
1988

NEAR EAST UNIVERSITY

GRADUATION PROJECT
EE-400

FACULTY OF ELECTRICAL & ELECTRONIC
ENGINEERING

"Step yWotor Control witfi <PLC"

INDEX

Introduction to PLC
Historv of PLC's
Advantages
Logic Control of Industrial Automation
Relavs and Ladder Logic
Svstem Overview 2
CPU Overview 3
Architecture 3
Memory map 4
Program Execution Modes 7
Interrupt Processing 7
Subroutines 8
Jum2 Instruction 8
Error Handling 8
Troubleshooting 9
Hardware Features 10
LEDs 11
Super Capacitor 11
Mode Switch 12
Memory Module 12
Analog Potentiometer 13
Communication Port 13
Panel Mounting Holes 14
Field Wiring Connector 14
Bus E~ansion Port 14
Moun tin 14
-Programmable Parameters 15
Retentive Memo!Y 15
CPU Clock 15
Hardware InterruQ_ts 16
Communication Interrup_ts 16
Cvclif Jnterru2ts 17
Passwords and Protection Levels 17
Overview 18
Immediate I/0 19
Hi~ed Counter 19
Pulse ou!Q_uts 20
-~rator Interfaces 20
OPS 21
OP25 22
-Programming 22
Ladder Logic Programming 23
LADDER INSTRUCTION SET 24
Normall~n Contact 24
Normally Closed Contact 24
Normally_Qpe_n Immediate Contact 24
Normally Closed Immediate Contact 24
Compare Byte Equal Contact 24
Compare Byte Greater Than Or Equal Contact 25
Compare Bvte Less Than Or Equal Contact 25
Compare Integer Equal Contact 25
Compare Integer Greater Than Or Equal Contact 25
Compare Integer Less Than Or Equal Contact 25
Compare Double Integer Equal Contact 26
Compare Double Integer Greater Than Or Equal 26
Compare Double Integer Less Than Or Equal 26

Compare Real Equal Contact 26
Compare Real Greater Than Or Equal Contact 26
Compare Real Less Than Or Equal Contact 27
Invert Power Flow Contact 27
Positive Transition Contact 27
Negative Transition Contact 27
Ladder Contact Exam.12.les 27
Read Real Time Clock 28
Set Real Time Clock 28
Real-time Clock Instrnction Exam.12.les 29
BCD to Integer 29
Integer to BCD 30
Integer Double Word to Real 30
Truncate 30
Decode 30
Encode 31
Segment 31
ASCII to Hex 31
Hex to ASCII 31
Ladder Conversion Instrnction Exam.12.les 32
RSC Definition 32
Hi~ed Counter 33
Pulse Output
Ladder High-speed Operation Instrnction Examples 33
Attach Interru.12.ts 34
Detach Interrn.12.ts 34
Interrn..12.t Routine 34
Enable Interru.12.ts 35
Disable Interru.12.ts 35
Return from Intem1.12.ts 35
Network Read 35
Network Write 36
Transmit 36
Data Sharing with Intem1pt Events 36
Programming Techniques for Data Sharing 36
Interrupt Event Priority Table 37
Ladder Intem1.12.t I Communication Instruction 38
Horizontal Lines 38
Vertical Lines 38
AND Word 39
AND Double Word 39
OR Word 39
OR Double Word 40
XOR Word 40
XOR Double Word 40
Invert Word 41
Invert Double Word 41
Ladder Logical Operations Examples 41
Add Integer 42
Add Double Integer 42
Add Real 42
Subtract Integer 43
Subtract Double Integer 43
Subtract Real 43
Multiply Integer 44
MultiP!Y Real 44
Divide Integer 44
Divide Real 45

Sguare Root Real 45
Increment Word 45
Increment Double Word 45
Decrement Word 46
Decrement Double Word 46
Math/Inc/Dec Exam12les 46
Move Bvte 47

