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ABSTRACT 

Until 1976, a single key was always used to both encode the message and to decode 

it. Consequently, for two people to communicate securely, they must both have a copy of 

the same key. This raises extreme problems in transferring the key securely. 

In 1976, a law called Public Key Cryptography developed with a new approach. In 

this approach each person has two keys, which they generate with special software at the 

same time. They can relate the keys but not in any way which can be computed externally. 

One the private key is kept secret. The other the public key can be given freely to anyone. 

Something encrypted with the private key can only be decrypted with the public key. 

Something encrypted with the public key can only be decrypted with the private key. This 

means that someone can send a message without getting a secret key by simply encrypting 

public key. This utterly changes the usefulness of cryptography previously physical 

couriers were needed to transport the single keys to both end of an anticipated 

communication path because no electronic path could be trusted with the key. Public key 

cryptography, when properly implemented and used, enables people to communicate with 

complete secrecy, and to sign documents, with all practical terms of absolute security 

without ever having to exchange something like a single symmetric key which must be kept 

secret. 
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INTRODUCTION

Communication and information technology are making a dramatic impact on

society and commerce. Digital information can be efficiently stored, processed and

communicated, allowing substantial improvements in production and wealth. By

connecting providers and suppliers around the world, and allowing them to interact via

automated mechanisms, technology is opening amazing opportunities, mostly the result of

removing barriers to communication and commerce. However, with this come risks of

illegitimate, malicious use and access of information, by an adversary abusing the ease of

storage, processing and communication. There are risks and threats associated with the

existing commercial and social mechanisms. Such as expose of secret information from

storage or communication, e.g. credit card numbers or medical records. Modification in

information stored or communicated, e.g. moving funds illegitimately. Duplicating and

selling copyrighted text or music and last is misrepresent herself when communicating,

creating false image, and using this to cheat.

Cryptography is not a trivial area. Since its goal is to govern the use of information,

preventing unauthorized use, simulations and experimentation cannot test cryptographic

mechanisms. Furthermore, weaknesses are often hard to find, and often finding a weakness

involves substantial innovation and ingenuity. In fact, there is a branch of cryptography,

called cryptanalysis, dedicated tô breaking cryptographic mechanisms and their

applications. The ultimate test of any cryptographic mechanism is when a very large effort

by dedicated researchers and by actual adversaries fails to find a weakness in it. However,

this is rarely a useful test for new mechanisms and systems. This makes precise definitions

and proofs of security extremely important.

My first Chapter is all about the introduction as cryptography is the art of limiting

the use and access of information, to address such threats. And what functions involve in

this technique and then main encryption and decryption of data.
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In my second chapter I have explained various functions techniques used in

cryptography in detail. It includes ciphers, a technique use to code data then we have hash

function and the authentication methods and threats to the cryptography as how some one

can break through to check the secure information

My third chapter presents the data encryption standard (DES), this chapter describes

briefly simplified DES (S_DES) and how DES algorithm works in details, and the history

of DES, I have explained how DES works in details, there are a lot of examples which

make the understanding of this complex algorithm more easily. And also assigns if is it

possible to crack DES algorithm or not.

My last fourth chapter is about the network security. As cryptography is the

techniques and network security is overall security of the information on the network. I

have explained in detail about the network and about OSI layer model then what protocols

are and how they have threat for different attacks. And I wrote about the security risks and

security threats, and then I have explained about the Distribution of Keys and how they

make the network security possible and explain Modification of Derived Key Base .

•
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1. INTRODUCTION TO CRYPTOGRAPHY

1.1 Overview

To introduce cryptography, an understanding of issues related to information security

in general is necessary. Network security manifests itself in many ways according to the

situation and requirement. Regardless of who is involved, to one degree or another, all

parties to a transaction must have confidence that certain objectives associated with

network security have been met. Some of these objectives are listed in Table 1.1. Often the

objectives of on security cannot solely be achieved through mathematical algorithms and

protocols alone, but require procedural techniques and abidance of laws to achieve the

desired result. One of the fundamental tools used in network security is the signature. It is a

building block for many other services such as no repudiation, data origin authentication,

identification, and witnessing, to mention a few. Achieving network security in an

electronic society requires a vast array of technical and legal skills. There is, however, no

guarantee that all of the network security objectives deemed necessary can be adequately

met. The technical means is provided through cryptography. Cryptography is not the only

means of providing network security, but rather one set of techniques

1.2 Cryptography

Cryptography is the study of mathematical techniques related tö aspects of network

security such as confidentiality, data integrity, entity authentication, and data origin

authentication.

The following are the goals of the Cryptography

1. Confidentiality is a service used to keep the content of information from all but

those authorized to have it. There are numerous approaches to providing

confidentiality, ranging from physical protection to mathematical algorithms.

3



Table 1.1 Some information security objectives.
Privacy or Keeping information secret from all but those who are authorized to l
confidentiality ~rt. .
Data integrity Information has not been altered by unauthorized or unknown
ensurıng means.
Entity Corroboration of the identity of an entity (e.g., a person, a computer
authentication or terminal, a credit card, etc.).
identification
Message Corroborating the source of information; also known as data origin
authentication authentication.
Signature A means to bind information to an entity.
Authorization Conveyance, to another entity, of official sanction to do or be

something.
Validation A means to provide timeliness of authorization to use or manipulate

information or resources.
Access control Restricting access to resources to privileged entities.
Certification Endorsement of information by a trusted entity.
Time stamping Recording the time of creation or existence of information.
Witnessing Verifying the creation or existence of information by an entity other

than the creator.
Receipt Acknowledgement that information has been received.
Confirmation Acknowledgement that services has been provided
Ownership A means to provide an entity with the legal right to use or transfer a

resource to others.
Anonymity Concealing the identity of an entity involved in some process.
Non-repudiation Preventing the denial of previous commitments or actions.
Revocation Retraction of certification or authorization.

2. Data integrity is a service which addresses the unauthorized alteration of data. To

assure data integrity, one must have the ability to detect data manipulation by

unauthorized parties.
•3. Authentication is a service related to identification. This function applies to both

entities and information itself. Aspect of cryptography is usually subdivided into

two major classes: entity authentication and data origin authentication.

4. Non-repudiation is a service which prevents an entity from denying prevıous

commitments or actions.

4



A fundamental goal of cryptography is to adequately address these four areas in

both theory and practice. Cryptography is about the prevention and detection of cheating

and other malicious activities. A number of basic cryptographic tools (primitives) used to

provide network security. Examples of primitives include encryption schemes hash

functions, and digital signature schemes. Figure 1.1 provides a schematic listing of the

primitives considered and how they relate.

These primitives should be evaluated with respect to various criteria such as:

1. Level of security. This is usually difficult to quantify. Often it is given in terms of

the number of operations required to defeat the intended objective.

2. Functionality. Primitives will need to be combined to meet various network

security objectives. Which primitives are most effective for a given objective will

be determined by the basic properties of the primitives.

•
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Figure 1.1 A taxonomy of cryptographic primitives.

3. Methods of operation. Primitives, when applied in various ways and with various

inputs, will typically exhibit different characteristics; thus, one primitive could

provide very different functionality depending on its mode of operation or usage.

4. Performance. This refers to the efficiency of a primitive in a -particular mode of

operation.

5. Ease of implementation. This refers to the difficulty of realizing the primitive in a

practical instantiation. This might include the complexity of implementing the

primitive in either a software or hardware environment.
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The relative importance of various criteria is very much dependent on the

application and resources available. For example, in an environment where computing

power is limited one may have to trade off a very high level of security for better

performance of the system as a whole.

1.3 Basic Functions and Concepts

A familiarity with basic mathematical concepts used in cryptography will be useful.

One concept which is absolutely fundamental to cryptography is that of a function in the

mathematical sense. A function is alternately referred to as a mapping or a transformation.

1.3.1 Function

A set consists of distinct objects which are called elements of the set. For example,

a set X might consist of the elements a, b, c, and this is denoted X = { a; b; c}. If x is an

element of X (usually written XEX) the image of xis the element in Y which the rule f
associates with x; the image y of x is denoted by y = f(x). Standard notation for a

function f from set X to set Y is f: X ~ Y.

j.

Figure ı.1A function f from a set X to a set Y.

• 1-1 Functions: A function is 1 - l (one-to-one) if each element in the co domain Y is

the image of at most one element in the domain X.

• Onto function: A function is onto if each element in the co domain Y is the image of

at least one element in the domain.

• Bijection: If a function f: X~ Y is 1-1 and Im (f) = Y, then f is called a bijection.
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• One-way functions: A function f from a set X to a set Y is called a one-way

function if f (x) is easy to compute for all x EX but for essentially all elements

y EIm (f) it is "computationally infeasible" to find any x EX such that f(x) = y.

• Trapdoor one-way functions: A trapdoor one-way function is a one-way function f:

X7 Y with the additional property that given some extra

• Permutations: Let S be a finite set of elements. A permutation p on S is a bijection

from S to itself (i.e., p: S7S).

• Involutions: Involutions have the property that they are their own inverses. (i.e.,

f: S7 S).

1.3.2 Basic Terminology and Concepts

The scientific study of any discipline must be built upon exact definitions arising

from fundamental concepts. Where appropriate, strictness has been sacrificed for the sake

of clarity.

1.3.2.1 Encryption Domains and Co-domains

• Jl denotes a finite set called the alphabet of definition.

• 'M denotes a set called the message space. 'M consists of strings of symbols from an

alphabet. An element of :M is called a plaintext message or simply a plaintext.

• C denotes a set called the cypertext space. C consists of strings of symbols from an

alphabet; differ from the alphabet of 'M. An element of Cis called a cypertext .

1.3.2.2 Encryption and Decryption Transformations •

Encryption is the process of transforming information so it is unintelligible to

anyone but the intended recipient. Decryption is the process of transforming encıypted

information so that it is intelligible again. A cryptographic algorithm, also called a cipher,

is a mathematical function used for encryption or decryption. In most cases, two related

functions are employed, one for encryption and the other for decryption.

8



• '.l(denotes a set called the key space. An element of '.l(is called a key.

• Each element eE '.l( uniquely determines a bijection from :M to C, denoted by 'Ee.

• ©ırdenotes a bijection from Cto :M. and ©ıris called a decryption function.

• The process of applying the transformation T.e to a message me :M is usually

referred to as encrypting m or the encryption of m.

• The process of applying the transformation ©ırto a cypertext c is usually referred to

as decrypting c or the decryption of c.

• The keys e and aare referred to as a key pair and denoted by ( e; d).

1.3.2.3 Achieving Confidentiality

An encryption scheme may be used as follows for the purpose of achieving

confidentiality. Two parties Alice and Bob first secretly choose or secretly exchange a key

pair ( e: d'). At a subsequent point in time, if Alice wishes to send a message mE :M. to Bob,

she computes c = T.e (m) and transmits this to Bob. Upon receiving c, Bob computes iDıf(c) = m

and hence recovers the original message m.

The question arises as to why keys are necessary. If some particular encryption/decryption

transformation is exposed then one does not have to redesign the entire scheme but simply

change the key. Figure 1.3 provides a simple model of a two-party communication using

encryption.

•

9



_ ,. t H -:1':'·:ryı:ıti•:-n
UNSECURED CH:..t·JNEL D.,•i,c'i ~" nı

-,.,il
plaintext

destination

Eiüb

Figure 1.3 Schematic of a two-party communication.

1.3.2.4 Communication Participants

Referring to Figure 1.3, the following terminology is defined.

• An entity or party is someone or something which sends, receives, or manipulates

information. An entity may be a person, a computer terminal, etc.

• A sender is an entity in a two-party communication which is the legitimate

transmitter of information.

• A receiver is an entity in a two-party communication which is the intended

recipient of information.

• An adversary is an entity in a two-party communication which is neither the sender

nor receiver, and whicJ;ı tries to defeat the information security service being

provided between the sender and receiver.

•
1.3.2.5. Channels

A channel is a means of conveying information from one entity to another. A

physically secure channel is one which is not physically accessible to the adversary. An

unsecured channel is one from which parties other than those for which the information is

intended can reorder, delete, insert, or read. A secured channel is one from which an

10



adversary does not have the ability to reorder, delete, insert, or read. A secured channel

may be secured by physical or cryptographic techniques.

1.3.2.6 Security

A fundamental principle in cryptography is that the sets :M; G 7:(; {<Ee: e E '](}, {(J)ı:

dE 'l(] are public knowledge. When two parties wish to communicate securely using an

encryption scheme, the only thing that they keep secret is the particular key pair (e; tf),

which they must select. One can gain additional security by keeping the class of encryption

and decryption transformations secret but one should not base the security of the entire

scheme on this approach. An encryption scheme is said to be breakable if a third party,

without prior knowledge of the key pair (e; ıf) can systematically recover plaintext from

corresponding cypertext within some appropriate time frame. An encryption scheme can be

broken by trying all possible keys to see which one the communicating parties are using.

This is called an exhaustive search of the key space.

Frequently cited in the literature are Kerckhoffs' desiderata, a set of requirements

for cipher systems. They are given here essentially as Kerckhoffs originally stated them:

1. The system should be, if not theoretically unbreakable, unbreakable in practice.

2. Compromise of the system details should not inconvenience the correspondents.

3. The key should be remember able without notes and easily changed.

4. The cryptogram should be transmissible by telegraph.

5. The encryption apparatus should be portable and operable by a single person.

6. The system should be easy, requiring neither the knowledge of a long list of rules

nor mental strain.

1.3.2.7 Network Security in General

So far the terminology has been restricted to encryption and decryption with the

goal of privacy in mind. Network security is much broader, encompassing such things as

authentication and data integrity.

11



• A network security service is a method to provide specific aspect of security.

• Breaking a network security service implies defeating the objective of the intended

servıce.

• A passive adversary is an adversary who is capable only of reading information

from an unsecured channel.

• An active adversary is an adversary who may also transmit, alter, or delete

information on an unsecured channel.

1.1 Symmetric-key Encryption

Consider an encryption scheme consisting of the sets of encryption and decryption

transformations { CF.e: eE 1(} and { (l),r: ıi E 1(}, respectively, where 1( is the key space. The

encryption scheme is said to be symmetric-key if for each associated encryption/decryption

key pair ( e; d), it is computationally easy to determine cfknowing only e, and to determine e

from a. Since e = d in most practical symmetric-key encryption schemes, the term

symmetric key becomes appropriate.

