of the neural 

network used for character recognition. Data encoding & decoding presentation of the 

alphabets to the Neural Network. 

N.N. Classification Method. 

Let us consider the design at a computer program that must translate 20x20 matrixes in 

binary file which represent all the alphabets 

{ A,B,C,D,E,F ,G,H,I,J,K,L,M,N,O,P ,Q,R,S,T,U,V ,W,X,Y,Z} 

The most common training scenarios utilize supervised learning during which the 

network is presented with an input pattern together with the target output for the correct 

answer, or correct classification for the input pattern. 

4.2 Input Data Presentation 

The input it's the file of DAT A to Z matrix 20x20 which is an array of black white 

pixels is used to represent individual characters. Each of these characters can be 

represented as 0/1 vector. In total 400 values representing a character will be ready to be 

presented to the input layers of the N.N. 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

The input at an array of character A it can be as an array input 

=={0000000000000000000000000000011000000000000000001111000000000000000 

1111110000000000000111111110000000000011100001110000000001110000001110 

0000001110000000011100000111000000000011100001110000000000111000011100 

0000000011100001111111111111111000011111111111111110000111000000000011 

1000011100000000001110000111000000000011100001110000000000111000011100 

00000000111000011100000000001110000111000000000011100} 

62 



Character Recognition System Using NN 

Table 4.1 The Patterns of these Characters. 

The matrix of character The matrix of character 
for the first trainings forthe second trainings 

This is for code A 00000000000000000000 00000000000000000000 
00000000011000000000 00111111111111111100 
00000000111100000000 00111111111111111100 
00000001111110000000 00111111111111111100 
00000011111111000000 00111000000000011100 
00000111000011100000 00111000000000011100 
00001110000001110000 00111000000000011100 
00011100000000111000 00111000000000011100 
00111000000000011100 00111111111111111100 
00111000000000011100 00111111111111111100 
00111000000000011100 00111000000000011100 
00111111111111111100 00111000000000011100 
00111111111111111100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00000000000000000000 

This is for code Z 00000000000000000000 00000000000000000000 
00111111111111111110 00011111111111111110 
00111111111111111110 00111111111111111110 
00111111111111111110 00011111111111111110 
00000000000000011110 00000000000000111110 
00000000000000111000 00000000000001111000 
00000000000001110000 00000000000011110000 
00000000000011100000 00000000000111100000 
00000000000111000000 00000000001111000000 
00000000001110000000 00000000011110000000 
00000000011100000000 00000000111100000000 
00000000111000000000 00000001111000000000 
00000001110000000000 00000011110000000000 
00000011100000000000 00000111100000000000 
00000111000000000000 00001111000000000000 
00001110000000000000 00111110000000000000 
00111111111111111110 00111111111111111100 
00111111111111111110 00111111111111111110 
00111111111111111110 00111111111111111100 
00000000000000000000 00000000000000000000 
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4.3 Output Data Presentation 
Output of the neurons will be matched with the different types of patterns of the 

network and it will identify whether it is A or B or C and so on up to Z. The output 

presentation will be binary, where 26 values of input/output will identify each character 

as shown in table 4.2. 

Table 4.2 Binary Identification for Each Character 

the matrix of character for the 
target matching trainings 

The target of the output to be 123456 ................................. 26 
compared AlOOOOOOOOOOOOOOOOOOOOOOOO 

B0100000000000000000000000 
COOlOOOOOOOOOOOOOOOOOOOOOO 
D0001000000000000000000000 
EOOOOlOOOOOOOOOOOOOOOOOOOO 
FOOOOOlOOOOOOOOOOOOOOOOOOO 
GOOOOOOlOOOOOOOOOOOOOOOOOO 
HOOOOOOOlOOOOOOOOOOOOOOOOO 
JOOOOOOOOlOOOOOOOOOOOOOOOO 
KOOOOOOOOOlOOOOOOOOOOOOOOO 
LOOOOOOOOOOlOOOOOOOOOOOOOO 
:M:0000000000010000000000000 
NOOOOOOOOOOOOlOOOOOOOOOOOO 
00000000000000100000000000 
POOOOOOOOOOOOOOlOOOOOOOOOO 
QOOOOOOOOOOOOOOOlOOOOOOOOO 
ROOOOOOOOOOOOOOOOlOOOOOOOO 
SOOOOOOOOOOOOOOOOOlOOOOOOO 
TOOOOOOOOOOOOOOOOOOlOOOOOO 
UOOOOOOOOOOOOOOOOOOOlOOOOO 
VOOOOOOOOOOOOOOOOOOOOlOOOO 
\VOOOOOOOOOOOOOOOOOOOOOlOOO 
XOOOOOOOOOOOOOOOOOOOOOOlOO 
YOOOOOOOOOOOOOOOOOOOOOOOlO 
ZOOOOOOOOOOOOOOOOOOOOOOOOl 
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Table 4.3 The Output of the Neurons how it will be Match the Patterns 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 
A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
J 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
p 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
u 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4.4 Neural Network Design 

Neural Network Design is shown in figure 4.1 below which shows the number of input, 

hidden & output layers. 
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Bias neuron Bias neuron 

Input layer Hidden Layer Output Layer 

Figure 4.1 Back Propagation of Network Structure 
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4.5 Setting the Weights 
There are two sets of weights; input-hidden layer weights and hidden-output layer 

weights. These weights represent the memory of the neural network, where final 

training weights can be used when running the network. 

Initial weights are generated randomly there, after; weights are updated using the error 

(difference) between the actual output of the network and the desired (target) output. 

Weight updating occurs each iteration, and the network learns while iterating repeatedly 

until a net minimum error value is achieved. 

First we must define notion for the patterns to be stored Pattern p. a vector of 0/1 

usually binary-valued. Additional layers of weights may be added but the additional 

layers are unable to adopt. 

