
NEAR EAST UNIVERSITY

Faculty of Engineering

.Department of Electrical and Electronic
Engineering

PROGRAMMABLE LOGIC CONTROLLER (PLC)

Graduation Project
EE-400

Student: Mutlu Yılmaz (970296)

Supervisor: Mr. Özgür C. Özerdem

Lefkoşa - 2000

CONTENTS

ACKNOWLEDGEMENT
ABSTRACT 11

INTRODUCTION 111

1. LIST OF FIGURES 1
1.1 Table of Symbol 2
2. WHAT IS A PLC? 3
3. PLC HISTORY 4
4. GENERAL PHYSICAL BUILD MECHANISM 5
4.1 Compact PLC's 5
4.2 ModularPLC's 5
5. ADVANTAGE 6
5. I Accuracy 6
5.2 Flexibility 6
5.3 Communication 6
5.4 Logic Control of Industrial Automation 6
5.5 Data Areas 7
5.6 Data Object 7
6.LADDER AND STL PROGRAM 8
7. PROGRAMMABLE CONTROLLERS PLC'S 18
7. I Introduction 18
7.2 Backgraund 19
7.3 Terminology - PC or PLC 22
7.4 PLC's Hardware Design 22

7.4-1 Central Processing Unit (CPU) 23
7.4-2 Memory 24
7.4-3 Memory Size 25
7.4-4 Input I Output Units 26

7.5 Logic Instruction Set 29
7.6 Input I Output Numbering 29
8.TYPES OF PLC 31
8. J Small PLC' s 31
8.2 Medium - Sized PLC's 32
8.3 Large PLC 33
8.4 Remote Input I Output 34
8.5 Programming Large PLC's 34
8.6 Developments 34

9.PROGRAMMING OF PLC SYSTEMS
9.1 Logic Instruction Sets and Graphic Programming

9 .1-1 Input I Output Numbering
9.1-2 Negation -NAND and NOR Gates
9.1-3 Exclusive - OR Gate

9.2 Facilities
9 .2-1 Standard PLC Functions
9.2-2 Markers I Auxiliary Relays
9.2-3 Ghost Contacts
9.2-4 Retentive Battery - Backed Relays
9.2-5 Optional Functions on Auxiliary Relays
9.2-6 Pulse Operation
9.2-7 Set and Reset
9.2-8 Timers
9.2-9 Counters
9. 2- 10 Registers
9.2-11 Shift Registers

9.3 Arithmetic Instructions
9.3-1 BCD Numbering
9.3-2 Magnitude Comparison
9.3-3 Addition and Subtraction Instructions

I

10. LADDER PROGRAM DEVELOPMENT
I O. 1 Software Design

1 O. 1-1 System Functions
I 0.2 Program Structure
l 0.3 Further Sequential Control Techniques
10.4 Limitation of Ladder Programming

10.4-1 Advanced Graphic Programming Languages
10.4-2 Workstations

11. CHOOSING, INSTALLATION AND
COMMISSIONING OF PLC SYSTEMS
11.1 Feasibility Study
11.2 Design Procedure for PLC Systems

J 1.2-1 Choosing a Programmable Controller
11.2-2 Size and Type of PLC System
11.2-3 I I O Requirements
11),.-4 Memory and Programming Requirements
11.2-5 Instruction Set I CPU

11.3 Installation
11.4 Testing and Commissioning

11 .4-1 Software Testing and Simulation
11.4-2 Installing and Running the User Control Program

12. DESCRIPTION OF OPERATION
13. CONCLUSION
14. REFERENCES
15. APPENDIXS

35
36
37
37
37
38
38
39
40
40
41
41
43
43
44
44
45
47
47
49
49
so
so
so
54
55
56
56
56
57

57
57
58
58
59
59
61
61
63
63
67
68
97
98
99

ACKNOWLEDGEMENT

I am deeply indepted to my parents for their love and financial support. They

have always encouraged me to pursue my interests and ambitions throughout life.

To my supervisor Mr. Özgür C. ÖZERDEM who was helped me to finish and

realize this difficult task, my deep gratitudes and· thanks.

Electrical & Electronic Engineering Department and Prof. Dr. Khalil

ISMAILOV who is the Dean of Engineering Faculty to all their participate.

Also thanks to Prof. Dr. Haldun GÜRMEN , Prof. Dr. Fakhreddin

MAMEDOV,

Mr. Kaan UY AR and to all of my other teachers for their advices.

11

ABSTRACT

My project is generally PLC informations to include. But my project can separate by

two part.

In the first part is sample program from the factory and SIEMENS SIMA TIC S7

PLC informations and sample program shows of the figure to include. At the same time

in this part has SIMATIC S7 PLC generally information and instructions and history.

In the second part is MITSUBISHI FC-40 FC-20 PLCs generally information to

include in this part.

iii

INTRODUCTION

Now that understand how inputs and outputs are processed by the PLC, let's look at

a variation of our regular outputs. Regular output coils are of course .an essential part of

our programs but we must remember that they are only true when all instructions before

them on the rung are also true.

Think back to the we did a few chapters ago. What would' ve happened if we

couldn't find a "push on I push off" switch? Then we would' ve had to keep pressing to

button for as long as we wanted the bell to sound. The latching instructions let us use

momentary switches and program the PLC so that when we push one the output turns

on and when we push another the output turns off

Picture the remote control for your TV. It has a button for on hand another for off

When I push the on button TV turns on. When I push the off button the TV turns off I

don't have to keep pushing the on button to keep the TV on. This would be the function

of a latching instruction.

The latch instruction is often called a SET or OTL (output latch). The unlatch

instruction is often called a RES (reset) , OUT (output latch) or RST (reset). The

diagram below shows how to use them in a program.

MACHINE 1 MACHINE 2

FAN MOTOR

1

MACHINE 3

Table of Symbol

INSTRUCTION LADDER SE?dBOL SIMATIC 87

LOAD l-i t-- LD

AND -;t- A

OR Yt-1 o

NOT / NOT

LOAD NOT i-;ıt- LDN

MU)NOT -vı- AN

()RNOT y~ ON

AND BLOCK ALD

OR BLOCK
OLD

OUT -o-, -<ri ;;;

END -(END)- l\tlEND

2

3

2.WHAT IS A PLC?

A programmable logic controller (PLC) is a device that was invented to replace the

necessary sequential relay circuits for machine control. The PLC works by looking at its

inputs and depending upon their state , turning on I off its outputs. The user enters a

program , usually via software , that gives the desired results.

PLC' s are used in many real word applications. If there is industry present , chances

are good that there is a PLC present. If you are involved in machining , packaging ,

material handling, automated assembly or countless other industries you are probably

already using them. If you are not , you are wasting money and time. Almost any

application that needs some type of electrical control has a need for a PLC.

For example, let's assume that when a switch turns on we want turn a solenoid on

for 5 seconds and then turn it off regardless of how long the switch is on for. We can do

this with a simple external timer. But what if the process included I O switches and

solenoids? We would need 10 external timers. What if the process also needed to count

how many times the switches individually turned on? We need a lot of external

counters.

As you can see the bigger the process the more ofa need we have for a PLC. We can

simply program the PLC to count its inputs and turn the solenoids on for the specified

time.

This site gives you enough information to be able to write programs far more

complicated than the simple one above. We will take a look at what is considered to be

the' top 20' PLC instructions. It can be safely estimated that with a firm understanding

of these instructions one can solve more than 80 % of the applications inexistence.

3.PLC HISTORY

In the late 1960' s PLC' s were first introduced. The primary reason for designing such
a device was eliminating the large cost involved in replacing the complicated relay
based machine control systems. Bedford Associates (Bedford , MA) proposed
something called a modular digital controller (MODICON) to a major US car
manufacturer. Other companies at the time proposed computer based upon the PDP - 8.
The MODICON 084 brought the world's first PLC into commercial production.
When production requirements changed so did the control system. This becomes very
expensive when the change is frequent. Since relays are mechanical devices they also
have a limited lifetime which required strict adhesion to maintenance schedules.
Troubleshooting was also quite tedious when so many relays are involved. Now picture
a machine control panel that included many , possibly hundreds or thousands , of
individual relays. The size could be mind boggling. How about the complicated initial
wiring of so many individual devices! These relays would be individually wired
together in a manner that would yield the desired outcome.
These new controllers also had to be easily programmed by maintenance and plant
engineers. The lifetime had to be long and programming changes easily performed.
They also had to survive the harsh industrial environment. That' s a lot to ask ! The
answers were to use a programming technique most people were already familiar with
and replace mechanical parts with solid - state ones.
In the mid70' s the dominant PLC technologies were sequencer state machines and the
bit- slice based CPU. The AMD 2901 and 2903 were quite popular in MODICON and
A - B PLC' s. Conventional microprocessors lacked the power to quickly solve PLC
logic in all but the smallest PLC' s. As conventional microprocessor evolved , larger
and larger PLC' s were being based upon them. However , even today some are still
based upon the 2903. MODICON has yet to build a faster PLC than their 984A/B/X
which was based upon the 2901.
Communications abilities began to appear in approximately 1973. The first such system
was MODICON' s MODBUS. The PLC could now talk to other PLC' s and they could
be far away from the actual machine they were controlling. They could also now be
used to send and receive varying voltages to allow them to enter the analog world.
Unfortunately , the lack of standardisation coupled with continually changing
technology has made PLC communications a nightmare of incompatible protocols and
physical networks.
The 80's saw an attempt to standardise communications with General Motor's
manufacturing automation protocol . it was also a time for reducing the size of the PLC
and making them software programmable through symbolic programming on personal
computers instead of dedicated programming terminals or handheld programmers.
The 90' shave seen a gradual reduction in the introduction of new protocols, and the
modernisation of the physical layers of some of the more popular protocols that
survived the 1980' s. The latest standard has tried to merge PLC - programming
languages under one international standard. We now have PLC's that are programmable
in function block diagrams , instruction list , C and structured text all at the same time!
PC' s are also being used to replace PLC' s in some applications. The original company
who commissioned the MODICON 084 has actually switched to a PC based control
system.

4

4.GENERAL PHYSICAL BUILD MECHANISM

PLC' s are separated into two according to their building mechanisms.

4.lCompact PLC' s

Compact PLC's are manufactured such that all units forming the PLC are placed in a
case. They are low price PLC with lower capacity. They are usually preferred by small
or medium size machine manufacturers. In some types compact enlargement module is
present.

4.2Modular PLC's

They are formed by combining separate modules together in a board. They can have
different memory capacity , I I O numbers , power supply up to the necessary limits.
Some examples: SIEMENS S5-115U, SIEMENS S7-200 MITSUBISHI PC40,
TEXAS INSTRUMENTS PLC'S , KLOCKNER- MOELLER PS316 OMRON
C200H.

5

5.ADVANTAGES

5.1 Accuracy

In relay control systems logical knowledge's carries in electro mechanical contactors,
they can lose data because of mechanical errors. But PLC's are microprocessor based
system so logical data are carried inside the processor, so that PLC's are more accurate
than relay type of controllers.

5.2 Flexibility

When there is need of any change in control , relay type of controllers modification are
hard , in PLC this change can be made with PLC programmer equipment.

5.3 Communication

PLC 's are computer based systems. So that they can transfers their data to another PC
or they can take external inputs from another PC , with this specification we can control
the system were they are we can effect the system with our PC. With relays tis is not
possible.

5.4 Logic Control of Industrial Automation

Everyday examples of these systems are machines like dishwashers , clothes washers
and dryers , and elevators. In these systems , the outputs tend to be 220 V AC power
signals to motors , solenoids , and indicator lights , and the inputs are DC or AC signals
from user interface switches , motion limit switches , binary liquid level sensors , etc.
Another major function in these types of controllers is timing.

6

5.5 Data Areas

Data memory contains variable memory , and register , and output image register ,
internal memory bits , and special memory bits. This memory is accessed by a byte bit
convention. For example to access bit 3 of Variable Memory byte 25 you would use the
address V25. 3.
The following table shows the identifiers and ranges for each of the data area memory
types:

Area Identifier Data area CPU212 CPU 214

l Input IO.O to 17.7 IO.O to 17.7
Q Output QO.O to Q7.7 QO.O to Q7.7
M Internal memory MO.O to M15.7 MO.O to M31.7
SM Special memory SMO.OtoSM45.7 SMO.OtoSM85.7
V Variable memory VO.O to V1023.7 VO.O toV4095.7

5.6 Data Object

The S7-200 has six kinds of devices with associated data: timers, counters, analog
inputs, analog outputs, accumulators and high - speed counters. Each device has
associated data. For example, the S7 - 200 has counter devices. Counters have a data
value that maintains the current count value. There is also a bit value , which is set when
the current value is greater than or equal to the present value. Since there are multiple
devices are numbered from O ton. The corresponding data objects and object bits are
also numbered.
The following table shows the identifiers and ranges for each of the data object memory
types:

Object Identifier Object CPU 212 CPU 214

T
C
AI
AQ
AC
HC

Timers TO to T63
Counters CO to C63
Analog Input AIWO to AIW30
Analog Output AQWO to AQW30
Accumulator ACO to AC3
High-Speed Counter HCO
Current

TO to T127
CO to C127
AIWO to AIW3 O
AQWO to AQW30
ACO to AC3
HCO toHC2

7

Output

6.LADDER AND STL PROGRAM

SIEMENS SIMATIC S7- 200 PLC SAMPLE PROGRAM

In this program;
Cotton to filament convert during the war. While cottons are to comb by the machine,
separate operation during by the war cotton pieces are to gather of under the machine.
This program purposes are cotton pieces convert to back. With this program cotton cost
decrease to less.

Program Work

1- For the vakum if we gives the start, motor is start to work.
2- After the 15 s machines are made with raw and once vakum.
3- One machine and other machine between passed time 2 s , and vakum time is for the

all machine 8 s.
4- If someone machine not work passed to other machine.
5- If fire alarm or tight alarm gives, fan motor and all other operations are stop. For

the machines work are until push the button machines are not work.

1- Start
2- Stop
3- Reset
4- Machine work 1
5- Machine work 2
6- Machine work 3
7- Tight

1- Fan motor start
2- Machine 1 vakum
3- Machine 2 vakum
4- Machine 3 vakum
5- Fire alarm
6-Tight alarm

8

9

Symbol name Address Note

Start BO.O Start button
Stop EO.l Stop button
Reset E0.2 Reset button
1. Machine Work E0.3 If 1. Machine Work send to sign
2. Machine Work E0.4 If 2. Machine Work send to sign
3. Machine Work E0.5 If 3. Machine Work send to sign
Fire E0.6 If the fire alarm is corning
Tight E0.7 Fan motor has tight
Start - Output AO.O Fan motor is start
Vakum 1 AO.I 1. Machine Vakum Valve
Vakum2 A0.2 2. Machine Vakum Valve
Vakum3 A0.3 3. Machine Vakum Valve
Fire Alarm A0.4 If the fire sensor signal coming
Tight Alarm A0.5 To throw the motor tight
Cleanliness Air valve A0.6 Tube Cleanliness Valve
Relay of Vakum T32 After Start Vakum Relay
Vakum Time T33 Valves are Vakum Time
Stop Time T34 Between of Valves Stop Time
Counter O zo 1. Machine Valve Work Counter
Counter 1 Zl 2. Machine Valve Work Counter
Counter 2 Z2 3. Machine Valve Work Counter
Counter 3 Z3 Circle Reset
Jump Output A7.l Machines are not jump

10

ROGRAM TITLE COMMENT

ress Fl for help and example program
lnder the machıne waste vakum program

)evre l Fan Motor Start

EO.O AO.O
-I I (s)

Devre 2 ıfthe fıre or termik alarms are give,fan motor is stop

EO.I
--I

AO.O
R)
l

A0.4

--I
A0.5

---1

Devre 3 Machınes are start after the 15s fan motor is start

AO.O T32

---l I 11N TONI
+15~PT....._____~

Devre 4 In all rnachınes, fan motor is 8s work

T32 T34 T33

---t I I I I jIN TONI
+80 PT.____ _,

Devre 5 ıfthe fan motor is stop, no vakum

T33

--t I jIN TONI
+20 PT----

T34

Devre 6 In the machıne I vakum is 8s ıf ın the other machınes no vakum fan motor is stop or tum of top

T33 zo
--t I lcu cro

Z3

----1 I

I J~AO.O

----1 I

11

12

re 7 In the machıne 2 vakum ıs 8s ıf ın the other machınes no vakum fan motor is stop orfturn of top

T33 ZI

{ I lcu CTU

Z3

~ I J~IAO.O

1 I

.vre 8 In the machıne 3 vakum tıme 8s If ın the other machınes no vakum fon motor is stop or top of turn

T33 Z2

~ I lcu CTU

Z3

--t I J~IAO.O

-I I

)evre 9 ıfthe machıne I is no working vakum gate I open

zo--ti ı-- _______ı
Zl E0.3 AO.I

ıl 111 ()

Devre 10 If the machıne 2 is no working Vakum Gate 2 will be open

ZI T33 Z2 E0.4 A0.2

I 111 111 111 C)

Devre 11 If the ınachıne 3 is no working Vakum Gate 3 will be open

Z2 T33 E0.5 A0.3

----1 I 1/1 111 C)

Devre 12 At the machıne vakum by the way ıf top of turn fan motor is 2s stop or stop

T34

H
Z3

t--~~~~~~~~~~---ıcu cTU

T34 Z3

H "r R
1

~A~o. I +4-jPV I

Devre 13 lfthe turn ofto top air cleanliness klepe is working.

Z3 A0.6

H I Cs)

Devre 14 If in the first machine vakum ıs workıng.Fan motor is stop and aır clenliness klepe ıs not open.

ZO A0.6

--ıAO.O:r ~)
H /
lı 13

Devre 15 If the fire alarm has fire transducer ıs gives the signal.

E0.6 A0.4

H I Cs)

Devre 16 Until push the reset button .fire transducer is continue gives of the sign

E0.2 A0.4

!~ I (R)
I

Devre 17 If fan motor has thermıc, motor is gives the thermic alarm.

E0.7 A0.5
---1 I (s)

Devre 18 Until push the reset button contınue ofthermic alarm.

A0.5

I (R)
I

14

15

ıevre 19 If the someone machine not workjump of that machine contınue of other machines are normal work.

E0.3 zo T33 Zl A7.l

--t I I I I I I I I I I ()

E0.4 zı T33 Z2

--1 I I I I I I I I

E0.5 Z2 T33

--1 I I I I I

)evre 20 End of program

-{END)

NETWORK 5 //ıf the fan motor is stop, no vakum
LD T33
TON T34, +20

1 vakum is 8s ıf ın the other machınes no vakum fan

II
//PROGRAM TITLE COMMENT
//
//Press Fl for help and example program
//Under the machıne waste vakum program

NETWORK l //Fan Motor Start
LD EO.O
S AO.O, 1

NETWORK 2 //ıf
LD EO.l
o A0.4
o A0.5
R AO.O, 1

-

the fıre or termik alarms are give,fan motor is stop

NETWORK 3 //Machınes are start after the 15s fan motor is start

LD AO.O
TON T32, +15

NETWORK 4
LD T32
UN T34

//In all machınes, fan motor is 8s work

TON T33, +80

NETWORK 6 //In the machıne
motor is stop or turn of top
LD T33
LD Z3

_3 ON AO.O
zv zo, +l

NETWORK 7 //In the machıne 2 vakum ıs 8s ıf ın the other machınes no vakum fan

motor is stop orf turn of top
LD T33
LD Z3
ON AO.O
zv zı, +2

NETWORK 8 //In the machıne 3 vakum tıme 8s If ın the other machınes no vakum

fon motor is stop or top of turn
LD T33
LD Z3
ON AO.O
ZV Z2, +3

NETWORK 9 //ıf the machıne 1 is no working vakum gate 1 open

LD ZO
UN T33
UN Zl
UN E0.3

AO.l
·::2
:.3

NETWORK 10
LD Zl
UN T33
UN Z2
UN E0.4

A0.2

//If the machıne 2 is no working Vakum Gate 2 will be open

~2
-=3

NETWORK 11
LD Z2
UN T33
UN E0.5

16
//If the machıne 3 is no working Vakum Gate 3 will be open

81
82
83
84
85
86
87
88
89

NE'fWO:RK 14
clenliness
LD ZO
ON AO.O
R AQ.6, 1

//If in the first machine vakum ıs workıng.Fan motor is stop and aır
klepe ıs not open.

