
1988

NEAR EAST UNIVERSITY

GRADUATION PROJECT
EE-400

FACULTY OF ELECTRICAL & ELECTRONIC
ENGINEERING

"Step yWotor Control witfi <PLC"

INDEX

Introduction to PLC
Historv of PLC's
Advantages
Logic Control of Industrial Automation
Relavs and Ladder Logic
Svstem Overview 2
CPU Overview 3
Architecture 3
Memory map 4
Program Execution Modes 7
Interrupt Processing 7
Subroutines 8
Jum2 Instruction 8
Error Handling 8
Troubleshooting 9
Hardware Features 10
LEDs 11
Super Capacitor 11
Mode Switch 12
Memory Module 12
Analog Potentiometer 13
Communication Port 13
Panel Mounting Holes 14
Field Wiring Connector 14
Bus E~ansion Port 14
Moun tin 14
-Programmable Parameters 15
Retentive Memo!Y 15
CPU Clock 15
Hardware InterruQ_ts 16
Communication Interrup_ts 16
Cvclif Jnterru2ts 17
Passwords and Protection Levels 17
Overview 18
Immediate I/0 19
Hi~ed Counter 19
Pulse ou!Q_uts 20
-~rator Interfaces 20
OPS 21
OP25 22
-Programming 22
Ladder Logic Programming 23
LADDER INSTRUCTION SET 24
Normall~n Contact 24
Normally Closed Contact 24
Normally_Qpe_n Immediate Contact 24
Normally Closed Immediate Contact 24
Compare Byte Equal Contact 24
Compare Byte Greater Than Or Equal Contact 25
Compare Bvte Less Than Or Equal Contact 25
Compare Integer Equal Contact 25
Compare Integer Greater Than Or Equal Contact 25
Compare Integer Less Than Or Equal Contact 25
Compare Double Integer Equal Contact 26
Compare Double Integer Greater Than Or Equal 26
Compare Double Integer Less Than Or Equal 26

Compare Real Equal Contact 26
Compare Real Greater Than Or Equal Contact 26
Compare Real Less Than Or Equal Contact 27
Invert Power Flow Contact 27
Positive Transition Contact 27
Negative Transition Contact 27
Ladder Contact Exam.12.les 27
Read Real Time Clock 28
Set Real Time Clock 28
Real-time Clock Instrnction Exam.12.les 29
BCD to Integer 29
Integer to BCD 30
Integer Double Word to Real 30
Truncate 30
Decode 30
Encode 31
Segment 31
ASCII to Hex 31
Hex to ASCII 31
Ladder Conversion Instrnction Exam.12.les 32
RSC Definition 32
Hi~ed Counter 33
Pulse Output
Ladder High-speed Operation Instrnction Examples 33
Attach Interru.12.ts 34
Detach Interrn.12.ts 34
Interrn..12.t Routine 34
Enable Interru.12.ts 35
Disable Interru.12.ts 35
Return from Intem1.12.ts 35
Network Read 35
Network Write 36
Transmit 36
Data Sharing with Intem1pt Events 36
Programming Techniques for Data Sharing 36
Interrupt Event Priority Table 37
Ladder Intem1.12.t I Communication Instruction 38
Horizontal Lines 38
Vertical Lines 38
AND Word 39
AND Double Word 39
OR Word 39
OR Double Word 40
XOR Word 40
XOR Double Word 40
Invert Word 41
Invert Double Word 41
Ladder Logical Operations Examples 41
Add Integer 42
Add Double Integer 42
Add Real 42
Subtract Integer 43
Subtract Double Integer 43
Subtract Real 43
Multiply Integer 44
MultiP!Y Real 44
Divide Integer 44
Divide Real 45

Sguare Root Real 45
Increment Word 45
Increment Double Word 45
Decrement Word 46
Decrement Double Word 46
Math/Inc/Dec Exam12les 46
Move Bvte 47

· Move Word 47
Move Double Word 47
Move Real 47
Block Move Bvte 48
Block Move Word 48
Swa 48
Shift Rig!1t Word 49
Shift Left Word 49
Shift Left Double Word 50
Shift Right Double Word 50
Rotate Right Word 50
Rotate Right Double Word 51
Rotate Left Word 51
Rotate Left Double Word 51
Shift Register Bit 52
Fill Memory 52
Move I Shift I Rotate I Fill Exam12Ies 52
Out ut 53
Out12ut Immediate Coil 53
Set 53
Set Immediate Coil 54
Reset Coil 54
Reset Immediate Coil 54
Ladder Out12ut Coil Exam12Ies 54
End 55
Sto 55
Watchdog Reset 55
Jum 55
Label 55
Call 55
Subroutine 56
Return 56
For 56
Next 56
No Operation 56
Ladder Program Control Exam12les 57
Add to Table 58
LIFO (Last In First Out} 58
FIFO {First In First Out} 58
Find Table 59
Ladder Table I Find Instruction Exam12les 59
Timer On Delay 60
Timer Retentive On Delav 60
Count U 60
Count UQ I Down 60
Ladder Timer I Counter Exam12les 61
STATEMENT LIST INSTRUCTION SET 62
Out STL 62
Out Immediate {STL} 62
And STL 62
And Immediate {STL) 62

And Load (STL) 62
And Not (STL) 63
And Not Immediate (STL) 63
Edge Down (STL) 63

63
63

Load Immediate (STLl 6-+
Load Not (STL) 64
Load Not Immediate (STL_l 64
Logic Pop (STL) 64
Logic Push (STL) 65
Logic Read (STL) 65
Logical Negation (STL) 65
Or (STL 65
Or Immediate (STLl 65
Or Load (STL) 66
Or Not (STL) 66
Or Not Inunediate (STL) 66
Reset (STL) 66
Reset Immediate (STL) 67
Set (STL) 67
Set Immediate (STL) 67
Read Time of Dav (STL) 67
Write Time of Dav (STL) 68
Compare Byte Equal Instructions (STL) 68
Compare Bvte Greater Than or Equal Instructions 68
Compare Byte Less Than or Equal Instructions 69
Compare Word Equal Instructions (STL) 69
Compare Word Greater Than or Equal Instructions 69
Compare Word Less Than or Equal Instructions 70
Compare Double Word Equal Instructions (STL) 70
Compare Double Word Greater Than or Equal 70
Compare Double Word Less Than or Equal 70
Compare Real Equal Instructions (STL) 71
Compare Real Greater Than or Equal Instructions 71
Compare Real Less Than or Equal Instructions 71
ASCII to Hex (STL) 71
Convert BCD to Integer (STL) 72
Decode (STL) 72
Encode (STL) 72
Integer Double Word to Real(STL) 72
Segment (STL) 72
Hex to ASCII (STL) 73
Convert Integer to BCD (STL) 73
Truncate (STL) 73
Count Up (STL) 73
Count Up/Down (STL) 74
Attach Interrupt (STL) 74
Detach Interrupt (STL) 74
Intem1pt Routine (STL) 74
Enable Intem1pt (STL) 74
Disable Interrupt (STL) 75
Conditional Return from Interrupt (STL) 75
Return from Intem1pt (STL) 75
High-speed Counter Definition (STL) 75
High-speed Counter (STL) 75
Pulse (STL) 76
Transmit filL) 76

Add Inteaer (STL) 76
Subtract Integer {STL} 76
Add Double Integer {STL) 77
Subtract Double Intezer (STL) 77
Add Real {STL) 77
Subtract Real (STL) 77
MultiQlY Real (STL) 78
Divide Real {STL} 78
MultiQlv Integer (STL) 78
Divide Integer (STL} 78
Sguare Root (STL) 79
Block Move Evie {STL) 79
Block Move Word {STL) 79
Memory Fill (STL) 79
Move Byte {STL) 80
Move Double Word {STL) 80
Move Real {STL 2 80
Move Word {STL) 80
SwaQ Bytes {STL} 81
Network Read (STL} 81
Network Write {STL} 81
Subroutine Call (STL} 81
Conditional Return from Subroutine {STL} 82
Conditional End {STL} 82
For STL 82
JumQ to Label (STL} 82
Label {STL} 83
Main Program End {STL} 83
Next STL 83
No Operation (STL} 83
Unconditional Return from Subroutine {STL) 84
Subroutine {STL} 84
StoQ (STL} 84
Watchdog Reset (STL) 84
Rotate Left Double Word {STL} 84
Rotate Left Word {STL} 85
Rotate Right Double Word {STL} 85
Rotate Rig!1t Word {STL} 85
Shift Regjster Bit {STL} 85
Shift Left Double Word (STL} 86
Shift Left Word (STL} 86
Shift Right Double Word {STL} 86
Shift Rig!1t Word {STL2 86
Add To Table {STL} 87
First In First Out (STL} 87
Find Less Than {STL) 87
Find Not Egual To {STL) 87
Find Egual To {STL} 88
Find Greater Than (STL} 88
Last In First Out {STL) 88
On Delay Timer (STL) 89
Retentive On Delay Timer (STL} 89
AND Word {STL) 89
OR Word {STL) 89
Exclusive OR Word {STL) 90
AND Double Word {STL} 90
OR Double Word {STL} 90
Exclusive OR Double Word {STL} 90

Increment Word (STL) 91
Decrement Word (STL) 91
Increment Double Word (STL) 91
Decrement Double Word {STL) 91
Invert Word {STL) 91
Invert Double Word {STL) 91
-Specifications . 92
CPU 212 DC 92
CPU 212 DC, DC In. DC Out 93
CPU 212 AC 94
CPU 212 AC, DC In, Relav Out 95
CPU 212 AC. AC In. AC Out 96
CPU 214 DC 97
CPU 214 DC, DC In. DC Out 98
CPU214 AC 99
CPU 214 AC, DC In, Rela}'. Out 100
CPU 214 AC. AC In, AC Out 101
Di~tal In2ut, 8 Point, 24 VDC 102
Digital Ineut, 8 Point, 120 V AC 103
Digital Out2ut, 8 Points, 24 VDC 104
Digital Out2ut, 8 Point, Relay 105
Di~tal Output, 8 Point, 120/230 V AC 106
Memory Cartridge Specification 107
PC/PPI Cable Specification 107
(S}'.mbolic Name) 108
(Modular VO Ex2ansion) 108
(Real-time Clock) 108
(Integrated Pulse Ou~uts) 109
(Powerful Instrnction Set) 109
(On-board Communication Port) 109
(Exclusive Free Port Mode) 110
(Password Protection) 110
(Maintenance-Free) 110
(Hi~h S~ed Counter - Free) 110

Introduction To Programmable Logic Controllers (PLCs)

HISTORY OF PLC's
In 1970's discovering microprocessors many thing was begun to change in the world. They can
make many jobs in very short times and they can be modulates in desired wishes. In industrial
control complex control systems can be realise easily with microprocessors and the PLC was
born. By one account, PLCs were born in a Request for Proposals issued by GM to industrial
control vendors. GM was tired of replacing and re-wiring complex relay panels every time
tailfins got a little bigger or smaller.

ADVANTAGES
-ACCURACY:
In relay control systems logical knowledge's carry's in electro mechanical contactors, they can
be lose their knowledge's because of mechanical errors. But PLC's are microprocessor based
system so logical knowledge's carries inside the processor, so that PLC's are more accurate
than relay type of controllers.

-FLEXIBLITY:
When need of any changing of control logic, relay type of controllers modification are so hard,
in PLC's this changing can be made with PLC programmer equipment.

-COJ\IIMUNICATION:
PLC's are computer based systems. So that they can transfers their position in working to
another PC or they can take external inputs to another PC, with this specification we can
control the system were they are and we can effect the system with our PC.(Help of extra
equipment's.) With relays it can not be possible.

Logic Control in Industrial Automation
Everyday examples of these systems are machines like dishwashers, clothes washers and
dryers, and elevators. In these systems, the outputs tend to be 220vac power signals to motors,
solenoids, and indicator lights, and the inputs are DC or AC signals from user interface
switches, motion limit switches, binary liquid level sensors, etc. Another major function in
these types of controlers is timing.

Relays and Ladder Logic
In the "old days" (i.e. before the 1980's) these types of controllers were implemented with
relays.
Relays are a technology from the early days of electricity in which an electromagnet activates
an electrical switch. When current flows in the coil, electrical contacts are pulled together or
apart making (or breaking) a circuit. Relays are electrically, thermally, and mechanically
rugged, easy to design with, cheap, and capable of controlling very large currents in their
output contacts.

Relays can be thought of as logic gates. For example, if two normally open relays are wired in
series, and one end of the resulting output circuit is attached to a voltage source, then the two
coils form the inputs of a AND gate: only if current is flowing in BOTH input coils will current
flow in the output circuit. A typical application in a washing machine might be to implement
the rule that

if (state = wash) AND (door = close) Take water inside

A collection of these boolean rules can be represented by a diagram in which each output
circuit is drawn horizontally between vertical "power rails".

The shape of these diagrams invariably led to the name "Ladder Diagrams" and "Ladder Logic"
to describe them. The term "Relay Ladder Logic" (RLL) describes this logic notation. By
including interconnections between the horizontal rungs, it is possible to create latches ("flip
flops") and implement state transitions. Although LL "state machines" get quite complex and
are typically not designed with the convenience of finite state machine theory, they have
become widely used and supported by technical workers. Because the logic was implemented
in physical wiring, it was difficult to change as new functions were required.
To learning and describing as well as possible I choice SIMATIC® S7-200 PLC and
MICROWIN I STEP7 software.

System Overview

A typical S7-200 system will include an S7-200 base unit which includes the central processing
unit, power supply, and discrete input and output points. Expansion module contain additional
input or output points and are connected to the base unit using bus connectors. The central
processing unit has a built-in communications port for programming or talking with intelligent
ASCII devices.

2

CPU Overview
The S7-200 series is a line of small, compact, micro-programmable logic controllers and
expansion modules that can be used for a variety of programming applications. There are two
types of base units in the S7-200 product line, CPU 212 and CPU 214. Each base unit comes
in different models to accommodate the type of power supply, inputs and outputs you require.

Architecture
This section relates to how the S7-200 CPU arranges data and how it executes your program
during it's scan cycle.

Memory map
The memory space of the S7-200 is divided into five data areas and six data objects. To
reference a memory location for use, you must address that location. The addressing
conventions allow memory to be accessed as bits, bytes, words and double words. All
addresses are zero-based.

Data space is highly flexible, and it allows read and write access to all memory areas as bits,
bytes, words and double words. Data objects are the memory locations that are associated
with devices (such as the current value of a counter or the temperature value of an oven).
Access to data objects is more restrictive because the data object can be addressed only
according to the intended use of that object

Data Areas. Data memory contains variable memory, and input image register, and output
image register, internal memory bits, and special memory bits. This memory is accessed by a
byte.bit convention. For example to access bit 3 of Variable Memory byte 25 you would use
the address V25. 3.

The following table shows the identifiers and ranges for each of the data area memory types:

Area Identifier Data Area CPU 212 CPU 214
I Input mo to I7.7 mo to I7.7
Q Output QO.O to Q7.7 QO.O to Q7.7
M Internal Memory MO.Oto Ml5.7 MO.Oto M31.7
SM Special Memory SMO.O to SM 45.7 SMO.O to SM 85.7
V Variable Memory VO.Oto Vl023.7 VO.Oto V4095.7

Data Objects. The S7-200 has six kinds of devices with associated data: timers, counters,
analog inputs, analog outputs, accumulators and high-speed counters. Each device has
associated data (data objects). For example, the S7-200 has counter devices. Counters have a
data value that maintains the current count value. There is also a bit value which is set when
the current value is greater than or equal to the preset value. Since there are multiple devices
of each kind, devices are numbered from Oto n. The corresponding data objects and object
bits are also numbered.

3

The following table shows the identifiers and ranges for each of the data object memory types

Object Identifier Object CPU 212 CPU 214
T Timers TO to T63 TO to Tl27
C Counters CO to C63 CO to Cl27
Al Analog Input AIWO to AIW30 AIWO to AIW30
AQ Analog Output AQWO to AQW30 AQWO to AQW30
AC Accumulator Registers ACO to AC3 ACO to AC3
HC High-speed Counter Current HCO HCO to HC2

The programmable logic controller can also divide the memory space of the S7-200 into data
areas identified by a symbolic name or data area name.

The table below shows memory space and data object spaces:

CPU 212 Memory

MSB
7

LSB
0

CPU 214 Memory

MSB LSB
7 0

VO VO
Data Block 1
Variable Memory
(Read(Write)

Non-volatile storage
of VO - V127

Non-volatile storage
of VO - V511

V127 V511

Variable Memory
[Re a d(Write)

V128 V512

V1023 V4095

Input Image
Register
(Re a d(Write)

10.7 10.0

17.7 17.0

I0.7 IO.O

17.7 17.0

4

Output Image
Register
(Read(Write)

Internal Memory
Bits
(Read(Write)

Special Memory
Bits
(Read Only)

Special Memory
Bits
(Re a d(vv'rite}

00.7 00.0

07.7 07.0

00.7 00.0

07.7 07.0

M0.7 MO.O

Ml5.7 Ml5.0

M0.7 MO.O

M31.7 M31.0

SM0.7 SMO.O

SM29.7 SM29.0 SM29.7 SM29.0

SM30.7 SMJO.O

SM45.7 SM45.0

SMJ0.7 SM30.0

SM85.7 SM85.0

5

CPU 212 Memory CPU 214 Memory

MSB LSB MSB LSB
15 0 15 0

Timers I TO I rm [~ TO I no
(Re a dN/rite J

Timer Bits
[ReadN/rite] I T63 I [IlIJ I T127 I IT127

Counters I co I ran I co l I co
(ReadN/rite)

Counter Bits
(ReadN/rite) I C63 I rem I C127

Analog
Inputs
(Read Only)

AIWO AIWO
AIW2 AIW2

AIW30 AIW30

CPU 212 Memory

MSB
15

LSB
0

CPU 21 4 Memory

MSB LSB
15 0

AOWO Analog
Outputs
[Write Only)

AQWO
AQW2 AQW2

AQW30 AQW30

Accumulator
Registers
(ReadN/rite]

ACO*
AC1
AC2
AC3

*ACO cannot be used as a pointer for indirect addressing

High-speed
Counters
[Read Only]

HCO

HC2 ICPU 2

6

Program Execution Modes
The S7-200 normally executes your program in a cyclic fashion called a "scan". The basic scan
cycle is as follows:

Read Inputs

Write Outputs Execute User
Program

Perform Housekeeping
and Process
Communications

- Read Inputs and store in Input Image Register
- Execute the User's Program (updating the Output Image Register)
- Process Communication Requests
- Perform internal housekeeping (memory check, self-diagnostics, etc.)
- Write outputs from the Output Image Register

These actions are performed regularly and in sequential order. The CPU manages the scan
cycle and also activates each task in the order that it must be performed. For information on
"special" processing activities click on one of the following:

The S7-200 CPU can also perform "special handling" of interrupts and other high speed
events. For details on these activities, just click on the desired topic:

Interrupt Processing

The SIMA TIC S7-200 can respond to several types of interrupt events, including: Hardware
Interrupts, Timed Interrupts, and Communication Interrupts.

An interrupt subroutine can be "attached" to selected discrete input points to create a
"hardware interrupt routine". The PLC will interrupt it's normal scan cycle and execute this
interrupt routine whenever it detects a change of state on that input point. When used in
conjunction with the "immediate I/0 instructions", hardware interrupts permit very high-speed
reaction to emergency events. After the CPU completes the Interrupt routine it returns to the
user program to resume normal processing.

Another unique feature of the S7-200 interrupt processing is the ability to dynamically attach
an interrupt to more than one interrupt routine. This gives you more flexibility to process

7

interrupts where you may want to perform different actions on the same interrupt depending
on where and when the interrupt occurs in your program.

Hardware Interrupts are executed when an input signal is received causing an interrupt
routine to execute.

Timed Interrupts can be executed either on a specific date-time, or on a regular time
interval (such as every 20 milliseconds).

Communication Interrupts are executed in conjunction with Freeport Mode for simple
implementation of ASCII VO.

Subroutines

The Subroutine Call instruction transfers program execution control to a subroutine. Once the
subroutine completes its execution, control returns to the instruction that followed the original
Call statement. Each subroutine must have a corresponding unconditional return instruction.
In addition, you can have one or more conditional return instructions for added flexibility.

You can nest Subroutines to a depth of eight. Recursion (where a subroutine calls itself) is not
prohibited, but use caution when using recursion with subroutines.

Jump Instruction

Jump instructions allow you to transfer control from one point of the program to another.
Each jump instruction has a corresponding label. Both the jump and the label must be in the
main program, or a subroutine or an interrupt routine. The Jump allows you to skip over a
section oflogic depending on the logic preceding the jump.

You cannot jump from the main program to a label in either a subroutine or interrupt routine.
Likewise you cannot jump from a subroutine or interrupt routine to a label outside that
subroutine or interrupt routine.

Another related instruction to the Jump is the FOR-NEXT loop. This instruction allows you
to execute looping on a particular portion of code. This instruction is only supported in the
CPU 214 but is extremely useful. FOR-NEXT instructions can be nested to a depth of 8 with
a maximum loop count of32,766!

Error Handling

The S7-200 programmable logic controller classifies errors as either fatal errors or non-fatal
errors.

Fatal errors render the programmable logic controller incapable of executing the user
program. Depending on the severity of the fatal error, it can render the PLC incapable of
performing any or all functions. The objective of Fatal Error handling is to put the PLC into a
safe state from which the PLC can respond to inquiries about the existing error conditions.
Therefore, all fatal error conditions cause the PLC to transition to the STOP mode. The Fault

8

LED will tum on and the outputs are cleared. The PLC will remain in this condition until the
fatal error condition is corrected. Some examples of Fatal Errors are:

Internal EEPROM failure
Internal EEPROM checksum failure
Internal Software Error
Memory cartridge failure (CPU 214 only)
User Program checksum failure
Scan watchdog timeout error

Non-Fatal errors can degrade some aspect of the PLC performance, but they do not
render the PLC incapable of executing the user program and updating the VO. All non-fatal
errors detected in RUN mode are reflected in special memory bits where they are accessible by
the user program. If you do not want to continue operation in the RUN mode with certain
non-fatal error conditions, then your program can force a transition to STOP mode when this
condition occurs. The decision to force a transition to STOP mode is left up to your
discretion. Some examples of Non-Fatal Errors are:

Divide by Zero Error
Communication Parity Error
VO Error
Timed Interrupt Queue overflow
Too many analog points
Run-time Programming Problem

Troubleshooting

• To aid in debugging your program, other
information associated with error conditions is stored in special areas of system-data memory.
This information can then be accessed to determine what the problem was. The S7-200 also
supports the following test functions to aid in detecting problems and in capturing important
pieces of your data:

- Taking snapshots. You can use the snapshot to capture the values from 1 to 8 user
data locations just after the PLC has executed a specified instruction (the CPU 214 supports 8

9

snapshots while the CPU 212 supports 1 snapshot) You can then use the snapshots to
capture byte, word, or double word values of the data areas to determine whether your
program is executing the way you think it is.

- Tracing. The trace function captures the values from 1 to 8 user-defined locations
at the end of each scan for up to 124 scans (the CPU 214 supports 8 traces while the CPU 212
supports 1 trace). You can use the trace function to capture byte, word or double word
values of data areas to determine how a particular data location is being updated.

- Single and multiple scan execution. The S7-200 supports the execution of 1 or
more scans of the entire user program. You must put the PLC in the STOP mode to execute
this function. Upon receiving the single/multiple scan command, the PLC transitions to the
RUN mode for the specified number of scans and then returns to the STOP mode. This
feature can be used in conjunction with the Trace and Snapshot feature to locate problems
within the user program.

- Force Function. The Force function is useful in the commissioning of your
application. Some examples of its use follow. You can use the force function to override
input status temporarily in order to debug your application logic. It can function just like an
input simulator. You can use the force function to override discrete output points, variable
memory and other data. Forcing outputs can assist in the debugging of the I/0 wiring before
startup. You can use the force function to skip portions of your program by enabling a jump
instruction with a forced memory bit. This allows you to test individual sections of your
program logic.

Hardware Features
The S7-200 base unit includes the Central Processing Unit (CPU), power supply and discrete
input and output points. You can click on one of the topics below, or click on the picture to
find out what hardware features are offered:

10

LEDs
There are five different types of status LEDs on the S7-200 series. These status LEDs
describe both the current state of the base unit and the 1/0 points. The following table explains
each type:

LED Color
SF Red

RUN Green

STOP Yellow

Ix.x Green

Qx.x Green

Description
System Fault - Indicates a System Fault. This LED lights up if the
programmable controller has incurred a Fatal Error
RUN Mode - Indicates 'that the PLC is in RUN mode and is executing its
normal scan cycle
STOP Mode - Indicates that the PLC is in STOP mode and that program
execution has stopped
The green input status LEDs indicates the current state of the input point.
These are logic-side status indicators
The green output status LEDs indicate the current state of the output
point. These are logic-side status indicators.

Super Capacitor
The CPU 212 and CPU 214 programmable logic controllers have maintenance-free memory
storage systems (EEPROM). They permanently store your logic program, force information,
password, station number and output table information. This means that a battery is typically
unnecessary. Since the program is stored on EEPROM, no battery is necessary to ensure that
the program doesn't "evaporate into the bit bucket" if power is lost. A super capacitor has
been used in the S7-200 series to provide for short-term storage of your data.

RAM memory is backed up by the power supply when it is turned on. When the power
supply is turned OFF, the RAM memory is maintained by the super capacitor for a limited time
after the PLC is powered down. The super capacitor typically maintains memory after power
down for 190 hours in the CPU 214 and for 50 hours in the CPU 212.

Not only does this eliminate the need for buying, stocking and changing batteries every 6
months, but this also eliminates the need to dispose of the lithium batteries which is
environmentally friendly.

11

~lode Switch
The mode switch is located under the top access cover. This mode switch allows you to select
the S7-200's operating mode. The following table describes the switch location and what it
does:

~ode Position
RUN
STOP

Description
Causes the S7-200 CPU to execute your program
Causes the S7-200 CPU to stop program execution. The unit must be in
STOP mode to allow your program to be edited
Terminal - allows the programming device to control transitions between
RUN and STOP mode

Memory Module

TERM

Although the CPU 214 programmable logic controllers have an internal EEPROM to store
your program, you also have the option to use an EEPROM memory cartridge. The memory
cartridge is an optional device, and is not required for the programmable logic control to
operate. The memory cartridge provides field upgrade capability of your program (bug fixes,
additional functionality, etc.) without having to use a programming device or to transport a
program from one PLC to another. This feature is especially useful for OEMs.

The programming of the memory cartridge is accomplished when you download the program
to the PLC from a programming device and command the program to be copied to the memory
cartridge. When the CPU 214 receives the command to copy the memory cartridge, it copies
the following RAM data to the memory cartridge:

- User Program
- The first 5 J2 bytes of the Data Area
- Station Address
- Retentive range definitions
- Freeze/Copy status and output table values for RUN to STOP transition
- Password and Restriction Class
- All forced operands and their values

When you power up the programmable logic controller with the memory cartridge installed,
the contents of the memory cartridge are copied to the internal non-volatile memory. If you
power up the PLC with a blank memory cartridge, the PLC will indicate a fault condition.
You can install or remove the memory cartridge while the PLC is powered up.

The Memory Cartridge receptacle is located under the top access cover on the S7-214 CPU.
The memory cartridge is keyed for proper installation and the receptacle is protected by a
label. Remove and discard this label prior to installing the memory cartridge.

12

Analog Potentiometer
The S7-214 has two analog adjustments, located under the top access cover, to allow you to
anually adjust a variable. Your program can then use this variable. The adjustment device
ermits 2 70 degrees of rotation and requires a small screwdriver to operate.

The CPU constantly monitors each of these adjustments and converts the position of the
adjustment to a digital value within the range of Oto 255. The values for these adjustments are
stored in a special memory byte which is accessible by the user program. These locations are
read-only locations so the value cannot be modified by the control program. To use these
values from the analog adjustments, you must move the value to a read/write location where it
an be scaled or limited. If scaling or limiting is not required, you can use the value as an input
o any byte instruction.

Typically the values derived from these adjustments are used to program either timer or
counter current or preset values, or to set limits, where minor operator adjustments are
required.

Communication Port
The S7-200 series has a communication port located under the lower access cover on the right
hand side of the CPU. The port uses a 9-pin Sub D connector that allows you to attach either
a programming or an interconnecting cable. The baud rate for programming is 9600 baud.
The baud rates supported by the PLC in Freeport mode are 300 to 38,400.