Inputs arrive from the left and each incoming interconnection has an associated weight, 

Wji· The perception processing unit performs a weighted sum at its input value. 
n 

The sum takes the form net = Lo; W; 
i=l 

Weights associated with each inter connection are adjusted during learning .The weight 

to unit J from unit j from unit I is denoted as Wi after learning is completed the weights 

are fixed from O to 1. 

There is a matrix of weight values that corresponds to each layer at inter connections as 

shown bellow These matrices are indexed with superscripts to distinguish weights in 

different layers. 
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0.2,0.3,0.4,0.5,0.6,0.7,0.9,0.2,0.4,0.5,0.9,0.7,0.2,0.3,0.2,0.9,0.0,0.4,0.7,0.8 
0.2,0.3,0.2,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7.4,0.7,0.8,0.2,0.4,0.0,3,0.2 
0.4,0.5,0.6,0.7,0.8,0.2,0.4,0.5,0.9,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.8 
0.2,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.4,0.8,0.0,0.7,0.5,0.1,0.2,0.5,0.8 
0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.7,0.8,0.2,0.4,0.0,0.3,0.2,0.5,0.6,0.4,0.7,0.9 
0.4,0.5,0.6,0.7,0.8,0.2,0.4,0.5,0.9,0.9,0.0,0.4,0.7,0.8,0.7,0.5,0.l,0.2,0.5,0.8 
0.2,0.3,0.2,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7.4,0.7,0.8,0.2,0.4,0.0,3,0.2 
0.4,0.5,0.6,0.7,0.8,0.2,0.4,0.5,0.9,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.8 
0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.7,0.8,0.2,0.4,0.0,0.3,0.2,0.5,0.6,0.4,0.7,0.9 

. )0.2,0.3,0.4,0.5,0.6,0.7,0.9,0.2,0.4,0.5,0.9,0.7,0.2,0.3,0.2,0.9,0.0,0.4,0.7,0.8 
Weights, . 

0.2,0.3,0.4,0.5,0.6,0.7,0.9,0.2,0.4,0.5,0.9,0.7,0.2,0.3,0.2,0.9,0.0,0.4,0.7,0.8 
0.4,0.5,0.6,0.7,0.8,0.2,0.4,0.5,0.9,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.8 
0.2,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.4,0.8,0.0,0.7,0.5,0.1,0.2,0.5,0.8 
0.4,0.5,0.6,0.7,0.8,0.2,0.4,0.5,0.9,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.8 
0.2,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.4,0.8,0.0,0.7,0.5,0.l,0.2,0.5,0.8 
0.8,0.2,0.4,0.5,0.9,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.9,0.0,0.4,0.7,0.2,0.3 
0.2,0.3,0.2,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.7,0.8,0.2,0.4,0.0,0.3,0.2 
0.7,0.8,0.2,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.4,0.8,0.0,0.7,0.5,0.l,0.2 
0.5,0.8,0.4,0.5,0.6,0.7,0.8,0.2,0.4,0.5,0.9,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9 
0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.7,0.8,0.2,0.4,0.0,0.3,0.2,0.5,0.6,0.4,0.7,0.9 

4.6 Bias Unit 
Some back-propagation networks employ a bias unit as part of every layer but the 

output layer, this unit has a constant activation value at 1. Each bias unit is connected to 

all units in the next higher layer, and its weights to them are adjusted during the back­ 

error propagation. The bias units provide a constant term in the weighted sum of the 

units in the next layer. The bios unit also provides a others hold effect on each unit it 

targets. 
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4.7 Training the N.N. 
4.7.1 Forward- pass 

The forward - pass phase is initiated when an input pattern is presented to the network, 

each input unit corresponds to an entry in the input pattern vector, and each unit takes 

on the value of this entry. 

Incoming connection to unit J are at the left and originate at units in the layer below. 

The function F(x), a sigmoid curve is illustrated as bellows. 

F{x) 

1 

Sigmoid 

a~~~~~~~~~~'---+ 
-5 

X 
0 5 

Figure 4.2 Sigmoid Curve 

There is a transition from O to 1 that takes place when x is approximately 

( - 3 < x < 3) the sigmoid function performs assort at soft threshold that is rounded as 

shown in figure 4.3 bellow. 

F(x) 

................................ 

Step 
Function 

0 
-5 

X 

0 5 

Figure 4.3 Step Function 
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The equation for the sigmoid function is 

1 
f(x) = Ioiwi 

l+ei~I 
(4.1) 

a. Input layer (i) 

For input we have 26 inputs will be saved by the DAT file. 

Input Layer at neuron = output layer of neuron I; = O; 

b. Hidden layer (h) 

Hidden-Layer input h = Ik = Iwk;O; as we have suggest that our weight is this and 

we are taking the value at our input at character is A *I*S 

Where A is the input-matrix, 

I is the hidden-layer input matrix 

And 

S is the Sigmoid function matrix. 
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0.2,0.3,0.4,0.5,0.6,0.7,0.9,0.2,0.4,0.5,0.9,0.7,0.2,0.3,0.2,0.9,0.0,0.4,0.7,0.8 
0.2,0.3,0.2,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7.4,0.7,0.8,0.2,0.4,0.0,3,0.2 
0.4,0.5,0.6,0.7,0.8,0.2,0.4,0.5,0.9,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.8 
0.2,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.4,0.8,0.0,0.7,0.5,0.1,0.2,0.5,0.8 
0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.7,0.8,0.2,0.4,0.0,0.3,0.2,0.5,0.6,0.4,0.7,0.9 
0.4,0.5,0.6,0.7,0.8,0.2,0.4,0.5,0.9,0.9,0.0,0.4,0.7,0.8,0.7,0.5,0.1,0.2,0.5,0.8 
0.2,0.3,0.2,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7.4,0.7,0.8,0.2,0.4,0.0,3,0.2 
0.4,0.5,0.6,0.7,0.8,0.2,0.4,0.5,0.9,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.8 
0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.7,0.8,0.2,0.4,0.0,0.3,0.2,0.5,0.6,0.4,0.7,0.9 

