
NEAR EAST UNIVERSITY 

Faculty of Engineering 

Department of Electrical and Electronic 
Engineering 

PROGRAMMABLE LOGIC CONTROLLERS 

Graduation Project 
·EE-400 

Student: Abed Yahya TAFESH (20001276) 

Supervisor: Mr. Ozgur OZERDEM 

Nicosia - 2003 



, ..• ::;-~_, /?~~RS:'r\ 
II( (/) <~ d. .\ 
((~ ~- W"\ 
\ Li.! t:Q~ 0 ;) 
I\ <j.. -...; ,::.ic // 
·~~NV __ ,,n ,j)j 
-~~ 

For the time being I would like to thank my parents and all my family for endless 
support, and for their encouragement and believing in my abilities to complete my 
studies and to become an engineer, 

ACKNOWL~DGMEN 

I would like to express my deepest gratitude to Mr. Ozgur OZERDEM to be my 
supervisor, where the guiding of his successfully helped to overcome many and to learn 
a lot about PLC. I also wish to extend my thanks to the staff members ofNEAR EAST 
UNIVERSITY. 

Finally, I must say a special thanks to my friends: Deniz, Yousef Baalousha, Ashraf 
Farah (debus), Ahmad Abu Ayyash, IBO and Loay, Majdi. I will never forget our nice 
time, I hope to them all more success in their future life. I also want to thank my friends 
ih NEU: Musa, Hassan, Ata, and Alaa, .. 



TABLE Of fONTENTS 

ACKNOWLEDGMENT 
. 
I 

INTODUCTION 
.. 
II 

1. PLC STRUCTURE AND OPERATION 1 

1.1. What Is The PLC? 1 

1.2. First Programmable Controllers 2 

1.3. Why Use PLCs? 3 

1.4. PLCs - Hardware Design 5 
1.4.1. The Centtal Processing Unit 6 

1.4.2. Memory 7 

1.4.3. Power Supply 8 

1.4.4. PLC Controller Input 8 

1.4.5. PLC Controller Output 9 

1.4.6. Extension Lines 10 

1.5. PLC Operation 11 

1.5.1. Response Time 12 

1.5.2. Data Areas 13 

1.5.3. Data Object 14 

2. PROGRAMMING THE PLC 15 

2.1. Ladder Diagram 15 

2.2. Normally Open and Normally Closed Contacts 17 

2.3. Combination Logic 21 

2.4. Complex Gate Form 23 
I 

2.5. Multiplexes 23 

2.6. Instruction Lists 25 

2.7. Brach Code 27 

2.8. Timers 28 

2.9. Counters 31 



3. PLC COMMUNICATION 36 

3 .1. Introduction 36 

3.2. Parallel Communication 36 

3.3. Serial Communication 36 

3.3.1. RS 232 36 

3.3.2. RS 423 and RS 485 42 

3.4. Local Area Network 42 

3.4.1. Response Time ofNetwork 43 

3.4.2. Network Standards 44 

4. APPLIED PROGRAM 45 

4.1. Introduction 45 

4.2. Working process 46 

4.3. Ladder diagram of the system 47 

4A. Statement list of the system 50 

Conclusion 52 

References 53 



INTRODUCTION 

A programmable logic controller (PLC), which was defined by Capiel in 1982, is 

used in many "real world" applications. If there is industry present, chances are good 

that there is a PLC present. If you are involved in machining, packaging, material 

handling, automated assembly or countless other jndustries you are probably already 

using them. If you are not, you ate wasting money and time. Almost any application 

that needs some type of electrical control has a need for a PLC. 

In a traditional industrial control system, all control devices are wired directly to 

each other according to how the system is supposed to operate. In a :PLC system, 

however, the PLC replaces the wiring between the devices. Thus, instead of being wired 

directly to each other, all equipment is wired to the PLC. Then, the control program 

inside the PLC provides the ''wiring" connection between the devices. 

However, this project consists of three chapters. 

Chapter one introduces the PLC structure and operation, in this chapter we 

presented the development of PLC, its advantages and the basic elements of PLC 

controller. 

Chapter two discusses PLC programming, contactors, combination gates, ladder 

diagram and statement list 

Chapter three studies PLC communications interfaces, options of communicating 

devices, local area networks and network standards. 

Chapter four shows the applied program, which is about production line in a factory. 

Ladder diagram and the instruction list were provided. 

ii 



1. PLC STRUCTURE AND OPERATION 

1.1 What is a PLC? 

Industry has begun to recognize the need for quality improvement and increase in 

productivity in the sixties and seventies. Flexibility also became a major concern 

( ability to change a process quickly became very important in order to satisfy consumer 

needs). 

Try to imagine automated industrial production line in the sixties and seventies. 

There was always a huge electrical board for system controls, and not infrequently it 

covered an entire wall! Within this board there were a great number of interconnected 

electromechanical relays to make the whole system work. By word "connected" it was 

understood that electrician had to connect all relays manually using wires! An engineer 

would design logic for a system, and electricians would receive a schematic outline of 

logic that they had to implement with relays. These relay schemas often contained 

hundreds of relays. The plan that electrician was given was called "ladder schematic". 

Ladder displayed all switches, sensors, motors, valves, relays, etc. found in the system. 

Electrician's job was to connect them all together. One of the problems with this type of 

control was that it was based on mechanical relays. Mechanical instruments were 

usually the weakest connection in the system due to their moveable parts that could 

wear out. If one relay stopped working, electrician would have to examine an entire 

system (system would be out until a cause of the problem was found and corrected). 

The other problem with this type of control was in the system's break period when a 

system had to be turned off, so connections could be made on the electrical board. If a 

firm decided to change the order of operations (make even a small change), it would 

turn out to be a major expense and a loss of production time until a system was 

functional again. 

It's not hard to imagine an engineer who makes a few small errors during his 

project. It is also conceivable that electrician has made a few mistakes in connecting the 

system. Finally, you can also imagine having a few bad components. The only way to 

see if everything is all right is to run the system. As systems are usually not perfect with 

1 



a first try, finding errors was an arduous process. You should also keep in mind that a 

product could not be made during these corrections and changes in connections. System 

had to be literally disabled before changes were to be performed. That meant that the 

entire production staff in that line of production was out of work until the system was 

fixed up again. Only when electrician was done finding errors and repairing,, the system 

was ready for production. Expenditures for this kind of work were too great even for 

well-to-do companies. 

1.2 First programmable controllers 

General Motors is among the first who recognized a need to replace the system's 

"wired" control board. Increased competition forced automakers to improve production 

quality and productivity. Flexibility and fast and easy change of automated lines of 

production became crucial! General Motors' idea was to use for system logic one of the 

microcomputers (these microcomputers were as far as their strength beneath today's 

eight-bit microcontrollers) instead of wired relays. Computer could take place of huge, 

expensive, inflexible wired control boards. If changes were needed in system logic or in 

order of operations, program in a microcomputer could be changed instead of rewiring 

of relays. Imagine only what elimination of the entire period needed for changes in 

wiring meant then. Today, such thinking is but common, and then it was revolutionary! 

Everything was well thought out, but then a new problem came up of how to make 

electricians accept and use a new device. Systems are often quite complex and require 

complex programming. It was out of question to ask electricians to learn and use 

computer language in addition to other job duties. General Motors Hidromatic Division 

of this big company recognized a need and wrote out project criteria for first 

programmable logic controller (there were companies which sold instruments that 

performed industrial control, but those were simple sequential controllers f:t not PLC 

controllers as we know them today). Specifications required that a new device be based 

on electronic instead of mechanical parts, to have flexibility of a computer, to function 

in industrial environment (vibrations, heat, dust, etc.) and have a capability of being 

reprogrammed and used for other tasks. The last criterion was also the most important, 

and a new device had to be programmed easily and maintained by electricians and 

technicians. When the specification was done, General Motors looked for interested 

2 



companies, and encouraged them to develop a device that would meet the specifications 

for this project. 

Gould Moclicon developed a first device that met these specifications. The key to 

success with a new device was that for its programming you didn't have to learn a new 

programming language. It was programmed so that same language fia ladder diagram, 

already known to technicians was used. Electricians and technicians could very easily 

understand these new devices because the logic looked similar to old logic that they 

were used to working with. Thus they didn't have to learn a new programming language 

which (obviously) proved to be a good move. PLC controllers were initially called PC 

controllers (programmable controllers). This caused a small confusion when Personal 

Computers appeared. To avoid confusion, a designation PC was left to computers, and 

programmable controllers became programmable logic controllers. First PLC 

controllers were simple devices. They connected inputs such as switches, digital 

sensors, etc., and based on internal logic they turned output devices on or off. When 

they first came up, they were not quite suitable for complicated controls such as 

temperature, position, pressure, etc. However, throughout years, makers of PLC 

controllers added numerous features and improvements. Today's PLC controller can 

handle highly complex tasks such as position control, various regulations and other 

complex applications. The speed of work and easiness of programming were also 

improved. Also, modules for special purposes were developed, like communication 

modules for connecting several PLC controllers to the net. Today it is difficult to 

imagine a task that could not be handled by a PLC. 