A pinout of the communications port is shown below:

Pin !i........._ _
~in6

Pin 1 = Logic Ground
Pin 2 = 2'1 VOe Return
Pin 3 = Transmit/Receive Data +
Pin ,1 = Reserved
Pin 5 = Loqlc Ground
Pin 6 = 5 VDC (100 ohm Series R)
Pin 7 = 2'1 voe (120 mA max)
Pin 8 = Transmit/Receive Data -
Pin 9 = Reserved

Pin 9

Communication Port Pinout Connector Shell = Logic Ground

13

Panel Mounting Holes
You can panel-mount any of the S7-200 products using the two diagonally located mounting
holes. These holes are located under the access covers, and accept either a DIN M4 or an
American Standard number 8 screw. For proper mounting dimensions, refer to the section on
Wiring and Mounting.

Field Wiring Connector
The wiring of your inputs and outputs are connected to the field wiring connectors, located
under the upper and lower access covers. The wiring for the unit's power supply and DC
sensor supply is also accomplished by connecting to the field wiring connectors. Labeling of
the connector is located on the housing under the access covers. You can also apply terminal
identification labels, supplied with the unit, to the inside or outside of the access cover for easy
identification of your field wiring.

Field Wiring connector drawings are included within this help file under "Specifications".

Bus Expansion Port
The Bus Expansion Port allows additional UO expansion modules to be connected. The port is
protected by a break-away cover located on the right-hand side of the CPU. This cover can be
easily removed with a screwdriver, but once removed, it cannot be replaced. After the cover
has been removed, expansion UO modules can be attached to the CPU unit using an UO bus
connector which is supplied with the Expansion Module.

Mounting
The S7-200 Series can be either panel or DIN rail mounted. Vertical mounting is also
possible. Mounting is accomplished as shown below:

Panel Mounting r Sl-200 .r 1/0 .r 1/0 •1

DIN Rail Mounting

S7-200 1/0 1/0

Panel mounting can be accomplished with a minimum depth of at least 75 mm (dimensions are
shown below):

14

Panel Door
..•..

62 mm (2.4 in} PLC and/or 1/0 75 mm (2.9 in)

Mounting Surface

If you plan to install additional modules, allow extra space of at least 25 mm (1 inch) on either
side of the unit for installing and removing the module. This extra space is required to engage
and disengage the bus expansion connector.

The S 7-200 series is designed for natural convection cooling. You must provide a clear space
of at least 65 mm (2.5 inches), both above and below the units for proper cooling.

-Programmable Parameters

The S7-200 Series has made it very easy to configure parameters. In addition to automatic I/0
configuration, you can configure the following parameters through the programming software
or the handheld programmer. Retentive Memory
You can define up to six retentive ranges to select the areas of memory you want to retain
through power cycles. A retentive range is a programmable specification for an area of
memory designating a from-to range. The range is not cleared after the S7-200 is powered up,
provided that the super capacitor is able to maintain the contents of RAM.

Not all the data areas residing in RAM can be defined as retentive. The data areas that can be
defined as retentive are V, M, T (TO to T31 and T64 to T95), and C.

The following Table shows the default settings for the retentive ranges.

Retentive Range CPU 212 CPU 214
Retentive Range 0 VO-V1023 VO-V4095
Retentive Range 1 Not used Not used
Retentive Range 2 TO-T31 TO-T31
Retentive Range 3 Not used T64-T95
Retentive Range 4 CO-C63 CO-Cl27
Retentive Range 5 MO-Ml5 MO-M31

CPU Clock
The CPU 214 provides a real-time clock which can be set and read by way of communication
functions and your program instructions. The PLC indicates that the clock has not been set, or
that the setting was lost due to the discharge of the super capacitor by initializing the time-of
day clock to:

Date:
Time:
DayofWeek:

Ol-JAN-90
00:00:00
Sunday

The date and time values are coded in BCD. The date and time format is shown below:

15

Year I Month
Day I Hour
Minute I Second
Day of week

Hardware Interrupts
Hardware Interrupts allow you to perform high-speed processing based upon an event.
Interrupt processing provides quick reaction to special external events. VO interrupts include
rising/falling edge interrupts, high-speed counter interrupts, and pulse train output interrupts.

mmss
OOOd

yy=O - 99, mnun=l - 12 , . .
dd=l - 31, hh=O - 23
mm=O - 59, ss=O - 59
ct= 1 - 7 where l means Sunday

yymmm
ddhh

In the CPU 214, IO.O through I0.3 can generate an interrupt on rising and/or falling edges. In
the CPU 212, IO.O can generate an interrupt on rising and/or falling edges. The rising and the
falling edge events can be captured for each of these input points. These rising/falling edge
events can be used to signify an error condition that must receive immediate attention when the
event happens.

The high-speed counter interrupts allow you to respond to such conditions as the current value
reaching the preset value, a change in counting direction that might correspond to a reversal in
the direction a shaft is turning, and an external reset of the counter. Each of these high-speed
counter events allows action to be taken in real time in response to high-speed events that
cannot be controlled at programmable logic controller scan speeds.

The pulse train output interrupts provide immediate notification of completion of outputting
the prescribed number of pulses. A typical use of pulse train outputs is stepper motor control.

You can enable each of the above interrupts by attaching an interrupt routine to the related VO
event.

Communication Interrupts
The serial communication port of the programmable logic controller can be controlled by the
user program. This mode of operating the communications port is called Freeport mode. In
Freeport mode, your program defines the baud rate, bits per character, parity, and protocol.
The receive and transmit interrupts are available to facilitate your program controlled
communication.

In the simplest case, you can send a message to a printer or display using only the Transmit
function. Other examples include a connection to a bar code reader, a weighing scale, and a
welder. In each case, you must write your program to support the protocol that is used by the
device to which the programmable logic controller communicates while in Freeport mode.

16

Cyclic Interrupts
The CPU 214 supports two timed interrupts, and the CPU 212 supports one timed interrupt.
You can specify actions to be taken on a cyclic basis using a timed interrupt. The cycle time is
set in 1 ms increments from 5 ms to 255 ms.

The timed interrupt event transfers control to the appropriate interrupt routine each time the
timer expires. Typically, you use timed interrupts to control the sampling of analog inputs at
regular intervals.

Passwords and Protection Levels
Authorized access to the PLC functions and memory is provided through the use of a
password. Without a password, the PLC provides unrestricted access. When password
protected, the PLC prohibits all restricted operations, according to the configuration provided
when the password was installed.

Authorization of the password is accomplished through communication between the
programming device and the PLC. Since multiple devices could potentially be connected to
the PLC, authorization of the password is tied to the device through which authorization was
granted. An authorized user may co-exist with unauthorized users, and only one authorized
user is given unrestricted access to the PLC functions. All other users must live with the
restrictions assigned by the person who knows the password. Changes to the password and to
the access restrictions may only be made by the authorized user who knows the password.

There are three protection levels available to you. The access restrictions are outlined in the
following table:

Communication Function Restriction Restriction Restriction
Class 1 Class 2 Class 3

Read user data Allowed Allowed Allowed
Write user data Allowed Allowed Allowed
Start/Stop the execution of the user program Allowed Allowed Allowed
Restart the PLC Allowed Allowed Allowed
* Set/Read the Time-of-Day Clock Allowed Allowed Allowed
Test (Functionality: Read) Allowed Allowed Not Allowed
Upload user program, data and configuration Allowed Allowed Not Allowed
Load user program, data and configuration Allowed Not Allowed Not Allowed
Delete user program, data and configuration Allowed Not Allowed Not Allowed
Test (Functionality: Write, Change, or Modify) Allowed Not Allowed Not Allowed
* Copy user program, data and configuration data to Allowed Not Allowed Not Allowed
a memory cartridge

Note: * CPU 214 only

In the event the password is forgotten, use the master password CLEARPC to gain access to
the programmable controller. You must have the PLC Mode Switch in either the STOP or
TERM position. When you use the master password, the PLC performs the following:

- The PLC enters the STOP mode
- The user program is deleted
- The user data memory is deleted and all data space is cleared
- All configuration parameters except the station address are deleted
- All memory bits are cleared
- All special memory bits are set to their default state

17

- Analog outputs are frozen
- All system data memory is set to the default state
- All forced points are cleared and unforced
- The time of day clock is not changed (CPU 214)
- All timer/counter current data is cleared

Overview
The S7-200 series has some of its I/0 built-in to the base unit. The I/0 points on the CPU are
numbered to provide you with unique identification in your program. There are two types of
base units in the S7-200 product line. The specifications for both the CPU and the Expansion
I/0 modules are included in this help file:

The CPU 214 has 14 inputs and 10 outputs on the base unit and can be expanded to a
total of 64 discrete I/0 points.

The CPU 212 has 8 inputs and 6 outputs on the base unit, and can be expanded to a
total of30 discrete I/0 points.

The base unit maintains an image of the I/0 points in a memory area called the image
register. There is an input image register and an output image register. There are 3 major
reasons for the image register:

1. The sampling of all inputs at the top of the scan synchronizes and freezes the values
of the inputs for the program execution phase of the scan cycle. The outputs are updated from
the image register after the execution of the program is complete. This provides a stabilizing
effect on the system being controlled.

2. You can access the image register much quicker than you can access I/0 points.
This allows faster execution of the program being executed.

3. I/0 points are bit entities and must be accessed as bits, however, you can access the
image register as bits, bytes, words, or double word values. Thus, the image registers provide
the user with additional flexibility.

Expansion I/0 provides you the means to expand the number ofI/0 points if needed. This
keeps costs down so that you don't pay for I/0 that you don't need. Expansion of I/0 is
possible on both the CPU 212 and the CPU 214.

There is some specialty I/0 which is also built-in to the CPU unit. This specialty I/0 consists
of High Speed Counter operations, Pulse Output operations, and the ability to directly access
physical I/0 points.

18

Immediate 1/0

The immediate I/0 instructions give you the ability to circumvent the scan cycle with respect
to reading inputs and writing outputs. This is extremely useful for fast response to interrupt
events.

During a normal scan cycle, the inputs are read and then stored in the input image register.
The program then references the input image register when executing the user's program.
However, if you want to read the actual value of the input you must use an immediate I/0
access instruction. Likewise, if you want to update an output before the end of the current
scan, you must use an immediate I/0 access instruction.

Immediate I/0 instructions allow direct access to the actual input or output point, even though
the image registers are normally used as either the source or destination for I/0 access. The
corresponding input image register location is not modified when you use an immediate
instruction to access an input point. However, the corresponding output image register
location is updated simultaneously when you use an immediate instruction to access an output
point. Also, access to Analog I/0 is always immediate.

High Speed Counter
High-speed counters count high-speed events that cannot be controlled at programmable logic
controller scan rates. The CPU supports one high-speed counter and the CPU 214 supports
three high-speed counters.

The high-speed counters in the CPU 214 are called HSCO, HSCl and HSC2. The CPU 212
high-speed counter is called HSCO. HSCO is an up/down counter that accepts a single clock
input. The counting direction (up or down) is controlled by your program, using the direction
control bit. The maximum counting frequency ofHSCO is 2 kHz.

Modes of Operation
In the CPU 214, HSCl and HSC2 are versatile counters that can be configured for one of
twelve different modes of operation. Each counter has dedicated inputs for clocks, direction
control, reset, and start where these functions are supported. The maximum clock input
frequency for HSCl and HSC2 is 7 kHz. For the two phase counters, both clocks may run at
7 kHz rates. In quadrature modes, an option is provided to select lx or 4x counting rates. At
lx rate, the maximum counting rate is 7 kHz and, at 4x rate the maximum counting rate is 28
kHz. HSC 1 and HSC2 are completely independent of one another and do not affect other
high-speed functions. Both counters run at maximum rates without interfering with one
another.

19

Pulse outputs
The CPU 214 allows QO.O and Q0.1 either to generate high-speed pulse train outputs (PTO)
or to perform pulse width modulation (P\VM) control.

The PTO function provides a square wave (50% duty cycle) output for a specified number of
pulses and a specified cycle time. The number of pulses can be specified from 1 to
4,294,967,295 pulses. The cycle time can be specified in either microsecond or millisecond
increments either from 250 to 65,535 microseconds or from 2 to 65,535 milliseconds.
Specifying any odd number of microseconds or milliseconds causes some duty cycle distortion.

The PWM function provides a fixed cycle time with a variable duty cycle output. The cycle
time and the pulse width can be specified in either microsecond or millisecond increments. The
cycle time has a range either from 250 to 65,535 microseconds or from 2 to 65,535
milliseconds. The pulse width timer has a range either from Oto 65,535 microseconds or from
0 to 65,535 milliseconds. When the pulse width is equal to the cycle time, the duty is 100
percent and the output is turned on continuously. When the pulse width is zero, the duty cycle
is O percent and the output is turned off If a cycle time of less than two time units is specified,
the cycle time defaults to two time units.

-Operator Interfaces
The combination of Siemens Micro-PLCs and the COROS® line of operator panels provide
you with powerful and cost effective control and monitoring for many processes. As the level
of automation increases for both machines and systems, the need for operators to monitor and
modify automated processes increases as well.

A variety of features are provided to you with these displays such as:

9 Levels of password protection with multiple passwords per user level
Extensive recipe management that allows you to store up to 255 recipes
Easy to use configuration software
Event messages generated by a bit within the PLC
Alarm messages with time stamping, and operator acknowledgment
Automatic logging of the last 256 event and alarm messages received
Plus an on-line help capability to document an event or alarm message

The full line of COROS operators - from the small, text based OPS to the larger (but only 2"
thin) OP35 with a color graphics screen and disk drive options, are flexible, reliable and
dependable.

20

OPS

Display
Type
Size

Keys
Function Keys
System Keys
Alpha-Numeric

LEDs
System
User Defined

Memory
Type
Size
Number of Screens
Entries per Screen

Messages
Number
Alarm

Password
Physical (H x W x D)

Dimensions - Mounting
Dimensions - Front

Environmental
Ratings
Approvals
Operating Temperature
Storage Temperature

Backlit LCD
4 lines x 20 characters

6
24
Numeric

4
0

Flash EPROM
128 KB
99
99

499
499
9 Levels

6.2 X 4.3 X 1.6 in
6.6 X 4.7 X 1.6 in

IP65
UL I CSA Pending
0 - 45° C
-10 to 60° C

21

OP25
~ ... ro,~- r,] ~ GJ 1)

EJ\ ...• · .. 1,-.,.,.·.·~··· .'. ·.···· l· \36GSciJ. l
B.(:~ ··•.·· I~ [,],:;JG] II B···· :r, ·. I ~GGJG
a.~.:,• .. ·;;..__,..o"'.~ I El G];;J[IJ I . ·.; . :>· - _ matt11·by ~14 ~

'il.~BBEJB~B~•r ~i~·.··
+·sSB18SBSB•··· .. ~. vbYJ ': /ID.

·· ·· .. lS

play
Type
Size

Keys
Function Keys
System Keys
Alpha-Numeric

LEDs
System
User Defined

Memory
Type
Size
Number of Screens
Entries per Screen

Messages
Number
Alarm

Password
Physical (H x W x D)

Dimensions - Mounting
Dimensions - Front

Environmental
Ratings
Approvals
Operating Temperature
Storage Temperature

Backlit LCD
3 20 x 240 pixels

24
24
Full Alpha-Numeric

4
24

FlashEPROM
1MB
Memory
NIA

2000
2000
9 Levels

7 X 11.1 X 2.3 in
7.6 X 11.6 X 2.3 in

IP65
UL I ,CSA Pending
0 - 45° C
-10 to 60° C

-Programming
There are two methods of programming an S7-200 PLC: Ladder Logic and Statement List.
You also have the ability to switch back and forth between the two to provide you with a
programming environment which is as easy as pointing and clicking.

22

Ladder Logic Programming
Ladder Logic is a graphic representation of the S7-200's programming language. Its syntax for
the instructions is much like a relay ladder logic diagram: the ladder program tracks power
flow between power rails as it passes through various inputs, outputs, and other instructions.

A typical example of a Ladder Logic programming methodology follows. The problem: If the
input called 'Limit Switch #1' and the input called 'Limit Switch #2' both turn ON, then turn
ON the output called 'Ready Light'. Using the device name instead of the PLC address is an
example of a Symbolic Name

imit Switch
1

I
Limit Switch
92

:Re.td!,' Light

Statement List Programming
Statement List is a textual representation of the S7-200's programming language. Its syntax
for the instructions is much like assembly language programming: there is a command or
operation, followed by a memory address.

A typical example of a statement list programming methodology follows. The problem: If the
input called 'Limit Switch #1' and the input called 'Limit Switch #2' both turn ON, then turn
ON the output called 'Ready Light'. In statement list, we are using the absolute VO address
instead of symbolic names.

A IO.O
A I0.1
0 QO.O

II If Limit Switch #1 is ON
II And Limit Switch #2 is ON
II Tum ON the output called Ready Light

Instruction Set
The S7-200 has over 120 powerful and extensive instructions. The instruction set contains
operations that you would not expect from a Micro-PLC controller.

23

Ladder Instruction Set
Normally Open Contact

Symbol:
n -Ir-

Operands:
n (bit): I, Q, M, SM, T, C, V
Description of operation:
The Normally Open Contact is closed when the
scanned bit value stored at address n is equal to 1 .
Power flows through a normally open contact when
closed (activated).

Used in series, a normally open contact is linked to
the next LAD element by AND logic. Used in
parallel, it is linked by OR logic.

Normally Closed Contact

Symbol:
n

-11r-
Operands:

n (bit): I, Q, M, SM, T, C, V

Description of operation:

The Normally Closed Contact is closed when the
bit value stored at address n is equal to O . Power
flows through the contact when closed
(deactivated).

Used in series, a normally closed contact is linked
to the next LAD element by AND logic. Used in
parallel, it is linked by OR logic.

Normally
Contact

Open Immediate

Symbol:
n -Irr-

Operands:

11 (bit):

Description of operation:
The Normally Open Immediate Contact is closed
when the Bit value stored at address n is equal to l
. Power flows through the contact when closed
(activated). A physical input read occurs
immediately after the coil is scanned without
waiting for scan cycle completion. The image
register is not updated.

Used in series, a normally open immediate contact
is linked to the next LAD element by AND logic.
Used in parallel, it is linked by OR logic.

Normally
Contact

Closed Immediate

Symbol:
n

-l1rr-
Operands:

n (bit): I

Description of operation:

The Normally Closed Immediate Contact is closed
when the Bit value stored at address n is equal to 0
. Power flows through the contact when closed
(deactivated). A physical input read occurs
immediately after the coil is scanned without
waiting for scan cycle completion. The image
register is not updated.

Used in series, a normally closed immediate
contact is linked to the next LAD element by AND
logic. Used in parallel, it is linked by OR logic.

Compare Byte Equal Contact

Symbol:
n1 -l==Br-
n2

Operands:

nl, 112 (unsigned byte): VB, IB, QB, MB, SMB,
Constant, *VD, * AC

Description of operation:
The Compare Byte Equal Contact is closed when
the byte value stored at address nl is equal to the
byte value stored at address n2 . Power flows
through the contact when closed.

24

Compare Byte Greater Than Or
Equal Contact

Symbol:
n1 -l>=Br-
n2

Operands:

n l, n2 (unsigned byte): VB, IB, QB,
:tvrn, S:tvrn, AC,
Constant, *VD,
*AC

Description of operation:

The Compare Byte Greater Than or Equal Contact
is closed when the byte value stored at address nl
is greater than or equal to the byte value stored at
address n2 . Power flows through the contact when
closed.

Compare Byte Less Than Or
Equal Contact

Symbol:
n1 -l<=Br-
n2

Operands:

nl, 112 (unsigned byte): VB, IB, QB,
:tvrn, S:tvrn, AC,
Constant, *VD,
*AC

Description of operation:
The Compare Byte Less Than or Equal Contact is
closed when the byte value stored at address nl is
less than or equal to the byte value stored at
address n2 . Power flows through the contact when
closed.

Compare Integer Equal Contact

Symbol:
n1 -l==Ir-
n2

Operands:

nl, n2 (signed integer word): V'vV, T,C,IW, QW,
MW, SMW,AC,
AIW, Constant, *VD(*AC

Description of operation:

The Compare Integer Equal Contact is closed when
the signed integer word value stored at address nl
is equal to the signed integer word value stored at
address n2 . Power flows through the contact when
closed.

Compare Integer Greater Than Or
Equal Contact

Symbol:
n1 -l>=Ir-
n2

Operands:

nl, n2 (signed integer word): V'vV, T, C, IW, QW, MW,
SMW, AC, AIW, Constant,
*VD, *AC

Description of operation:

The Compare Integer Greater Than or Equal
Contact is closed when the signed integer word
value stored at address nl is greater than or equal
to the signed integer word value stored at address
n2 . Power flows through the contact when closed.

Compare Integer Less Than Or
Equal Contact

Symbol:
n1 -l<=Ir-
n2

Operands:

n l, n2 (signed integer word): VW, T, C, IW, QW, MW,
SMW, AC, AIW, Constant,
*VD, *AC

Description of operation:

The Compare Integer Less Than or Equal Contact
is closed when the signed integer word value stored
at address nl is less than or equal to the signed
integer word value stored at address 112 . Power
flows through the contact when closed.

25

Compare Double Integer Equal
Contact

Symbol:
n1

-l==Df--
n2

Operands:

nl, n2 (signed
integer double word):

VD, ID. QD,
rvm, sxro, AC,
HC, Constant,
*VD, *AC

Description of operation:

The Compare Double Integer Equal Contact is
dosed when the double word value stored at
address nl is equal to the double word value stored
at address n2 . Power flows through the contact
when closed.

Compare Double Integer Greater
Than Or Equal Contact

Symbol:
n1

-l>=Df--
n2

Operands:

n l, 112 (signed
integer double word):

VD, ID, QD, rvID, SrvID,AC
HC, Constant, *VD, * AC

Description of operation:

Compare Double Integer Greater Than Or Equal
Contact is closed when the double word value
stored at address n 1 is greater than or equal to the
double word value stored at address 112 . Power
flows through the contact when closed.

Compare Double Integer Less
Than Or Equal Contact

Symbol:
n1

-l<=Df--
n2

Operands:
nl, n2 (signed
integer double word):

VD, ID, QD,
rvID, SrvID,AC,
HC, Constant,
*VD, *AC

Description of operation:

The Compare Double Integer Less Than Or Equal
Contact is closed when the double word value
stored at address nl is less than or equal to the
double word value stored at address n2 Power
flows through the contact when closed.

Compare Real Equal Contact
Note: CPU 214 only.

Symbol:
n1

-l==Rf--
n2

Operands:

nl, n2 (real): VD, ID, QD, rvm, srvm, AC,
HC, Constant, *VD, * AC

Description of operation:

The Compare Real Equal Contact is closed when
the real value stored at address nl is equal to the
real value stored at address n2 . Power flows
through the contact when closed.

Compare Real Greater Than Or
Equal Contact
Note: CPU 214 only.

Symbol:
n1

-l>=Rf--
n2

Operands:

n l, n2 (Dword): VD, ID, QD, rvm, srvm, AC,
HC, Constant, *VD, * AC

Description of operation:

Compare Real Greater Than Or Equal Contact is
closed when the real value stored at address nl is
greater than or equal to the real value stored at
address n2 . Power flows through the contact when
closed.

26

Compare Real Less Than Or
Equal Contact
Note: CPU 214 only.

Symbol:

n1 -l<=Rr-
n2

Operands:

nl, n2 (Dword): VD, ID, QD, ivlD,
SivID, AC, HC, Constant,
*VD, *AC

Description of operation:

The Compare Real Less Than Or Equal Contact is
closed when the real value stored at address nl is
less than or equal to the real value stored at address
n2 . Power flows through the contact when closed.

Invert Power Flow Contact

Symbol:

-INoTr-
Operands:

(none)

Description of operation:

The NOT (Invert Power Flow) contact changes the
state of power flow. If power flow reaches the Not
contact, then it stops. When power flow does not
reach the Not contact, it sources power flow.

Positive Transition Contact

Symbol:

Operands:

(none)

Description of operation:

The Positive Transition Contact allows power to
flow for one scan, for each off-to-on transition .

Negative Transition Contact

Symbol:

-1Nr-
Operands:
(none)

Description of operation:
The Negative Transition Contact allows power to
flow for one scan, for each on-to-off transition .

Ladder Contact Examples
I Network 1 I

When 10.1 or 10.3 is on and 10.2 is on then
output Q0.1 is turned on.

IO.l I IO. 2

IOI" I 11-
-~

[Network 2 When 10.4 is on and 10.5 is not on, then output Q0.2 i,
turned on.

[Network3 When VB2 is greater than or equal to VB8,
then output Q0.3 is turned on.

[Network 4 When VB4 equals VB8, then output Q0.4 is turned off
(Note: The NOT instruction can be
used to create a Not Equal comparison.)

VW4 Q0.4
==I I INoTI ()
VWB

[Network 5 When 10.1 transitions from on to off,
then output Q0.5 is turned on for one scan cycle.
When 10.1 transitions from off to on,
then Q0.6 is turned on for one scan.

I0.1

t
i Q0.5

N C)
I Qo.6

p C)
[Network 6 End of the main user program.

27

Read Real Time Clock
. ;ote: Real Time Clock instructions are supported

· the CPU 214 only.

Symbol:

READ RTC
EN

T

Operands:

T (byte): VB, IB, QB, MB, SMB, *VD,
*AC

Description of operation:

The Read Real Time Clock (READ _RTC) box
reads the current time and date from the clock and
loads it in an 8-byte buffer (T).

Example Memory Data Starting at VB400:
READ_RTC (Clock is read)

VB400

VB401

VB402

VB403

VB404

VB405

VB406

VB407

95

03

24

08

00

00

Year
Month
Day
Hour
Minute

~Second

~DayofWeek

24-Mar-95
8:00:00
Friday

Note:
The time of day clock initializes the following date
and time after extended power outages or memory
has been lost:

Date:
Time:
Day of Week

Ol-Jan-90
00:00:00
Sunday

Note:
Do not use the READ RTC I SET RTC - -
instructions in both the main program and in an
interrupt routine. If you do this and the clock
instruction is executing when the the interrupt that
also executes the clock instruction occurs, then the
clock instruction in the interrupt routine is not
executed. SM4.5 is then set, indicating that two
simultaneous accesses to the clock were attempted.

Set Real Time Clock
Note: Real Time Clock instructions are supported
by the CPU 214 only.

Symbol:

Operands:

T (byte):

SET RTC
EN

T

VB, IB, QB, MB, SMB, *VD, * AC

Description of operation:

The Set Real Time Clock (SET_RTC) box writes
the current time and date loaded in an 8-byte buffer
(T) to the clock.
Example Memory Data Starting at VB400:
SET _RTC (New value is written to clock)

VB400

VB401

VB402

VB403

VB404

VB405

VB406

VB407

96

03

24

08

00

00

00

Year
Month
Day
Hour
Minute
Second

~ Day of Week

24-Mar-96
8:00:00
Friday

Note:
The time of day clock initializes the following date
and time after extended power outages or memory
has been lost:

Date:
Time:
Day of Week

Ol-Jan-90
00:00:00
Sunday

Note:
Do not use the READ RTC I SET RTC - -
instructions in both the main program and in an
interrupt routine. If you do this and the clock
instruction is executing when the the interrupt that
also executes the clock instruction occurs, then the
clock instruction in the interrupt routine is not
executed. SM4.5 is then set, indicating that two
simultaneous accesses to the clock were attempted.

28

Real-time
Examples

[Network 1

Clock Instruction

When 10.0 is on, the clock is
read and the value is stored in
the buffer, starting at VB400.

IO.O IREAD RTC I EN

!Network 2

VB400 """1 T

When 10.1 is on, the year
value (95) from the first byte
of VB400 is moved to ACO .

rO.l I MOV B
I EN

VB400--j IN OUT t-ACO

µ0.2 I I IEN

[Network 3

!Network 4

When 10.2 is on, the year
value in ACO is incremented
by 1.

INC W

ACO --, IN OUT 1-ACO

When 10.3 is on, the new year
value (96) is stored in VB400 .

MOV B
EN

!Network 5 When 10.4 is on, the new year
value is written to the clock.

ACO --j IN OUT t-VB400

~0.4 I SET RTC

I I EN

VB400 -j T

[Network 6 End of the main user program.

BCD to Integer

Symbol:

BCD I
EN

IN OUT

Operands:

IN (word): V'vV, T, C, IW, QW, MW, SMW,
AC, AIW, Constant, *VD, *AC

OUT (word): VW, T, C, IW, QW, MW, SMW,
AC, *VD, *AC

Description of operation: ,
The Convert BCD to Integer (BCD_ I) box converts
the BCD value (IN) to an integer value (OUT). If
the input value contains an invalid BCD digit, the
BCD/BIN memory bit (SMl.6) is set.