. )0.2,0.3,0.4,0.5,0.6,0.7,0.9,0.2,0.4,0.5,0.9,0.7,0.2,0.3,0.2,0.9,0.0,0.4,0.7,0.8 
Weights= Wh; 1 0.2,0.3,0.4,0.5,0.6,0.7,0.9,0.2,0.4,0.5,0.9,0.7,0.2,0.3,0.2,0.9,0.0,0.4,0.7,0.8 

0.4,0.5,0.6,0.7,0.8,0.2,0.4,0.5,0.9,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.8 
0.2,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.4,0.8,0.0,0.7,0.5,0.l,0.2,0.5,0.8 
0.4,0.5,0.6,0.7,0.8,0.2,0.4,0.5,0.9,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.8 
0.2,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.4,0.8,0.0,0.7,0.5,0.1,0.2,0.5,0.8 
0.8,0.2,0.4,0.5,0.9,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.9,0.0,0.4,0.7,0.2,0.3 
0.2,0.3,0.2,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.7,0.8,0.2,0.4,0.0,0.3,0.2 
0.7,0.8,0.2,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.4,0.8,0.0,0.7,0.5,0.1,0.2 
0.5,0.8,0.4,0.5,0.6,0.7,0.8,0.2,0.4,0.5,0.9,0.9,0.0,0.4,0.7,0.8,0.2,0.4,0.5,0.9 
0.4,0.7,0.8,0.2,0.4,0.5,0.9,0.7,0.7,0.8,0.2,0.4,0.0,0.3,0.2,0.5,0.6,0.4,0.7,0.9 
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00000000000000000000 

00000000011000000000 
00000000111100000000 
00000001111110000000 
00000011111111000000 
00000111000011100000 
00001110000001110000 
00011100000000111000 
00111000000000011100 
00111000000000011100 

A is Input = 0 ~ ~ 
I 00111000000000011100 

00111111111111111100 

00111111111111111100 
00111000000000011100 
00111000000000011100 
00111000000000011100 
00111000000000011100 
00111000000000011100 
00111000000000011100 

00111000000000011100 

h= I(0.2x0)+(0.3x0)+(0.4x0)+(0.5x0)+(0.6x0)+(0.7x0)+(0.9x0)+(0.2x0)+(0.4x0)+(0. 

5x0)+(0.9x0)+(0.7x0)+(0.4x0)+(0.7x0)+(0.8x0)+(0.2x0)+(0.4x0)+(0.0x0)+(0.3x0)+(0.2 

x0)+(2x0 )+(O. 3 xO )+( 0 .2x0)+(0. 9x0)+( 0. OxO )+( 0. 4 xO )+( 0. 7x0 )+( 0. 8x0 )+( 0 .2x0)+( 0. 4 x 1) 

+(0.5xl)+(0.9x0)+(0.7x0)+(0.4x0)+(0.7x0)+(0.8x0)+(0.2x0)+(0.4x0)+(0.0x0)+(0.2x0) 

......................................................................................................... 

(0.4x0)+(0. 7x0)+(0.8x 1 )+(0.2xl )+(0.4x 1 )+(0.5x0)+(0.9x0)+(0. 7x0)+(0. 7x0)+(0.8x0)+( 

0.2x0)+(0.4x0)+(0.0x0)+(0.3x0)+(0.2x0)+(0.5xl )+(0.6x 1 )+(0.4xl )+(O. 7x0)+(0.9x0)} 

So after calculation we will get the value of Ih. 

Each output at a hidden neuron is calculated using the sigmoid function. 

Hidden-layer output h =oh= 
1 

_1 this calculation is for one neuron and the 
l+e • 

summation for the other output layer G). 
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Now we are going to the second neuron which is the neuron in the output layer that is 

equal to the sum at all the output at the hidden layer neurons multiplied by their 

associated connection weights plus the bias weights at each neuron. 

4.8 Summary 
This chapter represents the most common training scenarios utilize supervised learning 

during which the network is presented with an input pattern together with the target 

output for the correct answer, or correct classification for the input pattern as will be 

seen in the later chapters. 
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5. PRACTICAL CONSIDERATION USING MATLAB 

5.1 Overview 

It is often useful to have a machine perform pattern recognition. In particular, machines 

that can read symbols are very cost effective. A machine that reads banking checks can 

process many more checks than a human being in the same time. This kind of application 

saves time and money, and eliminates the requirement that a human perform such a 
repetitive task. 

5.2 Problem Statement 

A network is to be designed and trained to recognize the 26 letters of the alphabet. An 

imaging system that digitizes each letter centered in the system's field of vision is 

available. The result is that each letter is represented as a 20 by 20 grid of Boolean 
values. 

Perfect classification of ideal input vectors is required, and reasonably accurate 

classification of noisy vectors. The target vectors are also defined in this file with a 

variable called targets. Each target vector is a 26-element vector with a l in the position 

of the letter it represents, and O's everywhere else. For example, the letter A is to be 

represented by a l in the first element (as A is the first letter of the alphabet), and O's in 
elements two through twenty-six as shown in table 4.3. 

5.3 Neural Network 

The network receives the 400 Boolean values as a 400-element input vector. It is then 

required to identify the letter by responding with a 26-element output vector. The 26 

elements of the output vector each represent a letter. To operate correctly, the network 

should respond with a 1 in the position of the letter being presented to the network. All 

other values in the output vector should be 0. In addition, the network should be able to 

handle noise. In practice, the network does not receive a perfect Boolean vector as input. 

Specifically, the network should make as few mistakes as possible when classifying 

vectors with noise of mean O and standard deviation of 0.2 or less. 
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5.4 Architecture 

The neural network needs 400 inputs and 26 neurons in its output layer to identify the 

letters. The network is a two-layer log-sigmoid/log-sigmoid network. The log-sigmoid 

transfer function was picked because its output range (0 to 1) is perfect for learning to 

output Boolean values. 