66
67
68

A0.3

69
70
71
72
73
74
75
76
77
78
79
80

NE'.l!WC>ll 12 //At the machıne vakum by the way ıf top of turn fan motor is 2s
stop or stop
LO T34
LD T34
LD Z3
ON AO.O
ULD
ZV Z3, +4

NE!J!WO:RK 13 //If the turn of to top air cleanliness klepe is working.
LD Z3
S A0.6, 1

NETWO:RK 15 //If the fire alarm has fire transducer ıs gives the signal.
LD E0.6
S A0.4, 1

NE':WO:RK 16 //Until push the reset button ,fire transducer is continue gives of
the sign
LO EO. 2
R A0.4, 1

90
91
92
93
94
95
96
97
98
99
100
:oı

HETWO:RK 17 //If fan motor has thermıc, motor is gives the thermic alarm.
LD E0.7
S A0.5, 1

NETWO:RK 18 //Until push the reset button contınue of therm.ic alarm.
LD E0.2
R. A0.5, 1

~02
103
:.04
05

~06
:.o7
:.08
:.09
110
111
112
113
:14
:.ıs
:16

NETWO:RK 19 //If the someone machine not workjump of that machine contınue of
other machines are normal work.
LD E0.3
u zo
UN T33
UN Zl
LD E0.4
U Zl
UN T33
UN Z2
OLD
LD
u
UN
OLD

E0.5
Z2
T33

A7.l

z ı 7 NE!J!WO:RK 20 I /End of program
118 MEND

17

Programming
panel

Program
memory

Input
devices

7- PROGRAMMABLE CONTROLLER PLC'S

7.1 Introduction

The need for low cost ,versatile and easily commissioned controllers has resulted in the
development of programmable -control systems-standard units based on a hardware
CPU and memory for the control of machines or processes . Originally designed as a
replacement for the hard-wired relay and timer logic to be found in traditional control
panels ,PLC's provide ease and flexibility of control based on programming and
executing simple logic instructions. PLCs have internal functions such as timers
,counters and shift registers, making sophisticated control possible using even the
smallest PLC.
A programmable controller operates by examining the input signals from a process and
carrying out logic instructions on these input signal, producing output signals to drive
process equipment or machinery. Standard interfaces built in to PLCs allow them to be
directly connected to process actuators and transducers (pumps and valves) without the
need for intermediate circuitry or relays.
Through using PLCs it became possible to modify a control system without having the
disconnect or re-route a single wire :it was necessary to change only the control
program using a keypad or VDU terminal. Programmable controllers also require
shorter installation and commissioning times than do hardwired systems. Although
PLCs are similar to conventional computers in terms of hardware technology , they
have specific features suited to industrial control:

Process

Programmable controller
ı -------

Input
circuits

Control
unit ..

Work
memory

Output
circuits ı----+-~

Output
devices

Power supply
I
L--------

Figure 7.1 Programmable controller structure

18

1- Easily programmed and reprogrammed , preferably in-plant to alter its sequence of
operations.

2- Easily maintained and repaired - preferably using plug-in modules.
3- (a)-More reliable in plant environment.

(b)-Smaller than it is relay equivalent .
4- Cost competitive , with solid - state and relay panels than in use .

This provoked a keen interest from engineers of all disciplines in how to PLC could be
used for industrial control .With this came demands for additional PLC capabilities and
facilities , which were rapidly implemented as the technology became available . The
instruction sets quickly moved from simple logic instructions to include counters ,
timers and shift registers, than onto more advanced mathematical functions on the
machines .Developments 'n hardware were also occurring , with larger memory and
greater numbers of input\ output points featuring on new models .In 1976 became
possible to control remote I\ O racks , where large numbers of distant I\ O points were
monitored updated via a communications link , often several hundred meters from the
main PLC.A microprocessor-based PLC was introduced in 1977 by the Allan­
Bradley Corporation in America. It was based on an 8080 microprocessor but used an
extra processor to handle bit logic instruction at high speed .
The increased rate of application of programmable controllers within industry has
encouraged manufacturers to develop whole families of microprocessor- based systems
having various levels of performance. The range of available PLCs now extends from
small self - contained units with 20 digital I\ O points and 500 program steps (in the
figure 7.2), up to modular systems with add - on function modules:
-Analog I\ O;
-PID control (proportional , integral and derivative terms);
-Communications;
-Graphics display;
-Additional I\ O;
-Adfıitional memory.

19

-Rugged, noise immune equipment;
-Modular plug-in construction, allowing easy replacement\ addition of units
(input\ output);
-Standard input \ output connections and signal levels ;
-Easily understood programming language (ladder diagram and function chart);
-Ease of programming and reprogramming in-plant.

These features make programmable controllers highly desirable in a wide variety of
industrial-plant and process- control situations.

7 .2 Background

The programmable controller was initially conceived by a group of engineers from
General Motors in 1968 , where an initial specification was provided: the controller
must be:

This modular approach allows the expansion or upgrading of a control system with
minimum costs and disturbance .
Programmable controllers are developing at a virtually the same pace as
microcomputers , with particular emphasis on small controllers , positioning\ numeric
control and communication networks. The market for small controllers has grown
rapidly since the early 1980s when a number of Japanese companies introduced very
small , low cost units that were much cheaper than others available at that time . This
brought programmable controllers within the budget of many potential users in the
manufacturing and process industries , and this trend continues with PLCs offering
ever-increasing performance at ever- decreasing cost.
The Mitsubishi F40 PLC shown in figure 7 .2 (a) is a typical example of a modem small
PLC , providing 40 I\ O points , 16 timers and counters , plus other functions. The
controller uses a microprocessor and has 890 RAM locations for user programs. The 24
- input channels of
the F40 operate at 24 V d.c. Whilst 16 outputs may be 24 V d.c. or 240 V a.c. to provide
easy interfacing to industrial equipment . The programming panel is also shown in the
figure (a).

20

..ıı I t J I l ı I ı B
,, - .,.=ı l!!!I e

'411 ·- ~
l!!I l!l !S . -·
- ,_ ·- ::t.t• ~--
!!I .!!l es-·•

•
tr. Jg ·:ıif.$1) t!..'f ••. ·

- ~---~.;;::~~~~~

lal

(b) -· - - - " -- -
Figure 7.2 Small PLC's (a) Mitsubishi F series (b) GE series 1 (Courtesy
General Electric)

21

7.3 Terminology - PC or PLC

There are several different terms used to describe programmable controllers , most
referring to the functional operation of the machine in question:

PC programmable controller
PLC programmable logic controller
PBS programmable binary system

By their nature these terms tend to describe controllers that normally work in a binary
environment . Since all but the smallest programmable controllers can now be equipped
to process analog inputs and outputs these labels are not representative of their
capabilities. For these reason the overall term programmable controller has been widely
adopted to describe the family of freely programmable controllers. However , to avoid
confusion with the personal computer PC , this text uses the abbreviation PLC for
programmable (logic) controller.

7.4 PLC's Hardware Design

Programmable controllers are purpose - built computers consisting of three functional
areas:
-Processing :
-Memory:
-input \ output:
Input conditions to the PLC are sensed and than stored in memory , where the PLC
performs the programmed logic instructions on these input states. Output conditions are
then generated to drive associated equipment. The action taken depends totally on the
control program held in memory.
In smaller PLCs these functions are performed by individual printed circuit cards within
a single compact unit , whilst larger PLCs are constructed on a modular basis with
function modules slotted in to the backplane connectors of the mounting rack. This
allows simple expansion of the system when necessary . In both these cases the
individual circuit board are easily removed and replaced, facilitating rapid repair of the
system should faults develop .
In addition a programming unit is necessary to download control programs to the PLC
memory.

22

7.4 -1 Central processing unit (CPU)

The CPU controls and supervises all operations within the PLC , carrying out
programmed instructions stored in the memoıy. An internal communications highway
or bus system , carries information to and from the CPU, memoıy and I\ O units , under
control of the CPU. The CPU is supplied with a clock frequency by an external quartz
cıystal or RC oscillator , typically between 1 and 8 megahertz depending on the
microprocessor used and the area of application .
The clock determines the operating speed of the PLC and provides
timing \ synchronization for all elements in the system. Virtually all modem
programmable controllers are microprocessor - based using a micro as the system CPU.
Some larger PLCs also employ additional microprocessor to control complex ,
time-consuming functions such as mathematical processing , three term PID control.

23

7.4 - 2 Memory

(a) For program storage all modem programmable controllers use semiconductor
memoıy devices such as RAM read \ write memoıy , or a programmable read - only
memoıy of the EPROM or EEPROM families.
In the virtually all cases RAM is used for initial program development and testing, as it
follows changes to be easily made in the program. The current trend is to be provide
CMOS RAM because of it's veıy low power consumption , to provide batteıy back - up
to this RAM in order to maintain the contents when power is removed from the PLC
system. This batteıy has a lifespan of at least one year before replacement is necessaıy,
or alternatively a rechargeable type may be supplied with the system being recharged
whenever the main PLC power supply is on.
This feature makes programs stored in RAM virtually permanent . Many users operate
their PLC systems on this basis alone , since it permits future program alterations if and
when necessaıy .
After a program is fully developed and tested it may be loaded (blown) in to a PROM or
EPROM memoıy chip , which are normally cheaper than RAM devices . PROM
programming is usually carried out with a special - purpose programming unit,
although many programmable controllers now have this facility built-in , allowing
programs in the PLC RAM to be down loaded into a PROM IC placed in a socket
provided on the PLC it self (in the figure 7.3)

(b) In addition to program storage, a programmable controller may require memoıy
for other functions:

1- Temporaıy buffer store for input\ output channel status - I \ O RAM
2- Temporaıy storage for status of internal function (timers, counters, marker

relays)
Since these consist of changing data they require RAM read \ write memoıy , which
may be batteıy - backed in sections(in the figure 7 .3 - b).

24

---~

30 431 432 433 434 435 ~36
(a) ' - -- . - ~"."=-··--.,~:'.:7;:'""--r____ .•-~--_,,..------'····- ----=-
Battery back-up
for RAM

Figure 7.3 (a) EPROM facility on Mitsubishi PLC; (b)battery- backed unit on a
small PLC

7.4 - 3 Memory size
Smaller programmable controllers normally have a fixed memory size , due in part to
the physical dimensions of the unit. This varies in capacity between 300 and 1000
instructions depending on the manufacturer . This capacity may not appear large enough
to be very
useful , but it has been estimated that 90 % of all binary control tasks can be solved
using less than 1000 instructions , so there is sufficient space to meet most users needs.
Larger P!,Cs utilize memory modules of between lK and 64K in size, allowing the
system to be expanded by fitting additional RAM or PROM memory cards to the PLC
rack.

25

As integrated circuit memory costs continue to fall , the PLC manufacturers are
providing larger program memories on all products .

7.4- 4 Input /output units
Most PLCs operate internally at between 5 and 15 V d.c. (common TTL and CMOS
voltages), whilst process signals can be much greater, typically 24 V d.c. to 240 V a.c.
at several amperes.
The I I O units form the interface between the microelectronics of the programmable
controller and real word outside , and must therefore provide all , necessary signal
conditioning and isolation functions . This often allows a PLC to be directly connected
to process actuators and transducers (pumps and valves) without the need for
intermediate circuitry or relays. (In the figure 7.4)
To provide this signal conversion programmable controllers are available with a choice
of input I output units to suit different requirements .
For example;

Inputs 5 V (TTL level) switched I/ P
24 V switched I I P
1 1 O V switched I I P
240 V switched I I P

Outputs 24 V 100 mA switched O I P
llOV 1 mA
240 VIA a,c. (triac)
240 V 2 A a.c. (relay)

It is standart practice for all 1/0 channels to be electrically isolated from the controlled
process, using opto - isolator circuits (in the figure 7.5) on the I I O modules .
An opto - isolator circuit consists of a light emitting diode and a photo transistor ,
forming an opto - coupled pair that allows small signals to pass through , but will clamp
any high - voltage spikes or surges down to the same small level. This provides
protection against switching transients and power - supply surges , normally up to
1500V.
In small self - contained PLCs in which all I I O points are physically located on the
one casing, all inputs will be of one type (e. g. 24 V) and the same for outputs (e.g. all
240 V triac). This is because manufacturers supply only standard function boards for
economic reasons. Modular PLCs have greater flexibility ofl I O, however, since the
user can select from several different types and combinations of input and output
modules.
In all cases the input/output units are designed with the aim of simplifying the
connection of process transducers and actuators to the programmable controller.
For these purpose all PLCs are equipped with standard screw terminals or plugs on
every I I O point , allowing the rapid and simple removal and replacement of a faulty I I
O card. Every input I output point has a unique address or channel number which is
used during program development to specify to monitoring of an input or the activating
of a particular output within the program. Indication of the status of input I output
channels is provided by light- emitting diode (LEDs) on the PLC or I I O unit, making
it simple to check the operation of process inputs and outputs from the PLC it self. (In
the figure 7.6)

26

Programmable
logic
controller

PLC (F20) B I Process A=====-ı 12 1/P
I 240 V a.c. 2 A

I requirements
Graphic I

I
8 0/PI

Iprogrammer I
I

I
240 V, 2 AI

I rated outputs
I
I (relay or triac)
I

-.
I
I I Program AI
I
I
I
II
II
II
II
II
II

(Removed after II
II

programming) II
II
11"j ~ı,ım,ıl l interfacing I Process BL..--- PLC (F40)

24 1/P 24 V d.c,
requirements

160/P 24Vd.c.
transistor
outputs

I
Program B

PLC Control.
Easily programmed/altered by the USER.
Used for switched input/output.

r-------------,
I

ınput
from
microprocessor

Light
emitting
diode

Opto­
coupler

~ ~'-.:: /

ı Photo
transistor

Output to
peripheral
in process

ı Electrical isolation ıL.., _ı

Figure 7.4 PLC input I output connected to plant equipment
Figure 7 .5 Opto - isolator circuit

27

·.-...:'·;.·.wı~~.r,,

·,··ı,- •..,..•.•
••.•. ~:.;.!ı~-

--·--·--····-·--...-,------
! •'?t~~--~==--.. ~· ;,:. , ~ .•.. - - .•... - ,.

·'='·--,.·:~•.. : .•• ,v.·~. -~·

Figure 7.6 Input I output numbering for an F40 PLC

28

7.5 Logic instruction set

The most common technique used for programming small PLCs is to draws ladder
diagram of the logic to be used, then convert this in to mnemonic instructions which
will be keyed in to programming panel attached to the programmable controller. These
instructions are similar in appearance to assembly - type codes , but refer to physical
inputs , outputs and functions within the PLC it self.
The instruction set consists oflogic instructions (mnemonics) that represent the actions
that may be performed within a given programmable controller. Instructions sets vary
between PLCs from different manufacturers , but are similar in terms of the control
actions performed.
Because the PLC logic instruction set tends to be small , it can be quickly mastered and
used by control technicians and engineers.
Each program instruction is made up of two parts: a mnemonic operation component or
opcode , and an address or operand component that identifies particular elements(e.g.
outputs) within the PLC. For example;

Opcode Operand

OUT
Device symbol

Y430
Identifier

Here the instruction refers to output (Y) number 430

Inputs X Program
functions

Outputs Y

7.6 Input I output numbering

These instructions are used the program logic control circuits that have been designed in
ladder diagram form , by assigning all physical inputs and outputs with an operand
suitable to the PLC being used. The numbering systems used differ between
manufacturers, but certain common terms exist For example, Texas instrument and
Mitsubishi use the symbol X to represent inputs, and Y to label outputs.

Programmable controller

A range of addresses will be allocated to particular elements :for example

Mitsubishi F40 PLC: 24 Inputs: X400- 407,410 - 413
X500 - 507, 510-513

16 Outputs: Y430 - 437
Y530-537

29

Y4

Inspection of these numbers ranges will reveal that there is no overlap of addresses
between functions; that is, 400 must be an input, 533 must be an output. Thus for
these programmable controllers the symbol X or Y is redundant , being used purely for
the benefit of the user, who is unlikely to remember what element 533 represents.
However, for many PL Cs both parts of the address are essential, since the I I O number
ranges are identical. For example the Klockner - Moeller range of controllers:

Sucos PS 21 PLC: 8 Inputs I O to 7, etc.
8 Outputs Q O to 7 ,etc

X400 X401
Y43~ I

Figure 7.7 Ladder diagram

To program to ladder diagram given in figure 7.7 , the following code would be written
, then programmed in to a keypad or terminal.

1 LD X400
2 OR Y430
3 ANIX401
4 OUTY430
5 OUT Y431
6 END

start a rung with a normally open contact
connect a normally open contact in parallel
connect a normally closed contact in series
drive an output channel
drive another channel
end of program - return to start

Notice the contact Y430 that forms a latch across X400. The Y contact is not a physical
element , but is simulated within the programmable controller and will operate in unison
with the output point Y430. The programmer may create as many contacts associated
with an output as necessary.

30

Small
Medium
Large

40 /40
128 /128

> 128 I >128

lK
4K
>4K

8- TYPES OF PLC
The increasing demand from industry for programmable controllers that can be applied
to different forms and sizes of control tasks has resulted in most manufacturers
producing a range of PLCs with various levels of performance and facilities.
Typical rough definitions of PLC size are given in terms of program memory size and
the maximum number of input/ output points the system can support. Table 8 .1 gives
an example of these categories.

Table 8.1 Categories of PLC

PC size Max I I O points Use memory size

However , to evaluate properly any programmable controller we must consider many
additional features such as its processor , cycle time language facilities , functions ,
expansion capabilities.
A brief outline of the characteristics of small , medium of large programmable
controller is given below , together with typical applications.

8.1 Small PLC s
In general, small and 'mini' PLC s (figure8.2)are designed as robust, compact units
which can be mounted on or beside the equipment to be controlled. They are mainly
used the replaced hard - wired logic relays, timers, counters. That control individual
items of plant or machinery , but can also be used to coordinate several machines
working in conjunction with each other.
Small programmable controllers can normally have their total I I O expanded by adding
one or two I I O modules , but if any further developments are required this will often
mean replacement of the complete unit. This end of the market is very much concerned
with non- specialist end- users, therefore ease of programming and a' familiar'
circuit format are desirable. Competition between manufacturers is extremely fierce in
this field , as they vie to obtain a maximum share in this partially developed sector of
the market.
A single processor is normally used , and programming facilities are kept at a fairly

basic level , including conventional sequencing controls and simple standard functions:
e.g. timers and counters. Programming of small PLC s is by way oflogic instruction
list(mnemonics) or relay ladder diagrams.
Program storage is by EPROM or battery - backed RAM. There is now a trend towards
EEPROM memory with on - board programming facilities on several controllers.

31

Electrical :

Table 8.2 Features of a typical small PLC - Mitsubishi F20

Programming:

Facilities :

240 V a.c. supply;
24 V d.c. on - board for input requirements;
12 input, 8 output points;
LED indicators on all I I O points;
All I I Opto - isolated
Choice ofoutput: Relay (240 V 2 A rated)

Triac (240 V 1 A rated
Transistor (24 V d.c. 1 A)

320 - step memory (CMOS battery - backed RAM)

Ladder logic or instruction set using hand - held or graphic LCD
programmer , with editor , test and monitor facilities;

8 counters, range 1 - 99 (can be cascaded)
8 timers, range O. I - 99 s (can be cascaded)
64 markers I auxiliary relays ; can be used individually or in blocks of 8 ,
forming shift registers;
Special function relays;
Jump capability.

8. 2Medium - sized PLC s

In this range modular construction predominates with plug - in modules based around
the Eurocard 19 inch rack format or another rack mounting system. This construction
allows the simple upgrading or expansion of the system by fitting additional I I O cards
in to the cards into the rack , since most rack systems have space for several extra
function cards. Boards are usually ' ruggedized ' to allow reliable operation over a
range of environments.
In general this type of PLC is applied to logic control tasks that cannot be met by small
controllers due to insufficient I I O provision, or because the control task is likely to be
extended in the future. This might require the replacement of a small PLC , where as a
modular system can be expanded to a much greater extent, allowing for growth. A
medium - sized PLC may therefore be financially more attractive in the long term.
Communications facilities are likely to provided , enabling the PLC to be including in a
' distributed control ' system.
Combinations of a single and multi - bit processor are likely within the CPU. For
programming , standard instructions or ladder and logic diagrams are available.
Programming is normally carried out via a small' keypad or a VDU terminal.(If
different sizes of PLC are purchased from a single manufacturer, it is likely that
pro~ams and programming panels will be compatible between the machines.

32

8.3 Large PLC
Where control of very large numbers of input and output points is necessary or complex
control functions are required , a large programmable controller is the obvious choice.
Large PLC s are designed for use in large plants or on large machines requiring
continuous control. They are also employed as supervisory controllers to monitor and
control several other PLC s or intelligent machines. e. g. CNC tools
Modular construction in Eurocard format is standard , with a wide range of function
cards available including analog input I output modules. There is a move towards 16 -
bit processor, and also multi - processor usage in order to efficiently handle a large
range of differing control tasks . For example;
• 16 - bit processor as main processor for digital arithmetic and text handling.
• Single - bit processor as co - or parallel processor for fast counting , storage etc.
• Peripheral processor for handling additional tasks which are time - dependent or

time - critical, such as:
Closed - loop (PID) control
Position controls
Floating - point numerical calculations
Diagnostics and monitoring
Communications for decentralized
Process mimics
Remote input I output racks.

This multi - processor solution optimizes the performance of the overall system as
regards versatility and processing speed , allowing the PLC to handle very large
programs of I00 K instructions or more. Memory cards can now provide several
megabytes of CMOS RAM or EPROM storage.

33

8.4 Remote input I output

When large numbers of input I output points are located a considerable distance away
from the programmable controller , it is uneconomic to run connecting cables to every
point. A solution to this problem is to site a remote I I O unit near to the desired I I O
points. This acts as a concentrator to monitor all inputs and transmit their status over a
single serial communications link to the programmable controller. Once output signals
have been produced by the PLC they are fed back along the communications cable to
the remote I I O unit , which converts the serial data into the individual output signals to
drive the process.

8.5 Programming large PLC s

Virtually any function can be programmed , using the familiar ladder symbols via a
graphics terminal or personal computer. Parameters are passed to relevant modules
either by incorporating constants in to the ladder , or via on - screen menus for that
module.
There may in addition be computer - oriented languages which allow programming of
function modules and subroutines.
There is progress towards standardization of programming languages , with programs
becoming easier to over - view through improvement of text handling , hand improved
documentation facilities. This is assisted by the application of personal computers as
work stations.