1.3 Why use PLCs? 

The softwiring advantage provided by programmable controllers is tremendous. In 

fact, it is one of the most important features of PLCs. Softwiring makes changes in the 

control system easy and cheap. If you want a device in a PLC system to behave 

differently or to control a different process element, all you have to do is change the 

control program. In a traditional system, making this type of change would involve 

physically changing the wiring between the devices, a costly and time-consuming 

endeavor. 

3 



In addition to the programming flexibility we just mentioned, PLCs offer other 

advantages over traditional control systems. These advantages include: 

• High reliability, due to the ability of the control to process data an d react quickly in 

real time results in consistent part production. This high speed is due in a large 

measure to the utiliz.ation of distributed processing concept. 

• Increased control over manufacturing, due to the ready availability of all process 

data. A PLC can be easily connected to a host computer and its data can be made 

available for subsequent processing. To this end, major manufactures offer networks 

that can be readily installed. 

• Scalability which means that the control system can be easily and economically 

scaled up, or scaled down, to meet changing production and budget requirements. A 

large, dedicated control system once installed and operating is very difficult to 

modify. 

• Environmental resistibility, an industrial application needs industrial solutions. The 

vibration resistibility, IP class of the housing and electromagnetic compatibility and 

wider operation temperature are essentials industrial systems. PLC's fit better to 

industrial environment since they are intentionally built for this purpose. 

• Service and spare parts, there are still no common PLC instruction of manufacturers. 

PLC manufacturers provide PLC's on market until the parts are obsolete. Some new 

products are up compatible with the obsolete one. Mostly all manufacturers PLC 

programming software may convert the obsolete versions to a up-to-data -version, 

The up compatibility is not guaranteed and may need to be translated to new PLC 

instructions. 

• Communication abilities with other equipment's, PLC's are designed to construct a 

network between them. Communication between same brand and type of PLC's is 

not a problem. When multiple brands and types are used to construct the 

application, the communications are a real problem 

The comparison of the PLC with other control systems is given in the table 1.2 it is 

obvious that PLC's are the best for industrial control. 

4 



Table 1.2 The comparison of PLC with relays, PC, and design system 

' I 

Characteristic Relay system Digital logic Computer PLC system 

I 

Price per function Fairly low Low High Low 

Physical size Bulky Very compact Fairly compact Very compact 

Operation speed Slow Very fast Fairly fast Fast 

Electrical noise Excellent Good Quite good Good 

immunity 

Installation Time- Design time- Programming Simple to 

consuming to consummg extremely program and 

design and time- install 

install consuming 

Capable of No Yes Yes Yes 

complicated 

operation 

Ease of changing Very difficult Difficult Quite simple Very simple 

function 

Ease of Poor-large Poor if IC s Poor-several Good-few 

maintenance number of soldered custom boards standard cards 

contacts 

5 



1.4 PLCs - Hardware design 

Programmable controllers are purpose-built computers consisting of three functional 

areas, which are shown, in figure 1.1, central processing unit (CPU), memory and 

input/output. Input conditions to the PLC are sensed then stored in memory, where the 

PLC performs the programmed logic instructions on these input states. Output 

conditions are then generated to drive associated equipment. The action taken depends 

totally on the control program held in memory. In smaller PLCs individual printed 

circuit cards within a single compact unit perform these functions, whilst larger PLCs 

are constructed on a modular basis with function modules slotted into the backplane 

connectors of the mounting rack. This allows simple expansion of the system when 

necessary. Lit both these cases the individual circuit boards are easily removed and 

replaced, facilitating rapid repair of the system should faults develop. 

In addition a pro~ramming unit is necessary to download control programs to the 

PLC memory. 

r,---- - ---- 
1 - 

i 

\ 
PC for: PLC 

programming 

I (i.in~,for 
E:xtehsi.o.h. •· 

L __ _...:_t- __ 
~1.~ee.000 0.B@l 

Screw termlnals 
for output lines 

Figure 1.1 Basic element of PLC controller 

6 



1.4.1 The Central Processing Unit 

Central Processing Unit (CPU) is the brain of a PLC controller. CPU itself is usually 

one of the microcontrollers. Aforetime these were 8-bit microcontrollers such as 8051, 

and now these are 16- and 32-bit microcontrollers. Unspoken rule is that you'll find 

mostly Hitachi and Fujicu microcontrollers in PLC controllers by Japanese makers, 

Siemens in European controllers, and Motorola microcontrollers in American ones. 

CPU also takes care of communication, interconnectedness among other parts of PLC 

controller, program execution, memory operation, overseeing input and setting up of an 

output. PLC controllers have complex routines for memory checkup in order to ensure 

that PLC memory was not damaged (memory checkup is done for safety reasons). 

Generally speaking, CPU unit makes a great number of check-ups of the PLC controller / 

itself so eventual errors would be discovered early. You can simply look at any PLC 

controller and see that there are several indicators in the form of light diodes for error 

signalization. 

1.4.2 Memory 

System memory (today mostly implemented in FLASH technology) is used by a 

PLC for a process control system. Aside from this operating system it also contains a 

user program translated from a ladder diagram to a binary form. FLASH memory 

contents can be changed only in case where user program is being changed. PLC 

controllers were used earlier instead of FLASH memory and have had EPROM memory 

instead of FLASH memory that had to be erased with UV lamp and programmed on 

programmers. With the use of FLASH technology this process was greatly shortened. 

Reprogramming a program memory is done through a serial cable in a program for 

application development. 

User memory is divided into blocks having special functions. Some parts of a 

memory are used for storing input and output status. The real status of an input is stored 

either as "l" or as "O" in a specific memory bit. Each input or output has one 

corresponding bit in memory. Other parts of memory are used to store variable contents 

for variables used in user program. For example, timer value, or counter value would be 

stored in this part of the memory. There are four types of memory, first one is random 

7 



access memory (RAM), and second one is read only memory (ROM), third one is 

erasable programmable read only memory (EPROM), and the last one is electrically 

erasable programmable read only memory (EEPROM). 
\ 

1.4.3 Power supply 

Electrical supply is used in bringing electrical energy to central processing unit. 

Most PLC controllers work either at 24 VDC or 220 V AC. On some PLC controllers 

you'll find electrical supply as a separate module. Those are usually bigger PLC 

controllers, while small and medium series already contain the supply module. User has 

to determine how much current to take :from I/0 module to ensure that electrical supply 

provides appropriate amount of current. Different types of modules use different 

amounts of electrical current. This electrical supply is usually not used to start external 

inputs or outputs. User has to provide separate supplies in starting PLC controller inputs 

or outputs because then you can ensure so called "pure" supply for the PLC controller. 

With pure supply we mean supply where industrial environment can not affect it 

damagingly, Some of the smaller, PLC controllers supply their inputs with voltage from 

a small supply source already incorporated into 'a PLC. 

1.4.4 PLC controller input 

Intelligence of an automated system depends largely on the ability of a PLC 

controller to read signals from different t~es of sensors and input devices. Keys, 

keyboards and by functional switches are a basis for man versus machine relationship. 

On the other hand, in order to detect a working piece, view a mechanism in motion, 

check pressure or fluid level you need specific automatic devices such as proximity 

sensors, marginal switches, photoelectric sensors, level sensors, etc. Thus, input signals 

can be logical- ( on/oft) or analogue. Smaller PLC controllers usually have only digital 

input lines while larger also accept analogue inputs through special units attached to 

PLC controller. One of the most frequent analogue signals are a current signal of 4 to 20 
I 

rnA and millivolt voltage signal generated by various sensors. Sensors are usually used 

as inputs for PLCs. You can obtain sensors for different purposes. They can sense 

presence of some parts, measure temperature, pressure, or some other physical 

8 



dimension, etc. (ex. inductive sensors can register metal objects). 

Other devices also can serve as inputs to PLC controller. Intelligent devices such as 

robots, video systems, etc. often are capable of sending signals to PLC controller input 

modules (robot, for instance, can send a signal to PLC controller input as information 

when it has finished moving an object from one place to the other). 