· Move Word 47
Move Double Word 47
Move Real 47
Block Move Bvte 48
Block Move Word 48
Swa 48
Shift Rig!1t Word 49
Shift Left Word 49
Shift Left Double Word 50
Shift Right Double Word 50
Rotate Right Word 50
Rotate Right Double Word 51
Rotate Left Word 51
Rotate Left Double Word 51
Shift Register Bit 52
Fill Memory 52
Move I Shift I Rotate I Fill Exam12Ies 52
Out ut 53
Out12ut Immediate Coil 53
Set 53
Set Immediate Coil 54
Reset Coil 54
Reset Immediate Coil 54
Ladder Out12ut Coil Exam12Ies 54
End 55
Sto 55
Watchdog Reset 55
Jum 55
Label 55
Call 55
Subroutine 56
Return 56
For 56
Next 56
No Operation 56
Ladder Program Control Exam12les 57
Add to Table 58
LIFO (Last In First Out} 58
FIFO {First In First Out} 58
Find Table 59
Ladder Table I Find Instruction Exam12les 59
Timer On Delay 60
Timer Retentive On Delav 60
Count U 60
Count UQ I Down 60
Ladder Timer I Counter Exam12les 61
STATEMENT LIST INSTRUCTION SET 62
Out STL 62
Out Immediate {STL} 62
And STL 62
And Immediate {STL) 62

And Load (STL) 62
And Not (STL) 63
And Not Immediate (STL) 63
Edge Down (STL) 63

63
63

Load Immediate (STLl 6-+
Load Not (STL) 64
Load Not Immediate (STL_l 64
Logic Pop (STL) 64
Logic Push (STL) 65
Logic Read (STL) 65
Logical Negation (STL) 65
Or (STL 65
Or Immediate (STLl 65
Or Load (STL) 66
Or Not (STL) 66
Or Not Inunediate (STL) 66
Reset (STL) 66
Reset Immediate (STL) 67
Set (STL) 67
Set Immediate (STL) 67
Read Time of Dav (STL) 67
Write Time of Dav (STL) 68
Compare Byte Equal Instructions (STL) 68
Compare Bvte Greater Than or Equal Instructions 68
Compare Byte Less Than or Equal Instructions 69
Compare Word Equal Instructions (STL) 69
Compare Word Greater Than or Equal Instructions 69
Compare Word Less Than or Equal Instructions 70
Compare Double Word Equal Instructions (STL) 70
Compare Double Word Greater Than or Equal 70
Compare Double Word Less Than or Equal 70
Compare Real Equal Instructions (STL) 71
Compare Real Greater Than or Equal Instructions 71
Compare Real Less Than or Equal Instructions 71
ASCII to Hex (STL) 71
Convert BCD to Integer (STL) 72
Decode (STL) 72
Encode (STL) 72
Integer Double Word to Real(STL) 72
Segment (STL) 72
Hex to ASCII (STL) 73
Convert Integer to BCD (STL) 73
Truncate (STL) 73
Count Up (STL) 73
Count Up/Down (STL) 74
Attach Interrupt (STL) 74
Detach Interrupt (STL) 74
Intem1pt Routine (STL) 74
Enable Intem1pt (STL) 74
Disable Interrupt (STL) 75
Conditional Return from Interrupt (STL) 75
Return from Intem1pt (STL) 75
High-speed Counter Definition (STL) 75
High-speed Counter (STL) 75
Pulse (STL) 76
Transmit filL) 76