A two-party communication using symmetric-key encryption can be described by the block

diagram of Figure 1.4, with the addition of the secure channel.

•
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Adversary

kEey 
source

SECURE CHANNEL

encryption
E,tm) = c . -ı -Uf~ECURE! CH.ANNEL.- •••

decryption
D.:ıı'c) = m

f·ın m.

plaintext
source

destination

Alice Bob

Figure 1.4 Two-partycommunicationusing encryption, with a secure channel

One of the major issues with symmetric-key systems is to find an efficient method

to agree upon and exchange keys securely. It is assumed that all parties know the set of
encryption/decryption transformations there are two classes of symmetric-key encryption

schemeswhich are commonly distinguished,block ciphers and stream ciphers.

1.4.1 Block Ciphers

A block cipher is an encryption scheme which breaks up the plaintext messages to
"be transmitted into strings (called blocks) of a fixed length t over an alphabet )'I., and

encrypts one block at a time. Most well-known symmetric-key encrYgtiontechniques are

• block ciphers. Two important classes of block ciphers are substitution ciphers and
transpositionciphers

13



1.4.2 Stream Ciphers

Stream ciphers form an important class of symmetric-key encryption schemes. They

are, in one sense, very simple block ciphers having block length equal to one. What makes

them useful is the fact that the encryption transformation can change for each symbol of

plaintext being encrypted. In situations where transmission errors are highly probable,

stream ciphers are advantageous because they have no error propagation. They can also be

used when the data must be processed one symbol at a time

1.4.3 The Key Space

The size of the key space is the number of encryption/decryption key pairs that are

available in the cipher system. A key is typical1y a compact way to specify the encryption

transformation to be used. For example, a transposition cipher of block length t has t!

Encryption functions from which to select Each can be simply described by a permutation

which is called the key.

1.5Digital Signatures

A cryptographic primitive who is fundamental in authentication, authorization, and

non-repudiation is the digital signature. The purpose of a digital signature is to provide a

means for an entity to bind its identity to a piece of information. The process of signing

entails transforming the message and some secret information held by the entity into a tag

called a signature.

•
1.5.1. Nomenclature and Set-up

The transformations S;t and '0ı provide a digital signature scheme for }l.

• '.Mis the set of messages which can be signed.

• Sis a set of elements called signatures, possibly binary strings of a fixed length.

14



• SJl is a transformation from the message set <Jrl to the signature set S, and is called a

signing transformation for entity J4. 

• ~ is a transformation from the set <Jrl -t S to the set {true, false} ~ is called a

verification transformation for }1. 's signatures, is publicly known, and is used by

other entities to verify signatures created by }1..

1.6 Public-key Cryptography 

The concept of public-key encryption is simple and elegant, but has far-reaching

consequences. Let { 'Ee: e E 1(} be a set of encryption transformations, and let { <Da- cf E 1(}

be the set of corresponding decryption transformations, where '.l(is the key space. Consider

any pair of associated encryption/decryption transformations ('Ee; (J)d) and suppose that each

pair has the property that knowing 'Ee it is computationally infeasible, given a random

ciphertext cEC, to find the message mE<Jrl. such that 'Ee(m) = c. This property implies that

given e it is infeasible to determine the corresponding decryption key cf. 'Ee is being viewed

here as a trapdoor one-way function with cf being the trapdoor information necessary to

compute the inverse function and hence allow decryption. This is unlike symmetric-key

ciphers where e and cf are essentially the same.

The encryption method is said to be a public-key encryption scheme if for each associated

encryption/decryption pair (e; a), one key e (the public key) is made publicly available,

while the other cf (the private key) is kept secret. For the scheme to be secure, it must be

computationally infeasible to coıı;ıpute cffrom e. To avoid ambiguity, a common convention

is to use the term private key in association with public-key cryptosystems, and secret key

in association with symmetric-key cryptosystems •
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Figure 1.5 Encryptionusing public-key techniques.

1. 7 Hash Functions 

One of the fundamental primitives in modern cryptography is the cryptographic

hash function, often informally called a one-way hash function. A simplified definition for

the present discussion follows. A hash function is a computationally efficient function

mapping binary strings of arbitrary length to binary strings of some fixed length, called
hash-values. For a hash function which outputs n-bit hash-values and has desirable

properties, the probability that aı randomly chosen string gets mapped to a particular n-bit
hash-value (image) is ı-n. The basic idea is that a hash-value serves as a compact

representative of an input string. To be of cryptographic use, a hash function Ii is typically

chosen such that it is computationally infeasible to find two distinct inputs which hash to a

common value and that given a specific hash-value y, it is computationally infeasible to

find an input x such that /i(x) = y. The most common cryptographic uses of hash functions

are with digital signatures and for data integrity Hash functions are typically publicly

known and involve no secret keys. When used to detect whether the message input has

been altered, they are called modification detection codes (MDCs). Related to these are
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hash functions which involve a secret key, and provide data origin authentication as well as

data integrity; these are called message authentication codes (MA Cs).

1.8 Protocols, Mechanisms 

A cryptographic protocol is a distributed algorithm defined by a sequence of steps

precisely specifying the actions required of two or more entities to achieve a specific

security objective. As opposed to a protocol, a mechanism is a more general term

encompassing protocols, algorithms and non-cryptographic techniques to achieve specific

security objectives. Protocols play a major role in cryptography and are essential in meeting

cryptographic goals. Encryption schemes, digital signatures, hash functions, and random

number generation are among the primitives which may be utilized to build a protocol.

1.8.1 Protocol and Mechanism Failure 

A protocol failure or mechanism failure occurs when a mechanism fails to meet the

goals for which it was intended. Protocols and mechanisms may fail for a number of

reasons:

1. Weaknesses in a particular cryptographic primitive which may be amplified by the

protocol or mechanism.

2. Claimed or assumed security guarantees which are overstated or not clearly

understood.

3. The oversight of some principle applicable to a broad class of primitives such as

encryption.

When designing cryptographic protocols and mechanisms, the following two steps are

essential:

1. Identify all assumptions in the protocol or mechanism design.

2. For each assumption, determine the effect on the security objective if that

assumption is violated.
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1.9 Classes of Attacks and Security Models

Over the years, many different types of attacks on cryptographic primitives and

protocols have been identified. The attacks these adversaries can mount may be classified

as follows:

1. A passive attack is one where the adversary only monitors the communication

channel. A passive attacker only threatens confidentiality of data.

2. An active attack is one where the adversary attempts to delete, add, or in some other

way alter the transmission on the channel.

A passive attack can be further subdivided into more specialized attacks for deducing

plaintext from ciphertext.

1.9.1 Attacks on Encryption Schemes

The objective of the following attacks is to systematically recover plaintext from

ciphertext, or even more drastically, to deduce the decryption key.

1. A ciphertext-only attack is one where the adversary tries to deduce the decryption

key or plaintext by only observing ciphertext.

2. A known-plaintext attack is one where the adversary has a quantity of plaintext and

corresponding ciphertext.

3. A chosen-plaintext attack is one where the adversary chooses plaintext and is then

given corresponding ciphertext.

4. An adaptive chosen-plaintext attack is a chosen-plaintext attack'wherein the choice

of plaintext may depend on the ciphertext received from previous requests.

5. A chosen-ciphertext attack is one where the adversary selects the ciphertext and is

then given the corresponding plaintext. One way to mount such an attack is for the

adversary to gain access to the equipment used for decryption

6. An adaptive chosen-ciphertext attack is a chosen-ciphertext attack where the choice

of ciphertext may depend on the plaintext received from previous requests.
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1.9.2 Attacks on Protocols

The following is a partial list of attacks which might be mounted on varıous

protocols. Until a protocol is proven to provide the service intended, the list of possible

attacks can never be said to be complete.

1. Known-key attack. In this attack an adversary obtains some keys used previously

and then uses this information to determine new keys.

2. Replay. In this attack an adversary records a communication session and replays the

entire session, or a portion thereof, at some later point in time.

3. Impersonation. Here an adversary assumes the identity of one of the legitimate

parties in a network.

4. Dictionary. This is usually an attack against passwords. An adversary can take a list

of probable passwords; hash all entries in this list, and then compare this to the list

of true encrypted passwords with the hope of finding matches.

5. Forward search. This attack is similar in spirit to the dictionary attack and is used to

decrypt messages.

6. Interleaving attack. This type of attack usually involves some form of

impersonation in an authentication protocol.

•
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2. CRYPTOGRAPHY FUNCTIONS 

2.1 Overview 

In this chapter basic functions involved in cryptographyare explained. Functions
which are used in the encryptions and decryptionof the text such ciphers mainly block

cipher and stream ciphers. Hash functions are also one of the important encryption

functions. It is also explained that how the attacks are being done on cryptographyand

whatare the authenticationmethodsarebeingused so for.

2.2 Block Ciphers 

The most important symmetric algorithmsare block ciphers. The general operation
of all block ciphers is the same - a givennumber of bits of plaintext(a block) are encrypted
into a block of ciphertextof the same size. Thus, all block ciphershave a naturalblock size

- the number of bits they encrypt in a single operation.This stands in contrast to stream

ciphers,which encryptone bit at a time. Any block cipher can be operated in one of several

modes.

2.2.1 Iterated Block Cipher 

An iterated block cipher is one that encryptsa plaintextblock by a process that has

several rounds. In each round, the same transformationor round function is applied to the

data using a subkey. The set of subkeys are usually derived from the user-providedsecret

key by a key schedule.The number of rounds in an iterated cipher depends on the desired

security level and the consequent trade-off with performance. In most cases, an increased

number of rounds will improve the securityofferedby a block cipher, but for some ciphers

the number of rounds required to achieve adequate securitywill be too large for the cipher

to be practicalor desirable.
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2.2.2 Electronic Codebook (ECB) Mode 

ECB is the simplest mode of operationfor a block cipher. The input data is padded

out to a multiple of the block size, broken into an integer number of blocks, each of which

is encrypted independentlyusing the key. In addition to simplicity,ECB has the advantage

of allowingany block to be decryptedindependentlyof the others. Thus, lost data blocksdo

not affect the decryptionof other blocks. The disadvantageof ECB is that it aids known­

plaintext attacks. If the same block of plaintext is encrypted twice with ECB, the two
resultingblocksof ciphertextwillbe the same.

ECBENCRYPTION ECB DECRYPTION 

I
PLAIN1EXT ClfflERTEXT 

lNl?lITBLOCK. tNl?lITBLOCK..

ENCRYPT DECRYPT 

OlITl?lITBLOCK

ClfflERTEXT PLAIN'IEXT 

Figure 2.1: Shows a ECB Encryption/DecryptionModel

21



2.2.3 Cipher Block Chaining (CBC) Mode

CBC is the most commonly used mode of operation for a block cipher. Prior to encryption,

each block of plaintext is XOR-ed with the prior block of ciphertext. After decryption, the

output of the cipher must then be XOR:ed with the previous ciphertext to recover the

original plaintext. The first block of plaintext is XOR-ed with an initialization vector (IV),

which is usually a block of random bits transmitted in the clear. CBC is more secure than

ECB because it effectively scrambles the plaintext prior to each encryption step. Since the

ciphertext is constantly changing, two identical blocks of plaintext will encrypt to two

different blocks of ciphertext. The disadvantage of CBC is that the encryption of a data

block becomes dependent on all the blocks prior to it. A lost block of data will also prevent

decoding of the next block of data. CBC can be used to convert a block cipher into a hash

algorithm. To do this, CBC is run repeatedly on the input data, and all the ciphertext is

discarded except for the last block, which will depend on all the data blocks in the message.

This last block becomes the output of the hash function.

IV PLAIN TEXT 1 Pl.Al N TEXT 2 PLAIN TEXT J.

UIPLlt"'BJ..CC"ls. UIPı.ıt"'B.ı..crı;. UIPUT'B.ı..crt;.

ENCRVPJ' ENCRVPJ' ENCRVPf

OIITPUT'Bt=t;. Oı.ıt"Pı.ıt"'BJ..CC"K. OUTPut"'BJ.O:"t;.

I I
CIPHER "JEXT 1 CIPHERTEXT2 ~ CIPHERTEXTJ.

ı ı
UIPUT'BJ..CC"ls. UIPIIT'BJ.0:"t;. UIPUT'BJ..CC"ls.

DECRVPJ' DECRVPJ' DECRVPJ'.
OUTPut"'Bı...crK. OUTPut"'Burt;.

PLAIN TEXT 1 PLAINTEXT2 PI.AIN"J"EX'J'J.

Figure 2.2: Shows a CBC Encryption/Decryption Model
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2.2.4 Feistei Ciphers

The figure shows the general design of a Feistel cipher, a scheme used by almost all

modern block ciphers. The input is broken into two equal size blocks, generally called left

(L) and right (R), which are then repeatedly cycled through the algorithm. At each cycle, a

hash function (t) is applied to the right block and the key, and the result of the hash is

XOR-ed into the left block. The blocks are then swapped. The XOR-ed result becomes the

new right block and the unaltered right block becomes the left block. The process is then

repeated a number of times.

The hash function is just a bit scrambler. The correct operation of the algorithm is

not based on any property of the hash function, other than it is completely deterministic; i.e.

if it's run again with the exact same inputs, identical output will be produced. To decrypt,

the ciphertext is broken into L and R blocks, and the key and the R block are run through

the hash function to get the same hash result used in the last cycle of encryption; notice that

the R block was unchanged in the last encryption cycle. The hash is then XOR'ed into the L

block to reverse the last encryption cycle, and the process is repeated until all the

encryption cycles have been backed out. The security of a Feistel cipher depends primarily

on the key size and the irreversibility of the hash function. Ideally, the output of the hash

function should appear to be random bits from which nothing can be determined about the

input(s).

•
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Figure 2.3: Shows a Feistel Model

2.2.5 Data Encryption Standard (DES) 

DES is a Feistel-type Substitution-Permutation Network (SPN) cipher. DES uses a.
56-bit key which can be broken using brute-force methods, and is now considered obsolete.