• Input adjustment interface 

Adjustment interface also called an interface is placed between input lines and a 

CPU unit. The purpose of adjustment interface to protect a CPU from. disproportionate 

signals from an outside world. Input adjustment module turns a level of real logic to a 

level that suits CPU unit ( ex. input from a sensor which works on 24 VDC must be 

converted to a signal of 5 VDC in order for a CPU to be able to process it). This is 

typically done through opto-isolation, and this function you can view in the figure 1.2. 

Opto-isolation means that there is no electrical connection between external world 

and CPU unit. They are "optically" separated, or in other words, signal is transmitted 

through light. The way this works is simple. External device brings a signal which turns 

LED on, whose light in turn incites photo transistor which in turn starts conducting, and 

a CPU sees this as logic zero (supply between collector and transmitter falls under IV). 

When input signal stops LEP diode turns off, transistor stops conducting, collector 
voltage increases, and CPU receives logic 1 as information. 

Input CPU 

LED 
Photo transistor 

Figure 1.2 Input adjustable interface 

9 



1.4.5 PLC controller output 

Automated system is incomplete if it is not connected with some output devices. 

Some of the most :frequently used devices are motors, solenoids, relays, indicators, 

sound signalization and similar. By starting a motor, or a relay, PLC can manage or 

control a simple system such as system for sorting products all the way up to complex 

systems such as service system for positioning head ofCNC machine. Output can be of 

analogue or digital type. Digital output signal works as a switch; it connects and 

disconnects line. Analogue output is used to generate the analogue signal (ex. motor 

whose speed is controlled by a voltage that corresponds to a desired speed). 

• Output adjustment interface 

Output interface is similar to input interface. CPU brings a signal to LED diode and 

turns it on. Light incites a photo transistor which begins to conduct electricity, and thus 

the voltage between collector and emitter falls to 0.7V, and a device attached to this 

output sees this as a logic zero. Inversely it means that a signal at the output exists and 

is interpreted as logic one. Phototransistor is not directly connected to a PLC controller 

output. Between phototransistor and an output usually there is a relay or a stronger 

transistor capable of interrupting stronger signals. And this function you can view in the 

figure 1.3. 

_J ?- 
Out CPU 

LED Photo transistor 

Figure 1.3 Output adjustable interface 

10 



1.4.6 Extension lines 

Every PLC controller has a limited number of input/output lines. If needed, this 

number can be increased through certain additional modules by system extension 

through extension lines. Each module can contain extension both of input and output 

lines. Also, extension modules can have inputs and outputs of a different nature from 

those on the PLC controller ( ex. in case relay outputs are on a controller, transistor 

outputs can be on an extension module). 

1.5 PLC Operation 

A PLC works by continually scanning a program. We can think of this scan cycle as 

consisting of 3 important steps which are shown in figure 1.4. There are typically more 

than 3 but we can focus on the important parts and not worry about the others. Typically 

the others are checking the system, and updating the current internal counter and timer 

values. 

CHECK INPUT STATUS 

EXECUTE PROGRAM 

UPDATE OUTPUT STATUS 

Figure 1.4 PLC operation 

Step 1-CHECK INPUT STATUS-First the PLC takes a look at each input to 
determine if it is on or off. In other words, is the sensor connected to the first input on? 

How about the second input? How about the third ... It records this data into its memory 

to be used during the next step. 

Step 2-EXECUTE PROGRAM-Next the PLC executes your program one 

instruction at a time. Maybe your pro$ram said that if the first input was on, then it 

11 



should turn on the first output. Since it already knows which inputs are on/off from the 

previous step it will be able to decide whether the first output should be turned on based 

on the state of the first input. It will store the execution results for use later during the 

next step. 

Step 3-UPDATE OUTPUT STATUS-Finally the PLC updates the status of the 

outputs. It updates the outputs based on which inputs were on during the first step and 

the results of executing your program during the second step. Based on the example in 

step 2,it would now turn on the first output because the first input was on and your 

program said to turn on the first output when this condition is true. 

After the third step the PLC goes back to step one and repeats the steps 

continuously. One scan time is defined as the time it takes to execute the 3 steps listed 

above. 

1.5.1 Response Time 

The total response time of the PLC is a fact we have to consider when shopping for 
a PLC. Just like our brains, the PLC takes a certain amount of time to react to changes. 

In many applications speed is not a concern, in others though. 

I~ you take a moment to look away from this text you might see a picture on the 

wall. Your eyes actually see the picture before your brain says "Oh, there's a picture on 

the wall". In this example your eyes can be considered the sensor. The eyes are 

connected to the input circuit of your brain. The input circuit of your brain takes a 

certain amount of time to realize that your eyes saw something. (If you have been 

drinking alcohol this input response time would be longer!) Eventually your brain 

realizes that the eyes have seen something and it processes the data. It then sends an 

output signal to your mouth, Your mouth receives this data and begins to respond to it. 

Eventually your mouth utters the words "Gee, that's a really ugly picture!". Notice in 

this example we had to respond to 3 things that are shown in the figure 1.5. 

12 



INPUT RESPONSE TIME 
+ 

PROGRAM EXECUTING TIME 
+ 

OUTPUT RESPONSE TIME 

• TOTAL RESPONSE TIME 

Figurel.5 Time response 

1) INPUT- it took a certain amount of time for the brain to notice the input signal :from 

the eyes. 

2) EXECUTION- it took a certain amount of time to process the information received 

:from the eyes. Consider the program to be: If the eyes see an ugly picture then output 

appropriate words to the mouth. 

3) OUTPUT- The mouth receives a signal :from the brain and eventually spits (no pun 

intended) out the words "Gee, that's a really ugly picture!" 

1.5.2 Data areas (For Siemens Simatic S7-200) 

Data memory contains variable memory, and output image registers, internal 

memory bits, and special memory bits. This memory is accessed by a byte bit 

convention. For example to access bit of Variable Memory byte 2 you would use the 
address V2.3. Table 1.2 shows the identifiers and ranges for each of the data memory 

types. 

Table 1.2 Identifiers and ranges for of CPU 212 and CPU 214 

Area identifier Data area CPU212 CPU 214 

I Input 10.0 to 17.7 10.0 to I 7.7 

Q Output QO.O to Q7.7 QO.O to Q7.7 

M Internal memory MO.Oto Ml5.7 MO.OtoM3L7 

SM Special memory SMO.O to SM4507 SMO.O to SM85.7 

V Variable memory VO.Oto V1023.7 VO.Oto V4095.7 

13 



1.5.3 Data object 

The S7-200 has six kinds of devices with associated data: timers, counters, analog 

inputs, analog outputs, accumulator and high-speed counters. Each device has 

associated data. For example, the S7-200 has counter devices. Counters have a data 

value that maintains the current count value. There is also a bit value, which is set when 

the current value is greater than or equal to the present value. Since there are multiple 

devices are numbered froth O to n. The corresponding data objects and object bits are 

also numbered. The table 1.3 shows the identifiers and ranges for each of the data object 

memory types. 

Table 1.3 Identifiers and ranges for CPU2l2 and CPU214 

Object identifier Object CPU212 CPU 214 

T Timers TO to T63 TO to T127 

C Counters Co to C63 CO to C127 

AI Analog input AIWO to AIW30 AIWO to AIW30 
,, 

AQ Analog output AQWO to AQW30 AQWO to AQW30 

AC Accumulator ACOtoAC3 ACOtoAC3 

HC High-speed counter HCO HCO to HC2 

14 



2. PROGRAMMING THE PLC 

2.1 Ladder diagram 

Programmable controllers are generally programmed in ladder diagram (or "relay 

diagram") which is nothing but a symbolic representation of electric circuits. Symbols 

were selected that actually looked similar to schematic symbols of electric devices, and 

this has made it much easier for electricians to switch to programming PLC controllers. 

Electrician who has never seen a PLC can understand a ladder diagram. 

There are several languages designed for user communication with a PLC, among 

which ladder diagram is the most popular. Ladder diagram consists of one vertical line 

found on the left-hand side, and lines, which branch off to the right. Line on the left is 

called a "bus par", and lines that branch off to the right are instruction lines. Conditions, 
which lead to instructions positioned at the right edge of a diagram, are stored along 

instruction lines. Logical combination of these conditions determines when and in what 

way instruction on the right will execute. Basic elements of a relay diagram can be seen 

in figure 2.1. 

"bus bar" -vertical line 
where instruction tines 
branch off 

------ Memory word address 

..------ Bit number in a word 

/ 

Graphic 
symbol for 
condition 

000.00 

Instruction line 

Figure2.l Basic elements of a relay diagram 

Most instructions require at least one operand, and often more than one. Operand 

can be some memory location, one memory location bit, or some numeric value - 

15 



number. In the example above, operand is bit O of memory location IROOO. In a case 

when we wish to proclaim a constant as an operand, designation # is used beneath the 

numeric writing (for a compiler to know it is a constant and not an address.) 