8.6 Developments

Present trends include the integration of process data from a PLC into management data
bases, etc. This allows immediate presentation of information to those involved in
scheduling,
production and planning .

The need to pass process information between PC s , PLC sand other devices within an
automated plant has resulted in the provision of a communications capability on all but
the smallest controller. The development of local area networks (LAN) and in
particular the recent MAP specification by General Motors (manufacturing automation
protocol) provides the communication link to integrate all levels of control systems.

34

9 - PROGRAMMING OF PLC SYSTEMS

In the previous chapter we were introduced to logic instruction sets for programming
PLC systems. The complete sets of basic logic instruction for two common
programmable controllers are given below. Note the inclusion in these lists of additional
instructions ORB and ANB to allow programming of more complex, multi branch
circuits. The use of all these instructions and others is dealt with in this chapter. Some
typical instruction sets for Texas instruments and Mitsubishi PLC s are given in table
9. 1

Table 9.1 Typical logic instruction sets.

Texas Instruments
Mnemonic Action

Mitsubishi A series
Mnemonic Action

STR Store LD Start rung
with an open

contact
OUT
AND
OR
NOT

Output
Series elements
Parallel elements
As for not

Or together parallel
branches

ANB And together series
circuit blocks

Output
Series components
Parallel components
Inverse action

OUT
AND
OR

. .I
ORB

35

9.1 Logic instruction sets and graphic programming

In the last chapter we introduced logic instructions as the basic programming language
for programmable controllers. Although logic instructions are relatively easy to learn
and use , it can be extremely time - consuming to check and relate a large coded
program to the actual circuit function.
In addition , logic instructions tend to vary between different types of PLC.
If a factory or plant is equipped with a range of different controllers (a common
situation) , confusion can result over differences in the instruction sets.

RELAY LOGIC SYMBOLS: (MITSUBISHI PLC)

Input, normally open contacts

Input , normally closed contacts

Inputs in parallel connection

-ü---i Output device

--CJ- Special instruction circuit block

A preferable alternative is to use a graphic programmer , as available for several
programmable controllers including the small Mitsubishi and Toshiba models from
Japan. Graphic programming allows the user to enter his program as a symbolic ladder
circuit layout, using standard logic symbols to represent input contacts , output coils,
etc. as shown in the about figure. This approach is more user friendly than programming
with mnemonic logic instructions, and can be considered as a higher - level form of
language.
The programming panel translates or compiles these graphic symbols in to machine
instructions that are stored in the PLC memory , relieving the user of this task.
Different types of graphic programmer are normally used for each family of
programmable controller , but they all support similar graphic circuit conventions.
Smaller , hand - held panels are common for the small to medium - sized PLCs
although the same programming panel is often used as a 'field programmer' for these
and larger PLCs in the same family. However , the majority of graphic programming for
larger systems is carried out on terminal - sized units. Some of these units are also
serniportable, and may be operated alongside the PLC system under commissioning or
test in - plant. In addition to screen displays , virtually all graphic programming stations
can drive printers for hard copy of programs and\ or status information, plus program
storage via battery - backed RAM or tape \ floppy disk. The facility to load resident
programs into EPROM IC s may be available on more expensive
units.

36

9.1-1 Input /output numbering
It was previously stated that different PLC manufacturers use different numbering
systems for input/output points and other functions within the controller.

X400 X401 X402 Y430

:~Y4~0 HHI (

OR gate AND gate

9.1-2 Negation - NAND and NOR gates

These logic functions can be produced in ladder form simply by replacing all contacts
with their inverse , AND becomes ANI ; OR becomes ORI; etc. this changes the
function of the circuit.

X400 X401 Y430

1
X400tE [X401

Y430

1
NOR gate NAND gate

9.1-3 Exclusive - OR gate

This is different form the normal OR gates as it gives an output of 1 when either one
input or the other is on , but not both. This is comparable to two parallel circuits , each
with one make and one break contact in series as shown in exclusive OR gate figure.

X400 X401

I ~ I
X400 X~

ı1 I

Y430

EXCLUSIVE - OR gate

37

Counters C

450-45~550 - 55 16 points (elements)
460-467
560 - 567 16 points

Note the use of an ORB instruction in this example. The programmable controller reads
the first two instructions, then finds another rung start instruction before an OUT
instruction has been executed. The CPU therefore realizes that a parallel form of circuit
exists and reads the subsequent instructions until an ORB instruction is found.

9.2 Facilities

9.2-1 Standard PLC functions

In addition to the series and parallel connection of input and output contacts , the
majority of control tasks involve the use of time delays , event counting , storage of
process status data, etc. All of these requirements can be met using standard features
found on most programmable controllers. These include timers ,counters , markers and
shift registers, easily controlled using ladder diagrams or logic instructions.
These internal functions are not physical input or output. They are simulated within the
controller.
Each function can be programmed with related contacts which may be used to control
different elements in the program . As with physical inputs and
outputs , certain number ranges are allocated to each block of functions. The number
range will depend both on the size of a PLC, and the manufacturer. For example, for
the Mitsubishi F- 40 series , the details are as follows:

Timers T

The information illustrates the use of different number ranges assigned to each
supported function. For example, the timer circuits for this programmable controller are
addressed from 450 to 457 and 550 to 557 , a total of 16 timers. It is the specified
number that identifies a function and its point to the PLC , not the prefix letter. This
prefixes are included only to aid the operator.

..
hıtemal facilities
Contact related to outputs
Counters and related contacts
Timers and related contacts
Auxiliary relays and related contacts
Special function relays

Outputshıputs
---,,.
y

-{ }-

Figure 9.1 Standard PLC function
The functions listed are provided on most programmable controllers , although the
exact format will vary between manufacturers. Other functions may also exist , either as
standard or by the selection and fitting of function modules to the PLC rack.

38

PC (F40) 1/0 ASSIGNMENTS
Inputs: 24 points 400 - 407

410-413

500- 507
510-513

Outputs: 16 points 430-437
530 - 537

Timers: 16 points 450-457
550- 557

Counters:16 points 460 -467
560- 567

100 -107
170 - 177
200-207
270-277

}

300- 307

370-377

70, 71, 72, 75 ,77

Auxiliary control
Relays: 128points

Battery- backed:64 points

Special function

Auxiliary relays ; 5 points

Figure 9.2 Typical number assignments to internal functions

The operation and use of the listed standard functions is covered in the following
sections.

9.2-2Markers I auxiliary relays

Often termed control relays or flags , these provide general memory for the
programmer , plus associated contacts. They also form the basis for shift - register
construction. Normally a group of markers with battery back-up is provided allowing
process status information to be retained in the event of a power failure. These
markers can be used to ensure safe startup \ shut down of process plant by including
them as necessary in the logic sequence.
Referring, the Mitsubishi F40 has:
128 auxiliary (marker)relays
64 battery - backed markers

39

9.2-3 Ghost contacts

In certain cases it will be necessary to derive an output from the combined logic of
several ladder rungs , due to the number of contacts involved. The straight forward way
of providing this is to common - up the respective circuit rungs and drive an internal
relay or marker(M). This acts in the same manner as a 'physical' relay, in that it can
have associated contacts - except for the fact that it is simulated by software within the
programmable controller, and has no external appearance whatsoever!
In common with other internal functions , auxiliary relays I marker can be programmed
with as many associated contacts as desired. These contacts may be used anywhere in a
ladder program as elements in a logic circuit or as control contacts driving output relays
or other functions.

9.2-4 Retentive battery- backed relays

If power is cut of or interrupted whilst the programmable controller is operating , the
output relays and all standard marker relays will be turned off. Thus when power is
restored , all contacts associated with output relays and markers will be of possibly
resulting in incorrect sequencing. When control tasks have to restart automatically after
a power failure, the use of battery- backed markers is required. In the above
PLC ,there are 64 retentive marker points, which can be programmed as for ordinary
markers , only storing pre - power failure information that is available once the system
is restarted.
In figure 9.3 retentive marker M300 is used to retain data in the event of a power
failure. Once input X400 is closed to operate the M300 marker , M300 latches via it is
associated contact.

X400 X401 M300

M3~

M300

Figure 9.3 Retentive marker used in a latch circuit

40

So even ifX400 is opened due to a power failure, the circuit is holds on restart due to
M300 retaining the operated status and placing its associated contacts in the operated
positions.
Obviously X401 still controls the circuit, and if this input is likely to be energized
(opened) by a power - failure situation , than a further stage of protection may be used.

9.2-5 Optional functions on auxiliary relays

From the above text it is apparent that auxiliary relays constitute an important facility in
any programmable controller. This is basically due to their ability to control large
numbers of associated contacts and perform as intermediate switching elements in many
different types of control circuit.

In addition , many PLC manufacturers have provided additional , programmable
functions associated with these auxiliary relays , to further extend their usefulness. A
very common example is a 'pulse' function that allows any designated marker to
produce a fixed - duration pulse at its contacts when operated , rather than the normal d.
c. level change. This pulse output is irrespective of the duration of relay operation, thus
providing a very useful tool for applications such as program triggering , setting I
resetting of timers and counters etc.

9.2-6 Pulse operation

The programming of this feature varies between controllers, but the general procedure
is the same , and very straightforward.
A pulse - PLS instruction is programmed onto an auxiliary relay number.
(in the figure 9.4)
This configures the designated relay to output a fixed - duration pulse when operated.
The examples show how the relay may be used to output a pulse for either a positive or
negative going input.
The circuit in figure 9.5 uses a PLS instruction on auxiliary relay 1 Ol to provide a reset
signal for a counter circuit C60. When input O is operated, a pulse is sent to relay 1 Ol ,
causing its contacts to pulse and reset counter C60. This is used here because counters
and timers often require short duration resetting to allow the restart of the counting or
timing process.

41

xıo __J
M8

_J---ı___
1-1 (Time for one program cycle)

Pulse width

{al

xıo

*

Instructions
LD xıo
PLS M 8

Use as internal program
trigger pulse

Instructions
LDI xıo
PLS M 8

lb)

Pulse width (Time tor one program cycle)

XO
1----1 PLS IM 1 01

M101

X1

C60

Step No. Instruction

o
1
2
3
4
5
7

10
11
12

LO XO
PLS M101
LO M101
RST C60 }
LO X1
OUT C60
K 5
LD C60
OUT Y30
END

RST
C60
OUT

K5

y 30

Auxiliary relay M101

Counter C60

Count of five

Figure 9.4 Pulse function on auxiliary relays (a) rise detection circuit
(b) drop detection circuit

Figure 9.5 Providing a pulse input to a counter circuit

42

9 .2-7 Set and reset

As with pulse - PLS , the ability to SET and.RESET an auxiliary relay can often be
produced by using appropriate instructions as in figure 9.6 These instructions are used
to hold (latch) and reset the operation of the relay coils.
The S - set instruction causes the coil M202 to self - hold. This remains until a reset (R)
instruction is activated.

s _j X4Jıı-ı -----X401

x4hı_
X402

R

_J
(a)

Figure 9.6 (a) set/reset

M202
(b)

Figure 9 .6 (b) time chart

9.2-8 Timers

In a large proportion of control applications , there is a requirement for some aspect of
timing control. PCs have software timer facilities that are very simple to program and
use in a variety of situations.
The common method of programming a timer circuit is to specify the interval to be
timed , and the conditions or events that are to start and I or stop the timer function. The
initiating event may be produced by other internal or external signals to the controller.
In this example the timer T450 is totally controlled by a contact related to output Y430.
Thus, T450 begins timing only when Y430 is operated. This is caused by input X400
and not X401. Once activated , the timer will ' time - down' from its preset value - in
this case 3.5 seconds - to zero, and then its associated contacts will operate.
As with any other PLC contact, the timer contacts may be used to drive succeeding
stages of ladder circuitry. Here the T450 contact is controlling output Y431. The
enabling path to a timer may also form the 'reset' path, causing the timer to reset to the
preset value whenever the path is opened. This is the case with most small PCs. The
enabling path may contain very involved logic, or only a single contact.
Techniques for programming the preset time value vary little between different
programmable controllers ,usually requiring the entry of a constant (K) command
followed by the time interval in seconds and tenths of a second. The timers on this
Mitsubishi controller can time from O .1 - 999. 9 s , and can be cascaded to provide
longer intervals if required.

43

9.2-9 Counters

Whenever the number of process actions or events are significance , they must be
detected and stored in some manner by the controller. Single or small numbers of events
may be remembered by using latched relay circuits , but this is not suitable for larger
event counts. Here programmable counter circuits are desirable , and are available on all
PLCs.
Provided as an internal function , counter circuits are programmed in a similar manner
to the timer circuits covered above , but with the addition of a control path to signal
event counts to the counter block. Most PLC counters work as subtraction or ' down'
counters , as the current value is decremented from the programmed set value

9.2-1O Registers

From using a single internal or external relay as a memory device to store a single bit of
information , other PLC facilities allow the storage of several bits of data at one time.
The device used to store the data is termed a register ,and commonly holds 8 or 16 bits
of information. Registers can be throught of as arrays of individual bit - stores - in fact
many programmable controllers form the data registers out of groups of auxiliary
marker relays in the figure 9.7
Registers are very important for handling data that originates from sources than simple ,
single switches. Instead of binary data in one - bit - wide form , information in a
parallel data form may be read into and out of appropriately sized registers. Thus , data
from devices such as thumbwheel switches , analog - to - digital converters , can be
feed into appropriate PLC registers and used in later operations that will generate other
bit - or byte - wide (8-bit) data to drive switched outputs or digital - to - analog
conversion units.

Internal
relay marker

O On/off= One bit-store
1 /0

Parallel data
register

,-ı 1 ı-

Data In

o- oı-

,_ 1 -r Out

oo- -
- 1 ı-

I
I
t f

(b)

Array of 8 bit-stores
== register (8-bit)

(al

Figure 9.7 Register storage concept (a) array of bit stores; (b) parallel data register
44

9.2-11 Shift registers

A shift register provides a storage area for a sequence of individual data bits that are
offered in series to its input line. The data are moved through the register under control
of a shift or clock line as in the figure 9. 8. The effect of a valid shift pulse is to move all
stored digits one bit further in to the register, entering any new data in to the 'freed'
initial bit positions. Since a shift register will only be a certain size . for example 8 or 16
bits , then any data in the last bit of the register will be shifted out and lost.
The usefulness of a shift register (SR) lies in the ability to control other circuits or
devices via associated SR contacts that are affected by the shifting data stream through
the register. That is , as with marker relays , when a marker is ON any associated
contacts are operated.
In programmable controllers , shift registers are commonly formed from groups of the
auxiliary relays. This allocation is done automatically by the user programming
a 'shift - register function', which than reserves the chosen block of relays for that
register and prohibits their use for any other function (including use as individual
relays).
The example in the figure 9. 8 shows a typical circuit for shift register operation on a
Mitsubishi PLC. Here the register is selected by programming in the shift instruction
against the auxiliary relay number to be first in the register array - Ml 60. This
instruction causes a block ofrelays -Ml60 -167 - to be reserved for that shift register.
Note that only the first relay had to be specified, the remainder being implied by the
instructions.
This shows the controlling contacts on the input lines to the register - RESET, OUTPU
and SHIFT.

All stored bits shift along
when a valid 'shift' pulse occurs
Initial bit position ~

\
1 o\ 1 ı,- - ,- .,- ,,.-

~ ~ ı·~ ı ·; I :rr I I [>Data in

For exampleO
Common shift

Figure 9.8 Shift register operation: (a) before shift; (b) after 1 shift pulse

45

The auxiliary relays can be grouped in blocks of 8 to form 8- or 16-bit shift
registers. This feature is programmed as shown below using M160-177
internal relays (only M160 is keyed in, the other bits being transparent).

Shif ·ı t regıster program ,- -,
X412 ı RST ı

I II : [M160 ~ Reset

X410 (Ml 60

I II : SFT
X411 ! [M160

I II : _J

'---------

Output

Shift

ı\111 60
Y530

Ml 61
Y531

Output coils

I I
attached to

I I
shift, register

I I 'bits' - shows

t I contents moving

I M167
t in register.

(Y537

etc.

The shift register contacts perform as follows:

RST - a pulse or closure resets SR contents to O
OUT - logic level (O or 1) offered to register on this rung.
SFT - pulse moves contents along one bit at a time (eventually

contents are lost off the final bit memory).

X4 10
I OUTI

1 1 - o •... N C") s:t L!) (.O r--
I SFT (.O (.O c.o <O <.O <.O ıo c.o
I •... •... •... •... •... •... •... •...

12
2 2 2 2 2 2 2 2

I RSTI

8-bit shift register
- -,

I
ı

X4 Overflow

X4
I

_ _J

Figure 9.9 Basic shift register circuit
Figure 9.10 Equivalent circuit of a shift register

46

9.3-1 BCD numbering

Note the M - contacts below the SR circuit that are used to drive output coils (Ml 60 -
167 driving Y530 -537).
It is easier to understand the function of the register if we look at an equivalent circuit in
the figure 9.1O. Here we can see the layout of other marker relays following Ml 60. This
helps us to visualize the shifting of data from bit to bit, affecting other parts of the
circuitry as the data (1 or O) in each bits change.
Shift registers are commonly found as 8 - bit or 16 - bit , and can usually be cascaded
to create larger shift arrays. This allows data to be shifted out of one register and in to a
second register , instead of being lost. Battery - backed markers can be selected as the
register elements if it is necessary to retain register data through a power failure.

9.3 Arithmetic Instructions

All internal CPU operations are performed in binary numbers. Since it may be
necessary to deal with decimal inputs and outputs in the outside world , conversion
using binary - coded - decimal (BCD)numbering is provided on most PLCs . BCD
numbering is briefly described in figure 9.11 Readers wanting further information are
referred to the many texts dealing with number systems. When data is already in binary
format , such as analog values , it is placed directly in registers for use by other
instructions.

47

(1) BIN (pure binary)

X7 X6 X5 X4 X3 X2 xı XO

Upper digit [1 l 1 l o I 1 I o I o I 1 l 1 \ Lower digit

128 64 32 16 8 4 2

•

1 28 + 64 + 1 6 + 2 + 1 = 211

In the data made up of 8 bits from XOto X 7, the number 211 is expressed when XO, X 1,
X4, X6 and X7 are turned on (= 1 in the above figure) and the others are turned off (=0 in

the abovefigure).

(21 BCD (binary-coded decimal)

Mll3 M112 M111 M110 M107 M106 M105 M104 M103 M102 M101 M100
I I I I I I I I I[ı o o o o o J

800 400 200 100 80 40 20 10 8 4 2

1 S digit
1 OOs digit 1 Os digit

(800 + 100) + {40 + 20) + (4 + 2 + 1) = 967

BCDdata is such that each digit of the decimal numbe~pressed in 4-bit binary. No digit

will exceed 9.E.g.: If both Ml 03 and M102 are turned on t = 1 l in the BCD data shown in the above figure

it will result in an error.
The valuesof timers or counters may be treated as BCD

(a)

40 •., '2 •3,.., ,.., ,.., r,
12 12 12 1 2

o,,; i T t aaıııı,
f 22!)ı240VAC !
fı10/120VACI +

· _JI,.-•·~-a; I: ---~;ıç~~~~-i-~ ~~1R
lif?r~IIwsı~.za

,---TIMER___..
,:; Q o o

Bl {n'ı Gr Wı
40 41 42 43

Figure 9.11 (a) Binary and BCD number systems
(b) Timer unit for data operations

48

9.3-2 Magnitude comparison

------Magnitude comparison instructions are used to compare a digital value read from some
input device or timer, etc., with a second value contained in a destination data register.
Depending on the instruction - more than, less than, or equal - ,this will result in a
further operation when the condition is met. For example, a temperature probe in a
furnace returns an analog voltage representing the current internal temperature. This is
converted in to a digital value by an analog - to - digital converter module on the PC ,
where it is read from input points by a data - transfer instruction and stored in data
register Dl O. The process requires that if the temperature is less than 200 C, then the
process must halt due to insufficient temperature.
If the temperature is greater than 200 C and less than 250 C, then the process operates
at normal rate. If the temperature is between 250 and 280 C, than baking time is to be
reduced to 3 minutes 25 seconds , and once temperature exceeds 280 C the process is to
be suspended.
This the type of area where magnitude comparison can provide the necessary control ,
in conjunction with other circuitry to drive the plant equipment.
Other common applications include the checking of counter and timer values for action
part - way through a counting sequence.

9.3-3 Addition and subtraction instructions

These instructions are used to alter the value of data held in data registers by a certain
amount. This may be used simply to add I subtract an offset to an input value before it is
processed by other instructions. For example, when two different sensors are passing
values to the controller and one sensor signal has to be compared against the other , but
is a fundamentally smaller signal with a narrower output swing. It may be possible to
add an offset to the smaller signal to bring it up near to the level of the larger one, thus
allowing comparison to take place. The alternative would be to use signal conditioning
units to raise the sensor output before the PLC - an expensive option.
Other uses of+ and - include the alteration of counter and timer presets by programmed
increments when certain conditions occur.