A 16 cycle Feistel system is used, with an overall 56-bit key permuted into 16 48-bit

subkeys, one for each cycle. To decrypt, the identical algorithm is used, but the order of

subkeys is reversed. The L and R blocks are 32 bits each, yielding an overall block size of

64 bits. The hash function ''f, specified by the standard using the so-called "S-boxes",

takes a 32-bit data block and one of the 48-bit subkeys as input and produces 32 bits of
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output. Sometimes DES is said to use a 64-bit key, but 8 of the 64 bits are used only for

parity checking, so the effective key size is 56 bits.

2.2.5.1 Triple DES 

Triple DES was developed to address the obvious flaws in DES without designing a

whole new cryptosystem. Triple DES simply extends the key size of DES by applying the

algorithm three times in succession with three different keys. The combined key size is thus

168 bits (3 times 56), beyond the reach of brute-force techniques such as those used by the

EFF DES Cracker. Triple DES has always been regarded with some suspicion, since the

original algorithm was never designed to be used in this way, but no serious flaws have

been uncovered in its design, and it is today a viable cryptosystem used in a number of

Internet protocols.

2.3 Stream Ciphers 

A stream cipher is a symmetric encryption algorithm. Stream ciphers can be

designed to be exceptionally fast, much faster in fact than any block cipher. While block

ciphers operate on large blocks of data, stream ciphers typically operate on smaller units of

plaintext, usually bits. The encryption of any particular plaintext with a block cipher will

result in the same ciphertext when the same key is used. With a stream cipher, the

transformation of these smaller plaintext units will vary, depending on when they are

encountered during the encryption process.

A stream cipher generates what is called a keystream and encryption is provided by

combining the keystream with the plaintext, usually with the bitwise XOR operation. The

generation of the keystream can be independent of the plaintext and ciphertext or it can

depend on the data and its encryption.

Current stream ciphers are most commonly attributed to the appealing of theoretical

properties of the one-time pad, but there have been no attempts to standardize on any

particular stream cipher proposal as has been the case with block ciphers. Interestingly,

certain modes of operation of a block cipher effectively transform it into a keystream
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generator and in this way; any block cipher can be used as a stream cipher. However,

stream ciphers with a dedicated design are likelyto be much faster.

2.3.1 Linear Feedback Shift Register 

A Linear Feedback Shift Register (LFSR) is a mechanism for generating a sequence

of binary bits. The register consists of a series of cells that are set by an initialization vector

that is, most often, the secret key. The behavior of the register is regulated by a clock and at

each clocking instant, the contents of the cells of the register are shifted right by one

position, and the XOR of a subset of the cell contents is placed in the leftmost cell. One bit

of output is usually derived during this update procedure.

LFSRs are fast and easy to implement in both hardware and software. With a

sensible choice of feedback taps the sequences that are generated can have a good statistical

appearance. However, the sequences generated by single LFSRs are not secure because a

powerful mathematical framework has been developed over the years which allows for

their straightforward analysis. However, LFSRs are useful as building blocks in more

secure systems.

Figure 2.1: Shows a Linear Feed Back Register Model

2.3.1.1 Shift Register Cascades 

A shift register cascade is a set of LFSRs connected together in such a way that the

behavior of one particular LFSR depends on the behavior of the previous LFSRs in the

cascade. This dependent behavior is usually achieved by using one LFSR to control the

clock of the following LFSR. For instance one register might be advanced by one step if the
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preceding register output is 1 and advanced by two steps otherwise. Many different

configurations are possible and certain parameter choices appear to offer very good

security.

2.3.1.2 Shrinking and Self-Shrinking Generators 

It is a stream cipher based on the simple interaction between the outputs from two

LFSRs. The bits of one output are used to determine whether the corresponding bits of the

second output will be used as part of the overall keystream. The shrinking generator is

simple and scaleable, and has good security properties. One drawback of the shrinking

generator is that the output rate of the keystream will not be constant unless precautions are

taken. A variant of the shrinking generator is the self-shrinking generator, where instead of

using one output from one LFSR to "shrink" the output of another, the output of a single

LFSR is used to extract bits from the same output

2.3.2 Other Stream Ciphers 

There are a vast number of alternative stream ciphers that have been proposed in

cryptographic literature as well as an equally vast number that appear in implementations

and products world-wide. Many are based on the use of LFSRs since such ciphers tend to

be more amenable to analysis and it is easier to assess the security that they offer.

There are essentially four distinct approaches to stream cipher design. The first is

termed the information-theoretic approach explained in one-time pad. The second approach

is that of system-theoretic design. In essence, the cryptographer designs the cipher along

established guidelines which ensure that the cipher is resistant to all known attacks. While

there is, of course, no substantial guarantee that future cryptanalysis will be unsuccessful, it

is this design approach that is perhaps the most common in cipher design. The third

approach is to attempt to relate the difficulty of breaking the stream cipher to solving some

difficult problem. This complexity-theoretic approach is very appealing, but in practice the

ciphers that have been developed tend to be rather slow and impractical. The final approach

is that of designing a randomized cipher. Here the aim is to ensure that the cipher is
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resistant to any practical amount of cryptanalytic work rather than being secure against an

unlimited amount of work.

2.3.2.1 One-time Pad 

A one-time pad, sometimes called the Vernam cipher, uses a string of bits that is

generated completely at random. The keystream is the same length as the plaintext message

and the random string is combined using bitwise XOR with the plaintext to produce the

ciphertext. Since the entire keystream is random, an opponent with infinite computational

resources can only guess the plaintext if he sees the ciphertext. Such a cipher is said to offer

perfect secrecy and the analysis of the one-time pad is seen as one of the cornerstones of

modem cryptography.

2.4 Hash Functions 

Hash Functions take a block of data as input, and produce a hash or message digest

as output. The usual intent is that the hash can act as a signature for the original data,

without revealing its contents. Therefore, it's important that the hash function be

irreversible - not only should it be nearly impossible to retrieve the original data, it must

also be unfeasible to construct a data block that matches some given hash value.

Randomness, however, has no place in a hash function, which should completely

deterministic. Given the exact same input twice, the hash function should always produce

the same output. Even a single bit changed in the input, though, should produce a different

hash value. The hash value should be small enough to be manageable in further
~

manipulations, yet large enough to prevent an attacker from randomly finding a block of

data that produces the same hash.
•

MD5, documented in RFC 1321, is perhaps the most widely used hash function at

this time. It takes an arbitrarily sized block of data as input and produces a 128-bit (16-

byte) hash. It uses bitwise operations, addition, and a table of values based on the sine

function to process the data in 64-byte blocks. RFC 181 O discusses the performance of

MD5, and presents some speed measurements for various architectures.
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Hash functions can't be used directly for encryption, but are very useful for

authentication. One of the simplest uses of a hash function is to protect passwords. UNIX

systems, in particular, will apply a hash function to a user's password and store the hash

value, not the password itsel£ To authenticate the user, a password is requested, and the

response runs through the hash function. If the resulting hash value is the same as the one

stored, then the user must have supplied the correct password, and is authenticated. Since

the hash function is irreversible, obtaining the hash values doesn't reveal the passwords to

an attacker. In practice, though, people will often use guessable passwords, so obtaining the

hashes might reveal passwords to an attacker who, for example, hashes all the words in the

dictionary and compares the results to the password hashes.

Another use of hash functions is for interactive authentication over the network.

Transmitting a hash instead of an actual password has the advantage of not revealing the

password to anyone sniffing on the network traffic. If the password is combined with some

changing value, then the hashes will be different every time, preventing an attacker from

using an old hash to authenticate again. The server sends a random challenge to the client,

which combines the challenge with the password, computes the hash value, and sends it

back to the server. The server, possessing both the stored secret password and the random

challenge, performs the same hash computation, and checks its result against the reply from

the client. If they match, then the client must know the password to have correctly

computed the hash value. Since the next authentication would involve a different random

challenge, the expected hash value would be different, preventing an attacker from using a

replay attack. Thus, hash functions, though not encryption algorithms in their own right,

can be used to provide significant s'ecurity services, mainly identity authentication.

2.4.1 Hash functions for hash table lookup •

A hash function for hash table lookup should be fast, and it should cause as few

collisions as possible. If you know the keys you will be hashing before you choose the hash

function, it is possible to get zero collisions -- this is called perfect hashing. Otherwise, the

best you can do is to map an equal number of keys to each possible hash value and make

sure that similar keys are not unusually likely to map to the same value. Unfortunately, that
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hash is only average. The problem is the per-character mixing: it only rotates bits, it doesn't

really mix them. Every input bit affects only 1 bit of hash until the final %. If two input bits

land on the same hash bit, they cancel each other out. Also,% can be extremely slow.

2.5 Attacks on Ciphers 

Here the different kinds of possible attacks what have been observed so for and can

be expected are explained in detail.

2.5.1 Exhaustive Key Search 

Exhaustive key search, or brute-force search, is the basic technique of trying every

possible key in turn until the correct key is identified. To identify the correct key it may be

necessary to possess a plaintext and its corresponding ciphertext, or if the plaintext has
) 

some recognizable characteristic, ciphertext alone might suffice. Exhaustive key search can

be mounted on any cipher and sometimes a weakness in the key schedule of the cipher can

help improve the efficiency of an exhaustive key search attack Advances in technology and

computing performance will always make exhaustive key search an increasingly practical

attack against keys of a fixed length. When DES was designed, it was generally considered

secure against exhaustive key search without a vast financial investment in hardware. Over

the years, this line of attack will become increasingly attractive to a potential adversary.

While the 56-bit key in DES now only offers a few hours of protection against

exhaustive search by a modem dedicated machine, the current rate of increase in computing

power is such that 80-bit key can be expected to offer the same level of protection against

exhaustive key search in 18 years time as DES does today.

· 2.5.2 Differential Cryptanalysis 

Differential cryptanalysis is a type of attack that can be mounted on iterative block

ciphers. Differential cryptanalysis is basically a chosen plaintext attack and relies on an

analysis of the evolution of the differences between two related plaintexts as they are

encrypted under the same key. By careful analysis of the available data, probabilities can be
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assignedto each of the possible keys and eventuallythe most probable key is identifiedas
the correctone.

Differentialcryptanalysishas been used against a great many ciphers with varying

degrees of success. In attacks against DES, its effectivenessis limited by what was very

careful design of the S-boxes during the design of DES. Differentialcryptanalysishas also
beenusefulin attackingother cryptographicalgorithmssuchas hashfunctions.

2.5.3 Linear Cryptanalysis 

Linear cryptanalysisis a known plaintext attack and uses a linear approximationto

describe the behavior of the block cipher. Given sufficient pairs of plaintext and

correspondingciphertex:t, bits of informationabout the key can be obtained and increased

amounts of data will usually give a higherprobabilityof success. There have been a variety
of enhancementsand improvementsto the basic attack. Differential-linearcryptanalysisis

an attack which combines elements of differential cryptanalysis with those of linear

cryptanalysis.A linear cryptanalyticattack using multiple approximationsmight allow for a
reductionin the amountof data requiredfor a successfulattack.

2.5.4 Weak Key for a Block Cipher 

Weak keys are secret keys with a certain value for which the block cipher in
question will exhibit certain regularities in encryptionor, in other cases, a poor level of

encryption.For instance,with DES there are four keys for which encryptionis exactly the

same as decryption.This means-that if one were to encrypt twice with one of these weak

keys, then the originalplaintext would be recovered.For IDEA there is a class of keys for

which cryptanalysisis greatly facilitatedand the key can be recovered:However, in both

these cases, the number of weak keys is such a small fractionof all possible keys that the

chance of picking one at random is exceptionally slight. In such cases, they pose no
significantthreatto the securityof theblockcipherwhenused for encryption.

Of course for other block ciphers, there might well be a large set of weak keys

(perhaps even with the weakness exhibitingitself in a differentway) for which the chance
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of picking a weak key is too large for comfort. In such a case, the presence of weak keys

would have an obvious impact on the security of the block cipher.

2.5.5 Algebraic Attacks 

Algebraic attacks are a class of techniques which rely for their success on some

block cipher exhibiting a high degree of mathematical structure. For instance, it is

conceivable that a block cipher might exhibit what is termed a group structure. If this were

the case, then encrypting a plaintext under one key and then encrypting the result under

another key would always be equivalent to single encryption under some other single key.

If so, then the block cipher would be considerably weaker, and the use of multiple

encryptions would offer no additional security over single encryption. For most block

ciphers, the question of whether they form a group is still open. For DES, however, it is

known that the cipher is not a group. There are a variety of other concerns with regards to

algebraic attacks.

2.5.6 Data Compression Used With Encryption 

Data compression removes redundant character strings in a file. This means that the

compressed file has a more uniform distribution of characters. In addition to providing

shorter plaintext and ciphertext, which reduces the amount of time needed to encrypt,

decrypt and transmit a file, the reduced redundancy in the plaintext can potentially hinder

certain cryptanalytic attacks.

By contrast, compressing a file after encryption is inefficient. The ciphertext

produced by a good encryption algorithm should have an almost statistically uniform

distribution of characters. As a consequence, a compression algorithm should be unable to

• find redundant patterns in such text and there will be little, if any, data compression. In fact,

if a data compression algorithm is able to significantly compress encrypted text, then this

indicates a high level of redundancy in the ciphertext which, in tum, is evidence of poor

encryption.
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2.6 When an Attack Become Practical 

There is no easy answer to this question since it depends on many distinct factors.

Not only must the work and computational resources required by the cryptanalyst be
reasonable,but the amount and type of data required for the attack to be successful must

also be taken into account. One classification distinguishes among cryptanalyticattacks

according to the data they require in the following way: chosen plaintext or chosen

ciphertext, known plaintext, and ciphertext-only.This classification is not particular to

secret-key ciphers and can be applied to cryptanalytic attacks on any cryptographic

function.A chosen plaintext or chosen ciphertext attack gives the cryptanalystthe greatest

freedom in analyzing a cipher. The cryptanalystchooses the plaintext to be encrypted and

analyzes the plaintext together with the resultant ciphertext to derive the secret key. Such

attacks will, in many circumstances, be difficult to mount but they should not be

discounted. A known plaintext attack is more useful to the cryptanalyst than a chosen
plaintext attack (with the same amount of data) since the cryptanalyst now requires a

certain numbers of plaintexts and their correspondingciphertexts without specifying the

values of the plaintexts. This type of informationis presumablyeasier to collect. The most
practical attack, but perhaps the most difficult to actually discover, is a ciphertext-only

attack. In such an attack, the cryptanalyst merely intercepts a number of encrypted

messages and subsequent analysis somehow reveals the key used for encryption.Note that

some knowledgeof the statisticaldistributionof the plaintext is required for a ciphertext­
only attackto succeed.