Based on figure 2.1, one should note that a ladder diagram consists of two basic 

parts: left section also called conditional, and a right section, which has instructions. 

When a condition is fulfilled, instruction is executed, and that's all! 

Figure 2.2 represents an example of a ladder diagram where relay is activated in 

PLC controller when signal appears at input line 00. Vertical line pairs are called 

conditions. Each condition in a ladder diagram bas a value ON or OFF, depending on a 

bit status assigned to it. In this case, this bit is also physically present as an input line 

(screw terminal) to a PLC controller. If a key is attached to a corresponding screw 

terminal, you can change bit status from a logic one status to a logic zero status, and 

vice versa. Status of logic one is usually designated as "ON'' and status of logic zero as 

"OFF". 

Condition f-- ! --"T lnstrukcija 

000.00 IR010.00 
,____,11 

Figure 2.2 Condition and instruction in relay diagram 

Right section of a ladder diagram is an instruction, which is executed if left 

condition is fulfilled. There are several types of instructions that could easily be divided 

into simple and complex. Example of a simple instruction is activation of some bit in 

memory location. In the example above, this bit has physical connotation because it is 

connected with a relay inside a PLC controller. When a CPU activates one of the 

leading four bits in a word IROlO, relay contacts move and connect lines attached to it. 

In this case, these are the lines connected to a screw terminal marked as 00 and to one of 

COM screw terminals. 

16 



2.2 Normally open and normally closed contacts 

Since we frequently meet with concepts "normally open" and "normally closed" in 

industrial environment, it's important to know them. Both terms apply to words such as 

contacts, input, output, etc. (all combinations have the same meaning whether we are 

talking about input, output, contact or something else). 
Principle is quite simple, normally open switch won't conduct electricity until it is 

pressed down, and normally closed switch will conduct electricity until it is pressed. 

Good examples for both situations are the doorbell and a house alarm. 

If a normally closed switch is selected, bell will work continually until someone 
/\ 

pushes the switch. By pushing a switch, contacts are opened and pushing a switch 
interrupts the flow of electricity towards the bell. Of course, system so designed would 

not in any case suit the owner of the house. A better choice would certainly be a 

normally open switch. This way bell wouldn't work until someone pushed the switch 

button and thus informed of his or her presence at the entrance. 

Home alarm system is an example of an application of a normally closed switch. 

Let's suppose that alarm system is intended for surveillance of the front door to the 

house. One of the ways to "wire" the house would be to install a normally open switch 

from each door to the alarm itself (precisely as with a bell switch). Then, if the door was 

opened, this would close the switch, and an alarm would be activated. This system 

could work, but there would be some problems with this, too. Let's suppose that switch 

is not working, that a wire is somehow disconnected, or a switch is broken, etc. (there 

are many ways in which this system could become dysfunctional). The real trouble is 

that a homeowner would not know that a system was out of order. A burglar could open 

the door, a switch would not work, and the alarm would not be activated. Obviously, 

this isn't a good way to set up this system. System should be set up in such a way so a 

burglar activates the alarm, but also by its own dysfunction or if any of the components 

stopped working. (A homeowner would certainly want to know if a system was 

dysfunctional). Having these things in mind, it is far better to use a switch with 

normally closed contacts, which will detect an unauthorized entrance ( opened door 

interrupts the flow of electricity, and this signal is used to activate a sound signal), or a 

failure on the system such as a disconnected wire. These considerations are even more 

important in industrial environment where a failure could cause injury at work, One 

such example where outputs with normally closed contacts are used is a safety wall with 

17 



trimming machines. If the wall doors open, switch affects the output with normally 

closed contacts and interrupts a supply circuit. This stops the machine and prevents an 

injury. 
Concepts normally open and normally closed can apply to sensors as well. Sensors 

ate used to sense the presence of physical objects, measure some dimension or some 

amount. For instance, one type of sensors can be used to detect presence of a box on an 

industry transfer belt. Other types can be used to measure physical dimensions such cJS 

heat, etc. Still, most sensors are of a switch type. Their output is in status ON or OFF 

depending on what the sensor "feels". Let's take for instance a sensor made to feel metal 

when a metal object passes by the sensor. For this purpose, a sensor with a normally 

open or a normally closed contact at the output could be used. If it were necessary to 

inform a PLC each time an object passed by the sensor, a sensor with a normally open 

output should be selected. Sensor output would set off only if a metal object were 

placed right before the sensor. A sensor would turn off after the object has passed. PLC 

could then calculate how many times a normally open contact was set off at the sensor 

output, and would thus know how many metal objects passed by the sensor. 
Concepts normally open and normally closed contact ought to be clarified and 

explained in detail in the example of a PLC controller input and output. The easiest way 

to explain them is in the example of a relay in the figure 2.3. 

18 



/ 

RelayO 
normally 

010.00 open 

·············----()--1 

/ 

Relay 1 
normally 

010.01 open 

·············-0-i 

o 1 2 a •. s e 7 a 9 10 11 12 1a 111. 15 

Relay 2 

/ 
normally 

010.02 closed 

······-····-~ 

: \011N_o_o 1_!_! __ 1 __ ! .. ~--~-~ -~---- : IROlO 

)
I ~03 ~ Screwterminal .:;,. V on PLC house 

\,VII! \,UIII 

Re~y contact/ I '~~ )02 inside of PLC 
controller 

cce bco11 

Relay 3 

/ 
normally 

010.03 closed 

, ~ 

Figure 2.3 Open and closed relays diagram 

Normally open contacts would represent relay contacts that would perform a 

connection upon receipt of a signal. Unlike open contacts, with normally closed 

contacts signal will interrupt a contact, or turn a relay off. Previous picture shows what 

this looks like in practice. First two relays are defined as normally open, and the other 

two as normally closed. All relays react to a signal! First relay (00) has a signal and 

closes its contacts. Second relay (01) does not have a signal and remains opened. Third 

relay (02) has a signal and opens its contacts considering it is defined as a closed 
contact. Fourth relay (03) does not have a signal and remains closed because it is so 

defined. 
Concepts "normally open" and "normally closed" can also refer to input of a PLC 

controller. Let's use a key as an example of an input to a PLC controller. Input where a 

key is connected can be defined as input with open or closed contacts. If it is defined as 

input with normally open contact, pushing a key will set off an instruction found after 

the condition. In this case it will be an activation of a relay 00. 

If input is defined .as input with normally closed contact, pushing the key will 

interrupt instruction found after the condition. In this case, this will cause deactivation 

19 



of relay 00 (relay is active until the key is pressed). You can see in the figure 2.4 how 

keys are connected, and view the relay diagrams in both cases. 

/ 

Input IR000.00 
ormally open 

1----0-l 

Button 
on input 
IR000.00 

000.00 010.00 

Input IR000.00 
/ normally closed 

Hf----0-l 
000 .00 01 0 .00 

.L .. l 24 

T .. TVDC I 

Figure 2.4 Connection of the keys and relays diagram 

Normally open/closed conditions differ in a ladder diagram by a diagonal line across 

a 'symbol. What determines an execution condition for instruction is a bit status marked 

beneath each condition on instruction line. Normally open condition is ON if its 

operand bit has ON status, or its status is OFF if that is the status of its operand bit. 

Normally closed condition is ON when its-operand bit is OFF, or it has OFF status when 

the status of its operand bit is ON. 
When programming with a ladder diagram, logical combination of ON and OFF 

conditions set before the instruction determines the eventual condition under which the 

instruction will be, or will not be executed. This condition, which can have only ON or 

OFF values, is called instruction execution condition. .Operand assigned to any 

instruction in a relay diagram can be any bit from IR, SR, ,BR, AR, LR or TC sector. 

This means that conditions in a relay diagram can be determined by a status of I/0 bits, 

or of flags, operational bits, timers/counters, etc. 

2.3 Combination Logic 

A digital logic system is concerned with just two voltage states. The signal 

processed by the system is either: high or low; on or off; logic 1 or logic 0. In the early 

20 



days of digital systems, circuits were built from discrete components such as resistors 

and transistors. Today most digital systems are built primarily from integrated circuits. 

At the heart of all digital systems are small switching circuits called logic gates. There, 

are a number of different logic gates that open and give a high output signal, depending 

oh the combination of signals present at their inputs. Logic gates are decision-making 

circuits. Combination logic is about combining logic gates to process two or more 

signals to produce at least one output according to a set of rules for each logic gate. The 
; 

sets of rules that govern the behavior of logic gates ate written in the form of a truth 

table. 

Truth table shows the value of the output for each of the possible input 

combinations. Logic Symbols, Truth Tables, and Equivalent Ladder/PLC Logic 

Diagrams are shown in the table 2.1. 