29

Integer to BCD

Symbol:

I BCD
EN

IN OUT

Operands:

(word): VW, T, C, IW, QW, MW,
SMW, AC, AIW, Constant,
*VD, *AC

OUT (word): VW, T, C, IW, QW, MW,
SMW, AC, *VD, * AC

Description of operation:

TI1e Convert Integer to BCD (I_ BCD) box converts
the integer value (IN) to the BCD value (OUT). If
the conversion produces a BCD number greater
than 9999, the BCD/BIN memory bit (SMl.6) is
set.

Integer Double Word to Real
Note: CPU 214 only.

Symbol:

DI REAL
EN

IN OUT

Operands:

IN (Dword): VD, ID, QD, MD, SMD,
AC, HC, Constant, *VD, * AC

OUT (Dword): VD, ID, QD, MD, SJvID, AC,
*VD, *AC

Description of operation:

The Integer Double Word to Real (DI_REAL)
instruction converts a 32-bit, signed integer (IN)
into a 32-bit real number (OUT).

Truncate
Note: CPU 214 only.

Symbol:

TRUNC
--;EN

-,IN OUT t-

Operands:

IN (Dword): VD, ID, QD, MD, SMD, AC, HC,
Constant, *VD, * AC

OUT (Dword): VD, ID, QD, MD, SMD, AC, *VD,
*AC

Description of operation:

The Truncate (TRUNC) instrnction converts a 32-
bit real number (IN) into a 32-bit signed integer
(OUT). Only the whole number portion of the real
number is converted (round-to-zero).

Decode
Symbol:

DECO
EN

IN OUT

Operands:

IN (byte): VB, IB, QB, MB, SMB, AC,
Constant, *VD, *AC

OUT (word): VW, T, C, IW, QW, MW, SMW,
AC, AQW, *VD, * AC

Description of operation:

The Decode (DECO) box sets the bit in the output
word (OUT) that corresponds to the bit number
represented by the least-significant nibble (LSN) of
the input byte (IN). All other bits of the output
word are set to O.

30

Encode
Symbol:

ENCO
EN

IN OUT

Operands:

(word): VW, T, C, IW, QW, MW,
SMW, AC, AlW, Constant,
*VD, *AC

OUT (byte): VB, IB, QB, l'vIB, Sl'vIB, AC,
*VD, *AC

Description of operation:

The Encode (ENCO) box writes the bit number (bit
:!) of the least-significant bit set of the input word
(IN) into the least-significant nibble (LSN) of the
output byte (OUT).

Segment
Symbol:

SEG
___, EN

-,IN OUTt-

Operands:

(byte): VB, IB, QB, l'vIB, Sl'vIB,
AC, Constant, *VD, * AC

OUT (byte): VB, IB, QB, l'vIB, Sl'vIB, AC,
*VD, *AC

Description of operation:

The Segment (SEG) box generates a bit pattern
(OUT) that illuminates the segments of a seven
segment display. The illuminated segments
represent the character in the least-significant digit
of the input byte (IN).

ASCII to Hex
Symbol:

ATH
EN

IN

LEN OUT

Operands:

LEN (byte): VB, IB, QB, l'vIB, Sl'vIB, AC,
Constant, *VD, * AC

IN (byte): VB, IB, QB, l'vIB, Sl'vIB, *VD, * AC

OUT (byte): VB, IB, QB, l'vIB, Sl'vIB, *VD, * AC

Description of operation:
The ASCII to HEX (ATH) box converts the ASCII
string of length LEN, starting with the character
IN, to hexadecimal digits starting at the location
OUT. The maximum length of the ASCII string is
255 characters.

Legal ASCII characters are the hexadecimal values
30-39, and 41-46. If an illegal ASCII character is
encountered, the conversion is terminated, and the
NOT_ASCII memory bit (SMl.7) is set.

Hex to ASCII
Symbol:

HTA
EN

IN

LEN OUT

Operands:

LEN (byte): VB, IB, QB, l'vIB, Sl'vIB, AC,
Constant, *VD, * AC

IN (byte): VB, IB, QB, l'vIB, Sl'vIB, *VD, * AC

OUT (byte): VB, IB, QB, l'vIB, Sl'vIB, *VD, * AC

Description of operation:
The HEX to ASCII (HT A) box converts the
hexadecimal digits, starting with the input byte IN,
to an ASCII string starting at the location OUT.
The number of hexadecimal digits to be converted
is specified by length LEN. The maximum number
of the hexadecimal digits that can be converted is
255.

31

Ladder Conversion Instruction
Examples

[Network 1 When 13.0 is on, the Binary
Coded Decimal value in VWO
is converted to an integer
value.

[Network 4 When 13.3 is on, a bit pattern
is generated at QBO that
illuminates the segments of the
character represented by VB48.

I3. 0 I BCD I I EN

\TWO-jIN OUT 1\TWO

\Network 2 When 13.1 is on, 3 is decoded
and the corresponding bit of
VW40 is set.

I3.3
I

SEG
EN

I3 .1 I EN I
DECO

VB48-jIN OUT t"-QBO

\Network 5 End of the main user program.

3 -jIN OUT 1\TW40

\Network 3 When 13.2 is on, the
3-character ASCII string
starting with the character
at VB30 is converted to
hexadecimal digits starting
at VB40.

HSC Definition

Symbol:

HDEF
-EN

~HSC

-;MODE

Operands:

HSC (byte): CPU 212: 0
CPU 214: 0-2

I3. 2 I ATH

MODE (byte): CPU 212: 0
CPU 214: 0 (HSCO), 0-11 (HSCl-2)

------l EN I I Description of operation:

When the High-speed Counter Definition (HDEF)
box is enabled, the referenced counter (HSC) is
assigned a high-speed counter type or MODE.
Only one HDEF box may be used per counter.

32

VB30-1IN

3-jLEN OUTt-VB40

High Speed Counter

Symbol:

HSC
--,EN

--1N

Operands:

~ (word): CPU 212: 0
CPU 214: 0-2

Ladder High-speed
Instruction Examples

Operation

Description of operation:

When the High-speed Counter (HSC) box is
enabled, the state of the HSC special memory bits
are examined. The HSC operation defined by the
special memory bits is then invoked. The
parameter N specifies the High-speed Counter
number.

Pulse Output

Symbol:

PLS

[Network 1 On the first scan, the counter is enabled.
Initial direction is set to count up.
Start and reset inputs are set to active
high. 4x mode is set.

__,EN

--1 QO. X

Operands:

QO.x (word): CPU 214: 0-1

SMO . 1 MOV B
I
I EN

16#F8- IN OUT

HDEF
EN

1- HSC

11- MODE

SMB47

Description of operation:

The Pulse Output (PLS) box examines the special
memory bits for that pulse output (QO.x). The pulse
operation defined by the special memory bits is
then invoked.

[Network 2 When 10.2 is on, the current value of
HSC1 is cleared and its preset value
is set to 50 .

IO. 2 MOV DW I
I EN

o- IN OUT

MOV DW
EN

so- IN OUT

HSC
EN

1-N

SMD52

SMD48

33

!Network 3 When 10.1 is on, the Pulse
Train Output control byte is
set up, and the PTO operation
is invoked: cycle time 500ms,
pulse count 4, PLS O --> QO.O .

Description of operation:

The Attach Interrupts (ATCH) box associates an
interrupt event (EVENT) with an interrupt routine
number (INT), and enables the interrupt event.

Detach Interrupts

Symbol:

DTCH
EN

EVENT

EVENT (byte): CPU 212: 0, 1, 8-10, 12
CPU 214: 0-20

IO. 1 MOV B
I
I EN

16#SD- IN OUT

MOV W
EN

500- IN OUT

MOV DW
EN

4- IN OUT

PLS
EN

o- QO.x

SMD72
Description of operation:

The Detach Interrupts (DTCH) box disassociates
an interrupt event (EVENT) from all interrupt
routines, and disables the interrupt event.

Interrupt Routine

Symbol:

Operands:

n (word): CPU 212: 0-31
CPU 214: 0-127

SMB67

SMW68

Description of operation:

The Interrupt Routine (INT) label marks the
beginning of the interrupt routine (n). The
maximum number of interrupts supported by the
CPU 212 is 32, and by the CPU 214, 128.

34

[Network 4 End of the main user program.

Attach Interrupts

Symbol:

ATCH
EN

INT

EVENT

Operands:

INT (byte): CPU 212: 0-31
CPU 214: 0-127

EVENT (byte): CPU 212: 0, 1, 8-10, 12
CPU 214: 0-20

Enable Interrupts
Symbol:

Operands:

none)

Description:

The Enable Interrupts (ENI) coil globally enables
processing of all attached interrupt events.

Disable Interrupts
Symbol:

-----1(E IS Y
Operands:

(none)

Description:

The Disable Interrupts (DISI) coil globally disables
processing of all interrupt events.

Return from Interrupts
Symbol:

Conditional Return from
Interrupts

Unconditional Return from

Operands:

(none)

Description:

The Conditional Return from Interrupts (RETI)
coil returns from an interrupt based upon the
condition of the preceding logic.

The Unconditional Return from Interrupts (RETI)
coil must be used to terminate each interrupt
routine.

Network Read
Note: CPU 21-1 only.

Symbol:

NETR
EN

TABLE

PORT

Operands:

TABLE: VB, MB, *VD, * AC

PORT: Constant
(CPU 214: 0)

Description of operation:

The Network Read (NETR) instruction initiates a
communication operation to gather data from a
remote device through the specified port (PORT),
as defined in the description table (TABLE).

You can use the NETR instruction to read up to 16
bytes of information from a remote station, and use
the NETW instruction to write up to 16 bytes of
information to a remote station. A maximum of
eight NETR and NETW instructions may be
activated at any one time. For example, you can
have four NETR and four NETW instructions, or
two NETR and six NETW instructions.

35

Network Write
.Vote: CPU 214 only.

Symbol:

NETW
EN

TABLE

PORT

Operands:

Data
Events

with Interrupt

TABLE: VB, MB, *VD, * AC

Sharing

Because interrupt events are asynchronous to the
main user-program, they can occur at any point
during execution of the main user-program. When
the main program and an interrupt routine share
data, you· must understand the nature of the
problems that can arise and how to avoid such
problems.

Data-sharing problems can occur in situation
where a sequence of operations are performed in
the main program on data stored in a memory
location shared by the main program and an
interrupt routine. If an intermediate result is stored
in the shared memory location, then an interrupt
event occurring before the sequence is complete
will cause the interrupt routine to be executed with
invalid data, or it will corrupt an intermediate
value in the main program.

The situations described above apply whether you
write your programs in STL or LAD. If you write
your programs in LAD, you should also be aware
that many LAD instructions produce a sequence of
STL instructions. If the LAD instruction is located
in the main program and is operating on data
stored in a shared memory location, an interrupt
event can occur between the execution of the STL
instructions, altering intermediate values and
making it appear that the LAD instruction
executed incorrectly. For techniques to avoid
problems with data sharing, see Programming
Techniques for Data Sharing .

Programming Techniques for Data
Sharing
The following programming techniques should be
followed to avoid problems with data sharing
between your main program and interrupt routines.
These techniques either restrict the way access is
made to shared memory locations, or they make
instruction sequences using shared memory
locations uninterruptible. The appropriate
technique depends upon the size of the data being
shared (simple elements such as a byte, word, or
double-word variable or complex elements such as
multiple variables) and the programming language
(STL or LAD).

If the shared data is a single byte, word, or double
word variable and your program is written in STL,
then make sure that intermediate or temporary
values are not stored in shared memory locations.
A shared location should be accessed in the main
program only as the initial source value or the final
destination value in a sequence of operations.

36

PORT: Constant
(CPU 214: 0)

Description of operation:
The Network Write (NETW) instruction initiates a
communication operation to write data to a remote
device through the specified port (PORT), as
defined in the description table (TABLE).

You can use the NETR instruction to read up to 16
bytes of information from a remote. station, and use
the NETW instruction to write up to 16 bytes of
information to a remote station. A maximum of
eight NETR and NETW instructions may be
activated at any one time. For example, you can
have four NETR and four NETW instructions, or
two NETR and six NETW instructions.

Transmit

Symbol:

XMT
EN

TABLE

PORT

Operands:
TABLE (byte): VB, IB, QB, MB, SMB, *VD,

*AC
0 PORT (byte):

Description of operation:
The Transmit (XMT) box invokes the transmission
of the data buffer (TABLE). The first entry in the
data buffer specifies the number of bytes to be
transmitted. PORT specifies the communication
port to be used for transmission. It must always be
0.

•r the shared data is a single byte. word, or double-
'ord variable and your program is written in LAD,
en access shared memory locations using a Move
trnction. If the main program performs one or
ore operations on a data value provided by an
terrnpt routine, the Move instruction must be

used to move the data value from the shared
memory location to a non-shared memory location
r to an accumulator. If the main program

performs one or more operations on data in order
o provide a value to an interrupt routine, then the
st operation must be a Move instruction that

moves the data value from an accumulator or non
shared memory location to the shared memory
location. Other instrnctions in the sequence must
not directly access the shared memory location.

If the shared data is composed of related bytes,
words, or double-words whose values must agree;
for example, the pressure and temperature of a gas
in a tank, then the interrupt disable/enable
instructions, DISI and ENI, must be used to control
interrupt routine execution. At the point in your
main program (STL or LAD) where operations on
shared memory locations are to begin, interrupts
must be disabled. Once all actions affecting shared
locations are complete, interrupts must be re
enabled. During the time that interrupts are
disabled, interrupt routines cannot execute and
access shared memory locations.

Interrupt Event Priority Table
Interrupt Description
(By group priority)

Comm. (Highest Priority)
Receive interrupt
Transmit complete interrupt

Discrete (Middle Priority)
Rising edge, 10.0**
Rising edge, IO. I
Rising edge, I0.2
Rising edge, IO. 3
Falling edge, IO.O**
Falling edge, IO. I
Falling edge, 10.2
Falling edge, I0.3
HSCO CV=PV**

(current value = preset value)
HSCl CV=PV

(current value = preset value)
HSCl direction input changed
HSCl external reset
HSC2 CV=PV

(current value = preset value)
HSC2 direction input changed
HSC2 external reset
PLSO pulse count complete

Event

8
9

0
2
4
6
1
3
5
7
12

13

14
15
16

17
18
19

In
Group
Priority

Suppor
ted in
CPU 21

10
11

0
O*

y
y

0
1
2

y

3
4
5
6
7
0

y

y

8

9
10
11

12
13
14

interrupt
PLS 1 pulse count complete 20 15
interrupt

Timed (Lowest Priority)
Timed interrupt 0
Timed interrupt 1

0 y

* Since communication is inherently half-duplex,
both transmit and receive are the same priority.
**If event 12 (HSCO CV=PV) is attached to an
interrupt, then neither event O nor event 1 can be
attached to interrupts. Likewise, if either event O or
1 is attached to an interrupt, then event 12 cannot
be attached to an interrupt.

37

Ladder Interrupt I Communication
Instruction Examples [Network 4 End of main ladder program.

!Network 1 On the first scan, create a
pointer to the data to be
transmitted. Select freeport
mode, 9600 baud, no parity,
8 bits per character. SM830 is
the freeport control byte.

~No)

[Network 5 Begin interrupt routine O .

SMO . 1 MOV DW
I -
I EN

&VB200- IN OUT

MOV B
EN

9- IN OUT SMB30

[Network 6 Compare received character in special
memory byte SMB2 with capital letter "A"
If character is "A", Q0.1 is set.

VDlOO

6

[Network 7 Return from interrupt to main program.

\Network 2 When 10.0 and SM4.5 are both
on, the message in the buffer
(pointed to by VD100) is
transmitted. SM4.5 is on when
the transmitter is idle.

Horizontal Lines
In ladder logic, horizontal lines represent wires
connecting elements in series.

All lines in a network must be connected to valid
elements.
All networks must terminate in a coil or a box.

Vertical Lines
In ladder logic, vertical lines represent wires
connecting to parallel branches.

All lines in a network must be connected to valid
elements.
All networks must terminate in a coil or a box.

38

IO.O SM4.5

I I I IEN
XMT

*VDlOO !TABLE

8 -jPORT

[Network 3 Assign receive interrupt event
8 to interrupt routine 0, and
enable the routine.

SMO.l ATCH
1---.------1 EN

0 ---j INT

8 --1EVENT

'----------l ENI)

AND Word
ymbol:

WAND W
EN

INl

IN2 OUT

Operands:

1, IN2 (word): VW, T, C, IW, QW, MW,
SMW, AC, AIW, Constant,
*VD, *AC

IN l and fN2, and loads the result (OUT) in a
double word.

Note:
When INl t= OUT and IN2 t= OUT:
• If IN2 and OUT are direct-addressed operands,

and if OUT contains one of the bytes of IN2,
then the instruction is invalid.

• If IN2 is an indirect address and OUT is a
direct address containing one of the bytes of
the indirect address pointer, then the
instruction is invalid.

OR Word
Symbol:

WOR W
EN

INl

IN2 OUT

Operands:

INl, IN2 (word): VW, T, C, IW, QW, MW, SMW,
AC, AIW, Constant, *VD, *AC

OUT (word): VW, T, C, IW, QW, MW,
SMW, AC, *VD, * AC

OUT (word): VW, T, C, IW, QW, MW, SMW,
AC, *VD, *AC

Description of operation:

The AND Word (WAND_ W) box ANDs the
corresponding bits of the input words INl and IN2,
and loads the result (OUT) in a word.

Description of operation:

The OR Word (WOR_ W) box ORs the
corresponding bits of the input words INl and IN2,
and loads the result (OUT) in a word.

Note:
When INl t= OUT and IN2 t= OUT:
• IfIN2 and OUT are direct-addressed operands,

and if OUT contains one of the bytes of IN2,
then the instruction is invalid.

• If IN2 is an indirect address and OUT is a
direct address containing one of the bytes of
the indirect address pointer, then the
instruction is invalid.

39

Note:
When INl t= OUT and IN2 t= OUT:
• IfIN2 and OUT are direct-addressed operands,

and if OUT contains one of the bytes of IN2,
then the instruction is invalid.

• If IN2 is an indirect address and OUT is a
direct address containing one of the bytes of
the indirect address pointer, then the
instruction is invalid.

AND Double Word
Symbol:

WAND DW
EN

INl

IN2 OUT

Operands:

INl, IN2 (Dword): VD, ID, QD, Nill, SMD, AC,
HC, Constant, *VD, * AC
VD, ID, QD, MD, SMD, AC,
*VD, *AC

OUT (Dword):

Description of operation:

The AND Double Word (WAND_DW) box ANDs
the corresponding bits of the input double words

OR Double Word
Symbol:

WOR DW
EN

INl

IN2 OUT

Operands:

1, IN2 (Dword): VD, ID, QD, MD, SMD, AC,
HC, Constant, *VD, *AC

Description of operation:

The Exclusive OR Word (WXOR_ W) box XORs
the corresponding bits of the input words IN 1 and
IN2, and loads the result (OUT) in a word.

Note:
When IN 1 * OUT and IN2 * OUT:
• If IN2 and OUT are direct-addressed operands,

and if OUT contains one of the bytes of IN2,
then the instruction is invalid.

• If IN2 is an indirect address and OUT is a
direct address containing one of the bytes of
the indirect address pointer, then the
instruction is invalid.

XOR Double Word
Symbol:

WXOR DW
EN

INl

IN2 OUT

Operands:

INl, IN2 (Dword): VD, ID, QD, MD, SMD, AC, HC,
Constant, *VD, * AC

OUT (Dword): VD, ID, QD, MD, SMD, AC,
*VD, *AC

OUT (Dword): VD, ID, QD, MD, SMD, AC, *VD,
*AC

Description of operation:

The OR Double Word (WOR_DW) box ORs the
corresponding bits of the input double words INl
and IN2, and loads the result (OUT) in a double
word.

Note:
When INl * OUT and IN2 * OUT:
• If IN2 and OUT are direct-addressed operands,

and if OUT contains one of the bytes of IN2,
then the instruction is invalid.

• If IN2 is an indirect address and OUT is a
direct address containing one of the bytes of
the indirect address pointer, then the
instruction is invalid. Description of operation:

The Exclusive OR Double Word (WXOR_DW)
box XORs the corresponding bits of the input
double words INl and IN2, and loads the result
(OUT) in a double word.

Note:
When IN 1 * OUT and IN2 * OUT:
• If IN2 and OUT are direct-addressed operands,

and if OUT contains one of the bytes of IN2,
then the instruction is invalid.

• If IN2 is an indirect address and OUT is a
direct address containing one of the bytes of
the indirect address pointer, then the
instruction is invalid.

40

XOR Word
Symbol:

WXOR W
EN

INl

IN2 OUT

Operands:

INl, IN2 (word): VW, T, C, IW, QW, MW,
SMW, AC, AIW, Constant,
*VD, *AC

OUT (word): VW, T, C, IW, QW, MW,
SMW, AC, *VD, *AC

Invert Word Ladder
Examples

Logical Operations

INV W
EN

IN OUT

[Network 1 Every scan, AND VW100 and VW200
together and store the result in VW200.
Also, OR VW300 and VW400 together
and store the result in VW500.

Operands:

(word): VW, T, C, IW, QW, MW,
SMW, AC, AIW, Constant,
*VD, *AC

SMO io WAND W

I EN

vw100- INl

vw200- IN2 OUT

WOR W
EN

VW300- INl

vw400- IN2 OUT vwsoo

OUT (word): VW, T, C, IW, QW, MW, StvfW,
AC, *VD, *AC

VW200

\Network 2 When 10.0 is on, "XOR" AC1 and ACO
together and store the result in ACO .

Description of operation:

The Invert Word (INV_ 'vV) box takes the ones
complement of the input word value (IN) and loads
the result in a word value (OUT).

Invert Double Word
Symbol:

INV DW
-----t EN

--l IN OUT>-

Operands:

IN (Dword): VD, ID, QD, MD, SMD, AC,
HC, Constant, *VD, * AC

IO.O WXOR W
EN

OUT (Dword): VD, ID, QD, MD, SMD, AC,
*VD, *AC

ACl INl

Description of operation:

The Invert Double Word (INV _DW) box takes the
ones complement of the input double word value
(IN) and loads the result in a double word value
(OUT).

ACO """i IN2 OUT t- ACO

\Network 3 When 10.1 transitions from off to on,
invert ACO (ones complement) and store
it in ACO.

r
o.1 I INV w II IP I EN

ACO -JIN OUT t- ACO

\Network 4 End of main user program.

41

Add Integer

Symbol:

ADD I
EN

INl

IN2 OUT

Operands:

INl, IN2 (word): VW, T, C, IW, QW, MW,
SMW, AC, AIW, Constant,
*VD, *AC

OUT (word): VW, T, C, IW, QW, MW,
SMW, AC, *VD, * AC

Description of operation:

The Add Integer (ADD_I) box adds two 16-bit
integers (INl, IN2), and produces a 16-bit result
(OUT), as is shown in the equation:

INl + IN2 = OUT

Note:
When INl :t:- OUT and IN2 :t:- OUT:
• IfIN2 and OUT are direct-addressed operands,

and if OUT contains one of the bytes of IN2,
then the instruction is invalid.

• If IN2 is an indirect address and OUT is a
direct address containing one of the bytes of
the indirect address pointer, then the
instruction is invalid.

Add Double Integer

Symbol:

ADD DI
EN

INl

IN2 OUT

Operands:

INl, IN2 (Dword): VD, ID, QD, MD, SMD, AC,
HC, Constant, *VD, * AC

OUT (Dword): VD, ID, QD, MD, SMD, AC,
*VD, *AC

Description of operation:

The Add Double Integer (ADD_DI) box adds two
32-bit integers (INl, IN2), and produces a 32-bit
result (OUT), as is shown in the equation:

INl + IN2 = OUT

Note:
When INl :t:- OUT and IN2 :t:- OUT:
• If IN2 and OUT are direct-addressed operands,

and if OUT contains one of the bytes of IN2,
then the instruction is invalid.

• If IN2 is an indirect address and OUT is a
direct address containing one of the bytes of
the indirect address pointer, then the
instruction is invalid.

Add Real
Note: CPU 214 only.

Symbol:

ADD R
EN

INl

IN2 OUT

Operands:

INl, IN2 (Dword): VD, ID, QD, MD, SlVID, AC, HC,
Constant, *VD, * AC

OUT (Dword): VD, ID, QD, SMD, AC, *VD, * AC

Description of operation:

The Add Real (ADD _R) box adds two 32-bit real
numbers (INl, IN2), and produces a 32-bit real
number result (OUT), as is shown in the equation:

INl + IN2 = OUT

Note:
When INl :t:- OUT and IN2 :t:- OUT:
• If IN2 and OUT are direct-addressed operands,

and if OUT contains one of the bytes of IN2,
then the instruction is invalid.

• If IN2 is an indirect address and OUT is a
direct address containing one of the bytes of
the indirect address pointer, then the
instruction is invalid.

42

Note:
Operands: I When INl * OUT and IN2 =t= OUT:

• If IN2 and OUT are direct-addressed operands,
and if OUT contains one of the bytes of IN2,
then the instruction is invalid.

• If IN2 is an indirect address and OUT is a
direct address containing one of the bytes of
the indirect address pointer, then the

ubtract Integer

Symbol:

SUB I
EN

INl

IN2 OUT

Operands:

I, IN2 (word): VW, T, C, IW, QW, MW,
SMW, AC, AIW, Constant,
*VD, *AC

Description of operation:

The Subtract Double Integer (SUB_DI) box
subtracts two 32-bit integers (INl. IN2), and
produces a 32-bit result (OUT). as is shown in the
equation:

INl - IN2 = OUT

Note:
When INl * OUT and IN2 * OUT:
• IfIN2 and OUT are direct-addressed operands,

and if OUT contains one of the bytes of IN2,
then the instruction is invalid.

• If IN2 is an indirect address and OUT is a
direct address containing one of the bytes of
the indirect address pointer, then the
instmction is invalid.

Subtract Real
Note: CPU 214 only.

Symbol:

SUB R
EN

INl

IN2 OUT

Operands:

INl, IN2 (Dword): VD, ID, QD, MD, SMD, AC, HC,
Constant, *VD, * AC

OUT (word): VW, T, C, IW, QW, MW,
SMW, AC, *VD, * AC

OUT (Dword): VD, ID, QD, SMD, AC, *VD, * AC

Description of operation:
The Subtract Integer (SUB_I) box subtracts two
16-bit integers (INl, IN2), and produces a 16-bit
result (OUT), as is shown in the equation:
INl - IN2 = OUT
~ote:
When INl :t= OUT and IN2 * OUT:
• IfIN2 and OUT are direct-addressed operands,

and if OUT contains one of the bytes of IN2,
then the instmction is invalid.

• If IN2 is an indirect address and OUT is a
direct address containing one of the bytes of
the indirect address pointer, then the
instruction is invalid.

Description of operation:
The Sutract Real (SUB_R) box subtracts two 32-bit
real numbers (INl, IN2), and produces a 32-bit
real number result (OUT), as is shown in the
equation:

INl - IN2 = OUT

instmction is invalid.

43

Subtract Double Integer

Symbol:

SUB DI
EN

INl

IN2 OUT

INl, IN2 (Dword): VD, ID, QD, MD, SMD,
AC, HC, Constant, *VD, * AC

OUT (Dword): VD, ID, QD, MD, SMD, AC,
*VD, *AC

Ylultiply Integer

Symbol:

MUL
EN

INl

IN2 OUT

Operands:

INl, IN2 (word): V'vV, T, C, IW, QW, MW,
SMW, AC, AIW, Constant,
*VD, *AC

INL * IN2 = OUT

Note:
When INl :;z: OUT and IN2 :;z: OUT:
• If IN2 and OUT are direct-addressed operands.

and if OUT contains one of the bytes of IN2,
then the instruction is invalid.

• If IN2 is an indirect address and OUT is a
direct address containing one of the bytes of
the indirect address pointer, then the
instruction is invalid.

Divide Integer

Symbol:

DIV
EN

INl

IN2 OUT

Operands:

INl, IN2 (word): VW, T, C, IW, QW, MW, SMW,
AC, AIW, Constant, *VD, * AC

OUT (Dword): VD, ID, QD, MD, SMD, AC,
*VD, *AC

OUT (Dword): VD, ID, QD, MD, SMD, AC, *VD,
*AC

Description of operation:
The Multiply Integer (MUL) box multiplies two
16-bit integers (INl, IN2), and produces a 32-bit
result (OUT), as is shown in the equation:

Description of operation:

The Divide Integer (DIV) box divides two 16-bit
integers (INl, IN2), and produces a 32-bit result
(OUT) composed of of a 16-bit quotient and a 16-
bit remainder, as is shown in the equation:

INl I IN2 = OUT

Notes:
• Some overlapping input and output operands

are invalid.
• The 32-bit result (OUT) cannot be the same as

the second input (IN2).