49

10~ LADDER PROGRAM DEVELOPMENT
. ·\.•;;~'1

\y3''•'

10.1 Software Design

When ladder programs are being developed to control simple actions or equipment , the
amount of planning and actual design work for these short programs is minimal ,
mainly because there is no requirement to link with other actions or sections within the
program. The ladder networks involved are small enough to be easily understood in
terms of circuit representation and operation. In practice , of course , circuits are not
limited to AND or OR gates, often involving mixed logic functions together with the
many other programmable functions provided by modem programmable controllers.
When larger and more complex control operations have to be performed , it quickly
becomes apparent that an informal and unstructured approach to software design will
only result in pro~ams that are difficult to understand , modify , troubleshoot and
document. The originator of such software may posses an understanding of its
operation , but this knowledge is unlikely to remain after even a short period of time
away from that system.
In terms of design methodology , than , ladder programming is no different from
conventional computer programming. Thus , considerable attention must be given to :

* Task definition I specification
* Software design techniques
* Documentation
* Program testing

10.1-1 System functions

Most industrial control systems may be considered as a set of functional areas or
blocks, in order to aid the understanding of how the total system operates,
For example, each machine in a plant unit can be treated as a separate sub - process.
Each machine process is then broken down in to blocks that may be described in terms
of basic sequences and operations in the figure 1 O .1 illustrates this approach.
A functional block could for example , consist of all actions required to control a certain
machine in the process.

50

Block 1

Block 2

Block 3

The division of programming tasks in to functional blocks is an important part of

software design.
In logic progra~g , there are two different types of network that may be used to
implement the functıon of a given block:

• Interlocks or combinational logic, where the output is purely dependent on the
combination of the inputs at any instant in time.

• Sequential networks where the output is dependent not only on the actual inputs but
on the sequence of the previous inputs and outputs.

51

Identify 1/0 requirements
and processing/memory needs Software

Commence project

Firm up specifications
and requirements and
outline constituent tasks

Analyze software
control requirementsj-+- - - - - ;

I

Assemble and
connect PC

3tC.
I
I
I
I
I
+
I

Complete

Select parts,
system
components

Design a
sequence

Generate
program
and test~

Link proven modules

Complete
documentation

Testing and simulation; modification

Place in memory
hard copy and documentation

Modifications as required

Amendments i redesign
- - - - - - - - - -.-- -ı.

I
I
I

+

Functional testing of software
running in host hardware

installation on-site

Commissioning and modifications
--------~--_J

la)

Complete documentation
train operating staff

Figure 10.1 (a) PC system design procedure

52

General diagram of
the complete process

r---------,
: etc.)
L------.J

Description of
sub-process 1

Description of
sub-process 2

I j \
- I I \

"r----,
ı etc. ı
I I
'----.J

Object
list

Design of
sequence 2

Design of
sequence 1

(bl

Figure 10.1 (b) Describing the functional structure of a process

Entry procedure Key operation Comment

\ LDR J \wR\ Mode and function key

2. 8800§.J Symbol element execution ıcursor moves
to next position)

3. 8800§.JJ Where the ladder symbol is the same as
the one used previously, it need not be

4. 8800§] rekeyed

5. EJ0C2JEJ Output coil, cursor moves to next line

6. GEJ0~EJ Parallel contact across X2

7. GEJ0C2JEJ Parallel contact across X2

8. [OE] Move cursor to next line

9. 8800§] Parallelcontact acrosspreviouscontacts

10. EJE]EJ§] Horizontalcircuit links to point B

11. [OE][OEJOJE] Vertical links up to point A, using cursor
keys •

1 2. I CNV II GO l Editing and writing code to RAM (compiled
into logic instructions)

Figure 10.2 Graphic programming
53

•••

10.2Program Structure

At this stage in the investigation of design techniques , it is appropriate to discuss the
layout and structure of PLC programs. It is sound practice to base any program layout
on the general operating structure of all process - control systems. This means having
definite sections dealing with operating modes , basic functions , process chain or
sequence, signal outputs and status display, as indicated in Table 10.1.

\
Table 10.1 Sections of a PLC program

Start

Operating modes and basic functions
starting (basic) position
Enabling I reset conditions

Process operation I sequence logic

Signal outputs

Status I indicator output

Finish

a- Operating modes

Basic position: The controlled equipment is likely to have a basic or normal position ,
for example when all actuators are off and all limit switches are open. All these
elements can be combined logically to signify and initialize a basic position , which
may be programmed as a step in a sequential process.

Enabling I reset conditions: Most industrial processes have manual start and stop
controls that may be incorporated in to the PLC program structure at this point. These
would be included as enabling and reset contacts, having overall control of the PLC in
terms ofrun or stop. There may also be a manual switch to enable the system outputs,
which would allow the program to run without driving the physical outputs connected to
the PLC a test function.

b- Process operation I sequence
This is the main topic of this chapter, involving the design and programming of
combinational and sequential networks as necessary. The resultant outputs do not
normally drive actuators directly , but instead are used to operate intermediate marker
relays.

54

By adopting this systematic approach to program structure , we can create reliable ,
easily understood software , which will allow rapid fault location and result in short
process down times. The program that are developed in this chapter deal mainly with
the topic of process operation , but will be structured in this manner where possible,

c- Signal output

Output signals to process actuators are formed by interlocking the resulting operation
sequence outputs (markers) with any enabling conditions that exist in (a) above.

d- Status I indicator outputs

Pr~cess status is often displayed using indicator lambs or alarms, etc. Such elements are
programmed in this section of the software.

10.3 Further Sequential Control Techniques

In many practical applications , a control system has to deal with a process sequence
that requires the concurrent operation and control of more than one step. Also, steps in
a sequence may require a time delay or event count as entry criteria for a succeeding
step. To describe the different types of parallel operation , we use the conventions
In figure , actions BOR Care taken, depending on the result oftest A2. Either action
will allow entry to action D. In the figure shows the format for a process where two
actions A AND B are initialized once test A is true; also both tests B AND C must be
true before progression to action D.
The equivalent function chart descriptions are illustrated. The number of parallel
activities may be extended via the branching and converging rails. The chart in figure
shows the tests that allow entry to steps B OR C , and also the individual tests or
conditions that will allow resetting of the chosen step (test n and m). Notice the OR
signs at each branch rail.
In figure the AND ing of steps is signified by the double connecting rails after test A
and before test n. This means that all parallel steps (in this case B and C) are set once
state A.is active and test A is fulfilled.

55

10.4 Limitation of Ladder Programming

1 - Ladder programs are ideal for combinational I interlock tasks and simple sequential
tasks. However, the lack of comment facilities on most small programmers makes
interpretation of any program extremely difficult.
2 - When applied to complex sequential tasks , ladder programs become cumber some,
difficult both to design and debug. This is mainly due to having to provide entry , hold
and reset elements in every stage to ensure no sequence errors occur.

~everal manufacturers are adopting a function block style of programming that removes
most of this complexity. This employs basic programming symbols that are closely
related to the function chart symbols used for program design purposes , as used earlier
in this chapter.

10.4-1 Advanced graphic programming languages

The facility for programming using functional blocks is currently available on a few
larger programmable controllers , such as those from Siemens and Telemechanique.
This approach uses graphic blocks to represent sections of circuitry related to a
particular task or part of a process. Each function block is user programmed to contain a
section ofladder circuitry required to carry out that function. The sequential operation
of the control system is obtained by progression from one block to next, where a step is
entered only if it is entry conditions are fulfilled , in which case it becomes active and
the previous step becomes inactive.
Thus , there is no need to reset the previous step - an important advantage over
conventional ladder programming.
To examine or program the contents of each block the user would zoom in on the block
in question. This windows in on the contents as shown , which are displayed on the
programming panel. The necessary details are then entered in normal ladder format.
Provision for displaying simultaneous sequences is a further important feature of this
programming methods, displaying the multi - tasking ability of PLC sin an easy- to -
follow manner.

10.4-2 Workstations

The traditional tool for programming PLC s is the small , hand - held panel which can
provide only limited monitoring and editing facilities. Most manufacturers are now
using personal computers as workstations on larger programmable controllers , in order
to fully exploit these features , and those of graphic function blocks.

56

11- CHOOSING, INSTALLATION
AND COMMISSIONING OF PLC SYSTEM

11.1 Feasibility Study

Under certain circumstances an initial feasibility study may be suggested or warranted ,
prior to any decision on what solution will be adopted for a particular task. The
feasibility study may be carried out either by in - house experts or by external
consultants. Often an independent specialist is preferred , having few or no ties to
specific vendor equipment.
The scope of such a study can vary enormously , from simply stating the feasibility of
the proposal , through to a comprehensive case analysis with complete equipment
recommendations. Typically, though, a feasibility study of this nature encompasses
several specific areas of investigation:

(a) economic feasibility, consisting of the evaluation of possible installation and
development costs weighed against the ultimate income or benefits resulting from
a developed system ;

(b) technical feasibility, where the target process and equipment are studied in
terms of function , performance and constraints that may relate to achieving an
acceptable system;

(c) alternatives, with an investigation and evaluation of alternative approaches to the
development of the acceptable system

Area (a) , economic feasibility and worth , can only be addressed fully once the result
of areas (b) and (c) are available ,with estimated costings , and direct I indirect
benefits being considered. Area (b) is detailed in the following sections , with
background information for area (a) usually being compiled through liaison with
company personnel. The achievement of a complete technical proposal requires us to
know what the present and future company needs are in terms of plant automation and
desired information systems.
Once the control function has been accurately defined , a suitable programmable control
system has to be chosen from the wide range available. Following the identification of
a suitable PLC , work can begin on aspects of electrical hardware design and software
design.

11.2 Design Procedure for PLC System

Because the programmable controller is based on standard modules , the majority of
hardware and software design and implementation can be carried out independently of,
but concurrently with , each other.

57

Developing the hardware and software in parallel brings advantages both in terms of
saving time and of maintaining the most flexible an adaptable position regarding the
eventual system function. This allows changes in the actual control functions through
software , until the final version is placed in the system memory and installed in the
PLC.
An extremely important aspect of every design project is the documentation.

Accurate and up - to - date documentation of all phases of a project need to be fully
documented and updated as the job progresses through to completion. This information
will form part of the total system documentation, and can often be invaluable during

~ter stages of commissioning and troubleshooting.

11.2-1Choosing a programmable controller

There is a massive range of PLC systems available today , with new additions or
replacement continually being produced with enhanced features of one type or another.
Advances in technology are quickly adopted by manufacturers in order to improve the
performance and market status of their products. However, irrespective of make, the
majority of PLC sin each size range are very similar in terms of their control facilities.
Where significant differences are to be found is in the programming methods and
languages , together with differing standards of manufacturer support and backup. This
latter point is often overlooked when choosing a suitable make of controller , but the
value of good , reliable manufacturers assistance cannot be overstated , both for present
and future control needs.

i'

11.2-2Size and type of PLC system

This may be decided in conjunction with the choice of manufacturer , on the basis that
more than one make of machine can satisfy a particular application , but with the vast
choice of equipment now available , the customer can usually obtain similar systems
from several original equipment manufacturers (OEMs). Where the specification
requires certain types of function or input I output, it can result in one system from a
single manufacturer standing out as far superior or cost - effective than the
competition , but this is rarely the case. Once the stage of deciding actual size of the
PLC_ system is reached , there are several topics to be considered:

• necessary input I output capacity ;
• types of I I O required;
• size of memory required;
• speed and power required of the CPU and instruction set.

All this topics are to a large extent interdependent , with the memory size being directly
tied to the amount ofl I O as well as program size. As the I I O memory size rises , this
takes longer to process and requires a more powerful , faster central processor if scan
times are remain acceptable.

58

11.2-3 I I O requirements

The I I O sections of a PLC system must be able to contain sufficient modules to
connect all signal and control lines for the process. These modules must conform to the
basic system specifications as regards voltage levels , loading, etc.,

• The number and type ofl I O points required per module;
~ Isolation required between the controller and the target process;

• The need for high speed I I O , or remote I I O , or any other special facility;
• Future needs of the plant in terms of both expansion potential and installed spare I I

O points;
• Power supply requirements ofl I O points - is an on - board PSU needed to drive

any transducer or actuators?

In certain cases there may be a need for signal conditioning modules to be included in
the system , with obvious space demands on the main or remote racks. When the system
is to be installed over a wide area , the use of a remote or decentralized form ofl I O
working can give significant economies in cabling the sensors and actuators to the PLC.

11.2-4 Memory and programming requirements

Depending on the type of programmable controller being considered , the system
memory may be implemented on the same card as the CPU , or alternatively on
dedicated cards. This ladder method is the more adaptable , allowing memory size to be
increased as necessary up to the system maximum , without a reciprocal change in CPU
card.
As stated in the previous section , memory size is normally related to the amount ofl I
O points required in the system. The other factor that affects the amount of memory
required is of course the control program that is to be installed. The exact size of any
program cannot be defined until of the software has been designed, encoded, installed
and tested. However, it is possible to accurately estimate this size based on average
program complexity. A control program with complex ,lengthy interlocking or
sequencing routines obviously requires more memory than one for a simple process.
Program size is also related to the number of I I O points, since it must include
instructions for reading from or writing to each point. Special functions are required for
the control task may also require memory space in the unit PLC memory map to allow
data transfer between cards. Finally additional space should be provided to allow for
changes in the program, and for future expansion of the system.
There is often a choice of available memory type - RAM or EPROM. The RAM form is
the most common , allowing straightforward and rapid program alterations both before
and after the system is installed. RAM contents are made semipermanent by the
provision of battery - backing on their power supply. RAM must always be used for I I
O and data functions , as these involve dynamic data.

59

EPROM memory can be employed for program storage only, and requires the use of a
special EPROM eraser I programmer to alter the stored code. The use ofEPROMS is
ideal where several machines are controlled by identical programmable controllers
running the same.

However , until a program has been a fully developed and tested , RAM storage should
be used.
As mentioned in earlier chapters , microcomputers are commonly used as program
development stations. The large amounts of RAM and disk storage space provided in
these machines allows the development and storage of many PLC programs ,including
related text and documentation. Programs can be transferred between the
microcomputer and the target PLC for testing and alteration. EPROM programming can
also often be carried out via the microcomputer.

Input/output memory
+

Control program memory
+

Special function tables
+

Soace for changes and
future expansion

la)

ı°'!'ı,

{b)

Figure 11.1 (a) PLC memory requirements for different tasks.

(b) Custom EPROM programmer for a Mitsubishi F series PLC
60

11.2-5 Instruction set I CPU

Whatever else is left undefined ,any system to be considered must provide an
instruction set that is adequate for the task Regardless of size, all PLCs can handle
logic control, sequencing, etc. Where differences start to emerge are in the areas of
data handling , special functions and communications. Larger programmable controllers
tend to have more powerful instructions than smaller ones in these areas , but careful

\!~~tiny of small I medium machines can often reveal the capability to perform specific
'\unctions at surprisingly good levels of performance.
In modular programmable controllers there may be a choice of CPU card , offering
different levels of performance in terms of speed and functionality. As the number of I I
O and function cards increases , the demands on the CPU also increase , since there are
greater numbers of signals to process each cycle. This may require the use of a faster
CPU card if scan time is not to suffer.
Following the selection of the precise units that will make up the programmable
controller for a particular application , the software and hardware design functions can
be carried out independently.

,n
1,

11.3 Installation

The hardware installation consists of building up to necessary racks and cubicles , then
installing and connecting the cabling.
The cabinet that contains the programmable controller and associated sub - racks (see
figure 11 .2) must be adequate for the intended environment, as regards security safety
band protection from the elements:

• security in the form of a robust, lockable cabinet;
• safety, by providing automatic cut- off facilities I alarms if the cabinet door is

opened;
• protection from humid or corrosive atmospheres by installation of airtight seals on

the cubicle. Further electrostatic shielding by earthing the cubicle body.

For maintenance purposes, there must be easy access to the PLC racks for card
inspection , changing etc. Main on I off and status indicators can be built in to the
cabinet doors , and glass or perspex windows fitted to allow visual checking of card
status or relay I contactor operation.

61

\

~ ..
f
! o

o o ,.·,.. ;
l
1.,.ı __ .. , ..
I •

•
••
•C,

Figure 11.2 Complete PLC installation and cabinet

62

11.4 Testing and Commissioning

Once the installation work is completed , the next step is to consider the testing and
commissioning of the PLC system.
Commissioning comprises two basic stages:

1- Checking the cable connections between the PLC and the plant to be controlled.
2- Installing the completed control software and testing its operation on the target

process.

The system interconnections must be thoroughly checked out to ensure all input I output
devices are wired to the correct I I O points. In a conventional control system this would
be done by buzzing out the connections with suitable continuity test instruments. With a
programmable , however, the programming panel may be used to monitor the status of
inputs points directly - this is long before the control software is installed , which will
only be done after all hardware testing is satisfactorily completed. Before any hardware
testing is started , a thorough test of all mains voltages , earthing, etc ., must be carried
out.
With the programmer attached to the PLC, input points are monitored as the related
transducer is operated , checking that the correct signal is received by the PLC. The
same technique is used to test the various function cards installed in the system. For
example, analog inputs can be checked by altering the analog signal and observing a
corresponding change in the data stored in the memory table.
In turn , the output devices can be forced by instructions from the programming panel ,
checking their connection and operation. The commissioning team must ensure that any
operation or rnisoperation of plant actuators will not result in damage to plant or
personnel.
Testing of some PLC functions at this stage is not always practical , such as for PID
loops and certain communications channel. These require a significant amount of
configuring by software before they can be operated , and are preferably tested once the
control software has been installed.
Some programmable controllers contain in - built diagnostic routines that can be used
to check out the installed cards , giving error codes on a VDU or integral display
screen. These diagnostic are run by commands from the programming panel , or from
within a control program once the system is fully operational.

.,,

-;n

11.4-1 Software testing and simulation

The preceding sections have outlined the various stages in hardware design and
implementation. Over the same period of time, the software to control the target
process is developed , in parallel , for the chosen PLC system. These program modules
Oshould be tested and proved individually wherever possible , before being linked
together to make up the complete applications program. It is highly desirable that any
faults or error be removed before the program is installed in the host controller.

63

The time required to rectify faults can be more than doubled once the software is
running in the host PLC.

Virtually all programmable controllers , irrespective of size , contain elementary
software - checking facilities. Typically these can scan through an installed program to
check for incorrect labels. Double output coils etc. Listings of all I I O points used ,
counter I timer settings and other information is also provided. The resulting
information is available on the programmer screen or as a printout in the figure 11.3 .
However , this form of testing is only of limited value , since there is no facility to
check the operation of the resident program.
In terms of time and cost economies, an ideal method for testing program modules is to
reproduce the control cycle by simulation , since this activity can be carried out in the
design workshop without having the actually connect up to the physical process.
Simulation of the process is done in a number of ways , depending on the size of
process involved.
When the system is relatively small with only a handful ofl I O channels, it is often
possible to adequately simulate the process by using sets of switches connected up to
the PLC as inputs , with outputs represented by connecting arrays of small lambs or
relays in the figure 11.4 . This allows inputs to be offered to a test - bed controller
containing software under test, checking the action of the control program by noting the
operation and sequence of the output lambs or relays. By operating the input switches in
specific sequences, it is possible to test sequence routines within a program. Where fast
response times are involved ,the tester should use the programming panel to force larger
time intervals into the timers concerned, allowing that part of the circuit to be tested by
the manual switch method.
Most I I O modules have LED indicators that show the status of the channels. These can
be used instead of additional test actuators where digital outputs are concerned. Analog
inputs can be simulated in part by using potential dividers suitably connected to the
input channel , and corresponding analog outputs connected either to variable devices
such as small motors or to a moving coil meter configured to measure voltage or
current. Standard sets of input switches and output actuators are normally available
from PLC manufacturers.
When the system is larger with input I output channels and longer , more complex
programs , the simple form of simulation described above becomes inadequate. Many
larger PLC systems are fitted an integral simulation unit that reads and writes
information directly into the I I O memory , removing the need to connect external
switches , etc. The simulator is controlled from an associated terminal which can force
changes in input status and record all changes in output status as the program runs, for
later scrutiny by the test team.
The program monitoring facility provided with most programming terminals should be
used in virtually all these proceedings , since it allows the dynamic checking of all
elements in the program including preset and remaining values as the program cycles.
In the figure 11. 5 illustrates a monitoring display with status information shown on the
bottom of the screen.
It is important to realize that the display on the programmer does not up date as rapidly
as the control program is executing, due to the delays in transmitting the data across to
the terminal.

·ı:\• ı

64

Contacts and other elements that are operated for only a few scans are unlikely to affect
the display , but since a human observer could not detect this fast a change , this is not a
significant disadvantage. To display all changes , the PLC should be run in single step
mode.
The monitor display shows a select portion of the ladder program, using standard
symbols to depict contacts , output and present functions. All elements within the
display are dynamically monitored , indicating their status as shown in the figure 11. 6

Display/printout

Y430 1 o
Y431 1 1 EO
Y432 1 o t
Y433 o 1
Y43~ O 1

is used
......... 1 •
.........0

Contact
Whenth
for the
If not ..

When the element is used
for the coil 1
If not O

Error message

EO: The coil is used more than one time
in a program.

E1: The contact is used without the
corresponding output.

E2: The output is used without the
corresponding input.

E3: The counter or shift resister is used
without the RST.

E4: The timer or counter is used
without the constant K .

• Even if the contact or coil ıs used
more than once, a number 1 is
displayed

Figure 11.3 PLC printout of 1/0 static diagnostics information

Switch inputs
Test-bed
programmable
controller

Lamp/relay
outputs

Program under
test I

.....__ ___ı - - - --©- - _ ...!
Analog output
(meter)

I

~--- -~ C>-- - - -
I
IL-u----

Analog input
(potential divider)

Figure 11.4 Process simulation using switches and lambs

65

Closed (operatedi .
contacts Timer 06 will

operate after
1 O seconds

/ (present value
0.5 seconds).X6 T06

I ; lıj K = 1 O s Marker operated
I

T06
I Y50 Outputs

Y51

T6: 0.5 s Display
overflow

C22: 33

Dynamic display

Current values and
status information
on circuit functions:
e.g. timers, counters.
Note C22 value displayed
although it is not on this
screen - will be on previous
or next 'page' of display.