21 



Table 2.1 Logic Symbols, Truth Tables, and Equivalent Ladder/PLC Logic 

Logic Diagram Truth Table, La(lijer Diagram 

:=o-c A B C A B C 0 0 0 
0 1 0 ~HH}- 
1 0 0 
1 1 1 

AND AND 
Gate Equivalent Circuit 

A C 
A B C lar }- :=1>-c 0 0 0 
0 1 1 
1 0 1 I 1 1 1 

OR OR 
Gate EquivalentCirQJit 

A B C 

:j[)-c 
A 8 C 

~ }- 0 0 0 
0 1 1 
1 0 1 
1 1 0 

Exdusive--OR E,u;lusii.le-OR 
Gate Equivalent Circuit 

A C 

:D--c A. B C 
~0- 0 0 1 

0 1 1 
1 0 1 
1 1 0 

NANO NANO 
Gate Equivalent Circuit 

:=[>-c A B C A B C 
0 0 1 +t+H )- 0 1 0 
1 0 0 
1 1 0 

NOR NOR 
Gate Equtva!entOrcult 

22 



2.4 Complex Gate Forms 

In total there are 16 different possible types of 2-input logic gates. The simplest are 

AND and 0~ the other gates we will refer to as complex to differentiate. The three 

popular complex gates that have been discussed before are NANO, NOR and EOR. All 

of these can be reduced to simpler forms with only ANDs and ORs that are suitable for 

ladder logic, as shown in Figure 2.5. 

NANO - x~A·B 
NOR 

X =- A +B 
EUR 

X"" A<if:JB 

X""A-+B X=-A-B X- A ·B+A·B 
:A B X 

A X 
) A B X 

~) 
) 

B 

Figure 2.5 Conversion of complex logic functions 

2.5 Multiplexes 

Multiplexes allow multiple devices to be connected to a single device. These are 

very popular for telephone systems. A telephone switch is used to determine which 

telephone will be connected to a limited number of lines to other telephone switches. 

This allows telephone calls to be made to somebody far away without a dedicated wire 

to the other telephone. In older telephone switchboard operators physically connected 

wires by plugging them in. In modem computerized telephone switches the same thing 

is done, but to digital voice signals. 
In Figure 2.6 a multiplexer is shown that will take one of four inputs bits Dl, D2, 

D3 or D4 and make it the output X, depending upon the values of the address bits, Al 

andA2. 

23 



D4 

Al A2 1 X 
I 

multiplexer . 0 0 X=D1 
0 l X!!!i!D2 

X t 0 X!!!>D3 
l I X=D4 

Dl 

D2 

D3 

Figure 2.6 multiplexer 

Ladder logic form the multiplexer can be seen in Figure 2. 7. 

Al A2 D1 

Al A2 D2 

Al A2 D3 

* 
Al A2 

Figure 2. 7 A Multiplexer in Ladder Logic 

Example in figure 2.8 represents a basic program. Example consists of one input 

device and one output device linked to the PLC controller output. Key is an input 

device, and a bell is an output supplied through a relay 00 contact at the PLC controller 

output. Input 000.00 represents a condition in executing an instruction over 010.00 bit. 

Pushing the key sets off a 000.00 bit and satisfies a condition for activation of a 010.00 

~4 



bit, which in turn activates the bell. For correct program function another line of 

program is needed with END instruction, and this ends the program. 

Main 1 IR000.00 Switch for bell 

BELL 
IR010.00 Relay on which bell is connected 

000.00 o· 
I I 
I I I 

- . . - . - - . - . - - . - . - - . - - - - - - - . - - . - . - - . - . 
END(01) I 

nput 
00 put 
in ON 
e bell 

am 

Figure 2.8 Example 

2.6 Instruction Lists 

Mother programming method, which can be considered to be the entering of the 

ladder program using text, is instruction lists. For this, mnemonic codes are used, each 

code corresponding to a ladder element. The codes used differ to some extent from 

manufacturer to manufacturer, through a standard IEC 1131-3 has been proposed. Table 

2.2 shows some of the codes used by manufacturers. 

25 



Table 2.2 The codes used by manufacturers. 

INSTRUCTION LADDER HITACHI OMRON MITSUMI. Te:XAs SIMATIC 
SYMBOL INST. S7 

Hr L.O LO LO STR LD 
LOAD 

AND -I r- AND AND AND AND A 

OR L--j ~ OR OR OR OR 0 

NOT I NOT NOT I NOT NOT 

H1r LOI LONSJT LOI STR LON LOAD NOT NOT 

AND NOT ~/~ ANI AND ANI AND AN 
NOT NOT 

OR NOT y;~ ORI OR NOT ORI OR NOT ON 

AND BLOCK ANB ANLD ANB AND ALO STR 

OR BLOCK ORB ORLO ORB ORSTR OLD 
\ 

OUT -( ) OUT OUT OUT OUT = 

END END ENO END END END MEND 

Whenever a network is started, it must use a start a network code. In the Simatic S7, 

this should be LD to indicate the network is starting with open contacts, or LDN to 

indicate it is starting with closed contacts. Each network must end with an output. This 

should be =, and MEND instruction is used to complete the program. 

The following shows how individual networks on a ladder are entered using the 

Simatic S7 for the AND gate, shown in figure 2.9. Step O is the start of the network with 

LD because it is starting with open contacts. Since the address of-the input is IO.O, the 

instruction is LD IO.O. This is followed by another open contact input and so step 1 

involves the instruction A with the address of the element, thus step 2 involves the 

instruction A IO. I. The network terminates with an output and so the instruction = is 

used with the address of the output QO.O. Finally, the step 3 involves the instruction 

MEND. 

26 



Logt¢ Dl;tgram Tmth Table' Ladder Diagram Step Instruction 

n.o=r=r tp.O I0.1 QO.O ~QO; 0 LO IO.O 
QO.O 1 A I0.1 

10.1 . 0 0 0 2 = QO.O 
0 1 0 END) 3 MEND 
1 0 0 
t 1 1 

AND AND 
Gare EqtiivalentCircuit 

Figure ~.9 AND gate 

Consider another example, an OR gate. Figure 2.10 shows the gate with Simatic S7. 

the instruction for the rung start with an open contact is LD IO.O. The next item is the 

parallel O set of contact IO. I. Thus the next instruction is O IO. I. The next step is the 

output, hence= QO.O. The last step is the end. Therefore, the instruction is MEND. 

Logic Diagram Truth Table Ladder Diagram Step Instruction 
I 

IO.O 00.0 

10.0~ 10.0 I0.1 QO.O m:) 0 LO 10.0 
- 00.0 1 0 I0.1 

ll.1 
0 0 0 2 = QO.O 
0 1 1 3 MEND 
1 0 1 

OR 1 1 1 
Gate OR EquivalentCircult 

Figure2.10 OR gate 

2. 7 Branch Code 

The Exclusive OR (XOR) ~ate shown in the figure 2.11 in the Simatic S7 notation has 

two parallel arms with an AND situation in each arm. In such a situation Simatic S7 

uses .an OLD instruction to indicate OR together parallel branches. The first instruction 

is for a normally open contact IO.O. The next instruction is for a series set of normally 

closed contact IO.I, after reading the first two instructions, the third instruction starts a 

new line. It is recognized as a new line because it starts with LD, all new lines starting 

with LD or LON. But the first line has not been ended by an output. The PLC thus 
recognizes that- a parallel line is involved for the second line and reads together the 

listed elements until the OLD instruction is. reached. The mnemonic OLD indicates to 

27 



the PLC that it should OR the results of steps O and 1 with that of the new branch with 

step 2 and 3. The list concludes with the output QO.O. 

Ladder Diagram Step Instruction 

IO.O 10.1 QO.O 
) I 1 

2 
3 
4 
5 
6 
7 

LO IO.O 
AN I01 
LDN IO.O 
A I0.1 
OLD 
= QO.O 
MEND 

Exclusive-OR 
EquivalentCin;uit 

Figure 2.11 XOR gate 

2.8 Timers 

In many control tasks there is need to control time. For example, a motor or a pump 

might need to be controlled to operate for a particular and interval of time, or perhaps be 

switched on after some time interval. PLCs thus have tuners as built-in devices. Timers 

count fractions of seconds or seconds using the internal CPU clock. 

When we look at the different kinds of timers available the fun begins. As always, 

different types of timers are available with different manufacturers. Here are most of 

them: 

1) On-Delay Timer 

These type of timer simply "delays turning on". In other words, after our sensor 

(input) turns on we wait x-seconds before activating a solenoid valve (output). This is 

the most common timer. It is often called TON (timer on-delay), TIM (timer) or TMR 

(timer). 