Hidden Layer Output Layer 

a2=y 
--I 
26xl 

pl a1~ 
1o";t~ 

26xl0 

1--+I b2 

26xl 

26 35 10 

Figure 5.1 Neural Network Architecture 

The hidden (first) layer has 10 neurons. This number was picked by guesswork and 

experience. If the network has trouble learning, then neurons can be added to this layer. 

The network is trained to output a 1 in the correct position of the output vector and to fill 

the rest of the output vector with O's. However, noisy input vectors may result in the 

network not creating perfect 1 's and O's. After the network is trained the output is passed 

through the competitive transfer function compet. This makes sure that the output 

corresponding to the letter most like the noisy input vector takes on a value of 1, and all 

others have a value of 0. The result of this post-processing is the output that is actually 

used. 
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5.5 Initialization 

The two-layer network is created with newff. 

Sl = 10; 
[R,Q] = size(pl); 

[S2,Q] = size(targets); 

P=pl; 

net= newff(minmax(P),[Sl S2],{'logsig' 'logsig'},'traingdx'); 

5.6 Training 

To create a network that can handle noisy input vectors it is best to train the network on 

both ideal and noisy vectors. To do this, the network is first trained on ideal vectors until 

it has a low sum-squared error. Then, the network is trained on 10 sets of ideal and noisy 

vectors. The network is trained on two copies of the noise-free alphabet at the same time 

as it is trained on noisy vectors. The two copies of the noise-free alphabet are used to 

maintain the network's ability to classify ideal input vectors. Unfortunately, after the 

training described above the network may have learned to classify some difficult noisy 

vectors at the expense of properly classifying a noise-free vector. Therefore, the network 

is again trained on just ideal vectors. This ensures that the network responds perfectly 

when presented with an ideal letter. All training is done using backpropagation with both 

adaptive learning rate and momentum with the function trainbpx. 

5.6.1 Training without Noise 

The network is initially trained without noise for a maximum of 5000 epochs or until the 

network sum-squared error falls beneath 0.1. P = pl; 

T = targets; 

net.performFcn = 'sse'; 

net.trainParam.goal = 0.1; 

net.trainParam.show = 20; 

net.trainParam.epochs = 5000; 

net.trainParam.mc = 0.95; 

[net,tr] = train(net,P,T); 
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5.6.2 Training with Noise 
To obtain a network not sensitive to noise, we trained with two ideal copies and two 

noisy copies of the vectors in alphabet. The target vectors consist of four copies of the 

vectors in target. The noisy vectors have noise of mean 0.1 and 0.2 added to them. This 

forces the neuron to learn how to properly identify noisy letters, while requiring that it 

can still respond well to ideal vectors. To train with noise, the maximum number of 

epochs is reduced to 300 and the error goal is increased to 0.6, reflecting that higher error 

is expected because more vectors (including some with noise), are being presented. 

netn = net; 

netn.trainParam.goal = 0.6; 

netn.trainParam.epochs = 300; 

T = [targets targets targets targets]; 

for pass= 1:10 

p = [pl, pl, ... 

(pl+ randn(R,Q)*O.l), ... 

(pl+ randn(R,Q)*0.2)]; 

[ netn, tr] = train( netn,P, T); 

end 

5. 7 System Performance 
The reliability of the neural network pattern recognition system is measured by testing 

the network with hundreds of input vectors with varying quantities of noise. The script 

file appcr 1 tests the network at various noise levels, and then graphs the percentage of 

network errors versus noise. Noise with a mean of O and a standard deviation from O to 

0.5 is added to input vectors. At each noise level, 100 presentations of different noisy 

versions of each letter are made and the network's output is calculated. The output is then 

passed through the competitive transfer function so that only one of the 26 outputs 

(representing the letters of the alphabet), has a value of 1. 
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5.8 MATLAB Program 

[pl,targets] = prprob; 

[R,Q] = size(pl); 

[S2,Q] = size(targets); 

Sl = 10; 

net= newff(minmax(pl),[Sl S2],{'logsig' 'logsig'},'traingdx'); 
net.LW{2,1} = net.LW{2,1}*0.01; 

net.b{2} = net.b{2}*0.01; 

net.perforrnFcn = 'sse'; % Sum-Squared Error performance function 

net.trainParam.goal = 0.1; % Sum-squared error goal. 

net.trainParam.show = 20; % Frequency of progress displays (in epochs). 

net.trainParam.epochs = 5000; % Maximum number of epochs to train. 

net.trainParam.mc = 0.95; % Momentum constant. 
% Training begins ... please wait... 

P=pl; 

T= targets; 

[net,tr] = train(net,P,T); 

% TRAINING THE NETWORK WITH NOISE 
% =============================== 

% A copy of the network will now be made. This copy will 

% be trained with noisy examples ofletters of the alphabet. 
netn = net; 

netn.trainParam.goal = 0.6; % Mean-squared error goal. 

netn.trainParam.epochs = 300; % Maximum number of epochs to train. 

% The network will be trained on 10 sets of noisy data. 

% Training begins ... please wait... 

T = [targets targets targets targets]; 

for pass = 1 : 10 

fprintf('Pass = %.Ot\n',pass); 
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Pass= 1 

P = [alphabet, pl, ... 

(pl+ randn(R,Q)*0.1), ... 

(pl+ randn(R,Q)*0.2)]; 

[netn,tr] = train(netn,P,T); 

% TRAINING THE SECOND NETWORK WITHOUT NOISE 

% 

% The second network is now retrained without noise to 

% insure that it correctly categorizes non-noizy letters. 

netn.trainParam.goal = 0.1; % Mean-squared error goal. 

netn.trainParam.epochs = 500; % Maximum number of epochs to train. 

net.trainParam.show = 5; % Frequency of progress displays (in epochs). 