An added level of sophisticationto the chosen text attacks is to make them adaptive.

By this we mean that the cryptanalysthas the additionalpower to choosethe text that is to

be encryptedor decrypted after seeing the results of previous requests: The computational
'effort and resources together with the amount and type of data required ate all important

featuresin assessingthe practicalityof someattack.
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2. 7 Strong Password-Only Authenticated Key Exchange 

A new simple password exponential key exchange method (SPEKE) is described. It

belongs to an exclusive class of methods which provide authentication and key

establishment over an insecure channel using only a small password, without risk of off­

line dictionary attack. SPEKE and the closely-related Diffie-Hellman Encrypted Key

Exchange (DH-EKE) are examined in light of both known and new attacks, along with

sufficient preventive constraints. Although SPEKE and DH-EKE are similar, the

constraints are different. The class of strong password-only methods is compared to other

authentication schemes. Benefits, limitations, and tradeo:ffs between efficiency and security

are discussed. These methods are important for several uses, including replacement of

obsolete systems, and building hybrid two-factor systems where independent password­

only and key-based methods can survive a single event of either key theft or password

compromise.

It seems paradoxical that small passwords are important for strong authentication.

Clearly, cryptographically large passwords would be better, if only ordinary people could

remember them. Password verification over an insecure network has been a particularly

tough problem, in light of the ever-present threat of dictionary attack. Password problems

have been around so long that many have assumed that strong remote authentication using

only a small password is impossible. In fact, it can be done. In this paper we outline the

problem, and describe a new simple password exponential key exchange, SPEKE, which

performs strong authentication, over an insecure channel, using only a small password.

That a small password can accomplish this alone goes against common wisdom. This is not

your grandmother's network login. We compare SPEKE to the closely-related Diffıe­

Hellman Encrypted Key Exchange, and review the potential threats and' countermeasures in

some detail. We show that previously-known and new attacks against both methods are

dissatisfied when proper constraints are applied. These methods are broadly useful for

authentication in many applications: bootstrapping new system installations, cellular

phones or other keypad systems, diskless workstations, user-to-user applications, multi­

factor password + key systems, and for upgrading obsolete password systems. More

34



generally, they are needed anywhere that prolonged key storage is risky or impractical, and

where the communication channel may be insecure.

2.7.1 The Remote Password Problem 

Ordinary people seem to have a fundamental inability to remember anything larger

than a small secret. Yet most methods of remote secret-based authentication presume the

secret to be large. We really want to use an easily memorized small secret password, and

not are susceptible to dictionary attack. We make a clear distinction between passwords and

keys: Passwords must be memorized, and are thus small, while keys can be recorded, and

can be much larger. The problem is that most methods need keys that are too large to be

easily remembered. User-selected passwords are often confined to a very small, easily

searchable space, and attempts to increase the size of the space just make them hard to

remember. Bank-card PIN codes use only 4-digits to remove even the temptation to write

them down. A ten-digit phone number has about 30 bits, which compels many people to

record them. Meanwhile, strong symmetric keys need 60 bits or more, and nobody talks

about memorizing public-keys. It is also fair to assume that a memorizable password

belongs to a brute-force searchable space. With ever-increasing computer power, there is a

growing gap between the size of the smallest safe key and the size of the largest easily

remembered password.

The problem is compounded by the need to memorize multiple passwords for

different purposes. One example of a small-password-space attack is the verifiable plain­

text dictionary attack against login. A general failure of many obsolete password methods
ft 

is due to presuming passwords to be large. We assume that any password belongs to a

cryptographically-small space, which is also brute-force searchable with a modest effort.•
• Large passwords are arguably weaker since they can't be memorized.

So why do we bother with passwords? A pragmatic reason is that they are less

expensive and more convenient than smart-cards and other alternatives. A stronger reason

is that, in a well-designed and managed system, passwords are more resistant to theft than

persistent stored keys or carry-around tokens. More generally, passwords represent

something you know, one of the "big three" categories of factors in authentication.
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2.7.2 Characteristics of Strong Password-only Methods

We now define exactly what we mean by strong password-only remote

authentication. We first list the desired characteristics for these methods, focusing on the

case of user-to-host authentication. Both SPEKE and DH-EKE have these distinguishing

characteristics.

1. Prevent off-line dictionary attack on small passwords.

2. Survive on-line dictionary attack.

3. Provide mutual authentication.

4. Integrated key exchange.

5. User needs no persistent recorded

(a) Secret data, or

(b) Sensitive host-specific data.

Since we assume that all passwords are vulnerable to dictionary attack, given the

opportunity, we need to remove the opportunities. On-line dictionary attacks can be easily

detected, and thwarted, by counting access failures. But off-line dictionary attack presents a

more complex threat. These attacks can be made by someone posing as a legitimate party to

gather information, or by one who monitors the messages between two parties during a

legitimate valid exchange. Even tiny amounts of information "leaked" during an exchange

can be exploited. The method must be immune to such off-line attack, even for tiny

passwords. This is where SPEKE and DH-EKE excel.

2.7.2.1 SPEKE •

The simple password exponential key exchange (SPEKE) has two stages. The first

stage uses a DH exchange to establish a shared key K, but instead of the commonly used

fixed primitive base g, a function f converts the password S into a base for exponentiation.

The rest of the first stage is pure Diffie-Hellman, where Alice and Bob start out by

choosing two random numbers RA and R8:
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Table 2.1: Shows First Stages of SPEKE

SI. Alice computes: QA = f(St A mod p,

S2. Bob computes: QB= f(SlB mod p,

S3. Alice computes: K = h( QBRA mod p )

S4. Bob computes: K=h(QARBmodp)

A7B:QA,

B7A: QB,

In the second stage of SPEKE, both Alice and Bob confirm each other's knowledge of K

before proceeding to use it as a session key. One way is:

Table 2.2: Shows Second Stage of SPEKE

S5.

S6.

S7.

Alice chooses random CA, A7B: EK (CA).

B7A: EK (CB, CA),

A7B: EK (CB),

Bob chooses random CB,

Alice verifies that CA is correct,

S8. Bob verifies that CB is correct.

To prevent discrete log computations, which can result in the attacks the value of p-1

must have a large prime factor q. The function f is chosen in SPEKE to create a base of

large prime order. This is different than the commonly used primitive base for DH. The use
l'I

of a prime-order group may also be of theoretical importance.

•Other variations of the verification stage are possible. This stage is identical to that

of the verification stage of DH-EKE. More generally, verification of K can use any

classical method, since K is cryptographically large. This example repeatedly uses a one­

way hash function:
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Table 2.3: Shows Verification Stage of SPEKE

S5.

S6.

Alice sends proof of K:

Bob verifies h(h(K)) is correct,

A7B: h(h(K))

B7A: h(K)

S7. Alice verifies h (K)) is correct.

This approach uses K in place of explicit random numbers, which is possible since

K was built with random information from both sides.

2.7.2.2 I>ll-1:1(]: 

DH-EKE (Diffie-Hellman Encrypted Key Exchange) are the simplest of a number

of methods. The method can also be divided into two stages. The first stage uses a DH

exchange to establish a shared key K, where one or both parties encrypts the exponential

using the password S. With knowledge of S, they can each decrypt the other's message
using Es-ı and compute the same key K.

Table 2.4: Shows First Stage of DH-EKE

Dl. Alice computes: QA= gRAmodp,

D2. Bob computes: QB= g\modp,•
D3. Alice computes: K = h( QBRA mod p )

D4. Bob computes: K = h( QARB mod p )

A7B: Es (QA).

B7A: Es (QB).

•

It is widely suggested that at least one of the encryption steps can be omitted, but

this may leave the method open to various types of attacks. The values of p and g, and the

symmetric encryption function Es must be chosen carefully to preserve the security of DH-
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EKE. In the second stage of DH-EKE, both Alice and Bob confirm each other's knowledge

of K before proceeding to use it as a session key. However, with DH-EKE the order of the

verification messages can also be significant.

2.8 Different kinds of Security Attacks 

Here different kinds of attacks on the security in authentication which have been

observed so for and which are expected are explained in detail.

2.8.1 Discrete Log Attack 

As the security of these schemes rests primarily on exponentiation being a one-way

function, there is a general threat of an attacker computing the discrete logarithms on the

exponentials. Known methods of discrete log require a massive pre-computation for each

specific modulus. Modulus size is a primary concern. No method is currently known that

could ever compute the discrete log for a safe modulus greater than a couple thousand bits;

however a concerted attack on a 512 bit modulus may be soon feasible with considerable

expense. Somewhere in between is an ideal size balancing speed against the need for

security, in a given application.

It is noted that if we assume that a discrete log pre-computation has been made for

the modulus, a password attack must also compute the specific log for each entry in the

password dictionary (until a match is found). It is also noted that for any session established

with a modulus vulnerable to log attack, perfect forward secrecy is no longer guaranteed,

providing another reason for keeping the discrete log computation out of reach. The

feasibility of a pre-computed log table remains a primary concern, and the efficiency of the

second phase of the attack is secondary.

2.8.2 Leaking Information 

If one is not careful, the exchanged messages Qx may reveal discernible structure, and can

"leak" information about S, enabling a partition attack This section shows how to prevent

these attacks.
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2.8.2.1 DH-EKE Partition Attack 

In DH-EKE, Alice and Bob use a Diffie-Hellmanexponentialkey exchange in the group

Z/, with a huge prime p, where p-1 has a huge prime factor q. Then we use the traditional

preferencefor g as a primitiveroot of p. In fact, g must be primitiveto prevent a partition

attack by an observer. A third party can do trial decryptionsof Es (g\ mod p) using a

dictionaryof Si. If g is not primitive,a bad guess Si is confirmedby a primitiveresult. In

general, the encrypted exponentialsOx must containno predictable structure to prevent this

attack against DH-EKE. Constrainingg to be primitive insures a random distributionacross

2.8.2.2 SPEKE Partition Attack 

Using a primitive base is not required in SPEKE. If the base f(S) is an arbitrary

member of Zp", since the exponentialsare not encrypted,an observer can test the result for

membership in smaller subgroups. When the result is a primitive root of p, he knows that

the base also is primitive.For a safe prime p, this case reveals 1 bit of informationabout S.

When p varies, as has been recommended when using a reduced modulus size, new

informationfrom runs with different p allow a partition attack to reduce a dictionaryof

possible Si. When, for any S, the base f(S) is a generator of a particular large prime

subgroup, and then no information is leaked through the exponential result. Suitable
functionsfor f(S) create a result of known large order. We assume the use of a largeprime­

order base in SPEKE for the re;t of the discussion.Because SPEKE does not encrypt the

exponentials,a formal analysis of security may be simpler to achieve for SPEKE than for
•DH-EKE. The prime-order subgroup is the same as that used in the DSA and Digital

signaturemethods.
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2.8.3 Stolen Session Key Attack

In an analysis of several flavors of EKE, where a stolen session key K is used to

mount a dictionary attack on the password. The attack on the public-key flavor of EKE is

also noted which correctly points out that DH-EKE resists this attack (as does SPEKE).

Resistance to this attack is closely related to perfect forward secrecy, which also isolates

one kind of sensitive data from threats to another. We note that, in DH-EKE, a stolen value

of RA in addition to K permits a dictionary attack against the password S. For each trial

password Si, the attacker computes:

When K' equals K, he knows that Si equals S. SPEKE is also vulnerable to an attack

using RA to find S. These concerns highlight the need to promptly destroy ephemeral

sensitive data, such as RA and Rı3. It also notes a threat when the long-term session key K is

used in an extra stage of authentication of the extended A-EKE method; a dictionary attack

is possible using the extra messages. To counter this threat, one can use K for the extra

stage, set K' = h (K) using a strong one-way function, and promptly discard K.

2.8.4 Verification Stage Attacks

The verification stage of either DH-EKE or SPEKE is where both parties prove to

each other knowledge of the shared key K. Because K is cryptographically large, the

second stage is presumed to be immune to brute-force attack, and thus verifying K can be

done by traditional means. However, the order of verification may be important to resist the

protocol attack against DH-EKE.

•
~ 2.8.5 The "password-in-exponent" Attack

It is generally a good idea for f(S) to create a result of the same known order for all

S, so that testing the order of the exponential doesn't reveal information about S. When

considering suitable functions, it may be tempting to choose f (S) = & r(S) for some fixed

prime-order & and some well-known hash function h. Unfortunately, while this is a

convenient way to convert an arbitrary number into a generator of a prime-order group, it
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creates an opening for attack. To show the attack, let's assume that gc = 2, and h(S) = S, so

that f(S) = 2s. Alice's protocol can be rewritten as:

I . Choose a random RA.

2. Compute QA= ıcs R) mod p.

3. Send QA to Bob.

4. Receive QB from Bob.

5. Compute K = QB\ mod p.

Bob should perform his part, sending Q8 to Alice. The problem is that an attacker Barry

can perform a dictionary attack off-line after performing a single failed exchange. His
initial steps are:

1. Choose a random X.

2. Compute OB= 2x.

3. Receive QA from Alice

4. Send QB to Alice.

5. Receive verificationdata for K from Alice.

Barry then goes off-lineto perform the attack as follows:

For each candidate password S':

Compute K' = (Q8x) ııs· mod p.

Compare Alice's verificationmessage for K to K', when they match he knows that S' = S.

This attack works because:

K' = QA(XIS') mod p

= ı<XRA SIS') mod p
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= QB (RA SIS') mod p

= Kcsıs·ı mod p

Thus, when S' = S, K' = K. More generally,the attackworks because the dictionary
of passwords {S1, S2 ... Sn} is equivalentto a dictionaryof exponentsE = { e., eı... en}, such

that for a givenfixed generator&, the value off (Si) for each candidatecan be computedas

& \ Thisallowsthepasswordto be effectivelyremovedfromtheDH computation.