44

INl * IN2 = OUT

'.'rote:
Some overlapping input and output operands are
invalid.

Multiply Real
Note: CPU 214 only.

Symbol:

MUL R
EN

INl

IN2 OUT

Operands:

INl, IN2 (Dword): VD, ID, QD, MD, SMD, AC,
HC, Constant, *VD, *AC

OUT (Dword): VD, ID, QD, SMD, AC, *VD,
*AC

Description of operation:
The Multiply Real (MUL_R) box multiplies two
32-bit real numbers (lNl, IN2), and produces a 32-
bit real number result (OUT), as is shown in the
equation:

Divide Real
Xote: CPU 21-1 only.

Symbol:

DIV R
EN

INl

IN2 OUT

Operands:

~l, IN2 (Dword): VD, ID, QD, ivID, SivID,
AC, HC, Constant, *VD, * AC

Description of operation:

The Square Root of Real Numbers (SQRT) box
takes the square root of a 32-bit real number (IN)
and produces a 32-bit real munber result (OUT), as
is shown in the equation:

JfN =OUT
Increment Word

Symbol:

INC W
EN

IN OUT OUT (Dword): VD, ID, QD, SivID, AC, *VD,
*AC

Operands:

IN (word): VW, T, C, IW, QW, MW, SMW,
AC, AIW, Constant, *VD, * AC

Description of operation:

The Divide Real (DIV_ R) box divides two 32-bit
real numbers (INl, IN2), and produces a 32-bit
real number quotient (OUT), as is shown in the
equation:
INl I IN2 = OUT
Note:
When INl '* OUT and IN2 '* OUT:
• If IN2 and OUT are direct-addressed operands,

and if OUT contains one of the bytes of IN2,
then the instruction is invalid.

• If IN2 is an indirect address and OUT is a
direct address containing one of the bytes of
the indirect address pointer, then the
instruction is invalid.

Note:
IN2 = OUT is not valid for Ladder programming.

Square Root Real
Note: CPU 214 only.
Symbol:

SQRT
EN

IN OUT

Operands:
IN (Dword): VD, ID, QD, ivID, SivID, AC,

HC, Constant, *VD, * AC
VD, ID, QD, ivID, SivID, AC,
*VD, *AC

OUT (word): VW, T, C, IW, QW, MW, SMW,
AC, *VD, *AC

OUT (Dword):

Description of operation:

The Increment Word (INC_ W) box adds 1 to the
input word value (IN) and loads the result in a
word value (OUT), as is shown in the equation:
IN+ 1 = OUT

Increment Double Word

Symbol:

_J INC DW
EN -

-I IN OUT 1-

Operands:
IN (Dword): VD, ID, QD, ivID, SivID, AC, HC,

Constant, *VD, * AC

OUT (Dword): VD, ID, QD, ivID, SivID, AC, *VD,
*AC

Description of operation:
The Increment Double Word (INC_DW) box adds
1 to the input double word value (IN) and loads the
result in a double word value (OUT), as is shown
in the equation:

IN+ 1 = OUT

45

Decrement Word l\!lath/Inc/Dec Examples

Symbol:

DEC W
[Network 1 When 10.0 or 10.1 is on then ACO equals !

the sum of IN1 and IN2.
EN

ADD I

EN
IO.O

IN OUT IO.l 3 -j INl

Operands: 5 '"'"'1 IN2 OUT t-ACO

IN (word): VW, T, C, IW, QW, MW,
SMW, AC, AIW, Constant
*VD, *AC !Network 2 If ACO equals 8, turn on QO.O .

OUT (word): VW, T, C, IW, QW, MW,
SMW, AC, *VD, * AC

Description of operation:

The Decrement Word (DEC_ W) box subtracts
from the input word value (IN) and loads the result
in a word value (OUT), as is shown in the
equation:

[Network 3 VW200 is divided by VW10. The quotient
is put in VW202, and the remainder is pu1
in VW200. (Note: VD200 contains VW20(
and VW202.) IN -1 = OUT

Decrement Double Word

Symbol: I0.2 DIV
EN

I DEC DW
---1 EN -

VW200-j INl

VWlO--J IN2 OUT t-VD200

-I IN OUT I-

[Network 4
Operands:

When 10.3 is on, then the value in ACO
is incremented by 1 and stored in ACO.

IN (Dword): VD, ID, QD, MD, SMD,AC
, HC, Constant, *VD,* AC I0.3 INC W

EN
OUT (Dword): VD, ID, QD, MD, SMD, AC,

*VD, *AC
ACO -j IN OUT t- ACO

Description of operation:

The Decrement Double Word (DEC_DW) box
subtracts 1 from the input double word value (IN)
and loads the result in a double word value (OUT),
as is shown in the equation:

[Network 5 End of the main user program.

IN -1 = OUT

Ylove Byte

Symbol:

MOV B

Move Double Word

Symbol:

MOV DW
EN

IN OUT

Operands:

IN (Dword): VD, ID, QD, MD, SMD, AC, HC.
Constant, *VD, *AC, &VB, &IB,
&QB, &lVIB, &T, &C

EN

IN OUT

Operands:

IN (byte): VB, IB, QB, l\1B, Sl\1B,
AC, Constant, *VD, * AC

OUT (Dword): VD, ID, QD, MD, SMD, AC, *VD,
*AC

OUT (byte): VB, IB, QB, lVIB, Sl\1B, AC,
*VD, *AC

Description of operation:

The Move Double Word (MOV_DW) box moves
the input double word (IN) to the output double
word (OUT). The input double word is not altered
by the move.

Move Real
Note: CPU 214 only.

Symbol:

MOV R
EN

IN OUT

Operands:

IN (Dword): VD, ID, QD, MD, SMD, AC, HC,
Constant, *VD, *AC

Description of operation:

The Move Byte (MOV _ B) box moves the input
byte (IN) to the output byte (OUT). The input byte
is not altered by the move.

Move Word

Symbol:

MOV W
EN

IN OUT

Operands:

IN (word): VW, T, C, IW, QW, MW,
SMW, AC, AIW, Constant,
*VD, *AC

OUT (Dword): VD, ID, QD, MD, SMD, AC, *VD,
*AC

OUT (word): VW, T, C, IW, QW, MW,
SMW, AC, AQW, *VD, * AC

Description of operation:

The Move Real (MOV _R) box moves a 32-bit real
input double word (IN) to the output double word
(OUT). The input double word is not altered by the
move.

47

Description of operation:

The Move Word (MOV_ W) box moves the input
word (IN) to the output word (OUT). The input
word is not altered by the move.

Block l\'love Byte

Symbol:

BLKMOV B
EN

IN

N OUT

Operands:

IN (byte): VB, IB, QB, .MB, S.MB *VD,
*AC
VB, IB, QB, .MB, S.MB, *VD,
*AC
VB, IB, QB, tvIB, s.rvrn,
AC, Constant, *VD, * AC

OUT (byte):

N (byte):

Description of operation:

The Block Move Byte (BLKMOV_B) box moves
the number of bytes specified (N), from the input
array starting at IN, to the output array starting at
OUT. N has a range of 1 to 255.

Block Move Word

Symbol:

BLKMOV W
EN

IN

N OUT

Operands:

IN (word): VW, T, C, IW, QW, MW,
SMW, AIW, *VD, * AC

OUT (word): VW, T, C, IW, QW, MW,
SMW, AQW, *VD, * AC

N (byte): VB, IB, QB, .tvIB, S.MB,
AC, Constant, *VD, *AC

Description of operation:

The Block Move Word (BLKMOV_B) box moves
the number of words specified (N), from the input
array starting at IN, to the output array starting at
OUT. N has a range of 1 to 255.

Swap

Symbol:

SWAP
EN

IN

Operands:

IN (word): VW, T, C, IW, QW, MW, SMW,
AC, *VD, *AC

Description of operation:

The Swap Byte box exchanges the most-significant
byte with the least-significant byte of the word
(IN).

Shift Right Word

Symbol:
SHR W

EN

IN

N OUT

Operands:
IN (word): VW, T, C, IW, QW, MW, SMW,

AC, AIW, Constant, *VD, * AC
VB, IB, QB, .MB, S.MB, AC,
Constant, *VD, * AC
VW, T, C, IW, QW, MW, SMW,
AC, *VD, *AC

N (byte):

OUT (word):

Description of operation:
The Shift Right Word (SHR_ W) box shifts the
word value (IN) right by the shift count (N), and
loads the result in the output word (OUT).

SMl.O (zero) = 1 if OUT= 0
SMl.l (overflow) = 1 iflast bit shifted out
=O

Note:
When IN -:i= OUT:
• If N and OUT are direct-addressed operands,

and if OUT contains N, then the instruction is
invalid.

• If N is an indirect address and OUT is a direct
address containing one of the bytes of the
indirect address pointer, then the instruction is
invalid.

• If N and OUT are indirect address pointers
and the pointers are equal, then the instruction
is invalid.

48

Shift Left Word

Symbol:

SHL W
EN

Shift Left Double Word

Symbol:

SHL DW
EN

IN

N OUT

IN

N OUT

Operands:

IN (Dword): VD, ID, QD, MD, SMD, AC, HC,
Constant, *VD, *AC

Operands:

IN (word): VW, T, C, IW, QW, MW,
SMW, AC, AIW, Constant,
*VD, *AC

N (byte): VB, IB, QB, MB, SMB, AC,
Constant, *VD, * AC ~ (byte): VB, IB, QB, MB, SMB,

AC, Constant, *VD, * AC
VD, ID, QD, MD, SMD, AC, *VD,
*AC

Description of operation:
The Shift Left Double Word (SHL_DW) box shifts
the double word value (IN) left by the shift count
(N), and loads the result in the output double word
(OUT).

OUT (Dword):

SMl.O (zero)
SMl. l (overflow)
=O

= 1 if OUT= 0
= 1 if last bit shifted out

OUT (word): VW, T, C, IW, QW, MW,
SMW, AC, *VD, * AC

Note:
When IN *- OUT:
• If N and OUT are direct-addressed operands,

and if OUT contains N, then the instruction is
invalid.

• If N is an indirect address and OUT is a direct
address containing one of the bytes of the
indirect address pointer, then the instruction is
invalid.

• If N and OUT are indirect address pointers
and the pointers are equal, then the instruction
is invalid.

49

Description of operation:
The Shift Left Word (SHL_ W) box shifts the word
value (IN) left by the shift count (N), and loads the
result in the output word (OUT).

SMl.O (zero)
SMl.l (overflow)
=O

= l if OUT= 0
= 1 if last bit shifted out

Note:
When IN *- OUT:
• If N and OUT are direct-addressed operands,

and if OUT contains N, then the instruction is
invalid.

• If N is an indirect address and OUT is a direct
address containing one of the bytes of the
indirect address pointer, then the instruction is
invalid.

• If N and OUT are indirect address pointers
and the pointers are equal, then the instruction
is invalid.

hift Right Double Word

Symbol:

SHR DW
EN

IN

N OUT

Operands:

(Dword): VD, ID, QD, tvID, SNID, AC,
HC, Constant, *VD, * AC

~ (byte): VB, IB, QB, l\1B, Sl\1B,
AC, Constant *VD, * AC

OUT (Dword): VD, ID, QD, NID, S:tvID, AC,
*VD, *AC

Description of operation:

The Shift Right Double Word (SHR_DW) box
shifts the double word value (IN) right by the shift
count (N), and loads the result in the output double
word (OUT).

SMl.O (zero)
SMl.l (overflow)
=O

= 1 if OUT= 0
= 1 if last bit shifted out

Note:
When IN :;t: OUT:
• If N and OUT are direct-addressed operands,

and if OUT contains N, then the instruction is
invalid.

• If N is an indirect address and OUT is a direct
address containing one of the bytes of the
indirect address pointer, then the instruction is
invalid.

• If N and OUT are indirect address pointers
and the pointers are equal, then the instruction
is invalid.

Rotate Right Word

Symbol:
ROR W

-<EN

-tIN

-t N OUT 1-

Operands:

IN (word): VW, T, C, IW, QW, MW, SMW,
AC, AIW, Constant, *VD, *AC

N (byte): VB, IB, QB, l\1B, Sl\1B, AC,
Constant, *VD, *AC

OUT (word): VW, T, C, IW, QW, MW, SMW,
AC, *VD, *AC

Description of operation:
The Rotate Right Word (ROR_ W) box rotates the
word value (IN) right by the shift count (N), and
loads the result in the output word (OUT).

SMl.O (zero) = 1 if OUT= 0
SMl.l (overflow) = 1 if last bit rotated= 0

Note:
When IN :;t: OUT:
• If N and OUT are direct-addressed operands,

and if OUT contains N, then the instruction is
invalid.

• If N is an indirect address and OUT is a direct
address containing one of the bytes of the
indirect address pointer, then the instruction is
invalid.

• If N and OUT are indirect address pointers
and the pointers are equal, then the instruction
is invalid.

50

Rotate Right Double Word

Symbol:
ROR DW

EN

IN

N OUT

Operands:
IN (Dword): VD, ID, QD, MD, StvID,

AC, HC, Constant, *VD, * AC
VB, IB, QB. MB, SMB,
AC, Constant, *VD, * AC

~ (byte):

OUT (Dword): VD, ID, QD, MD, StvID, AC,
*VD, *AC

Description of operation:
The Rotate Right Double Word (ROR_DW) box
rotates the double word value (IN) right by the shift
count (N), and loads the result in the output double
word (OUT).

SMl.O (zero) = 1 if OUT= 0
SMl.l (overflow) = 1 if last bit rotated= 0

Note:
When IN *- OUT:
• If N and OUT are direct-addressed operands,

and if OUT contains N, then the instrnction is
invalid.

• If N is an indirect address and OUT is a direct
address containing one of the bytes of the
indirect address pointer, then the instrnction is
invalid.

• If N and OUT are indirect address pointers
and the pointers are equal, then the instrnction
is invalid.

Rotate Left Word

Symbol:
ROL W

EN

IN

N OUT

Operands:
IN (word): V'vV,T,C,IW,QW,MW.SMW,

AC,AIW, Constant, *VD,* AC
VB, IB, QB, MB, SMB,
AC, Constant, *VD, * AC
VW, T, C, IW, QW, MW,
SMW, AC, *VD, * AC

Description of operation:
The Rotate Left Word (ROL _ W) box rotates the
word value (IN) left by the shift count (N), and
loads the result in the output word (OUT).

SMl.O (zero) = 1 if OUT= 0
SMl.l (overflow) = 1 if last bit rotated= 0

N (byte):

OUT (word):

Note:
When IN*- OUT:
• If N and OUT are direct-addressed operands,

and if OUT contains N, then the instrnction is
invalid.

• If N is an indirect address and OUT is a direct
address containing one of the bytes of the
indirect address pointer, then the instrnction is
invalid.

• If N and OUT are indirect address pointers
and the pointers are equal, then the instrnction
is invalid.

Rotate Left Double Word

Symbol:

ROL DW
EN

IN

N OUT

Operands:

IN (Dword): VD, ID, QD, MD, SMD, AC, HC,
Constant, *VD, * AC

N (byte): VB, IB, QB, MB, SMB, AC,
Constant, *VD, * AC

OUT (Dword): VD, ID, QD, MD, SMD, AC,
*VD, *AC

Description of operation:

The Rotate Left Double Word (ROL_DW) box
rotates the double word value (IN) left by the shift
count (N), and loads the result in the output double
word (OUT).

SMl.O (zero)
SMl.l (overflow)

= 1 if OUT= 0
= 1 if last bit rotated = 0

Note:
When IN *- OUT:
• If N and OUT are direct-addressed operands,

and if OUT contains N, then the instrnction is
invalid.

• If N is an indirect address and OUT is a direct
address containing one of the bytes of the
indirect address pointer, then the instrnction is
invalid.

• If N and OUT are indirect address pointers
and the pointers are equal, then the instrnction
is invalid.

51

Shift Register Bit Move I Shift I Rotate I Fill
Examples Symbol:

SHRB

EN [Network 1 When 10.0 and 10.1 are on then
move VBSO to ACO, and swap
the most significant byte (MSB)
of VWO with the LSB of VWO.

DATA

S BIT

N IO.O IO.
r--j

,1 MOV B

r EN

VB so- IN OUT

SWAP
EN

vwo- IN

ACO
Operands:

DATA, S_BIT (bit): I, Q, M, SM, T, C, V

N (byte): VB, IB, QB, MB, SlvlB, AC,
Constant, *VD, * AC

Description of operation:

The Shift Register Bit (SHRB) instruction shifts
the value of DAT A into the shift register. S _ BIT
specifies the least-significant bit of the shift
register. N specifies the length of the shift register
and the direction of the shift (shift plus = N, shift
minus= -N).

Fill Memory

[Network 2 When 10.2 is on then move
VB20-VB23 toVB100-VB103.

I0.2 BLKMOV B
EN

Symbol:

FILL N

VB20-, IN

4-j N OUT t-VB100

EN

IN

OUT
[Network 3

N When 10.3 is on then fill
VW200-VW218 with O's.

Operands:

IN (word): VW, T, C, IW, QW, MW,
SMW, AIW, Constant, *VD,
*AC
VW, T, C, IW, QW, MW,
SMW, AQW, *VD, * AC

I0.3 FILL N
EN

0 IN
OUT (word):

10 N OUT VW200

N (byte): VB, IB, QB, MB, Sl'vlB, AC,
Constant, *VD, * AC

Description of operation:

The Fill Memory Box (FILL_ N) fills the memory
starting at the output word (OUT) with the word
input pattern (IN) for the number of words
specified by N. N has a range of l to 255.

52

[Net,vork 4 When 10.4 is on, then the word
value in ACO is rotated right
twice and stored in ACO, and
the word value in VW200 is
shifted left 3 times and stored
in VW200.

IO. 4 ROR W
I
I EN

Aco- IN

2- N OUT

SHL W

EN

vw200- IN

3- N OUT VW200

ACO

[Network 5 Upon every O to 1 transition of
10.5, the value of 10.6 is shifted
into the shift register starting
at V100.0 and of length 4.

I0.5 I I IEN I p

SHRB

IO. 6-"iDATA

Vl00.0-"iS BIT

[Network6 Main end of the user program.

~ND)

Output

Symbol:

n -c)
Operands:

11 (bit): I, Q, M, SM, T, C, V

Description of operation:
An Output coil is turned on and the Bit stored at
address n is set to 1 when power flows to the coil.

A negated output can be created by placing a NOT
(Invert Power Flow) contact before an output coil.

Output Immediate Coil

Symbol:

n
-(I)
Operands:

11 (bit): Q

Description of operation:

An Output Immediate Coil is turned on and the Bit
at output address n is set to 1 when power flows to
the coil. An update of the addressed image register
output Bit and also the corresponding physical
output Bit occurs immediately after the coil is
scanned without waiting for scan cycle completion.

Set

Symbol:

S BIT

-(s)
N

Operands:

S_BIT (bit): I, Q, M, SM, T, C, V

N (byte): IE, QB, MB, SMB, VB. AC,
Constant, *VD,* AC

Description of operation:

The Set Coil sets the range of points starting at
S _ BIT for the number of points specified by N .

53

Set Immediate Coil

Symbol:
S BIT

--(s_r)
N

Operands:
S_BIT (bit):
N (byte):

Q
IB, QB, MB, Siv!B, VB, AC,
Constant, *VD, * AC

Description of operation:
The Set Immediate Coil immediately sets the range
of points starting at S _ BIT for the number of points
specified by N.

Reset Coil

Symbol:

N

Operands:
S_BIT (bit): I, Q, M, SM, T, C, V

N (byte): IB, QB, MB, SMB, VB,
AC, Constant, *VD, * AC

Description of operation:
The Reset Coil resets the range of points starting at
S_BIT for the number of points specified by N. If
S_BIT is specified to be either a Tor a C bit, then
both the timer/counter bit and the timer/counter
current value are reset.

Reset Immediate Coil

Symbol:
S BIT

--(R_r)
N

Operands:
S_BIT (bit): Q

N (byte): IB, QB, MB, SMB,
VB, AC, Constant, *VD,
*AC

Description of operation:
The Reset Immediate Coil immediately resets the
range of points starting at S _ BIT for the number of
points specified by N .

Ladder Output Coil Examples

[Network 1 When 10.0 is on, then output 00.1 is
turned on.

L_ __ :i°·o Q0.1 I I I ()

[Network 2 When 10.1 is on, then outputs 01 .0, 01 .1
and 01 .2 are set (turned on).
These outputs will remain on, even if 10.1
is turned off, until they are reset.

~

0.1 Ql.O

I Cs)
3

[Network 3 When 10.2 is turned on, then outputs
01.0, 01.1 and 01.2 are reset (turned of1

~

0.2 Ql.O

I (R)
3

[Network 4 End of the main user program.

~No)

End
Symbols:

Conditional End

Unconditional End

Operands:

(none)

Description of operation:

The Conditional End coil terminates the main user
program based on the condition of the preceding
logic.

The Unconditional End coil must be used to
terminate the user program.

Stop
Symbol:

Operands:

(none)

Description of operation:

The Stop coil terminates execution of the user
program by causing a transition to the stop mode.

Watchdog Reset
Symbol:

Operands:

(none)

Description of operation:

The Watchdog Reset CWDR) coil allows the
watchdog timer to be retriggered. This extends the
time the scan takes without getting a watchdog
error.

Jump
Symbol:

Operands:

n: CPU 212: 0-63
CPU 214: 0-255

The Jump to Label (JMP) coil performs a branch to
the specified label (n) within the program.

Label

The Label (LBL) instruction marks the location of
the jump destination (n). The CPU 212 allows 64
labels, and the CPU 214 allows 256.

The Subroutine Call (CALL) coil transfers control
to the subroutine (n).

Description of operation:

Symbol:

Operands:

n: CPU 212: 0-63
CPU 214: 0-255

Description of operation:

Call
Symbol:

Operands:

n: CPU 212: 0-15
CPU 214: 0-63

Description of operation:

55

Subroutine
Symbol:

Operands:
n: CPU 212: 0-15

CPU 214: 0-63

Description of operation:
The Subroutine (SER) label marks the beginning
of the subroutine (n). The CPU 212 supports 16
subroutines, and the CPU 214 supports 64.

Return
Svmbols:
-=---cRET) Conditional Return from
Subroutine

Unconditional Return from
Subroutine

Operands:
(none)

Description of operation:
The Conditional Return from Subroutine coil may
be used to terminate a subroutine, based on the
condition of the preceding logic.
The Unconditional Return from Subroutine coil
must be used to terminate each subroutine.

For

Symbol:
FOR

EN

INDEX

INITIAL

FINAL

Operands:
INDEX (word): VW, T, C, IW, QW, MW,

SMW, AC, *VD, * AC

INITIAL (word): VW, T, C, IW, QW, MW,
SMW, AC, AIW, Constant,
*VD, *AC

FINAL (word): VW, T, C, IW, QW, MW,
SMW, AC, AIW, Constant,
*VD, *AC

Description of operation:
The FOR box executes the code between the FOR
and the NEXT. You must specify the current loop
count (INDEX), the starting value (INITIAL), and
the ending value (FINAL). If the starting value is
greater than the final value, the loop is not
executed. After each execution of the instructions
between the FOR and the NEXT instruction, the
INDEX value is incremented and the result is
compared to the final value. If the INDEX is
greater than the final value, the loop is terminated.
For example, given an INITIAL value of 1, and a
FINAL value of 10, the instructions between the
FOR and the NEXT are executed 10 times with the
INDEX value incrementing 1,2,3, .. 10.

Next
Svmbol: HE xi)
Operands:
(none)
Description of operation:
The NEXT coil marks the end of the FOR loop,
and sets the top of stack to 1.

No Operation

Operands:
n: 0-255

Description of operation:
The No Operation (NOP) coil has no effect on the
user program execution. The operand n is a
number from 0-255.

56

Ladder
Examples
!Network 1

Program Control

When 10.0 is on, execute
Subroutine 0.

!Network 2 When 10.1 is on, jump to
Label 1.

!Network 3 When 10.2 is on, execute the
For/Next loop 1 O times.

FOR

VWlOO -jINDEX

1 --JINITIAL

10 ""1 FINAL

!Network 4 I If VB10 = VB20, then
increment ACO by 1.

VB10
r-----,==BI IEN

VB20

INC W

ACO -""j IN OUT rACO

!Network 5] This network do)s nothing.

!Network 6 SMO.O is always on, therefore
the Watchdog Timer is
extended to allow a longer
scan.

~ojo (wnR)

!Network 7 This is the end of the For/Next
loop.

!Network 8 If 10.3 comes on, then the CPU goes to
Stop mode.

L_Jo.3 C HTO€}

!Network 9 I The Jump in Network #2 jumps to this
location.

!Network 10 When 10.5 is on, turn on Q0.2.

I Network 11 I End of the main user program.

!Network 12 Start of Subroutine 0.

!Network 13 If 10.4 is on, then turn on QO.O and Q0.1.

!Network 14 End of Subroutine 0.

57

Add to Table
Sole: Table and Find instructions are supported
·1y the CPU 214 only.

AD T TBL
EN

DATA

TABLE

Operands:

DATA (word): VW, T, C, IW, QW, MW,
SMW, AC, AIW, Constant,
*VD, *AC

TABLE (word): VW, T, C, IW, QW, MW,
SMW, *VD, * AC

Description of operation:

The Add To Table (AD_T_TBL) box adds word
values (DATA) to the table (TABLE). The first
value of the table is the maximum table length
(TL) The second value is the entry count (EC) that
specifies the number of entries in the table. New
data are added to the table after the last entry. Each
time new data are added to the table, the entry
count (EC) is incremented. If you try to overfill the
table, the Table Full memory bit (SMl.4) is set.

LIFO (Last In First Out)
Note: Table and Find instructions are supported
by the CPU 214 only.

Symbol:

LIFO

EN

TABLE

DATA

Operands:

TABLE (word): VW, T, C, IW, QW, MW,
SMW, *VD, * AC

DATA (word): VW, T, C, IW, QW, MW,
SMW, AC, AQW, *VD, * AC

Description of operation:

The Last In First Out (LIFO) box removes the last
entry in the table (TABLE), and outputs the value
to the location (DATA). The entry count (EC) in
the table is decremented for each instruction
execution. If you try to remove an entry from an
empty table, the Table Empty memory bit (SMl.5)
is set.

FIFO (First In First Out)
Note: Table and Find instructions are supported
by the CPU 214 only.

Symbol:

FIFO

EN

TABLE

DATA

Operands:

TABLE (word): VW, T, C, IW, QW, MW, SMW,
*VD, *AC

DAT A (word): VW, T, C, IW, QW, MW, SMW,
AC, AQW, *VD, *AC

Description of operation:

The First In First Out (FIFO) box removes the first
entry in the table (TABLE), and outputs the value
to the location (DAT A). All other entries of the
table are shifted up one location. The entry count
(EC) in the table is decremented for each
instruction execution. If you try to remove an entry
from an empty table, the Table Empty memory bit
(SMl.5) is set.

58

Find Table
Note: Table and Find instructions are supported
bv the CPU 21.:f. 011/v . .

Symbol:

TEL FIND
EN -

SRC

PAT RN

INDX

CMD

Operands:

SRC (word):

PATRN (word):

INDX (word):

Cl\.ID:

Description of operation:

VW, T, C, IW, QW, MW,
SMW, *VD, * AC

VW, T, C, IW, QW, MW,
SMW, AIW, AC, Constant,
*VD, *AC

VW, T, C, IW, QW, MW,
SMW, AC, *VD, *AC

1-4

The Find Table (TBL_FIND) box searches the
table (SRC), starting with the table entry specified
by INDX, for the data value (PATRN) that matches
the criteria (CJ'vID). The Cl\.ID parameter is given a
numeric value 1-4 that corresponds to =, <>, <,
and>, respectively.

If a match is found, the INDX points to the
matching entry in the table. If a match is not
found, the INDX has a value equal to the entry
count. To find the next matching entry, the INDX
must be incremented before invoking the
TBL _ FIND again.

Ladder Table I Find Instruction
Examples
[Network 1 When 13.0 is on, the value VW100 is

added to the table starting at VW200.
The EC (entry count) is incremented by
one.

I3.0 ,~ T TBL I EN

VWlOO ""'iDATA

VW200 -JTABLE

[Network 2 When 13.1 is on, the last data value of
the table starting at VW200 is output
to the data location VW300. The EC is
decremented by one.