Add Inteaer (STL) 76
Subtract Integer {STL} 76
Add Double Integer {STL) 77
Subtract Double Intezer (STL) 77
Add Real {STL) 77
Subtract Real (STL) 77
MultiQlY Real (STL) 78
Divide Real {STL} 78
MultiQlv Integer (STL) 78
Divide Integer (STL} 78
Sguare Root (STL) 79
Block Move Evie {STL) 79
Block Move Word {STL) 79
Memory Fill (STL) 79
Move Byte {STL) 80
Move Double Word {STL) 80
Move Real {STL 2 80
Move Word {STL) 80
SwaQ Bytes {STL} 81
Network Read (STL} 81
Network Write {STL} 81
Subroutine Call (STL} 81
Conditional Return from Subroutine {STL} 82
Conditional End {STL} 82
For STL 82
JumQ to Label (STL} 82
Label {STL} 83
Main Program End {STL} 83
Next STL 83
No Operation (STL} 83
Unconditional Return from Subroutine {STL) 84
Subroutine {STL} 84
StoQ (STL} 84
Watchdog Reset (STL) 84
Rotate Left Double Word {STL} 84
Rotate Left Word {STL} 85
Rotate Right Double Word {STL} 85
Rotate Rig!1t Word {STL} 85
Shift Regjster Bit {STL} 85
Shift Left Double Word (STL} 86
Shift Left Word (STL} 86
Shift Right Double Word {STL} 86
Shift Rig!1t Word {STL2 86
Add To Table {STL} 87
First In First Out (STL} 87
Find Less Than {STL) 87
Find Not Egual To {STL) 87
Find Egual To {STL} 88
Find Greater Than (STL} 88
Last In First Out {STL) 88
On Delay Timer (STL) 89
Retentive On Delay Timer (STL} 89
AND Word {STL) 89
OR Word {STL) 89
Exclusive OR Word {STL) 90
AND Double Word {STL} 90
OR Double Word {STL} 90
Exclusive OR Double Word {STL} 90

Increment Word (STL) 91
Decrement Word (STL) 91
Increment Double Word (STL) 91
Decrement Double Word {STL) 91
Invert Word {STL) 91
Invert Double Word {STL) 91
-Specifications . 92
CPU 212 DC 92
CPU 212 DC, DC In. DC Out 93
CPU 212 AC 94
CPU 212 AC, DC In, Relav Out 95
CPU 212 AC. AC In. AC Out 96
CPU 214 DC 97
CPU 214 DC, DC In. DC Out 98
CPU214 AC 99
CPU 214 AC, DC In, Rela}'. Out 100
CPU 214 AC. AC In, AC Out 101
Di~tal In2ut, 8 Point, 24 VDC 102
Digital Ineut, 8 Point, 120 V AC 103
Digital Out2ut, 8 Points, 24 VDC 104
Digital Out2ut, 8 Point, Relay 105
Di~tal Output, 8 Point, 120/230 V AC 106
Memory Cartridge Specification 107
PC/PPI Cable Specification 107
(S}'.mbolic Name) 108
(Modular VO Ex2ansion) 108
(Real-time Clock) 108
(Integrated Pulse Ou~uts) 109
(Powerful Instrnction Set) 109
(On-board Communication Port) 109
(Exclusive Free Port Mode) 110
(Password Protection) 110
(Maintenance-Free) 110
(Hi~h S~ed Counter - Free) 110

Introduction To Programmable Logic Controllers (PLCs)

HISTORY OF PLC's
In 1970's discovering microprocessors many thing was begun to change in the world. They can
make many jobs in very short times and they can be modulates in desired wishes. In industrial
control complex control systems can be realise easily with microprocessors and the PLC was
born. By one account, PLCs were born in a Request for Proposals issued by GM to industrial
control vendors. GM was tired of replacing and re-wiring complex relay panels every time
tailfins got a little bigger or smaller.

ADVANTAGES
-ACCURACY:
In relay control systems logical knowledge's carry's in electro mechanical contactors, they can
be lose their knowledge's because of mechanical errors. But PLC's are microprocessor based
system so logical knowledge's carries inside the processor, so that PLC's are more accurate
than relay type of controllers.

-FLEXIBLITY:
When need of any changing of control logic, relay type of controllers modification are so hard,
in PLC's this changing can be made with PLC programmer equipment.

-COJ\IIMUNICATION:
PLC's are computer based systems. So that they can transfers their position in working to
another PC or they can take external inputs to another PC, with this specification we can
control the system were they are and we can effect the system with our PC.(Help of extra
equipment's.) With relays it can not be possible.

