
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

DISTRIBUTED BANK SYSTEM

Graduation Project

COM-400

Student: lmad Ahmed Dahdouh

Supervisor: Assoc. Prof. Dr. Rahib Abiyev

N-icosia - 2003

ACKNOWLEDGEMENTS

I would like to thank my supervisor Assist. Prof.Dr Rahib Abiyev for his valuable

advice given throughout the duration of this project.

I am also thankful to Prof Dr. Fakhraddin Mamedov and Assoc.Prof.Dr Adnan

Khashman for their support during my studies at Near East University.

And a big thank to my family that supports me in every step I take in this life, and I

would like to make use of this chance to thank my mother, father, brothers and my sisters.

As well as I will not forget my friends Reyad Bader, Hany Jaber, Alaa Al-Attar,

Nedal Meshal, Rami Al-Dahdouh, Ayman Ashour and Khaled Al Masri who gave me all

support during my studying period.

1

ABSTRACT

Load balancing, administration centralization, platform independency, transactions

transparency and object-oriented programming are the main topics in today's system
development techniques.

This project discusses the most common issues that related to banking systems. It

introduces an easy and efficient way for handling common banking operations such as,

money transfer, withdraw, deposit and invoices payment.

A distributed Java-based program has been developed to allow users to deal with

the bank system regardless of there places or platforms.

2

TABLE OF CONTENTS

ACKNOWLEDGEMENTS 1
ABSTRACT 2

TABLE OF CONTENTS 3
TABLE OF FIGURES 6

TABLE OF TABLES 8

INTRODUCTION 9

CHAPTER ONE
DISTRIBUTED APPLICATIONS ARCHITECTURES 10

1.1 INTRODUCTION 10
1.2 CLIENT/SERVER FUNDAMENTALS 10
1.3 CLIENT/SERVER DISTRIBUTED COMPUTING MODEL 12

1.3 .1 Structural Components 13
1.3 .2 Functional Components 14

1.4 DISTRIBUTED APPLICATION DEVELOPMENT 15
1.4 .1 Distribute Data and Functions 15
1.4.2 Define Communication Protocols 16
1.4 .3 Allocate Tasks to Separate Threads 16
1.4 .4 Keep Everything Platform and Implementation Independent 16

CHAPTER TWO
COMMON OBJECT REQUEST BROKER ARCHITECTURE
(CORBA) 17

2. 1 INFRASTRUCTURE ALTERNATIVES 17
2.2 WHAT IS CORBA? 18
2.3 CORBA ARCHITECTURE 19
2.4 HOW DOES CORBA 11GLUE11 OBJECTS TOGETHER? 19
2.5 WHAT DOES JAVA OFFER TO CORBA PROGRAMMERS? 20
2.5.1 Portability across platforms 20
2.5 .2 Internet programming 20
2.5 .3 Object-Oriented language 20
2.5.4 Component mode] 20

2.6 WHAT DOES CORBA OFFER TO JAVA PROGRAMMERS? 21
2.6.1 Interfaces defined independently of implementations 21
2.6.2 Programming language independence 21
2.6.3 Location transparency and server activation 21
2.6.4 Reuse of CORBA services and facilities 21

2.7WEB,JAVAANDCORBA 22

3

2.8 PROBLEMS IN NON-JAVA WEB APPLICATIONS
2.9 HOW CORBA SOLVES THE PROBLEM
2.10 CORBA & RMI DIFFERENCES

CHAPTER THREE
JAVA DAT ABASE CONNECTIVITY (JDBC)

3. I INTRODUCTION TO JDBC
3.3 JDBC ADV ANT AGES
3.4 WHAT DOES JAVA PROVIDE?

CHAPTER FOUR
BANK SYSTEM ANALYSIS
4. I SYSTEM GOALS
4.2 FEASIBILITY STUDIES

4.2.1 Technical Feasibility:
4.2.2 Economic Feasibility:

4.2.3 OPERATION FEASIBILITY:
4.3 DATA DICTIONARY
4.4 TABLES DESCRIPTION

CHAPTER FIVE
INPUTS OUTPUTS DESIGN

5. I SEVER INPUTS DESIGNS
5.1.1 Server Main Form
5.1.2 Server Query Form
5 .1.3 Server Chart Form
5.1.4 Server Reports Form
5.1.5 Server E-Mails Form
5.1.6 Server Add Employee Form

5.2 EMPLOYEE CLIENT INPUTS DESIGNS
5 .2.1 Employee Client Main Form
5.2.2 Employee Client Check Balance Form
5.2.3 Employee Client Deposit Form
5.2.4 Employee Client Withdraw Form
5.2.5 Employee Client Transfer Form
5.2.6 Employee Client Services Form
5.2.7 Employee Client Reports Form
5.2.8 Employee Client New User Form
5.2.9 Employee Client Update User Profile Form
5 .2.1 O Employee Client Change User Password Form
5.2.11 Employee Client Show Currencies Form

5.3 USER CLIENT INPUTS DESIGNS
5.3.1 User Client Main Form
3.3.2 User Client Check Balance Form

4

22
23
23

24

24
25
25

27

27
27
27
28
29
36
37

40
40
40
41
41
42
42
43
44
44
45
45
46
46
47
47
48
48
49
49
50
50
51

5.3.3 User Client Transfer Money Form
5.3.4 User Client Services Form
5.3.5 User Client Reports Form
5.3.6 User Client Update User Profile Form
5.3.7 User Client Change User Password Form

5.4 SERVER OUTPUTS DESIGNS:
5.4.1 Users Details Report
5.4.2 Employees Details Report
5.4.3 Currencies Prices Report
5.4.4 Withdraw Operations Report
5.4.5 Deposit Operations Report
5.4.6 Export Transfer Operations Report
5.4.7 Import Transfer Operations Report
5.4.8 Invoices Operations Report

5.5 CLIENTS OUTPUTS DESIGNS:
5.5.1 User Withdraw Operations Report
5 .5 .2 User Deposit Operations Report
5 .5 .3 User Export Transfer Operations Report
5.5.4 User Import Transfer Operations Report
5.5.5 User Invoices Operations Report

CONCLUSION

REFERENCES

APPENDIX A
PROGRAM SOURCE COUE

5

51
52
52
53
53
54
54
54
55
55
56
56
57
57
58
58
58
59
59
60

61

62

63

TABLE OF FIGURES

Figure 1.1 Conceptual Client/Server Model
Figure 1.2 Interrelationships between Computing Models
Figure 1.3: Distributed Application Structure Flowchart
Figure 1.4: Distributed Application Development
Figure 4 .1: Client login operation
Figure 4.2: Server login operation
Figure 4.3: Deposit operation
Figure 4.4: Withdraw Operation
Figure 4.5: Transfer operation
Figure 4.6: Check balance operation
Figure 4.7: Change password
Figure 4.8: Add new user or employee operation
Figure 4.9: Drop user operation
Figure 4.10: Drop employee operation
Figure 4.11: Context Diagram
Figure 4.12: Entity Relationships Model
Figure 5 .1 : Server Main Form
Figure 5.2: Server Query Form
Figure 5.3: Server Chart Form
Figure 5A: Server Reports Form
Figure 5. 5: Server E-Mails Form
Figure 5.6: Server Add Employee Form
Figure 5.7: Employee Client Main Form
Figure 5.8: Employee Client Check Balance Form
Figure 5.9: Employee Client Deposit Form
Figure 5. 1 O: Employee Client Withdraw Form
Figure 5.11: Employee Client Transfer Form
Figure 5.12: Employee Client Services Form
Figure 5 .13: Employee Client Reports Form
Figure 5.14: Employee Client New User Form
Figure 5 .15: Employee Client Update User Profile Form
Figure 5.16: Employee Client Change User Password Form
Figure 5.17: Employee Client Show Currencies Form
Figure 5. 18: User Client Main Form
Figure 5.19: User Client Check Balance Form
Figure 5.20: User Client Transfer Money Form
Figure 5.21: User Client Services Form
Figure 5.22: User Client Reports Form
Figure 5.23: User Client Update User Profile Form
Figure 5.24: User Client Change User Password Form
Figure 5.25: Users Details Report
Figure 5.26: Employees Details Report
Figure 5.27: Currencies Prices Report
Figure 5 .28: Withdraw Operations Report

6

11
12
13
15
29
30
31
31
32
32
33
33
34
34
35
36
40
41
41
42
42
43
44
45
45
46
46
47
47
48
48
49
49
50
51
51
52
52
53
53
54
54
55
55

Figure 5.29: Deposit Operations Report
Figure 5.30: Export Transfer Operations Report
Figure 5 .31: Import Transfer Operations Report
Figure 5.32: Invoices Operations Report
Figure 5.33: User Withdraw Operations Report
Figure 5.34: User Deposit Operations Report
Figure 5.35: User Export Transfer Operations Report
Figure 5.36: User Import Transfer Operations Report
Figure 5.37: User Invoices Operations Report

7

56
56
57
57
58
58
59
59
60

TABLE OF TABLES

Table 2.1: RMI & CORBA Differences
Table 4. I: Deposit Database Table
Table 4.2: EmpProfile Table
Table 4.3: Emps Table
Table 4.4: Hosts Table
Table 4.5: Prices Table
Table 4.6: Profile Table
Table 4. 7: Services Table
Table 4.8: Transfer Table
Table 4.8: Users Table
Table 4. 10: Withdraw Table

8

23
37
37
37
37
38
38
38
38
39
39

INTRODUCTION

Every day there are millions or billions of money transformation transactions occurs

all over the world. Handling this amount of money deals with the traditional manual

techniques will really be a useless method. With today's new technologies and global free

services the work goes much easer, cheaper and faster.

The banking system that we are introducing, gives both dealers and bank employees

an optimal solution to finish there jobs more efficient with a least efforts. Using Java as my

programming language makes this project a real scalable and platform-independent solution

for our days sophisticated needs. Many challenges have been raised because of system
distribution, like security and data integrity. Through the project we will find solutions for

those and other critical points.

With a lot of alternatives, we could say that choosing distributed programming and

Java Infrastructure give us the best results and solutions. Other languages like C++, Delphi

or Pascal lacks from network programming support, other that, they are all platform

dependent. With those languages the solution would be narrow and weak one. And it is true

that network is an insecure environment, related to stand-alone systems, for bank critical

transactions, but choosing and developing the correct security techniques will absolutely

overcome this challenge.

9

CHAPTER ONE

DISTRIBUTED APPLICATIONS ARCHITECTURES

1.1 Introduction

An object-oriented client/server Internet (OCSI) environment provides the IT an

infrastructure (i.e., middleware, networks, operating systems, hardware) that supports the

OCSI applications. The purpose of this chapter is to explore this enabling infrastructure

before digging deeply into the details of our banking system design. Specifically, we
review the following three core technologies of the modem IT infrastructures:

• Client/server that allows application components to behave as service consumers

(clients) and service providers (servers).

• Internet for access to application components (e.g., databases, business logic)

located around the world from Web browsers.

• Object-orientation to let applications behave as objects that can be easily created,

viewed, used, modified, reused, and deleted over time.

1.2 Client/Server Fundamentals

Client/server model is a concept for describing communications between computing

processes that are classified as service consumers (clients) and service providers (servers).

Figure 1.1 presents a simple C/S model. The basic features of a C/S model are:

1. Clients and servers are functional modules with well defined interfaces (i.e., they
hide internal information). The functions performed by a client and a server can be

implemented by a set of software modules, hardware components, or a combination

thereof Clients and/or servers may run on dedicated machines, if needed. It is

unfortunate that some machines are called "Servers". This causes some confusion,

but bewildered users know that client soft wares are also running on a server-called
machine.

2. Each client/server connection is established between two functional modules when

one module (client) initiates a service request and the other (server) chooses to

respond to the service request

10

3. Information exchange between clients and servers is strictly through messages (i.e.,

no information is exchanged through global variables). The service request and

additional information is placed into a message that is sent to the server. The

server's response is similarly another message that is sent back to the client. This is

an extremely crucial feature of CIS model.

4. Messages exchanged are typically interactive. In other words, CIS model does not

support an off-line process. There are a few exceptions. For example, message

queuing systems allow clients to store messages on a queue to be picked up

asynchronously by the servers at a later stage.

5. Clients and servers typically reside on separate machines connected through a

network. Conceptually, clients and servers may run on the same machine or on

separate machines. However, our primary interest is in distributed client/server

systems where clients and servers reside on separate machines.

The implication of the last two features is that CIS service requests are real-time messages

that are exchanged through network services. This feature increases the appeal of the CIS

model (i.e., flexibility, scalability) but introduces several technical issues such as

portability, interoperability, security, and performance.

Client Client Server

Figure 1.1 Conceptual Client/Server Model

11

1.3 Client/Server Distributed Computing Model

Figure 1.2 shows the interrelationships between distributed computing and client/server
models. Conceptually,client/servermodel is a special case ofdistributed-computingmodel.

ComputingModel

(TerminalHost Model Distributed ComputingModel

File TransferModel Client/ServerModel Peer-to-PeerModel

Figure 1 .2 Interrelationshipsbetween ComputingModels

Distributed Computing System (DCS) is a collection of autonomous computers

interconnected through a communication network to achieve business functions. A

distributed application is built upon several layers. At the lowest level, a network connects

group ofhost computers together so that they can talk to each other.Network protocols like

TCPI IP let the computers send data to each other over the network by providing the ability

to package and address data for delivery to another machine. Higher-level services can be

defined on top of the network protocol, such as directory services and security protocols.

Finally the distributed application itself runs on top of these layers, using the mid-level

services and network protocols as well as the computer operating systems to perform

coordinatedtasks across the network.

12

Structural component Functional component

Objects

System lnitiafızation

Processes Agent Identification

Threads

Security Senıices

Resources pooling

Information package & addressing

Figure 1.3: Distributed ApplicationStructureFlowchart

Distributed application requires the structuralcomponentsand functional componentsas
shown in figure1 .3. These structuraland functionalcomponents are described in detail
bellow.

1.3.1 Structural Components

Distributed applicationcan be broken down into the following structural components:

1. Processes

A typical computer operating system on a computer host can run several processes

at once. A process is created by describing a sequence of steps in a programming
language, compiling the program into an executable form, and running the in the

operating system. While it's running, a process has access to the resources

executable of the computer (such as CPU time and 1/ O devices) through the

operating system. A process can be completely devoted to a particular application,

or several applications can use a single process to perform tasks.

2. Threads
Every process has at least one thread of control. Some operatingsystems support the

creation of multiple threads of control within a single process. Each thread in a

process can run independently from the other threads, although there is usually

some synchronizationbetween them. One thread might monitor input from a socket

connection, for example, while another might listen for user events (keystrokes,

mouse movements, etc.) and provide feedback to the user through output devices

(monitor, speakers, etc.). At some point, input from the input stream may require

feedback from the user. At this point, the two threads will need to coordinate the

transfer of input data to the user's attention.

13

3. Objects

Programs written in object- oriented languages are made up of cooperating objects.

One simple definitionof an object is a group of related data, with methods available

for querying or altering the data (getName O, setName 0), or for taking some action

based on the data (sendName (OutputStreamo)). A process can be made up of one

or more objects, and these objects can be accessed by one or more threads within

the process.

1.3.2 Functional Components

In addition to the structural components described above, nearly all distributedRequire the

following functional components.

1. Information Packaging, Addressing and Delivery

Since the components of a distributed system are, by definition, distributed, there

needs to be a way to package up information,address it correctly.

2. Agent Identification

Implied by the need for information addressing is the need to be able to explicitly

identify the agents in a distributed system. These agents might be software entities

(groups of objects running on an application server), or human beings (buyers

submitting bids in an online auctioning system). Just as servers need to address data

packets sent to each other at the wire protocol level using IP addresses, agents at the

application level need to address messages that they send to each other using some

kind of identificationscheme.