I3.1 EN LIFO

VW200 lTABLE

DATAI-VW300

[Network 3 When 13.2 is on, the first data value of
the table starting at VW200 is output to
the data location VW300. The EC is
decremented by one.

I3.2 EN FIFO

VW200 lTABLE

DATAI-VW300

[Network 4 When 13.3 is on, the table VW202 is
searched for a value equal to 3130 Hex.

I3. 3 TBL FIND
1-------- EN

VW202jSRC

16#3130 PATRN

ACl INDX

l-1CMD

[Network 5 End of the main user program.

59

Timer - On Delay

Symbol:
Txxx

~ -k_J
Operands:
Txx (word): CPU 212: 32-63

CPU 214: 32-63, 96-127

PT (word): VW, T, C, IW, QW, MW, SMW,
AC, AIW, Constant, *VD, * AC

Description of operation:
The On-Delay Timer (TON) box times up to the
maximum value when the enabling Input (IN)
comes on. When the current value (Txxx) is >= the
Preset Time (PT), the timer bit turns on. It resets
when the enabling input goes off. Timing stops
upon reaching the maximum value.

CPU 212/214 CPU 214
T32 T96 l ms

10 ms
100 ms

T33-T36
T37-T63

T97-Tl00
Tl01-Tl27

Timer - Retentive On Delay

Symbol:
Txxx

~ -k_J
Operands:
Txxx (word): CPU 212: 0-31

CPU 214: 0-31, 64-95

PT (word): VW, T, C, IW, QW, MW, SMW,
AC, AIW, Constant, *VD, *AC

Description of operation:
The Retentive On Delay Timer (TONR) box times
up to the maximum value when the enabling Input
(IN) comes on. When the current value (Txxx) is
>= the Preset Time (PT), the timer bit hims on.
Timing stops when the enabling input goes off, or
upon reaching the maximum value.

1 ms
10 ms
100 ms

CPU 212/214
TO
Tl-T4
T5-T3 l

CPU 214
T64
T65-T68
T69-T95

Count Up

Symbol:
CXXX

CU CTU

R

PV

Operands:
Cxxx (word): CPU 212: 0-63

CPU 214: 0-127

PV (word): VW, T, C, IW, QW, MW, SMW,
AC, AIW, Constant, *VD, * AC

Description of operation:
The Count Up (CTU) box counts up to the
maximum value on the rising edges of the Count
Up (CU) input. When the current value (Cxxx) is
>= to the Preset Value (PV), the counter bit (Cxxx)
turns on. It resets when the Reset (R) input turns
on. It stops counting upon reaching the maximum
value (32,767).

Count Up I Down

Symbol:
CXXX

CU CTUD

CD

R

PV

Operands:

Cxxx (word): CPU 212: 0-63
CPU 214: 0-127

PV (word): VW, T, C, IW, QW, MW, SMW,
AC, AIW, Constant, *VD, * AC

Description of operation:
The Count Up/Down (CTUD) box counts up on
rising edges of the Count Up (CU) input. It counts
down on the rising edges of the Count Down (CD)
input. When the current value (Cxxx) is >= to the
Preset Value (PV), the counter bit (Cxxx) turns on.
It stops counting up upon reaching the maximum
value (32,767), and stops counting down upon
reaching the minimum value (-32, 768). It resets
when the Reset (R) input turns on.

60

Ladder Timer I Counter Examples I LJM01.5
I

IO.l
!Network 1 I When IO. 0 is on then the I I I I

I ,---1 I
timer will start. After 3 seconds
(30 X lOOms) T3 7 bit will
come on.

ro.o T37

I
30 J:: TONI

[Network 6

~co:
[Network 2 j When Timer 37 reaches its

preset, tum on QO.O .

~37
QO.O

[Network 7

I ()
I

~No)

co
-------1cu CTU

1-----------1 R

10 '1 PV i

When CO reaches its preset, turn on Q0.2 .

Q0.2

)

End of the main user program.

[Network 3 When SM0.5 (I sec. clock
pulse, .5 sec. on and .5 sec.
off) is ON, then the timer
will time. The TS bit will come
on after 6 seconds.

rM°i' TS

~ 30-k___J
[Network4 When Timer 5 reaches its

preset, tum on Q0 .1 .

~TS QO.l 11 ()

[Network 5 By using SM0.5 (1 sec. clock
pulse) the counter will count
pulses and turn on the CO bit
when a count of 10 is reached.
10.0 resets the counter.

61

Statement List Instruction Set

Out (STL)
Format:

n

Operands:

n (bit): I, Q, M, SM, T, C, V

Description of operation:

The Out(=) instruction copies the bit value on the
top of the logic stack to address n.

Example:

LD IO.O
= Q2.0

Out Immediate (STL)
Format:

=I n

Operands:

n (bit): Q

Description of operation:

The Out Immediate (=I) instruction copies the bit
value on the top of the logic stack to address n. An
update of the addressed image register output bit
and also the corresponding physical output bit
occurs immediately after = I execution without
waiting for scan cycle completion.
Example:

LDI IO.O
=I Q2.0

And (STL)
Format:

A n

Operands:

n (bit): I, Q, M, SM, T, C, V

Description of operation:
The And (A) instruction performs a logical And of
the bit value at address n with the top of logic stack
value. The result becomes the new top of logic
stack value.

Example:

IO.l
I0.2
Ql. 0

And Immediate (STL)

LD
A

Format:

AI n

Operands:

n (bit): I

Description of operation:

The And Inunediate (AI) instruction performs a
logical And of the bit value at address n with the
top of logic stack value. The result becomes the
new top of stack value. A physical input read and
stack operation occurs immediately after AI
execution without waiting for scan cycle
completion. The image register is not updated.

Example:

LDI
AI
=I

I0.1
I0.2
Ql. 0

And Load (STL)
Format:
ALD
Operands:

(none)

Description of operation:

The And Load (ALD) instruction performs a logical
And on the bit values in the first (top) and second
levels of the logic stack. The result is loaded to the
top of stack and stack depth is reduced by one.
Example:

LD IO.O
LD I0.1
LD I2.0
A I2.1
OLD
ALD

LD
LPS
LD
0

IO.O

I0.5
I0.6

62

ALD
Q7.0

LRD
LD I2.l
0 Il. 3
ALD

Q6.0
LPP
A Il. 0

Q3.0

And Not (STL)
Format:
_:\N n

Operands:

n (bit): I, Q, M, SM, T, C, V

Operands:

(none)

Description of operation:
The Edge Down (ED) instruction detects a scan-to
scan transition from l to O in top of stack bit value.
Upon detection of such a transition, the top of stack
value is set to 1; otherwise it is set to 0.

Example:

LD
ED

I0.2

Description of operation:
The And Not (AN) instruction performs a logical
And Not of the bit value at address n with the top
if stack value. The result becomes the new top of
stack value.
Example:

IO.l
I0.2
Ql. 0

And Not Immediate (STL)

LD
AN

format:

Q2.2

Edge Up (STL)
Format:

EU

Operands:

(none)

Description of operation:

The Edge Up (EU) instruction detects a scan-to
scan transition from O to l in top of stack bit value.
Upon detection of such a transition, the top of stack
value is set to I; otherwise it is set to 0.

Example:

LD
EU

IO.l

~_,_'n n

Operands:

D (bit): I Q2.l

Load (STL)
Format:
LD n

Operands:

n (bit): I, Q, M, SM, T, C, V

ription of operation:

And Not Immediate (ANI) instrnction
performs a logical And Not of the bit value at

ess n with the top of stack value. The result
mes the new top of stack value. A physical
t read and stack operation occurs immediately
r ANI execution without waiting for scan cycle
pletion. The image register is not updated.

t:.xample:

LDI
ANI
==I

IO.l
I0.2
Ql. 0

Description of operation:

The Load (LD) instruction copies the bit value at
address 11 to the top of the logic stack. Other stack
bit values move down one level.
Example:

LD
A

IO.l
I0.2
Ql. 0

Edge Down (STL)
Format:

ED

63

Load Immediate (STL)
Format:

LDI n

Operands:

n (bit):

Description of operation:

The Load Immediate (LDI) instruction copies the
bit value at address n to the top of the logic stack
immediately after execution without waiting for
scan cycle completion. The image register is not
updated. Other stack bit values move down one
level.
Example:

LDI
AI
=I

I0.1
I0.2
Ql. 0

Load Not (STL)
Format:

LDN n

Operands:

n (bit): I, Q, M, SM, T, C, V

Description of operation:

The Load Not (LDN) instruction copies the logical
Not of the bit value at image register address n to
the top of the logic stack. Other stack bit values
move down one level.

Example:

LDN IO .1
AN I0.2

Ql. 0

Load Not Immediate (STL)
Format:

LDNI n

Operands:

n (bit):

Description of operation:

The Load Not Immediate (LDNI) instruction
copies the logical Not of the bit value at address n
to the top of the logic stack immediately after
execution without waiting for scan cycle
completion. Other stack bit values move down one
level.

Example:

LDNI I0.1
ANI I0.2
=I Ql.O

Logic Pop (STL)
Format:

LPP
Operands:

(none)

Description of operation:
The Logic Pop (LPP) instruction pops one value
off of the stack. The second level bit value becomes
the new top of stack value. Other stack bit values
move up one level.

Example:

LD IO.O
LPS
LD I0.5
0 I0.6
ALD

Q7.0
LRD
LD I2.1
0 r i . 3
ALD

Q6.0
LPP
A Il. 0

Q3.0

64

Logic Push (STL)
Format:

LPS

Operands:

(none)

Description of operation:

The Logic Push (LPS) instrnction duplicates the
top of stack bit value and pushes this value onto the
stack. The bottom of the stack is pushed off and
lost.

Example:
LD IO.O
LPS
LD I0.5
0 I0.6
ALD

Q7.0
LRD
LD I2.l
0 Il. 3
ALD

Q6.0
LPP
A Il. 0

Q3.0

Logic Read (STL)
Format:
LRD

Operands:
(none)

Description of operation:
The Logic Read (LRD) instruction copies the
second stack value to the top of stack. The stack is
not pushed or popped, but the old top of stack value
is destroyed by the copy.

Example:
LD IO.O
LPS
LD I0.5
0 I0.6
ALD

Q7.0
LRD
LD I2.l
0 r i . 3
ALD

Q6.0
LPP
A Il. 0

Q3.0

Format:

Logical Negation (STL)

NOT

Operands:

(none)

Description of operation:
The Logical Negation (NOT) instruction changes
the top of stack bit value from O to 1. or from I to
0.

Example:

LD IO.O
NOT

Or (STL)
Format:

0 n

Operands:
n (bit):

Q2.0

I, Q, M, SM, T, C, V

Description of operation:
The Or (o) instruction performs a logical Or of the
bit value at address n with the top of logic stack
value. The result becomes the new top of stack
value.
Example:

LD
0

Il. l
Il.2
Ql. l

Or Immediate (STL)
Format:
OI n

Operands:
n (bit): I

Description of operation:
The Or Immediate (OI) instruction performs a
logical Or of the bit value at input module address
n with the top of stack value. The result becomes
the new top of stack value. A physical input read
and stack operation occurs immediately after o I
execution without waiting for scan cycle
completion. The image register is not updated.
Example:

LDI
OI
=I

65

Il. l
Il. 2
Ql. l

Or Load (STL)
Format:
LD

Operands:

none)

Description of operation:
The Or Load (OLD) instruction performs a logical
Or with the bit values in the first (top) and second
levels of the stack. The result is loaded to the top of
stack. After execution of OLD, stack depth is
reduced by one.

Example:

LD IO.O
LD I0.1
LD I2.0
A I2 .1
OLD
ALD

Or Not (STL)
Format:

ON n

Operands:

n (bit): I, Q, M, SM, T, C, V

Description of operation:

The Or Not (ON) instruction performs a logical Or
Not of the bit value at address n with the top of
logic stack value. The result becomes the new top
of stack value.

Example:

LD
ON

I1 .1
Il.2
Ql.1

Or Not Immediate (STL)
Format:

ONI n

Operands:

11 (bit):

Description of operation:

The Or Not Immediate (ONI) instruction
immediately performs a logical Or Not of the bit
value at physical input address n with the top of
logic stack value. The result becomes the new top
of stack value. A physical input read and stack
operation occurs immediately after ONI execution
without waiting for scan cycle completion. The
image register is not updated.

Example:

LDI
ONI
=I

I1 .1
Il.2
Ql.1

Reset (STL)
Format:

R S_BIT, N

Operands:

S_BIT (bit): I, Q, M, SM, T, C, V

N (byte): IE, QB, MB, SMB, VB, AC,
Constant, *VD, * AC

Description of operation:

The Reset (R) instruction resets a range of bit
values. Bit values of O are written to a range
starting at address S_BIT for the number of bits
specified by N. If S_BIT is specified to be either a
T or a C bit, then both the timer/counter bit and the
timer/counter current value are reset to 0.

Example:

LD IO.O
Q2.0

s Q2.1, 1
R Q2.2, 1
R Ql.O, 3

66

Reset Immediate (STL)
Format:

~I S_BJT, N

Operands:

S_BIT (bit): Q

N (byte): IB, QB. MB, SMB. VB, AC,
Constant, *VD, * AC

Description of operation:

The Reset Immediate (RI) instruction immediately
resets a range of bit values. Bit values ofO are
written to a range starting at S _ BIT for the number
of bits specified by N. Specified bits in the image
register and corresponding physical outputs are
updated at execution time without waiting for scan
cycle completion.

Example:

LDI
=I
SI
RI
RI

IO.O
Q2.0
Q2 .1, 1
Q2. 2, 1
Ql.O, 3

Set (STL)
Format:

S S_BJT, N

Operands:

S_BIT (bit): I, Q,M, SM, T, C, V

N (byte): IB, QB, MB, SMB, VB, AC,
Constant, *VD, * AC

Description of operation:

The Set (S) instruction sets a range of bit values.
Bit values of 1 are written to a range starting at
address S_BIT for the number of bits specified by
N.

Example:

LD IO.O
Q2.0

s Q2.1, 1
R Q2.2, 1

Set Immediate (STL)
Format:
SI S_BIT, l./

Operands:
S_BIT (bit): Q

N (byte): IB, QB, MB, s:rvrn, VB, AC,
Constant, *VD, * AC

Description of operation:
The Set Immediate (s I) instruction immediately
resets a range of bit values. A bit value of 1 is
written to a range starting at S _ BIT for the number
of bits specified by N. Specified bits in the image
register and physical output modules are updated at
execution time without waiting for scan cycle
completion.
Example:

LDI
=I

IO.O
Q2.0

SI Q2.1, 1
RI Q2. 2, 1

Read Time of Day (STL)
Note: Real Time Clock instructions are supported
by the CPU 214 only.

Format:
TODR T

Operands:
T (byte): VB, IB, QB, MB, SMB, *VD, * AC

Description of STL operation:
Read Time of Day (TODR) reads the current date
and time from the Real Time Clock. The 8 bytes of
time data are written to memory with the area and
starting address specified by T.

Year/Month
Day/Hour
Minute/Second
Day of week

yy - 0 to 99
dd - 1 to 31
mm - 0 to 59
d - 1 to 7
d-0

mm - 1 to U
hh - 0 to 23
ss - 0 to 59
1 = Sunday
Day of week
remains 0

yymm
ddhh
mmss
OOOd

Example:

LD I2.1
READ RTC

TODR VB400

//Enable

//Read
clock

MOVB VB400, ACO //Move
year value

//to
accumulator
Example Memory Data Starting at VB400:

67

Note:
The time of day clock initializes the following date
and time after extended power outages or memory
has been lost:

Date:
Time:
Day of Week

Ol-Jan-90
00:00:00
Sunday

~ote:
Do not use the TODR/TODW instructions in both
the main program and in an interrupt routine. If
you do this and the TOD instruction is executing
when the the interrupt that also executes the TOD
instruction occurs, then the TOD instruction in the
interrupt routine is not executed. SM4.5 is then set,
indicating that two simultaneous accesses to the
clock were attempted.

Write Time of Day (STL)
Note: Real Time Clock instructions are supported
by the CPU 214 only.
Format:
TODW T

Operands:
T (byte): VB, IB, QB, MB, SMB, *VD, * AC
Description of STL operation:
Write Time of Day (TODW) sets a date and time
into the Real Time Clock. The 8 bytes of time data
are read from a memory area with the starting
address specified by T.

The Date and Time setting data must be in BCD
format (4 bits per digit; decimal digits 0-9 only)
and previously stored in the specified memory
location before execution of TODW.

Year/Month yymm yy - 0 to 99 mm - l to 12
Day/Hour ddhh dd-lto31 hh - Oto 23
Min/Sec mmss mm - 0 to 59 ss - 0 to 59
Day of week OOOd d - l to 7 l = Sunday

d-0 Day of week
remains 0

Example:
INCW ACO
//Increment year to 96
MOVB ACO, VB400 //Store

new year
TODW VB400

new year
//Write

//to clock

Example Memory Data Starting at VB400:

Note:
The time of day clock initializes the following date
and time after extended power outages or memory
has been lost:

Date:
Time:
Day of Week

Ol-Jan-90
00:00:00
Sunday

Note:
Do not use the TODR/TODW instructions in both
the main program and in an interrupt routine. If
you do this and the TOD instruction is executing
when the interrupt that also executes the TOD
instruction occurs, then the TOD instruction in the
interrupt routine is not executed. SM4.5 is then set,
indicating that two simultaneous accesses to the
clock were attempted.

Compare Byte Equal Instructions
(STL)
Format:

LDB= nl, n2
AB= nl, n2
OB= nl, n2

Operands:

nl, n2 (byte): VB, IB, QB, MB, SMB, AC, Constant,
*VD, *AC

Description of operation:

The Load Byte (LDB), And Byte (AB), and Or
Byte (OB) Compare Equal instructions Load,
And, or Or a 1 with the top of the stack when nl =
n2.

Example:

LD QO.O
AB= VB4, VBB

Q2.0

68

Compare Byte Greater Than or
Equal Instructions (STL)
Format:

LDB>= nl, n2
AB>= nl, n2
OB>= nl, n2

Operands:

nl, n2 (byte): VB, IB, QB, MB, SMB, AC,
Constant, *VD, *AC

Description of operation:

The Load Byte (LDB), And Byte (AB), and Or
Byte (OB) Compare Greater Than or Equal
instructions Load, And, or Or a 1 with the top of
the stack when nl ~ n2.

Example:

LD QO.O
AB>= VB4 , VBB

Q2.0

Compare Byte Less Than or Equal
Instructions (STL)
Format:

LDB<= nl, n2
AB<= nl, n2
OB<= nl, n2

Operands:

nl, n2 (byte): VB, IB, QB, MB, SMB, AC,
Constant, *VD, * AC

Description of operation:

The Load Byte (LDB), And Byte (AB), and Or
Byte (OB) Compare Less Than or Equal
instructions Load, And, or Or a 1 with the top of
the stack when nl $ n2.

Example:

LD QO.O
AB<= VB4 , VBB

Q2.0

Compare Word Equal Instructions
(STL)
Format:

LDW= nl, n2
AW=
OW=

nl, n2
nl, n2

Operands:

nl, n2 (word): VW, T, C, IW, QW, MW, SMW, AC,
AlW, Constant, *VD, *AC

Description of operation:

The Load Word (LDW), And Word (AW), and
Or Word (OW) Compare Equal instructions
Load, And, or Or a 1 with the top of the stack
when nl = n2.

Example:

LD QO.O
AW= VW4, VWB

Q2.0

Compare Word Greater Than or
Equal Instructions (STL)
Format:

LDW>= nl, n2
AW>= nl, n2
OW>= nl, n2

Operands:

nl, n2 (word): V\V, T, C, IW, QW, MW, SMW, AC,
AlW, Constant, *VD, *AC

Description of operation:

The Load Word (LDW), And Word (AW), and
Or Word (OW) Compare Greater Than or
Equal instructions Load, And, or Or a 1 with the
top of the stack when nl ~ n2.

Example:

LD QO.O
AW>= VW4 , VWB

Q2.0

69

Compare Word Less Than or
Equal Instructions (STL)
Format:

LDW<=
AW<=
OW<=

nl, n2
nl, n2
nl, n2

Operands:

n l, n2 (word): VVI/, T, C, IW, QW, :tvl\V,
SMW, AC, AIW, Constant,
*VD, *AC

Description of operation:

The Load Word (LDW), And Word (AW), and
Or Word (OW) Compare Less Than or Equal
instructions Load, And, or Or a 1 with the top of
the stack when nl s n2.

Example:

LD QO.O
AW<= VW4 , VW8

Q2.0

Compare Double Word Equal
Instructions (STL)
Format:

LDD=
AD=
OD=

nl, n2
nl, n2
nl, n2

Operands:

nl, n2 (Dword): VD, ID, QD, MD, SMD, AC,
HC, Constant, *VD, * AC

Description of operation:

The Load Double Word (LDD), And Double
Word (AD), and Or Double Word (OD)
Compare Equal instructions Load, And, or Or a 1
with the top of the stack when nl = n2.

Example:

LD QO.O
OD= VD6, VD20

Q2.0

Compare Double Word Greater
Than or Equal Instructions (STL)
Format:

LDD>= nl, n2
AD>= nl, n2
OD>= nl, n2

Operands:

nl, n2 (Dword): VD, ID, QD, :tv!D, SMD, AC, HC,
Constant, *VD, * AC

Description of operation:

The Load Double Word (LDD), And Double
Word (AD), and Or Double Word (OD)
Compare Greater Than or Equal instructions
Load, And, or Or a 1 with the top of the stack
when n l > n2.

Example:

LD QO.O
OD>= VD6, VD20

Q2.0

Compare Double Word Less Than
or Equal Instructions (STL)
Format:

LDD<= nl, n2
AD<= nl, n2
OD<= nl, n2

Operands:

n l , n2 (Dword): VD, ID, QD, MD, SMD, AC, HC,
Constant, *VD, * AC

Description of operation:

The Load Double Word (LDD), And Double
Word (AD), and Or Double Word (OD)
Compare Less Than or Equal instructions Load,
And, or Or a 1 with the top of the stack when nl s
n2.

Example:

LD QO.O
OD<= VD6, VD20

Q2.0

70

Compare Real Equal Instructions
(STL)
Note: Compare Real instructions are supported by
the CPU 214 only.

Format:

LDR=
AR=
OR=

nl, n2
nl, n2
nl, n2

Operands:

nl, n2 (Dword): VD, ID, QD, Nill, SNID, SD,
AC, HC, Constant, *VD, * AC

Description of operation:

The Load Real (LDR), And Real (AR), and Or
Real (OR) Compare Equal instructions Load,
And, or Or a 1 with the top of the stack when nl =
n2.

Example:

LD QO.O
OR= VD6, VD20

Q2.0

Compare Real Greater Than or
Equal Instructions (STL)
Note: Compare Real instructions are supported by
the CPU 214 only.

Format:

LDR>= nl, n2
AR>= nl, n2
OR>= nl, n2

Operands:

nl, 112 (Dword): VD, ID, QD, Nill, SNID, SD,
AC, HC, Constant, *VD, *AC

Description of operation:

The Load Real (LDR), And Real (AR), and Or
Real (OR) Compare Greater Than or Equal
instructions Load, And, or Or a 1 with the top of
the stack when nl 2. n2.

Example:

LD QO.O
OR>= VD6, VD20

Q2.0

Compare Real Less Than or Equal
Instructions (STL)
Note: Compare Real instructions are supported by
the CPU 214 only.

Format:

LDR<= nl, n2
AR<= nl, n2
OR<= nl, n2

Operands:

n 1, n2 (Dword): VD, ID, QD, Nill, SNID, SD, AC, HC,
Constant, *VD, * AC

Description of operation:

The Load Real (LDR), And Real (AR), and Or
Real (OR) Compare Less Than or Equal
instructions Load, And, or Or a 1 with the top of
the stack when nl :0::: n2.

Example:

LD QO.O
OR<= VD6, VD20

Q2.0

ASCII to Hex (STL)
Format:

ATH IN, OUT, LEN

Operands:

IN (byte): VB, IB, QB, l\1B, Sl\1B, *VD, * AC

OUT (byte): VB, IB, QB, 1\!IB, Sl\1B, *VD, * AC

LEN (byte): VB, IB, QB, l\1B, Sl\1B, AC,
Constant, *VD, * AC

Description of operation:

The ASCII to HEX (ATH) instruction converts the
ASCII string of length LEN, starting with the
character IN, to hexadecimal digits starting at the
location OUT. The maximum length of the ASCII
string is 255 characters.
Legal ASCII characters are the hexadecimal values
30-39, and 41-46. If an illegal ASCII character is
encountered, the conversion is terminated, and the
NOT_ASCII memory bit (SMl.7) is set.
Example:

LD I3. 2
ATH VB30, VB40, 3

71

Convert BCD to Integer (STL)
Format:
BCDI IN

Operands:

IN (word): VW, T, C, IW, QW, MW,
SMW, AC, *VD, *AC

Description of operation:
The Convert BCD to Integer (BCDI) instruction
converts the BCD value (IN) to an integer value.
The result replaces the original input value. If the
input value contains an invalid BCD digit, the
BCD/BIN memory bit (SMl.6) is set.

Example:

LD I3. 0
BCDI ACO

Decode (STL)
Format:

DECO IN, OUT

Operands:

IN (byte): VB, IB, QB, MB, SMB, AC,
Constant, *VD, * AC

OUT (word): VW, T, C, IW, QW, MW,
SMW, AC, *VD, * AC

Description of operation:

The Decode (DECO) instruction sets the bit in the
output word (OUT) that corresponds to the bit
munber represented by the least-significant nibble
(LSN) of the input byte (IN). All other bits of the
output word are set to O.

Example:
LD I3.1
DECO AC2, VW40

Encode (STL)
Format:

ENCO IN, OUT

Operands:
IN (word): VW, T, C, IW, QW, MW,

SMW, AC, AIW, Constant,
*VD, *AC

OUT (byte): VB, IB, QB, MB, SMB, AC,
*VD, *AC

Description of operation:

The Encode (ENCO) instruction writes the bit
number of the least-significant bit set in the input
word (IN) into the least-significant nibble (LSN) of
the output byte (OUT).

Example:

LD I3 .1
ENCO AC2, VB40

Integer Double Word to Real(STL)
Note: Real Conversion instructions are supported
by the CPU 214 only.

Format:

DTR IN, OUT

Operands:
IN (Dword): VD, ID, QD, MD, SMD, SD, AC,

HC, Constant, *VD, * AC

OUT (Dword): VD, ID, QD, MD, SMD, SD, AC,
*VD, *AC

Description of operation:
The Integer Double Word to Real (DTR)
instruction converts a 32-bit signed integer (IN)
into a 32bit real number (OUT).
Example:

LD I3 .1
DTR ACl, VD40

Segment (STL)
Format:

SEG IN, OUT

Operands:

IN (byte): VB, IB, QB, MB, SMB, AC,
Constant, *VD, * AC

OUT (byte): VB, IB, QB, MB, SMB, AC, *VD,
*AC

Description of operation:
The Segment (SEG) instruction generates a bit
pattern (OUT) that illuminates the segments of a
seven-segment display. The illuminated segments
represent the character in the least-significant digit
of the input byte (IN).

Example:
LD I3 .1
SEG VB48, ACl

72

Hex to ASCII (STL)
Format:

HTA IN, OUT, LEN

Operands:

IN (byte): VB, IB, QB, :tv!B, S:tv!B, *VD,
*AC

OUT (byte): VB, IB, QB, :NIB, S:tv!B, *VD,
*AC

LEN (byte): VB, IB, QB, :tv!B, S:tv!B, AC,
Constant, *VD, * AC

Description of operation:

The HEX to ASCII (HT A) instruction converts the
hexadecimal digits, starting with the input byte IN,
to an ASCII string starting at the location OUT.
The number of hexadecimal digits to be converted
is specified by length LEN. The maximum number
of the hexadecimal digits that can be converted is
255.

Example:

LD I3. 2
HTA VB30, VB40, 3

Convert Integer to BCD (STL)
Note: CPU 214 only.

Format:

lBCD IN

Operands:

IN (word):

Truncate (STL)
Note: CPU 214 only.

Format:

TRUNC IN, OUT

Operands:

IN (Dword): VD, ID, QD, MD, SMD, SD, AC,
HC, Constant, *VD, * AC

OUT (Dword): VD, ID, QD, MD, SMD, SD, AC,
*VD, *AC

Description of operation:

The Tnmcate (TRUNC) instruction converts a 32-
bit real number (IN) into a 32-bit signed integer
(OUT). Only the whole-number portion of the real
number is converted.