2) Off..Delay Timer 

28 



This tyx,e of timer is the opposite of the on-delay timer listed above. This timer 

simply "delays turning off'. After our sensor (input) sees a target we tum on a solenoid 

(output). When the sensor no longer sees the target we hold the solenoid on for x­ 

seconds before turning it off. It is called a TOF (timer off-delay) and is less common 

than the on-delay type listed above. (i.e. few manufacturers include this type of timer) 

3) Retentive or Accumulating Timer 

This type of timer needs 2 inputs. One input starts the timing event (i.e. the clock 

starts ticking) and the other resets it. The on/off delay timers above would be reset if the 

input sensor wasn't on/off for the complete timer duration. This timer however holds or 

retains the current elapsed time when the sensor turns off in mid-stream. For example, 

we want to know how long a sensor is on for during a 1 hour period. If we use one of 

the above timers they will keep resetting when the sensor turns off/on. This timer 

however, will give us a total or accumulated time. It is often called an RTO (retentive 

timer) or TMRA (accumulating timer). 

Let's now see how to use them. We typically need to know 2 things: 

1) What will enable the timer? Typically this is one of the inputs.(a sensor connected to 

input 0000 for example) 

2) How long we want to delay before we react. Let's wait 5 seconds before we tum on a 

solenoid, for example. 

When the instructions before the timer symbol are true the timer starts "ticking". 

When the time elapses the timer will automatically close its contacts. When the program 

is running on the PLC the program typically displays the elapsed or "accumulated" time 

for us so we can see the current value. Typically timers can tick from O to 9999 or O to 

65535 times. 

Why the weird numbers? Again its because most PLCs have 16-bit timers. We'll get 

into what this means in a later chapter but for now suffice it to say that 0-9999 is 16-bit 

BCD (binary coded decimal) and that Oto 65535 is 16-bit binary. Each tick of the clock 

is equal to x-seconds. 

Typically each manufacturer offers several different ticks. Most manufacturers offer 

10 and 100 ms increments (ticks of the clock). An "ms" is a mill-second or 111000th of 

29 



a second. Several manufacturers also offer lms as well as 1 second increments. These 

different increment timers work the same as above but sometimes they have different 

names to show their timebase. Some are TMH (high-speed timer), TMS (super high­ 

speed timer) or TMRAF ( accumulating fast timer) 

Figure 2.12 shows a typical timer instruction symbol we will encounter (depending 

on which manufacturer we choose) and how to use it. Remember that while they may 

look different they are all used basically the same way. If we can setup one we can 

setup any of them. ~, 

\ 

ENABLE! Txxx 
yyyyy 

Figure2.12 Timer 

This timer is the on-delay typy and is named Txxx. When the enable input is on the 

timer starts to tick. When it ticks yyyyy (the preset value) times, it will turn on its 

contacts that we will use later in the program. Remember that the duration of a tick 

(increment) varies with the vendor and the timebase used. (i,e. a tick might be lms or 1 

second or ... ) 

In diagram which is shown in figure 2.13 we wait for input 0001 to turn on. When it 

does, timer TOOO (a lOOms-increµient timer) starts ticking. It will tick 100 times. Each 

tick (increment) is lOOms so the timer will be a lOOOOms (i.e. 10 second) timer. 

lOOticks X lOOms = 10,000ms. When 10 seconds have elapsed, the TOOO contacts close 

and 500 turns on. When input 0001 turns off(false) the timer TOOO will reset back to 0 

causing its contacts to turn off(become false) thereby making output 500 turn back off 

30 



0001 I TOOO 
100 

TOOO 0500 

Figure 2.13 Ladder diagram 

The timer, which is shown in figure 2.14, is named Txxx. When the enable input is ._,,. 
on the timer starts to tick. When it ticks yyyyy (the preset value) times, it will turn on its 

contacts that we will use later in the program. Remember that the duration of a tick 

(increment) varies with the vendor and the timebase used. (i.e. a tick might be lms or 1 

second or ... ) If however, the enable input turns off before the timer has completed, the 

current value will be retained. When the input turns back on, the timer will continue 

from where it left off. The only way to force the timer back to its preset value to start 

again is to turn on the reset input. 

ENABLE! Txxx 

RESET I YYYYY 

Figure 2.14 Timer 

2.9 Counters 

A counter is a simple device intended to do one simple thing - count. Using them, 

however, can sometimes be a challenge because every manufacturer (for whatever 

reason) seems to use them a different way. Rest assured that the following information 

will let you simply and easily programs anybody's counters. 

What kinds of counters are there? Well, there are up-counters (they only count up 

1,2,3 ... ). These are called CTU,(count up) CNT,C, or CTR. There are down counters 

(they only count down 9,8,7, ... ). These are typically called CTD (count down) when 

31 



they are a separate instruction. There are also up-down counters (they count up and/or 

down 1,2,3,4,3,2,3,4,5, ... ) These are typically called UDC(up-down counter) when they 

are separate instructions. 

Many manufacturers have only one or two types of counters but they can be used to 

count up, down or both. To further confuse the issue, most manufacturers also include a 

limited number of high-speed counters. These are commonly called HSC (high-speed 

counter), CTH (Counter High-speed?) or whatever. 

Typically a high-speed counter is a "hardware" device. The normal counters listed 

above are typically "software" counters. In other words they don't physically exist in the 

PLC but rather they are simulated in software. Hardware counters do exist in the PLC 

and they are not dependent on scan time. 

A good rule of thumb is simply to always use the normal (software) counters unless 

the pulses you are counting will arrive faster than 2X the scan time. (i.e. if the scan time 

is 2ms and pulses will be arriving for counting every 4ms or longer then use a software 

counter. If they arrive faster than every 4ms (3ms for example) then use the hardware 

(high-speed) counters. (2xscan time= 2:x2ms= 4ms) 

To use them we must know 3 things: 

1) Where the pulses that we want to count are coming from. Typically this is from one 

of the inputs. (A sensor connected to input 0000 for example) 

2) How many pulses we want to count before we react. Let's count 5 widgets before we 

box them, for example. 

3) When and how we will reset the counter so it can count again. After we count 5 

widgets lets reset the counter, for example. 

When the program is running on the PLC the program typically displays the current 

or "accumulated" value for us so we can see the current count value. 

Typically counters can count fr.om O to 9999', -32,768 to +32,767 or O to 65535. 

Why the weird numbers? Because of most PLCs have 16 ... bit counters. We'll get into 

what this means in a later chapter but for now suffice it to say that 0-9999 is 16-bit BCD 

(binary coded decimal) and that -32, 768 to 32767 and O to 65535 is 1 ~-bit binary. 

32 



Here are some of the instruction symbols we will encounter (depending on which 

manufacturer we choose) and how to use them. Remember that while they may look 

different they are all used basically the same way. If we can setup one we can setup any 

of them. 

In the counter, which is shown in the figure 2.15, we need 2 inputs. One goes before 

the reset line. When this input turns on the current ( accumulated) count value will return 

to zero. The second input is the address where the pulses-We are counting are coming 

from. 

RESET' Cxxx 
yyyyy -- 

Figure 2.15 Counter 

For example, if we are counting how many widgets pass in front of the sensor that is 

physically connected to input 0001 then we would put normally open contacts with the 

address 0001 in front of the pulse line. Cxxx is the name of the counter. If we want to 

call it counter 000 then we would put "COOO" here. yyyyy is the number of pulses we 

want to count before doing something. If we want to count 5 widgets before turning on 

"' physical output to box them we would put 5 here. If we wanted to count 100 widgets 

then we would put 100 here, etc. When the counter is :finished (i.e, we counted yyyyy 

widgets) it will turn on a separate set of contacts that we also label Cxxx. 

Note that the counter accumulated value ONLY changes at the off to on transition of 

the pulse input. 

The ladder diagram in the figure 2.16 is showing how we set up a counter (we'll 
name it counter 000) to count 100 widgets from input 0001 before turning on output 

500. Sensor 0002 resets the counter. 

33 



0002 

cooo 
0001 I 100 

cooo 0500 

Figure 2.16 Ladder diagram 

Figure 2.17 is one symbol we may encounter for an up-down counter. We'll use the 

same abbreviation as we did for the example above. (i.e. UDC:xxx and yyyyy) 

UP 

UDCX)(X 

DOWN I WYYY 
I- 

RESET 

Figure 2.17 Up-down counter 

In this up-down counter we need to assign 3 inputs. The reset input has the same 

function as above. However, instead of having only one input for the pulse counting we 

now have 2. One is for counting up and the other is for counting down. In this example 

we will call the counter UDCOOO and we will give it a preset value of 1000. (We'll 

count 1000 total pulses) For inputs we'll use a sensor which will turn on input 0001 

when it sees a target and another sensor at input 0003 would also turn on when it sees a 

target. When input 0001 turns on we count up and when input 0003 turns on we count 

down. When we reach 1000 pulses we will turn on output 500. Again note that the 

counter accumulated value only changes at the off to on transition of the pulse input. 