Figure 11.5 Dynamic monitoring of program contacts using a graphic
programming display

--11 Contact open ---{ XX X }-- Coil de-energized

~II Contact closed ---{f XXX ~r-- Coil energized

Figure 11.6 Symbols displayed in monitor mode

66

11.4-2Installing and running the user control program

Once the control software has been proved as far as possible by the above , methods on
a test machine, the next step is to try out the program on the tested PLC hardware
installation. Ideally each section of code should be downloaded and tested
individually, allowing faults to be quickly localized if the plant rnisoperates during the
program test. If this subdivided testing is not possible, another method is to include
JUMP commands in the complete program to miss out all instructions except those in
the section to be tested. As each section is proved , the program is amended to place the
JUMP instructions so as to select the next section to be tested.
Where a programmable controller supports single - step operation , this can be used the
examine individual program steps for correct sequencing. Again , the programming
terminal should be utilized to monitor I I O status or any other area of interest during
these tests , with continuous printouts if this is possible.

67

Compare Byte Greater Than Or
Equal Contact

S~·mbol:
n1

--i>=B)--
n2

Operands:

n I. n2 (unsigned byte): VB. lB.QB.
MB. SMB. AC.
Constant, *\ıD.
*AC

Dl-scription of oııenıtion:

The Compare Byte Greater Than or Equal Contact
is closed when the byte value stored at address nl
is greater than or equal to the byte value stored al
address n1 . Power flows through the contact when
closed.

Compare Byte Less Than Or
Equal Contact

Symbol:
n1

--4<=B\--
n2

Operands:

nl. n2 (unsigned byte): VB. IB.QB.
l\,IB. SMB. AC.
Ccnsıanı. -vo,
*AC

De.sı:riptionof operation:
Tiıe Compare ~1e Less Than or Equal Contact is
closed when the byte value stored at address n I is
less ılıan or equal to the byte value stored at
address n2 . Power flows through the contact when
closed.

Compare Integer Equal Contact

Symbol:
n1-\==Il--
n2

Operaeus:

n I. n2 (signed integer word). VW. T.C.l\V. QW.
MW.SMW.AC.
AIW. Constanı. *VD! *AC

Descriııtioo of operntion:

The Compare Integer Equal Contact is closed when
the signed integer word value stored aı address n I
is equal lo the signed integer word value stored at
address 112 • Power flows through rhe contact when
closed.

Compare Integer Greater Than Or
Equal Contact
Symbol:

n1
-l>=Il--

n2

Operands:

nl. n2 (signed integer word): VW. T. C. IW.QW. MW.
S?.lW. AC. A.1.W. Constant,
*VD. *AC

Dcscriııtion of operation:

The Compare Integer Greater Than or Equal
Contact is closed when the signed integer word
value stored at address n I is greater than or equal
lo the signed integer word value stored at address
n2 . Power flows through the contact when closed.

Compare Integer Less Than Or
Equal Contact

s~'mbol:
n1

-!<=1\--
n2

Operands:

nI. n2 (signed integer word): VW. T. C. lW. QW. xıw.
SMW. AC. AIW. Constant.
*VD. *AC

Description of operation:

The Compare Integer Less Than or Equal Contact
is closed when the signed integer word value stored
ut address nl is less than or equal to the signed
integer word value stored at address n2 Power
flows through the contact when closed.

68

Compare Double Integer Equal
Contact
Syınbel:

n1-+==D1--
n2

Operands:

nl, n2 (signed
integer double word):

VD. ID.QD.
MD,SMD.AC.
HC. Constant
*VD, *AC

Description of operation:

Toe Compare Double Integer Equal Contact is
closed when the double word value stored at
address nl is equal to the double word value stored
ıt ııddrçss n2 . Power flows through the contact
wlıen closed.

Compare Double Integer Greater
Thao Or Equal Contact

Symbol:
n1

---i>=D1--
n2

Operands:

nl, n1 (signed VD, ID, QD, MD. SM.O.AC
integer double word): HC, Constant, *VD, *AC

Deııeriptioıı of operation:

Compare Double Integer Greater Than Or Equal
Contact is closed when the double word value
stQred at addres.s o ı is greater lhan or equal to the
double word value stored at addres.5 n2 . Power
flows tlırough the contact when closed.

Compare Double Integer Less
Than Or Equal Contact

Symbol:
n1

---i<=Dt--
nz

Operaadı:
nl. n2 (signed
integer double word):

VD,10,QD.
MD.SMD.AC.
HC. Constant,
*VD. *AC

Description of operation:

The Compare Double integer Less Than Or Equal
Contact is closed when the double word value
stored at ııddress nI is less than or equal to ıhe
double word ,'alue stored :ıt address n2 . Power
nows through Ille conıact when closed

Compare Real Equal Contact
Note: CPU 214 only.

Operuıb:

nl, n2 (real): VD. ID, QD. MD. SMD. AC.
HC, Consıanı, -vo, *AC

Description of operation:

The Compare Real Equal Contact is closed when
the real value stored ııt address n I is equal to lhe
real value scored at address n2 . Power flows
through the contact when closed.

Compare Real Greater Than Or
Equal Contact
Note: CPU 214 on{v.

Symbol:
n1

---i>=Rt--
nZ

Operands:

ol, n1 (Dword): VD, ID, QD, MD, SMD, AC.
HC, Constant, *VD. •AC

Description of operation:

Compare Real Greater Than Or Equal Contact is
closed when the real value stored at address nl is
greater than or equal to the real value stored at
address n2 . Power flows through the contact when
closed.

69

Compare Real Less Than Or
Equal Contact
Note: CPU JU only.

S~mbol:
n1--l<=Rr-
n2

Oper.mds:

nl, n2 (Dword): VD. ID. QD. MD.
SMD. AC. HC. Constant
•vo.•AC

Description of openııion:

The Compue Real Less Tb:ııı Or Equal Conıııct iş
closed when the real value sıorcd at address n 1 is
less than or equal to the real value stored at adcfrcss
n2 . Ji'Qwer flows through the conıact when closed.

Invert Power Flow Contact

Opeııuıds:

(none)

Description c>f operation:

The NOT (Inven Power Flow) contact changes the
Slate of power flow. If power flow rc;ıches the Not
contact. then it sıops. When power flow does not
reach the Not conıact. it sources power flow.

PositiveTransition Contact
Syııı.bol:

--ler-
Oper.uıds:

(none.ı

Dcscriptioo of operation:

The Positrve Transition Contact allows power ıo
flow for one scan, for each olf-to-on transition

Symbol:

Negative Transition Contact

---\Nr--
Oper.ınds:
(nones

Description of operation:
The Negative Transition Cont:ıel allows power to
flow for one scan. for each on-to-off ır.ınsition .

Ladder Contact Examples
fNeNıork 1 I

When I0.1 Ol' to.3 la on ıncl I0.2 la on then
auCput Q0.1 is turned on.

When I0.4 iııon ffld I0.5 iııncıt arı, than output 00.2 i1
tı.ıl'led cın'

I Nelwafk 3 j wtıen V62. is greatıır tııaıı « eqvııl to VB8,
thin~ Q0.3 is turned on

VB2 ~0.3
>•Bl)
vss

{~4 When V84 equııs vae. ttıeıı ~ 00.4 is tı.ımııd ofl
(N<n: Tlıe NOT /ııtıtruQIOIIcan l>e
used ID QNle a Net Equ4/ caııpııjson.)

VW<l , g_o.4S3rl INoT!-------\.)
vws

Whal Kl ı lrW1Miana fram on ıo off.
ıı., oulplll Q0.5 ia tıımııd an for one sc:ançycle.
When 10.1 traneillonS fıoın off to on.
ttıen Q0.6 ıa turned on ror one sc:arı.

70

Read Real Time Clock
ıVoıe: Real Ttme Clock tnstrucıions arı: supporretl
b.v the cN.: 21-1 only.

Symbol:

-iT

Openı.ııds:

T (byte): VB, IB. QB. l\lIB. SMB. •VD.
*AC

Description or operation:

The ~ Real Time Clock (READ_RTC) box
reads the eurreeı time and date from the clock and
loads it in an~ buffer (f).

Example Memory Data Startiııı at v:8400:
READ_RTC (Clock i15 read)

VB400
VB40l
VB402
VB403

VB404

{
95I
03
24

08
00

Year
Month
Oay
Mour
Minute

VS405 i 00 !Second
VB4.06~
VB4.07 ~ Day of Week

24--Mar-95
8:00:00
Friday

Note:
The time of day clock initializes the following date
and time ofter extended power outages or memory
bas been lost:

Date:
Time:
Day of Week

Ol-Jaıı-90
00:00:00
Sunday

Note:
Do not use the READ_RTC I SET_RTC
il\5tnlCtİOns in both the main pıogr.ım and in an
interrupt routine. If you do this and the clock
iosıı:uc:tion is eıecuting when the the interrupt that
aıso e.~tes the clock: insttuCtion occurs. then the
clock iDSlnlCtion in the inlemıpl routine is not
e.ucutcd. Sı.'\1,U is then set. indic:ıling that two
simultane()USaccesses to the clock were ıırıeropted..

Set Real Time Clock
Note: Real Time Clock inscnıctiıms are supPQrred
by ıhe CPU JJ..J only.

Symbol:

T

Operands:

T (b:.1e): VB. lB. QB. i\ıIB, SMB, *\'D. •AC

Description of openatioa:

The Set Real Tiıne Ckxx (SE.T_RTC) box writes
the current time and date loıııded in an S-byte buffer
(T) to the clock.
i.uınple Memory Data Startını at VB-IOO:

SET_RTC (New value is written to clock)

VB400 I 96 j Year
VB4.0l ~ Month
VB402 ~Day
VB403 I os ı Hour
VB404. \ 00 ~ Minute
VB405 i 00 j Seccınd
VB406 \ 00 \
va407 i 06 I Day of Week

24--Mar-96
8:00:00
Friday

Note:
Tbe ti.me of d:ıy clock: uı.itializes the following date
and time after e.'<tCllded power outages or memory
bas been lost:

Daıe:
Time:
Day of Week

Ol-Jan•90
00:00:00
SundaY

Note:
Do llOl use the READ_RTC I SET_RTC
insuuctions in both the main proıram alld in an
intem.ıpt routine. If you do I.bis and the clock
i.nstn.ıCtİOO is e.,_ecuting wlıcıı the the int~ that
also e.'CeC\ltes the clock inStrıı.ctiOn occurs. then the
clock instruction in the intemıt:ı routine is not
e.'(CQlted. SMU is then set. incliaıtiııg that two
simult:aneollS accesses to the clock were :ıuempıed.

71

Real-time
Examples

!Network 1

Clock Instruction

When ID.O is on, the clock ıs
read and the value is stored in
the buffer, starting at VB400.

~o.o ,mo_McI I EN

VB400"1T f

!Networ1!. 5 When 10.4 is on, the new year
value is written to the clock.

~o. 4 I sr.r_ı,;rcI . I EN

!Networ1!. 6

VB400 "'1T

Encl of the main user program.

I When 10.1 is on, the year I
~ND)

1Network2
value (95) from the first byte
of VB400 ls moved to ACO . I BCD to Integer

r" NOV'_Jil Synıboi:
EN

OUT~ACO I --tEN BCD_I

VB40 IN

!Network 3

!Network4

When 10.2 is on, the year
value in ACO ıs incremented
by 1.

nrc_w

IN OUT

Operands:

IN (\YOrd):

OUT(word):

VW, T, C, IW, QW, MW. SMW.
AC, AIW, Constanl *VD. •AC

VW, T, C, IW, QW, MW, SMW.
AC,*VD.*AC

Dacıiptloıı of operarioıı:
The Con,~ BCD to lııtcger(BCD_I) box converts
the BCD value (IN) to an integer value <OUT). If
the input value ı:oııtliııs an invalid BCD digit. the
BCD/BIN memory bit (SMI.6) is seı.

72

EN

ACO "'1 IN OUT1-ACO

When 10.3 is on, the new year
value (96) is stored in V8400 .

EN

ACO""1IN OUTf-VS400

Integer to BCD

Symbol:

EN

IN OUT

Openuıdıı:

IN (word): vw. T. c. ıw. QW. MW.
SMW. AC. AIW. ConstınL
•VD. *AC

OUT (word): VW. T. C. IW. QW. MW.
SMW, AC, •VD, *AC

Description of opemion:

The Convert Integer to BCD (l_BCD) box converts
the integer value (IN) to the BCD value (OUT). 1f
the ı;oovcısion produces a BCD number greater
than 9999, the BCDIBIN memory bit (SM1.6) is
set.
Integer Double Word to Real
Nau.: CPU 2U onty.

Symbol:

Truncate
Note.: CPU 21.J onl.v.

Symbol:

EN

!N OUT

Operands:

lN (Dword):

OUT (Dword):

l)eKriptioıı ol operatioa:

VD, ID. QD. MD. SMD. AC. HC.
Constant, *VD. *AC

VD. ID. QD, MD, SMD. AC. *VD.
*AC

The Truncate (TRUNC) iııstnıCtion coııvcns a 32-
bit real number (IN} into a 32-bit sie,ned integer
(OUT). Only the whole number portion of the tc11l
number is comıettcd (round-to-zero).

Decode
Symbol:

EN

Dl'_: I I I l •
EN

IN OUT

Operands:

IN (Dword): VD. ID. QD. MD. SMD.
AC. HC, Consuınt •VD. *AC

Ç)lIT (Dword): VD. ID. QD. MD. SMD, AC.
'>\ID, '>fıı.C

Description or oııeration:

The Integer Double Word lo Rcııl (Dl_REAL)
iıısınıı:tion convertS a 32-biL signed integer (IN)
into a 32-bit real number (OUT}.

IN OUT

0peraıtds:

IN (byte):

OUT(wotd):

VB. 1B. QB. MB. SMB. AC.
Coast.ant, •VD. •AC

VW, T. C. 1W, QW. MW, SMW.
AC, AQW, •VD, *AC

J>escriptiou or operation:

The Decode (DECO) box sets the bit in the outpuı
word (OUT) that conesponds to the bit number
represeııted ~· the Jeag-significant nibble (LSN) of
the input byte (IN). All other bits of the ouıpuı
woıd are set to o.

73

Encode
Symbol:

-oN
UT

Operands:

IN (word):

OUT(b}1e)

Description of operation:

vw. T. c. ıw. QW. MW.
SMW. AC. AIW. Constant
•VD.•AC

VB. IB. QB, MB. SMB. AC.
•VD. •Ac

The EnbOde (ENCO) box writes the bit number (bit
#) of the leııst-signific;aoı bit set of the input word
(IN) into the leııst-sigAificant. nibble tLSN) or the
outputbyte (OUT}.

Segment
Symbol:

Operuıdı:

[N(byte):

OUT (b}ıte):

VB. IB, QB, MB, $MB.
AC. ConslanL •VD. •AC

VB. IB, QB. t.m. SMB. AC.
•VD, •AC

Deıcriptioıı of operaôoıı:

The Segment (SEO) boıı; generates a bit pattern
(OUT} that ilhııninalcs the segments of a SC\'Cll­
segıiıenı display. The illumiııalı:d segments
represent the clıaraı:ter in the least-significant digil
of the input byte (IN).

ASCII to Hex
Symbol:

---ıEN

~IN
LEN OUTı-

Openuıds:

VB. IB, QB. MB, SMB. AC.
Constant. •VD. •AC

IN (byte):

OlIT (byte): VB, m. QB, MB. SMB. •VD.• AC

Descripdon of operaıioıı:
The ASCU to HEX (ATH) box convm.s the ASCII
string of length LEN, starting 11ith the charaı;ter
IN, to be.x;ıdecimal digits startiııg at lhe locıtion
OUT. The nıa.ximumleı:ıgtlı of the ASCII string is
255 ctıaracıen.

Lep! ASCD characters are the he~i.mal values
30-39, and 41-16. ifan illegal ASCil clıarader is
eııcowıtffld, the conversion is tennimıtcd. and the
NOf_ASCII memory bit (SM1.7) is set.

Hex to ASCII
Symbol:

,f

••
EN

N

UT

Openııds:

LEN(byte): VB. IB. QB. MB, SMB. AC.
Constant. •VD, •AC

IN (byte): VB, m. QB. MB. SMB. -vo, •AC

VB. IB. QB. MB, SMB, •VD. •ACOlfft~1e):

Description of operation:
The HEX to ASCll (HTA) box convens the
liaadıecimal digi\S, swung with the input ~ıte lK
to an ASCH slrin& stıırting al the location OUT.
The number or ~mal digiıs ıo be converted
is specified b}' length LEN. The mıı.~rnum number
of the hexadecimal digits that cao be converted is
255.

74

I

Ladder Conversion Instruction
Examples

INetworl\ 1 l When 13.0 is on, the Bi'ıary
COded Decimal value ın VWO
is converted to an integer
value.

r3.0 I BCD_rI EN

vwo-lIN OUT~VWO

\NetwOnt2 } When 13.1 is on, 3 is decoded
and the correspondingbl of
VW40 lsset.

~3-l jENI I

\Network 3

3 -!IN OUT!-VW40

1 When 13.2 ıs on, 1he
3-character ASCH siring
starting wlh the character
at V830 ıs conwrted to
huadeClmal digb starting
atVB40.

ııB3°tIN

3-ILEN OIJT~V1340

\Network4 J When 13.3 iS on, a bit pattern
is generated at QSO that
illuminates the segments of the
character represented by \1848.

~'·I IEN

INetworkS

HSC Definition
Symbol:

--1EN

"iHSC-'~
Operaodı:

HSC (byte):

MODE (byte):

VB4S-jIN OUT}-Ql30

I End of the mm user program.

CPU 212: O
CPU 214: 0-2

CPU 212:0
CPU 214: O (HSCO),0-11 {HSCl-2)

DescripUoıı of operatioa:

When the Hiıh-sııeed Counter Definition (HDEF)
bex is cııııbled, the refacooed counter (HSC) is
assigned a high-speed ceenter type or MODE.
Only one HDEF box may be used per counter.

75

I

High Speed Counter

Symbol:

fJNN

Operaad:ı:

N (word): CPU 212: O
CPU 214: 0.2

Description of operation:

When the High-speed Counter (HSC) box is
enabled, the state of the HSC special memory bits
are examined. Th:: HSC opcrıııion defined by the
special· memory bits is then invoked. The
pıır:ııneter N specifies the Hig!Hpeed Counter
number.

PulseOutput

Symbol:

iJN X

Operands:

QO.x (word): CPU 214: 0-1

Dc:scrltttioıı of operatioa:

The Pulse Output {PLS) bo.x examines the special
memory bits for that pulse auıpııt (~be:).The pıılse
operation defined by the special memory bits is
theninvoked.

Ladder High-speed Operation
Instruction Examples

!Network 1 on the first scan, the counter is enabled.
ınıtlal direction is set to count up.
Start and reset inputs are set to active
high. 4x mode is set.

SMO;l HCV_B

I EN

lOFS- IN OUT

8DSJ'
EN

ı- HSC

ı ı+ MODE

SMB47

o

When 10.2 is on. the current value of
HSC1 ls cleared and Its preset value
ls set to SO.

!Network 2

IO. ? lfOV_Dflr
I EN

o- IN OUT'"'

.ı«ıV_mı
EN

şo- IN OUT

BSC
EN

ı- N

SMD52

SMD48

76

When I0.1 is on, the Pulse
Train Output control byte is
set up, and the PTO operation
is invOked: eyde time SOOms.
pulse count 4, PLS O -:> QO.O .

IO . 1 ı«1V_B.
I EN

l6t80- ,IN OUT ~

WJV_Jf
EN

500- IN OUT -

w:,v_ı:ııı
::N

4- lN OUT~

PJ.S
EN

o- oo.x

SMDi:!

SMS67

SMW68

End of the main user program.1Network4

Attach Interrupts
Symbol:

EN

INT

~

Operands:

INT (byte): CPU 212: o-n
CP\J 21.J: 0·127

EVENf (byte): CPU 212: O. I. 8-10, 12
CPU 214: 0-20

Deıcriptioıı of openıtioıa:

Tbıe Attach lntem.ıplS (ATCH) box :ıssociaeeS an
intemıpl evenı (EVENT) with ıın interrupt routine
number (INT}, and cııables the intcmlPI event.

Detach Interrupts

Symbol:

.-EN

~~

Opennds:

EVENT (byte): CPU 212: o. l. 8-10. 12
CPU 2l4: 0-20

Deıcription of operatıon:

The Detach lntcmıptS <DTCH) box disaSSOCiates
an intemıpl event (EVENT) from all interrupt
routines. and disables the intemJPl C\-"eDI.

Interrupt Routine

Symbol:

,'t

r@
Operands:

a (word): CPU 212: 0-3 l
CPU 214: 0-127

Descriptioıı of operation:

The Inıemıpt Routine (INT} label marks the
beginning of the interrupt routine (n). The
ına.'tiınum nwnber of intcmıpts supported by the
CpU 212 is sz, and by the CPU 214, ıas.

77

Enable Interrupts
Symbol;

---(ırnr)

Openmıls:

(n<ınei

Descripticm:

The Enable lntemıpu (ENI) coil globally enables
processing of all auaclıed inıemıpt events.