Logic Control in Industrial Automation
Everyday examples of these systems are machines like dishwashers, clothes washers and
dryers, and elevators. In these systems, the outputs tend to be 220vac power signals to motors,
solenoids, and indicator lights, and the inputs are DC or AC signals from user interface
switches, motion limit switches, binary liquid level sensors, etc. Another major function in
these types of controlers is timing.

Relays and Ladder Logic
In the "old days" (i.e. before the 1980's) these types of controllers were implemented with
relays.
Relays are a technology from the early days of electricity in which an electromagnet activates
an electrical switch. When current flows in the coil, electrical contacts are pulled together or
apart making (or breaking) a circuit. Relays are electrically, thermally, and mechanically
rugged, easy to design with, cheap, and capable of controlling very large currents in their
output contacts.

Relays can be thought of as logic gates. For example, if two normally open relays are wired in
series, and one end of the resulting output circuit is attached to a voltage source, then the two
coils form the inputs of a AND gate: only if current is flowing in BOTH input coils will current
flow in the output circuit. A typical application in a washing machine might be to implement
the rule that

if (state = wash) AND (door = close) Take water inside

A collection of these boolean rules can be represented by a diagram in which each output
circuit is drawn horizontally between vertical "power rails".

The shape of these diagrams invariably led to the name "Ladder Diagrams" and "Ladder Logic"
to describe them. The term "Relay Ladder Logic" (RLL) describes this logic notation. By
including interconnections between the horizontal rungs, it is possible to create latches ("flip
flops") and implement state transitions. Although LL "state machines" get quite complex and
are typically not designed with the convenience of finite state machine theory, they have
become widely used and supported by technical workers. Because the logic was implemented
in physical wiring, it was difficult to change as new functions were required.
To learning and describing as well as possible I choice SIMATIC® S7-200 PLC and
MICROWIN I STEP7 software.

System Overview

A typical S7-200 system will include an S7-200 base unit which includes the central processing
unit, power supply, and discrete input and output points. Expansion module contain additional
input or output points and are connected to the base unit using bus connectors. The central
processing unit has a built-in communications port for programming or talking with intelligent
ASCII devices.

2

CPU Overview
The S7-200 series is a line of small, compact, micro-programmable logic controllers and
expansion modules that can be used for a variety of programming applications. There are two
types of base units in the S7-200 product line, CPU 212 and CPU 214. Each base unit comes
in different models to accommodate the type of power supply, inputs and outputs you require.

Architecture
This section relates to how the S7-200 CPU arranges data and how it executes your program
during it's scan cycle.

Memory map
The memory space of the S7-200 is divided into five data areas and six data objects. To
reference a memory location for use, you must address that location. The addressing
conventions allow memory to be accessed as bits, bytes, words and double words. All
addresses are zero-based.

Data space is highly flexible, and it allows read and write access to all memory areas as bits,
bytes, words and double words. Data objects are the memory locations that are associated
with devices (such as the current value of a counter or the temperature value of an oven).
Access to data objects is more restrictive because the data object can be addressed only
according to the intended use of that object

Data Areas. Data memory contains variable memory, and input image register, and output
image register, internal memory bits, and special memory bits. This memory is accessed by a
byte.bit convention. For example to access bit 3 of Variable Memory byte 25 you would use
the address V25. 3.

The following table shows the identifiers and ranges for each of the data area memory types:

Area Identifier Data Area CPU 212 CPU 214
I Input mo to I7.7 mo to I7.7
Q Output QO.O to Q7.7 QO.O to Q7.7
M Internal Memory MO.Oto Ml5.7 MO.Oto M31.7
SM Special Memory SMO.O to SM 45.7 SMO.O to SM 85.7
V Variable Memory VO.Oto Vl023.7 VO.Oto V4095.7

Data Objects. The S7-200 has six kinds of devices with associated data: timers, counters,
analog inputs, analog outputs, accumulators and high-speed counters. Each device has
associated data (data objects). For example, the S7-200 has counter devices. Counters have a
data value that maintains the current count value. There is also a bit value which is set when
the current value is greater than or equal to the preset value. Since there are multiple devices
of each kind, devices are numbered from Oto n. The corresponding data objects and object
bits are also numbered.