The ladder diagram is shown in figure 2.18. 

34 



0001 

0003 I UDCOOO 
1000 

0002 

cooo 0500 

Figure 2.18 Ladder diagram 

One important thing to note is that counters and timers can't have the same name (in 
most PLCs). This is because they typically use the same registers. Well, the counters 
above might seem difficult to understand but they're actually quite easy once we get 
used to using them. They certainly are an essential tool. They are also one of the least 
"standardized" basic instructions that we will see. However, always remember that the 
theory is the same from manufacturer to manufacturer! 

35 



3. PLC COMMUNICATION 

3.1 Introduction 

Information can be transfer by getting two or more pieces of equipment. The 

information transfer may inyolve a point-to-point link such as a computer to PLC or a 

network, of various types of devices. All communication interfaces are either parallel or 

serial. 

3.2 Parallel communication 

Parallel communication interfaces use a parallel bus (usually 8-bits wide) to transmit 

data. They allow data to be transmitted over short distances at high speed. Two common 

standard parallel communication interfaces are the centronics and IEEE-488. The 

centronics interface is used for connecting printers. The IEE-488 is mainly used for 

connecting laboratory instruments to computer. 

3.3 Serial Communications 

A serial interface transmits and receives data one bit at a time. This means that a 

data byte has to be separated into component bits for transmission and reassembled back 

again when received. Serial communication interfaces are used for transmitting data 

over long distances. 

3.3.1 Rsi32 

The most common standard serial communication interface is the RS232 which is 

also called V24 and EIA. The usual RS232 connector is the 25-pin D connector as 

shown in the figure 3 .1. A minimum cabling configuration will use pins 2, 3 and 7. The 

connecting lines to pins 2 .and 3 normally have to be crossed over that each device 

36 



transmits data to a receive pin. A -12V and logic O represent logic 1 by +12V. The 

transmission distance is about 15 m. 

Figure 3.1 RS232 D connector 

The main pin assignments for the DB-25 are, 

1. 1 - GND ( chassis ground) 

2. 2 - TXD (transmit data) 

3. 3 - RXD (receive data) 

4. 4 - RTS (request to send) 

5. 5 - CTS (clear to send) 

6. 6 - DSR (data set ready) 

7. 7 - COM (common) 

8. 8-DCD() 

9. 20 - DTR (data terminal ready) 

2. Other pins 

1. 9 - Positive Voltage 

2. 10 - Negative Voltage 

3. 11 - not used 

4. 12 - Secondary Received Line Signal Detector 

5. 13 - Secondary Clear to Send 

6. 14 - Secondary Transmitted Data 

7. 15 - Transmission Signal Element Timing (DCE) 

8. 16 - Secondary Received Data 

9. 17 - Receiver Signal Element Timing (DCE) 

10. 18 - not used 

11. 19 - Secondary Request to Send 

12. 21 - Signal Quality Detector 

13. 22 - Ring Indicator (RI) 

37 



14. 23 - Data Signal Rate Selector (DTE/DCE) 

15. 24 - Transmit Signal Element Timing (DTE) 

16. 25 - Busy 

With RS232 the user may set several options within the communication process. 

Both communicating devices must agree on these options, which are the follows. 

1. Baud rate 

This is the operation speed of the serial interface. It is approximately the number of 

bits transmitted or received per second. Standard baud rates are 75, 110, 150, 300, 600, 

1200, 2900, 4800, and 9600 baud. 

2. Number of bits 

This is the length of the data to be communicated. If data bytes are to be transferred 

then the number of bits is 8. ASCII codes use 7 bits. Teletype equipment uses 5 bits. 

3. Parity 

Parity is an optional bit added to the data and provides a way of checking whether 

data has been corrupted. Even parity is when logic 1 is added to the data to make the 

number of logic is an even number. Odd parity is when logic 1 is added to the data to 

make the number of logic is an add number. Space parity is when the parity bit is fixed 

at logic 0. Mark parity is when the parity bit is fixed at logic 1. 

4. Stop bits 

Bits added to thy end of the data are called stop bits. One or two stop bits may be 

chosen. 

S. Duplex 

Full duplex requests that a communication device echo backs what it receive. Half 

duplex tells the communicating device not is echo back what it receives. 

38 



6. Flow control 

The simplest way of controlling the flow of data between two pieces of equipment is 

to set the baud rate to that of the slowest link. Alternatively hardware and software 

methods may be used. The hardware method required that the flow control lines 4, 5, 6, 

20 of the two RS232 connectors are wired straight through and crossed 4 to 5, 5 to 4, 6 

to 20 and 20 to 6. The software methods called XON-XOFF and ETX-ACK use control 

characters to regulate the flow of data and so do not require pins 4, 5, 6, and 20 to be 

connected. 

A tn,ical RS232 signal is illustrated in figure 3.2. The data is transmitted at 600 

baud. This means that each bit is present for 1.66 ms, which equates to 1/60p. The first 

bit is the start bit. The next seven bits represent the data. The least significant bit (LSB) 

appears first and the most significant bit (MSB) last. The following bit is the parity bit. 

Even parity is used as logic 1 is added to the end of the data to make the number of 

logic is an even number. The last bit is the stop bit. 

011000 0 
+12 V 

(logic 0). 

-12V 
(logic 1) 

1.66 ms Time 

Figure 3.2 RS232 data line at 600 baud 

Data transmitted via an RS232 interfuce is coded into ASCII codes. ASCII stands 

for American Standard Code for Information Interchange and is a way of coding 

characters into 7-bits form. ASCII codes are listed in the table 3.1. The table :3.1 shows 
that the data l 000011 transmitted is represented the ASCII code for the capital letter C. 

And table3.2 shows the control code. 

J9 



Table 3.1 ASCII character set (7-bit code) 

LS MS 0 1 2 3 4 5 6 7 

000 001 010 011 100 101 110 111 

0 0000 NUL DLE SP 0 @ p p 

1 0001 SOH DCl ! 1 A Q a Q 

2 0010 STX DC2 " 2 B R b R 

3 OOll ETX DC3 # 3 C s C s 

4 0100 EOT DC4 $ 4 D T d T 

5 0101 ENQ NAK % 5 E u e u 

6 0110 ACK SYN & 6 F V f V 

7 0111 BEL ETB ' 7 G w g w 
I 

8 1000 BS CAN ( 8 H X h y 

9 1001 HT EM ) 9 I y l X 

A 1010 LE SUB * J z J z 
I 

B 1011 BT ESC + ' K [ k { 

C 1100 FF FS ' < L \ l I 

D 1101 CR GS - = M ] m } 

E 1110 so RS > N i n - 
F 1111 SI us I ? 0 - 0 DEL 

40 



Table 3.2 Control code 

NUL NULL SI Sl{l.FT IN 

SOH START OF HEADER DLE DALATALINE SCAPE 

STX START OF TEXT DC DEVICE CONTROL 

ETX END OF TEXT NAK NEGATIVE ACKNOWLEDGE 

EOT END OF TRANSMISSION SYN SYNCHRONOUS IDLE 

ENQ ENQUIRY ETB END QF TRASNMISSION BLOCK 

ACK ACKNOLELEDGE CAN CANCEL 

BEL BELL EM END IF MEDIUM 

BS BACKSPACE SUM SUBSTITUTE 

HT HORIZANTAL TAB ESC ESCAPE 

LF LINEFEED PS FILE SEPARATOR 

VT VERTICAL TAB GS GROUP SEPARATOR 

FF FORM FEED RS RECORD SEPARATOR 

CR CARRIAGE RETURN us UNIT SEPARATOR 

SQ SHIFT OUT SP SPACE 

A computer, which is used as a programming terminal, is normally connected to a 

PLC via an RS22 link. If programming is done using the computer while the PLC is 

running and controlling outputs it is terminated on-line programming. If the 

progrannning is done using the computer with the PLC not controlling outputs it is 

termed off-line programming. 

41 



3.3.2 RS322, RS42 and RS485 

Standards such as RS422 and RS423 are similar to RS232 although voltage level for 

the states 1 and O differs. An RS485 port is set up in similar way to an RS232 (i.e. baud 

rate, data bits, stop bits and parity must been agrees). Standards such as RS423 have 

been developed to improve the speed of data transfer. 