3. System Initialization

In any software system, there is some kind of initializationprocess that takes place

when the system first comes to life. Distributed applications first, make some

initialization procedures before become alive. Sometimes this can be as simple as
starting a distributed server process and letting it wait for clients to connect (e. g., a

basic HTTP server).
4. Security Services

If you're spreading out the components.of a system across remote hosts, and these

hosts are talking to each other over network connections, then to some degree there

14

needs to be some consideration for security services. Sensitive data sent over

network connections may need to be secured from prying "eyes" tapping the wires.

5. Resource Pooling and Transaction Services

A distributed system will, by definition, involve more than one computing entity

(process, thread, object, agent) interacting over the network. If many entities need

access to the same resource to do what they need to do, then that resource may need

to be pooled in order to improve the lag time in servicing these agents, and the

resource may need to be wrapped with transaction services to keep its state

consistent. The agents might be software entities (groups of objects running on an

application server).

1.4 Distributed Application Development

Now that we've defined some of the building blocks, these are some of the typical steps

that go into developing distributed systems as shown in figure 1.4. Some kinds of tools and

capabilities that you'll need in order to take these steps are also mentioned. The following

is simply an overview of these topics.

u:ırtttttrn:J:Jilm,:11~••~
Distribute Data and Functions

Define Communi.cation Protocols

Allocate Tasks to Separate Threads

Resources pooling

Keep Everything Platform and Implementation Independent

Figure 1.4: Distributed Application Development

1.4.1 Distribute Data and Functions

If you think that hosts and network connections are all available for a distributed

application to use as a "virtual machine", then one of the primary tasks you have is to

engineer an optimal mapping of processes, objects and threads to the various parts of this

virtual machine. Computational tasks can be distributed based on the data needs of the

application: maximize loca] data needed for processing, and minimize data transfers over

the network.

15

application: maximize local data needed for processing, and minimize data transfers over

the network.

1.4.2 Defme Communication Protocols

The type and format of the informationthat's sent between agents in a distributed system is

a subject to many changing requirements. We know that there are two common kinds of

communication protocols, TCP/IP and UDP protocols. According to the application needs

we can decide whichprotocol to use.

1.4.3 Allocate Tasks to Separate Threads

Server often has to execute several threads of control and other threads to service requests

from multiple remote clients. Multithreading is often an effective way to optimize the use

of various resources, such as CPU time, local storage devices, or network bandwidth. The

ability to create and control multiple threads of control is especially important in

developing distributedapplications.

1.4.4 Keep Everything Platform and Implementation Independent

Any distributed system should be platform-independent.Through platform independency,

distributed systemswill be expandable and widely used.

16

CHAPTER TWO
COMMON OBJECT REQUEST BROKER ARCHITECTURE

(CORBA)

2.1 Infrastructure Alternatives

Tools and standards for distributed applicationshave been developed over the years. Some

of these standers are:

• Peer-to-Peer.

• RMI (RemoteMethod Invocation)

• CORBA(Common ObjectRequestBroker Architecture).

• And others.

In our project we've used CORBA for solving our application problem. We will explain

below why CORBA's been chosen among other infrastructures.

As a first alternative, we can solve our problem using sockets, but it will be very difficult

and complex. Developing our solution using sockets requires building the solutions from

th~lowest sockets layer to the highest user interface layer, which will of course consumes

and duplicatesour developmenttime and efforts.

In the other hand the problem can be solved by servlets, but we prefer CORBA and RMI
upon it, because in CORBA and RMI we can write every thing by our selves but servlet

restricts us to use certain style of applications.But the main advantage of servlets is that we

can easilybuild a client and run it on the browser.

We can not build our application by using Peer-to-Peer infrastructure because the term

peer- to- peer refers to a distributed system where the various agents are roughly on equal

footing. There's no obvious server or client, everyone can talk to each other and pass data

between each other which violates our solution securitysystem requirements.

17

2.2 What is CORBA?

The Common Object Request Broker Architecture (CORBA) is the most important

middleware project ever undertaken by industry. It is the product of a consortium called

OMG (Object Management Group) that includes over 700 companies, representing an

entire spectrum of the modern computer industry.Microsoft, which has its own competing

product broker called Distributed Component Object Model (DCOM) is not part of this

group.

CORBA is an open standard for building distributed objects that can interoperate

with each other. Traditional Object-Oriented programming restricts an object to

communicatewith other objects on the same machine. CORBAhas the power to extend the

address space of a program to the entire network.

CORBA is designed to allow intelligent components to discover each other and

interoperate on an object bus. CORBA goes beyond just simple interoperability; it also

specifies an extensive set of bus-related services for creating and deleting objects, accessing

them by name, storing them in persistent stores, externalizing their states, and defining ad

h6c relationshipsbetween them.

What makes CORBA so important is that it defines a middleware and has the

potential to include any other form of existing client/server middleware. In other words,

CORBA uses objects as a unified approach for bringing existing applications to the bus. It

provides a solid foundationfor a component-basedfuture. The power of CORBA is that the

entire system is self-describing.The specification of a service is always separated from the

implementation. This gives the users the possibility of incorporating existing systems

within the bus.

CORBA makes it possible to create an ordinary object and then make it

transactional, secure, lockable, and persistent by making the object able to inherit needed
services from the appropriated servers. This means that one can design an ordinary

component to provide its regular function, and then insert the right middleware mix when

18

you build it or create it in run time. There is nothing like it provided by any existing

client/server environments.

2.3 CORBA Architecture

In order to understand CORBA's components, let's consider the VisiBroker (one of the

commercial CORBA vendors) implementation of the CORBA architecture. The essential

parts to understand CORBAare:

• ORB (Object Request Broker). This is the CORBA bus that provides a variety of

services that allow client objects to transparently make requests to and receive

responses from server objects located locally or remotely. The ORB, which is the

heart of CORBA,is responsible for:

1) Finding the object implementationforthe request.

2) Preparing the object implementationfor the request.

3) Communicatingthe data making up the request.

• IIOP (Internet Inter-Orb Protocol) is a set of standards for ORB-to-ORB

communications. In other words, IIOP is the "wire protocol" that defines how

messages are sent from client to serveracross the network.

• BOA (Basic Object Adapter) is the mechanism that activates the server objects so
('

they can receive requests from clients. It is BOA's job to deactivate these objects

when they are no longerused.

• Stub and Skeleton classes are automatically generated based on created server

objects. These classes handle the marshaling and unmarshallingof parameters. The

stub is sent to the client applet and the skeleton remains on the server to interface to

object implementation.These classes handle all networking for the client and server

objects making the network transparent to the programmer.

2.4 How does CORBA "glue" objects together?

CORBA is not a programming language, it is an integration technology. CORBA

uses IDL (Interface Definition Language) to define object's public interface so other

objects can use them to communicatewith the object.

19

IDL is purely a declarative language that does not have any implementation. IDL

defines the types of objects by defining their interfaces. An interface consists of a set of

named operations and the parameters to those operations. It is through IDL that a particular

object implementation tells its potential clients what operations are available and how they

should be invoked.

From the IDL definitions, the CORBA objects are mapped into different languages.

Some of the languages that have IDL mappings are: Java, C++, C, Smalltalk, Add etc.

2.5 What does Java offer to CORDA programmers?

2.5.1 Portability across platforms

Java programs are highly portable due to the standardized byte-code generated by

Java compilers. Industry is providing compilers and run-time systems for virtually any

platform and operating system.

2.5.2 Internet programming
('

Java language binding allows implementation of CORBA clients as applets. This

allows access to legacy data using popular browsers.

2.5.3 Object-Oriented language

Java ORB's provide the same functionality as any other ORB. Java provides a

cleaner approach to object-oriented programming than C++. Additionally, Java provides

features not available in C++ or C, such as garbage collection.

2.5.4 Component model

Java beans are the most recent addition to the core of Java programming language.

The component model allows programmers to combine the functionality provided by many

Java classes into a single component. Components can be easily put together to achieve

new functionality.

20

2.6 What does CORDA off er to Java programmers?

2.6.1 Interfaces defined independently of implementations

OMG IDL provides a means of separating interfaces from implementations for

distributed objects applications. Once interfaces are defined different teams can implement

them separately.

2.6.2 Programming language independence

CORBA supports multiple languagemappings for OMG IDL so differentpart of the

system can be implemented in different languages. All interactions in the system happen

through interfacesthat are specified independentlyof any language.

2.6.3 Location transparency and server activation

Socket or URL based distributedapplicationsneed to address a server by specifying

a host name or a port number. CORBA provides location transparency; an object is

identified independentlyof its physical location without breaking the application.The ORB

provides the mechanisms for this transparency. CORBA provides mechanisms to start up

services on demand that can be controlledby various server activation policies.

2.6.4 Reuse of CORDA services and facilities

The ORB provides means for the distribution-transparent invocation of methods on

potentially remote objects. Nontrivial distributed applications require additional

functionality.Within the OMG these requirements have been analyzed and have led to the

specificationof fundamental services.These fundamentalservices are:

• Naming Services

• Trading Services

• Event Services

• TransactionServices

• SecurityServices

21

2. 7 Web, Java and CORBA

The progressionof Web functionalityfrom simple document fetching to more and more

complex and interactiveapplicationshas followedthe following steps:

• Fetching HTML or other formatted documentsfrom fixed locations.

• Fetching documents from back-end systems, such as databases, using the CGI

• Building interactive systems usingHTML forms and CGI

• Using Java scripts to increaseGUI capabilities

• Using Java applets to provide client-side functionality.

2.8 Problems in non-Java web applications

• Tools provided by HTML to create GUI-s are not sufficient for commercial

applicationswhen comparedto Windows or Macintosh OS operating systems.

• The interactivity of HTML applications is provided through CGI interfaces or

similar functionality provided by certain web server products. These have the

followingproblems:
1 . Clients.are stateless, they do not have history. The client is a sequence ofHTML

pages where each is created as the result of a CGI call. Hence all client state
information has to be passed to a program behind the CGI The only way to do

this is by encoding it into the URL.
2. Writing a client as a sequence ofHTML pages and URL is an extremely tedious

task and as such, has the potential for many errors. Data transferred from the

client to the server must be encoded in the URL string that must be parsed each

time a new CGI call is received.
3. There are a number of bottlenecks in the CGI-based approach. As a result of an

invocation a complete HTLM page is returned that contains a lot of repeated

information. The amount of repeated informationoutweighs the amount of data

produced by the application by an order of magnitude.

• HTTP is not very efficient. The major performance bottleneck occurs because

multiple connections can be created by loading a single URL and the connection

management creates a significant performanceoverhead.Furthermore, the CGI will

22

start a new operating system process each time an application processes a user

input.

2.9 How CORBA solves the problem

1. Java ORB's overcome the stateless problem by having continuously executing client

and server programs which maintain their own state variables.

2. ORB infrastructure allows the convocation of operations on remote objects, which

communicate only the data they need for each interaction. The ORB maintains a

network connection between client and server, keeping a reasonable trade-off between

lowering connection establishment overhead and freeing idle network resources.

3. CORBA follows object-oriented design conventions.

2.10 CORBA & RMI Differences

Table 2.1: RMI & CORBADifferences

Languages suppo:4f'#,fflWA'@,% 'ft::,,.,w,r'Wrr;~:1:~gC~rm:ı~r~ etc.

Runtime services Naming Naming, Lifecycle, Persistence,Transactions,etc.

Ease of programmingand setup . Excellent Good

Scalability I Good I Excellent (dependingon ORB vendor)

Performance I Good I Excellent (dependingon ORB vendor)

23

CHAPTER THREE
JAVA DATABASE CONNECTIVITY (JDBC)

3.1 Introduction to JDBC

Java Database Connectivity (JDBC) is the industry standard for database

independent connectivity between Java applets/applications and a broad range of SQL

databases. All the benefits of ''Write Once, Run Anywhere" equally apply to JDBC. The

JDBC API defines Java classes that represent database connections, SQL statements, result

sets, databasemetadata, etc.

It allows a Java programmer to do three things:

1. Establish a connectionto a database.

2. Issue SQL statements.

3. Process the results.

The JDBC API is implemented via a driver manager that can support multiple

drivers connecting to different databases. JDBC drivers can either be entirely written in

Java so that they can be downloadedas part of an applet, or they can be implementedusing

native methods to bridge to existingdatabase access libraries.

J.2 JDBC Architecture

Applicationsand Applets may access databasesvia JDBC using pure Java drivers as

follows:
1. Direct-to Database Pure Java Driver: This type of driver converts JDBC calls into

the network protocol used directly by DBMS's, al1owinga direct call from the client

machine to the DBMS server and providinga practical solution for intranet access.

2. Pure Java Driver for Database Middleware: This type of driver translates JDBC

calls into the middleware vendor's protocol, which is then translated to a DBMS

protocol by a middleware server. The middleware provides connectivity to many

different databases. You may also use ODBC drivers and existing database client

libraries as part of a JDBC connectivitysolution.

24

3. JDBC-ODBC Bridge plus ODBC Driver: The Sun bridge product provides JDBC

access via ODBC drivers. Both ODBC binary code and sometimes the database

client code must be loaded on each machine that uses this driver.

4. Native-AP! Partly Java Driver: This style of driver converts JDBC calls into calls

on the client API for Oracle, Sybase, Informix and the like. Requires that some

binary code be loaded on each client machine.

3.3 JDBC Advantages
I. Businesses can leverage existing enterprise data with JDBC by continuing to use

their installed databases and access information easily-even if it's stored on different

database management systems.

2. Businesses benefit from reduced development time. The combination of Java and

JDBC makes application development easy and economical. JDBC is simple to

learn, easy to deploy and inexpensive to maintain.

3. With JDBC, there are zero configurations for network computers because

configuration is required on the client side, since the connection is completely

defined by the JDBC URL. This supports the network-computing paradigm and

centralizes software maintenance.

3.4 What Does Java Provide?
Java is developed at potential Sun Microsystems, with improved supporting for

networking, security, and multithreaded operations. All of these features of the Java

language and environment incorporated also made for a very powerful distributed

application development environment.

Java has properties that make it powerful over other languages as:

• Object- Oriented Environment.

• Network Support.

• Abstract Interfaces.

• Platform Independence.

• Security.

• Multithreading Support.

25

• It is simple.

• Has lots of powerful stander library.

As we show from the properties, Java gives us the all requirement to build distributed

system applications. Because of that we use java language to build our application.

26

CHAPTER FOUR
BANK SYSTEM ANALYSIS

4.1 System goals
I. Facilitate operations of deposit, withdraw, transfer and invoices payment.

2. Facilitate statistical operations. For example, an annual or monthly stocking.

3. Facilitate an operation of reviewing and dragging calculations of the bank.

4. Facilitate the operations of obtaining detailed reports in any time.

5. Saving times, this could be wasted in blare operations.

6. Increasing speedy of operations and its interaction.

7. Reserving information's from loss and corruption.

8. Improving security level.

9. Having an ability to do economic studies easily on existing information quickly, to

help in developing the system.

I O. Getting most of Client/server model that allows application components to behave

as service consumers (Clients) and service providers (servers).

I 1. Cycling the work and create a new system not to cause boredom and routine.

4.2 Feasibility Studies

4.2.1 Technical Feasibility:

The system needs several equipments which could be described as follows:

4.2.1.1 Personal computers with the following specifications:

1. Pentium II or higher.

2. Free disk space 30 MB or bigger.

3. 16 MB for main memory or higher.