% Training begins ... please wait... 

p =pl; 

T = targets; 

[netn,tr] = train(netn,P,T); 

% TRAINING THE NETWORK 

% --~~~~~~----~ 

% SET TESTING PARAMETERS 

noise_range = 0:.05:.5; 

max_test = 100; 

network 1 = []; 

network2 = []; 

T = targets; 
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% PERFORM THE TEST 

for noiselevel = noise_ range 

fprintf('Testing networks with noise level of %.2f.\n',noiselevel); 

% Testing networks with noise level of 0.00. 

errors I= O; 

errors2 = O; 

for i= 1 :max test 

P = pl + randn(35,26)*noiselevel; 

% TEST NETWORK 1 

A = sim(net,P); 

AA = compet(A); 

errors!= errorsl + sum(sum(abs(AA-T)))/2; 

% TEST NETWORK 2 

An= sim(netn,P); 

AAn = compet(An); 

errors2 = errors2 + sum(sum(abs(AAn-T)))/2; 

% DISPLAY RES UL TS 

% --------- 

% Here is a plot showing the percentage of errors for 

% the two networks for varying levels of noise. 

plot(noise _ range,networkl * 1 OO,'--',n6ise _range,network2* 100); 

titler'Percentage of Recognition Errors'); 

xlabel('Noise Level'); 

ylabel('Network 1 - - Network 2 ---'); 
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5.9 Practical Example 

The following input matrix represents the letter R inserted to the Neural Network shown 

in figure 5 .1. 

[111111111111111 1 1 1 1 1; 

1111111111111111111 1; 

11100000000000000011; 

11100000000000000011; 

11100000000000000011; 

11100000000000000011; 

11100000000000000011; 

11100000000000000011; 

1 1 1 1 1 11111111111111 1; 

111111111111111 1 1 1 1 l; 

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O; 

1 1 1 0 1 l O O O O O O O O O O O O O O; 

1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 O; 

1 l 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 O; 

1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 O; 

1 1 1 0 0 0 0 0 l 1 0 0 0 0 0 0 0 0 0 O; 

1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 O; 

1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 O; 

1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 O; 

1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 O]; 
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The above input was trained, and tested with the following specifications 

Learning Rate Maximum Reached Alpha Goal Result 
Epochs Epochs 

0.75 5000 584 0.04 0.01 Performance Goal 
met 

0.75 5000 246 0.03 0.01 Performance Goal 
met 
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Figure 5.2 Result of Tested Character 

5.10 Summary 

This problem demonstrates how a simple pattern recognition system can be designed. 

Note that the training process did not consist of a single call to a training function. 

Instead, the network was trained several times on various input vectors. In this case, 

training a network on different sets of noisy vectors forced the network to learn how to 

deal with noise, a common problem in the real world. 

83 



CONCLUSION 

In this thesis, we have presented the basic concept of back propagation in order to obtain 

progressive compression of character recognition. We also presented a specific technique. 

Some practical results are also included. 

Chapter one presented as an overview of N.N's. it history simple structure, biological 

analogy and the Back propagation Producer also noted that the Back Propagation 

Network has the ability to learn any arbitrarily complex nonlinear mapping this is due to 

the introduction of the hidden layer. It also has a capacity much greater than the 

dimensionality of its input and output layers as we will see later. This is not true of all 

neural net models. 

However Back propagation can involve extremely long and potentially infinite training 

time. If you have a strong relationships between input and outputs and you are willing to 

accept results within a relatively broad time, your training time may be reasonable. 

Chapter two has been noticed that Multimedia has rapidly become a buzzword of the 

'90s, and, with it, digital video has gained enormous exposure. In digital video, two 

technologies stand out. Resizing reduces the amount of video data required to transmit or 

store, it allows users the option to choose what size they view video images at, and it may 

also enhance compression. Compression, on the other hand, brings the bandwidth 

requirements for digital video to more manageable proportions. Together, the two 

technologies make digital video a reality. 

Chapter four has been noticed that this technology is demonstrated in the 

ICR/OCR/OMR/MICR demo application (which is installed with the product download) 

and may be found within the MATLAB product. 

84 



APPENDIX I 

The matrix of character The matrix of character 
for the first trainings for the second trainings 

This is for code A 00000000000000000000 00000000000000000000 
00000000011000000000 00111111111111111100 
00000000111100000000 00111111111111111100 
00000001111110000000 00111111111111111100 
00000011111111000000 00111000000000011100 
00000111000011100000 00111000000000011100 
00001110000001110000 00111000000000011100 
00011100000000111000 00111000000000011100 
00111000000000011100 00111111111111111100 
00111000000000011100 00111111111111111100 
00111000000000011100 00111000000000011100 
00111111111111111100 00111000000000011100 
00111111111111111100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00000000000000000000 

This is for code B 00000000000000000000 00000000000000000000 
00111111111111000000 00111111111111000000 
00111111111111100000 00111111111111110000 
00111111111111110000 00111000000111111000 
00111000000000111000 00111000000011111100 
00111000000000011100 00111000000001111100 
00111000000000111000 00111000000000111100 
00111000000000110000 OOlllOOOOOOOOOlfllOO 
00111111111111100000 00111111111111111100 
00111111111111000000 00111111111111111100 
00111111111111100000 00111000000000011100 
00111000000001110000 00111000000000011100 
00111000000000111000 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000111000 00111000000000111100 
00111000000000110000 

' 
00111000000001111100 

00111000000001110000 00111000000011111000 
00111111111111100000 00111111111111110000 
00111111111111000000 00111111111111100000 
00000000000000000000 00000000000000000000 

85 



The matrix of character The matrix of character 
for the first trainings for the second trainings 

This is for code C 00000000000000000000 00000000000000000000 
00000001111110000000 00111111111111111100 
00000011111111000000 00111111111111111100 
00000111111111100000 00111000000000011100 
00001110000001111000 00111000000000011100 
00011100000000111100 00111000000000011100 
00111000000000001100 00111000000000011100 
00111000000000000100 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000100 00111000000000011100 
00111000000000001100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000001111000 00111000000000011100 
00111111111111111000 00111111111111111100 
00111111111111110000 00111111111111111100 
00000000000000000000 00000000000000000000 

