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Introduction To Programmable Logic Controllers (PLCs) 

HISTORY OF PLC's 
In 1970's discovering microprocessors many thing was begun to change in the world. They can 
make many jobs in very short times and they can be modulates in desired wishes. In industrial 
control complex control systems can be realise easily with microprocessors and the PLC was 
born. By one account, PLCs were born in a Request for Proposals issued by GM to industrial 
control vendors. GM was tired of replacing and re-wiring complex relay panels every time 
tailfins got a little bigger or smaller. 

ADVANTAGES 
-ACCURACY: 
In relay control systems logical knowledge's carry's in electro mechanical contactors, they can 
be lose their knowledge's because of mechanical errors. But PLC's are microprocessor based 
system so logical knowledge's carries inside the processor, so that PLC's are more accurate 
than relay type of controllers. 

-FLEXIBLITY: 
When need of any changing of control logic, relay type of controllers modification are so hard, 
in PLC's this changing can be made with PLC programmer equipment. 

-COJ\IIMUNICATION: 
PLC's are computer based systems. So that they can transfers their position in working to 
another PC or they can take external inputs to another PC, with this specification we can 
control the system were they are and we can effect the system with our PC.(Help of extra 
equipment's.) With relays it can not be possible. 

Logic Control in Industrial Automation 
Everyday examples of these systems are machines like dishwashers, clothes washers and 
dryers, and elevators. In these systems, the outputs tend to be 220vac power signals to motors, 
solenoids, and indicator lights, and the inputs are DC or AC signals from user interface 
switches, motion limit switches, binary liquid level sensors, etc. Another major function in 
these types of controlers is timing. 

Relays and Ladder Logic 
In the "old days" (i.e. before the 1980's) these types of controllers were implemented with 
relays. 
Relays are a technology from the early days of electricity in which an electromagnet activates 
an electrical switch. When current flows in the coil, electrical contacts are pulled together or 
apart making ( or breaking) a circuit. Relays are electrically, thermally, and mechanically 
rugged, easy to design with, cheap, and capable of controlling very large currents in their 
output contacts. 



Relays can be thought of as logic gates. For example, if two normally open relays are wired in 
series, and one end of the resulting output circuit is attached to a voltage source, then the two 
coils form the inputs of a AND gate: only if current is flowing in BOTH input coils will current 
flow in the output circuit. A typical application in a washing machine might be to implement 
the rule that 

if ( state = wash) AND ( door = close) Take water inside 

A collection of these boolean rules can be represented by a diagram in which each output 
circuit is drawn horizontally between vertical "power rails". 

The shape of these diagrams invariably led to the name "Ladder Diagrams" and "Ladder Logic" 
to describe them. The term "Relay Ladder Logic" (RLL) describes this logic notation. By 
including interconnections between the horizontal rungs, it is possible to create latches ("flip 
flops") and implement state transitions. Although LL "state machines" get quite complex and 
are typically not designed with the convenience of finite state machine theory, they have 
become widely used and supported by technical workers. Because the logic was implemented 
in physical wiring, it was difficult to change as new functions were required. 
To learning and describing as well as possible I choice SIMATIC® S7-200 PLC and 
MICROWIN I STEP7 software. 

System Overview 

A typical S7-200 system will include an S7-200 base unit which includes the central processing 
unit, power supply, and discrete input and output points. Expansion module contain additional 
input or output points and are connected to the base unit using bus connectors. The central 
processing unit has a built-in communications port for programming or talking with intelligent 
ASCII devices. 
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CPU Overview 
The S7-200 series is a line of small, compact, micro-programmable logic controllers and 
expansion modules that can be used for a variety of programming applications. There are two 
types of base units in the S7-200 product line, CPU 212 and CPU 214. Each base unit comes 
in different models to accommodate the type of power supply, inputs and outputs you require. 

Architecture 
This section relates to how the S7-200 CPU arranges data and how it executes your program 
during it's scan cycle. 

Memory map 
The memory space of the S7-200 is divided into five data areas and six data objects. To 
reference a memory location for use, you must address that location. The addressing 
conventions allow memory to be accessed as bits, bytes, words and double words. All 
addresses are zero-based. 

Data space is highly flexible, and it allows read and write access to all memory areas as bits, 
bytes, words and double words. Data objects are the memory locations that are associated 
with devices (such as the current value of a counter or the temperature value of an oven). 
Access to data objects is more restrictive because the data object can be addressed only 
according to the intended use of that object 

Data Areas. Data memory contains variable memory, and input image register, and output 
image register, internal memory bits, and special memory bits. This memory is accessed by a 
byte.bit convention. For example to access bit 3 of Variable Memory byte 25 you would use 
the address V25. 3. 