4. VGA Monitor.

5. Sound card & Display card.

6. Standard mouse and keyboard.

7. Fax modems (56KB) or Network card.

27

4.2.1.2 Server computer with the following specifications:

1. Pentium III or higher.

2. Free disk space 50 MB or bigger.

3. 64MB for main memory or higher.

4. VGA Monitor.

5. Sound card & Display card.

6. Standard mouse and keyboard.

7. Fax modems (56KB) or Network card.

4.2.1.3 Network equipments:

1. Hub.

2. UTP Cables.

4.2.1.4 Auxiliary equipments:

1. Printer like (Color Printer).

4.2.2 Economic Feasibility:

ı:::; The new system decreased number of employers required.

ı:::; The new system decreased time of operations, by maximizing the utilization the bank

system.

ı:::; The new system needs some computers, network equipments and starting system like

(Windows 95, 98, 2000Pro for Clients and Windows NT, Windows 2000 Server for

Server machine).

28

4.2.3 OPERATION FEASIBILITY:

,-----·-··--------··-·
Start Client Bank

System

~A""-
Use ,.. CheckUser ·-..'> Emplove

\ ~ Employ~/ 1' ·-. ,·

Noof;s~ı 1 V I -- --~---- I
---·······-·-··-······-······-········; ,-·-··-···-··-·--·-·······-···-·-······

/1 InsertUser Account & ı / Insert Employee ID/
ı Password / / & Password /~-·-r----/ '--- __T_____..

A /ch~
Tru (User Acc. ·---... Fals Tru, Emp. ID ·-.. Fals .--~ 'V,,-1 ,

.. ~ !

Fals ./ii~~---., Fals /ıi·N~-- .
~ay<// I ·"-.Tray<=,/

---..../ Run Emp. I "-. __/'* Tru Frame I ! Trui . t

j Error MSG. I ı Error MSG.
L__!~¢:~~~-..i I Try ~gain l

+ I . • . Iı i i ! . ! !ı No. ofTries ı ı No. oftrıes-++i--'
ı i i i ı

:_J ı

i Lock Emp. ID [
i &Exit !

!LockUser Acc.
! &Exit

/',' ı..•..• __...•..ııı,ı r•
\. ./

~'-..._ ____..,.-
Figure 4.1: Client login operation

29

·-·-··------------~
Start Sever Bank: System

/~ Insert Employee ID & //
/ PasswordL--·-···---ı----·····--_/

l No. o(tries = 1 !

j No. of tries++

Figure 4.2: Server login operation

30

Insert Deposit information

Update Users Information

Add New Activity in to
Deposit Cash Activities

End

Figure 4.3: Deposit operation

L
Insert Withdraw
Information's

Warning I False ~·•• •Message

"-,
IfAmount ii'""'-.

'-..., enough

'~.

Update New Amount to User
Information

Add new Activity in to
WithdrawActivities

End .'--~
Figure 4.4: Withdraw Operation

31

Insert Transfer
Information's

~eek iı·,,
False/ Accounts >-,~~~~~--~

/rrAm~l,
loıı False < of ~om Acco~J>

'~enou

'·

Warning
Message

Update New Amount to User
Information

Addnew Activity in to
TransferActivities

Figure 4.5: Transfer operation

,--------------....._,.._. ., ····---------,
/ Insert Check Balance /
I D . I l 1'..eq~ements /

r-------··-···-··-·· • ·-···--···········-··-·--,
! lı Show Balanc~Rate Message I

t.•.•-~
(:__ End ')-~

Figure 4.6: Check balance operation

32

/ ------.
/ Insert Old Password ./
'·····----···-·-······-·---ı----··-···-··-/

:tr / Insert New Password& /
I Confirm / .

/~--- I< Pas~sword -..._ 1
-- i---C rre i

~ J
~- IfNew Pass~ False Wr~
~ Confirm.,.,.,- Confirm ,._ ---

l
.:t

Wrong Old False
___ Pass _

Update User or Employee or
Administrator Info.

Figure 4.7: Change password

Add New Info. To User or
Employee info.

!

••---(_ ~

Figure 4.8: Add new user or employee operation

33

L:~~~~~:: 7+
~ ..•.

Checkil'--..,.
Account is

·'"'--. found,,
<,

Account is !111 False <
not found

If Balan~,
Account is

~mpty,,

Balance no~,. True c
empty

Delete User Information

End

Figure 4.9: Drop user operation

---···--·---··-··ııj-

L Insert ~loyec ID 7
i
,,

'Check if,,
Emp. ID is~ False ~ Emp. ID is >
not found ~ found _,,,,.,,.

'·

Delete Employee Information

Figure 4.10: Drop employee operation

34

··-········-······-··-·-·-··-·-·····-··-··-···········-···-- ······-··············-················-·············-······-·········-····-····---·-··--··--··········-·-····-·····-····-·······ı
ı

"'"··~::~.~~:""';,, iWi
...... Transform lnfo/lnJoice.info,/[)epos~ Chee~.

& Cash info. I Deposit & Wihdraw Checks
............. Ctırrem:y Llpdates / Storn.RepQ rts ...

User, Ne,,., llser, l:rrıplp:yee. arıd .NeVı1 E:rrıplcıyee . Infp .

Slips of (Transform, lnvoıce,
Balance Rate, Currency Prices)

Withdra'ı'P' Money

Slips of (Transform, lnvoıce, Balance Rate,
·········oeposff·ctıei::k&Cish;Cürrerıcy·Pni::es)··

Dep_osit and Withdraw Checks
~ : Nev.:.Employııe .Info ,

Figure 4.11: Context Diagram

35

!----~=-~~-------=~-=~---·:
1

,
1

r·----------------------~~~-~----------ı
ıl : Emps '-----------(>-----------~ EmpProfıle :-----------------------·--·----···--------· ..._/ ·-------···································

I

: ----------------------- ---------------,1
: Profile ;+I ·---------------------------------·------· ---

ı /1I -
. ;:::; <;
I .- :

~--~-----· ,-----------------:~-----------------; ·----------. ;---------------------------------------,
l) Depositl ; co : Services) 00 41 Wthdrwl)
I... ·---·----------------·-----------·-····-·-·-------·····--·-----·-········'··················-···················: .' : .

, .

i Prices
!•••-•••••·••••••••H••••••••••••••••••••

r--------------------.

!. Hosts . .!

----- 1 ,--···-··----··-·---·--------·-·---------, 1 ·-. r···--------·---------------------·-----,
-<./-- --: Users -: --<>~ Transferı :

.:.----··············;·····················' !. ••••••••••••••••••••••••••••••••••.•••••• •

j1 1

Figure 4.12: Entity RelationshipsModel

4.3 Data Dictionary
Tables:

• Deposit: (DID, account_no, amount, pdate).

(EmpID, Empemail, SMTPHost, SteEmpaddress, EmpHTele,• EmpProfile:

EmpJTele).

• Emps: (EmplD, EmpName,EmpJob, EmpPass,EmpLock).

• Hosts: (CompName,Host).

• Prices: (currname,currprice).

• Profile: (account_no,email, SMTPHost,address,HTele, JTele, Company).

• Services: (invoiceno, invoicetype, account_no,amount, payeddate).

• Transfer: (TID,Facnt_no, Tacnt_no,amount, pdate).

• Users: (account_no,name, password, amount, lock, created_date).

• Withdraw: (WID, accountno, amount, pdate).

36

4.4 Tables Description

Table 4. I: Deposit Database Table

Field Name Data Type Length Index

DID Number Long Integer P.K.
account no Number Long Integer P.K.
Amount Number Double
pdate Text 30

F.KBaseT.

Table 4.2: EmpProfıle Table

Field Name Data Type Length Index F.K Base

EmpID Number Long Integer. P.K.&F.K. _ Emps
Empemail Text 50
SMTPHost Text 50
Empaddress Text 50
EmpHTele Text 20
Em_ı:>_JTele Text 20

Table 4.3: Emps Table

Field Name Data Type Length Index

Number Long Integer P.k
Text 50
Text 20
Text 20
Yes/No

F.KBase

Em_gID
EmpName
EmpJob
Em.E,Pass
EmpLock

Table 4.4: Hosts Table

Field Name Data Type Length Index F.KBase

CompName Text 50 P.K.
Host Text 50

37

Table 4.5: Prices Table

Field Name Data Type Length Index F.KBase

currname Text 20 P.K
currprıce Number Long Integer

Table 4.6: Profile Table

Field Name Data Type Length Index F.KBase

account no Number Long Integer P.k.&F.k. Users
email Text 50
SMTPHost Text 50
address Text 50
HT ele Text 20
JTele Text 20
Company Text 50

Table 4.7: Services Table

Field Name Data Type Length Index F.KBase
ınvoıceno Number Long Integer P.K
invoicetype Text 10 P.K.
account no Number Long Integer
amount Number Double
payeddate Text 30

Table 4.8: Transfer Table

Field Name Data Type Length Index F.KBase
TIO Number Long Integer P.K
Facnt no Number Long Integer
Tacnt no Number Long Integer
amount Number Double
p_date Text 30

38

Table 4.8: Users Table

Field Name Data Type Length Index F.KBase

account no Number Long Integer P.k.
name Text 50
Password Text 20
amount Number Long Integer
Lock Yes/No
created date Text 30

Table 4. 10: Withdraw Table

Field Name Data Type Length Index F.KBaseT.

WID Number Long Integer P.K
account no Number Long Integer P.K.
Amount Number Double
pdate Text 30

39

CHAPTER FIVE
INPUTS OUTPUTS DESIGN

5.1 Sever Inputs Designs

5.1.1 Server Main Form

Figure 5.1: Server Main Form

Through the main server form the administrators can handle all administrative tasks

such as bank transactions logging, da1:<;1base query, generating statistical bank charts,

displaying status reports, sending emails and adding/dropping employees.

The File menu is used to lock or exit the program. And Employee menu is used to handle

employees' tasks (lockirlg/unlocking, adding/dropping). About menu gives brief

information about the developer and program.

40

5.1.2 Server Query Form

Figure 5.2: Server Query Form

5.1.3 Server Chart Form

Figure 5.3: Server Chart Form

41

5.1.4 Server Reports Form

Figure 5.4: Server Reports Form

5.1.5 Server E-Mails Form

Figure 5.5: Server E-Mails Form

42

5.1.6 Server Add Employee Form

ıı
·I

Figure 5.6: Server Add Employee Form

43

5.2 Employee Client Inputs Designs

5.2.1 Employee Client Main Form

c:tfi%~r t=ıt Pr'f;%:rn SJ!!~m
._· Cfoml}l'.< , I . l<id<:_. I Dtop tssef (Cue1te,tıd>c>s '
par4w-0nf A~t

Figure 5.7:Employee Client Main Form

Through the main employee form the employeescan handle all bank exchange tasks

such as serving customers by checking their balances, deposit, withdraw transfer from or to

their accounts, paying invoices and displaying account status reports. Employees can also

add/drop, lock/unlockcustomeraccounts and checking currencies exchangeprices.

The File menu is used to lock or exit the program. And User menu is used to handle user'

tasks (locking/unlocking, adding/dropping). Options Menu is used to change customers'

passwords and profiles. About menu gives brief information about the developer and
program.

44

5.2.2 Employee Client Check Balance Form

Figure 5.8: Employee Client Check Balance Form

5.2.3 Employee Client Deposit Form

Figure 5.9: Employee Client Deposit Form

45

5.2.4 Employee Client Withdraw Form

·I

Figure 5.10: Employee Client Withdraw Form

5.2.5 Employee Client Transfer Form
' \

Figure 5 .11: Employee Client Transfer Form

46

5.2.6 Employee Client Services Form

5.2.7 Employee Client Reports Form

Figure 5.13: Employee Client Reports Form

47

5.2.8 Employee Client New User Form

Figure 5.14: Employee Client New User Form

5.2.9 Employee Client Update User Profile Form

Figure 5.15: Employee Client Update User Profile Form

48

5.2.10 Employee Client Change User Password Form

Figure 5.16: Employee Client Change User Password Form

5.2.11 Employee Client Show Currencies Form

Figure 5.17: Employee Client Show Currencies Form

49

5.3 User Client Inputs Designs

5.3.1 User Client Main Form

Cu~.toftY..2'it: . :Cu.tr~:r).d:1..~.
PttJlii't~ · . S~:i'it~ıtı

. €<1.($t

1
,1

Figure 5.18:User Client Main Form

Through the main Customers' form the customers can access bank resources and

perform specific tasks such as checking their balances, transferring from their accounts,

paying invoices and displaying account status reports. Customerscan also check currencies

exchangeprices.

The File menu is used to lock or exit the program. Options Menu is used to change

customers' passwords and profiles. About menu gives brief information about the

developerand program.

50

3.3.2 User Client Check Balance Form

5.3.3 User Client Transfer Money Form

Figure 5.20: User Client Transfer Money Form

51

5.3.4 User Client Services Form

Figure 5.21: User Client Services Form

5.3.5 User Client Reports Form

52

5.3.6 User Client Update User Profile Form

Figure 5.23: User Client Update User Profile Form

5.3.7 User Client Change User Password Form

Figure 5.24: User Client Change User Password Form

53

5.4 Server Outputs Designs:

5.4.1 Users Details Report

Figure 5.25: Users Details Report

5.4.2 Employees Details Report

[!f~)ifil~l(~(i;~;1~i}ifi{\'.)'./~!\'.!li)~~-ttt}i~i?iii'.:i:1:1\i!{]f(i(;j;;!/I)!;::::::::::::=:::::::::::::::=:=:=:=:=:=:=:::=:=:~:=:=:=:::::::=:=:=:::=:~=:=:::::=:::::::::::::::=:::::::::::::::::::
fil~%ff:"$.fill.f%fff#.W.f.%%&Wlt.W.JW&&mr.~:r1.filfilf:W..%.W.&&?~&%.WWA~:r!lm.&:r.~.W,j
J::::x:

I:3'(n•.-:·~-:-:ı.::··Jfü
)fj

I
11

I.. ········•·· •·····- ·--······ , , -- - ' . . I

;.
f,dmin-

;.
ı.

93361ti6 I'm• ı,. p
j,mp ;.

Figure 5.26: Employees Details Report

54

5.4.3 Currencies Prices Report

-:!-:..:r~_.m:c.:~.A~ "Pz.i.~.;:

:;:(«.,,.i,;.~:,\" - -· . ·.. .-.~~----~----->-------.~--·~-~~~~~-----·"----~-~

Figure 5.27: Currencies Prices Report

5.4.4Withdraw Operations Report

Figure 5.28: Withdraw Operations Report

55

5.4.5 Deposit Operations Report

i?',T1¥:"::
~@:~

~iJ_-1::,~~iJ!!3

······•··.·.·.·...:.:.:.:.:~
Oep<>sit Operations

:£,:;.:.;.:.:b.,,,,.,

ı,...rn

fuo

ıfib
'"ıoJi~1-~

'\ıuiıı,,10, ban~· 2000/0~0~.

·.4.0

•1~8112.,...

~ m:f!ğ ~ ?Booo!io pl.O ~21Jowo8!12 4Jt ! ffl~~t
l l,. , ,, ,•............ =.····························'iJ]

Figure 5 .29: Deposit Operations Report

5.4.6 Export Transfer Operations Report

Figure 5.30: Export Transfer Operations Report

56

ı:....

5.4.7 Import Transfer Operations Report

Figure 5 .31: Import Transfer Operations Report

5.4.8 Invoices Operations Report

W% E~-- ~02Ş~to;ı ~o,o: ç~ıos~ l ~2~:;•:
••• '. sec- 6143650 .o 2002f0,4122 ~· · ::,:.,••• O:

peratıons ReportFıgure 5.32:

57

5.5 Clients Outputs Designs:

5.5.1 User Withdraw Operations Report

•:--:•:·.::::::·-·,- ..., ~-

,: Figure 5.33: User Withdraw Operations Report

5.5.2 User Deposit Operations Report

-·..