In general,we must insure that no such dictionaryE is available to an attacker. We

should note that while it is true that for any functionf there will always be some fixed & 

and hypotheticaldictionaryE that correspondsto f(S), for most functionsf, computingthe

value of each ei requires a discrete log computation.This makes the dictionaryE generally

unknowable to anyone. As a specific example, for the function f(S) = S, the attack is
infeasible. The password-in-exponentattack is possible only when f(S) is equivalent to

exponentiation(within the group) of some fixed gc to a power which is a known function
ofS.

2.9 A Logic of Authentication 

In computer networks the communicatingparties share not only the media, but also
the set of rules on how to communicate.These rules, or protocols,have become more and

more important in communication networks and distributed computing. However, the

increaseof the knowledgeof the communicationprotocols has also brought up the question
~ 

of how to secure the communicationagainst intruders. To solve this, a large number of
cryptographicprotocolshavebeenproduced.

Cryptographic protocols were developed to combat against various attacks of

intruders in computer networks. Nowadays, the comprehensionis that the security of data

should rely on the underlyingcryptographictechnology,and that the protocols should be

open and available.However, many protocols have been found to be vulnerableto attacks

that do not require breaking the encryption,but instead manipulate the messages in the
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protocol to gain some advantage. The advantages range from the compromise of

confidentiality to the ability to impersonate another user.

As there are different protocol designs decisions appropriate to different

circumstances, there also exists a variety of authentication protocols. Protocols often differ

in their final states, and sometimes they even depend on assumptions that one would not

care to make. To understand what is really accomplished with such a protocol, a formal

description method is needed. The goal of the logic of authentication is to formally describe

the knowledge and the beliefs of the parties involved in authentication, the evolution of the

knowledge and the beliefs while analyzing the protocol step by step. After the analysis, all

the final states of the protocol are set out.

•
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3. DATA ENCRYPTION STANDARD (DES)

3.1 Overview

The DES (Data Encryption Standard) algorithm is the most widely used encryption

algorithm in the world. For many years, and among many people, "secret code making" and

DES have been synonymous. And despite the recent coup by the Electronic Frontier

Foundation in creating a $220,000 machine to crack DES-encrypted messages, DES will

live on in government and banking for years to come through a life- extending version

called "triple-DES." This chapter explains the various steps involved in DES-encryption,

illustrating each step by means of a simple example. To understand DES easily, it better to

understand first simplified DES (S_DES).

3.2 Simplified DES (S_DES)

S-DES is a simplified version of the well-known DES (Data Encryption Standard)

algorithm .It closely resembles the real thing, with smaller parameters, to facilitate

operation by hand for pedagogical purposes. It was designed by Edward Schaefer as a

teaching tool to understand DES that has similar properties and structure but with much

smaller parameters than DES. Bigure 4.1 illustrate the simplified DES scheme. The

programming of this algorithm will be in next chapter which will be an implementation of

S DES.

The S_DES encryption algorithm takes an 8-bit block of plaintext (example:

1100 I O 10) and a 1 O-bit key as input and produces an 8-bit block of ciphertext as output .the

S_DES decryption algorithm takes an 8-bit block of ciphertext and the same 1 O-bit key used

to produce that ciphertext as input and produces the original 8-bit block of plaintext.
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The encryption algorithm involves five functions: an initial permutation (IP); a

complex function labeled fK, which involves both permutation and substitution operations

and depends on a key input; a simple permutation function that switches (SW) the two

halves of the data; the function fK again, and finally a permutation function that is the

inverse of initial permutation (IP-1). The use of multiple stages of permutation and

substitution results in a more complex algorithm, which increases the difficulty of

cryptanalysis. The function fK takes as input not only the data passing through the

encryption algorithm, but also an 8-bit key. The algorithm could have been designed to

work with a 16-bit key, consisting of two 8-bit subkeys, one used for each occurrence of fK,

Alternatively, a single 8-bit key could have been used, with the same key used twice in the

algorithm. A compromise is to use a 1 O-bit key from which two 8-bit subkeys are generated,

addicted in figure 4.1. In this case, the key is first subjected to permutation (PlO). Then a

shift operation is performed. The output of the shift operation then passes through a

permutation function that produces an 8-bit output (P8) for the first subkey (Kl). The output

of shift operation also feeds into another shift and another instance of P8 to produce the

second subkey (K2).

•

46



ENCRYPTION

8-lıit plaintext

8- bit cip heı.- teıd

10.bit key 

Kı

In fK the rightmost 4 bits are passed through unchanged, and the leftmost 4 bits are

"mangled" by the non-invertible function F:

fK(L,R) = L XOR F(R,Ki), R -- encrypt or decrypt

EIP = { 4, 1, 2, 3, 2, 3, 4, 1}

P4 = { 2, 4, 3, 1}

so = 1 O 3 2 S 1 = O 1 2 3

3 2 1 O 

O 2 1 3 

3 1 3 2

2013

3 O 1 O 

2 1 O 3 

n1n2n3I4 then Si[nıtLı][n2n3]

Example:

R = 1010

EIP 0101 0101

DECRYPTION

8-lı it p lainteıd

8-1, it cip heı.- leıı:t

Figure 3.1 S_DES scheme
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Kl= 1010 0100

XOR 1111 0001

SO[l l][l l] = 10 Sl[Ol][OO] = 10 -> P4 = 0011

3.2.1 Subkey generation

As in DES, the initial and final permutations, which are fixed and independent of the

key, provide no real security benefit, but make the algorithm slow if implemented in

software.

First, produce two subkeys K1 and K2:

K1=P8(LS(Pl O(key)))

K, = P8(LS(LS(PlO(key))))

where PlO(kık2k3~ks~k1ksk9k10) = k3ksk2k1~k10k1k9kg~.

10.bit key

•

Figure 3.2 key Generation of S_DES

48



The 1 O-bit key is transformed into two 8-bit sub-keys Kl and K2.

Example:

PIO= { 3, 5, 2, 7, 4, 10, 1, 9, 8, 6}

P8 = { 6, 3, 7, 4, 8, 5, 10, 9}

K = 10100 00010

PIO = 10000 01100

LS-1 0000111000 -> P8 ->Kl= 1010 0100

LS-2 00100 00011 -> P8 -> K2 = 01000011

3.2.2 Relation with DES

SDES is a simplification of a real algorithm. DES operates on 64 bit blocks, and

uses a key of 56 bits, from which sixteen 48-bit subkeys are generated. There is an initial
permutation (IP) of 56 bits followed by a sequence of shifts and permutations of 48 bits. F

acts on 32 bits.

ciphertext= w-1( fKı6( SW( fKıs( ... ( SW( fKı(IP(plaintext))) )... ) ) ) )

3.3 History of DES

On May 15, 1973, during the reign of Richard Nixon, the National Bureau of
Standards (NBS) published a notice in the Federal Register soliciting proposals for

cryptographic algorithms to protect data during transmission and storage. The notice

explainedwhy encryption was an iınportant issue.

Over the last decade, there has been an accelerating increase in the accumulations

and communication of digital data by government, industry and by other organizations in

the private sector. The contents of these communicated and stored data often have very

significant value and/or sensitivity. It is now common to find data transmissions which

constitute funds transfers of several million dollars, purchase or sale of securities, warrants

for arrests or arrest and conviction records being communicatedbetween law enforcement
agencies, airline reservations and ticketing representing investment and value both to the
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airline and passengers, and health and patient care records transmitted among physicians

and treatment centers.

The increasing volume, value and confidentiality of these records regularly

transmitted and stored by commercial and government agencies has led to heightened

recognition and concern over their exposures to unauthorized access and use. This misuse

can be in the form of theft or defalcations of data records representing money, malicious

modification of business inventories or the interception and misuse of confidential

information about people. The need for protection is then apparent and urgent.

It is recognized that encryption (otherwise known as scrambling, enciphering or

privacy transformation) represents the only means of protecting such data during

transmission and a useful means of protecting the content of data stored on various media,

providing encryption of adequate strength can be devised and validated and is inherently

integrable into system architecture. The National Bureau of Standards solicits proposed

techniques and algorithms for computer data encryption. The Bureau also solicits

recommended techniques for implementing the cryptographic function: for generating,

evaluating, and protecting cryptographic keys; for maintaining files encoded under expiring

keys; for making partial updates to encrypted files; and mixed clear and encrypted data to

permit labeling, polling, routing, etc. The Bureau in its role for establishing standards and

aiding government and industry in assessing technology, will arrange for the evaluation of

protection methods in order to prepare guidelines.

NBS waited for the responses to come in. It received none until August 6, 1974,

three days before Nixon's resignation, when IBM submitted a candidate that it had.. 
• developed internally under the name LUCIFER. After evaluating the algorithm with the

help of the National Security Agency (NSA), the NBS adopted a modification of the

LUCIFER algorithm as the new Data Encryption Standard (DES) on July 15, 1977.

DES was quickly adopted for non-digital media, such as voice-grade public

telephone lines. Within a couple of years, for example, International Flavors and Fragrances
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was using DES to protect its valuable formulas transmitted over the phone ("With Data

Encryption, Scents Are Safe at IFF," Computerworld 14, No. 21, 95 (1980).) Meanwhile,

the banking industry, which is the largest user of encryption outside government, adopted

DES as a wholesale banking standard. Standards for the wholesale banking industry are set

by the American National Standards Institute (ANSI). ANSI X3.92, adopted in 1980,

specified the use of the DES algorithm. K = 00010011 00110100 01010111 01111001

1001 1 O 11 1 O 1 1 1100 11 O 11111 11 1 10001.

3.4 How DES Works in Detail

DES is a block cipher meaning it operates on plaintext blocks of a given size (64-

bits) and returns cipher text blocks of the same size. Thus DES results in a permutation

among the 2/\64 (read this as: "2 to the 64th power") possible arrangements of 64 bits, each

of which may be either O or 1. Each block of 64 bits is divided into two blocks of 32 bits

each, a left half block Land a right half R. (This division is only used in certain operations.)

• 
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INRJT 

PERMUTED 
INRJT 

R2 = L 1( +)f(R,K1)2

INITIAL PERMUTATION 

(+)
0······················:··············:Kn 

I ~ 
LlS = RU Rıs = Ll.4(+)f(R,Ku.)ıs

PRE-OUTPUT Rl6 = LlS{+)f(R,KlS)l6 Ll6 = aıs

I NVER=f INITIAL PERMUTATION 

OUTPUT 

Figure 3.3 DES Encryption Structure

Example: Let M be the plain text message M = 0123456789ABCDEF, where M is in

hexadecimal (base 16)format. Rewriting Min binary format, we get the 64-bit block of text:

M = 0000 0001001000110100010101100111 1000 1001 1010 1011 1100 1101 1110

1111

L = 0000 0001 001 O 0011 O 1 00 O 1 O 1 O 1 1 O O 1 11

R = 1000 1001 1 O 1 O 1 O 11 1100 1 1 O 1 11 1 O 11 11 • 
•The first bit of M is "O". The last bit is "1 ". We read from left to right.

DES operates on the 64-bit blocks using key sizes of 56- bits. The keys are actually

stored as being 64 bits long, but every 8th bit in the key is not used (i.e. bits numbered 8,

16, 24, 32, 40, 48, 56, and 64). However, we will nevertheless number the bits from 1 to 64,
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going left to right, in the following calculations. But, as you will see, the eight bits just

mentioned get eliminated when we make subkeys.

Example: Let K be the hexadecimal key K = 133457799BBCDFF1. This gives us as the

binary key (setting 1 = 0001, 3 = 0011, etc., and grouping together every eight bits, of

which the last one in each group will be unused):

K = 00010011 00110100 01010111 01111001 10011011 10111100 11011111 11110001

The DES algorithm uses the following steps:

3.4.1 Step 1 find 16 subkeys, each of which is 48-bits long.

Co Do

PERMUTED
CHOICE 2

Lt.IT
SHIFTS

• 

PERMUTED
CHOICE :2

Figure 3.4 DES Key Setup

The 64-bit key is permuted according to the following table, PC-1. Since the first

entry in the table is "57'', this means that the 57th bit of the original key K becomes the first
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bit of the permuted key K+. The 49th bit of the original key becomes the second bit of the

permuted key. The 4th bit of the original key is the last bit of the permuted key. Note only

56 bits of the original key appear in the permuted key.

Table 3.1 Permutation of key

PC-1

57 49 41 33 25 17 9

1 58 50 42 34 26 18

10 2 59 51 43 35 27

19 11 3 60 52 44 36

63 55 47 39 31 23 15

7 62 54 46 38 30 22

14 6 61 53 45 37 29

21 13 5 28 20 12 4

Exam pie: From the original 64-bit key

K = 00010011 00110100 01010111 01111001 10011011 10111100 11011111 11110001

We get the 56-bit permutation

K + = 1 11 1000 O 110011 00101 O 1 O 1 O 11 11 O 1 O 1 O 1 O 1 O 1 1001 1001 11 1 0001 11 1

Next, split this key into left and right halves, C0 and Do, where each half has 28 bits.