The following table shows the identifiers and ranges for each of the data area memory types: 

Area Identifier Data Area CPU 212 CPU 214 
I Input mo to I7.7 mo to I7.7 
Q Output QO.O to Q7.7 QO.O to Q7.7 
M Internal Memory MO.Oto Ml5.7 MO.Oto M31.7 
SM Special Memory SMO.O to SM 45.7 SMO.O to SM 85.7 
V Variable Memory VO.Oto Vl023.7 VO.Oto V4095.7 

Data Objects. The S7-200 has six kinds of devices with associated data: timers, counters, 
analog inputs, analog outputs, accumulators and high-speed counters. Each device has 
associated data (data objects). For example, the S7-200 has counter devices. Counters have a 
data value that maintains the current count value. There is also a bit value which is set when 
the current value is greater than or equal to the preset value. Since there are multiple devices 
of each kind, devices are numbered from Oto n. The corresponding data objects and object 
bits are also numbered. 
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The following table shows the identifiers and ranges for each of the data object memory types 

Object Identifier Object CPU 212 CPU 214 
T Timers TO to T63 TO to Tl27 
C Counters CO to C63 CO to Cl27 
Al Analog Input AIWO to AIW30 AIWO to AIW30 
AQ Analog Output AQWO to AQW30 AQWO to AQW30 
AC Accumulator Registers ACO to AC3 ACO to AC3 
HC High-speed Counter Current HCO HCO to HC2 

The programmable logic controller can also divide the memory space of the S7-200 into data 
areas identified by a symbolic name or data area name. 

The table below shows memory space and data object spaces: 

CPU 212 Memory 

MSB 
7 

LSB 
0 

CPU 214 Memory 

MSB LSB 
7 0 

VO VO 
Data Block 1 
Variable Memory 
(Read(Write) 

Non-volatile storage 
of VO - V127 

Non-volatile storage 
of VO - V511 

V127 V511 

Variable Memory 
[Re a d(Write) 

V128 V512 

V1023 V4095 

Input Image 
Register 
(Re a d(Write) 

10.7 10.0 

17.7 17.0 

I0.7 IO.O 

17.7 17.0 

4 



Output Image 
Register 
(Read(Write) 

Internal Memory 
Bits 
(Read(Write) 

Special Memory 
Bits 
(Read Only) 

Special Memory 
Bits 
(Re a d(vv'rite} 

00.7 00.0 

07.7 07.0 

00.7 00.0 

07.7 07.0 

M0.7 MO.O 

Ml5.7 Ml5.0 

M0.7 MO.O 

M31.7 M31.0 

SM0.7 SMO.O 

SM29.7 SM29.0 SM29.7 SM29.0 

SM30.7 SMJO.O 

SM45.7 SM45.0 

SMJ0.7 SM30.0 

SM85.7 SM85.0 
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CPU 212 Memory CPU 214 Memory 

MSB LSB MSB LSB 
15 0 15 0 

Timers I TO I rm [~ TO I no 
(Re a dN/rite J 

Timer Bits 
[ReadN/rite] I T63 I [IlIJ I T127 I IT127 

Counters I co I ran I co l I co 
(ReadN/rite) 

Counter Bits 
(ReadN/rite) I C63 I rem I C127 

Analog 
Inputs 
(Read Only) 

AIWO AIWO 
AIW2 AIW2 

AIW30 AIW30 

CPU 212 Memory 

MSB 
15 

LSB 
0 

CPU 21 4 Memory 

MSB LSB 
15 0 

AOWO Analog 
Outputs 
[Write Only) 

AQWO 
AQW2 AQW2 

AQW30 AQW30 

Accumulator 
Registers 
(ReadN/rite] 

ACO* 
AC1 
AC2 
AC3 

*ACO cannot be used as a pointer for indirect addressing 

High-speed 
Counters 
[Read Only] 

HCO 

HC2 ICPU 2 
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Program Execution Modes 
The S7-200 normally executes your program in a cyclic fashion called a "scan". The basic scan 
cycle is as follows: 

Read Inputs 

Write Outputs Execute User 
Program 

Perform Housekeeping 
and Process 
Communications 

- Read Inputs and store in Input Image Register 
- Execute the User's Program (updating the Output Image Register) 
- Process Communication Requests 
- Perform internal housekeeping (memory check, self-diagnostics, etc.) 
- Write outputs from the Output Image Register 

These actions are performed regularly and in sequential order. The CPU manages the scan 
cycle and also activates each task in the order that it must be performed. For information on 
"special" processing activities click on one of the following: 

The S7-200 CPU can also perform "special handling" of interrupts and other high speed 
events. For details on these activities, just click on the desired topic: 

Interrupt Processing 

The SIMA TIC S7-200 can respond to several types of interrupt events, including: Hardware 
Interrupts, Timed Interrupts, and Communication Interrupts. 