Figure 5.34: User Deposit Operations Report

58

5.5.3 User Export Transfer Operations Report

~, !20,00017 _. I
.· .iı-ioo!Wem~

Figure 5.35: User Export Transfer Operations Report

5.5.4 User Import Transfer Operations Report

··········~

I I

l,,,;,,,"~"*'" "'J
Figure 5.36: User Import Transfer Operations Report

59

5.5.5 User Invoices Operations Report

Figure 5.37: User Invoices Operations Report

60

>"

CONCLUSION

Through out this project I've introduced a solution for handling most common bank

systems' tasks by developing a practicable easy-to-use Graphical User Interface (GUI).

Distributing the bank system makes it more reliable, expandable and flexible. So, it

could handle many client transactions as well as server transactions at the same time with a

high performance; since it is also distribute the load among all communication terminals.

This system could also be used as centralized administration point for all bank

clients since it introduces a complete logging and tracing for all tasks done by both

employees and customers. And also it introduces the most common administrative tasks

through a graphical interface to simplify the administrators' works.

61

REFERENCES

[1] Jeremy Rosenberger, Teach Yourself CORBA in 14 Days. Macmillan Computer

Publishing.

[2] Mark Grand and Jonathan Knudsen, Java Fundamental Classes Reference.

[3] http://java.sun.com

[4] http://www.informit.com

[5] Java 2 Standard Edition SDK 1.4.0 documentations

[6] http://www.JavaWorld.com

62

APPENDIX A

PROGRAM SOURCE CODE

Client Class

import javax.swing.*;
import javax.swing.event.*;
import javax.swing.text.*;
importjavax.swing.border.*;
import javax.swing.table.*;
import java .awt.*;
import java .awt.event.*;

import java.util.*;
importjava.io.*;
import java.net.*;

IIcorba packages
import BankApp.*;
import org.omg.CosNaming.*;
import org.omg.CORBA.*;
ll II
II
II The Frame Paint functions
II
II IIııcc
II The Client classııcc
public class Client {

private static JWindow splashScreen = null;
private static Jlabel splashlabel = null;
private static javax.swing.Timert,tt;
static JFrame fr;

static JProgressBar progressBar;
static Jlabel progresslabel;

//~~~~~~~~~~~~~~~~~~~~~

II
II
II
//·~~~~~~~~~~~~~~~~~~~~
public static void StartSplashScreenO{

fl the dealay time to present the splash screen
int ONE_SECOND= 3200; II the presentationof the splash delay
//create timer to wait a specific time
t = new javax.swing.Timer(ONE_SECOND,new ActionlistenerO {
public void actionPerformed(ActionEventevt) {

hideSplashO;//to hide the splash screen after the delay

Function name: the StartSplashScreenfunction
FunctionWork: show the Splash screen in the first loading of the program

then hide it after 8 second then show the program frame

63

PLoglnO;
}});

createSplashScreenO; II creat the splash screen
showSplashScreenO; // show the Splash Screen
t.startr); //start the timer

return;
}// end offunction

//---- ----------
// Function name: the createSplashScreenfunction
II FunctionWork: create the splash screen by using JWındow function
II then put it position to the center of the screen
11·---------·---
public static void createSplashScreenO{

splashLabel = new JLabel(new lmagelcon('imagelSplash.jpg''));

splashScreen = new JWindowO;
splashScreen.getContentPaneQ.add(splashLabel);
splashScreen.packO;
DimensionscreenSize = Toolkit.getDefaultToolkitO.getScreenSizeO;
splashScreen.setLocation(screenSize.widthl2- splashScreen.getSizeQ.width/2,

screenSize.height/2- splashScreen.getSizeQ.height/2);
}// end of function

11---------------------
11 Function name: the showSplashScreenfunction
II FunctionWork: pop up the splash screen
II----------- --------------
public static void showSplashScreenO{

splashScreen.showO;
}IIend of function

11--------------------~
II Function name: the hideSplashfunction
II FunctionWork: pop down the splash screen
II--------------------------
public static void hideSplashO{

splashScreen.setVisible(false);
splashScreen = null;
splashLabel = null;
t.stopt);

}IIend of hideSplashfunction

11--------------------~
II Function name: the PLogln function
II FunctionWork: Pefore Login frame
II- -----------------------------~------
public static void PLoglnO{

JFrame f = new JFrame('null');
JPanel chkBox = new JPanelO;
chkBox.setLayout(newBoxLayout(chkBox,BoxLayout.X_AXIS));
JCheckBox user= new JCheckBox("User");
JCheckBoxemp= new JCheckBox("Employee ");

64

JLabel orlbl =new JLabel(' OR ");
JLabel gab =new JLabeır '');
chkBox.add(gab);
chkBox.add(user);
chkBox.add(orlbl);
chkBox.add(emp);

String message = " Please ! Check your Classification , Then cffck OK ... "·
lmagelcon loginlcon = new lmagelcon("imagellogin.gif');

int result= JOptionPane.showOptionDialog(f,new java.lang.ObjectO{ message,chkBox},
"Login" ,JOptionPane.OK_ CANCEL_ OPTION

JOptionPane.QUESTION_MESSAGE,
loginlcon ,new

java.lang .ObjectO{"OK" ,"Cancel'1, null);

int X =110;
if (result == O)
{

if (user.isSelectedO && emp.isSelectedO)
{

JOptionPane.showMessageDialog(f,"Please! Select Login as User or Employee
only");

PLoglnO;
}
else if (!user.isSelectedO && !emp.isSelectedO)
{

JOptionPane.showMessageDialog(f,"Please! Select one of (User and Employee
)'');

PLoglnO;
}
else if (user.isSelectedO)
{

UserFrame uf;
uf= new Userfrarnef);

}
else
{

EmpFrame ef;
ef = new EmpFrameQ;

}
}else if (result == 1){

System.exit(O);}

}

ll~~~~--~~~~~~~~~~~~~~~
II
II
II
ll~~~~~~~~~~~~~~~~~-~~~
public static void progresO{

Function name: the progres function
Function Work: give more safly to the client user by locking

the program when he leave it

fr= new JFrame("Distributed Banking System'');

65

fr.getAccessibleContextQ.setAccessibleDescriptionf'A sample application to demonstrate
Java2D features");

int WIDTH = 400, HEIGHT= 200;
fr.setSize(WIDTH, HEIGHT);
Dimension d = Toolkit.getDefaultToolkitQ.getScreenSizeO;
fr.setlocation(d.width/2 - WIDTH/2, d.height/2 - HEIGHT/2);
fr.setCursor(Cursor.getPredefinedCursor(Cursor.WAIT _CURSOR));
fr.addWindowlistener(new WindowAdapterO {

public void windowClosing(WındowEvent e) {System.exit(O);}

});
JOptionPane.setRootFrame(fr);

JPanel progressPanel = new JPanelO {
public Insets getlnsetsO {

return new lnsets(40,30,20,30);
}

};
progressPanel .setlayout(new BoxLayout(prog ressPanel, BoxLayout.Y _AXIS));.
fr .getContentPaneO .add(progressPa nel, Borde rlayout.CENTER);

Dimension labelSize = new Dimension(400, 20);
progresslabel = new JLabel('Loading, please wait...');
progressLabel.setAlignmentX(SwingConstants.CENTER);
progressLabel.setMaximumSize(labelSize);
progressLabel.setPreferredSize(labelSize);
progressPanel.add(progressLabel);
progressPanel.add(Box .createRigidArea(new Dimension (1 ,20)));

progressBar = new JProgressBarO;
progressBa r.setString Painted (true);
progressLabel.setLabelFor(progressBar);
progressBar.setAlignmentX(SwingCmıstants.CENTER);
progressBar.setMinimum(O);
progressBar.setValue(O);
progressBa r.getAccessibleContextQ.setAccessibleName('Java2D loading progressj;
progressPanel.add(progressBar);

fr.setVisible{true);
//fr.getContentPaneQ.removeAIIO;
fr.getContentPaneQ.setLayout(new BorderLayoutO);
fr.validate O;
fr.repaintt):

}

ll--~~-~-~-~-~-~-~--~-~-~-~-~--~-----~-~-~-~-~~~~
II main **11--------------------------------·-----------
public static void main(StringO args) {

proçresı):
progress Bar .setMaximum(13);

progresslabel.setText('Loading images");
progressBar.setValue(progressBar.getValueO + 1);
progressLabel.setText('Loading menus");
progressBar.setValue(progressBar.getValueO + 1);

66

progressLabel.setText("Loading Please wait ");
progressBar.setvalue(progressBar.getValueO + 1);
progressBar.setValue(prog ressBar .getValueO + 1);
progressBar.setValue(progressBar.getvalueO + 1);
progressBar.setValue(progressBar.getValueO + 1);
progressBar.setvalue(progressBar.getValueO + 1);
progressBar.setValue(progressBar.getValueO + 1);
progressBar.setValue(progressBar.getValueO + 1);
progressBar.setValue(progressBar.getValueO + 1 O);

int ONE_SECOND = 1000; //the presentation of the splash delay
//create timer to wait a specific time
tt = new javax.swing.Tımer(ONE_SECOND, new ActionListenerO {
public void actionPerformed(ActionEvent evt) {

fr.setVisible(false);
}});

tt.startt): //start the timer

StartSplashScreen O;
}

}

67

'·

Bank Server Class

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

BankApp. *;
org.omg.CosNaming.*;
org.omg.CosNaming.NamingContextPackage.*;
org.omg.CORBA.*;
java.util.*;
java.sql.*;
java.text.*;
java.net.*;
java.applet.*;

. . *Java.ıo. ;
java.lang.*;
java.awt.*;
j ava. awt. event.*;. . *J avax. swıng. ;
javax.swing.table.*;
javax.swing.event.*;
javax.swing.border.*;
javax.swing.text.*;
javax.swing.colorchooser.*;
javax.swing.filechooser.*;
javax.accessibility.*; >

//CCC
II Remote object class
//this class have the implementation for the interface Bank.idl
//ccc

class Bankservant extends BankApp._BankimplBase{

protected Connection con;
protected ResultSetMetaData metaData;
protected Statement stmt;
protected ResultSet results;
protected String driver;

int actid =O;
int TID=O;

//>>>
>>>
II Function name: BankServant
II Function work: (Constructor)
//>>>
>>>
public BankServant()

{

try

68

II force loading of driver:
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
String url = "jdbc:odbc:Bankdbd";//bridgbetween the jdbc

and the odbc
string user= "Any";//Ms-Access data base user name
String password=" ";//Ms-Access data base user password
con= DriverManager.getConnection(url,user, password);
stmt = con.createStatement();
BankServer.printMsg("\nJDBC Connection The connection

established successfully ");
}//end of try
catch (SQLException ex)
{

BankServer.printMsg("\nJDBC Connection: !!! Error in the
connection. Please be sure the Driver name is BankDBD then try again

! ! ! If} ;
system.out.println ("SQLException:");
while (ex!= null){

system.out.println ("SQLState: "+ ex.getSQLState());
System.out.println ("Message: "+ ex.getMessage());
System.out.println ("Vendor: "+ ex.getErrorCode());
ex= ex.getNextException();
System.out.println ("");

}catch (java.lang.Exceptionex) {
BankServer.printMsg("\nJDBC Connection

connection!!!");
System.out.println("Exception: " + ex);
ex.printStackTrace ();

)//end of second catch
}//end of the constructor

! ! ! Error in the

//>>>
>>>
II function name: printClientMsg
//>>>
>>>
public void printClientMsg(String Msg) {
BankServer.printMsg(Msg);}

//>>>
>>>
II function name: checkOk
//>>>
>>>
public boolean checkOk(String n,string pw,String an){
try {

String r; //return string to the client
String query= "SELECT* FROM users where account no ="+an;
results= stmt.executeQuery(query);
metaData = results.getMetaData();
if(results.next()){

String p = results.getString("password");

69

if(p.equals(pw)) {
return true;

else if(!p.equals(pw)){
return false;

else return false;
}//end of the try

catch(SQLException se) {
System.out.println("SQLException: " + se);

return false;
}//end of function

//>>>
>>>
II function name: checkempOk
//>>>
>>>
public boolean checkempOk(String id,String pw){
try {

String r;
String query= "SELECT* FROM emps where Empid ="+id;
results= stmt.executeQuery(query);
metaData = results.getMetaData();
if(results.next()){

String p = results.getString("Emppass");
if(p.equals(pw)){

return true;

else if((!p.equals(pw))){
return false;

else return false;
)//end of the try

catch(SQLException se)
System.out.println("SQLException: " + se);

return false;
}//end of function

//>>>
>>>>>
II Function name: the generateAccount function
//>>>
>>>>>
public int generateAccount(){

Random r =new Random();
int n = Math.abs(r.nextint()*l00000/100);
while(n<9999999){

n = Math.abs(r.nextint()*l00000/100);

if(n>99999999)

70

n=new Integer(n/10).intValue();
return n;

)//end of function

//>>>
>>>
II Function name: the createAccount function
//>>>
>>>
public boolean createAccount(String narne,String pass,String
userErnail,String smtphost, String address, String htele, String jtele,
String company, BankApp.numHolder noHolder)(

boolean result
int newaccount

try{
String queryl="insert into

users(account_no,narne,password,amount,created_date) values
("+newaccount+", '"+name+"', '"+pass+"', O. O, '"+getDate () +"') ";

stmt.executeUpdate(queryl);
String query2="Select account_no From users where

narne='"+narne+"'and password ='"+pass+"'"';
stmt.executeQuery(query2);
ResultSet rs= strnt.executeQuery(query2);
while(rs.next()) {

int h = rs.getint("account_no");
noHolder.value = new BankApp.num(narne,h);
string query="insert into

profile(account_no,ernail,SMTPHost,address,htele,jtele,company)
values("+String.valueOf(h)+", '"+userErnail+"', '"+smtphost+"', '"+address+"'
, '"+htele+"', '"+jtele+"', '"+company+"');";

stmt.executeUpdate(query);
BankServer.printMsg("\n[create Account)> Create a New

Account operation done for account("+newaccount+") successfully ");

false;
generateAccount();

return true;
)// end of while

}// end of try
catch (SQLException ex) {

BankServer.printMsg("\n[Create Account)>!! Error in create
account operation ");

)
return result;

}//end Function

//>>>
>>>
II function name: updateProfile2
//>>>
>>>
public boolean updateProfile2(String name, String account){
try{

71

String query2="Update users set name ='"+name+"' where account no

="+account;
stmt. executeUpdate (query2);
return true;

)II end of try
catch(SQLException sw){

return false;
)II end of catch
}

II>>>
>>>
II function name: updateProfile
II>>>
>>>
public boolean updateProfile(String name, String account,String
email,String smtphost,String address,String hTele,String jTele,String
company){
try{

String query="Update profile set email
='"+email+"',SMTPHost='"+smtphost+"',address='"+address+"',htele='"+hTele
+"',jtele='"+jTele+"',company='"+company+"'where account no =••+account;

stmt.executeUpdate(query);
if (updateProfile2(name,account)){

BankServer.printMsg("\n[Update)> Update profile operation
done for account("+account+").... ");

l
return true;

)II end of try
catch(SQLException sw){

BankServer.printMsg("\n[Update)>!! Error in update profile
operation for account("+account+")");

return false;
)II end of catch
)II end of function

II>>>
>>>
II function name: getuserProfile
II>>>
>>>
public void getUserProfile(String accountNo,BankApp.profileHolder
proHolder){
try{