This is for code D 00000000000000000000 00000000000000000000 
00111111111000000000 00111111111111100000 
00111111111100000000 00111111111111110000 
00111111111110000000 00111111111111111000 
00111000000111000000 00111000000011111100 
00111000000011100000 00111000000001111100 
00111000000001110000 00111000000000111100 
00111000000000111000 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000001110 00111000000000011100 
00111000000000001110 00111000000000011100 
00111000000000001110 00111000000000111100 
00111000000000001110 00111000000001111100 
00111000000000011100 00111000000011111100 
00111000000000111000 00111111111111111000 
00111000000001110000 00111111111111110000 
00111111111111100000 00111111111111100000 
00111111111111000000 00000000000000000000 
00111111111100000000 00000000000000000000 
00000000000000000000 



The matrix of character The matrix of character 
for the first trainings for the second trainings 

This is for code E 00000000000000000000 00000000000000000000 
00111111111111111100 00111111111111111100 
00111111111111111110 00111111111111111100 
00111111111111111100 00111111111111111100 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111111111100000000 00111000000000000000 
00111111111110000000 00111111111111111100 
00111111111100000000 00111111111111111100 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111111111111100000 00111111111111111100 
00111111111111110000 00111111111111111100 
00111111111111100000 00111111111111111100 
00000000000000000000 00000000000000000000 

This is for code F 00000000000000000000 00000000000000000000 
00111111111111111000 00111111111111111100 
00111111111111111100 00111111111111111100 
00111111111111111000 00111111111111111100 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111111111111000000 00111000000000000000 
00111111111111100000 00111111111111111100 
00111111111111000000 00111111111111111100 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00010000000000000000 00111000000000000000 
00000000000000000000 00000000000000000000 
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The matrix of character The matrix of character 
for the first trainings for the second trainings 

This is for code G 00000000000000000000 00000000000000000000 
00000001111110000000 00111111111111111100 
00000011111111000000 00111111111111111100 
00000111111111100000 00111000000000011100 
00001110000001110000 00111000000000011100 
00011100000000111000 00111000000000011100 
00111000000000111000 00111000000000011100 
00111000000000111000 00111000000000000000 
00111000000000010000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000111111000 00111000000000000000 
00111000000111111000 00111000000011111100 
00111100000000111000 00111000000011111100 
00011111000000111000 00111000000000011100 
00011111111111110000 00111000000000011100 
00000111111111000000 00111111111111111100 
00000011111110000000 00111111111111111100 
00000000000000000000 00000000000000000000 

This is for code H 00000000000000000000 00000000000000000000 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111111111111111100 00111111111111111100 
00111111111111111100 00111111111111111100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00000000000000011100 
00111000000000011100 00000000000000011100 
00111000000000011100 00000000000000011100 
00000000000000000000 00000000000000000000 



The matrix of character The matrix of character 
for the first trainings for the second trainings 

This is for code I 00000000000000000000 00000000000000000000 
00000111111111000000 00000000111000000000 
00000111111111000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000111111111000000 00000111111111000000 
00000111111111000000 00000111111111000000 
00000000000000000000 00000000000000000000 
00000000000000000000 00000000000000000000 

This is for code J 00000000000000000000 00000000000000000000 
00000111111111000000 00000111111111000000 
00000111111111000000 00000111111111000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00010000111000000000 00000000111000000000 
00111000111000000000 00000000111000000000 
00011111111000000000 00111111111000000000 
00001111111000000000 00111111111000000000 
00000000000000000000 00000000000000000000 
00000000000000000000 00000000000000000000 
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The matrix of character The matrix of character 
for the first trainings for the second traininzs 

This is for code K 00000000000000000000 00000000000000000000 
00111000000011110000 00111000000001111100 
00111000000111100000 00111000000011111100 
00111000001110000000 00111000000111000000 
00111000011100000000 00111000001110000000 
00111000111000000000 00111000011100000000 
00111001110000000000 00111000111000000000 
00111011100000000000 00111001110000000000 
00111111000000000000 00111111110000000000 
00111111100000000000 00111111110000000000 
00111111110000000000 00111111110000000000 
00111001111000000000 00111000111100000000 
00111000111000000000 00111000011100000000 
00111000011100000000 00111000001110000000 
00111000001110000000 00111000000111000000 
00111000000111000000 00111000000011100000 
00111000000011100000 00111000000001110000 
00111000000001110000 00111000000000111110 
00111000000000111000 00111000000000011110 
00000000000000000000 00000000000000000000 

This is for code I 00000000000000000000 00000000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000110 00111000000000000000 
00111111111111111100 00111000000000000000 
00111111111111111000 00111111111111111110 
00111111111111110000 00111111111111111110 
00000000000000000000 00000000000000000000 
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The matrix of character The matrix of character 
for the first trainings for the second trainings 

This is for code M 00000000000000000000 00000000000000000000 
00111100000000011110 00111100000000011110 
00111110000000111110 00111100000000011110 
00111111000001111110 00111111000001111110 
00111011100011101110 00111011000001101110 
00111001110111001110 00111011100011101110 
00111000111110001110 00111001110011001110 
00111000011100001110 00111001111111001110 
00111000001000001110 00111000111110001110 
00111000000000001110 00111000011100001110 
00111000000000001110 00111000001000001110 
00111000000000001110 00111000000000001110 
00111000000000001110 00111000000000001110 
00111000000000001110 00111000000000001110 
00111000000000001110 00111000000000001110 
00111000000000001110 00111000000000001110 
00111000000000001110 00111000000000001110 
00111000000000001110 00111000000000001110 
00000000000000000000 00000000000000000000 
00000000000000000000 00000000000000000000 