3

The following table shows the identifiers and ranges for each of the data object memory types

Object Identifier Object CPU 212 CPU 214
T Timers TO to T63 TO to Tl27
C Counters CO to C63 CO to Cl27
Al Analog Input AIWO to AIW30 AIWO to AIW30
AQ Analog Output AQWO to AQW30 AQWO to AQW30
AC Accumulator Registers ACO to AC3 ACO to AC3
HC High-speed Counter Current HCO HCO to HC2

The programmable logic controller can also divide the memory space of the S7-200 into data
areas identified by a symbolic name or data area name.

The table below shows memory space and data object spaces:

CPU 212 Memory

MSB
7

LSB
0

CPU 214 Memory

MSB LSB
7 0

VO VO
Data Block 1
Variable Memory
(Read(Write)

Non-volatile storage
of VO - V127

Non-volatile storage
of VO - V511

V127 V511

Variable Memory
[Re a d(Write)

V128 V512

V1023 V4095

Input Image
Register
(Re a d(Write)

10.7 10.0

17.7 17.0

I0.7 IO.O

17.7 17.0

4

Output Image
Register
(Read(Write)

Internal Memory
Bits
(Read(Write)

Special Memory
Bits
(Read Only)

Special Memory
Bits
(Re a d(vv'rite}

00.7 00.0

07.7 07.0

00.7 00.0

07.7 07.0

M0.7 MO.O

Ml5.7 Ml5.0

M0.7 MO.O

M31.7 M31.0

SM0.7 SMO.O

SM29.7 SM29.0 SM29.7 SM29.0

SM30.7 SMJO.O

SM45.7 SM45.0

SMJ0.7 SM30.0

SM85.7 SM85.0

5

CPU 212 Memory CPU 214 Memory

MSB LSB MSB LSB
15 0 15 0

Timers I TO I rm [~ TO I no
(Re a dN/rite J

Timer Bits
[ReadN/rite] I T63 I [IlIJ I T127 I IT127

Counters I co I ran I co l I co
(ReadN/rite)

Counter Bits
(ReadN/rite) I C63 I rem I C127

Analog
Inputs
(Read Only)

AIWO AIWO
AIW2 AIW2

AIW30 AIW30

CPU 212 Memory

MSB
15

LSB
0

CPU 21 4 Memory

MSB LSB
15 0

AOWO Analog
Outputs
[Write Only)

AQWO
AQW2 AQW2

AQW30 AQW30

Accumulator
Registers
(ReadN/rite]

ACO*
AC1
AC2
AC3

*ACO cannot be used as a pointer for indirect addressing

High-speed
Counters
[Read Only]

HCO

HC2 ICPU 2

6

Program Execution Modes
The S7-200 normally executes your program in a cyclic fashion called a "scan". The basic scan
cycle is as follows:

Read Inputs

Write Outputs Execute User
Program

Perform Housekeeping
and Process
Communications

- Read Inputs and store in Input Image Register
- Execute the User's Program (updating the Output Image Register)
- Process Communication Requests
- Perform internal housekeeping (memory check, self-diagnostics, etc.)
- Write outputs from the Output Image Register

These actions are performed regularly and in sequential order. The CPU manages the scan
cycle and also activates each task in the order that it must be performed. For information on
"special" processing activities click on one of the following:

The S7-200 CPU can also perform "special handling" of interrupts and other high speed
events. For details on these activities, just click on the desired topic:

Interrupt Processing

The SIMA TIC S7-200 can respond to several types of interrupt events, including: Hardware
Interrupts, Timed Interrupts, and Communication Interrupts.