Example:

LD I3 .1
TRUNC ACl, VD40

Count Up (STL)
Format:

CTU Cxxx, PV

Operands:

Cxxx (word): CPU 212: 0-63
CPU 214: 0-127

PV (word): VW, T, C, IW, QW, MW, SMW,
AC, AIW, Constant, *VD, *AC

VW, T, C, IW, QW, MW, SM\~, Description of operation:
AC, *VD, *AC

Description of operation:

The Convert Integer to BCD (IBCD) instruction
converts the integer value (IN) to a BCD value
(OUT). The result replaces the original input
value. If the conversion produces a BCD number
greater than 9999, the BCD/BIN memory bit
(SMl.6) is set.

Example:

LD I3. 0
IBCD ACO

The Count Up (CTU) instruction counts up to the
maximum value on the rising edges of the Count
Up (CU) input (the value loaded in the second
stack location). The counter resets when the reset
input turns on. The reset input is the top of stack
value. When the current value (Cxxx) is >= to the
Preset Value (PV), the counter bit (Cxxx) turns on.
The counter stops counting upon reaching the
maximum value (32,767).

Example:

LD
LD
CTU

14.0 //Count up input
12.0 //Reset input
48, 4

73

Count Up/Down (STL)
Format:
CTUD Cxxx, PV

Operands:
Cxxx (word): CPU 212: 0-63

CPU 214: 0-127

PV (word): VW, T, C, IW, QW, MW, SMW,
AC, AIW, Constant, *VD, * AC

Description of operation:
The Count Up/Down (CTIID) instrnction counts
up on rising edges of the count-up input. The
count-up input is the value loaded in the third stack
location. The counter counts down on the rising
edges of the count-down input. The count-down
input is the value loaded in the second stack
location. The counter resets when the reset input
turns on. The reset input is the top of stack value or
the first stack location. When the current value
(Cxxx) is>= to the Preset Value (PV), the counter
bit (Cxxx) turns on. The counter stops counting up
upon reaching the maximum value (32,767), and
stops counting down upon reaching the minimum
value (-32, 768).

Example:

LD I4.0 //Count Up Clock
LD I3. 0 //Count Down

Clock
LD I2.0 //Reset
CTUD C48, 4

Attach Interrupt (STL)
Format:
ATCH INT, EVENT

Operands:
INT (byte): CPU212: 0-31

CPU 214: 0-127

EVENT (byte): CPU 212: 0, 1, 8-10, 12
CPU 214: 0-20

Description of operation:
The Attach Interrupt (ATCH) instmction
associates an interrupt event (EVENT) with an
interrupt routine number (INT), and enables the
interrupt event.

Example:

LD SMO.l
ATCH 4, 0
ENI

Detach Interrupt (STL)
Format:

DTCH EVENT

Operands:

EVENT (byte): CPU 212: 0, 1, 8-10, 12
CPU 214: 0-20

Description of operation:

The Detach Interrnpt (DTCH) instrnction
dissociates an intermpt event (EVENT) from all
intermpt routines, and disables the intermpt event.

Example:

LD SM5.0
DTCH 0

Interrupt Routine (STL)
Format:

INT n

Operands:
n (word): CPU 212: 0-31

CPU 214: 0-127

Description of operation:
The Intermpt Routine (INT) instmction marks the
beginning of the interrupt routine (n). The
maximum number of intermpts supported by the
CPU 212 is 32, and by the CPU 214, 128.

Example:

INT 4

Enable Interrupt (STL)
Format:

ENI

Operands:

(None)

Description of operation:
The Enable Intermpt (ENI) instmction globally
enables processing of all attached interrupt events.

Example:

LD SMO.l
ATCH 4, 0
ENI

74

Disable Interrupt (STL)
Format:

DISI

Operands:

(None)

Description of operation:

The Disable Interrupt (DISI) instruction globally
disables processing of all interrupt events.

Example:

LD M5.0
DISI

Conditional Return from Interrupt
(STL)
Format:

CRETI

Operands:

(None)

Description of operation:

The Conditional Return from Interrupt (CRETI)
instruction may be used to return from an interrupt,
based upon the condition of the preceding logic.

Example:

LD
CRETI

SM5.0

Return from Interrupt (STL)
Format:
RETI

Operands:
(None)

Description of operation:
The Return from Interrupt (RETI) instruction is an
unconditional return and must be used to terminate
each interrupt routine.

Example:

LD SM5.0
CRETI

RETI

High-speed Counter Definition
(STL)
Format:

HDEF HSC, MODE

Operands:

HSC (byte): CPU 212: 0
CPU 214: 0-2

MODE (byte): CPU 212: 0
CPU 214: 0 (HSCO), 0-11 (HSCl-2)

Description of operation:

The High-speed Counter Definition (HDEF)
instruction assigns a MODE to the referenced
high-speed counter (HSC). Only one HDEF box
may be used per counter.

Example:

LD SMO.O
MOVB 16#F8, SMB47
HDEF 1, 11
MOVD O, SMD4 8
MOVD 50, SMD52
ATCH 0, 13
ENI
HSC 1

High-speed Counter (STL)
Format:

HSC N

Operands:

N (word): CPU 212: 0
CPU 214: 0-2

Description of operation:

The High-speed Counter (HSC) instruction invokes
the operation defined by the special memory bit for
the referenced high-speed counter. The parameter
N specifies the high-speed counter number.

Example:

LD SMO.O
MOVB 16#F8, SMB47
HDEF 1, 11
MOVD 0, SMD48
MOVD 50, SMD52
ATCH 0, 13
ENI
HSC 1

75

Pulse (STL)
Format:

PLS X

Operands:

x (word): CPU 214: 0-1

Description of operation:

The Pulse (PLS) instruction examines the special
memory bits for that pulse output (x). The pulse
operation defined by the special memory bits is
then invoked.

Example:

LD SMO.O
MOVB 16#85, SMB67
MO\!W 500, SMW68
MOVD 4, SMD72
ATCH 3, 19
ENI
PLS 0

Transmit (STL)
Format:

XMT TABLE, PORT

Operands:

TABLE (byte): VB, IB, QB, IvIB, SivIB, *VD,
*AC

PORT (byte): 0

Description of operation:
The Transmit (X.MT) instruction invokes the
transmission of the data buffer (TABLE). The first
entry in the data buffer specifies the number of
bytes to be transmitted. PORT specifies the
communication port to be used for transmission. It
must always be 0.

Example:

LD M6.3
A
XMT

SM4.5
*VDlOO, 0

Add Integer (STL)
Format:

+I INl, IN2

Operands:

INl (word): VW, T, C, IW, QW, MW, SMW,
AC, AIW, Constant, *VD, * AC

IN2 (word): VW, T, C, IW, QW, MW, SMW,
AC, *VD, *AC

Description of operation:

The Add Integer (+I) instruction adds two 16-bit
integers (INl, IN2), and produces a 16-bit result
(IN2), as is shown in the equation:

INl + IN2 = IN2

Example:

LD 14.0
+I ACl, ACO
MUL ACl, VDlOO
DIV \!WlO, VD200

Subtract Integer (STL)
Format:

-I INl, IN2

Operands:

INl (word): VW, T, C, IW, QW, MW, SMW,
AC, AIW, Constant, *VD, *AC

IN2 (word): VW, T, C, IW, QW, MW, SMW,
AC, *VD, *AC

Description of operation:

The Subtract Integer (-I) instmction subtracts two
16-bit integers (INl, IN2), and produces a 16-bit
result (IN2), as is shown in the equation:

IN2 - INl = IN2

Example:

LD 14.0
-I ACl, ACO
MUL ACl, VDlOO
DIV \!WlO, VD200

76

Add Double Integer (STL)
Format:

+D INl, IN2

Operands:

INl (Dword): VD, ID, QD, Nill, SNID, AC,
HC, Constant, *YD. * AC

IN2 (Dword): VD, ID, QD, Nill, SNID, AC,
*VD, *AC

Description of operation:

The Add Double Integer (+D) instruction adds two
32-bit integers (INl, IN2), and produces a 32bit
result (IN2), as is shown in the equation:

INl + IN2 = IN2

Example:

LD I4.0
+D ACl, ACO
MUL ACl, VDlOO
DIV VWlO, VD200

Subtract Double Integer (STL)
Format:

-D INl, IN2

Operands:

INl (Dword): VD, ID, QD, Nill, SNID, AC,
HC, Constant, *VD, * AC

IN2 (Dword): VD, ID, QD, Nill, SNID, AC,
*YD, *AC

Description of operation:

The Subtract Double Integer (-D) instruction
subtracts two 32-bit integers (INl, IN2), and
produces a 32-bit result (IN2), as is shown in the
equation:

IN2 - INl = IN2

Example:

LD I4.0
-D ACl, ACO
MUL ACl, VDlOO
DIV VWlO, VD200

Add Real (STL)
Note: CPU 21-1 only.

Format:

+R INl, IN2

Operands:

IN 1 (Dword): VD, ID, QD, MD, SNID, AC, HC,
Constant, *VD, * AC

IN2 (Dword): VD, ID, QD, SNID, AC *VD, * AC

Description of operation:

The Add Real (+R) instruction adds two 32-bit real
numbers (INl, IN2), and produces a 32-bit real
munber result (IN2), as is shown in the equation:

INl + IN2 = IN2

Example:

LD I4.0
+R ACl, ACO
MUL ACl, VDlOO
DIV VWlO, VD200

Subtract Real (STL)
Note: CPU 214 only.

Format:

-R INl, IN2

Operands:

INl (Dword): VD, ID, QD, Nill, SNID, AC, HC,
Constant, *VD, * AC

IN2 (Dword): VD, ID, QD, SMD, AC, *YD, * AC

Description of operation:
The Subtract Real (-R) instruction subtracts two
32-bit real numbers (INl, IN2), and produces a 32-
bit real number result (IN2), as is shown in the
equation:

IN2 - INl = IN2

Example:

LD I4.0
-R ACl, ACO
MUL ACl, VDlOO
DIV VWlO, VD200

77

Multiply Real (STL)
Note: CPU 214 only.

Format:

*R INl, IN2

Operands:
INl (Dword): VD, ID, QD, MD, SMD, AC,

HC, Constant, *VD, *AC

IN2 (Dword): VD, ID, QD, SMD, AC, *VD,
*AC

Description of operation:
The Multiply Real (*R) instruction multiplies two
32-bit real numbers (INl, IN2), and produces a 32-
bit real number product (IN2), as is shown in the
equation:

INl * IN2 = IN2

Example:

LD I4.0
*R ACl, ACO
MUL ACl, VDlOO
DIV VWlO, VD200

Divide Real (STL)
Note: CPU 214 only.

Format:

/R INl, IN2

Operands:

INl (Dword): VD, ID, QD, MD, SMD, AC,
HC, Constant, *VD, *AC

IN2 (Dword): VD, ID, QD, SMD, AC, *VD,
*AC

Description of operation:
The Divide Real (/R) instruction divides two 32-bit
real numbers (INl, IN2), and produces a 32-bit
real number quotient (IN2), as is shown in the
equation:

IN2 I INl = IN2

Example:

LD I4.0
/R ACl, ACO
MUL ACl, VDlOO
DIV VWlO, VD200

Multiply Integer (STL)
Format:

MUL INl, IN2

Operands:

INl (word): VW, T, C, IW, QW, MW, SMW,
AC, AIW, Constant, *VD, * AC

IN2 (Dword): VD, ID, QD, MD, SMD, AC, *VD,
*AC

Description of operation:
The Multiply Integer (MUL) instruction multiplies
a 16-bit integer (INl) by the least-significant 16
bits of a 32-bit integer (IN2) and produces a 32-bit
result (IN2), as is shown in the equation:

INl * IN2 = IN2

Example:

LD I4.0
+D ACl, ACO
MOL ACl, VDlOO
DIV VWlO, VD200

Divide Integer (STL)
Format:

DIV INl, IN2

Operands:

INl (word): VW, T, C, IW, QW, MW, SMW,
AC, AIW, Constant, *VD, * AC

IN2 (Dword): VD, ID, QD, MD, SMD, AC, *VD,
*AC

Description of operation:

The Divide Integer (DIV) instrnction divides a 16-
bit integer (INl) into the least-significant 16 bits of
a 32-bit integer (IN2) and produces a 32-bit result
(IN2) composed of a 16-bit quotient (least
significant) and a 16-bit remainder (most
significant), as is shown in the equation:

IN2 I INl = IN2

Example:

LD 14.0
+D ACl, ACO
MUL ACl, VDlOO
DIV VWlO, VD200

78

Square Root (STL)
Note: CPU 21-1 only.

Format:

SQRT IN, OUT

Operands:

IN (Dword): VD, ID, QD, "tvID, SNID, AC,
HC, Constant, *VD, *AC

OUT (Dword): VD, ID, QD, 1\10, SNID, AC,
*VD, *AC

Description of operation:

The Square Root (SQRT) instrnction takes the
square root of a 32-bit real number (IN) and
produces a 32-bit real number result (OUT), as is
shown in the equation:

Example:

LD I4.0
SQRT ACl, ACO
MUL ACl, VDlOO
DIV VWlO, VD200

Block Move Byte (STL)
Format:

BMB IN, OUT, N

Operands:

IN (byte): VB, IB, QB, MB, SMB, *VD,
*AC

OUT (byte): VB, IB, QB, MB, SMB, *VD,
*AC

N (byte): VB, IB, QB, MB, SMB, AC,
Constant, *VD, * AC

Description of operation:
The Block Move Byte (BMB) instrnction moves
the number of bytes specified (N) from the input
array starting at IN to the output array starting at
OUT. N has a range of 1 to 255.
Example:

LD I2.l
BMB VB20, VBlOO, 4
FILL 0, VW200, 10

Block Move Word (STL)
Format:

BMW IN, OUT, N

Operands:

IN (word): VW, T, C, IW. QW, MW, SMW,
AIW, *VD. *AC

OUT (word): VW, T, C, IW, QW, MW, SMW,
AQW, *VD, * AC

N (byte): VB, IB, QB, MB, SMB, AC,
Constant, *VD, * AC

Description of operation:

The Block Move Word (BMW) instrnction moves
the number of words specified (N) from the input
array starting at IN to the output array starting at
OUT. N has a range of 1 to 255.

Example:

LD I2.l
BMW VW20, VWlOO, 4
FILL 0, VW200, 10

Memory Fill (STL)
Format:

FILL IN, OUT, N

Operands:

IN (word): VW, T, C, IW, QW, MW, SMW,
AIW, Constant, *VD, * AC

OUT (word): VW, T, C, IW, QW, MW, SMW,
AQW, *VD, * AC

N (byte): VB, IB, QB, MB, SMB, AC,
Constant, *VD, * AC

Description of operation:

The Memory Fill (FILL) instrnction fills the
memory starting at the output word (OUT) with the
word input pattern (IN) for the number of words
specified by N. N has a range of 1 to 255.

Example:

LD I2.l
BMW VW20, VWlOO, 4
FILL 0, VW200, 10

79

Move Byte (STL)
Format:

MOVB IN, OUT

Operands:

IN (byte): VB, IB, QB, MB, SMB, AC,
Constant, *VD, * AC

OUT (byte): VB, IB, QB, MB, SMB, AC,
*VD, *AC

Description of operation:
The Move Byte (MOVB) instrnction moves the
input byte (IN) to the output byte (OUT). The input
byte is not altered by the move.

Example:

LD 12.1
MOVB VBSO, ACO
SWAP ACO

Move Double Word (STL)
Format:

MOVD IN, OUT

Operands:

IN (Dword): VD, ID, QD, MD, SMD, AC,
HC, Constant, *VD, * AC,
&VB, &IB, &QB, &MB, &T,
&C

OUT (Dword): OUT: VD, ID, QD, MD, SMD,
AC, *VD, *AC

Description of operation:
The Move Double Word (MOYD) instruction
moves the input double word (IN) to the output
double word (OUT). The input double word is not
altered by the move.

Example:

LD I2.l
MOVD VDSO, ACO
SWAP ACO

Move Real (STL)
Note: CPU 214 only.

Format:

MOVR IN, OUT

Operands:

IN (Dword): VD, ID, QD, MD, SMD, AC, HC,
Constant *VD, * AC

OUT (Dword): VD, ID, QD, MD, SMD, AC, *VD,
*AC

Description of operation:

The Move Real (MOVR) instrnction moves a 32-
bit real input double word (IN) to the output double
word (OUT). The input double word is not altered
by the move.

Example:

LD I2.l
MOVR VDSO, ACO
SWAP ACO

Move Word (STL)
Format:

MOVW IN, OUT

Operands:

IN (word): VW, T, C, IW, QW, MW, SMW,
AC, AIW, Constant, *VD, * AC

OUT (word): VW, T, C, IW, QW, MW, SMW,
AC, AQW, *VD, *AC

Description of operation:

The Move Word (MOVW) instrnction moves the
input word (IN) to the output word (OUT). The
input word is not altered by the move.

Example:

LD I2.l
MOVW VWSO, ACO
SWAP ACO

80

Swap Bytes (STL)
Format:
SWAP IN

Operands:
IN (word): VW, T, C, IW, QW, MW, S

AC, *VD, *AC

Description of operation:
The Swap Bytes (SW AP) instruction exchanges the
most-significant byte with the least-significant byte
of the word (IN).
Example:

LD
MOVR
SWAP

I2.l
VD50, ACO
ACO

Network Read (STL)
Note: Network instructions are supported by the
CPU 214 only.

Format:
NETR t, p

Operands:

t: VB, :MB, *VD, * AC

p: Constant
(CPU 214: 0)

Description of operation:
The Network Read (NETR) instmction initiates a
communication operation to gather data from a
remote device through the specified port (p), as
defined in the description table (t), The format of
the description table is CPU-specific.

You can use the NETR instruction to read up to 16
bytes of information from a remote station, and use
the NETW instruction to write up t? 16 bytes of
information to a remote station. A maximum of
eight NETR and NETW instmctions may be
activated at any one time. For example, you can
have four NETR and four NETW instructions, or
two NETR and six NETW instructions.

Example:

LON SMO.l
AN V200.6
AN V200.5
MOVE 2, VE201

MOVD &VElOO, VD202
MOVE 3, VB206
NETR VB200, 0

Network Write (STL)
Note: Network instructions are supported by the
CPU 21./ onlv.

Format:

NETW t, p

Operands:

t: VB, :MB, *VD, *AC

p: Constant
(CPU 214: 0)

Description of operation:
The Network Write (NETW) instruction initiates a
communication operation to write data to a remote
device through the specified port (p), as defined in
the description table (t).

You can use the NETR instruction to read up to 16
bytes of information from a remote station, and use
the NETW instruction to write up to 16 bytes of
information to a remote station. A maximum of
eight NETR and NETW instructions may be
activated at any one time. For example, you can
have four NETR and four NETW instructions, or
two NETR and six N'ETW instmctions.

Example:

LD
AW=
MOVE
MOVD
MOVE
MOVW
NETW

V200.7
VW208, 100
2, VE301
&VE101, VD302
2, VB306
0, VW307
VB300, 0

Subroutine Call (STL)
Format:

CALL n

Operands:

n: CPU 212: 0-15
CPU 214: 0-63

Description of operation:
The Subroutine Call (CALL) instruction transfers
control to the subroutine (n),

Example:

LD SM0.1
CALL 10

81

Conditional Return from
Subroutine (STL)
Format:

CRET

Operands:

(none)

Description of operation:
The Conditional Return from Subroutine (CRET)
instruction may be used to terminate a subroutine,
based on the condition of the preceding logic.

Example:

LD
CRET

Ml4.3

Conditional End (STL)
Format:

END

Operands:

(none)

Description of operation:

The Conditional End (END) instruction terminates
the main user program based on the condition of
the preceding logic.

Example:

LD
STOP
END

SMS.O

For (STL)
Format:

FOR INDEX, INITIAL, FINAL

Operands:

INDEX (word): VW, T, C, IW, QW, MW,
SMW, AC, *VD, * AC

INITIAL (word): VW, T, C, IW, QW, MW,
SMW, AC, AIW, Constant,
*VD, *AC

FINAL (word): VW, T, C, IW, QW, MW,
SMW, AC, AIW, Constant,
*VD, *AC

Description of operation:

The FOR instruction executes the code between the
FOR and the NEXT. You must specify the current
loop count (INDEX), the starting value (INITIAL),
and the ending value (FIN AL). If the starting value
is greater than the final value, the loop is not
executed. After each execution of the instructions
between the FOR and the NEXT instruction, the
INDEX value is incremented and the result is
compared to the final value. If the INDEX is
greater than the final value, the loop is terminated.

For example, given an INITIAL value of 1, and a
FINAL value of 10, the instructions between the
FOR and the NEXT are executed 10 times with the
INDEX value incrementing 1,2,3, .. 10.

Example:

LD
FOR

I2.l
VW225, 1, 2

NEXT

Jump to Label (STL)
Format:

JMP n

Operands:

n: CPU 212: 0-63
CPU 214: 0-255

Description of operation:

The Jump to Label (JMP) instruction performs a
branch to the specified label within the program.

Example:

LDN SM0.2
JMP 4

LBL 4

82

Label (STL) Next (STL)
Format: Format:

LBL n NEXT

Operands: Operands:

n: CPU 212: 0-63
CPU 214: 0-255

(none)

Description of operation:
Description of operation:

The Label (LBL) instrnction marks the location of
the jump destination (n). The CPU 212 allows 64
labels, and the CPU 214 allows 256.

The NEXT instrnction marks the end of the FOR
loop, and sets the top of stack to 1.

Example:

Example: LD
FOR

I2.1
VW225, 1, 2

LDN SM0.2
JMP 4

NEXT

LBL 4 No Operation (STL)

Main Program End (STL) Format:

Format: NOP N

MEND Operands:

Operands: N: 0-255

(none) Description of operation:

Description of operation: The No Operation (NOP) instrnction has no effect
on the user program execution. The operand N is a
number from O - 255. The Main Program End (MEND) instrnction must

be used to tenninate the main user program.
Example:

Example:
LDN SM0.2
JMP 4

NOP
MEND

LBL 4
SBR 10

LD M14.3
CRET

83

Unconditional Return from
Subroutine (STL)
Format:

RET

Operands:

(none)

Description of operation:

The Unconditional Return from Subroutine (RET)
instruction must be used to terminate each
subroutine.

Example:

SBR 10

LD
CRET

Ml4.3

RET

Subroutine (STL)
Format:

SBR n

Operands:

n: CPU 212: 0-15
CPU 214: 0-63

Description of operation:

The Subroutine (SBR) instruction marks the
beginning of the subroutine (n). The CPU 212
supports 16 subroutines, and the CPU 214 supports
64.

Example:

MEND

SBR 10

LD Ml4.3
CRET

Stop (STL)
Format:

STOP

Operands:
(none)

Description of operation:
The Stop (STOP) instruction terminates execution
of the user program by causing a transition to the
Stop mode.

Example~D SM5. 0

STOP

Watchdog Reset (STL)
Format:

WDR

Operands:
(none)

Description of operation:
The Watchdog Reset (WDR) instruction allows the
watchdog timer to be retriggered. This extends the
time the scan is allowed to take without getting a
watchdog error.

Example:
LD
WDR

M5.6

Rotate Left Double Word (STL)
Format:

RLD IN, N

Operands:
IN (Dword): VD, ID, QD, MD, Sl\ID, AC, *VD,

*AC

N (byte): VB, IB, QB, Ivffi, srvm, AC,
Constant, *VD, *AC

Description of operation:
The Rotate Left Double Word (RLD) instruction
rotates the double word value (IN) left by the shift
count (N), and loads the result in IN.

SMl.O (zero) = 1 if IN= 0
SMl.l (overflow) = 1 if last bit rotated= 1

Example:
LD
RLD
SLW

14.0
ACO, 2
VW200, 3

84

Rotate Left Word (STL)
Format:

RLW IN, N

Operands:

Rotate Right Word (STL)
Format:

RRW IN, N

Operands:

IN (word): VW, T, C, IW, QW, MW, SMv'1, IN (word):
AC, *VD, *AC

VW, T, C, IW, QW, MW, SMW,
AC, *VD, *AC

N (byte): VB, IB, QB, MB, SMB, AC, / N (byte):
Constant, *VD, * AC

VB, IB, QB, MB, SMB, AC,
Constant, *VD, * AC

Description of operation:

The Rotate Left Word (RLW) instrnction rotates
the word value (IN) left by the shift count (N), and
loads the result in IN.

SMl.O (zero)
SMl.1 (overflow)

= 1 if OUT= 0
= 1 if last bit rotated= 1

Example:

LD 14.0
RLD ACO, 2
RLW VW200, 3

Rotate Right Double Word (STL)
Format:

RRD IN, N

Operands:

IN (Dword): VD, ID, QD, ivID, SivID, AC,
*VD, *AC

N (byte): VB, IB, QB, MB, SMB, AC,
Constant, *VD,* AC

Description of operation:

The Rotate Right Double Word (RRD) instrnction
rotates the double word value (IN) right by the shift
count (N), and loads the result in IN.

SMl.O (zero)
SMl.1 (overflow)

=lifIN=O
= I if last bit rotated = I

Example:

LD 14.0
RRD ACO, 2
SLW VW200, 3

Description of operation:

The Rotate Right Word (RR W) instrnction rotates
the word value (IN) right by the shift count (N),
and loads the result in IN.

SMl.O (zero)
SMl. l (overflow)

= 1 if OUT= 0
= 1 if last bit rotated= 1

Example:

LD 14.0
RRW ACO, 2
SLW VW200, 3

Shift Register Bit (STL)
Format:

SHRB DATA, S_BIT, N

Operands:

DATA, S_BIT (bit): I, Q, M, SM, T, C, V

N (byte): VB, IB, QB, MB, SMB, AC,
Constant, *VD, * AC

Description of operation:

The Shift Register Bit (SHRB) instruction shifts
the value of DATA into the shift register. S_BIT
specifies the least-significant bit of the shift
register. N specifies the length of the shift register
and the direction of the shift (shift plus= N, shift
minus= -N).

Example:

LD IO. 2
EU
SHRB I0.3, VlOO.O, 4

35

Shift Left Double Word (STL)
Format:

SLD IN, N

Operands:

IN (Dword): VD, ID. QD, ~, S~, AC,
*VD, *AC

N (byte): VB, IB, QB, MB, SMB, AC,
Constant, *VD, * AC

Description of operation:

The Shift Left Double Word (SLD) instruction
shifts the double word value (IN) left by the shift
count (N), and loads the result in IN.

SMl.O (zero)
SMI.1 (overflow)
= 1

=lifIN=O
= l if last bit shifted out

Example:

LD I4.0
SLD ACO, 2
SLW VW200, 3

Shift Left Word (STL)
Format:

SLW IN, N

Operands:

IN (word): VW, T, C, IW, QW, MW,
SMW, AC, *VD, *AC

N (byte): VB, IB, QB, NIB, SMB, AC,
Constant, *VD, * AC

Description of operation:

The Shift Left Word (SLW) instruction shifts the
word value (IN) left by the shift count (N), and
loads the result in IN.

SMl.O (zero) = 1 if OUT= 0
SMI.1 (overflow) = l if last bit shifted out
= 1

Example:

LD I4.0
RLD ACO, 2
SLW VW200, 3

Shift Right Double Word (STL)
Format:

SRD IN, N

Operands:

IN (Dword): VD, ID, QD, ~. S~, AC, *VD,
*AC

N (byte): VB, IB, QB, MB, SMB, AC,
Constant, *VD, * AC

Description of operation:

The Shift Right Double Word (SRD) instruction
shifts the double word value (IN) right by the shift
count (N), and loads the result in IN.

SMl.O (zero)
SMl.l (overflow)
= 1

=lifIN=O
= 1 if last bit shifted out

Example:

LD I4.0
SRD ACO, 2
SLW VW200, 3

Shift Right Word (STL)
Format:

SRW IN, N

Operands:

IN (word): VW, T, C, IW, QW, MW, SMW,
AC, *VD, *AC

N (byte): VB, IB, QB, MB, SMB, AC,
Constant, *VD, *AC

Description of operation:

The Shift Right Word (SRW) instruction shifts the
word value (IN) right by the shift count (N), and
loads the result in IN.