Exam pie: From the permuted key K+, we get
••

Co= 1111000011001100101010101111

Do = O I O 1 O 10 1O1100I I 001 1 11 0001 1 1 1
•

With C0 and D0 defined, we now create sixteen blocks C, and Dn, l<=n<=16. Each

pair of blocks C, and Dn is formed from the previous pair Cn-ı and Dn-ı, respectively, for

n = I, 2 ... 16, using the following schedule of "left shifts" of the previous block. To do a left

shift, move each bit one place to the left, except for the first bit, which is cycled to the end

of the block (The result shown in table 5.2).
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Table 3.2

Iteration Number of

Number Left Shifts

1 1 

2 1

3 2 

4 2

5 2

6 2

7 2

8 2

9 1

10 2

11 2 

12 2

13 2

14 2

15 2

16 1

This means, for example, C3 and D3 are obtained from C2 and D2, respectively, by

two left shifts, and C16 and D16 are obtained from C15 and D15, respectively, by one left

shift. In all cases, by a single left shift is meant a rotation of the bits one place to the left, so

that after one left shift the bits in the 28 positions are the bits that were previously in

positions 2, 3,... , 28, 1.
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Exam pie: From original pair Co and Do we obtain:

Co = 

Do= O 1 O 1O1O1O1100110011110001111

C1

D 1 = 1 O 1O1O1O1100110011110001111 O

C2

D2 = 0101010110011001111000111101

= 

D3 = O 1 O 1O1100110011110001111 O 1 O 1

= 

D 4 = O 1 O 11 0011001 1 11 00011 1 1 O 1 O 1 O 1

Cs = 

Ds = O 1100110011110001 1 11 O 1 O 1 O 1 O 1

= 

D6= 1001100111100011110101010101

= 

D7 = O 1100111 10001111 O 1O1O1O1011O

= 

D8=1001111000111101010101011001

= 

D9 = 0011110001111 O 1 O 1O1O1O110011

C10 = 

D 10 = 1 11 10001111 O 1 O 1 O 1 O 1 O 1 1001100

Cn = 

D11 = 1100011110101010101100110011

-C12

D12=0001111010101010110011001111

Cn =
D13 = 0111101010101011001100111100

Cu 

Du= 1110101010101100110011110001

56

1111000011001100101010101111

1110000110011001010101011111

1100001100110010101010111111

0000110011001010101011111111

0011001100101010101111111100

1100110010101010111111110000

0011001010101011111111000011

1100101010101111111100001100

0010101010111111110000110011

0101010101111111100001100110

0101010111111110000110011001

010101111111100001100110010]

•
0101111111100001100110010101

0111111110000110011001010101

1111111000011001100101010101



Cıs

D1s = 1010101010110011001111000111
1111100001100110010101010111

= 1111000011001100101010101111

D 16 = O 1O1O101 O 1 1001 1001 1 1 10001111

We now form the keys Kn, for 1 <=n<=l 6, by applying the following permutation

table to each of the concatenated pairs CnDn. Each pair has 56 bits, but PC-2 only uses 48 of

these.

Table 3.3 shows the result of second permutation

PC-2

14 17 11 24 1 5

3 28 15 6 21 10

23 19 12 4 26 8

16 7 27 20 13 2

41 52 31 37 47 55

30 40 51 45 33 48

44 49 39 56 34 53

46 42 50 36 29 32

Therefore, the first bit of K0 is the 14th bit of CnDn, the second bit the 17th, and so

on, ending with the 48th bit of Kn being the 32th bit of CnDn.

Example: For the first key we have C1D1=1110000 1100110 0101010 1011111 1010101

0110011 001111 O 001111 O •
·This, after we apply the permutation PC-2, becomes

K1 = 00011 O 110000 001 O 11 1011 11 11 11 11 0001 11 000001 1 1001 O

For the other keys we have

K2 = 011110 011010 111011 011001 110110 111100 100111 100101

K3 = O 101 O 1 O 11 1 11 1 1001O 00101O O 10000 1O1100 1 1 1 1 10 O 11 001

K4 = O 111 00 1 O 1 O 1 O 1 1 O 111 O 1011 O 11 O 11 O 11 0011 O 10100 O 111 O 1
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Ks = 011111 001110 110000 000111 111010 110101 001110 101000

K6 = 011000 111010 010100 111110 010100 000111 101100 101111

K7 = 111011 001000 010010 110111 111101 100001 100010 111100

Ks = 111101 111000 101000 111010 I 10000 010011 101111 111011

K9 = 111000 001101 101111 101011 111011 011110 011110 000001

K10 = 101100 011111 001101 000111 101110 100100 011001 001111

Kn = 001000 010101 111111 010011 110111 101101 001110 000110

K12 = 011101 010111 000111 110101 100101 000110 011111 101001

K13 = 100101 111100 010111 010001 111110 101011 101001 000001

K14 = 010111 110100 001110 110111 111100 101110 011100 11101O
"

K1s = 101111 111001 000110 001101 001111 010011 111100 001010

K16 = 110010 110011 110110 001011 000011 100001 011111 110101

So much for the subkeys. Now we look at the message itself.

3.4.2 Step 2: Encode each 64-bit block of data.

There is an initial permutation IP of the 64 bits of the message data M. This

rearranges the bits according to the following table, where the entries in the table show the

new arrangement of the bits from their initial order. The 58th bit of M becomes the first bit

of IP. The 50th bit ofM becomes the second bit of IP. The 7th bit ofM is the last bit ofIP.

Table 3.4 First permutation of the message

IP•• 
58 50 42 34 26 18 10 2

60 52 44 36 28 20 12 4. 
62 54 46 38 30 22 14 6

64 56 48 40 32 24 16 8

57 49 41 33 25 17 9 1

59 51 43 35 27 19 11 3

61 53 45 37 29 21 13 5

63 55 47 39 31 23 15 7
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Example: Applying the initial permutation to the block of text M, given previously, we get

M = 0000 0001 0010 0011 0100 0101 oııo oı 11 1000 1001 1010 1011 1100 1101 1110

111 1

IP= 1100 1100 0000 0000 1100 1100 1111 1111 111100001010 1010 111100001010

1010

Here the 58th bit ofM is "1 ", which becomes the first bit oflP. The 50th bit of Mis

"1 ", which becomes the second bit oflP. The 7th bit of Mis "O", which becomes the last bit

of IP. Next divide the permuted block IP into a left half Lo of 32 bits, and a right half Ro of

32 bits.

Exam pie: From IP, we get Lo and Ro

L0= 1100 1100 0000 0000 1100 1100 1111 1111

Ro = 1 11 1 0000 1 O 1 O 1 O 1 O 1 11 1 0000 1 O 1 O 1010

We now proceed through 16 iterations, for l <=n<= 16, using a function f which

operates on two blocks--a data block of 32 bits and a key Kn of 48 bits--to produce a block

of 32 bits. Let + denote XOR addition, (bit-by-bit addition modulo 2). Then for n going

from 1 to 16 we calculate

L, = Rn-I

Rn= Ln-1 + f(Rn-ı,Kn)
This results in a final block, for n = 16, of L16R16• That is, in each iteration, we take

the right 32 bits of the previous result and make them the left 32 bits of the current step. For
fll 

the right 32 bits in the current step, we XOR the left 32 bits of the previous step with the

calculation f .
•

Example: For n = 1, we have

K1 = 00011 O 1 10000 001O 11 101 11 1 111 11 1 0001 11 000001 11001O

L1 = Ro
R1 =Lo+ f(Ro,K1)

1111 0000 1010 1010 1111 0000 1010 1010
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It remains to explain how the function f works. To calculate f, we first expand each

block Rn-ı from 32 bits to 48 bits. This is done by using a selection table that repeats some

of the bits in Rn-ı . We'll call the use of this selection table the function E. Thus ECRn-ı) has

a 32 bit input block, and a 48 bit output block.

Let E be such that the 48 bits of its output, written as 8 blocks of 6 bits each, are

obtained by selecting the bits in its inputs in order according to the following table:

Table 3.5 E Bit Selection

32 1 2 3 4 5

4 5 6 7 8 9

8 9 10 11 12 13

12 13 14 15 16 17

16 17 18 19 20 21

20 21 22 23 24 25

24 25 26 27 28 29

28 29 30 31 32 1

Thus the first three bits of E(Rn-ı) are the bits in positions 32, 1 and 2 of Rn-ı while

the last 2 bits of ECRn-ı) are the bits in positions 32 and 1.

Example: We calculate E(Ro) from Ro as follows:.. - 
Ro = 1 1 11 0000 1 O 1 O 1 O 1 O 1 11 1 0000 1 O 1 O 1 O 1 O

E(Ro) = 011110 100001 010101 010101011110 100001 010101 010101 •
{Note that each block of 4 original bits has been expanded to a block of 6 output bits.)

Next in the f calculation, we XOR the output E(Rn-ı) with the key Kn:

Kn+ E(Rn-ı).
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Example: For K1, E(R0), we have

K1 = 000110 110000 001011

E(Ro) = 01111 O 100001 010101

101111

010101

111111

011110

000111

100001

000001

010101

110010

010101

K1+E(Ro) = 011000 010001011110 111010100001100110 010100 100111.

We have not yet finished calculating the function f. To this point we have expanded

Rn-ı from 32 bits to 48 bits, using the selection table, and XORed the result with the key Kn.

We now have 48 bits, or eight groups of six bits. We now do something strange with each

group of six bits: we use them as addresses in tables called "S boxes". Each group of six bits

will give us an address in a different S box. Located at that address will be a 4 bit number.

This 4 bit number will replace the original 6 bits. The net result is that the eight groups of 6

bits are transformed into eight groups of 4 bits (the 4-bit outputs from the S boxes) for 32

bits total.

Write the previous result, which is 48 bits, in the form:

Kn+ E(Rn-1) =B1B2B3B,ıl3sB6B7Bs,

Where each Bi is a group of six bits. We now calculate

S1(B1)S2(B2)S3(B3)S4(B4)Ss(Bs)S6(B6)S7(B7)SB(Bs)

Where Si(BJ referrers to the output of the i-th S box.

To repeat, each of the functions SJ, S2, ... , S8, takes a 6-bit block as input and yields

a 4-bit block as output. The table to determine S1 is shown and explained n table 5.6:

Table 3.6 Simulation Table

Sl

Row Column Number

No. O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

O 14 4 13 1 2 15 11 8 3 10 6 12 5 9 O 7 

1 O 15 7 4 14 2 13 1 10 6 1211 9 5 3 8 

2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 O 

3 15 12 8 2 4 9 1 7 5 11 3 14 10 O 6 13
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f S, is the function defined in this table and B is a block of 6 bits, then S1(B) is

determined as follows: The first and last bits of B represent in base 2 a number in the

decimal range O to 3 (or binary 00 to 11). Let that number be i. The middle 4 bits of B

represent in base 2 a number in the decimal range O to 15 (binary 0000 to 1111 ). Let that

number bej. Look up in the table the number in the i-th row and j-th column. It is a number

in the range O to 15 and is uniquely represented by a 4 bit block. That block is the output

Sı(B) of S, for the input B. For example, for input block B = 011011 the first bit is "O" and

the last bit "1 " giving O 1 as the row. This is row 1. The middle four bits are "11 O 1 ". This is

the binary equivalent of decimal 13, so the column is column number 13. In row 1, column

13 appears 5. This determines the output; 5 is binary O 101, so that the output is O 1 O 1. Hence

S1(01101l) = 0101.

The tables defining the functions S1, ... ,S8 are the following in table 5.7:

Table 3.7

sı
14 4 13 1 2 15 11 8 3 10 6 12 5 9 O 7

O 1 5 7 4 14 2 13 1 10 6 12 11 9 5 3 8

4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 O

15 12 8 2 4 9 1 7 5 11 3 14 10 O 6 13

S2

15 1 8 14 6 11 3 4 9 7 2 13 12 O 5 10

313 4 7 15 2 814 12 O 110 6 9 11 5

O 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15

13 8 10 1 3 15 4 2 11 6 7 12 O 5 14 9

•
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S3

10 O 9 14 6 3 15 5 1 13 12 7 11 4 2 8

13 7 O 9 3 4 6 10 2 8 5 14 12 11 15 1

13 6 4 9 8 15 3 O 11 1 2 12 5 10 14 7

1 10 13 O 6 9 8 7 4 15 14 3 11 5 2 12

S4

7 13 14 3 O 6 9 10 1 2 8 5 11 12 4 15

13 8 11 5 6 15 O 3 4 7 2 12 1 10 14 9

10 6 9 O 12 11 7 13 15 1 3 14 5 2 8 4

3 15 O 6 10 1 13 8 9 4 5 11 12 7 2 14

S5

2 12 4 1 7 10 11 6 8 5 3 15 13 O 14 9

14 11 2 12 4 7 13 1 5 O 15 10 3 9 8 6

4 2 1 11 10 13 7 8 15 9 12 5 6 3 O 14

11 8 12 7 1 14 2 13 6 15 O 9 10 4 5 3

S6

12 1 1015 9 2 6 8 O 13 3 4 14 7 5 11

10 15 4 2 7 12 9 5 6 1 13 14 O 11 3 8

9 14 15 5 2 8 12 3 7 O 4 10 1 13 11 6

4 3 2 12 9 5 15 10 11 14 1 7 6 O 8 13
" 

S7

4 11 2 14 15 O 8 13 3 12 9 7 5 10 6 1

13 O 11 7 4 9 110 14 3 512 215 8 6

1 4 11 13 12 3 7 14 10 15 6 8 O 5 9 2

6 11 13 8 1 4 10 7 9 5 O 15 14 2 3 12
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S8

13 2 8 4 6 15 11 1 10 9 3 14 5 O 12 7

115 13 8 10 3 7 4 12 5 6 11 O 14 9 2

711 4 1 9 12 14 2 O 6 10 13 15 3 5 8

2 1 14 7 4 10 8 13 15 12 9 O 3 5 6 11

Example: K1 + E(R0) = 011000 010001011110111010 100001 100110 010100 100111.

: For the first round, we obtain as the output of the eight S boxes:

S1(B1)S2(B2)S3(B3)S4(B4)Ss(Bs)S6(B6)S7(B7)Ss(Bs) = 0101 1100 1000 0010 1011 0101 1001

0111

The final stage in the calculation of/is to do a permutation Pof the S-box output to

obtain the final value off:
f= P(SJ(B1)S2(B2) ... Ss(Bs))

The permutation P is defined in the table5.8. P yields a 32-bit output from a 32-bit

input by permuting the bits of the input block.