This is for code N 00000000000000000000 00000000000000000000 
00111000000000001110 00111111000000001110 
00111100000000001110 00111111000000001110 
00111110000000001110 00111111100000001110 
00111110000000001110 00111011100000001110 
00111011100000001110 00111001110000001110 
00111001110000001110 00111001110000001110 
00111001110000001110 00111000111000001110 
00111000111000001110 00111000111000001110 
00111000111000001110 00111000011100001110 
00111000011100001110 00111000011100001110 
00111000001110001110 00111000000111001110 
00111000000111001110 00111000000111001110 
00111000000111001110 00111000000011101110 
00111000000011101110 00111000000011101110 
00111000000001111110 00111000000001111110 
00111000000001111110 00111000000001111110 
00111000000000111110 00111000000000111110 
00000000000000000000 00000000000000000000 
00000000000000000000 00000000000000000000 
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The matrix of character The matrix of character 
for the first trainings for the second trainings 

This is for code 0 00000000000000000000 00000000000000000000 
00000111111111110000 00111111111111111110 
00001111111111111000 00111111111111111110 
00011111111111111100 00111111111111111110 
00111111000001111110 00111111000001111110 
00111110000000111110 00111110000000111110 
00111100000000011110 00111100000000011110 
00111000000000001110 00111000000000001110 
00111000000000001110 00111000000000001110 
00111000000000001110 00111000000000001110 
00111000000000001110 00111000000000001110 
00111000000000001110 00111000000000001110 , 
00111100000000001110 00111100000000001110 
00111110000000111110 00111110000000111110 
00111111000001111110 00111111000001111110 
00011111111111111100 00111111111111111110 
00001111111111111000 00111111111111111110 
00000111111111110000 00111111111111111110 
00000000000000000000 00000000000000000000 

This is for code P 00000000000000000000 00000000000000000000 
00111111111111100000 00111111111111111100 
00111111111111110000 00111111111111111100 
00111111111111111000 00111111111111111100 
00111000000011111100 00111000000000011100 
00111000000001111100 00111000000000011100 
00111000000000111100 00111000000000011100 
00111000000001111100 00111000000000011100 
00111000000011111100 00111000000000011100 
00111111111111110000 00111111111111111100 
00111111111111100000 00111111111111111100 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00000000000000000000 00000000000000000000 
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The matrix of character The matrix of character 
for the first trainings for the second trainings 

This is for code Q 00000000000000000000 00000000000000000000 
00000111111111110000 00111111111111111100 
00001111111111111000 00111111111111111100 
00011111111111111100 00111000000000011100 
00111111000001111110 00111000000000011100 
00111110000000111110 00111000000000011100 
00111100000000011110 00111000000000011100 
00111000000000001110 00111000000000011100 
00111000000000001110 00111000000000011100 
00111000000000001110 00111000000000011100 
00111000000000001110 00111000000000011100 
00111000000000001110 00111000000000011100 
00111100001100001110 00111100001100011100 
00111110000111111110 00111110000111011100 
00111111000111111110 00111111000011111100 
00011111111111111100 00111111111111111100 
00001111111111111110 00111111111111111110 
00000111111100001111 00000000000000001111 
00000000000000000000 00000000000000000000 

This is for code R 00000000000000000000 00000000000000000000 
00111111111111111100 00111111111111100000 
00111111111111111100 00111111111111110000 
00111111111111111100 00111111111111111000 
00111000000000011100 00111000000011111100 
00111000000000011100 00111000000001111100 
00111000000000011100 00111000000000111100 
00111000000000011100 00111000000001111100 
00111000000000011100 00111000000011111000 
00111111111111111100 00111111111111110000 
00111111111111111100 00111111111111100000 
00111111000000000000 00111111000000000000 
00111011100000000000 00111011100000000000 
00111001110000000000 00111001110000000000 
00111000111000000000 00111000111000000000 
00111000011100000000 00111000011100000000 
00111000001110000000 00111000001110000000 
00111000000111000000 00111000000111110000 
00111000000011100000 00111000000011110000 
00000000000000000000 00000000000000000000 



The matrix of character The matrix of character 
for the first trainings for the second trainings 

This is for code S 00000000000000000000 00000000000000000000 
00000000000000000000 00000000000000000000 
00000011111111110000 00111111111111111100 
00000111111111111000 00111111111111111100 
00001110000000011100 00111110000000011100 
00011100000000001000 00011100000000001000 
00111000000000000000 00111000000000000000 
00111000000000000000 00111000000000000000 
00111100000000000000 00111100000000000000 
00011111111111100000 00111111111111111100 
00001111111111111000 00111111111111111100 
00000000000000011100 00000000000000011100 
00000000000000001110 00000000000000011100 
00000000000000011100 00000000000000011100 
00010000000000111000 00010000000000011100 
00111000000001110000 00111000000000011100 
00111111111111100000 00111111111111111100 
00011111111111000000 00111111111111111100 
00000000000000000000 00000000000000000000 
00000000000000000000 00000000000000000000 

This is for code T 00000000000000000000 00000000000000000000 
00111111111111111100 00111111111111111100 
00111111111111111100 00111111111111111100 
00111111111111111100 00111111111111111100 
00000000111000000000 00110000111000001100 
00000000111000000000 00110000111000001100 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000000111000000000 
00000000111000000000 00000111111111000000 
00000000000000000000 00000111111111000000 
00000000000000000000 00000000000000000000 
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The matrix of character The matrix of character 
for the first trainings for the second trainings 

This is for code U 00000000000000000000 00000000000000000000 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111000000000011100 
00111000000000011100 00111100000000111100 
00111000000000011100 00111110000001111100 
00111000000000011100 00011111000011111000 
00111111111111111100 00001111111111110000 
00111111111111111100 00000111111111100000 
00000000000000000000 00000000000000000000 