An interrupt subroutine can be "attached" to selected discrete input points to create a 
"hardware interrupt routine". The PLC will interrupt it's normal scan cycle and execute this 
interrupt routine whenever it detects a change of state on that input point. When used in 
conjunction with the "immediate I/0 instructions", hardware interrupts permit very high-speed 
reaction to emergency events. After the CPU completes the Interrupt routine it returns to the 
user program to resume normal processing. 

Another unique feature of the S7-200 interrupt processing is the ability to dynamically attach 
an interrupt to more than one interrupt routine. This gives you more flexibility to process 
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interrupts where you may want to perform different actions on the same interrupt depending 
on where and when the interrupt occurs in your program. 

Hardware Interrupts are executed when an input signal is received causing an interrupt 
routine to execute. 

Timed Interrupts can be executed either on a specific date-time, or on a regular time 
interval (such as every 20 milliseconds). 

Communication Interrupts are executed in conjunction with Freeport Mode for simple 
implementation of ASCII VO. 

Subroutines 

The Subroutine Call instruction transfers program execution control to a subroutine. Once the 
subroutine completes its execution, control returns to the instruction that followed the original 
Call statement. Each subroutine must have a corresponding unconditional return instruction. 
In addition, you can have one or more conditional return instructions for added flexibility. 

You can nest Subroutines to a depth of eight. Recursion (where a subroutine calls itself) is not 
prohibited, but use caution when using recursion with subroutines. 

Jump Instruction 

Jump instructions allow you to transfer control from one point of the program to another. 
Each jump instruction has a corresponding label. Both the jump and the label must be in the 
main program, or a subroutine or an interrupt routine. The Jump allows you to skip over a 
section oflogic depending on the logic preceding the jump. 

You cannot jump from the main program to a label in either a subroutine or interrupt routine. 
Likewise you cannot jump from a subroutine or interrupt routine to a label outside that 
subroutine or interrupt routine. 

Another related instruction to the Jump is the FOR-NEXT loop. This instruction allows you 
to execute looping on a particular portion of code. This instruction is only supported in the 
CPU 214 but is extremely useful. FOR-NEXT instructions can be nested to a depth of 8 with 
a maximum loop count of32,766! 

Error Handling 

The S7-200 programmable logic controller classifies errors as either fatal errors or non-fatal 
errors. 

Fatal errors render the programmable logic controller incapable of executing the user 
program. Depending on the severity of the fatal error, it can render the PLC incapable of 
performing any or all functions. The objective of Fatal Error handling is to put the PLC into a 
safe state from which the PLC can respond to inquiries about the existing error conditions. 
Therefore, all fatal error conditions cause the PLC to transition to the STOP mode. The Fault 
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LED will tum on and the outputs are cleared. The PLC will remain in this condition until the 
fatal error condition is corrected. Some examples of Fatal Errors are: 

Internal EEPROM failure 
Internal EEPROM checksum failure 
Internal Software Error 
Memory cartridge failure ( CPU 214 only) 
User Program checksum failure 
Scan watchdog timeout error 

Non-Fatal errors can degrade some aspect of the PLC performance, but they do not 
render the PLC incapable of executing the user program and updating the VO. All non-fatal 
errors detected in RUN mode are reflected in special memory bits where they are accessible by 
the user program. If you do not want to continue operation in the RUN mode with certain 
non-fatal error conditions, then your program can force a transition to STOP mode when this 
condition occurs. The decision to force a transition to STOP mode is left up to your 
discretion. Some examples of Non-Fatal Errors are: 

Divide by Zero Error 
Communication Parity Error 
VO Error 
Timed Interrupt Queue overflow 
Too many analog points 
Run-time Programming Problem 

Troubleshooting 

• To aid in debugging your program, other 
information associated with error conditions is stored in special areas of system-data memory. 
This information can then be accessed to determine what the problem was. The S7-200 also 
supports the following test functions to aid in detecting problems and in capturing important 
pieces of your data: 

- Taking snapshots. You can use the snapshot to capture the values from 1 to 8 user 
data locations just after the PLC has executed a specified instruction ( the CPU 214 supports 8 
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