SMl.O (zero)
SMl. l (overflow)
= l

= 1 if OUT= 0
= 1 if last bit shifted out

Example:

LD I4.0
RLD ACO, 2
SRW VW200, 3

86

Add To Table (STL)
Note: Table and Find instructions are supported
by the CPU 214 only.
Format:

ATT DATA, TABLE

Operands:
DATA (word):

Find Less Than (STL)
Note: Table and Find instructions are supported
by the CPU 214 only.
Format:
FND< SRC, PATRN, INDX

V\V, T, C, IW, QW, MW, SMV.1,
AC, AIW, Constant, *VD, *AC PATRN (word):

Operands:
SRC (word):

TABLE (word):

VW, T, C, IW, QW, :NIW, SMW,
*VD, *AC
VW, T, C, IW, QW, MW, SMW,
AC, AIW, Constant, *VD, * AC
VW, T, C, IW, QW, MW, SMW,
AC, *VD, *AC

Description of operation:
The Find Less Than (FND<) instrnction searches
the table (SRC), starting with the table entry
specified by INDX, for the data value (PATRN)
that matches the find criteria.
If a match is found, the INDX points to the
matching entry in the table. If a match is not
found, the INDX has a value equal to the entry
count. To find the next matching entry, the INDX
must be incremented before the Find instrnction is

*VD, *AC
VW, T, C, IW, QW, MW. SM\\{, INDX (word):

Description of operation:
The Add To Table (ATT) instruction adds word
values (DATA) to the table (TABLE). The first
value of the table is the maximum table length
(TL). The second value is the entry count (EC) that
specifies the number of entries in the table. New
data are added to the table after the last entry. Each
time new data are added to the table, the entry
count (EC) is incremented. If you try to overfill the
table, the Table Full memory bit (SMI.4) is set.

Example:
LD
ATT

13.0
VWlOO, VW200

First In First Out (STL)
Note: Table and Find instructions are supported
by the CPU 214 only.

Format:

FIFO TABLE, DATA

Operands:
TABLE (word): VW, T, C, IW, QW, MW, S

*VD, *AC

DATA (word): VW, T, C, IW, QW, MW, SM .. 1,
AC, AQW, *VD, * AC

Description of operation:
The First In First Out (FIFO) instrnction removes
the first entry in the table (TABLE), and outputs
the value to the location DATA. All other entries
of the table are shifted up one location. The entry
count (EC) in the table is decremented for each
instrnction execution. If you try to remove an entry
from an empty table, the Table Empty memory bit
(SMl.5) is set.

Example:

LD I3.0
FIFO VW200, VW300

invoked again.
Example:

LD I3.0
FND< VW202, 16#3130, ACl

Find Not Equal To (STL)
Note: Table and Find instructions are supported
by the CPU 214 only.
Format:
FND<> SRC, PATRN, INDX

VW, T, C, IW, QW, MW, SMW,
*VD, *AC
VW, T, C, IW, QW, MW, SMW,
AC, AIW, Constant, *VD, *AC
VW, T, C, IW, QW, MW, SMW,
AC, *VD, *AC

Description of operation:
The Find Not Equal To (FND<>) instrnction
searches the table (SRC), starting with the table
entry specified by INDX, for the data value
(PATRN) that matches the find criteria.
If a match is found, the INDX points to the
matching entry in the table. If a match is not
found, the INDX has a value equal to the entry
count. To find the next matching entry, the INDX
must be incremented before the Find instrnction is

Operands:
SRC (word):

PATRN (word):

INDX (word):

LD
FND<> VW202, 16#3130, ACl

I3.0

87

invoked again.
Example:

Find Equal To (STL)
Note: Table and Find instructions are supported
by the CPU 2N only

Format:

FND= SRC, PATRN, INDX

Operands:

SRC (word): VW, T, C, IW, QW, MW, SM
*VD, *AC

PATRN (word): VW, T, C, IW, QW, MW, SM\\,
AC, AIW, Constant, *VD, * AC

INDX (word): VW, T, C, IW, QW, MW, SM""
AC, *VD, *AC

Description of operation:

The Find Equal To (FND=) instruction searches
the table (SRC), starting with the table entry
specified by INDX, for the data value (P ATRN)
that matches the find criteria.

If a match is found, the INDX points to the
matching entry in the table. If a match is not
found, the INDX has a value equal to the entry
count. To find the next matching entry, the INDX
must be incremented before the Find instruction is
invoked again.

Example:

LD I3.0
FND= VW202, 16#3130, ACl

Find Greater Than (STL)
Note: Table and Find instructions are supported
by the CPU 214 only.
Format:

FND> SRC, PATRN, INDX

Operands:
SRC (word): VW, T, C, IW, QW, MW,

SMW, *VD, * AC

PATRN (word): VW, T, C, IW, QW, MW,
SMW, AC, AIW, Constant,
*VD, *AC

INDX (word): VW, T, C, IW, QW, MW,
SMW, AC, *VD, * AC

Description of operation:
The Find Greater Than (FND>) instruction
searches the table (SRC), starting with the table
entry specified by INDX, for the data value
(PATRN) that matches the find criteria.

If a match is found, the INDX points to the
matching entry in the table. If a match is not
found, the INDX has a value equal to the entry
count. To find the next matching entry, the INDX
must be incremented before the Find instruction is
invoked again.
Example:

LD I3. 0
FND= VW202, 16#3130, ACl

Last In First Out (STL)
Note: Table and Find instructions are supported
by the CPU 214 only.

Format:

LIFO TABLE, DATA

Operands:

TABLE (word): VW, T, C, IW, QW, MW, SMW,
*VD, *AC
V\V, T, C, IW, QW, MW, SMW,
AC, AQW, *VD, *AC

DATA (word):

Description of operation:
The Last In First Out (LIFO) instruction removes
the last entry in the table (TABLE), and outputs
the value to the location DATA The entry count
(EC) in the table is decremented for each
instruction execution. If you try to remove an entry
from an empty table, the Table Empty memory bit
(SMI. 5) is set.
Example:

LD I3.0
LIFO VW200, VW300

88

On Delay Timer (STL)

Format:
TON Txxx, PT

Operands:

Txxx (word): CPU 212: 32-63
CPU 214: 32-63, 96-127
VW, T, C, IW, QW, MW, SMW,
AC, AIW, Constant. *VD, * AC

PT (word):

Description of operation:
The On-Delay Timer (TON) times up to the
maximum value when the top of stack= 1. When
the current value (Txxx) is >= the Preset Time
(PT), the timer bit (Txxx) turns on. It resets when
the top of stack =O. Timing stops upon reaching
the maximum value.

1 ms
10 ms
100 ms

CPU 212/214
T32
T33-T36
T37-T63

CPU 214
T96
T97-Tl00
Tl01-Tl27

Example:

LD
TON

I2.0
T33, 3

Retentive On Delay Timer (STL)

Format:
TONR Txxx, PT

Operands:
Txxx (word): CPU 212: 0-31

CPU 214: 0-31, 64-95
VW, T, C, IW, QW, MW, SMW,
AC, AIW, Constant, *VD, * AC

PT (word):

Description of operation:
The Retentive On Delay Timer (TONR) times up
to the maximum value when the top of stack = 1.
When the current value (Txxx) is>= the Preset
Time (PT), the timer bit (Txxx) turns on. Timing
stops when the top of stack =O, or upon reaching
the maximum value.

CPU 212/214 CPU 214
1 ms TO T64
10 ms Tl-T4 T65-T68
100 ms T5-T3 l T69-T95

Example:

LD I2.l
TONR T2, 10

AND Word (STL)
Format:

ANDW INl, IN2

Operands:

INl (word): VW, T, C. IW, QW . .Nl:W, SM:W, AC.
AIW, Constant, *VD, * AC

IN2 (word): VW, T, C, I\V, QW, MW, SMW, AC.
*VD, *AC

Description of STL operation:

The AND Word (ANDW) instruction logically
ANDs the corresponding bits of two words INl,
IN2, and loads the result in the word IN2.

Example:

LD I4.0
ANDW ACl I ACO

OR Word (STL)
Format:

ORW INl, IN2

Operands:

INl (word): VW, T, C, IW, QW, MW, SMW, AC,
AIW, Constant, *VD, *AC

IN2 (word): VW, T, C, IW, QW, MW, SMW, AC,
*VD, *AC

Description of STL operation:

The OR Word (OR\V) instruction logically ORs the
corresponding bits of two words INl, IN2, and
loads the result in the word IN2.

Example:

LD I4.0
ORW ACl, VWlOO

89

Exclusive OR Word (STL)
Format:

XORW INl, IN2

Operands:

OR Double Word (STL)
Format:

ORD INl, IN2

INl (word): VW, T, C. IW, QW, MW, SMW,
AC, AIW, Constant, *VD, *AC

Operands:

IN l (Dword): VD, ID, QD, MD, SMD, AC, HC,
Constant, *VD, * AC

IN2 (word): VW, T, C, IW, QW, MW, SMW,
AC, *VD. *AC

IN2 (Dword): VD, ID, QD, Nill, SMD, AC, *VD,
*AC

Description of STL operation:

The Exclusive OR Word (XORW) instruction
logically XORs the corresponding bits of two
words INl, IN2, and loads the result in the word
IN2.

Example:

LD I4.0

Description of STL operation:

The OR Dword (ORD) instruction logically ORs
the corresponding bits of two double words INl,
IN2, and loads the result in the double word IN2.

Example:

LD I4.0
ORD ACl, VDlOO

Exclusive OR Double Word (STL)
Format:

XORD INl, IN2

Operands:

INl (Dword): VD, ID, QD, MD, SMD, AC, HC,
Constant, *VD, * AC

XORW ACl, VWlOO

AND Double Word (STL)
Format:

ANDD INl, IN2

Operands:

INl (Dword): VD, ID, QD, MD, SMD, AC,
HC, Constant, *VD, * AC

IN2 (Dword): VD, ID, QD, MD, SMD, AC, *VD,
*AC IN2 (Dword): VD, ID, QD, MD, SMD, AC,

*VD, *AC
Description of STL operation:

The Exclusive OR Dword (XORD) instruction
logically XORs the corresponding bits of two
double words IN1, IN2, and loads the result in
the double word IN2.

Example:

LD I4.0

Description of STL operation:

The AND Dword (ANDD) instruction logically
ANDs the corresponding bits of two double words
INl, IN2, and loads the result in the double word
IN2.

Example:

LD I4.0 XORD ACl, VDlOO

90

ANDD ACl, ACO

Increment Word (STL)
Format:

INCW IN

Operands:

IN (word): VW, T, C, IW, QW, MW, SMW,
AC, *VD, *AC

Description of STL operation:
The Increment Word (INCW) instruction adds 1 to
the input word value IN, and loads the result in
that word.

IN+l=IN

Example:
LD I4.0
INCW ACO

Decrement Word (STL)
Format:
DECW IN

Operands:
IN (word): VW, T, C, IW, QW, MW, SMW,

AC, *VD, *AC
Description of STL operation:
The Decrement Word (DECW) instrnction
subtracts 1 from the input word value IN, and loads
the result in that word.

IN-l=IN

Example:

LD I4.0
DECW VWlOO

Increment Double Word (STL)
Format:

INCD IN

Operands:

IN (Dword): VD, ID, QD, :tvID, S:tvID, AC,
*VD, *AC

Description of STL operation:
The Increment Dword (INCD) instruction adds 1
to the input double word value IN, and loads the
result in that double word.
IN+l=IN
Example:

LD I4.0
INCD ACO

Decrement Double Word (STL)
Format:
DECD IN

Operands:

IN (Dword): VD, ID, QD, :tvID, S:tvID, AC, *VD.
*AC

Description of STL operation:
The Decrement Dword (DECD) instruction
subtracts l from the input double word value IN,
and loads the result in that double word.

IN-l=IN

Example:
LD I4.0
DECO VDlOO

Invert Word (STL)
Format:

INVW IN

Operands:

IN (word): VW, T, C, IW, QW, MW, SMW,
AC, *VD, *AC

Description of STL operation:
The Invert Word (INVW) instruction takes the
Ones Complement of the input word value IN, and
loads the result in that word.
Example:

LD I4.0
INVW ACO

Invert Double Word (STL)
Format:

INVD IN

Operands:

IN (Dword): VD, ID, QD, :tvID, S:tvID, AC, *VD,
*AC

Description of STL operation:

The Invert Dword (INVD) instruction takes the
ones complement of the input double word value
IN, and loads the result in that double word.
Example:

LD I4.0
INVD ACO

91

-Specifications

CPU 212 DC
General Features
Physical Size (L x W x D)
Weight
User Program Size I Storage
User Data Size I Storage
Data Retention
Local VO
Total VO (maximum)
Maximum Number of Expansion Modules
Boolean Execution Speed
Internal Memory Bits

160 x 80 x 62 mm
.31 kg
512 Words I EEPROM
512 Words I RAM
50 hr typical
8 Inputs I 6 Outputs
30 points
2
1.3 µs I Instruction
128
64
64
1 Software (2 kHz max.)
UL 508
CSA C22.2 142
VDE 0160 compliant

6.3 X 3.15 X 2.-4 in
.68 lbs

Timers
Counters
High-Speed Counters
Agency Approvals

Power Supply
Voltage Range
Input Current

UL/CSA Rating
Hold Up Time
Inrush Current
Fusing (non-replaceable
5 VDC Available Current
Isolated

Environmental
Operating Temperature Range
Power Dissipation
Storage Temperature Range
Maximum Humidity
Vibration
Conducted Noise Immunity
Static Discharge Immunity
Radiated Noise Immunity

20.4 - 28.8 VDC
60 mA typical, CPU only
500 mA maximum load
SOVA
10 ms minimum from 24 VDC
10 A peak at 28.8 VDC
1 A, 125 V, Slow Blow
340 mA
No

0° - 55° C
5 Wat 1.75 A load
-40° - 70° C
95% non-condensing
IEC 68-2-6 .35 mm Amplitude I 2G maximum
IEC 801-4 I 2kV
IEC 801-2 I 4 kV contact I 8 kV air
IEC 801-3 I IO V/meter

92

CPU 212 DC, DC In, DC Out
Input Points
Input Type (IEC 1131-2)
ON State Range

Type l Sinking
15-30 VDC, 4 mA minimum
35 VDC 500 mS surge
24 VDC, 7 mA
5 VDC, 1 mA

ON State Nominal
OFF State Maximum
Response Time

10.0 - 10.7
IO. 0 as used by Interrupt or HSCO

Optical Isolation

3.5 mS typical I 4.5 mS maximum
30 µS typical I 70 µS maximum
500 V AC, 1 minute

Output Points
Output Type
Voltage Range
Maximum Load Current*
Per Single Point
Per 2 Adjacent Points
All Points Total

*Linear Derate 40 - 55 ° C
Vertical Mount Derate 10° C
Inductive Load Clamping
Single Pulse

Sourcing Transistor
20.4 - 28.8 VDC
0-40° C 55° C
0.75 A 0.50 A
1.00 A 0.75 A
2.25 A 1.75 A

Repetitive

Per Common
2 AL/R= 10 ms
1 AL/R = 100 ms
1 W energy dissipation
(1/2 Li2 x switch rate< 1 W)
100 µA
25 µS ON, 120 µS OFF
4 A, 100 ms
500 V AC, 1 minute

Leakage Current
Switching Delay
Voltage Drop
Optical Isolation

DC Sensor Supply
Voltage Range
Ripple/Noise (<10 .tvlHz)
24 VDC Available Current
Isolated

16.4 - 28.8 VDC
Same as supplied Voltage
180 mA
No

Outputs (20.4-28.8 YDC) Power Suppl!I

+ +

0
IDC24Yl ~
OUTPUTS M L• 0.0 0.1 0.2 0.3 0.4 0.5, • l -s1s- M L• 34¥

000000000000

I DC 24 Y 1M 0.0 0.1 0.2 0.3 2M 0.4 0.5 O.G 0. 7 l 1!!.._!;:
INPUTS! 0 1~00000000000

DC
SENSOR
SUPPLY

((((++ ((((
Inputs (15-35 VDCJ

24 VOC Power for Input
Senso,s or Espansion
Modules (180 mAJ

CPU 212 DC. DC In, DC Out Terminal Connector

93

CPU 212 AC
General Features
Physical Size (L x W x D)
Weight
User Program Size I Storage
User Data Size I Storage
Data Retention
Local VO
Total I/0 (maximum)
Maximum Number of Expansion Modules
Boolean Execution Speed
Internal Memory Bits
Timers
Counters
High-Speed Counters
Agency Approvals

Power Supply
Voltage Range
Input Current

Hold Up Time
Inrnsh Current
Fusing (non-replaceable
5 VDC Available Current
Isolated

Environmental
Operating Temperature Range
Power Dissipation
Storage Temperature Range
Maximum Humidity
Vibration
Conducted Noise Immunity
Static Discharge Immunity
Radiated Noise Immunity

160 x 80 x 62 nun
.39 kg
512 Words I EEPROM
512 Words I RAM
50 hr typical
8 Inputs I 6 Outputs
30 points
2
1. 3 µs I Instrnction
128
64
64
1 Software (2 kHz max.)
UL 508
CSA C22.2 142
VDE 0160 compliant

6.3 X 3.15 X 2.-+ in
.86 lbs

85-264 VAC at 47-63 Hz
4 VA typical, CPU only
50 VA maximum load
20 ms minimum from 110 VAC
20 A peak at 264 V AC
2 A, 250 V, Slow Blow
340 mA
Yes -Transformer, 1500 VAC, 1 minute

0° - 55° C
6W
-40° - 70° C
95% non-condensing
IEC 68-2-6 .35 mm Amplitude I 2G maximum
IEC 801-4 I 2kV
IEC 801-2 I 4 kV contact I 8 kV air
IEC 801-3 I 10 V/meter

94

CPU 212 AC, DC In, Relay Out
Input Points
Input Type (IEC 1131-2)
ON State Range

Type l Sinking
15-30 VDC. 4 mA minimum
35 VDC. 500 mS surge
24 VDC, 7 mA
5 VDC, l mA

ON State Nominal
OFF State Maximum
Response Time

IO.O - I0.7
IO.Oas used by Interrupt or HSCO

Optical Isolation

3.5 mS typical I 4.5 mS maximum
30 µS typical I 70 µS maximum
500 V AC, 1 minute

Output Points
Output Type
Voltage Range
Maximum Load Current*
Overcurrent Surge
Isolation Resistance
Switching Delay
Lifetime

Contact Resistance
Isolation
Coil to Contact
Contact to Contact

Relay, dry contact
5 - 30 VDC I 250 V AC
2 A I Point
7 A with contacts closed
100 MOhm minimum
10 ms maximum
10,000,000 Mechanical
100,000 with Rated Load
200 MOhm maximum

1500 V AC, 1 minute
1000 V AC, 1 minute

DC Sensor Supply
Voltage Range
Ripple/Noise (<10 MHz)
24 VDC Available Current
Isolated

20.4 - 28.8 VDC
1 V peak-to-peak maximum
180 mA
No

Outputs (30 voe I 250 VAC Power Suppl9

0
IREL.AY! !vAc I
OUTPUTS 1 L 0.0 0.1 0.2 I 2L 0.3 0.4 0.5U-4- M L1 85-264

loc 24v 1M o.o 0.1 0.2 o.3 2M o.4 o.5 o.s o.1j~
INPUTS!

QI~~~~?~?~~~~~
DC
SENSOR
SUPPLY

Inputs (15-35 VOC)

24 voe Power for Input
Sensors or E1pansion
Modules (180 mA)

CPU 212 AC. DC In. Rela9 Out Terminal Connector

95

CPU 212 AC, AC In, AC Out
Input Points
Input Type (IEC 1131-2)
ON State Range

Type 1 Sinking
79 - 135 VAC, 47-63 Hz
4 mAminimum
120 VAC 60 Hz, 7 mA
20 VAC. 1 mA
10 typical, 15 ms maximum
1500 VAC, 1 minute

ON State Nominal
OFF State Maximum
Response Time
Optical Isolation

Output Points
Output Type
Voltage I Frequency Range
Load Circuit Power Factor
Inductive Load Clamping
Maximum Load Current
Per Single Point
Per 2 Adjacent Points
All Points Total

*Linear Derate 40 - 55 ° C
Vertical Mount Derate 10° C
Maximum Load Current
Leakage Current
Switching Delay
Surge Current
Voltage Drop
Optical Isolation

Triac, zero-crossing
20 - 264 VAC, 47 - 63 Hz
0.3 to 1.0
MOV 275 V working voltage
0 - 40° C 55° C
1.20 A 1.00 A
1.50 A
3.50 A

1.25 A
2.50 A

lOmA
2.5 mA, 120 VACI 2.0 mA, 240 VAC
1/2 Cycle
30 A peak, 1 cycle I 10 A peak, 5 cycle
1.5 V maximum at maximum current
1500 VAC, 1 minute

DC Sensor Supply
Voltage Range
Ripple/Noise (<10 MHz)
24 VDC Available Current
Isolated

16.4 - 28.8 VDC
1 V peak-to-peak maximum
180 mA
No

Outputs (30 voe I 250 VACJ Power Suppl'

0
l~c I.__~~~~~~~~~~--.
!)UT PUTS

!vAc I
1 L 0.0 0.1 0.2 2L 0.3 0.4 0.5) I j-4,- N L1 85-264

•. ,s

IAC 120V N 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7, I I!!....!:.:
INPUTSj

0 1~~~~~?~~~0~~
24 voe Power for Input
Sensors or E1p.ansion
Modules (180 mA)

DC
SENSOR
SUPPLY

Inputs (79-1 35 VACI

CPU 212 AC. AC In. AC Out Terminal Connector

CPU 214 DC
General Features
Physical Size (L x W x D)
Weight
User Program Size I Storage
User Data Size I Storage
Data Retention
Local VO
Total VO (maximum)
Maximum Number of Expansion Modules
Boolean Execution Speed
Internal Memory Bits
Timers
Counters
High-Speed Counters

Pulse Outputs
Agency Approvals

Power Supply
Voltage Range
Input Current

UL/CSA Rating
Hold Up Time
Inrush Current
Fusing (non-replaceable
5 VDC Available Current
Isolated

Environmental
Operating Temperature Range
Power Dissipation
Storage Temperature Range
Maximum Humidity
'Vibration
Conducted Noise Immunity
Static Discharge Immunity
Radiated Noise Immunity

197 x 80 x 62 mm
.39 kg
2K Words I EEPROM
2K Words I RAM
190 hr typical
14 Inputs I IO Outputs
64 points
5
0.8 µs I Instrnction
256
128
128
l Software (2 kHz max.)
2 Hardware (7 kHz max.)
2 (4 kHz max. each)
UL 508
CSA C22.2 142
VDE 0160 compliant

20.4 - 28.8 VDC
85 mA typical, CPU only
900 mA maximum load
50VA
l O ms minimum from 24 VDC
10 A peak at 28.8 VDC
l A, 125 V, Slow Blow
660 mA
No

7.75 X 3.15 X 2.4 in
.86 lbs

0° - 55° C
8 Wat 3 A load
-40° - 70° C
95% non-condensing
IEC 68-2-6 .35 mm Amplitude I 2G maximum
IEC 801-4 I 2kV
IEC 801-2 I 4 kV contact I 8 kV air
IEC 801-3 I 10 V/meter

97

CPU 214 DC, DC In, DC Out
Input Points
Input Type (IEC 1131-2)
ON State Range

ON State Nominal
OFF State Maximum
Response Time

10.0-10.7
10.0 as used by Interrupt or HSCO

Optical Isolation

Type l Sinking
15-30 VDC, 4 mA minimum
35 VDC, 500 mS surge
24 VDC, 7 mA
5 VDC, 1 mA

3.5 mS typical I 4.5 mS maximum
30 µS typical I 70 µS maximum
500 V AC, l minute

Output Points
Output Type
Voltage Range
Maximum Load Current*
Per Single Point
Per 2 Adjacent Points
All Points Total

*Linear Derate 40 - 55 ° C
Vertical Mount Derate 10° C
Inductive Load Clamping
Single Pulse

Sourcing Transistor
20.4 - 28.8 VDC
0-40° C 55° C
0.75 A 0.50 A
1.00 A 0.75 A
2.25 A 1.75 A

Repetitive

Per Common
2 AL/R = 10 ms
1 A L/R = 100 ms
1 W energy dissipation
(1/2 Li2 x switch rate< l W)
100 µA
25 µS ON, 120 µS OFF
4 A, 100 ms
500 V AC, 1 minute

Leakage Current
Switching Delay
Voltage Drop
Optical Isolation

DC Sensor Supply
Voltage Range
Ripple/Noise (<10 MHz)
24 VDC Available Current
Isolated

16.4 - 28.8 VDC
Same as supplied Voltage
180mA
No

Outputs (20.4-28.8 VDC) Power Suppl1

~
,~ I 1 n 1 ~

.:c. I 1 J n J
.l ~-~

I

+ + +
~

0 10000000000000000001
11Dc24vl ~
OUTPUTS 1 M 1 L+ 0.0 0.1 0.2 0.3 0.4 2M 2L+ 0.5 0.6 0. 7 1.0 1.11 e I"'$" M L• '24¥

... ~ ... ~
.-n-,

DC 24¥ 1M 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 2M 1.0 1.1 1.2 1.3 1.4 1.5 /IM l• DC
INPUTS! I SENSOR

SUPPLY

0 000000000000000000

Inputs (15-35 VDCJ

24 VOC Power for Input
Sensors or E:rpansion
Modules (180 mA)

CPU 214 DC, DC In, DC Out Terminal Connector

98

CPU 214 AC
General Features
Physical Size (L x W x D)
Weight
User Program Size I Storage
User Data Size I Storage
Data Retention
Local I/0
Total I/0 (maximum)
Maximum Number of Expansion Modules
Boolean Execution Speed
Internal Memory Bits
Timers
Counters
High-Speed Counters

Pulse Outputs
Agency Approvals

Power Supply
Voltage Range
Input Current

Hold Up Time
Inrush Current
Fusing (non-replaceable
5 VDC Available Current
Isolated

Environmental
Operating Temperature Range
Power Dissipation
Storage Temperature Range
Maximum Humidity
Vibration
Conducted Noise Immunity
Static Discharge Immunity
Radiated Noise Immunity

197 x 80 x 62 mm
.49 kg
2K Words I EEPROM
2K Words I RAM
190 hr typical
14 Inputs I 10 Outputs
64 points
5
0.8 µs I Instruction
256
128
128
1 Software (2 kHz max.)
2 Hardware (7 kHz max.)
Not Recommended
UL 508
CSA C22.2 142
VDE O 160 compliant

7.75 X 3.15 X 2.4 in
1.0 lbs

85-264 VAC at 47-63 Hz
4.5 VA typical, CPU only
50 VA maximum load
20 ms minimum from 110 V AC
20 A peak at 264 V AC
2 A, 250 V, Slow Blow
660mA
Yes -Transformer, 1500 VAC, 1 minute

0° - 55° C
9W
-40° - 70° C
95% non-condensing
IEC 68-2-6 .35 mm Amplitude I 2G maximum
IEC 801-4 I 2kV
IEC 801-2 I 4 kV contact I 8 kV air
IEC 801-3 I 10 V/meter

99

CPU 214 AC, DC In, Relay Out
Input Points
Input Type (IEC 1131-2)
ON State Range

Type l Sinking
l5-30 VDC, 4 mA minimum
3 5 VDC. 500 mS surge
24 VDC, 7 mA
5 VDC, 1 mA

ON State Nominal
OFF State Maximum
Response Time
r IO.O - I0.3
I0.4 - Il.5
I0.6 - Il .5 as used by HSC l and HSC2

Optical Isolation

0.2 ms maximum
1.2 ms maximum
30 µS typical I 70 µS maximum
500 V AC, 1 minute

Output Points
Output Type
Voltage Range
Maximum Load Current*
Overcurrent Surge
Isolation Resistance
Switching Delay
Lifetime

Relay, dry contact
5 - 30 VDC I 250 V AC
2 A I Point
7 A with contacts closed
100 MOhm minimum
l O ms maximum
10.000,000 Mechanical
100,000 with Rated Load
200 MOhm maximum Contact Resistance

Isolation
Coil to Contact
Contact to Contact

1500 VAC, 1 minute
1000 V AC, 1 minute

DC Sensor Supply
Voltage Range
Ripple/Noise (<10 MHz)
24 VDC Available Current
Isolated

20.4 - 28.8 VDC
1 V peak-to-peak maximum
280 mA
No

Outputs (30 YDC I 250 YAC) Power Suppl'

0
RELAY ~
OUTPUTS IL 0.0 0.1 0.2 0.3 I 2L 0.4 0.5 0.6 I 3L 0.7 1.0 1.1 I~ N L1 !5:264

DC 24Y 1M 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 2M 1.0 1.1 1.2 1.3 1.4 1.5 (~
INPUTS'

DC
SENSOR
SUPPLY --- 0 000000000000000000

. . ' ' ('l '((((((T+ (((((((T+ 24 VDC Power for Input
Sensors or Ezpansion
Modules (180 mA)

Inputs (15-35 VDC)

CPU 214 AC. DC In. Rela, Out Terminal Connector

100

CPU 214 AC, AC In, AC Out
Input Points
Input Type (IEC 1131-2)
ON State Range

ON State Nominal
OFF State Maximum
Response Time
Optical Isolation

Output Points
Output Type
Voltage I Frequency Range
Load Circuit Power Factor
Inductive Load Clamping
Maximum Load Current
Per Single Point
Per 2 Adjacent Points
All Points Total

*Linear Derate 40 - 55 ° C
Vertical Mount Derate 10° C
Maximum Load Current
Leakage Current
Switching Delay
Surge Current
Voltage Drop
Optical Isolation

Type 1 Sinking
79 - 135 VAC. 47-63 Hz
4 mA minimum
120 VAC, 60 Hz, 7 mA
20 VAC, 1 mA
10 µS typical, 15 µs maxim mu
1500 VAC, 1 minute

Triac, zero-crossing
20 - 264 VAC, 47 - 63 Hz
0.3 to 1.0
MOY 275 V working voltage
0 - 40° C 55° C
1.20 A 1.00 A
1.50 A 1.25 A
6.00 A 4.25 A

lOmA
1.5 mA, 120 VACI 2.0 mA, 240 VAC
1/2 Cycle
30 A peak, 1 cycle I 10 A peak, 5 cycle
1.5 V maximum at maximum current
1500 V AC, 1 minute

16.4 - 28.8 VDC
l V peak-to-peak maximum
280 mA
No

Power Suppl1

0
AC I ~
OUTPUTS ll 0.0 0.1 2l 0.2 0.3 3l 0.4 0.5 0.6 4l 0.7 1.0 1.1 I I I~ N l1 !5:264

AC 120V
INPUTS.