Disable Interrupts
Symbol:

--(prsy

(none/

Description:

The Disable Intcmıpts (DISn coil globally disables
processing Of all interrupt e\'CDIS.

Return from Interrupts
Symbol:

Coııditioıııd Return from

Um:oııdiliooal Retıını from

Operands:

(ııonı~}

Description:

The Conditional Return from lntemıptS (RETl)
coil renıms from an iıuerrupl baSed upon the
condition of the preceding logic.

The Unconditioııal Return from Interrupts (RETI)
coil must be used to ıerınınaıe each interrupt
routine.

Network Read
Note: CPU~ 1-1 oniv.

Symbol:

EN

TABLE

PORT

Operaııds:

TABLE: VB. MB, •VO. •AC

PORT: Conswıt
(CPU 21-ı: O)

Descripcioa ol operation:

The Network Read (NETR) iJlstruction initiates a
conunwıicatioıı operation ıo gather dala from a
remote de\icc through the spıx:ifıed port (PORT).
as defined in the description tııb1e tTABLE).

You can use the NETR instnıction to read up to 16
bytes of information Crom a remote station, and use
the NETW instruction ıo write up to 16 bytes of
infomıaôon to a remote station. A maximum of
eight NE'ffi. and NE1W i~tions may be
activated at any one time. For eıcıımple. you can
have four NETR and four NETW instructions. or
two NETR and six NETW insmıcrions.

78

Network Write
:Vote: CPl' 2 J.J ımly.

Symbol:

----ı·c:H

1TABLE
~PORT

Operands:

TABLE: VB. MB. •VD. • AC

PORT: Constant
ıCPU 214: O)

D~ription of oper.ıtioo:
The Network Write ı)'ı"ET\V)instruction initiates a
communication operation lo write dala lo a remote
device through the specified port {PORT). as
defined in the description table (TABLE)_

Yau can use the NETR instruction ıo read up lo 16
bytesof information from a remote station, and use
the NETW instruction to write up ıo 16 bytes of
information to a remote station. A. maximum of
eıghı NETR and NETW instructions m;ıy be
activated aı :ın~· one time. For example. '.\-OU can
have four i\tTR and four NtTW instructions, or
ıwoNETR and six NETW iustrucıions.

Transmit

----ı EN

~PCR'I

Operands:
TABLE (b)1C): vn, rn. QB. ve. SMB. *VD.

*AC
PORTıbyıe) O
D~ription of oper.ıtiun:
The Transmit t:\'11ıff\ box invokes the transmission
of the data buffer (T.b,BLEı The first enıry in the
Jaıa buffer sp(.'Cİİİc5 the number of bytes ıo Ix:
transmitted. PORT specifies the couuuuuıcauon
port ıo be used for transmission lt musı alwavs be
II

Data
Events

Sharing with Interrupt

Because inıerrupl events are asynchronous to the
main user-program. they can occur aı any point
during execeıicn of the main user-program. Wlıen
the main progr.ım and an inıerrupı routine share
daı:ı. you musı Wlderstııııd tlıe nature of the
problems that can arise and how to avoid such
ptoblems.

Data-sharing problems can occur in situation
where a sequence of operalions are performed in
th~ main program on data stored in a memory
locauou shared by the maiu program and an
interrupt routine. lf an intermediate result is stored
in the shared memory Ioeaıion, then an intemıpc
event occurring before the sequence is complete
ıvill cause the interrupt routine to be executed with
invalid daıa, or it will corrupt an intermediate
value in the main program.

The situations described above apply whether you
write your programs in STL or LAD. If you write
your programs in LAD.)'OU should also be aware
that many LAD instructions produce a sequence of
STL instructions. If the LAD instruction is located
in the main progr.ım and is operating on data
stored in a shared memory location. an interrupt
event can occur between ıbe execuuon of ıhc STL
ınstructions. altering inıermediaıe values and
making it appear that the LAD instruction
executed uıcorrccüy. for techniques ıo avoid
problems with data sharing. see ~~mmu,\&
T-~lliqım..I<n:.Q.ıta Sharing.
Programming Techniques for Data
Sharing
The follo\\ing programming techniques should be
followed to avoid problems with data sharing
between your maın program and interrupt rouıınes.
These techniques either restrict the way access is
made ıo shared memory locations. or ıhc,· make
instruction sequences using shared memory
locaıions unmıerruptible. The appropriate
technique depends upon the size of ınc data being
shared (simple clements such as a byte, word. or
double-word variable or complex elements such as
mulıiplc variables) and the programming language
(STI.. or LADi.

•,

I
I
i
l
r9

If the shared data is a single byte. word. or double­
word variable and your program is written in STL.
then make sure that intermediate or ıcmporary
values axe nol stored in shared memory locauous.
A shared location should be accessed in the maın
program onlv as the inuial source value or the ünal
desunation value in a scouencc of ooeraıions.

\

If ıtıe shared data is a single l>),1e. word. or double­
word ,·ariab!e and your program is written in LAD.
Uıen access shnredmemory loc:ıtions using a Move
instruction. If the mııin program performs one or
more oper:ıtioııs on a dııtıı value pnn·iı:fed ~- an
interrupt routine, the Move iııstnıction mııst be
used to IDO\-'C the data value from the shared
memory loc::ıüon to a non-shared ınc:mory Ioaıtion
or to :ın accumulator. If the ınııin program
performs ODe or mere ı,pcrations on daıa in order
to prı>\Jide a value to an intemıpt routine. rlıen the
last operation musı be a Moı.-e instıuction that
moves the dııı.ı value from an accıımulator or ııon­
shared memory location ıe the shared memory
loc.ıtion. Other insuuctions in the secıue.ncc must
not directly access the shared memoıy locaıion.

If the share<i dııta is aımposed of rel:ıtcd ~1es.
words. or double-words whose values must agree;
for example. the p:CSSUR and tctnpenılW'C of a gas
in a tank, then the intcnupt di.sable/enable
instnıı:tioJ1$, DISI and ENI. DW$I be used to control
imenupt routine e.uaıtion. At the point in your
ma.in program (STI.. Qr LAD) whcıe operations on
shared memory Jocatioııs are to begin. iDlcmıpıs
must be disabled. Once all actions aft'ccting shared

· locations are complete, intemıpcs must be re­
eııablıed. Dııriııa the tinıe thai interrupts arı:
disabled, interrupt routiııcs cannot C.'<ocute and
aa:ıess s1ıan:ıd memory locııtions.

Interrupt Event Priority Table
Interrupt Oeıcription
(By group priority) Event

#

Comaı. (Higtlest Priority)
Receive interrupt 8
Transmit complete intemıpı 9

Discrete (Middle Priority)
Rising edge. ıo.o•• o
Risingedge. IO. I 2
Risingedge, 10.2 4
Risinıcd&e.10.3 6
Fallingedge, IO.O*• l
FaJling edge. IO. J 3
Falling edge, 10.2 5
Falling edge. I0.3 7
HSCOCV=PV** 12

(CIUTfflt value =preset value)
HSCICV•PV 13

(current vaiu« = ~set value)
HSC 1 diıec:tion iııput changı:d l 4
HSCJ e~ reşet 15
HSC2 ev ••py 16

(current value • preset value)
HSC2 direction inpuı cbaııgıcct 17
HSC2 extemaı reset J 8
Pl.SO pulse c:owıt complete 19
interrupt
PLS l pulse count complete 20
interrupt

Tuned (Lowest Priority)
Timed interrupt O
Timed interrupt 1

10
11

• Sinıee communication is iııheıenl.ly half-duple.".:.
both traıısıniı and nıı:ıın·e are the same priority.
**If eveaı 12 (HSCO CV,..PV) is atraclıcd to an
in~. then ncitbc:r event O nor event ı can be
auaclıed ıo interrupts. Lİke\\-ia:, if either event O or
I is attached to an intemıpt. then event 12 canıınt
be aıtadıed ıo an interrupt.

80

ln­
Groıııp
Priority

o
l
2
3
.ı
5
6
7
o

8

9
10
il

12
13
l4

15

o
l

Suppor
ted iıı
CPU2l

y
y

y

y

y

y

,·t.

e

Ladder Interrupt I Communication
Instruction Examples

!Network 1 On the first scan, create a
pointer to the data to be
transmitted. Select freeı>ort
made, 9600baud, no parity,
8 bits percharacter.SMB30 is
the freeport control byte.

SMO ;1 ..,.,_Dir
I 'tN

&Vl\200- IN OUT

.ııı::ıv_a
EN

9- IN OUT SM830

VDlOO

!Networt~ Vllherı 10.0and SM4.5 are both
on, the message In the buffer
(pointed to by V0100) ls
transmitted. SM4.5 is on when
the transmitter is idle.

~o.o SM4.5I f----1 I ~"'
*VDlOO

s
TABLE
PORT

Assign receive ıntemıpt event
8 to intemıl)t routine O, and
enable the routine.

SMO.l
I I IEN

o1rNT
8 ""iEVENT

'-------EN:t)

lNetwoıt4 End of main ladder program.

!Networks Begin iRlem.ıııt routine o .

(Network6
6

Compere re<:eivec;I character in special
memory byte SMB2 with capital letter "A•
If character is •A', Q0.1 ıs set.

HSM82 çıı.o
-a}--(s)
6#41 ı

!Network 7 Return from interrupt to main program.

Horizontal Lines
In ladder lo~ lıorizonıal lines represent wires
conııettingelements in series.

All lines in a llelWOik must be coımecıed to valid
elcrııents.
All networksmust teııninate in a coil or a box.
Vertical Lines
In laddı::r logic, W4'lical lines zq,resıeıu wires
aınnecuııg to parallel tırıınches.

All lines in a ııctwork must be connected tu valid
elements.
All nctworkıı must termiıııııe in a coil or a box.

81

AND Word
s,-mbol:

INl

IN2 OUT

Operaıub:

nn. IN2 (word): vw. T. c. ıw. QW. MW.
SMW. AC. AlW. Consuınt.
•VD.•AC

OUT (word): VW. T. C. IW. QW. I\'tW,
SMW. AC. •VD. •AC

Deıcriptioıı of operation:

The AND Word (WAND W) box ANDs the
ooncsponding bits of the inptt words IN l and IN2,
and loads the result(OUT)in a word..

Note:
When [Nl • OUT and lN2 * OUT:
• If lN2 and OUT are direct..addressed operands.

and if our conıains one of the bytes of oo.
then the insuuction is in,ıılid.

• If INl is an indirect address and OOf is a
direct ~ containing one of the by\ı:s of
the indirect addn:sS ı,ointer. then the
uıstıucrion is invalid.

AND Double Word
Symbol:

INl

IN2 OUT

Openncls:

IN1.1N2 (Dword): VD. ID. QD. tııID. Sı.\ID. AC.
HC. Constant •VD. •AC

OUT(Dword): VD, ID.QD. MD, SMD. AC.
•VD. •AC

Descriptioıı of operation:

The AND Double Word (WAND DW) box ANDs
ıbe corresponding bits of the ~ double words

IN\ and lN2. and loads ıbe result (OUT) in a
double word.

Note:
Wben INı,,, OUT and IN2 ~ OITT:
• If IN2 and OUT are direcl~addresSCd oper;ınds.

and if OUT contains one of the bytes of IN2.
füen the instruction is in\-alid.

• If 1N2 is an indirect address and OUT is a
direct addresS containing one of the bytes of
the indirect address pointer. then the
instruction is in,•alid.

OR Word
Syıııbol:

1f0.R_,,
EN

INl

IN2 OUT

IN l. IN2 (word): VW. T. C. IW. QW. MW. SMW.
AC, AIW. Constıınt. •VD. *AC

OfJf (word): VW, T, C. JW, QW. MW. SMW.
AC. •VD. *AC

Deıcri\)tioD of oı,eradoa:

The OR Word \WOR_W) box ORs the
corresponding bits of the input words INl and 1N2,
and loads the result (001) in a word.

Note:
When INl ,ı: OUT and IN2 ~ OITT:
• If IN2 and our are direct-addressedoperands.

and ü OUT contains one of the bytes of IN2.
tben the iJ\SUUClİOn is invalid.

• lf INl is an indirect ııddresS and OUT is a
direct :ıddress containing one of the byıc:s of
the indirect addresS poinıet, then the
insuuction i.s invalid.

82

OR Double Word
Symbol:

1'1:1R_l1ff
EN

INl

IN2 OUT

Openıııds:

!Nl. IN2 (Dword}: VD. 10. QD. MD. SMD. AC.
HC. Consıant,. •VD, •AC

OOf {Dword): VO. ID, QD. MD. SMD, AC.
*VD. "AC

Deıeripdon of opeıııtioıı:

The OR Double Word (WOR_OW) bo.'I: ORs the
correspondingbits of the input double wOl'4h lNl
aııd IN2. aııd loııds the result (OUT) in a double
word.

Note:
wıa INı •• oor and IN2 •• our:
• If 1N2 and OUT are direct~.Qiıtr.uıds.

and if our conwııs one of the ~ of INı.
then the insUııction is invalid.

• If lN2 is an iııdiıeıcl ııddrC$s and our is a
diRct address contaiııing one of the bytes of
the iDdirect address ı,ointer. ılıeıı the
itıMJCtion is iffi.ıılid.

XOR Word
Symbol:

aoa"
EN -

INl

IN2 OUT

Operands:

iNi, IN2 (word): VW, T, C, 1W, QW. MW.
SMW. AC, AIW, Coııstan1.
•VD. *AC

OlTI' (word): VW. T. C. lW. QW. MW.
SMW. AC. -vo, *AC

Deııcriprioa of operatloıı:

The E.xclUSM OR Word (WXOR_W) box XORs
the corresponding bits of the uıput words IN l ııııd
IN2. and loads the result (OUT) in a word

Note:
When IN 1 " OUT and IN2 "'OUT:
• lfIN2 and OUT are diıect-addtcsscd operands.

and if our conıains one or the ~1C$ or IN2.
theıı the iııst.nıdioıı is invalid

• If IN2 is an iodired addn:ss and OUT is a
direct addRss c:oııt.ıining one af the bytes of
the ~ address pointer. then the
iııstrUCtion is imıtlid.

XOR Double Word
Symbol:

noa rııı
EN -

INl

IN2 OUT

Operudı:

INl, IN2 (Dword): VD, ID, Q.D, MD, SMD, AC. HC.
Coııstant. *VD, *AC

OUT(Oword}: VD, ID, QO.MD. SMD, AC, *VD,
•AC

Deıcriptioıı of operatioa:

The faclush·c OR Double Word (WXOR_DW)
box XORs the correspoading bits of t.be iJlput
double words INl and IN2. ııed loads tlıc result
(OUT} in a CPlble woıd.

Note:
wııcn INı •• our and INı ""our:
• If IN2 and OUT are diıect-addRısscdoperands.

and if OUT c;oıııalns one of the tıyıes of IN2,
then the instıuclion is invıılid.

• If IN2 is an indirect address and OU'T is a
diRCt addRss cooıııining onıe o! the bytes of
the indi~ address pointer. then the
instnıction is invalid.

83

Invert Word
Symbol:

-oN
UT

Openınds:

IN (word):

OUT(word):

VW, T. C. lW. QW. MW.
SMW. AC. AlW. ConstıııL
*VD. *AC

VW, T. C. IW. QW. MW.
AC. *VD. *AC

Description of operation:

The Invert Word (INV_ W} box takes the ones
coınp)ement of the i.npu1 word value (IN) and loads
ıhe result in a word value (OUT).

Invert Double Word
Symbol:

I"NV 'Dit
EN -

IN OUT

Openınds:

IN(Oword,:

OUT (I>word):

VD. ID. QD. MD. SMD. AC.
HC. consum. •VD.• AC

VD. ID. QD. MD. SMD. AC.
*VD.*AC

Dacripdoa of operatioo:

The Invert Double Word (INV _DW) box takes the
oııes complement of the inpııt double ward \'ıılue
(IN) and loads the result in a double word value
(OUT).

Ladder Logical
Examples

Operations

Every scan, AND VW100 and vwıoo
together and store the reS1Jlt in VW200
Also, OR VW300 and VW400 together
and store the result In VW500.

(fietwoı1- 1

SMO i o ıııuro_w

' EN

vwıoo- INl

vw200- IN2 oırr

JfOR_lf
EN

VW300- INl

vwııoo- IN2 OUT vwsoo

vw:::oo

Wilen 10.0 ls on, "XOR" AC1 and ACO
together and store the result in ACO .~2

JDOR_lf
E:N

A.Cl 1IN1

A.CO -{ IN2 OUT~ ACO

When I0.1 transitions from off to on,
invert ACO (ones complement) and store
it In ACO.

r~ t .INV_Jf

1 1pl EN

ı>..co-irN ooTt-ACO

End of main user program.~4

}-{pm)

84

Add Integer

Symbol:

A.DD_I
EN

INl

IN2 OUT

Openuads:

lNl. IN2 (word): vw. T. c ıw, QW. MW.
s:MW. AC, AlW. Constant.
•VD. *AC

our (word): VW, T. c, ıw. QW. MW.
SMW. AC. •VD. •AC

Dacriptiuıı of operation:

The Add ı.nıeger (ADD_l) bo.x adds two 16-bit
integers (IN1. IN2). and produCeS a 16-bit result
(oun. as is shown in the equation:

INl + 1N2 = OlIT

Note:
When1Nl .- OUT and 1N2 ,ı, OUT:
• If IN2 and OUT are diıa:t-addıessed operands.

and if OUT coıualm one of the ~- of 00.
t1ıeıı the instıuction is invalid.

• If lNl İS an indirect addrcsS and OUT İS a
direCt oddıcsS conıaining one of the bytı:s of
the indirect address pointer, then the
mstruı:tionis iıwalid.

Add Double Integer

Syınbol:

ADD_DI
EN

INl

IN2 OUT

Opcnıııılıı:

!Nl, !Nl (Dword): VD, ID, QD. MD. SMD. AC.
HC. ConsıanL -vo, *AC

OUT (Dword): VD, ID. QD. MD. SMD. AC.
•VD. *AC

ı>escriptioııof operıatloa:

Toe Add Double Integer (ADD_Dl) box adds two
32-bit integers (INL IN2l, and prııdııces a 31-bit
result (OUT). as is shown in the equ:ıtion:

INl + IN2 "'OUT

Note:
When INl *OUT and 1N2 ;ıe OUT:
• If lN2 and OUT are direct•addrcsscd operands.

ıınd if OUT conıwııs one of the bytes of IN2.
then the insınıction is invııl.id.

• lf IN2 is an indirecı address and OUT is a
dired address containing one of the b),1es of
rbe indirect addresS pointer. then the
inSttUC\İOn is iıwalid.

Add Real
Note: CPC' JU on(v.

Symbol:

A.D'D R
EN -

IN1

IN2 OUT

INl, IN2 (Dffl>rd): VD, ID, QD. MD, SMD. AC.HC.
Constant. •VD. •AC

OUT (Dwoıd): VD. ID. QD. SMD, AC, •VD. •AC

Deıcrlptlonof operatioıı:

The Add Real (ADD_R) box adds two 32-bit real
nunıbm, (IN\. IN2), and ptodııceS a 32-bit reıı.l
ıuımbcr result (OUT), as is shown in the equation:

Note:
When INl ¢ OUT and IN2 *OUf:
• Jf IN2 and OUT are direct-addressed operands.

and if OUT contains one of the ~1es of IN2.
then the instruction is invalid.

• If lN2 is an indircCt addns and OUT is a
direct address conıaining one of the ~1es of
the indirect addrcSS pointer. then the
insu:ııctionis invalid.

85

Subtract Integer

Symbol:

St7.B_I
EN

INl

IN2 OUT

Openınds:

IN I. IN2 (word): VW. T. C. IW. QW. MW.
SMW. AC. AIW. Consuınt.
*VD. *AC

OUT (word): VW. T. C. IW. QW, MW,
SMW. AC. *\ID, *AC

Deıcriptioıı of operation:
The Sııbınıct Inıeger (SUB_I) box sııtıtracıs two
16-bit integers (IN l, [N2). and prodııceS a 16-bil
result (OUTI. as is shown in the equaıioıı:
INl - IN2 • OUT
Note:
When INl •• our and oo .- OUT:
• If IN2 and OUT are ditect-aücssed operands.

and if OUT oonıaiııs one of the bytes of IN2.
then the uısuuction is invalid.

• If IN2 is an iııdireCt address and cxrr is a
diıecl address containing one of the by\CS af
the indirect ~ pointer. then the
iııstNClionis invalid.

Subtract Double Integer

Syıııbol:

SUB_D.t
EN

INl

IN2 OUT

Operuds:

IN l, IN2 (Dword): VD, ID. QD. MD, SMD.
AC. HC. Consı:ınL •VD, •AC

OUT (Dword): VD, ID. QD. MD. SMD. AC.
-vn. •AC

Descriptioıı or operation:

The Sııbmıct Double Integer ısUB_Dn box
subtracts two 32-bit integers tIN l. IN2). and
produces a 32-bit result (OUT). as is sııo,\11 in the
equ:nion:

INi - IN:!= OlIT

Note:
When INl ""OUT and IN2 sc OUT:
• lf IN2 ;ınd OUT are direct·addresSıeıd operands.

and if our conta.ins one of the ~1esof IN2.
theıı the instruction is in"-alid.

• 1f IN2 is an indim:t ruklress and OUT ıs a
direct addresS containing one of the ~tes of
the indirecl adclnıss pointer. then ll:ıc
uıstrııetion is invalid.

Subtract Real
Nou: CPV 214 only.