Table 3.8 P results

p

16 7 20 21

29 12 28 17

1 15 23 26

5 18 31 10

2 8 24 14

32 27 3 9

19 13 30 6

22 11 4 25

•
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Example: From the output of the eight S boxes:

Sı(Bı)S2(B2)S3(B3)S4(B4)Ss(Bs)S6(B6)S7(B7)S8(B8) = 0101 1100 1000 0010 1011 0101 1001
0111

we get

f = 001O 0011 O 1 00 1 O 1 O 1 O 1 O 1001 1 O 11 1 O 11

R, = Lo + fi.Ro , K, )

= 1100 1100

+ 0010 0011

= 1110 1111 0100 1010 0110 0101 0100 0100

0000 0000 1100

1010

1100

1001

1111

1011

1111

10110100 1010

In the next round, we will have L2 = R1, which is the block we just calculated, and

then we must calculate R2 =Lı + f(R1, K2), and so on for 16 rounds. At the end of the

sixteenth round we have the blocks L16 and R16• We then reverse the order of the two blocks

into the 64-bit block Rı~16, and apply a final permutation ıp-t as defined by the table5.9:

Table 3.9 final permutation
ıp-1

40 8 48 16 56 24 64 32

39 7 47 15 55 23 63 31

38 6 46 14 54 22 62 30

37 5 45 13 53 21 61 29

36 4 44 12 52 20 60 28
•• 

35 3 43 11 51 19 59 27

34 2 42 10 50 18 58 26
• 

33 1 41 9 49 17 57 25

That is, the output of the algorithm has bit 40 of the pre output block as its first bit,

bit 8 as its second bit, and so on, until bit 25 of the pre output block is the last bit of the

output.
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Example: If we process all 16 blocks using the method defined previously, we get, on the
16th round,

L16 = 0100 0011 0100 0010 0011 0010 0011 0100

Rı6= 0000 1010 0100 1100 11011001 1001 0101

We reverse the order of these two blocks and apply the final permutation to

Rıd16 = 00001010 01001100 11011001 10010101 01000011 01000010 00110010

00110100

IP-1 = 10000101 11101000 00010011 01010100 00001111 00001010 10110100 00000101

which in hexadecimal format is

85E813540FOAB405.

This is the encrypted form of M = 0123456789ABCDEF: namely,

C = 85E813540FOAB405.

Decryption is simply the inverse of encryption, following the same steps as above,

but reversing the order in which the subkeys are applied.

3.4.3 DES Modes of Operation

The DES algorithm turns a 64-bit message blocks M into a 64-bit cipher block C. If

each 64-bit block is encrypted individually, then the mode of encryption is called Electronic

Code Book (ECB) mode. There are two other modes of DES encryption, namely Chain

Block Coding (CBC) and Cipher Feedback (CFB), which make each cipher block

dependent on all the previous messages blocks through an initial XOR operation which

explained previous

3.4.4 Some Preliminary Examples of DES •

DES works on bits, or binary numbers--the Os and ls common to digital computers.

Each group of four bits makes up a hexadecimal, or base 16, number. Binary "0001" is

equal to the hexadecimal number "I", binary "1000" is equal to the hexadecimal number

"8", "1001" is equal to the hexadecimal number "9", "1010" is equal to the hexadecimal

number "A", and "1111" is equal to the hexadecimal number "F".
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DES works by encrypting groups of 64 message bits, which is the same as 16

hexadecimal numbers. To do the encryption, DES uses "keys" where are also apparently 16

hexadecimal numbers long or apparently 64 bits long. However, every 8th key bit is

ignored in the DES algorithm, so that the effective key size is 56 bits. But, in any case, 64

bits (16 hexadecimal digits) is the round number upon which DES is organized.

For example, if we take the plaintext message "8787878787878787", and encrypt it

with the DES key "OE329232EA6DOD73", we end up with the cipher text

"0000000000000000". If the cipher text is decrypted with the same secret DES key

"OE329232EA6DOD73", the result is the original plaintext "8787878787878787".

This example is neat and orderly because our plaintext was exactly 64 bits long. The

same would be true if the plaintext happened to be a multiple of 64 bits. But most messages

will not fall into this category. They will not be an exact multiple of 64 bits (that is, an exact

multiple of 16 hexadecimal numbers).

For example, take the message "Your lips are smoother than vaseline". This

plaintext message is 38 bytes (76 hexadecimal digits) long. So this message must be padded

with some extra bytes at the tail end for the encryption. Once the encrypted message has

been decrypted, these extra bytes are thrown away. There are, of course, different padding

schemes--different ways to add extra bytes, Here we will just add Os at the end, so that\~

total message is a multiple of 8 bytes (or 16 hexadecimal digits, or 64 bits).

The plaintext message "Your lips are smoother than Vaseline" is, in hexadecimal,•
~"596F7572206C6970 732061726520736D 6F6F746865722074 68616E2076617365

6C696E650DOA".

(Note here that the first 72 hexadecimal digits represent the English message, while

"OD" is hexadecimal for Carriage Return, and "OA" is hexadecimal for Line Feed, showing
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that the message file has terminated.) We then pad this message with some Os on the end, to

get a total of 80 hexadecimal digits:

"596F7572206C6970 732061726520736D 6F6F746865722074 68616E2076617365

6C696E650DOAOOOO".

If we then encrypt this plaintext message 64 bits (16 hexadecimal digits) at a time,

using the same DES key "0E329232EA6DOD73" as before, we get the cipher text:

"C0999FDDE378D7ED 727DAOOBCA5A84EE 47F269A4D6438190 9DD52F78F5358499

828AC9B453EOE653 ".

This is the secret code that can be transmitted or stored. Decrypting the cipher text

restores the original message "Your lips are smoother than Vaseline". (Think how much

better off Bill Clinton would be today, if Monica Lewinsky had used encryption on her
Pentagon computer!)

3.5 Cracking DES

Before DES was adopted as a national standard, during the period NBS was

soliciting comments on the proposed algorithm, the creators of public key cryptography,

Martin Hellman and Whitfield Diffie, registered some objections to the use of DES as an

encryption algorithm. Hellman wrote: "Whit Diffie and I have become concerned that the

proposed data encryption standard, while probably secure against commercial assault, may

be extremely vulnerable to attack by an intelligence organization" (letter to NBS, October
22, 1975).

• 
Diffıe and Hellman then outlined a "brute force" attack on DES. (By "brute force" is

meant that you try as many of the 2/\56 possible keys as you have to before decrypting the

cipher text into a sensible plaintext message.) They proposed a special purpose "parallel

computer using one million chips to try one million keys each" per second, and estimated

the cost of such a machine at $20 million.
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A brute force attack remains the most promising approach. For SDES, it is trivial;

there are only 1024 keys. For DES it is much harder; there are 7 x 1016 keys. This would

take over 2000 years if you checked each key in one microsecond. Michael Wiener

designed a DES cracker with millions of specialized chips on specialized boards and racks

[1, p.153]. He concluded in 1995 that for $1 million, a machine could be built that would

crack a 56-bit DES key in 7 hours. Schneier estimates that this would be doable for

$100,000 in 2000, so we might extrapolate to $10,000 in 2005. For these reasons,

algorithms based on 56-bit keys, like DES, are no longer thought secure. Schneier: "insist
on at least 112 bit keys."

Fast forward to 1998. Under the direction of John Gilmore of the EFF, a team spent

$220,000 and built a machine that can go through the entire 56-bit DES key space in an

average of 4.5 days. On July 17, 1998, they announced they had cracked a 56-bit key in 56

hours. The computer, called Deep Crack, uses 27 boards each containing 64 chips, and is

capable of testing 90 billion keys a second.

Despite this, as recently as June 8, 1998, Robert Litt, principal associate deputy

attorney general at the Department of Justice, denied it was possible for the FBI to crack

DES: "Let me put the technical problem in context: It took 14,000 Pentium computers

working for four months to decrypt a single message .... We are not just talking FBI and

NSA [needing massive computing power], we are talking about every police department."

Responded cryptography expert Bruce Schneider: " . . . the FBI is either incompetent or

lying, or both." Schneider went on to say: "The only solution here is to pick an algorithm
" 

with a longer key; there isn't enough silicon in the galaxy or enough time before the sun

burns out to brute- force triple-DES" (Crypto-Gram, Counterpane Systems, August 15,

1998).
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3.6 Triple-DES

Triple-DES is just DES with two 56-bit keys applied. Given a plaintext message, the

first key is used to DES- encrypt the message. The second key is used to DES-decrypt the

encrypted message. (Since the second key is not the right key, this decryption just scrambles

the data further.) The twice-scrambled message is then encrypted again with the first key to

yield the final cipher text. This three-step procedure is called triple-DES.

Triple-DES is just DES done three times with two keys used in a particular order.

(Triple-DES can also be done with three separate keys instead of only two. In either case

the resultant key space is about 2/\112.)

•
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4. NETWORK SECURITY

4.1 Overview

A basic understanding of computer networks is requisite in order to understand the

principles of network security. In this section, we'll cover some of the foundations of

computer networking, also we'll cover some of the threats and the risks that managers and

administrators of computer networks need to confront, and then some tools that can be used

to reduce the exposure to the risks of network computing. Once we've covered this, we'll go

back and cover the process of protecting data and equipment from unauthorized access.

And we'll includes a brief description of network security concepts and technology.

4.2 What is a Network?

A set of interlinking lines resembling a net, a network of roads II an interconnected

system, a network of alliances." This definition suits our purpose well: a computer network

is simply a system of interconnected computers. How they're connected is irrelevant, and as

we'll soon see, there are a number of ways to do this.

4.3 The ISO/OSI Reference Model

~ 
The International Standards Organization (ISO) Open Systems Interconnect (OSI)

Reference Model defines seven layers of communications types, and the interfaces among•
• them. See Figure 4.1. Each layer depends on the services provided by the layer below it, all

the way down to the physical network hardware, such as the computer's network interface

card, and the wires that connect the cards together.

An easy way to look at this is to compare this model with something we use daily: the

telephone. In order for you and me to talk when we're out of earshot, we need a device like
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a telephone. (In the ISO/OSI model, this is at the application layer.) The telephones, of

course, are useless unless they have the ability to translate the sound into electronic pulses

that can be transferred over wire and back again. (These functions are provided in layers

below the application layer.) Finally, we get down to the physical connection: both must be

plugged into an outlet that is connected to a switch that's part of the telephone system's

network of switches.

If person A places a call to person B, person A picks up the receiver, and dials

person B's number. This number specifies which central office to which to send my

request, and then which phone from that central office to ring. Once person B answers the

phone, they begin talking, and their session has begun. Conceptually, computer networks

function exactly the same way.

It isn't important to memorize the ISO/OSI Reference Model's layers; but it is useful

to know that they exist, and that each layer can not work without the services provided by

the layer below it.

LAYER7 Application
-

LAYER6 Presentation
----·-~-·

LAYER5 Session
-

LAY'.ER4 Transport
--

LAYER3 Network
--- -·- ~-~-~---_., ___ ---

LAYER2 Datt. Link

LA YERi Physical
----~ - -~~. 

•

Figure 4.1: the ISO/OSI Reference Model
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4.4 Overview of TCP /IP

TCP/IP (Transport Control Protocol/Internet Protocol) is the language of the

Internet. Anything that can learn to speak TCP/IP can play on the Internet. This is
functionality that occurs at the Network (IP) and Transport (TCP) layers in the. ISO/OSI

Reference Model. Consequently,a host that has TCP/IP functionality (such as Unix, OS/2,

MacOS, or Windows NT) can easily support applications (such as Netscape's Navigator)

that uses the network.

TCP/IP protocols are not used only on the Internet. They are also widely used to
build private networks, called intemets, that may or may not be connected to the global

Internet. An internet that is used exclusively by one organization is sometimes called an

intranet

4.4.1 Open Design

One of the most important features of TCP/IP isn't a technological one: The

protocol is an open protocol, and anyone who wishes to implement it may do so freely.

Engineers and scientists from all over the world participate in the IETF (Internet

Engineering Task Force) working groups that design the protocols that make the Internet

work. Their time is typically donated by their companies, and the result is work that

benefits everyone.

4.4.2 IP

IP is a "network layer" protocol. This is the layer that allows the hosts to actually

talk to each other. Such things as carrying datagram's, mapping the Internet address to a

• physical network address, and routing, which takes care of making sure that all of the

devices that have Internet connectivitycan find the way to each other.
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4.4.3 IP Address

IP addresses are analogous to telephone numbers - when you want to call someone

on the telephone, you must first know their telephone number. Similarly, when a computer

on the Internet needs to send data to another computer, it must first know its IP address. IP

addresses are typically shown as four numbers separated by decimal points, or "dots". For

example, 10.24.254.3 and 192.168.62.231 are IP addresses.

If you need to make a telephone call but you only know the person's name, you can

look them up in the telephone directory (or call directory services) to get their telephone

number. On the Internet, that directory is called the Domain Name System or DNS for

short. If you know the name of a server, say www.cert.org, and you type this into your web

browser, your computer will then go ask its DNS server what the numeric IP address is that

is associated with that name.

4.4.3.1 Static And Dynamic Addressing

Static IP addressing occurs when an ISP permanently assigns one or more IP

addresses for each user. These addresses do not change over time. However, if a static

address is assigned but not in use, it is effectively wasted. Since ISPs have a limited

number of addresses allocated to them, they sometimes need to make more efficient use of

their addresses.

Dynamic IP addressing allows the ISP to efficiently utilize their address space.

Using dynamic IP addressing, the IP addresses of individual user computers may change

over time. If a dynamic address is not in use, it can be automatically reassigned to another

computer as needed. •
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4.4.3.2 Attacks Against IP

A number of attacks against IP are possible. Typically, these exploit the fact that IP

does not perform a robust mechanism for authentication, which is proving that a packet

came from where it claims it did. A packet simply claims to originate from a given address,

and there isn't a way to be sure that the host that sent the packet is telling the truth. This

isn't necessarily a weakness, per se, but it is an important point, because it meansmportant

point, because it meansntication has to be provided at a higher layer on the ISO/OSI

Reference Model. Today, applications that require strong host authentication (such as

cryptographic applications) do this at the application layer.

4.4.3.3 IP Spoofing

This is where one host claims to have the IP address of another. Since many

systems (such as router access control lists) define which packets may and which packets

may not pass based on the sender's IP address, this is a useful technique to an attacker: he

can send packets to a host, perhaps causing it to take some sort of action.

4.4.4 TCP and UDP Ports

TCP (Transmission Control Protocol) and UDP (User Datagram Protocol) are both

protocols that use IP. Whereas IP allows two computers to talk to each other across the

Internet, TCP and UDP allow individual applications (also known as "services") on those

computers to talk to each other.