String q ="Select
u.name,p.email,p.SMTPHost,p.address,p.htele,p.jtele,p.companyFrom users
as u,profile asp where p.account_no=u.account_no and
p.account_no="+accountNo;

72

ResultSet rs= stmt.executeQuery(q);
while(rs.next()){

String name =rs.getString("name");
String email =rs.getString("email");
String smtphost =rs.getString("SMTPHost");

String address =rs.getString("address");
string htele =rs.getstring("htele");
String jtele =rs.getString("jtele");
String company =rs.getString("company");

proHolder.value = new
BankApp.profile(O,name,email,smtphost,address,htele,jtele,company);

return;

}catch(SQLException sw) {
BankServer.printMsg("\n[Get User Profile J> !! Error in get profile

operation for account("+accountNo+")");
} ;
}

//>>>
>>>
II function name: checkBalance
II>>>
>>>
public void checkBalance(BankCallback callobj,String ps,String account) {

try{
String q ="Select name,amount From users where password

='"+ps+"'and account_no ="+account+";";
ResultSet rsl = stmt.executeQuery(q);
while(rsl.next()) {

String strName=rsl. getString ("name");
double Amnt=rsl.getDouble(2);
String mnt=String.valueOf(Amnt);
Std[] d=new Std[l];
d[OJ=new Std(strName,mnt);
Std[] ret=new StdSeqHolder(d) .value;
callobj.Show(ret);
BankServer.printMsg("\n[Check Balance]> Check balance

operation done for account ("+account+") successfully ");
}

}catch(SQLException sw) {
BankServer.printMsg("\n[Check Balance]>!! Error in check balance

operation for account("+account+") ");};

II>>>
>>>
II function name: getPrices
II>>>
>>>
public price[] getPrices() {

int rowcount=O,i=O;

73

price[) priceTable;

try{
String q ="Select* From prices;";
ResultSet rs= stmt.executeQuery(q);

while(rs.next()) {//to get the number of column
rowcount++;

}//end of while
}catch(SQLException sw) {

BankServer. printMsg ("\n [Get Prices) > ! ! Error in get prices
operation ") ;
} ;

if(rowcount!=O){
priceTable=new price[rowcount];
try{
//get prices function query

String q ="Select* From prices;";
ResultSet rsl = stmt.executeQuery(q);
while(rsl.next()) {

String currName=rsl.getString("currname");
String currPrice=rsl. getString ("currprice");

priceTable[iJ=new price(currName,currPrice);
i++;
}//end of while
price[] temp =new PriceSeqHolder(priceTable) .value;
return temp;

}//end of try
catch(SQLException sw){

BankServer.printMsg("\n[Get Prices]>!! Error in get prices
operation ");

} ;
}else{

priceTable=new price[l];
priceTable[O]=new price(" "," ");
price[] ret=new PriceSeqHolder(priceTable) .value;
return ret;

}//end of else

return priceTable;
)// end of function

//>>>
>>>
II function name: getmax
//>>>
>>>
public int getmax(String account,int d){

int max=O;
try{

if (d == 1) {
String maxl ="Select wid From wthdrwl where account no

="+account;
ResultSet maxrsl = stmt.executeQuery(maxl);
while(maxrsl.next()) {

int m = maxrsl.getint("wid");

74

if (max<m)
max = m;

}//end of while
return max;

}else if (d == 2) {
String max2 ="Select did From depositl where account no

="+account;
ResultSet maxrs2 = stmt.executeQuery(max2);
while(maxrs2.next()) {

int m2 = rnaxrs2. getint ("did") ;
if (max<m2)

max = m2;
}//end of while
return max;

}else if (d == 3}{
String max3 ="Select Tid From transferl where Facnt no

="+account;
ResultSet maxrs3 = stmt.executeQuery(max3);
while(rnaxrs3.next()) {

int m3 = maxrs3.getint("Tid");
if (max<m3)

max = m3;
}//end of while
return max;

}else return max;

}catch (SQLException ex) {
BankServer.printMsg("\n[Activities]> ! ! Error on Get Max Function

• • • II) ;
system.out.println ("SQLException: !! Error on Get Max Function

... ") ;
while (ex!= null)

System.out.println ("SQLState:
System.out.println ("Message:
system.out.println ("Vendor:
ex= ex.getNextException();
System.out.println ("");

"+ ex.getSQLState());
"+ ex.getMessage());
"+ ex.getErrorCode());

return max;

//>>>

>>>
II function name: updateactivity
//>>>

>>>
public boolean updateactivity(String account,String TO,String AM ,int d){

double Antl = new Double(AM).doubleValue();

try{
if (d == 1) {

int wthid = getmax(account,1)+1;
String wl="insert into wthdrwl (wid,account_no,amount,pdate)

values ("+wthid+", "+account+", "+Antl +", '"+getDate () +"'); ";

75

stmt.executeUpdate(wl);
return true;

}else if (d == 2) {
int depict= getmax(account,2)+1;
String w2="insert into depositl (did,account_no,amount,pdate)

values ("+depict+", "+account+", "+Antl+", '"+getDate () +"'); ";
stmt.executeUpdate(w2);

return true;
)else if (d == 3) {

int tid = getmax(account,3)+1;
String w3="insert into transferl

(Tid,Facnt_no,Tacnt_no,amount,pdate)
values ("+tid+", "+account+", "+TO+", "+Antl +", '"+getDate () +"'); ";

stmt.executeUpdate(w3);
return true;

}else return false;

catch (SQLException ex) {
BankServer.printMsg("\n[Activities]>!! Error on Update

Activities Movment Tables ... ");
System.out.println ("SQLException: ! ! Error on Update Activities

Movment Tables ... ");
while (ex!= null)

System.out.println ("SQLState:
System.out.println ("Message:
system.out.println ("Vendor:
ex= ex.getNextException();
System.out.println ("");

"+ ex.getSQLState());
"+ ex.getMessage());
"+ ex.getErrorCode());

return false;

II>>>
>>>
II function name: withdraw
II>>>
>>>
public String withdraw(String account,String P,String AM){

String res= "Your Password is Wrong!! Please Try again."
double newamount;

try{
String QU ="Select password,amount From users where password

='"+P+"'and account no ="+account+";";
ResultSet RS= stmt.executeQuery(QU);
while(RS.next()) {
String pass=RS.getString("password");
double Ant=RS.getDouble("amount");
double amou = new Double(AM) .doubleValue();
if(pass.equals(P)){

if(Ant==0.0) {
res="Fail operation .. \nyour account is empty";

else if(Ant<amou) {
res="Fail operation .. \nthe balance is not enouph ";

76

else {
try{

newamount = Ant-arnou;
String Qu="Update users set amount=

"+String.valueOf(newarnount)+" where account_no ="+account+"";
res="has a new balance of

"+String.value0f(newarnount)+"$";
strnt.executeUpdate(Qu);

if(updateactivity(account,"",AM,1)) {
BankServer.printMsg("\n{ Withdraw]> Withdraw

operation done for account("+account+") successfully ... ");
}

}//end of try
catch (SQLException ex) {

BankServer. printMsg ("\n [Withdraw] > ! !
Error in Withdraw operation for account("+account+") ");

}//end of catch

}//end of else
}//end of if

} / /end of while
}//end of rty
catch(SQLException sw2) {};
return rest
}//end of withdraw

//>>>

>>>
II function name: deposit
//>>>

>>>
public String deposit(String account,String AC2,String AM2) {

string res2 = "Your Password is Wrong ! ! Please Try again."
double newarnount2;

try{
String QU2 ="Select password,arnount From users where password

='"+AC2+"'and account no ="+account+";";
ResultSet RS2 = stmt.executeQuery(QU2);
while(RS2.next()) {

String Acnt2=RS2.getString("password");
double Ant2=RS2.getDouble("amount");

double amou2 = new Double(AM2) .doubleValue();
~~\1"..~'u~L-~~'u.n~~\1"..~Lll\

try{
newarnount2 = Ant2+arnou2;
String Qu2="Update users set amount=

"+String.valueO:f(newarnount2)+" where account_no ="+account+"";
res2="has a new balance of

"+String.valueOf(newamount2)+"$";
stmt.executeUpdate(Qu2};
if(updateactivity(account,"",AM2,2)) {

BankServer.printMsg("\n[Deposit]>
Deposit operation done for account("+account+"}successfully ");

}

77

)//end of try
catch (SQLException ex){

BankServer.printMsg("\n[Deposit]> !! Error in
Deposit operation for account("+account+") ");

}
}//end of if

)//end of while
}//end of try
catch(SQLException sw2) {};
return res2;
}//end of deposit

//>>>
>>>
II function name: transfer
//>>>
>>>
public String transfer(String fromAcnt,string toAcnt,String
arnmount,String psw){

String result="";
int f =new Integer(fromAcnt) .intValue();
int t =new Integer(toAcnt) .intValue();

try{
String QU ="Select password,amount From users where password

='"+psw+"'and account_no ="+fromAcnt+";";
ResultSet RS= stmt.executeQuery(QU);
while(RS.next()){

String pass=RS. getString ("password");
double dbArnnt=RS.getDouble("amount");

double Arnnt = new Double(arnrnount).doubleValue();
if(hasAccount(toAcnt)){

if(pass.equals(psw)) {
if (dbArnnt==O.O)

{
result="Fail operation .. \nYour account is empty.... ,

else if (dbArnnt<Arnnt)
{
result="Fail operation .. \nThe balance is not

enough";

else if (f == t)
{

result="Fail operation .. \nYou are Trying
to Transfer mony to Your account ";

else

try{
double newamount = dbArnnt-Arnnt;
String QU2="Update users set amount

''+String. valueOf (newamount) +" where account_ no ="+fromAcnt+"";
stmt.executeUpdate(QU2);

String op =new String ("withdraw");

78

String ty =new String ("transfer");
actid++;
int A =11;
TID++;

String QU3="select amount from users where
account no ="+toAcnt+"";

ResultSet RS2 = strnt.executeQuery(QU3);
while(RS2.next()){

double
dbAmnt2=RS2. getDouble ("amount") ;

double newarnount2 = dbAmnt2+Amnt;
String QU4="Update users set amount

"+newarnount2+" where account no ="+toAcnt+"";
strnt.executeUpdate(QU4);

if(updateactivity(frornAcnt,töAcnt,amrnount,3)){

result="The teller is
transferred successfully";

BankServer. printMsg ("\n [
Transfer]> Transfer operation done for account("+frornAcnt+") to
account("+toAcnt+") successfully •... ");

)

}//end of try
catch (SQLException ex){}
}//end of else
}// end of second if

else
result="Wrong Password!! Try again";

}// end of first if
else if(!hasAccount(toAcnt))

result="The account "+toAcnt+" is not found";
}// end of while

}//end of try
catch (SQLException ex){

Systern.out.println ("SQLException:");

while (ex!= null){
Systern.out.println ("SQLState: "+ ex.getSQLState());

System.out.println ("Message: " + ex.getMessage ());
Systern.out.println ("Vendor: "+ ex.getErrorCode());

ex= ex.getNextException();
Systern.out.println ("");

}// end of while
}// end of catch
return result;
}// end of transfer function

//>>>
>>>
II function name: invoice
//>>>
>>>
public String invoice(String ACl,String AMl,String INV,String type){

79

String resl = "Account is not found"
double newamountl;
int z=4;
try{

String QUl ="Select account_no,amount From users where account no
="+ACl;

ResultSet RSl = stmt.executeQuery(QUl);
while(RSl.next()){

int Acntl=RSl.getint("account_no");
double Antl=RSl.getDouble("amount");
int acoul = new Integer(ACl).intValue();
double amoul = new Double(AMl).doubleValue();
int inn= new Integer(INV).intValue();
String tyl="Elec";
String ty2=''Wtr";

String ty3="Tel";
if(Acntl==acoul){

String testQ ="Select invoiceno,invoicetype
From services where account_no "'"+ACl;

ResultSet testRS = stmt.executeQuery(testQ);
while(testRS.next()){

String NO=
testRS.getString("invoiceno");

String TYPE=
testRS.getString("invoicetype");

(TYPE.equals(type)))
if ((NO.equals(INV)) &&

//(NO== inn)
{

resl="Fail operation.. \nThis
Invoice Already Payed";

z = 122;

}//end of 2nd while

if (z==l22)
{
}

else if(Antl==O){
resl="Fail operation.. \nyour account is

empty";
BankServer.printMsg("\n[Pay Invoice]>!!

Error: Fail pay the "+type+" Invoice operation for the User [
"+ACl+"] has an empty account ");

else if(Antl<amoul){
resl="Fail operation.. \nthe balance is not

enouph ";
BankServer.printMsg("\n[Pay Invoice]>!!

Error: Fail pay the "+type+" Invoice operation for the User [
"+ACl+"] has not enough account ");

}
else{

try{

80

newamountl = Antl-amoul;
String Qul="Update users set

amount= "+String.valueOf(newamountl)+" where account_no ="+ACl;
resl=" your new balance is

"+String.valueOf(newamountl)+" $";
if(tyl.equals(type)) {

String ql="insert into
services(account_no,invoiceno,invoicetype,amount,payeddate)
values ("+ACl +","+INV+", '"+tyl +"', "+amoul+", '"+getDate () +"'); ";

stmt.executeUpdate(ql);
BankServer.printMsg("\n[

is pay a Electric InvoicePay Invoice]> The Customer
successfully ");

"+ACl+"

else if(ty2.equals(type)){
String q2="insert into

services(account_no,invoiceno,invoicetype,amount,payeddate)
values ("+ACl +","+inn+", '"+ty2+"', "+amoul +", '"+getDate () +"'); ";

stmt.executeUpdate(q2);
BankServer .printMsg ("\n [

is pay a Water Invoice

else if(ty3.equals(type)){
String q3="insert into

services(account_no,invoiceno,invoicetype,amount,payeddate)
values ("+ACl+", "+inn+", '"+ty3+"', "+amoul+", '"+getDate () +"'); ";

stmt.executeUpdate(q3);
BankServer. printMsg ("\n [

is pay a Telephon Invoice

Pay Invoice]> The Customer
successfully ");

"+ACl+"

Pay Invoice)> The Customer
successfully ");

"+ACl+"

stmt.executeQuery(Qul);
}//end of try
catch (SQLException ex){

system.out.println ("SQLException:
Error In Invoice Function>> .. >> .. >> .. >>");

while (ex!= null){
system.out.println ("SQLState:

"+ ex.getSQLState());

("Message: "+ ex.getMessage());

("Vendor: "+ ex.getErrorCode());

ex.getNextException();

}//end od catch
}//end of else

)//end of if
}//end of while

}//end of rty
catch(SQLException sw2) {};
return resl;

}//end of inviice

System.out.println

System.out.println

ex=

System.out.println ("");

81

//>>>
>>>
II Function name: dropUser function
//>>>
>>>
public boolean dropUser(String accountNo){

try{
String QU ="Select* From users where account no

="+accountNo;
ResultSet RS2 = stmt.executeQuery(QU);
if(RS2.next()){

double dbArnnt=RS2.getDouble("amount");
if (dbArnnt==0.0){

QU ="Delete From profile where account no
="+accountNo+";";

stmt.executeUpdate(QU);
QU ="Delete From users where account no

="+accountNo+";";
stmt.executeUpdate(QU);

BankServer.printMsg("\n[Delete CUS]> The account
"+accountNo+" is deleted successfully ");

return true;
}else return false;

}//end of if
else{

BankServer.printMsg("\n[Delete CUS]> Else Error
•••• fl) ;

return false;
)//end of else

}//end of try
catch(SQLException ex) {
BankServer.printMsg("\n[Delete cus]>!!Error :Be sure that the

account no must be integer ");
System.out.println ("SQLException: !! Error :Be sure that the

account no must be integer .. ");
while (ex!= null){
System.out.println ("SQLState: "+ ex.getSQLState());