3.4 Local Area Network (LANS) 

A local area network allows a set of PLCs and other devices to be connected 

together so that they can exchange information. The term local is used because the 

hardwired link has a limited range. Usually the range is large enough to service a 

medium-sized factory (500 to 1000 m). Networks, which are used for long-distance 

communication, are called wide area networks or W ANNS. 

A network consists of a number of active points ( e.g. PLCs), which are called nodes. 

There are depending upon whether the network uses a series of point links, a central 

cable with spurs, or links, which make up a ring. Signals transmitted may be any of the 

following. 

1) Base Band 

Base band systems simply send a digital signal along the connection cable. Noise 

immunity can be poor. 

2) Signal Channel Modulated 

The signal is superimposed on top of a high-frequency sine wave signal called the 

carrier. The process of altering a wave so that it carries information is called 

modulation. 

3) Broadband 

Broadband systems modulate carries signals so that information is carried in 

separate frequency bands called channels. 

The layout of atypical PLC network is illustrated in the figure 3.4. It consists of a 

central network cable with the PLC connected to it by spurs. The network cable may be 

42 



fiber optic, coaxial cable or a preferred because electromagnetic interference and other 

types of the noise do not effect it generated in a factory. Repeaters are used throughout 

the network to boost signal levels. 

The entire networks use a protocol, which allows nodes (i.e. PLCs) to communicate 

without crosstalk. Many PLC manufacturers have developed their own network protocol 

for their own equipment. These are called proprietary networks. Generally the user of a 

PLC network system does not need to be connected with the technical details of the 

network interface or protocol. 

In the figure 3 .3 the computer in linked to the network via a communications 

converter. This converts an RS323 signal into a network signal. 

Computer 

RS232 

, Communications 
converter 

Repeater 
,I 

» 
Network line 

PLC PLC PLC 

Figure 3.3 PLC network 

3.4.1 Response Time of Network 

The response time of a network (also called the access time) is the time taken for 

two nodes to communicate. It effectively gives a measure of how fast data can be 

transferred from one PLC to another. The response time increases as the number of 

43 



active nodes or PLCs on the network increases. Typically the response time is about 10 

ms. 

It is essential to know a precise value for the response time if two or more PLCs are 

to work in unison on a time-critical control application. If the network operates too 

slowly the control action will fail. Emergency stop signals should never be sent on a 

network but should be hardwired. 

3.4.2 Network Standards 

Most PLC network uses a data protocol system developed by the PLC manufacture. 

This means that two PLCs from different manufactures cannot be networked together, 

Various standards have been suggested which, if adopted by different manufacture, 

would overcome this problem. IEEE (Institute of Electrical and Electronic Engineers) 

now accepts two standards. These are as follows. 

IEEE 802.3 this is the Ethernet standard developed by the Xerox Corporation. It is a 
baseband system that uses single coax for the connection cable. It uses a protocol called 
CSMA/CD ( carrier sense multiple access which collision detection). 

IEEE 802.4 This standard has been developed by a number of companies and used as 

Manufacturing Automation Protocol (MAP). It is a broadband system that uses coaxial 

cabling. It uses a protocol called token passing. It is a high performance LAN that 

allows the user to predict the response time of the network. 

44 



4. Automation of product packaging 

4.1. Introduction 

Product packaging is one of the most frequent cases for automation in industry. It 

can be encountered with small machines ( ex. packaging grain like food products) and 

large systems such as machines for packaging medications. The project we are showing 

in figure 4.1 solves the classic packaging problem with few elements of automation. 

Small number of needed inputs and outputs provides for the use of PLC controller, 

which represents simple and economical solution. 

I0.2 

I 
. 

. 

Figure 4.1 The project 

45 



4.2. Working process 

By pushing start key we activate the lamp to show that the system is working and 

by pushing stop key we deactivate the lamp which means that the system does not 

working. When started, motor of a conveyor for boxes is activated. The conveyor takes 

a box up to the limit switch, and motor stops. Condition for starting a conveyor with 

apples is actually a limit switch for a box. When a box is detected, a conveyor with 

apples starts moving. Presence of the box allows counter to count 10 apples through ~ 

sensor used for apples and to generate counter CO which is a condition for new 

activation of a conveyor with boxes. When the conveyor with boxes has been activated, 

limit switch resets counter which is again ready to count 10 apples. 

After filling the box, the box passes on the other conveyor (Q0.3). When the sensor 

(I0.4) is activated, the motor of a conveyor (Q0.3) stops and at the same time the motor 

of closing (Q0.4) starts closing the box and the motor of printer (Q0.5) starts print the 

name of the company and the data of product on the box. Moreover, the motor of the 

printer activates the timer (T 37) that after (200x100 ms) T37 will reactivate the motor 

of the conveyor (Q0.3) to ta,ke a box up to the track. The operations repeat until stop key 

is pressed, or if there is no track. 

• List of input and output assignments 

IO.O Start the system 

IO.I Stop the system 

I0.2 Sensor to count the apples 

I0.3 Sensor for the box in the conveyor number 1 

I0.4 Sensor for the box in the conveyor number 3 

I0.5 Sensor for the truck 

QO.O The lamp 

QO.l Motor for box conveyor number 1 

Q0.2 Motor for apple conveyor number 2 

Q0.3 Motor for box conveyor number 3 

Q0.4 Motor for closing the box 

Q0.5 Motor for the printer 

46 



4.3. Ladder diagram of the system 

Network 1 Turning on the system lamp 

I0.1 10.5 QO.O 

!I I I C ) 
IO.O 

QO.O 

Network 2 Tum on the motor of apple conveyor (conveyor# 2) 

Q0.1 Q0.2 

I II C ) 
QO.O 

Network 3 Count apples 

I0.2 co 

I0.3 
i--------1 I I I R 

+15 ---IPV 

47 



Network 4 Turning on the motor of the boxes conveyor (conveyor# 1) 

co IO.O Q0.1 

1-----( ) 

TO 1 --I-___. 

Network 5 Turning on the motor of the bxes conveyor (conveyor# 3) 

I0.4 

I 1/1 I 
IO.O I0.1 Q0.3 

HI~-( ) 

T37 

Network 6 Turning on the motor of the printer and the closing motor 

Q0.3 I0.4 Q0.4 

1----------l I I I I ( ) 

Q0.5 
'------( ) 

48 



/ 

Network 7 Start timer when dosing motor and motor of printer are activated 

Q0.4 Q0.5 

I 
T37 

r--------J IN TON 

+200 --lPT 

Network 8 End the main program 

--(END) 

49 



4.4. Statement list of the system 

NETWORK 1 II Turning on the system light. 

LD IO.O 

0 QO.O 

AN IQ.1 

A 10.5 

= QO.O 

NETWORJ( 2 II Turn on the motor of apple conveyor (conveyor# 2). 

LD 

AN 

QO .. O 

Q0.1 
Q0.2 

NETWORK 3 II Count apple. 

LD I0.2 

LDN I0.1 

CTU CO, +I S 

NETWORK 4 II Turning on the motor of the boxes conveyor (conveyor# 1). 

LD CO 

ON I0.3 

A 10.0 

== QO.l 

NETWORK 5 II Turning on the motor of the boxes conveyor (conveyor# 3). 

LDN I0.4 

0 T17 

A 10.0 

AN J0,1 

= Q0.3 

50 



NETWORK 611 Turning on the motor of printer and closing motor. 

LON Q0.3 

AN 10.4 

= Q0.4 

= Q0.5 

NETWORK 7 // Start timer when closing motor and motor of the printer are activated. 

LO Q0.4 

A Q0.5 

TON T37, +200 

NETWORK 8 // End the main program. 

MEND 

51 



Conclusion 

PLCs can seem a little daunting at first, but there's no need to panic. Just remember 

that all PLCs follow the basic rules of operation we've just discussed. All PLCs have a 

CPU and an-input/output system. They also all use a control program, instructions, and 

addressing to make the equipment in the control system do what it's supposed to do. 

And no matter how many bells and whistles you add to it, every PLC does the same 

three things: (1) examines its input devices, (2) executes its control program, and (3) 

updates its output devices accordingly. So in reality, understanding PLCs is as simple as 

1-2-3! 

52 



REFERENCES 

(1] Siemens, Simatic 87-200 Programmable Controller System, 1977. 

[2] Mr. 6zgur Cemal 6ZERDEM, Programmable Logic Controllers and Programming. 

Near East University. Lefkosa 2001. 

[3] Alan J. Crispin, Programmable Logic Controller and their Engineering Application, 

Mc Graw-Hill Inc., New York NY, 1996. 

[ 4] http://www.sea.siemens.com/ controls/product/s7200/CN s7200.htm 

[5] http://www.plc.net. 

( 

I 

53 