This is for code V 00000000000000000000 00000000000000000000 
00111000000000001110 00111000000000001110 
00111000000000001110 00111000000000001110 
00111000000000001110 00111000000000001110 
00011100000000011100 00111100000000011110 
00011100000000011100 00111100000000011110 
00001110000000111000 00011100000000011110 
00001110000000111000 00011110000000111110 
00000111000001110000 00011110000000111100 
00000111000001110000 00011110000000111100 
00000011100011100000 00011110000000111000 
00000011100011100000 00001111000001111000 
00000001110111000000 00001111000001111000 
00000001111111000000 00001111100011110000 
00000000111110000000 00000111100011100000 
00000000111110000000 00000011110111100000 
00000000011100000000 00000011111111000000 
00000000011100000000 00000001111110000000 
00000000001000000000 00000000011000000000 
00000000000000000000 00000000000000000000 



The matrix of character The matrix of character 
for the first trainings for the second trainings 

This is for code w 00000000000000000000 00000000000000000000 
01100000011000000110 01110000011000001110 
01100000011000000110 01110000011000001110 
01100000011000000110 01110000011000001110 
01100000011000000110 01110000011000001110 
00110000111100001100 01110000111100001110 
00110000111100001100 00111000111100011100 
00110000111100001100 00111000111100011100 
00110000111100001100 00111000111100011100 
00011001100110011000 00111001100110011100 
00011001100110011000 00111001100110011100 
00011001100110011000 00111001100110011100 
00011001100110011000 00111001100110011100 
00011111100111111000 00111111100111111100 
00001111000011110000 00011111000011111000 
00000110000001100000 00001110000001110000 
00000110000001100000 00001110000001100000 
00000000000000000000 00000100000000000000 
00000000000000000000 00000000000000000000 
00000000000000000000 00000000000000000000 

This is for code X 00000000000000000000 00000000000000000000 
I 

00111000000000001110 00111000000000001110 
00011100000000011100 00011100000000011100 
00001110000000111000 00001110000000111000 
00000111000001110000 00000111000001110000 
00000011100011100000 00000011100011100000 
00000001111111000000 00000001110111000000 
00000000111110000000 00000000111110000000 
00000000111110000000 00000000011100000000 
00000000111110000000 00000000111110000000 
00000001111111000000 00000001110111000000 
00000011100011100000 00000011100011100000 
00000111000001110000 00000111000001110000 
00001110000000111000 00001110000000111000 
00011100000000011100 00011100000000011100 
00111000000000011100 00111000000000001110 
01110000000000001110 01110000000000000111 
01110000000000001110 01110000000000000111 
00000000000000000000 00000000000000000000 
00000000000000000000 00000000000000000000 



The matrix of character The matrix of character 
for the first trainings for the second traininas 

This is for code Y 00111100000000011110 00000000000000000000 
00011110000000011110 00111000000000001110 
00001111000000011110 00011100000000011100 
00000111100000011100 00001110000000111000 
00000011110001111000 00000111000001110000 
00000001111011111000 00000011100011100000 
00000000111111110000 00000011111111000000 
00000000011111100000 00000001111110000000 
00000000011111000000 00000000111100000000 
00000000011111000000 00000000111100000000 
00000000011110000000 00000000111100000000 
00000000011110000000 00000000111100000000 
00000000011110000000 00000000111100000000 
00000000011110000000 00000000111100000000 
00000000011110000000 00000000111100000000 
00000000011110000000 00000000111100000000 
00000000011110000000 00000000111100000000 
00000000000000000000 00000000111100000000 
00000000000000000000 00000000111100000000 

00000000000000000000 
This is for code Z 00000000000000000000 00000000000000000000 

00111111111111111110 00011111111111111110 
00111111111111111110 00111111111111111110 
00111111111111111110 00011111111111111110 
00000000000000011110 00000000000000111110 
00000000000000111000 00000000000001111000 
00000000000001110000 00000000000011110000 
00000000000011100000 00000000000111100000 
00000000000111000000 00000000001111000000 
00000000001110000000 00000000011110000000 
00000000011100000000 00000000111100000000 
00000000111000000000 00000001111000000000 
00000001110000000000 00000011110000000000 
00000011100000000000 00000111100000000000 
00000111000000000000 00001111000000000000 
00001110000000000000 00111110000000000000 
00111111111111111110 00111111111111111100 
00111111111111111110 00111111111111111110 
00111111111111111110 00111111111111111100 
00000000000000000000 00000000000000000000 



the matrix of character for the 
target matching trainings 

The target of the output to be 123456 ................................. 26 
compared AlOOOOOOOOOOOOOOOOOOOOOOOO 

B0100000000000000000000000 
COOlOOOOOOOOOOOOOOOOOOOOOO 
D0001000000000000000000000 
EOOOOlOOOOOOOOOOOOOOOOOOOO 
FOOOOOlOOOOOOOOOOOOOOOOOOO 
GOOOOOOlOOOOOOOOOOOOOOOOOO 
HOOOOOOOlOOOOOOOOOOOOOOOOO 
JOOOOOOOOlOOOOOOOOOOOOOOOO 
KOOOOOOOOOlOOOOOOOOOOOOOOO 
LOOOOOOOOOOlOOOOOOOOOOOOOO 
:tv10000000000010000000000000 
NOOOOOOOOOOOOlOOOOOOOOOOOO 
00000000000000100000000000 
POOOOOOOOOOOOOOlOOOOOOOOOO 
QOOOOOOOOOOOOOOOlOOOOOOOOO 
ROOOOOOOOOOOOOOOOlOOOOOOOO 
SOOOOOOOOOOOOOOOOOlOOOOOOO 
TOOOOOOOOOOOOOOOOOOlOOOOOO 
UOOOOOOOOOOOOOOOOOOOlOOOOO 
VOOOOOOOOOOOOOOOOOOOOlOOOO 
\VOOOOOOOOOOOOOOOOOOOOOlOOO 
XOOOOOOOOOOOOOOOOOOOOOOlOO 
YOOOOOOOOOOOOOOOOOOOOOOOlO 
ZOOOOOOOOOOOOOOOOOOOOOOOOl 
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