System.out.println ("Message: "+ ex.getMessage());
System.out.println ("Vendor: "+ ex.getErrorCode());
ex= ex.getNextException();
System.out.println ("");

return false;

}//end of dropUser function

//>>>
>>>
II Function name: dropErnp function
//>>>
>>>
public boolean dropEmp(String IDNo) {

try{

82

String QU ="Select* From Emps where Empid ="+IDNo+";";
ResultSet RS2 = stmt.executeQuery(QU);
if(RS2.next()){

QU ="'Delete From Emps where Empid="+IDNo+";";
stmt.executeUpdate(QU);
QU ="Delete From Ernpprofilewhere EmpID ="+IDNo+";";
stmt.executeUpdate(QU);

JOptionPane.showMessageDialog(null,"The Employee
"+IDNo+" is deleted successfully .. ");

BankServer.printMsg("\n[Delete EMP]> The Employee "+IDNo+"
is deleted successfully ");

return true;
}//end of if
else return false;

}//end of try
catch(SQLException sw2) {
BankServer.printMsg("\n[Delete EMP)>!!Error :Be sure that the

ID No. must be integer ");
return false;
}

}//end of function

//>>>
>>>
II function name: changePsw
//>>>
>>>
public boolean changePsw(String psw,String account){

boolean res =false;
try{

String QU ="Select* From users where account no ="+account+";";
ResultSet RS= stmt.executeQuery(QU);
while (RS.next()) {

'"+psw+"' whereString QUl = "Update users set password
account no ="+account+"";

stmt.executeUpdate(QUl);
BankServer.printMsg("\n[Change Password]> Change Password

operation done for account("+account+") successfully.... ");
return true;

}catch (SQLException ex){
BankServer.printMsg("\n[Change Password]>!! Error in Change

Password operation for account("+account+").... ");
J
return res;

//>>>
>>>
II function name: isRegistered

83

//>>>
>>>
public boolean isRegistered(String account,string psw){

try{
String q="select account_no,password from users where

password='"+psw+"' and account_no="+account+";";
ResultSet rs= stmt.executeQuery(q);

if(rs.next())
return true;

else
return false;

}catch(SQLException sq){}
return false;

//>>>
>>>
II function name: isERegistered
//>>>
>>>
public boolean isERegistered(String IDNo,String psw){

try{
String q="select EmpID,Emppass from Emps where

Emppass='"+psw+"' and EmpID="+IDNo+";";
ResultSet rs= stmt.executeQuery(q);
if (rs .next ())

return true;

•,
\1
i,.,
ı•·•

else
return false;

)catch(SQLException sq) {
)
return false;

//>>>
>>>
II function name: hasAccount
//>>>
>>>
public boolean hasAccount(String account) {
try{

String QU="select account_no from users where
account_no="+account+";";

ResultSet rs= stmt.executeQuery(QU);
if (rs.next ())

return true;
else

return false;
)catch(SQLException sq){}
return false;
}//end of function

//>>>
>>>

84

II function name: hasID
//>>>
>>>
public boolean hasID(String ID){
try{

String QU="select EnıpID from Emps where Enıpid="+ID+";";
ResultSet rs= stmt.executeQuery(QU);
if (rs .next())

return true;
else

return false;
}catch(SQLException sq){)
return false;
)//end of hasID function

!!>>>
>>>
II function name: getStd
//>>>
>>>
public void getStd(BankCallback callobj){

Std[] d=new Std[2];
d[O]=new Std("asas","121212");
d[l)=new Std("wewe","100000");

Std[) ret=new StdSeqHolder(d) .value;
callobj.Show(ret);

//>>>
>>>
/ I Function name: the lockAccount function
//>>>
>>>
public boolean lockAccount(String account){

try{
String QU="select * from users where account no="+account+";";

ResultSet rs= stmt.executeQuery(QU);
if(rs.next()) {

QU = "Update users set lock
account_no="+account+";";

stmt.executeUpdate(QU);
BankServer.printMsg("\n[Lock CUS)> The Account no

("+account+") is locked successfully!!");
return true;

true where

else
return false;

}catch(SQLException sq){
BankServer.printMsg("[Lock CUS]> !! Error

for("+account+") ");
}
return false;

}//end of the lockAccount function

in lock Account

85

//>>>
>>>
II Function name: the lockID function
//>>>
>>>
public boolean lockID(String id) {

try{
String QU="select * from emps where Empid="+id;

ResultSet rs= stmt.executeQuery(QU);
if (rs. next()) {

QU = "Update Emps set Emplock = true where empid="+id;

stmt.executeUpdate(QU);
BankServer.printMsg("\n[Lock EMP]> The ID no ("+id+")

is locked successfully!!");
return true;

else
return false;

}catch(SQLException sq) {
BankServer.printMsg("[Lock EMP]> !! Error

for("+id+") ");
in lock ID

return false;
}//end of the lockID function

//>>>
>>>
II Function name: the unlockAccount function
//>>>
>>>
public boolean unlockAccount(String account) {

try{
String QU="select * from users where account_no="+account+";";

ResultSet rs= stmt.executeQuery(QU);
if(rs.next()) {

false whereQU = "Update users set lock
account_no="+account+";";

stmt.executeUpdate(QU);
BankServer.printMsg("\n[Unlock CUS]> The Account no

("+account+")is Unlocked successfully!!");
return true;

else
return false;

}catch(SQLException sq) {
BankServer. printMsg (" [Unlock CUS J > ! ! Error

Account for("+account+") ");
}
return false;

}// end of the unlockAccount function

in unlock

//>>>
>>>
II Function name: the unlockID function

86

//>>>

>>>
public boolean unlockID(String id) {

try{
String QU="select * from emps where Empid="+id;
ResultSet rs= stmt.executeQuery(QU);

if(rs.next()){
QU = "Update ernps set emplock = false where Empid="+id;

stmt.executeUpdate(QU);
BankServer.printMsg("\n[Unlock EMP]> The ID no

("+id+")is Unlocked successfully!!");
return true;

else
return false;

}catch(SQLException sq){
BankServer. printMsg (" [Unlock EMP J > ! ! Error

for ("+id+") ") ;

in unlock ID

return false;
}// end of the unlockID function

//>>>

>>>
II Function name: the getDate function
//>>>

>>>
public String getDate() {

String lastdate;
SirnpleDateFormat formatter;
formatter= new SimpleDateFormat ("EEEEEEE dd/MM/yyyy GGG",

Locale.getDefault());//hh:mm:ss
java.util.Date currentDate = new java.util.Date();
lastdate = formatter.format(currentDate);
return lastdate;

//>>>

>>>
II Function name: the IsAccountLocked function
//>>>

>>>
public boolean IsAccountLocked(String account){

try{
String QU="select lock from users where account_no="+account+";";
ResultSet rs= stmt.executeQuery(QU);
if(rs.next())

return rs.getBoolean("lock");
)catch(SQLException sq){System.out.println("! ! error in

IsAccountLocked function");}
return true;

}//end of the IsAccountLock function

87

!/>>>
>>>
II Function name: the IsIDLocked function
//>>>
>>>
public boolean IsIDLocked(String id){

try{
String QU="select emplock from emps where EmpID="'+id;
ResultSet rs= stmt.executeQuery(QU);
if (rs.next ())

return rs.getBoolean("Emplock");
}catch(SQLException sq){System.out.println("!! error

function");}

in IsIDLocked

return true;
}//end of the IsIDLock function

//>>>

>>>
II Function name: the CheckJOB function
//>>>

>>>
public bool.ean CheckJOB (String id) {
try{

String QU="select empjob from emps where EmpID="+id;
ResultSet rs= stmt.executeQuery(QU);
if (rs.next()) {

String ss =rs.getstring("empjob");
if(ss.equals("Adrnin")) return true;
else return false;

}catch(SQLException sq) {System.out.println("! ! error
function");}

return false;
}//end of the function

in CheckJOB

//>>>

>>>
II Function name: the Withdrawop function
//>>>

>>>
public void WithdrawOp(String acnt)
{

Vector fieldsVector21 = new Vector();
Vector sortFieldsVector21=new Vector();
Vector sortFieldsType21 = new Vector();

fieldsVector21.addElement("wthdrwl.amount");
fieldsVector21.addElement("wthdrwl.pdate");
sortFieldsVector21.addElement("wthdrwl.pdate");
sortFieldsType21.addElement("Asc");
String Filterstr="wthdrwl.account_no = "+acnt;
String RptHdr= "Withdraw Operations";

CreateReport r = new CreateReport(fieldsVector21,
sortFieldsVector21, sortFieldsType21, FilterStr, RptHdr);

88

II>>>

>>>II Function name: the DepositOp function
II>>>

>>>
public void DepositOp(String acnt)

{
Vector fieldsVector2 = new Vector();
Vector sortFieldsVector2=new Vector();
Vector sortFieldsType2 = new vector();

fieldsVector2. addElement ("depo si t.L, amount");
fieldsVector2. addElement ("depositl.pdate");
sortFieldsVector2.addElement("depositl.pdate");
sortFieldsType2.addElement("Asc");
String Filterstr="depositl.account_no = "+acnt;
String RptHdr=" Deposit Operations";

CreateReport r = new CreateReport(fieldsVector2,
sortFieldsVector2, sortFieldsType2, FilterStr, RptHdr);

}

II>>>

>>>II Function name: the ETransferOp function
II>>>

>>>
public void ETransferOp(String acnt)

{
Vector fieldsVector2 = new Vector();
Vector sortFieldsVector2=new Vector();
Vector sortFieldsType2 = new Vector();

fieldsVector2.addElement("transferl.Tacnt_no");
fieldsVector2.addElement("transferı.amount");
fieldsVector2.addElement("transferl.pdate");
sortFieldsVector2.addElement("transferl.pdate");
sortFieldsType2.addElement("Asc");
String FilterStr="transferl.Facnt_no = "+acnt;
String RptHdr=" Transfer operations";

CreateReport r = new CreateReport(fieldsVector2,
sortFieldsVector2, sortFieldsType2, Filterstr, RptHdr);

}

II>>>

>>>II Function name: the ITransferOp function
II>>>

>>>

89

public void ITransferOp(String acnt)
{

Vector fieldsVector2 = new Vector();
Vector sortFieldsVector2=new Vector();
Vector sortFieldsType2 = new Vector{);

fieldsVector2.addElement("transferl.Facnt_no");
fieldsVector2.addElement("transferl.amount");
fieldsVector2.addElement("transferl.pdate");
sortFieldsVector2.addElernent("transferl.pdate");
sortFieldsType2.addElement("Asc");
String Filterstr=''transferl. Tacnt_no = "+acnt;
String RptHdr=" Transfer Operations";

CreateReport r = new CreateReport(fieldsVector2,
sortFieldsVector2, sortFieldsType2, FilterStr, RptHdr);
}

//>>>
>>>
II Function name: the Invoiceop function
//>>>
>>>
public void InvoiceOp(String acnt)
{

Vector fieldsVector2 = new Vector();
Vector sortFieldsVector2=new Vector();
Vector sortFieldsType2 = new Vector();

fieldsVector2.addElement("services.invoicetype");
fieldsVector2.addElement("services.amount");
fieldsVector2.addElement("services.payeddate");
sortFieldsVector2.addElement("services.invoicetype");
sortFieldsType2. addElement ("Ase");
String FilterStr="services.account_no ="+acnt;
String RptHdr= "Invoices Operations";

CreateReport r = new CreateReport(fieldsVector2,
sortFieldsVector2, sortFieldsType2, FilterStr, RptHdr);

}//end of the class

90

//CC
II
II
II
II
II
//CC
public class BankServer {

protected Connection conl;
protected ResultSetMetaData metaDatal;
protected Statement stmtl;
protected ResultSet resultsl;
protected String driverl;
public JTextField T4;
public JFrame Fl;
public JFrame serverf;
public JPasswordField TS;
public JPasswordField T6;
public JLabel userNameLabel;

public JTextField userNameField;
public JLabel passwordLabel;
public JPasswordField passwordField;
public BankServant BankRef=null;
static JTextArea ReplyMsg;
public String today,lastdate;
public JPanel connectionPanel;

int FailLogNo = O;
String PSW ="";

//>>>
>>>>>
II Function name: the BankServer constuctor
//>>>
>>>>>
public Bankserver(String args[)){

serverFrame() ;
Connect(args);

}//end of the constructor

//>>>
>>>>>
II Function name: the dropframe function
//>>>
>>>>>
public void dropframe(){

final JFrame drop= new JFrame("Drop User");
drop.setSize(380,200);
drop.setLocation(lOO, 100);
drop.setVisible(true);

91

drop.addWindowListener(new WindowAdapter(
public void windowClosing(WindowEvent we)

drop.setVisible(false);)});
}

II>>>
>>>>>
II Function name: the printMsg function
II>>>
>>>>>
public static void printMsg(String output) {
ReplyMsg.append(output);
)II end of function

II>>>
>>>>>
II Function name: the validateExit function
II>>>
>>>>>
public void validateExit() {

JFrame f = new JFrame("null");
JPasswordField passField = new JPasswordField();
JLabel passlbl =new JLabel(" Pssword ");
Imageicon quiticon = new Imageicon("imagelquit.gif");
String message= "Are you sure you want to exit now? \nPlease

Enter the Administrator Password";
int result= JOptionPane.showOptionDialog(f,new java.lang.Object[)

{ message,passlbl,passField},
"Exit",

JOptionPane.OK_CANCEL_OPTION,
JOptionPane.QUESTION_MESSAGE,
quiticon, null, null);

String psw = new String(passField.getPassword());

passField.setText("");

if (result ==JOptionPane.OK_OPTION
{

if (psw. equals ("")) {
JOptionPane.showMessageDialog(f,"Please! Fill the

Password Field \n Press Ok to return");
validateExit();

else if(psw.equals(PSW)){
system.exit (o);

Password

else if(!psw.equals (PSW)) {
JOptionPane.showMessageDialog(f,"Error ! ! Wrong

\n Press Ok to return");
validateExit();

}else
serverf.setDefaultCloseOperation(O);

}II end of function

92

II>>>
>>>>>
II Function name: the GetMainPanel function
II>>>
>>>>>

public JPanel GetMainPanel() {
JPanel ReturnPanel = new JPanel();
ReturnPanel.setLayout(new BoxLayout(ReturnPanel,

BoxLayout.Y_AXIS));
ReturnPanel.setPreferredSize(new Dimension(550,305));
ReplyMsg = new JTextArea(9,50);
ReplyMsg.şetEditable(true);
ReplyMsg.setAlignmentY(Component.CENTER_ALIG:NMENT);
JScrollPane ScrollPan = new JScrollPane(ReplyMsg,

JScrollPane.VERTICAL_SCROLLBAR_?.LWAYS,
JScrollPane.HOR!ZONTAL SCROLLBAR ALWAYS);

JPanel p = new JPanel();
p.setPreferredSize(new Dimension(400,25));

JPanel gab= new JPanel();
ReturnPanel.add(p);
ReturnPanel.add(ScrollPan);

JButton b = new JButton(new Imageicon("imagelbuttonslclear.gif"));
b.setPressedicon(new Imageicon("imagelbuttonslclear_down.gif"));
b.setRollovericon(new Imageicon("imagelbuttonslclear_over.gif"'));
b.setDisabledicon(new Imageicon("imagelbuttonslclear.gif"));
b.setFocusPainted(false);
b.setBorderPainted(false);
b.setContentAreaFilled(false);
b.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent ae)
ReplyMsg.setText("");
} }) ;
b.setAlignmentY(SwingConstants.LEFT);

p.add(b);
return ReturnPanel;