In the same way that a telephone number or physical mail box might be associated

with more than one person, a computer might have multiple applications (e.g. email, file

services, web services) running on the same IP address. Ports allow a computer to

differentiate services such as email data from web data. A port is simply a number

associated with each application that uniquely identifies that service on that computer. Both

TCP and UDP use ports to identify services. Some common port numbers are 80 for web

(HTTP), 25 for email (SMTP), and 53 for Dmain Name System (DNS).
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4.4.4.1 TCP

TCP is a transport-layer protocol. It needs to sit on top of a network-layer protocol, and was

designed to ride atop IP. (Just as IP was designed to carry, among other things, TCP

packets.) Because TCP and IP were designed together and wherever you have one, you

typically have the other, the entire suite of Internet protocols are known collectively as

TCP/IP.

4.4.4.2 UDP

UDP (User Datagram Protocol) is a simple transport-layer protocol. It does not

provide the same features as TCP, and is thus considered "unreliable". Again, although this

is unsuitable for some applications, it does have much more applicability in other

applications than the more reliable and robust TCP.

4.5 Risk Management: The Game of Security

It's very important to understand that in security, one simply cannot say "what's the

best firewall?" There are two extremes: absolute security and absolute access. The closest

we can get to an absolutely secure machine is one unplugged from the network, power

supply, locked in a safe, and thrown at the bottom of the ocean. Unfortunately, it isn't

terribly useful in this state. A machine with absolute access is extremely convenient to use:

it's simply there, and will do whatever you tell it, without questions, authorization,

passwords, or any other mechanism. Unfortunately, this isn't terribly practical, either: the

Internet is a bad neighborhood Flow, and it isn't long before some bonehead will tell the

computer to do something like self-destruct, after which, it isn't terribly useful to you .
•

This is no different from our daily lives. We constantly make decisions about what

risks we're willing to accept. When we get in a car and drive to work, there's a certain risk

that we're taking. It's possible that something completely out of control will cause us to

become part of an accident on the highway. When we get on an airplane, we're accepting

the level of risk involved as the price of convenience. However, most people have a mental

picture of what an acceptable risk is, and won't go beyond that in most circumstances. If I
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happen to be upstairs at home, and want to leave for work, I'm not going to jump out the

window. Yes, it would be more convenient, but the risk of injury outweighs the advantage

of convenience.

Every organization needs to decide for itself where between the two extremes of

total security and total access they need to be. A policy needs to articulate this, and then

define how that will be enforced with practices and such. Everything that is done in the

name of security, then, must enforce that policy uniformly.

4.5.1 Security Risks

The first step to understanding security is to know what the potential risks

are, or more specifically, to determine the type and level of security risks for the

company. Security risks are unique to each organization because they are dependent

on the nature of the business and the environment in which the company operates.

For example, the security risks for a high profile dot com company that solely

operates on the Internet will be very different from a small manufacturing company

that does little on the Web.

Security risk is determined by identifying the assets that need to be

protected. The assets could include customer credit card information, proprietary

product formulas, employee data, the company's Web site, or other assets that are

deemed to be important to the organization. Once the assets are identified, the next

step is to determine the criticality of the assets to the company. For example, if the
••

asset is considered to be very important to the company, then the level of security

for that asset should be high.

The next step is assessing the likelihood of a potential attack. While security

measures must always be put in place to protect the assets of the company, the risks

increase as the probability of an attack rises. For example, it is more likely for an

outside intruder to attempt to break into a Web site selling consumer goods than a

small manufacturing company making rubber bands. Therefore, while both

companies must have security measures, the company with the Web site must
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deploy a higher level of security. Now that the process of determining security risk

has been defined, some of the more common security risks are briefly discussed

below.

4.5.2 Security Threats

The first step in evaluating security risks is to determine the threats to

system security. Although the term network security has been commonly

categorized as protecting data and system resources from infiltration by third-party

invaders, most security breeches are initiated by personnel inside the organization.

Organizations will spend hundreds of thousands of dollars on securing sensitive

data from outside attack while taking little or no action to prevent access to the

same data from unauthorized personnel within the organization.

The threat from hackers has been largely overstated. Individuals who fit into

this group have more of a Robin Hood mentality than a destructive mentality. Most

hackers, or crackers as they prefer to be called, are more interested in the thrill of

breaking into the system than they are in causing damage once they succeed in

gaining access. Unfortunately, there is an increasing trend for hackers to be

employed by other entities as an instrument to gain access to systems.

As the amount of critical data stored on networked systems has increased,

the appeal of gaining access to competitors' systems has also increased. In highly

competitive industry segments, an entire underground market exists in the buying

and trading of product and sales data. By gaining access to research and

development information from a competitor, millions of dollars and years of

research can be eliminated. •

Another external threat is that of government intrusion, both from the

domestic government and from foreign governments. Agencies such as the Federal

Bureau of Investigation and the Internal Revenue Service can have vested interests

in gaining access to critical tax and related information. Foreign governments are
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especially interested in information that could represent an economic or national

defense advantage

4.6 Types and Sources of Network Threats

Now, we've covered enough background information on networking that we can

actually get into the security aspects of all of this. First of all, we'll get into the types of

threats there are against networked computers, and then some things that can be done to

protect you against various threats.

4.6.1 Denial-of-Service

DoS (Denial-of-Service) attacks are probably the nastiest, and most difficult to

address. These are the nastiest, because they're very easy to launch, difficult (sometimes

impossible) to track, and it isn't easy to refuse the requests of the attacker, without also

refusing legitimate requests for service.

The premise of a DoS attack is simple: send more requests to the machine than it

can handle. There are toolkits available in the underground community that make this a

simple matter of running a program and telling it which host to blast with requests. The

attacker's program simply makes a connection on some service port, perhaps forging the

packet's header information that says where the packet came from, and then dropping the

connection. If the host is able tosanswer 20 requests per second, and the attacker is sending

50 per second, obviously the host will be unable to service all of the attacker's requests,

much less any legitimate requests (hits on the web site runrling there, for example).

• Such attacks were fairly common in late 1996 and early 1997, but are now

becoming less popular

• Some things that can be done to reduce the risk of being stung by a denial of

service attack include
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• Not running your visible-to-the-world servers at a level too close to capacity

using packet filtering to prevent obviously forged packets from entering into

your network address space.

• Obviously forged packets would include those that claim to come from your

own hosts, addresses reserved for private networks as defined in

RFC 1918 [4], and the loop back network (127.0.0.0).

• Keeping up-to-date on security-related patches for your hosts' operating

systems.

4.6.2 Unauthorized Access

"Unauthorized access" is a very high-level term that can refer to a number of

different sorts of attacks. The goal of these attacks is to access some resource that your

machine should not provide the attacker. For example, a host might be a web server, and

should provide anyone with requested web pages. However, that host should not provide

command shell access without being sure that the person making such a request is someone

who should get it, such as a local administrator.

4.6.2.1 Executing Commands Illicitly

It's obviously undesirable for an unknown and un-trusted person to be able to

execute commands on your server machines. There are two main classifications of the

severity of this problem: normal user access, and administrator access. A normal user can

do a number of things on a system (such as read files, mail them to other people, etc.) that
~ 

an attacker should not be able to do. This might, then, be all the access that an attacker

needs. On the other hand, an attacker might wish to make configuration changes to a host•
• (perhaps changing its IP address, putting a start-up script in place to cause the machine to

shut down every time it's started or something similar). In this case, the attacker will need

to gain administrator privileges on the host.
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4.6.2.2 Confidentiality Breaches

We need to examine the threat model: what is it that you're trying to protect yourself

against? There is certain information that could be quite damaging if it fell into the hands of

a competitor, an enemy, or the public. In these cases, it's possible that compromise of a

normal user's account on the machine can be enough to cause damage (perhaps in the form

of PR, or obtaining information that can be used against the company, etc.)

While many of the perpetrators of these sorts of break-ins are merely thrill-seekers

interested in nothing more than to see a shell prompt for your computer on their screen,

there are those who are more malicious, as we'll consider next. (Additionally, keep in mind

that it's possible that someone who is normally interested in nothing more than the thrill

could be persuaded to do more: perhaps an unscrupulous competitor is willing to hire such

a person to hurt you.)

4.6.2.3 Destructive Behavior

Among the destructive sorts of break-ins and attacks, there are two major categories.

Data Diddling--The data diddler is likely the worst sort, since the fact of a break-in might

not be immediately obvious. Perhaps he's toying with the numbers in your spreadsheets, or

changing the dates in your projections and plans. Maybe he's changing the account numbers

for the auto-deposit of certain paychecks. In any case, rare is the case when you'll come in

to work one day, and simply know that something is wrong. An accounting procedure

might tum up a discrepancy in the books three or four months after the fact. Trying to track

the problem down will certainly be difficult, and once that problem is discovered, how can

any of .your numbers from that time period be trusted? How far bacle do you have to go

before you think that your data is safe?

Data Destruction--Some of those perpetrate attacks are simply twisted jerks who like to

delete things. In these cases, the impact on your computing capability -- and consequently

your business -- can be nothing less than if a fire or other disaster caused your computing

equipment to be completely destroyed.

81



4.6.3 Where Do Tiı~ Come From?

connection

an attacker gain access to your equipment? Through any

o the outside world. This includes Internet connections, dial-up

~ ical access. (How do you know that one of the temps that you've

data entry isn't really a system cracker looking for passwords,

_ .ulnerabilities and anything else that can get him access to your

brought in

data phone nınnber

equipment?)

In order to be able to adequately address security, all possible avenues of entry must

be identified and evaluated. The security of that entry point must be consistent with your

stated policy on acceptable risk levels.

4.6.4 Lessons Learned

From looking at the sorts of attacks that are common, we can divine a relatively

short list of high-level practices that can help prevent security disasters, and to help control

the damage in the event that preventative measures were unsuccessful in warding off an

attack.

4.6.4.1 Hope you have backups

This isn't just a good idea from a security point of view. Operational requirements
••should dictate the backup policy, and this should be closely coordinated with a disaster

recovery plan, such that if an airplane crashes into your building one night, you'll be able to
• carry on your business from another location. Similarly, these can be useful in recovering

your data in the event of an electronic disaster: a hardware failure or a breakin that changes

or otherwise damages your data.
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4.6.4.2 Don't Put Data where it doesn't need to be

Although this should go without saying, this doesn't occur to lots of folks. As a

result, information that doesn't need to be accessible from the outside world sometimes is,

and this can needlessly increase the severity of a break-in dramatically.

4.6.4.3 Avoid Systems with Single Points of Failure

Any security system that can be broken by breaking through any one component

isn't really very strong. In security, a degree of redundancy is good, and can help you

protect your organization from a minor security breach becoming a catastrophe.

4.6.4.4 Stay Current with Relevant Operating System Patches

Be sure that someone who knows what you've got is watching the vendors' security

advisories. Exploiting old bugs is still one of the most common (and most effective!) means

of breaking into systems.

4.6.4.5 Watch for Relevant Security Advisories

In addition to watching what the vendors are saying, keep a close watch on groups

like CERT and CIAC. Make sure that at least one person (preferably more) is subscribed to

these mailing lists

4.6.4.6 Have Someone on Staff be Familiar with Security

Having at least one person who is charged with keeping abreast of security

developments is a good idea. This need not be a technical wizard, but could be someone
• 

who is simply able to read advisories issued by various incident response teams, and keep

track of various problems that arise. Such a person would then be a wise one to consult

with on security related issues, as he'll be the one who knows if web server software

version such-and-such has any known problems, etc.
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4.7 Generation and Distribution of Keys

A constant supply of key bases is required to keep the distributed network system

operating. One possible plan is shown in Figure 4.7, in which two major key preparation

stations are depicted, one in A and other is B. Each such station contains a large general­

purpose computer with about six tape units. Each key preparation site uses separately

written, highly complex, random number generating programs. Three individuals at each

site working independently insert choice parameters, which modify the random number

generator. Conventional one-inch magnetic computer tapes, recorded at high speed, are

played back into a 1/4" tape duplicator for preparation of the 300-ft spools of 1/4" tape used

in the Multiplexing Stations. The one-inch computer tape outputs are also used to drive an

off-line cardpunch to prepare the shorter set of keys, which are used by the Switching

Nodes. The output of each of the two sites' tapes and card duplicating facilities are stored in

about twenty geographically distributed sites.
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Figure 4.7: One method of distributing the keys •

The Switching Node and Multiplexing Station keys are comprised of two parts, one

coming from the distribution site prepared by the A unit, and the other part coming from

the B unit via different distribution sites. Each member of a two-man team has mechanical

key access to only his own part of the key base. Thus, the system is relatively secure from a

single enemy agent having access to an entire key base for any unit.
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4.8 Modification of Derived Key Base

To this point, both Multiplexing Stations are synchronized and are using the same

derived key bases. In it the same derived key base is used for more than a single

conversation call. After the setup interval, Message Blocks will arrive at a very high rate. It

is necessary to create -a key from the derived key base at a very rapid rate, leaving very

little time for processing. As this is a routine continuous operation, a "stamping mill"

processor, with a portion of the Multiplexing Station equipment working full time on this

operation, is utilized. The Multiplexing Station uses a drum or similar recalculating register

to store the key bases, derived keys, and the Message Blocks. The processing scheme used

depends primarily upon a very low Message Block error rate at the Multiplexing Stations.

Unfiltered errors and lost Message Blocks are expected to be such rare events, that we shall

intentionally "knock down" a quasi-circuit if a single bad Message Block slips by the error­

detection filters. Incoming encrypted message alternately fills one of the two assigned

registers while the other register is simultaneously being read out and "logically-added" to

the key base. The clear output message is then stored on one of two alternately assigned

registers reserved for this purpose. Meanwhile, the clear message and the incoming

message operate upon one another in a controlled manner to produce a new key base, based

upon the previous key base used. This procedure may appear to be similar to the

conventional "auto key" procedure, but it should be noted that the next key is related to its

previous one by a very complex and unknown mathematical operation. Even having the

entire encrypted message and ~ sample of clear message will not facilitate ascertaining

subsequent samples of clear message. Thus, very high speed processing of Message Blocks

with high cryptographic security for 1024 separate subscribers per Multiplexing Station
•

does not appear particularly difficult to accomplish.

It should be pointed out that the detailed implementation described may or may not

be the precise method used. The present detailed description seeks only to point out that

secure cryptographic processing at extremely high data rates appears technically possible.
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