An interrupt subroutine can be "attached" to selected discrete input points to create a
"hardware interrupt routine". The PLC will interrupt it's normal scan cycle and execute this
interrupt routine whenever it detects a change of state on that input point. When used in
conjunction with the "immediate I/0 instructions", hardware interrupts permit very high-speed
reaction to emergency events. After the CPU completes the Interrupt routine it returns to the
user program to resume normal processing.

Another unique feature of the S7-200 interrupt processing is the ability to dynamically attach
an interrupt to more than one interrupt routine. This gives you more flexibility to process

7

interrupts where you may want to perform different actions on the same interrupt depending
on where and when the interrupt occurs in your program.

Hardware Interrupts are executed when an input signal is received causing an interrupt
routine to execute.

Timed Interrupts can be executed either on a specific date-time, or on a regular time
interval (such as every 20 milliseconds).

Communication Interrupts are executed in conjunction with Freeport Mode for simple
implementation of ASCII VO.

Subroutines

The Subroutine Call instruction transfers program execution control to a subroutine. Once the
subroutine completes its execution, control returns to the instruction that followed the original
Call statement. Each subroutine must have a corresponding unconditional return instruction.
In addition, you can have one or more conditional return instructions for added flexibility.

You can nest Subroutines to a depth of eight. Recursion (where a subroutine calls itself) is not
prohibited, but use caution when using recursion with subroutines.

Jump Instruction

Jump instructions allow you to transfer control from one point of the program to another.
Each jump instruction has a corresponding label. Both the jump and the label must be in the
main program, or a subroutine or an interrupt routine. The Jump allows you to skip over a
section oflogic depending on the logic preceding the jump.

You cannot jump from the main program to a label in either a subroutine or interrupt routine.
Likewise you cannot jump from a subroutine or interrupt routine to a label outside that
subroutine or interrupt routine.

Another related instruction to the Jump is the FOR-NEXT loop. This instruction allows you
to execute looping on a particular portion of code. This instruction is only supported in the
CPU 214 but is extremely useful. FOR-NEXT instructions can be nested to a depth of 8 with
a maximum loop count of32,766!

Error Handling

The S7-200 programmable logic controller classifies errors as either fatal errors or non-fatal
errors.

Fatal errors render the programmable logic controller incapable of executing the user
program. Depending on the severity of the fatal error, it can render the PLC incapable of
performing any or all functions. The objective of Fatal Error handling is to put the PLC into a
safe state from which the PLC can respond to inquiries about the existing error conditions.
Therefore, all fatal error conditions cause the PLC to transition to the STOP mode. The Fault

8

LED will tum on and the outputs are cleared. The PLC will remain in this condition until the
fatal error condition is corrected. Some examples of Fatal Errors are:

Internal EEPROM failure
Internal EEPROM checksum failure
Internal Software Error
Memory cartridge failure (CPU 214 only)
User Program checksum failure
Scan watchdog timeout error

Non-Fatal errors can degrade some aspect of the PLC performance, but they do not
render the PLC incapable of executing the user program and updating the VO. All non-fatal
errors detected in RUN mode are reflected in special memory bits where they are accessible by
the user program. If you do not want to continue operation in the RUN mode with certain
non-fatal error conditions, then your program can force a transition to STOP mode when this
condition occurs. The decision to force a transition to STOP mode is left up to your
discretion. Some examples of Non-Fatal Errors are:

Divide by Zero Error
Communication Parity Error
VO Error
Timed Interrupt Queue overflow
Too many analog points
Run-time Programming Problem

Troubleshooting

• To aid in debugging your program, other
information associated with error conditions is stored in special areas of system-data memory.
This information can then be accessed to determine what the problem was. The S7-200 also
supports the following test functions to aid in detecting problems and in capturing important
pieces of your data:

- Taking snapshots. You can use the snapshot to capture the values from 1 to 8 user
data locations just after the PLC has executed a specified instruction (the CPU 214 supports 8

9