II>>>

>>>>>
II Function name: the UserPanel function
II>>>
>>>>>
public JPanel UserPanel(){

JPanel ReturnPanel = new JPanel();
ReturnPanel.setLayout(new BoxLayout(ReturnPanel,

BoxLayout.Y_AXIS));
ReturnPanel.setPreferredSize(new Dimension(SS0,310));

ReturnPanel.add(new TableExample());
return ReturnPanel;

93

II>>>
>>>>>
II Function name: the ChartPanel function
II>>>
>>>>>
public JPanel ChartPanel(){

JPanel ReturnPanel = new JPanel();
ReturnPanel.setLayout(new BoxLayout(ReturnPanel,

BoxLayout.X_AXIS));
ReturnPanel.setPreferredSize(newDimension(550,310));
ReturnPanel.add(new Chart());
return ReturnPanel;

II>>>
>>>>>
II Function name: the ReportPanel function
II>>>
>>>>>
public JPanel ReportPanel(){

JPanel ReturnPanel = new JPanel();
ReturnPanel.setLayout(new BoxLayout(ReturnPanel,

BoxLayout.Y_AXIS));
ReturnPanel.setPreferredSize(newDimension(550,310));
ReturnPanel.add(new Reports());
return ReturnPanel;

II>>>
>>>>>
II Function name: the EmailPanel function
II>>>
>>>>>
public JPanel EmailPanel(){

JPanel ReturnPanel = new JPanel();
ReturnPanel.setLayout(new BoxLayout(ReturnPanel,

BoxLayout.Y_AXIS));
ReturnPanel.setPreferredSize(newDimension(550,310));
ReturnPanel.add(new Email());
return ReturnPanel;

II>>>
>>>>>
II Function name: the AddEmpPanel function
II>>>
>>>>>
public JPanel AddEmpPanel(){

JPanel ReturnPanel = new JPanel();
ReturnPanel.setLayout(new BoxLayout(ReturnPanel,

BoxLayout.Y_AXIS));
ReturnPanel.setPreferredSize(newDimension(550,310));
ReturnPanel.add(new AddEmployee());

94

return ReturnPanel;

II>>>

>>>>>
II Function name: the serverFrame function
II>>>

>>>>>
public void serverFrame(}{

serverf = new JFrame("admin");
Imageicon image= new Imageicon("imagelnew.gif");
serverf.seticonimage(image.getimage());
serverf.setsize(S00,600);
serverf.setLocation(ll0,10);

IITTT

TT
II Tool Bar
IITTT

TT
JToolBar m_toolBar = new JToolBar();
final JTabbedPane tabby= new JTabbedPane(l);

Irnageicon iconNew = new Irnageicon("imagelToolBarlhorne.gif");
Action actionNew = new AbstractAction("New", iconNew) {
public void actionPerformed(ActionEvent e) {

tabby.setSelectedindex(O);JJ;
JButton btnl = rn toolBar.add(actionNew);
btnl.setFocusPainted(false);

btnl.setBorderPainted(false);
btnl.setToolTipText("Go to Main Panel");

iconNew = new Irnageicon("imagellock.gif");

actionNew = new AbstractAction ("New", iconNew)
public void actionPerformed(ActionEvent e) {lockID_Dialog(O);JJ;
btnl = m_toolBar.add(actionNew);
btnl.setFocusPainted(false);
btnl.setBorderPainted(false);
btnl.setToolTipText("Lock Employee");

iconNew = new Imageicon("imagelunlock.gif");
actionNew = new AbstractAction("New", iconNew) {

public void actionPerformed(ActionEvent e) {lockID_Dialog(l); }};
btnl = m_toolBar.add(actionNew);
btnl.setFocusPainted(false);

btnl.setBorderPainted(false);
btnl.setToolTipText("Unlock Employee");

iconNew = new Irnageicon("irnage/ToolBar/userl.gif");
actionNew = new AbstractAction ("New", iconNew) {
public void actionPerformed(ActionEvent e) {dropEmpDialog(); }};

95

btnl = m_toolBar.add(actionNew);
btnl.setFocusPainted(false);
btnl.setBorderPainted(false);
btnl.setToolTipText("Drop Employee"};

iconNew = new Imageicon("image/ToolBar/sql.gif");
actionNew = new AbstractAction ("New", iconNew} {
public void actionPerformed(ActionEvent e)

{tabby.setSelectedindex(l); }};
btnl = m_toolBar.add(actionNew);
btnl.setFocusPainted(false);
btnl.setBorderPainted(false);
btnl. setToolTipText ("Manual Query");

iconNew = new Imageicon("image/ToolBar/lock.gif");
actionNew = new AbstractAction ("New", iconNew) {
public void actionPerforrned(ActionEvent e) { lockServer();}};
btnl = m_toolBar.add(actionNew);
btnl.setFocusPainted(false);
btnl.setBorderPainted(false);
btnl.setToolTipText("Lock Program");

iconNew = new Imageicon("image/ToolBar/help.gif");
actionNew = new AbstractAction ("New", iconNew) {
public void actionPerforrned(ActionEvent e) { new Help(null); }};
btnl = m_toolBar.add(actionNew);
btnl.setFocusPainted(false);
btnl.setBorderPainted(false);
btnl.setToolTipText("Main Bank Help");

iconNew = new Irnageicon ("image/ToolBar/exit. gif");
actionNew = new AbstractAction ("New", iconNew) {
public void actionPerforrned(ActionEvent e) {validateExit(); }};
btnl = m_toolBar.add(actionNew);
btnl.setFocusPainted(false);
btnl.setBorderPainted(false);
btnl.setToolTipText("Exit");

//TTT
ToolBar

End of

II The X Window Closing
serverf.addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent we) {
validateExit();

} }) ;

JMenuBar bar= new JMenuBar();
bar.setAlignmentY(Component.LEFT_ALIGNMENT);

JMenu ml= new JMenu(" File");
ml.setMnemonic('f');

ml.setToolTipText("File");

JMenu EServicesMenu = new JMenu(" Employee");
EServicesMenu.setMnemonic('e');

96

EServicesMenu.setToolTipText("Employee Services");

JMenu m2 = new JMenu("About");
m2.setMnemonic('a');
m2.setToolTipText("About");

JMenuitem il= new JMenuitem("Lock Server");
il.setMnemonic('l');

il.seticon(new Imageicon("image/ToolBar/lock.gif"));
il.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e)

{lockServer();}});

JMenuitem i2 = new JMenuitem("Quit");
i2.setMnemonic('q');

i2.seticon(new Imageicon("image/ToolBar/exit.gif"));
i2.addActionListener(new ActionListener() {

public void actionPerforrned(ActionEvent e)

{validateExit();}});

JMenuitem lockID = new JMenuitem("Lock Employee");
lockID.setMnemonic('k');
lockID.seticon(new Imageicon("image/lock.gif"));

lockID.addActionListener(new ActionListener() {
public void actionPerforrned(ActionEvent e)

{lockID_Dialog(O); }});

JMenuitem unlockID = new JMenuitem("Unlock Employee");
unlockID.setMnemonic('u');
unlockID.seticon(new Imageicon("image/unlock.gif"));

unlockID.addActionListener(new ActionListener() {
public void actionPerforrned(ActionEvent e)

{lockID_Dialog(l); }});

JMenuitem dropEmp = new JMenuitem("Drop Employee");
dropEmp.setMnemonic('e');
dropEmp.seticon(new Imageicon("image/ToolBar/userl.gif"));
dropEmp.addActionListener(new ActionListener() {
public void actionPerforrned(ActionEvent e) {dropEmpDialog();

} }) ;

JMenuitem i3 = new JMenuitem("Bank Info.");
i3.setMnemonic('b');

i3.addActionListener(new ActionListener()
public void actionPerforrned(ActionEvent e) {
Imageicon logoimage = new

Image Icon ("image/Splash_2. jpg");
int resultl =

JOptionPane.shoWOptionDialog(null,new java.lang.Object[] {},
"Bank Information",

JOptionPane.CLOSED_OPTION,
JOptionPane.QUESTION__MESSAGE,

logoimage, null, null);

} }) ;

JMenuitem i4 = new JMenuitem("Designers");
i4.setMnemonic('d');

97

i4.adc:lActionListener(new ActionListener() {
public void actionPerfonned(ActionEvent e) {

Imageicon logoimage = new
Imageicon ("image/designl. jpg");

int resultl =
JOptionPane.shoWOptionDialog(null,new java.lang.Object[J {},

"Designers",

JOptionPane.CLOSED_OPTION,
JOptionPane.QUESTION_MESSAGE,

logoimage, null, null);
} }) ;

ml. add (il);
ml.add(i2);
EServicesMenu.add(lock!D);
EServicesMenu.add(unlockID);
EServicesMenu.add(dropEmp);
m2.add(i3);
m2.add(i4);
bar.add(ml);

bar.add(EServicesMenu);
bar.add(m2);
serverf.setJMenuBar(bar);

JPanel CPanel = new JPanel();
CPanel.add(ChartPanel());

JPanel QueryPanel = new JPanel();
QueryPanel.add(UserPanel());

JPanel MainPanel = new JPanel();
MainPanel.add(GetMainPanel());

JPanel RPanel = new JPanel();
RPanel.add(ReportPanel());

JPanel EPanel = new JPanel();
EPanel.add(EmailPanel());

JPanel AddEPanel = new JPanel();
AddEPanel.a.dd(AddEmpPanel());

tabby. addTab (" M a i n ",null,MainPanel);

tabby. addTab (" Q u e r y ",null,QueryPanel,"Write any SQL and fetch

the table");
tabby.addTab(" C h a r t ",null,CPanel);

tabby. addTab (" R e p o r t s ",null, RPanel);

tabby.addTab(" Em ails ",null,EPanel);

tabby.addTab(" Add Employee ",null, AddEPanel) ;

tabby.setSelectedComponent(CPanel);

JPanel MonitorePanel = new JPanel();
MemoryMonitor MerııMonitor = new MemoryMonitor();

98

MemMonitor.setPreferredSize(new Dimension (500,100));
MonitorePanel.add(MemMonitor);

serverf.setBackground(Color.lightGray);
serverf.getContentPane() .add(m_toolBar, BorderLayout.NORTH);
serverf. getContentPane () . add ("Center", tabby) ;
serverf.getContentPane() .add("South",MonitorePanel);
serverf.setResizable(false);
serverf. pack () ;
serverf.setVisible(true);

MemMonitor.surf.start();

tabby.setSelectedComponent(MainPanel);

//>>>
>>>
II Function name: dropEmpDialog function
//>>>
>>>
public void dropEmpDialog(){

JFrame f = new JFrame("null");
JTextField IDField = new JTextField();

JLabel ID =new JLabel(" ID No");
String message= "Enter Employee ID that you want to delete.
Imageicon dropicon = new Imageicon("image/ToolBar/userl.gif");
int result= JOptionPane.showOptionDialog(null,new

java.lang.Object[) { message,ID,IDField},

"· ,

"Drop Employee",

JOptionPane.OK_CANCEL_OPTION,
JOptionPane.QUESTION_MESSAGE,

dropicon, null, null);
String IDNo = IDField.getText();

if (result== JOptionPane.OK_OPTION){
if (! BankRef. has ID (IDNo)) {

String messagel = "The Employee ID "+IDNo+" is not found!!!";
String message2 = "Press OK to try again or press cancel to

exit";
int resultl = JOptionPane.showOptionDialog(null,new

java.lang.Object[J { messagel,message2},
"Error ID not found",

JOptionPane.OK_CANCEL_OPTION,
JOptionPane.QUESTION_MESSAGE,

null, null, null);
if (resultl == JOptionPane.OK_OPTION)

dropEmpDialog();
}//end of if

else if(BankRef.hasID(IDNo)) {
boolean test= BankRef.dropEmp(IDNo);

99

if (!test)
JOptionPane.showMessageDialog(null, "The selected Employee

cann't be droped ! ! ! ");
return;

}//end of else if
)//end of first if

}//end of function

//>>>

>>>
II function name: lockID Dialog
//>>>

>>>
public void lockID_Dialog(int flag)t

if (flag==O) {
JFrame f = new JFrame("null");
JTextField IDField = new JTextField();
JLabel IDlbl =new JLabel(" Employee ID No");
String message= "Enter the Employee ID No that you want to

lock it. "· ' Imagelcon lockicon = new Imageicon("image/lock.gif");

int result= JOptionPane.showOptionDialog(null,new
java.lang.Object[J { message,IDlbl,IDField},

"Lock Employee ID",

JOptionPane.OK_CANCEL_OPTION,
JOptionPane.QUESTION_MESSAGE,
lockicon, null, null);

String IDNo - IDField.getText();

if (result== JOptionPane.OK_OPTION){
if(!BankRef.hasID(IDNo)){

String messagel = "The Employee ID "+IDNo+" is

not found!!!";

String message2 "Press OK to try again or press

cancel to exit";
int resultl =

JOptionPane.showOptionDialog(null,new java.lang.Object[J
messagel,message2},

"Error Employee

ID not found", JOptionPane.OK_CANCEL OPTION,

JOptionPane.QUESTION_MESSAGE,
null, null,

null);
if (resultl == JOptionPane.OK_OPTION)

lockID_Dialog(O);
} else if (BankRef. IsIDLocked (IDNo))

JOptionPane.showMessageDialog(null,"The Employee
ID "+IDNo+" is already locked before ! !!");

else if(!BankRef.IsIDLocked(IDNo)&&
BankRef.hasID(IDNo))

BankRef.lockID(IDNo);
)//end of first if

100

}// end of flag O
else if(flag==l){

JFrame fl= new JFrame("null");
JTextField IDFieldl = new JTextField();
JLabel IDlbll =new JLabel(" Employee ID No");
String message3 = "Enter the Employee ID No that you want to

unlock it. "· ,
Imageicon unlockicon = new Imageicon("image/unlock.gif");
int result2 = JOptionPane.showOptionDialog(null,new

java.lang.Object[J { message3,IDlbll,IDFieldl},
"Unlock Account",

JOptionPane.OK_CANCEL_OPTION,
JOptionPane.QUESTION_MESSAGE,

unlockicon, null, null);
String IDNol = IDFieldl.getText();

if (result2 == JOptionPane.OK_OPTION){
if(!BankRef.hasID(IDNol)){

String message4 = "The Employee ID "+IDNol+" is
not found!!!";

String message5 "Press OK to try again or press
cancel to exit";

int result3 =
JOptionPane.showOptionDialog(null,new java.lang.Object[J
message4,message5},

"Error Account
not found", JOptionPane.OK_CANCEL OPTION,

JOptionPane.QUESTION_MESSAGE,
null, null,

null);
if (result3 == JOptionPane.OK_OPTION)

lockID_Dialog(l);
} else if (! BankRef. IsIDLocked (IDNol))

JOptionPane.showMessageDialog(null,"The Employee
ID "+IDNol+" is already unlocked befor! !!");

else if(BankRef.IsIDLocked(IDNol)&&
BankRef.hasID(IDNol))

BankRef.unlockID(IDNol);
}//end of first if

}//end of flag 1
}// end of function

//>>>
>>>
II Function Name: lockServer function
//>>>
>>>
public void lockServer(){
JFrame f2 = new JFrame("null");
JLabel user =new JLabel("ID No. ");
JTextField IDField = new JTextField("");
JLabel psw=new JLabel("Password ");
JPasswordField passField = new JPasswordField();
JPanel chkBox = new JPanel();