Symbol:

SUB_R
EN

INl

IN2 OUT

Openuıds:

IN I. IN2 (Oword): VD. ID, QD. MD, SMD. AC. HC.
Constant, •VO. •AC /.

OUT (Dword): VD. ID. QD. SMD. AC. *VD. *AC

Dacrip1ion or operQtion:
The Sutract Real (SUB R) box subtracts two 32-bit
real nıımben (INl. !Nl). and prodUteS a 32-bit
real ınımber ıesult (OUT). as is shown in the
equation:

INl-lN2=0UT

Note:
When IN I *OUT and IN2 sc OUT;
• If IN2 and OUT are dinıct-addressedoperands.

and if OUT contains one of the bytes of IN2,
ıhen lhe instı:uı:tionis invalid.

• If IN2 is an indi~ ıı(idress and OUT is a
diıı:ct addreSS conıaioing one of the bytes of
the indirect ııddıeSS pointer. then the
instruetion is tnvalid,

86

Multiply Integer

Symbol:

EN

INl

IN2 OUT

Opcnuıds:

JNt. IN2 (word): VW.T.C.lW,QW,MW.
SMW. AC, AJW, Constant
•VD.•AC

OUT (Dword): VD. ID. QD. MD. SMD. AC,
*VD. *AC

~ripdon ef operation:
The Multipl)' InteFr (MUI.) box multiplies two
16-bit intqcrs (lNl, IN2). aıııd prodııcıes a 32-bit
result (OlIT}. as is siıowD in the eqı.ıııi.ou:

INl * IN2 ~ our
Note:
Same overlapping iııpıı1 and output openınds arc
invalid.

Multiply Real
Nau: CPU ı14 on(v.

Symbol:

EN

INl

IN2 OUT

Operands:

iNi. IN2 (Dword): VD, ID. QD. MD. SMD. AC.
HC. C0115111Dl. •VD. •AC

our (])word): VD. IO, QD, SMD. AC, •VD,
•AC

Dacripdoıl °' operatloıı:
The Mıılliply Real (MUL_R) bo.x multiplies two
32-bi\ tc:ıl mımbers l)Nl. 1N2), and ptOdıKcs a 32·
bit real mımbcr result (OUT). as is shown in the
equation:

lNl • IN2 = OUT

Note:
When IN l * OUT and lN2 ,;. OUT:
• If 1N2 and OUT are diıect-addressed operııııds..

and if OUT conuıiııs one of the bytes of IN2.
then the iıısUuction is invalid.

• If IN2 is an indin:ct addıcss and OUT is a
direct a<ldrcsS ooııtaining one of the bytes of
the indiıect address pointer. then the
instruction is iımılid

Divide Integer

Symbol:

D%V
EN

INl

IN2 OUT

Operaııds:

!Nl. IN2 (word): VW, T. C. IW, QW. MW, SMW.
AC, AIW. Constant, •VD. *AC

OUT (Dwoıd): VD. ID, QD. MD. SMD, AC. •VD.
•AC

The Divide Iıııegm (D1V} box dividı:s two 16-bit
integers l!Nl, IN2). and promıccs a 32-bit ~t
{OUT) cooıposed of of a 16-bit quolieDl and a 16-
bit mııainder. as is shown in the equation:

IN1 I IN2 • OIIT

Notes:
• Some overlapping input and output operands

are invalid.
• Tlıc 32-bit ~t (OUT) cannOl be the same as

the secondinpııt (1N2}.

87

Move Byte

Symbol:

-oN
UT

Operands:

rN (byte):

OUT(byte):

Dacriptioıı of operatioıı:

VB, ıs. QB. MB. 5MB.
AC. Constant. •VD. • AC

VB. m. QB, MB. SMB. AC.
•VD. •AC

The Move Byte (MOV _B) ho.'< QIO\'CS the input
byte l}N) to the oııq,uı byte (OUT). The input b_\1e
is not aUcred by the I\\O\'C.

Move Word
Symbol:

MDV_•
EN

IN OUT

Operaııcb:

IN (word):

OUT(word}:

VW. T. C, CW, QW. MW,
Slı,1VI.AC,AJW,Constaııt,
•VD,•AC

VW. T. C. JW. QW. MW.
SMW. AC, AQW, *VD, •AC

Deacriptioıı of operation:

The Move Word (MOV_W) box moves the input
word (lN) to the ouıpuı word (OUT). The input
word is not altenıd by tbe meve,

Move Double Word

Symbol:

-oN
UT

Operands:

IN (Dwont):

OUT (Oword):

VD. ID. QD. MD. SMD. AC. HC.
Constant. •VD. *AC. &:VB. &IB.
&QB, &MB. &T. &C

VD. ID. QD. MD. SMD. AC. •VD.
•AC

DeıcriptioG ol openaoa:

The Move Doııblc Woıd (MOV _JJW) box moves
lhc input double word (IN) to the output double
word (OUf}. The input double word is not altered
by the move,

Move Real
Nole: CPU 2/.I only.

Symbol:

-oN
UT

Operands:

IN (Dword):

OOI (Dword):

r.

VD, ID. QD. MD. SMD, AC, HC.
Constant, •VD. *AC

VD, ID, QD. MD. SMD. AC. *VD.
*AC

DeKriptiGO of operatioıı:

The Move Real (MOV _R) tıo.x !00\'CS a 3Nıit real
input double word (IN) to the output double word
(OUT). The i.rıpu1 ckıublc woıd is not :ıltered by the
move.

88

Block Move Byte

SL1fHO'V 'II
EN

IN

N OUT

Operaııds:

IN(~): VB. m. QB.MB. S1V1B •VD.
•AC
VB, IB. QB. MB. SMB. •VD,
*AC
\IB, IB. QB. MB. SMB.
AC. Coıısuınt. •VD. *AC

oın (byte):

N (byte):

~t\oıı of l)\)Cn\İeU~

The Block Move Byte (BLKMOV _Bl box moves
the ıuımber of bytes spccifıcd (N}. from the iııpıt
amıy starting at IN. to the output amıy starting at
OUT. N has a nuısıı of 1 to 2S5.

Block Move Word
Symbol:

IN

N OUT

()petands:

IN (word): VW. T, C. 1W. QW, MW.
SMW. AfW. *VO. *'AC

OUT(word): VW, T, C. IW, QW. MW,
SMW, AQW, •VD. •AC

N (byte): VB, IB, QB. MB. sıı.m,
AC,Coıısıant.•VD, •AC

Dacriptioıa or operadıııı:

The Block Move Word (BLKM:OV_B) box IUO\'es
the number of words spsified (N). from ıhe inpııı
arnıy sıarting at IN. ıo the oııq,uı array starting at
OUT. N has a roııge of ı ıo ıss.

Swap

Symbol:

iJNI
IN(word): VW, T, C. IW. QW, MW, SMW.

AC.•VD. *AC

l)escripıioıl of operaıioıı:

The Sv.-ap Byte box e:,,cchaııgeS the ınost-siarıifıtıınl
~1C with the ıeast~gııificant byte of the woni
ON).

Sbift Right Word

Symlıcıl:
ŞJIJl_lf

EN

IN

N OUT

OperaııtlJ:
IN (word): VW, T, C, IW, QW, MW, SMW.

AC, AIW. Coııstaııt, *VD, •AC
VB, IB. QB. MB. SMB, AC,
Constant. •VD. *AC
VW, T, C, IW, QW. MW, SMW,
AC.•VD,*AC

N (byte):

OUT(woıdl:

Oacripticmof operation:
Toe Shift Right Word (SHR_ W) bo.,ı, shifts ı.he
word value (IN) right by the shift count (N). and
load$ the result in the ouıput word (OUT}.

SMLO(zero) = lif OUT• O
SM l.l (overflow) •• l iflast bit shifted out
•• o

Note:
When IN ,ı, OUT:
• If N and oor are ı:liıecl-addressed opmuds,

and if OUT comains N .. then the ı.nsıruction is
im'3lid.

• If N is an indirect address and OUT is a di[CC;l
~ conıaiııing one of the bytes of lhe
indin:ct addresS pointer, then I.be instruction is
invlllid.

• If N and OUT arc indirect addreSS J)Ointe~
and the pointers are equal, then the insttuetion
is invalid.