101

chkBox. setLayout (new BoxLayout (chkBox, BoxLayout.X_AXIS));
JCheckBox forgetPws= new JCheckBox(" Forget Password");

chkBox.add(forgetPws);
Imageicon iconNew = new Imageicon("image/ToolBar/lock.gif");
String message=" Only the administrator can enter the Servser,";
String messagel =" then if you administrator,. please! entere";
String message2 =" your ID and password: ";
final JOptionPane optionPane =new JOptionPane();
int result= optionPane.showOptionDialog(f2,new java.lang.Object[J
message,messagel,message2,user,IDField,psw,passField,chkBoxJ,

"Lock",JOptionPane.OK_CANCEL_OPTION,
JOptionPane.QUESTION_MESSAGE,
iconNew, null, null);

String IDNo = new String(IDField.getText());
PSW = new String(passField.getPassword());

IDField.setText("");
passField.setText("");

if (result ==JOptionPane.OK_OPTION) {
if (forgetPws.isSelected()){

if (IDNo.equals("")) {
JOptionPane.showMessageDialog(f2,"Please! fill the ID No.

field!! \n Press Ok to return");
lockServer () ;

else {
if(!BankRef.hasID(IDNo)){

JOptionPane.showMessageDialog(f2, "Your ID can not be
found!! \n Press OK to exit.");

System.exit(O);
}

else if(BankRef.hasID(IDNo)){
BankRef.printClientMsg("\n--Admin->> The

Administrator Whose ID number is ("+ IDNo +") has forgotten his
password ! ! ! ");

JOptionPane.showMessageDialog(f2, "Your password
will send to your E-mail ! ! \n Press OK to exit.");

system.exit(O);

else if(PSW.equals("") 11 IDNo.equals('"')) {
JOptionPane.showMessageDialog(f2,"Please! fill all the fields to

log in \n Press Ok to return");
lockServer () ;
)
else {

if(BankRef.checkempOk(IDNo, PSW)&&
(!BankRef.IsIDLocked(IDNo))) {

if (BankRef.CheckJOB(IDNo)){
BankRef.printClientMsg("\n--Admin->> The

Administratore Whose ID number is ("+ IDNo +") entered successfully
.... ") ;

}else{

102

JOptionPane.showMessageDialog(f2,"You are
not Administratore to log in the Servsr \n Press Ok to Exit");

System.exit(O);

else if(BankRef.hasID(IDNo) &&
(! BankRef. IsIDLocked (IDNo))) {System.out .println ("flags \ \ forget
password > "+IDNo);

FailLogNo++;
if (FailLogNo == 1){

JOptionPane.showMessageDialog(f2, "You Fail
To Login For The First Time \n ! ! You have two remaining tries !! \n
please be careful when you type your information\n Press Ok to return");

lockserver();
)else if(FailLogNo == 2){

JOptionPane.showMessageDialog(f2, "You Fail
To Login For The Second Time \n ! ! You just have only one remaining try
!!\n please be careful when you type your information \n Press Ok to
return");

lockServer () ;
}else if(FailLogNo == 3)(

JOptionPane.showMessageDialog(f2, "You Fail
To Login For The third Time! !\nPress Ok to Exit");

BankRef.printClientMsg("\n--Admin->> The
Administratore Whose ID number is("+ IDNo +") failed to log-in three
times ");

System.exit(O);
)//end of the third else

}//end of the second else
else if(BankRef.IsIDLocked(IDNo) &&

BankRef.hasID(IDNo)) {
JOptionPane.showMessageDialog(f2, "Your account

now is blocked. So,contact the Admin to unlock it at :\n
BankAdmin@IslamicBank.com ... Press OK to exit. ");

System.exit(O);
}

else if(!BankRef.hasID(IDNo)) {
JOptionPane.showMessageDialog(f2, "Your ID can

not be found ! ! \n Press OK to exit.");
System.exit(O);
)

)//end of the first else
)//end of the main if statment

if (result ==JOptionPane.CANCEL_OPTION)
System.exit(O);

else if (result ==JOptionPane.CLOSED_OPTION)
lockServer();

}//end of function

//>>>
>>>
II
II
II

Function Name: Connect function
Function work: To establish the connection with ORB then wait for

Client conection.the function get the port and the
host
II as parameter.

103

//>>>
>>>
public void Connect(string args[]) {
try{

II create and initialize the ORB
ORB orb= ORB.init(args, null);
II create servant and register it with the ORB
BankRef = new BankServant();
orb.connect(BankRef);
II get the root naming context
org.omg.CORBA.Object objRef =

orb. resolve _initial_references ("NameService");
NamingContext ncRef = NamingContextHelper.narrow(objRef);

II bind the Object Reference in Naming
NameComponent ne= new NameComponent("Hello", "");
NameComponent path[] = {ne};
ncRef.rebind(path, BankRef);

II wait for invocations from clients
java.lang.Object sync= new java.lang.Object();
printMsg("\nORB Connection: Connection established

successfully ");
printMsg ("\n\n\n \n Server is

ready \n \n");
lockServer () ;

synchronized (sync)
sync.wait();

} catch (Exception e) {
printMsg ("\nORB Connection : ! ! ! Error in the ORB connection

Please restart The server and try again!!!");
system.err.println("ERROR: "+ e);
e.printStackTrace(System.out);

}

public static void main(String args[]) {
new BankServer(args);

}//end of main function
}//end of bank server

104

	Page 1
	Titles
	NEAR EAST UNIVERSITY
	Faculty of Engineering

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 2
	Titles
	ACKNOWLEDGEMENTS

	Images
	Image 1
	Image 2

	Page 3
	Titles
	ABSTRACT

	Images
	Image 1
	Image 2

	Page 4
	Titles
	TABLE OF CONTENTS
	ACKNOWLEDGEMENTS 1
	ABSTRACT 2
	TABLE OF CONTENTS 3
	TABLE OF FIGURES 6
	TABLE OF TABLES 8
	INTRODUCTION 9
	CHAPTER ONE
	DISTRIBUTED APPLICATIONS ARCHITECTURES 10
	1.1 INTRODUCTION 10
	1.2 CLIENT/SERVER FUNDAMENTALS 10
	1.3 CLIENT/SERVER DISTRIBUTED COMPUTING MODEL 12
	1.4 DISTRIBUTED APPLICATION DEVELOPMENT 15
	CHAPTER TWO
	COMMON OBJECT REQUEST BROKER ARCHITECTURE
	(CORBA) 17
	2. 1 INFRASTRUCTURE ALTERNATIVES 17
	2.2 WHAT IS CORBA? 18
	2.3 CORBA ARCHITECTURE 19
	2.4 HOW DOES CORBA 11GLUE11 OBJECTS TOGETHER? 19
	2.5 WHAT DOES JAVA OFFER TO CORBA PROGRAMMERS? 20
	2.6 WHAT DOES CORBA OFFER TO JAVA PROGRAMMERS? 21
	2.7WEB,JAVAANDCORBA 22

	Page 5
	Titles
	CHAPTER THREE
	JAVA DAT ABASE CONNECTIVITY (JDBC)
	CHAPTER FOUR
	BANK SYSTEM ANALYSIS
	CHAPTER FIVE
	INPUTS OUTPUTS DESIGN

	Images
	Image 1

	Page 6
	Titles
	5.4 SERVER OUTPUTS DESIGNS:
	61
	63

	Images
	Image 1

	Page 7
	Titles
	TABLE OF FIGURES

	Images
	Image 1

	Page 8
	Titles
	7

	Images
	Image 1

	Page 9
	Titles
	TABLE OF TABLES

	Images
	Image 1

	Page 10
	Titles
	INTRODUCTION

	Page 11
	Titles
	CHAPTER ONE
	DISTRIBUTED APPLICATIONS ARCHITECTURES

	Page 12
	Images
	Image 1
	Image 2

	Page 1
	Titles
	(

	Images
	Image 1
	Image 2
	Image 3

	Page 2
	Images
	Image 1
	Image 2
	Image 3

	Page 3
	Page 4
	Titles
	u:ırtttttrn:J:Jilm,:11~••~

	Images
	Image 1
	Image 2

	Page 5
	Page 6
	Titles
	CHAPTER TWO
	COMMON OBJECT REQUEST BROKER ARCHITECTURE

	Page 7
	Images
	Image 1

	Page 8
	Images
	Image 1

	Page 9
	Images
	Image 1

	Page 10
	Images
	Image 1

	Page 11
	Images
	Image 1

	Page 12
	Images
	Image 1
	Image 2

	Page 13
	Titles
	CHAPTER THREE
	JAVA DATABASE CONNECTIVITY (JDBC)

	Images
	Image 1

	Page 14
	Images
	Image 1

	Page 15
	Images
	Image 1

	Page 16
	Titles
	CHAPTER FOUR

	Images
	Image 1

	Page 17
	Images
	Image 1

	Page 18
	Titles
	4.2.3 OPERATION FEASIBILITY:
	,-----·-··--------··-·
	Start Client Bank
	29
	~A""-
	Noof;s~ı 1 V I -- --~---- I
	---·······-·-··-······-······-········; ,-·-··-···-··-·--·-·······-···-·-······
	~-·-r----/ '--- __ T _ ____..
	A /ch~
	--~ 'V,,-1 ,
	.. ~ !
	~ay<// I ·"-.Tray<=,/
	L__!~¢:~~~-..i I Try ~gain l
	 I . • . I
	ı i i ! . ! !
	:_J ı
	...•.. ııı,ı r�
	\. ./
	~
	Figure 4.1: Client login operation

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 19
	Titles
	·-·-··------------~
	L--·-···---ı----·····--_/

	Images
	Image 1
	Image 2

	Page 20
	Titles
	'--~
	"-,
	'~.
	L
	•• •

	Images
	Image 1
	Image 2
	Image 3

	Page 1
	Titles
	~eek iı·,,
	-,~~~~~--~
	/rrAm~l,
	,--------------....._,.._. ., ····---------,
	t
	.•.• -~
	-~

	Images
	Image 1
	Image 2
	Image 3

	Page 2
	Titles
	/~--- I
	~ J
	,._ ---
	l
	/ ------.
	:t
	••

	(_ ~

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 3
	Titles
	,,
	L:~~~~~:: 7
	+
	Check il'--..,.
	,,
	,,
	'·

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 4
	Titles
	··-········-······-··-·-·-··-·-·····-··-··-···········-···-- ······-··············-················-·············-······-·········-····-····---·-··--··--··········-·-····-·····-····-·······ı
	ı
	"'"··~::~.~~:""';,, iWi
	35
	Figure 4.11: Context Diagram
 Ctırrem:y Llpdates / Storn.RepQ rts ...

	Images
	Image 1
	Image 2
	Image 3

	Page 5
	Titles
	I
	I ·---------------------------------·------· ---
	ı /1
	. ;:::; <;
	I .- :
	I... ·---·----------------·-----------·-····-·-·-------·····--·-----·-········'··················-··················· : .' : .

	Images
	Image 1

	Page 6
	Images
	Image 1

	Tables
	Table 1
	Table 2

	Page 7
	Images
	Image 1

	Tables
	Table 1
	Table 2

	Page 8
	Images
	Image 1

	Tables
	Table 1
	Table 2

	Page 9
	Titles
	CHAPTER FIVE

	Images
	Image 1
	Image 2

	Page 10
	Images
	Image 1
	Image 2
	Image 3

	Page 11
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 12
	Images
	Image 1
	Image 2

	Page 13
	Titles
	c:tfi%~r t=ıt Pr'f;%:rn SJ!!~m

	Images
	Image 1
	Image 2

	Page 14
	Images
	Image 1
	Image 2
	Image 3

	Page 15
	Images
	Image 1
	Image 2
	Image 3

	Page 16
	Images
	Image 1
	Image 2
	Image 3

	Page 17
	Images
	Image 1
	Image 2
	Image 3

	Page 18
	Images
	Image 1
	Image 2
	Image 3

	Page 19
	Images
	Image 1
	Image 2

	Page 20
	Images
	Image 1
	Image 2
	Image 3

	Page 1
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 2
	Images
	Image 1
	Image 2
	Image 3

	Page 3
	Titles
	ı,.
	ı.
	54
	Figure 5.26: Employees Details Report
	Figure 5.25: Users Details Report
	fil~%ff:"$.fill.f%fff#.W.f.%%&Wlt.W.JW&&mr.~:r1.filfilf:W..%.W.&&?~&%.WWA~:r!lm.&:r.~.W,j
	I
	Jfü
)fj
	I
	11
	I .. ········•·· •·····- ·--······ , , -- - ' . . I
	5.4.2 Employees Details Report
	5.4 Server Outputs Designs:
	5.4.1 Users Details Report

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 4
	Titles
	:;:(«.,,.

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 5
	Titles
	..
	~·
	ı,...rn
	~ m
	l l,. , ,, ,•............ =.····························'iJ]

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Page 6
	Images
	Image 1
	Image 2
	Image 3

	Page 7
	Titles
	-·
	,:

	Images
	Image 1
	Image 2
	Image 3

	Page 8
	Titles
	I I
	l,,,;,,,"~"*'" "'J

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 9
	Images
	Image 1
	Image 2

	Page 10
	Titles
	CONCLUSION

	Images
	Image 1

	Page 11
	Titles
	REFERENCES

	Images
	Image 1

	Page 12
	Titles
	Client Class
	APPENDIX A
	ııcc
	ııcc

	Images
	Image 1

	Page 13
	Titles
	//---- ----------
	11·---------·---
	11---------------------
	11--------------------~
	11--------------------~

	Images
	Image 1

	Page 14
	Images
	Image 1

	Page 15
	Titles
	}
	ll--~~-~-~-~-~-~-~--~-~-~-~-~--~-----~-~-~-~-~~~~
	11--------------------------------·-----------
	66

	Images
	Image 1

	Page 16
	Titles
	'·

	Images
	Image 1

	Page 17
	Titles
	68
	>
	. . *
	. . *
	//this class have the implementation for the interface Bank.idl
	Bank Server Class

	Images
	Image 1

	Page 18
	Titles
	69

	Images
	Image 1

	Page 19
	Titles
	70

	Images
	Image 1

	Page 20
	Titles
	71

	Images
	Image 1

	Page 1
	Titles
	l
	72

	Images
	Image 1

	Page 2
	Titles
	73

	Images
	Image 1

	Page 3
	Titles
	74

	Images
	Image 1
	Image 2

	Page 4
	Titles
	75
	... ") ;

	Images
	Image 1

	Page 5
	Titles
	76

	Images
	Image 1

	Page 6
	Titles
	77

	Images
	Image 1

	Page 7
	Titles

	78

	Images
	Image 1

	Page 8
	Titles
	79

	Images
	Image 1

	Page 9
	Titles
	80

	Images
	Image 1

	Page 10
	Titles
	81

	Images
	Image 1
	Image 2

	Page 11
	Titles
	82

	Images
	Image 1

	Page 12
	Titles
	J
	83

	Images
	Image 1

	Page 13
	Titles
	84
	•,

	Images
	Image 1

	Page 14
	Titles
	85

	Images
	Image 1

	Page 15
	Titles
	II
	II
	86

	Images
	Image 1

	Page 16
	Titles
	87

	Images
	Image 1

	Page 17
	Titles
	88

	Page 18
	Titles
	}
	89

	Page 1
	Titles
	90

	Page 2
	Titles
	II
	II
	II
	91

	Page 3
	Titles
	92

	Page 4
	Titles
	93

	Page 5
	Titles
	94

	Page 6
	Titles
	95

	Page 7
	Titles
	96

	Images
	Image 1

	Page 8
	Titles
	97

	Images
	Image 1
	Image 2

	Page 9
	Titles
	98

	Tables
	Table 1

	Page 10
	Titles
	"·
	99

	Page 11
	Titles
	"·
	100

	Page 12
	Titles
	"·
	101

	Page 13
	Titles
 ") ;
	102

	Page 14
	Titles
	103

	Page 15
	Titles
	104