89

~~~--------------------------------------ıııııiı.••



Shift Left Word

Symbol:

sm._11
--IEN

~IN

""'N OUTı-

Operands:

1N (word): VW. T. C. lW. QW. MW.
SMW. AC. AIW. Coııstaııl
*VD. *AC

Ntbyte): VB. m. QB. MB. SMB.
AC, Constant. •VD. *AC

OUT(word): vw. T. c. ıw, QW. MW.
SMW, AC. •VD, *AC

Description of operation:
The Shift Left Word (SHL_W) box shifts the word
"11luc ( IN) left by the shift count (N). and loııd5I the
result in the ouıput word (OUT).

SM1.0 (zero) - l if'OUT"' O
SM1.l (ovedlow) ~ ı if last bit shifted ouı
== o

Note:
When IN ,ı,. OUT:
• If N aııd OUT arc dirccı-addıesscd operands,

and if OUT contıios N. then the instıuction is
invalid.

• If N is an indi.n:ct address and oı:.rr is a diıect
ııddress conıaining one of the ~tes af the
indirect address pointer, then the instruction is
invalid

• If N and Otrr arc indirect addıess pointers
and the pointers are equal. lhen the instruction
is invalid.

Shift Left Double Word

Synıbol:

SBL DW
-4tN -

""'IN

cırr+

IN (Dword): VO. ID. QD. MD. S.\10. AC. HC
Constant. •\'D. •AC

N tbyte): VB. IB. QB. MB. SMB. AC.
Constant. •VD. •AC

OUf (Dword): VD. ID, QD. MD. SMD. AC. •VO.
•AC

Description or operation:
The Shift Left Double Word tSHL_DW) box shifts
the double word ,·:due (IN) left by the shift count
(N). and loads the result in the output double word
(001).

SMl.O (zero) = 1 if OUT-= O
SM1.l (O\'C1fkıW) "' ı if last bit shifted ouı
:aO

NGte:
When IN * our:
• If N and Olif are direct-addressed operands.

and if OUT contains N. then the instruction is
invalid.

• lfN is an indirect ııddiess and OUT is a direct
address ı;onlaining one of the ~1eS of the
indirect address poinıer. then the instruction is
invalid,

• If N and OUT arc indirect address pointers
and the pointeıs aıe equal then the instruction
is invalid.

90



Shift Right Double Word

Symbol:

sım Dil
~EN -

IN

-IN OUTI-

Operuds:

IN(Dword): VD. JD. QD. MD. SMD. AC.
HC, Constanı, •VD. • AC

N~1e): VB. IB. QB. MB. SMB.
AC. ConstanL •VD. *AC

our (Dword): VD. ID. QD, MD. SMD. AC,
-vo, •Ac

Detcription of operation:

The Shift Right Double Word (SHR_DW) box
shifts the double word value (IN) right b:v the shift
count (N). and loads the result in the oulpul double
word(OUT).

SMJ.O (zero) ~ I if OUT= o
SMI.I (overflow) = I iflast bit shifted out
=O

Note:
Wlıeıı IN ,o OUT:
• If N and OUT are direct-addressedoperands..

and if OUT contains N, then 11:ıe iııstnıc:ıion is
invıılid.

• IfN is an ındirect address and OUT is a direct
address containing one of the bytes of the
iodirea llddrcss poimer. then the inStrııction is
inwlid.

• If N and oı.rr arc indirect address pointers
and the pointers are eqııal. then the insuuction
is invalid,

Rotate Right Word
Symbol:

--IEN

-1N our+

Operaııds:

IN (word): VW, T, C. 1'V. QW, MW. SMW.
AC. AfW. Constant. •VD. *AC

N(:byte): VB. IB. QB. MB. S?vm. AC.
Constant. *VD. *AC

OUT(word): VW, T. C, ıw, QW. MW. SMW.
AC.•VD.*AC

Deıııcriptioıı of operation:
The Rowe Right Word (ROR_W) box rotates the
word value (IN) right by the shift count (N). and
loads the result in the output word (OUT).

SMl.O (zero) == 1 if OUT= O
SMU (ovedlO'I\'} •• lif last bit rotated• O

Note:
When IN ;o OUT:
• If N and OUT are direct-addressed operands,

and if OUT contains N, then the instruction is
invalid

• If N is an indirect address and OUT is a direct
address containing ooe of the bytes of the
iııdirect address pointer. then the instruction is
invalid

• If N and OUT are iı:ıdi.rect addrı:ss pointer.;
and the pointı:ıs arı:: equal. tlıerı the instruction
is in,•ali4

91



Shift Register Bit

Symbol:

SB11B
EN

DATA

S BIT

N

Operıuıtls:

DATA. S_BIT (bit): L Q. M. SM, T. C. V

N (byte): VB, IB. QB. MR SJ.1,,lB. AC.
Constant. •VD. *AC

De9crlption or operation:

The Shift Register Bit (SHRBl instruct.ion shifts
the value of DATA into the shift register. S_BlT
specifics the least-signifkanı bit of the shift
register. N specifies the length of the slufi register
and the direction of the shift (shift plus = N. shift
minus= -N).

Fill Memory

Symbol:

EN

IN

N OUT

Operands:

IN (word): VW, T, C. JW. QW. MW.
SMW, AJW. Constant. *VD.
*AC
V\V. T, C. rw, QW. MW.
SMW. AQW, *VD. *AC

OUT (word):

N (byte): VB. IB. QB_ MB. SMB. AC.
Constant. •VD. •AC

Descriptloo of openıtion:

The Fill Memoıy Box (FILL_N) fills the memory
starting at the output word (Olffi with lhe word
input pattern (INI for the number of words
specified by N. N has a range of I to 25.5.

·Move I Shift I Rotate I Fill
Examples

!Network l When 10.0 and J0.1 are on then
move vts::ıu 10At;U, ana swap
the most significant byte (MSB)
of VWO wtth the LSB of VWO.

IO.O IO.ı--ı ,ı MCV B

I EN

VBSO- IN OUT

SN.ili'
EN

vwo- IN

·ACO

[Network 2 When 10.2 is on then move
VB20-VB23 toVB100-VB103.

rO . 2 r..ıo«>V_B
EN

vazo IN

4 N OUTı-vaıoo

[Network 3 When 10.3 is on then fill
VW200-VW21B with O's.

TI.LL_N
EN

o-; IN

10-iN OUT!-VW200

92



[Network~ When 10.4 is on, then the word
value in ACO is rotated right
twice and stored in ACO, and
the word value in VW200 is
shifted left 3 times and stored
in VW200.

10.~ aoa_ır
C:N

AC1!N
2 N ~ACO

-----,s.a:r._ır
EN

VW200~IN
3 N OUT!-VWZOO

[Networks Upon every O to 1 transition ot
10.5, the value of 10.6 is shifted
into the shift register starting
at V100.0 and of length 4.

r0.5
I IP E:N

I0.6""1DATA

vı oo, o1s_BIT

4-IN

1Nctwork6 Main end of the user program.

Output

Symbol:

n
--()

Operands:

ıı !bit): I, Q. l\,I, SM. T. C. V

Description of opcnıtion:
An Output coil is turned on and the Bit stored at
uddıessn is set to I when power flows to lhe coil.

A negated ouı.puı can be created by placing a t;,QI
(Invert Power Flow) contact before an output coil,

Output Immediate Coil

n
--(ı)
Openuıds:

n (bit): Q

De9cription of operarioıı:

An Output Immediate Coil is turned on and lhe Bil
at output address n is sıet to 1 when power flows to
the coil, An updaıe of the addressed image register
output Bit and also the comısponding physical
outptıt Bit occurs iınmediately after the coil is
scanned without waiting for scan cycle completion.

Set
Symbol:

S BIT

--{s)
N

Openıııds:

S_BIT (bit}: I. Q, M SM T. C. V

ta, QB. .r,.m. SMB. VB. AC.
Constant. -vo.•. AC

N (b;,'le):

Description ol opcradon:

The Set Coil seıs the r.ıngc of poinıs starting at
S_BIT for the number of points specified by N

93

...



Set Immediate Coil

S!'mbol:
S srr

--(;_ı)
N

Oper.uıds:
S_BIT (bit):
N (byte):

Q
IB. QB. MB. SMB. VB. AC.
CoııstanL *VD. •AC

Deııcriptionof openı.tion:
The Seı ImmediııteCoil immediatelysets the range
of points starting at S_BIT for the nıımber of poin~
specified by N .

Reset Coil
Symbol:

S BlT

---(R)
N

Operand$:
S_BIT (bill: l. Q, M. SM. T. C. V

N (byte): IB, QB. MB. SMB. VB,
AC. Coıısıant, •VD. • AC

De«riptioe ofoperation:
Toe Reset Coil tUelS the range oC poiııts St:lrting aı
S_BIT for t1ıe number of poiıııs specified by N. If
S_BIT is specified \O be either a Tor ıı C bit. then
both the timer/couııter bit and the tuner/counter
cunent value ate reseı,

Reset Immediate Coil

Symbol:
S BIT

--{R_ı)
N

Operands:
S_BIT (bit): Q

lB. QB. MB. S.\tB.
VB, AC, Consıant. •VD.
•AC

N {byte):

Deaı:riptkıııor operation:
The Resel Iınınedi:ıte Coil imıııediaıely resets the
range ı,f points starting at S_BIT for the number of
points specified by N .

Ladder Output Coil Examples

\Network 1 ] When 10.0 is on, then ouıput Q0.1 ls
turned on.

\Network 2 ] When 10.1 is on. then outputs Q1.0. 01.1
and 01.2 are set (turned on).
These outputswill remain on, even if ıa .1
is turned off, until they are reset.

When 10.2 ls tumed on. then outputs,
a1 .o, au and aı .2 are reset (turnedoıı[Neiwoıt 3

!Netwın 4 ] End of the main user program.

94



End
Syınlıols:

Coaditioııııl End

Uncondhieııal End

Operaııdıı:

(none)

Deııcriptloıı of operııtioo:

The Conditional End coil tenninates the main user
program bıı&ed on the condition of the preceding
logic.

The Uncoııditional End coil mı.ıs\ be used to
terminate the user pnıgram.

Stop
Symbol:

Operaııds:

(iıone)

Deıcriptioıı of operatlen:

The Stop coil tenninales t..'teCUÜOD of the user
program by causing a traıısition lo the stop mode.

Watchdog Reset
Symbol:

O~ruds:

(none>

Descriptioa of operation:

The Watchdog Reset tWDR) coil allows the
watchdog timer ıc be rctriggeıcd. This extends the
time the sam takes without getting a wııtclıdog
error.

Jump
Symbol:

n
--(.n1P)

Operaııdıı:

n: CPU 212: 0-63
CPU 214: 0-255

Deııcriptioa of operation:

The Jump to Label (JMP) coil perfonns a branclı to
the specified label (n) \\ithin the program.

Label
Symbol:

Opel'IIMb:

n: CPU 212: 0-63
CPU 2U: 0-255

Deıcriptiıııı of operatioa:

The Latıel (LBL) instruction ınarlts the location of
the jump dcstlnation (tr). The CPU 212 allows~
labels. and the CPU 214 allows 256.

Call
Symbol:

Operands:

n: CPU 212: 0-15
CPU 214: 0-63

Deııcriptioo of openıtien:

The Subroutine Call (CALL) coil transfers control
to the subroutine (n).

95



Ladder Timer I Counter Examples

lE«work l
J Wben !O.O is on lhen ıbe

timerwill stıın..b,t\er 3 seconds
(JO x ıoomsı T37 biı ";ıı
come on.

\l' ''~]~ ,J:
] WhenTimer 37 rcııchesits

preı;ı:L. tum on QO.O .

~37
(20.0

t -{ )

fi,let\\1>ık 3 ] W1ıeD SM0.5 (l sec. clock
pulse •. 5 sec. on and .5 sec.
atl) is ON. tooı dıc ümer
will lime- The T!I bit "ill come
on after 6 sr.,conds.

r·· T5

~ J:--1
@eıwork~ · ] When Timer 5 mıc;hes its

pmı:L tum on QO. l .

t-1T5 QO.l

\- { )

~eıworlt.5 J By ıısmg SMO.S (l seç. clock
pulse) the couıııer11oill count
pulses and ıum. oo tlıc CO bit
w\ıı:ıt a count of 10 İ$ ıeached.
ıo.o o:seu ıııe oounw.

co

~

oı:..:..------rc C7U

Q. l p.

ıo-\PY

J When CO reaches its preset tum on Ql.2 .
~6

l____Jco Q0.2ı r- -< )
] End of the main user program.

96



CONCLUSION 

When developing this project we see that PLC the individuals life easier which it has
gained our interest and notice.
With the information observed from our lecturer and our researchers for this topic
PLC , is a convenet tool with a wide rage of useful ways to be used. Such examples can
be mentiaoned several machines can be used at the same time , easy adjustments from
the PLC program can be meek within a few minutes by the keyboard, installed PLC
programs can be controlled or checked before within the office and laboratory , even the
PLC program as for firm can be meet at the home. It's very protective and safe for the
workers which they protected from dager, communications programs of PLC's wıthın
each other or within operates can happen with the PLC ; the developed lantues have
constructed the productivity, security establishment security fast productivity, quality,
and we can see that PLC is a very cheap program that can be fundamentally used.

97



REFERENCES

Reference : Programmable Controllers - Operation and Application
Ian G. Warnock (1988) Prentice Hall International Ltd.

Reference: SIMA TIC S7 - 200 and Industrial Automation
· Doç. Dr. Salman Kurtulan ( July 1998) İTÜ Electric & Electronic Department

Reference: PLC
Richard Baldry (November 1999)

Reference: Programmable Logic Controllers
Hugh Jack (June 1999)

98

\ I I



APPENDIXS 
~

Introduction (18)
Background (19)
Terminology (22)
PLC's Hardware Design (22)
Central Processing Unit (23)
Memory (24)
Memory Size (25)
Input I Output Unit (26)
Logic Instruction Set (29)
Input I Output Numbering (29)
Types of PLC (31)
Small PLC's (31)
Medium Sized PLC 's (32)
Large PLC (33)
Remote Input I Output (34)
Programming Large PLC's (34)
Developments (34)
Programming of PLC Systems (35)
Logic Instruction Sets and Graphic Programming (36)
Negation NAND and NOR Gates (37)
Exclusive OR Gate (37)
Standart PLC Functions (38)
Markers I Auxiliary Relays (39)
Ghost Contacts (40)
Retentive Battery- Backed Relays (40)
Optional Functions on Auxiliary Relays (41)
Pulse Operation ( 41}
Set and Reset (43)
Timers (43)
Counters (44)
Registers (44)
Shift Registers ( 45)
BCD Numbering (47)
Magnitude Comparison (49)
Addition and Subtraction Instruction (49)
Ladder Program Development (50)
Software Design (50)
System Functions (50)
Program Structure (54)



Further Sequential Control Techniques (55)
Limitation of Ladder Programming (56)

· Advanced Graphic Programming Languages ( 56)
Workstations (56)
Choosing Installation and Commissioning of PLC System (57)
Feasibility Study (57)
Design Procedure for PLC System (57)
Choosing a Programmable Controller (58)
Size and Type of PLC System (58)
I I O Requirements (59)
Memory and Programming Requirements (59)
Instruction Set I CPU (61)
Installation (61)
Testing and Commissioning (63)
Software Testing and Simulation (63)
Installing and Running The User Control Program (67)
Compare Byte Greater Than Or Equal Contact (68)
Compare Byte Less Than Or Equal Contact (68)
Compare Integer Equal Contact (68)
Compare Integer Greater Than Or Equal Contact (68)
Compare Integer Less Than Or Equal Contact (68)
Compare Double Integer Equal Contact (69)
Compare Double Integer Greater Than Or Equal Contact (69)
Compare Double Integer Less Than Or Equal Contact (69)
Compare Real Equal Contact (69)
Compare Real Greater Than Or Equal Contact (69)
Compare Real Less Than or Equal Contact (70)
Invert Power Flow Contact (70)
Positive Transition Contact (70)
Negative Transition Contact (70)
Ladder Contact Examples (70)
Read Real Time Clock ( 71)
Set Real Time Clock ( 71)
Real-Time Clock Instruction Examples (72)
BCD to Integer (72)
Integer to BCD ( 73)
Integer Double Word to Real (73)
Truncate (73)
Decode (73)
Encode (74)

100



Segment (74)
ASCII to Hex (74)
Hex to ASCII (74)
Ladder Conversion Instruction Examples (75)

HSC Definition (75)
High Speed Counter (76)
Pulse Output (7 6)
Ladder High - Speed Operation Instruction Examples (76)
Attach Interrupts (77)
Detach Interrupts (77)
Interrupt Routine (77)
Enable Interrupts (78)
Disable Interrupts (78)
Return from Interrupts (78)
Network Read (78)
Network Write (79)
Transmit (79)
Data Sharing with Interrupt Events (79)
Programming Techniques for Data Sharing (79)
Interrupt Event Priority Table (80)
Ladder Interrupt I Communication Instruction Examples (81)
Horizontal Lines (81)
Vertical Lines (81)
@ID Word (82)
AND Double Word (82)
OR Word (82)
OR Double Word (83)
XOR Word (83)
XOR Double Word (83)
Invert Word (84)
Invert Double Word (84)
Ladder Logical Operations Examples (84)
Add Integer (85)
Add Double Integer (85)
Add Real (85)
Subtract Integer (86)
Subtract Double Integer (86)
Subtract Real (86)
Multiply Integer (87)

101



Multiply Real (87)
Divide Integer (87)
Move Byte (88)
Move Word (88)
Move Double Word (88)
Move Real (88)
Block Move Byte (89)
Block Move Word (89)
Swap (89)
Shift Right Word (89)
Shift Left Word (90)
Shift Double Word (90)
Shift Right Double Word (91)
Rotate Right Word (91)
Shift Register Bit (92)
Fill Memory (92)
Move I Shift I Rotate I Fill Examples (92)
Output (93)
Output Immediate Coil (93)
Set (93)
Set Immediate Coil (94)
Reset Coil (94)
Reset Immediate Coil (94)
Ladder Output Coil Examples (94)
End (95)
Stop (95)
Watchdog Reset (95)
Jump (95)
Label (95)
Call (95)
Ladder Timer I Counter Examples (96)

102


	Page 1
	Titles
	NEAR EAST UNIVERSITY 

	Images
	Image 1
	Image 2


	Page 2
	Titles
	CONTENTS 
	ACKNOWLEDGEMENT 
	ABSTRACT 11 
	INTRODUCTION 111 
	1. LIST OF FIGURES 1 
	5. ADVANTAGE 6 
	6.LADDER AND STL PROGRAM 8 
	7. PROGRAMMABLE CONTROLLERS PLC'S 18 
	8.TYPES OF PLC 31 

	Images
	Image 1


	Page 3
	Images
	Image 1
	Image 2
	Image 3


	Page 4
	Titles
	ACKNOWLEDGEMENT 

	Images
	Image 1


	Page 5
	Titles
	ABSTRACT 

	Images
	Image 1


	Page 6
	Titles
	INTRODUCTION 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 7
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 8
	Titles
	Table of Symbol 

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1


	Page 9
	Titles
	2.WHAT IS A PLC? 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 10
	Titles
	3.PLC HISTORY 

	Images
	Image 1


	Page 11
	Titles
	4.GENERAL PHYSICAL BUILD MECHANISM 

	Images
	Image 1


	Page 12
	Titles
	5.ADVANTAGES 
	5.1 Accuracy 
	5.2 Flexibility 
	5.3 Communication 
	5.4 Logic Control of Industrial Automation 

	Images
	Image 1


	Page 13
	Titles
	5.5 Data Areas 
	5.6 Data Object 

	Images
	Image 1

	Tables
	Table 1


	Page 14
	Titles
	6.LADDER AND STL PROGRAM 
	SIEMENS SIMATIC S7- 200 PLC SAMPLE PROGRAM 

	Images
	Image 1


	Page 15
	Images
	Image 1

	Tables
	Table 1


	Page 1
	Titles
	10 
	-I I (s) 
	R) 
	---l I 11N TONI 
	.....___ __ ~ 
	--I 
	--I 
	---1 

	Images
	Image 1


	Page 2
	Titles
	---t I I I I jIN TONI 
	.__ __ _, 
	11 
	--t I jIN TONI 
	---- 

	Images
	Image 1

	Tables
	Table 1


	Page 3
	Titles
	I 111 111 111 C) 
	12 
	ıl 111 () 
	zo 
	--ti ı-- _______ı 

	Images
	Image 1

	Tables
	Table 1
	Table 2


	Page 4
	Titles
	----1 I 1/1 111 C) 
	H 
	Z3 
	t--~~~~~~~~~~---ıcu cTU 
	H "r R 
	H I Cs) 
	--ı AO.O:r ~ ) 
	H/ 
	13 

	Images
	Image 1
	Image 2


	Page 5
	Titles
	H I Cs) 
	!~ I (R) 
	I 
	---1 I (s) 
	I ( R) 
	I 
	14 

	Images
	Image 1


	Page 6
	Titles
	-{END) 
	15 

	Images
	Image 1

	Tables
	Table 1


	Page 7
	Titles
	16 
	zv zı, 2 
	II 
	~2 
	·::2 

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1
	Table 2


	Page 8
	Titles
	u zo 
	17 

	Images
	Image 1


	Page 9
	Titles
	7.1 Introduction 
	ı ------- 
	.. 
	7- PROGRAMMABLE CONTROLLER PLC'S 

	Images
	Image 1
	Image 2
	Image 3


	Page 10
	Titles
	7 .2 Background 

	Images
	Image 1
	Image 2


	Page 11
	Images
	Image 1
	Image 2


	Page 12
	Titles
	• 
	-· 
	• 

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1


	Page 13
	Titles
	7.3 Terminology - PC or PLC 
	7.4 PLC's Hardware Design 


	Page 14
	Titles
	7.4 -1 Central processing unit (CPU) 

	Images
	Image 1
	Image 2


	Page 15
	Titles
	7.4 - 2 Memory 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 16
	Titles
	---~ 
	----=- 
	(a) ' - -- . - ~"."=-··--.,~:'.:7;:'""--r 
	____ .• -~--_,,..------'····- 
	7.4 - 3 Memory size 

	Images
	Image 1
	Image 2
	Image 3


	Page 1
	Titles
	7.4- 4 Input /output units 


	Page 2
	Titles
	r-------------, 
	~ ~ 
	'-.:: / 
	Figure 7.4 PLC input I output connected to plant equipment 
	27 

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1


	Page 3
	Titles
	~- 
	--·--·--····-·--...-,------ 
	! • 
	'?t~~--~==-- 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6


	Page 4
	Titles
	7.5 Logic instruction set 
	7.6 Input I output numbering 

	Images
	Image 1


	Page 5
	Images
	Image 1
	Image 2


	Page 6
	Titles
	8- TYPES OF PLC 
	8.1 Small PLC s 

	Images
	Image 1
	Image 2
	Image 3


	Page 7
	Titles
	8. 2Medium - sized PLC s 


	Page 8
	Titles
	8.3 Large PLC 


	Page 9
	Titles
	8.4 Remote input I output 
	8.5 Programming large PLC s 
	8.6 Developments 


	Page 10
	Titles
	9 - PROGRAMMING OF PLC SYSTEMS 

	Images
	Image 1


	Page 11
	Titles
	9.1 Logic instruction sets and graphic programming 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 12
	Titles
	9.1-1 Input /output numbering 
	9.1-2 Negation - NAND and NOR gates 
	HHI ( 
	1 
	tE [ 
	X401 
	1 
	9.1-3 Exclusive - OR gate 
	I ~ I 
	ı1 I 

	Images
	Image 1


	Page 13
	Titles
	9.2 Facilities 
	9.2-1 Standard PLC functions 
	.. 
	-{ }- 

	Images
	Image 1
	Image 2


	Page 14
	Titles
	9.2-2 Markers I auxiliary relays 


	Page 15
	Titles
	9.2-3 Ghost contacts 
	9.2-4 Retentive battery- backed relays 

	Images
	Image 1
	Image 2


	Page 1
	Titles
	9.2-5 Optional functions on auxiliary relays 
	9.2-6 Pulse operation 


	Page 2
	Titles
	xıo __J 
	_J---ı___ 
	xıo 
	* 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 3
	Titles
	9 .2- 7 Set and reset 
	_J 
	s 
	R 
	9 .2-8 Timers 
	x4hı_ 

	Images
	Image 1
	Image 2


	Page 4
	Titles
	9.2-9 Counters 
	9.2-1 O Registers 
	,-ı 1 ı- 

	Images
	Image 1

	Tables
	Table 1


	Page 5
	Titles
	9.2-11 Shift registers 
	~ ~ ı·~ ı ·; I :rr I I [> 

	Images
	Image 1


	Page 6
	Titles
	I II : SFT 
	I II : _J 
	'--------- 

	Tables
	Table 1
	Table 2


	Page 7
	Titles
	9.3 Arithmetic Instructions 
	9.3-1 BCD numbering 

	Images
	Image 1


	Page 8
	Titles
	J 
	o 
	o 
	o 
	o 
	o 
	[ı 
	T t aaıııı, 
	· _JI,.-•·~- a; I: ---~ 
	lif?r~II 
	wsı~.za 
	Bl {n'ı Gr Wı 
	Figure 9.11 (a) Binary and BCD number systems 
	48 

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1


	Page 9
	Titles
	9.3-2 Magnitude comparison 
	9.3-3 Addition and subtraction instructions 


	Page 10
	Titles
	10~ LADDER PROGRAM DEVELOPMENT 
	10.1 Software Design 
	10.1-1 System functions 

	Images
	Image 1


	Page 11
	Page 12
	Titles
	I 
	+ 
	--------~--_J 
	Figure 10.1 (a) PC system design procedure 
	52 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 13
	Titles
	General diagram of 
	Description of 
	r---------, 
	: etc. ) 
	L------.J 
	'----.J 
	Design of 
	Design of 
	Description of 
	Object 
	(bl 
	Figure 10.1 (b) Describing the functional structure of a process 
	Figure 10.2 Graphic programming 
	53 
	••• 

	Images
	Image 1
	Image 2

	Tables
	Table 1


	Page 14
	Titles
	10.2 Program Structure 
	\ 


	Page 15
	Titles
	10.3 Further Sequential Control Techniques 

	Images
	Image 1


	Page 1
	Titles
	10.4 Limitation of Ladder Programming 
	10.4-1 Advanced graphic programming languages 
	10.4-2 Workstations 


	Page 2
	Titles
	11- CHOOSING, INSTALLATION 
	AND COMMISSIONING OF PLC SYSTEM 
	11.1 Feasibility Study 
	11.2 Design Procedure for PLC System 


	Page 3
	Titles
	11.2-1 Choosing a programmable controller 
	11.2-2 Size and type of PLC system 


	Page 4
	Titles
	11.2-3 I I O requirements 
	11.2-4 Memory and programming requirements 


	Page 5
	Images
	Image 1
	Image 2


	Page 6
	Titles
	11.2-5 Instruction set I CPU 
	11.3 Installation 


	Page 7
	Titles
	\ 
	~ .. 
	I • 
	• 
	• 
	• 
	.. ; 

	Images
	Image 1
	Image 2


	Page 8
	Titles
	11.4 Testing and Commissioning 
	11.4-1 Software testing and simulation 
	.,, 
	-;n 

	Images
	Image 1


	Page 9
	Page 10
	Titles
	.....__ ___ı - - - --©- - _ ...! 
	L-u---- 

	Images
	Image 1
	Image 2

	Tables
	Table 1


	Page 11
	Titles
	---{ XX X }-- Coil de-energized 
	---{f XXX ~r-- Coil energized 
	66 
	I 
	--11 Contact open 
	~II Contact closed 
	Figure 11.5 Dynamic monitoring of program contacts using a graphic 
	Figure 11.6 Symbols displayed in monitor mode 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 12
	Titles
	11.4-2Installing and running the user control program 

	Images
	Image 1


	Page 13
	Titles
	Compare Byte Greater Than Or 
	68 
	Compare Integer Less Than Or 
	s~'mbol: 
	-!<=1\-- 
	-l>=Il-- 
	n2 
	Compare Integer Greater Than Or 
	-\==Il-- 
	n2 
	Compare Integer Equal Contact 
	--4<=B\-- 
	n2 
	Compare Byte Less Than Or 
	--i>=B)-- 
	n2 

	Images
	Image 1


	Page 14
	Titles
	Compare Real Greater Than Or 
	---i>=Rt-- 
	nZ 
	Compare Real Equal Contact 
	69 
	---i<=Dt-- 
	nz 
	Compare Double Integer Less 
	Compare Double Integer Equal 
	Compare Double Integer Greater 
	-+==D1-- 
	---i>=D1-- 

	Images
	Image 1
	Image 2


	Page 15
	Titles
	--l<=Rr- 
	n2 
	Compare Real Less Than Or 
	Ladder Contact Examples 
	Negative Transition Contact 
	---\Nr-- 
	SMD. AC. HC. Constant 
	Invert Power Flow Contact 
	S3rl INoT!-------\. ) 
	vws 
	vss 
	Positive Transition Contact 
	70 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7


	Page 1
	Titles
	Read Real Time Clock 
	Set Real Time Clock 
	VB403 I os ı Hour 
	va407 i 06 I Day of Week 
	24--Mar-96 
	VS405 i 00 !Second 
	24--Mar-95 
	71 

	Images
	Image 1
	Image 2

	Tables
	Table 1


	Page 2
	Titles
	72 
	~o. 4 I sr.r_ı,;rc 
	I . I EN 
	Instruction 
	nrc_w 
	Clock 
	!Network4 
	Real-time 
	~o.o ,mo_Mc 

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1


	Page 3
	Titles
	Integer to BCD 
	Truncate 
	Integer Double Word to Real 
	Decode 
	73 

	Images
	Image 1


	Page 4
	Titles
	Encode 
	ASCII to Hex 
	Symbol: 
	-o 
	IN (word): 
	Segment 
	,f 
	LEN(byte): 
	Hex to ASCII 
	•• 
	OUT(b}1e) 
	IN (byte): 
	Olfft~1e): 
	74 

	Images
	Image 1
	Image 2
	Image 3


	Page 5
	Titles
	Ladder Conversion Instruction 
	~'·I IEN 
	HSC Definition 
	I I 
	75 

	Images
	Image 1
	Image 2


	Page 6
	Titles
	High Speed Counter 
	Ladder High-speed Operation 
	fJ 
	o 
	!Network 1 
	!Network 2 
	Pulse Output 
	iJ 
	76 

	Tables
	Table 1
	Table 2


	Page 7
	Titles
	Interrupt Routine 
	~~ 
	Detach Interrupts 
	Attach Interrupts 
	r@ 
	~ 
	77 

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1


	Page 8
	Titles
	---(ırnr) 

	Images
	Image 1
	Image 2
	Image 3


	Page 9
	Titles
	Interrupt 
	with 
	Sharing 
	Programming Techniques for Data 
	Data 
	I 
	I 
	i 
	r9 
	Constant 
	VB. MB. •VD. • AC 
	Transmit 
	Network Write 

	Images
	Image 1
	Image 2


	Page 10
	Titles
	80 
	,·t. 
	y 
	o 
	Interrupt Event Priority Table 
	Falling edge, IO.O*• l 
	HSCICV•PV 13 

	Images
	Image 1


	Page 11
	Titles
	Ladder Interrupt I Communication 
	HSM82 çıı.o 
	Horizontal Lines 
	I f----1 I ~"' 
	Vertical Lines 
	81 

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1


	Page 12
	Titles
	AND Word 
	OR Word 
	Note: 
	AND Double Word 
	OfJf (word): 
	Openncls: 
	82 

	Images
	Image 1
	Image 2
	Image 3


	Page 13
	Titles
	OR Double Word 
	XOR Double Word 
	aoa" 
	XOR Word 
	wııcn INı •• our and INı ""our: 
	83 

	Images
	Image 1


	Page 14
	Titles
	Invert Word 
	Ladder Logical 
	Examples 
	Operations 
	Invert Double Word 
	-o 
	(fietwoı1- 1 
	vw:::oo 
	vwsoo 
	ı>..co-irN ooTt-ACO 
	}-{pm) 
	84 

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1


	Page 15
	Titles
	Add Integer 
	Openuads: 
	Add Real 
	Note: CPC' JU on(v. 
	INl + 1N2 = OlIT 
	Note: 
	Add Double Integer 
	85 

	Images
	Image 1
	Image 2
	Image 3


	Page 1
	Titles
	86 
	Subtract Real 
	Subtract Double Integer 
	Subtract Integer 

	Images
	Image 1
	Image 2


	Page 2
	Titles
	Multiply Integer 
	Note: 
	Divide Integer 
	Multiply Real 
	87 

	Images
	Image 1


	Page 3
	Titles
	Move Byte 
	-o 
	Move Double Word 
	-o 
	rN (byte): 
	Move Word 
	by the move, 
	Move Real 
	-o 
	r. 
	88 

	Images
	Image 1


	Page 4
	Titles
	Block Move Byte 
	Swap 
	iJ 
	Block Move Word 
	Sbift Right Word 
	VB. m. QB. MB. S1V1B •VD. 
	OperaııtlJ: 
	•• o 
	89 
	~~~--------------------------------------ıııııiı .•• 

	Images
	Image 1
	Image 2

	Page 5
	Titles
	Shift Left Word
	Shift Left Double Word
	sm._11
	cırr
	When IN * our:
	90

	Images
	Image 1
	Image 2

	Page 6
	Titles
	Shift Right Double Word
	Rotate Right Word
	-1N our+
	91

	Page 7
	Titles
	Shift Register Bit
	·Move I Shift I Rotate I Fill
	ı--ı
	4 N OUT ı-vaıoo
	Fill Memory

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 8
	Titles
	Output
	n
	--()
	Output Immediate Coil
	n
	--(ı)
	Set
	--{s)
	...
	93

	Images
	Image 1

	Tables
	Table 1

	Page 9
	Titles
	Set Immediate Coil
	Ladder Output Coil Examples
	S srr
	--(;_ı)
	turned on.
	Q
	Reset Coil
	and 01.2 are set (turned on).
	---(R)
	cunent value ate reseı,
	Reset Immediate Coil
	[Neiwoıt 3
	--{R_ı)
	Q
	94

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 10
	Titles
	--(.n1P)
	Watchdog Reset
	Label
	Call
	95

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 11
	Titles
	l____Jco Q0.2
	ı r- -<)
	co
	~oı:..:..------rc C7U
	96

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 12
	Titles
	CONCLUSION
	97

	Page 13
	Titles
	REFERENCES

	Page 14
	Titles
	APPENDIXS

	Images
	Image 1

	Page 15
	Page 16
	Page 17
	Images
	Image 1