1M 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1.0 1.1 1.2 1.3 1.4 1.5 i I jM l• DC
SENSOR
SUPPLY --- 0 000000000000000000

24 voe Power lor Input
Sensors or Esp.insion
Modules (280 mAJ

DC Sensor Supply
Voltage Range
Ripple/Noise (<10 MHz)
24 VDC Available Current
Isolated

Outputs (20-264 VACJ

CPU 214 AC. AC In. AC Out Terminal Connector

101

Inputs (73-135 V AC)

Digital Input, 8 Point, 24 VDC
General Features
Physical Size (L x W x D)
Weight
Points
Agency Approvals

90 x 80 x 62 mm
.17 kg
8 Inputs
UL 508
CSA C22.2 1-+2
VDE O 160 compliant

3.54 X 3.15 X 2.-+ in
.37 lbs

Input Points
Input Type (IEC 1131-2)
ON State Range

ON State Nominal
OFF State Maximum
Response Time
Optical Isolation

Type 1 Sinking
15 - 30 VDC, 4 mA minimum
35 VDC, 500 ms surge
24 VDC, 7 mA
5 VDC, 1 mA
35 ms typical, 4.5 ms maximum
500 V AC, 1 minute

Current Requirements
5 VDC Logic Current
24 VDC Sensor Current

60 mA from Base Unit
60 mA from Base Unit or
External Power Supply

Environmental
Operating Temperature Range
Power Dissipation
Storage Temperature Range
Maximum Humidity
Vibration
Conducted Noise Immunity
Static Discharge Immunity
Radiated Noise Immunity

0° - 55° C
2W
-40° - 70° C
95% non-condensing
IEC 68-2-6 .35 mm Amplitude I 2G maximum
IEC 801-4 I 2kV
IEC 801-2 I 4 kV contact I 8 kV air
IEC 801-3 I 10 VI meter

Inputs (15-35 VDC)

+l I I/ 1/ I/ +l I I ~ I/ .r-
/ / /

-s: +£

0 1000000000000001
IDC 24V !
: INPUTS 1M .0 .1 .2 .3 e 2M .4 .5 .6 .7 e e -;; I

3.3K!l

Ezpansion Module. 24 VDC. 8 Point Input

,t

102

Digital Input, 8 Point, 120 V AC
General Features
Physical Size (L x W x D)
Weight
Points
Agency Approvals

90 x 80 x 62 nun
.18 kg
8 Inputs
UL508
CSA C22.2 142

3.54 x 3.15 x 2.4 in
.39 lbs

Input Points
Input Type (IEC 1131-2)
ON State Range

Type l Sinking
79 - 135 VAC, 47 - 63 Hz
4 mAminimum
120 V AC, 60 Hz, 7 mA
20 V AC, 1 mA
15 ms maximum
1500 VAC, 1 minute

ON State Nominal
OFF State Maximmn
Response Time
Optical Isolation

Current Requirements
5 VDC Logic Current 70 mA from Base Unit

Environmental
Operating Temperature Range
Power Dissipation
Storage Temperature Range
Maximum Humidity
Vibration
Conducted Noise Immunity
Static Discharge Immunity
Radiated Noise Immunity

0° - 55° C
2W
-40° - 70° C
95% non-condensing
IEC 68-2-6 .35 111111 Amplitude/ 2G maximum
IEC 801-4 / 2kV
IEC 801-2 / 4 kV contact/ 8 kV air
IEC 801-3 / 10 V/meter

Inputs (79-135 VAC)

0
lAC1-;.;;JL~~~~~~~~~~~~~~~~~~~~-:--, INPUTS 1M e .0 .1 .2 .3 .4 .5 .6 .7 e e e ~

390!1

\ . 0.15,vF R 470Kfi 0 .>Kn

" r--7-:::::----,

E1pansion Module, 120 VAC. 8 Point Input
It

103

Digital Output, 8 Points, 24 VDC
General Features
Physical Size (L x W x D)
Weight
Points
Agency Approvals

90 x 80 x 62 mm
.18 kg
8 Outputs
UL 508
CSA C22.2 142
VDE 0160 compliant

3.54 X 3.15 X 2.4 in
.39 lbs

Output Points
Output Type
Voltage Range
Maximum Load Current
Per Single Point
Per 2 Adjacent Points
All Points Total

*Linear Derate 40 - 55 ° C
Vertical Mount Derate 10° C
Inductive Load Clamping
Single Pulse

Sourcing Transistor
20.4 - 28.8 VDC
O - 40° C
0.75 A
1.00 A
4.00 A

55° C*
0.50 A
0.75 A
3.00 A

Repetitive

Per Common
2 A L/R= 10 ms
1 A L/R = 100 ms
2W energy dissipation
(1/2 Li2 x switch rate < 1 W)
100 µA
50 µs ON, 200 µs OFF
4 A, 100 ms
1. 8 V maximum at maximum current
500 V AC, 1 minute

Leakage Current
Switching Delay
Surge Current
Voltage Drop
Optical Isolation
Current Requirements
5 VDC Logic Current
Output Point Current
Environmental
Operating Temperature Range
Power Dissipation
Storage Temperature Range
Maximum Humidity
Vibration
Conducted Noise Immunity
Static Discharge Immunity
Radiated Noise Immunity

80 mA from Base Unit
Supplied by user at module common

0° - 55° C
2W
-40° - 70° C
95% non-condensing
IEC 68-2-6 .35 mm Amplitude I 2G maximum
IEC 801-4 I 2kV
IEC 801-2 I 4 kV contact I 8 kV air
IEC 801-3 I 10 V/meter

.,..

+"~ I 1 I 1 I 1 i * ++ n n n I r

0 I

1000000000000001
I I

1M 1L~ .n _1 _2 .3 • 2M 2L• _4 .5 .6 .7 ~ I

Ezp.ansion Module-. 24 VDC. 8 Point Output

"

104

Digital Output, 8 Point, Relay
General Features
Physical Size (L x W x D)
Weight
Points
Agency Approvals

90 x 80 x 62 mm
.20 kg
8 Outputs
UL 508
CSA C22.2 142
VDE 0160 compliant

3.54 X 3. 15 X 2.4 in
.44 lbs

Output Points
Output Type
Voltage Range
Maximum Load Current*
Overcurrent Surge
Isolation Resistance
Switching Delay
Lifetime

Contact Resistance
Isolation
Coil to Contact
Contact to Contact

Relay, dry contact
5 - 30 VDC I 250 V AC
2 A I Point
7 A with contacts closed
l 00 MOhm minimum
l O ms maximum
10,000,000 Mechanical
100,000 with Rated Load
200 MOhm maximum

1500 VAC, 1 minute
1000 V AC, 1 minute

Current Requirements
5 VDC Logic Current
24 VDC Coil Current

Output Point Current

80 mA from Base Unit
85 mA from Base Unit or
External Power Supply
Supplied by user at module common

Environmental
Operating Temperature Range
Power Dissipation
Storage Temperature Range
Maximum Humidity
Vibration
Conducted Noise Immunity
Static Discharge Immunity
Radiated Noise Immunity

0° - 55° C
3W
-40° - 70° C
95% non-condensing
IEC 68-2-6 .35 mm Amplitude I 2G maximum
IEC 801-4 I 2kV
IEC 801-2 I 4 kV contact I 8 kV air
IEC 801-3 I 10 V /meter

Outputs (30 VDC I 250 VAC)

24VDC
Rela,
Coil

0
~~S~-M~~L.~-~~-ll~-.O~-_-l~.2~-_-3~.~~2-L~.-4~_-5~-.6~-.7~1

Esp.ansion Module. Rela,. 8 Point Output

105

Digital Output, 8 Point, 120/230 VAC
General Features
Physical Size (L x W x D)
Weight
Points
Agency Approvals

90 X 80 X 62 111111
.20 kg
8 Outputs
UL508
CSA C22.2 142
VDE O 160 compliant

3.54 X 3.15 X 2.4 in
.-+4 lbs

Output Points
Output Type
Voltage I Frequency Range
Load Circuit Power Factor
Inductive Load Clamping
Maximum Load Current
Per Single Point
Per 2 Adjacent Points
All Points Total

*Linear Derate 40 - 55 ° C
Vertical Mount Derate 10° C
Maximum Load Current
Leakage Current
Switching Delay
Surge Current
Voltage Drop
Optical Isolation

Triac, zero-cross turn on
20 - 264 VAC, 47 - 63 Hz
0.3 to 1.0
MOY 275 V working voltage
0 - 40° C 55° C
1.20 A 1.00 A
1.50 A
4.75 A

1.25 A
3.50 A

10 mA
1.5 mA, 120 VACI 2.0 mA, 240 VAC
1/2 Cycle
30 A peak, 1 cycle I 10 A peak, 5 cycle
1. 5 V maximum at maximum current
1500 VAC, 1 minute

Current Requirements
5 VDC Logic Current
Output Point Current

120 mA from Base Unit
Supplied by user at module common

Environmental
Operating Temperature Range
Power Dissipation
Storage Temperature Range
Maximum Humidity
Vibration
Conducted Noise Immunity
Static Discharge Immunity
Radiated Noise Immunity

0° - 55° C
5 Wat 3.5 A load
-40° - 70° C
95% non-condensing
IEC 68-2-6 .35 mm Amplitude I 2G maximum
IEC 801-4 I 2kV
IEC 801-2 I 4 kV contact I 8 kV air
IEC 801-3 I 10 V/meter

Output5 (20-264 VAC)

0
~~s~--,,L:---_~o~-.,,---~2~L~~.2~-.-3~-3-L~_-4~-.5~~4L~-.6~-.-7~~.~,---~~,

Espanslon Module. 1201230 ¥AC. 8 Point Output

106

Memory Cartridge Specification
General Features
Physical Size (L x W x D)
Weight
Memory Type
User Storage

Agency Approvals

Environmental
Operating Temperature Range
Power Dissipation
Storage Temperature Range
Maximum Humidity
Vibration
Static Discharge Immunity
Radiated Noise Immunity

PC/PPI Cable Specification
General Features
Cable Length
Connector Size (L x W x D)
Weight
Connector Type PC
Connector Type PLC
Cable Type

Baud Rate (Supported by dip switch)

Supply Current

Agency Approvals

Environmental
Operating Temperature Range
Power Dissipation
Storage Temperature Range
Maximum Humidity
Vibration
Conducted Noise Immunity*
Static Discharge Immunity*
Radiated Noise Immunity*
* Temporary errors in data communication may
occur

28 x 10 x 16 mm
3.5 kg
EEPROM
4096 bytes Program
512 bytes User Data
UL 508
CSA C22.2 142
VDE O 160 compliant

1.1 X 0.4 X 0.6 in
0.01 lbs

0° - 55° C
0.5mW
-40° - 70° C
95% non-condensing
IEC 68-2-6 .35 mm Amplitude/ 2G maximum
IEC 801-2 / 4 kV contact/ 8 kV air
IEC 801-3 / 10 V/meter

5 meters
5 x 3.2 x 1.5 cm
.304 kg
9 pin Sub D (socket)
9 pin Sub D (pins)
RS232 to RS485 non
isolated
38.4K, 19.2K, 9.6K, 2.4K,
1.2K
20 mA idle, 40 mA peak
Supplied by communication
port connector
UL508
CSA C22.2 142
VDE 0160 compliant

0.67 lbs

0° - 55° C
0.5W
-40° - 70° C
95% non-condensing
IEC 68-2-6 .35 111111 Amplitude I 2G maximum
IEC801-4 /2kV
IEC 801-2 / 4 kV contact/ 8 kV air
IEC 801-3 I 10 V/meter

107

(Symbolic Name)
A symbolic name is an alpha-numeric tag which is attached to a specific memory location.
Symbolic addressing enables you to create a symbolic data base that identifies a specific
absolute address with a symbolic name.

For example: you can associate output Q4.0 with the symbolic name MOTOR_ON. Each
symbolic name must be unique. When you define symbols, you indicate a data type such as
Boolean, byte, word, double-word, integer, etc.

(Modular 1/0 Expansion)

This practical feature allows you to expand your performance conveniently, module by module.
Every S7-200 CPU includes a compliment of built-in I/0. For larger applications requiring
either additional VO points, or a mixture of voltage levels, the S7-200 family includes a range
of plug-in discrete and analog VO expansion modules.

(Real-time Clock)
It is extremely practical to be able to
include a time-stamp on printouts, to
record machine operating hours or pre
warm an oven before the start of
production. The S7-214 CPUs offer a
built-in real-time clock calendar that gives
timing resolution down to the second. If
that's not enough, the S7-200 has three
special memory bits which provide for 3 0
seconds on/30 seconds off, 0.5 seconds
on/0.5 seconds off, and a clock bit which
is active every other scan! Only time will
tell how many applications will benefit
from this feature.

108

(Integrated Pulse Outputs)

At last, an economical way of connecting
stepper motors and DC motors to Micro
PLCs I The S7-214 uses a frequency
modulated pulse output to control stepper
motors and it can even perform a
controlled start-up by means of a pulse
ramp! The S 7-214 provides integrated
pulse output controls that makes stepper
motor control as easy as loading a register
value. It's also handy for applications like
on/off heater control and for generating
frequency modulated pulse trains.

(Powerful Instruction Set)

Over 120 instructions are available to do
operations you wouldn't expect from a
micro controller. Examples are data table
operations such as FILL and FIND, bit
shift and rotate, subroutines, and even
FOR-NEXT loops I Of course, the S7-200
has all of the standard RLL Boolean
instructions.

(On-board Communication Port)

0 n n n Puls~Train
LJLJLJU····.······ n~n n ~uls~Wi.dth
.·u~u~o ····.· .·

J. RS---185

The S7-200 PLCs have an integrated interface for serial connections. Up to 31 SIMA.TIC S7-
200 PLCs can be connected for programming and operator interface connections (up to 127
units with repeaters!).

109

(Exclusive Free Port Mode)

This exclusive feature gives you real
control of the serial communications port
from your application program. It's now
easier than ever to integrate bar code
readers, scanners, weigh scales, and other
devices with serial communications into
your micro control applications.

(Password Protection)

You don't want just anyone tinkering with your application programs. The S7-200 offers you
three-level password protection against unauthorized access.

(Maintenance-Free)

This micro has eliminated the need for a backup
battery' Program storage is maintained in an on
board EEPROM. There is a super capacitor in the
CPU which will provide short-term (up to 190
hours on a CPU 214 and up to 50 hours on the
CPU 212!) protection of your scratchpad memory.

(High Speed Counter - Free)

Even the smallest SIMATIC PLC can count at high speed: forwards or backwards. This
makes this PLC suitable for positioning applications. And the S7-214 adds two additional 7
kHz counters offering 12 different operating modes and even as a two-phase counter! This
makes the S7-200 just right whether you are counting parts, positioning packages, or even
measuring pipeline flow. Plus, since the high-speed counters are build-in to the hardware
there's no restrictions against running them at the same time. Now that's High Speed.

110

STEP lVIOTOR CONTROL WITH PLC (SIEMENS S7_CPU212,DC)

INTRODUCTION
Nowadays, in many applications we can meet the Step motors. For example; harddisk tracking
control, position controlling, valve controlling. What are the reasons to use step motors in this
applications? In this project, we will try to find the answers of this questions ..

Why do we use PLC?
PLC 's very useably control element to constructing and programming. Electrical control
systems with using contactors and timers spends many times and money so that systems are no
very good stability. Logical PLC application are more easy with help of computers.
Constructing the logical electric circuits needs more qualification. PLC producers says "You
can enjoy your coffee in office when programming. You can set up your sophisticated
machines system with the fun of playing TV- game.

Working of the PLC

Input Modules :
The sensor signals call up certain signal states on this modules. The CPU scans the

signal states. The signal states for the input modules are transferred to the process image input
table (PII) at the beginning of each cycle.

CPU
OB 1

(~ Input BOB modules
"" • ,.

Output
modules I----{

•• ·······------------···- --------------- ---------······ •• -----------· -l

Process Image :
The process image is a special memory area in the programmable logic controller.

Differentiation is made between the process image input table (PII) and the process image
output table (PIQ). The signal states of the inputs are transferred to the PII at the beginning of
program processing. The PIQ is transferred as a signal state to the outputs at the end of
program processmg.

CPU:
The CPU processes the sensor signals corresponding to the program commands stored

in the user program (OB 1) Signals to the actuators are transferred via the process image
output table to the output modules.

Cycle :
A cycle includes reading the inputs, processing the user program once, and writing to

the outputs. This priority is repeated constantly during cyclical program processing in the
CPU.

Output Modules
The output modules convert the signals coming from the user program to the I/Os

(such as potential and analog-digital). The output modules send these signals on to the
connected actuators (such as signal lamps and coils).

Step motors
A stepper motor converts electrical pulses applied to it into discrete rotor movements called
steps. A one-degree-per-step motor will require 360 pulses to move through one revolution.
Microstep motors, with thousands of steps per revolution, are also available. The rating of the
stepper motor is generally given in steps per revolution of the motor. They are generally low
speed and low torque, and they provide precise position control of movement. Figure 1
illustrates the basic operation of a de stepper motor. It consists of an electromagnetically
excited stator and a permanent magnet rotor. When the polarity of the exciting winding is
suitably reversed, the rotor turns in the chosen direction by exactly one step to a new rest
position. The number of steps per revolution is determined by the number of pole pairs on the
rotor and stator. The greater the number of poles on both parts, the greater the steps per
revolution of the motor.

3 (Courtesy of Robert Bosch Inc.)
Figure 1; Permanent de stepper motor.

The operation of a stepper motor greatly depends upon the power supply generates the pulses,
which , in turn, are usually initiated by a microcomputer. The computer initiates a series of
pulses in order to move the controlled device to whatever position is desired. In this way, the
stepper motor provides precise position control of movement. By keeping count of the pulses
applied, the computer knows exactly what position the motor is in; therefore, it is unnecessary
to use a feedback signal.

II

A typical stepper motor control system consist of a stepper motor and a drive package that
contains control electronics and a power supply (Figure 2-a). The driver is the interface
between the computer and the stepper motor. It contains the logic to convert or "translate"
digital information into motor shaft rotation. The motor will move one step for each pulse
received by the driver. The computer provides the desired number of pulses at a specified or
programmed rate which translates into distance and speed.

The number of steps per revolution is determined by the number of pole pairs on the rotor and
stator. Once voltage is applied to the windings, the permanent magnet rotor a stepper motor
assumes its unloaded holding position. This means that the permanent magnet poles of the
rotor are aligned according to the electromagnetic poles of the stator. The maximum torque
with which this excited motor can now be loaded without causing a continuous rotation is
termed the stepper motor holding torque. A torque can also be perceived with nonexcited
motor. This is because of the pole induction of the permanent magnet on the stator. This effect
(cogging), together with he motor internal friction, produces detent torque, which is the torque
with which a nonexcited motor can be statically loaded (Figure 2-b).

Control pulses
generator

Driver
(Power circuit)

I ~ [Step
motor

(b)

Claw pole stepper motor; 1 Rotor, 2 Stator segment
A, 3 Stator segment B, 4 Winding, 5 Winding B.

Figure 2; Stepper motor control.
There are three types of stepper motors; permanent magnet motors, variable reluctance
motors, and hybrid motors. In the permanent magnet type, shown in Figure 3-a, the motor
construction result in relatively large step angles. This type is suited to applications in fields
such as computer peripherals. Variable reluctance motors have no permanent magnet, so they
require a different driving arrangement from the other types (Figure3-b). The rotor spins freely
without "detent" torque. Torque output for a given frame size is restricted. This type is used in
small sizes for applications such as micropositioning tables. As the name implies, hybrid
motors(Figure 3-c) combine the operating principle of the other two types. The hybrid type is

the most widely used stepper motor in industrial applications. The teeth on each. In between
the pole pieces is a permanent magnet which is magnetized along the axis of the rotor, making
one end a north pole and the other a south pole. The teeth are offset at the north and south
ends as shown in the diagram. The stator consists of a shell having four teeth which run the full
length of the rotor. Coils are wound on the stator teeth and are connected together in pairs.

(a) Permanent magnet type

(c) Hybrid type

(b) Variable reluctance type

Figure 3; Types of stepper

The increasing trend toward digital control of machines and process functions has generated a
demand for stepper motors. Industrial uses include a wide variety of control and positioning
applications. A stepper motor can replace devices such as brakes, clutches, and gears with an
overall improvement in life expectancy and accuracy.

Advantages of the Step motors over controlling
Step motors have some advantages in controlling. As it is clear in its name "step", the
movements of this motor were doing step by step. This property supplies us to use the motor
in easiest way in the applications.
It works with electric pulses, when the pulses applies in specified time and regularly, we can
see rotation of the motor.

IV

Overview of the Project Application:

Materials:
1- SIEMENS S7-200 CPU212,DC PLC
2- PC-PP[Cable (For connecting PLC with Personal Computer)
3- Software STEP 7 N/ICROIWIN

360
4- STEP 1WOTOR; Inner resistance 23.Q- 24 V DC -Resolution 24 Step (-=15 °) · 24
5- Driver (Power Circuit)
6- Power Supply 24V DC regulated for PLC and 24V DC for Step Motor (Driver)

Wiring Diagram

!DRIVER (POWER CIRCUIT) I
QO.O

QO.l

2N 3055

I OUTPUTS Power supply
- +(re<>

+24VDC

!STEP MOTOR

10.0 IO.l !0.2 I0.3!0.410.5101

Figure shows wiring of Step motor control with using PLC

V

Inputs of the PLC
I 0.0 Starts turning of the motor
I 0.1 Stop turning of the motor
I 0.2 Speed Up
I 0.3 Speed Down
I 0.5 Rotation direction selector (Left)
I 0.6 Rotation direction selector (Right)
I 0.7 Get the seated speed value in memory

Outputs of the PLC

QO.O

.
Pulse length Tl

Tl _... ~ ,

.
QO.l

..
Tl Tl

~

Q0.2

'

Tl Tl

.

Rotation control
When this output cycles repeated after each step we can see the
rotation of the step motor. If the cycle pulses reverse direction, we can see rotation of
the opposite direction.
So we can store total turning number after starting and also we can actuate another
direction when the turning number is equal to stored value. With this techniques we can
use to positioning of the step motor with PLC.

VI

Speed Control
When the derived pulses length (Tl) is varied, speed of the step motor is change.
If Tl is increase speed is down.
If Tl is decrease speed is up.

Example:
If Tl is set at lOms, what is the Revolution Per Minute (RPM) value.

Step motor resolution is 24.
Applied outputs (QO.O_QO.l_Q0.2) is 3.

In to the 24/3=8 repeated cycle one turn is done. That means each outputs (QO.O _ QO. l _ Q0.2)
sends 8 pulses for one turn.
Totally we send 24 pulses, also
24 *T 1 = 24 * 1 Oms=240ms passed for 1 revolution.

1 minute = 60second

calculating RPM (revolution per 1 minute)
60/240* 10·3 sec = 250 RPM at value of Tl =10 ms

Statement List of the PLC Program
NETWORK
LD IO.O
AN QO.l
AN Q0.2
S QO. 0, 1
EU
MOVW +O, VW4

NETWORK
LD IO.l
R QO.O, 1
R QO.l, 1
R Q0.2, 1

NETWORK
LDW=
LPS
EU
+I +l, VW4
LPP

co, +8

EU
MOVW +0, co

NETWORK
LD Q0.0
LD IO.O
EU
CTU CO, +0

vu

NETWORK
LDW>= +0, C48
MOVW +20, C48

NETWORK
LD 10.2
LD 10.3
LD 10.7
EU
CTUD C48, +20

NETWORK
LD 10.5
CALL 0

NETWORK
LD I0.6
CALL 1

NETWORK
MEND

NETWORK
SBR 0

NETWORK
LD Q0.0
TON T33, C48

NETWORK
LD T33
S Q0.2, 1
R QO. 0, 1
R T33, 1

NETWORK
LD Q0.2
TON T34, C48

NETWORK
LD T34
R Q0.2, 1
R T34, 1
S QO. 1, 1

NETWORK
LD Q0.1
TON T35, C48

NETWORK
LD T35
R Q0.1, 1
R T35, 1
S QO. 0, 1

VIII

NETWORK
RET

NETWORK
SBR 1

NETWORK
LD QO.O
TON T33, C48

NETWORK
LD T33
S QO. 1, 1
R QO. 0, 1
R T33, 1

NETWORK
LD QO.l
TON T34, C48

NETWORK
LD T34
R QO. 1, 1
R T34, 1
S Q0.2, 1

NETWORK
LD Q0.2
TON T35, C48

NETWORK
LD T35
R Q0.2, 1
R T35, 1
S QO. 0, 1

NETWORK
. RET

IX

NETWORK 1

!OQf---1,~ >f--1Q'.2tQr)
MOV_W

P ~-----Im

+0-lli~ •)UTt-,V\V4

NETWORK 2

•...... j" l tQ~O)
QO,

')
l

QOZ
s)
.

NETWORK 3

1-+:0,T P EN .,
+1 !Nl

'if'}/4=~·'·'·''

pf-----

ADD_!

NETWORK 4

co
QO.O t fi:u" CT1J

.,.o-jPV

NETWORK 5

,o --l>• I 1--------,
C'8

+20-j!N OUTt-,C48

NETWORK 6

--j tc.z 1-----------1

m
--j 1-----------ICD

--l /0.7 f---1 p 1----~

+20-iPV

NETWORK 7

NETWORK 8

--j rc.s l--------(c~t1)

NETWORK 9

-(mo)

NETWORK 10

::\microwin\last. ob1 Page 1

X

NETWORK 11

NETWORK 12

NETWORK 13

NETWORK 14

--lD4tQ;2)
';')

I

QOI
s)
I

NETWORK 15

QO.\~T35uwi

C4ih__J

NETWORK 16

rnlt~;) .)
I

QOO
s)
I

NETWORK 17

RET)

NETWORK 18

I
QOO~TI3 I.~ TO,Y

C48 PT

NETWORK 20

NETWORK 21

QOl~

c,ah__J

c:\microwin\Jast.ob1 Page 2

NETWORK 22

--j rs- 1:~~)
R)
l

Q02
s)
l

NETWORK 23

NETWORK 24

mt]?
')
l

~o)
l

NETWORK 25

Rn)

c:\microwin\Jast.ob1 Page 3

XII

Description of the PLC program
This program does three main job
1) Step motor start & stop and direction of rotation control
2) Step motor speed control
3) Calculating number of turns

1) Step motor start & stop and direction of rotation control
When input (IO.O) is on at first scan the output firs coil is set(QO.O) when outputs second
and third coils are off It is necessary for no intersection between outputs. After first coil set
timer of first coil begins to counting and when the timer value is reached the selected timer
value then timer resets first output coil and sets second output(QO. l) and own counter value
for next use. This routine is done when rotation selector input (I0.5) is ON.
If input (I0.5) is OFF and other rotation selector (I0.6) is ON, another routine is done. This
is reverse rotation routine. It is similar as first routine except timer sets output reverse
direction (Q0.2 _ Q0.1 _ QO.O). If any rotation selector is not ON, there is no rotation on the
step motor and step motor takes break position.

J Starts

QO.l Q0.2 Q0.0

I I I I I I (s)
l

+O
:+o O-IIN OUTH'W4
:+1
+.(7

'+2

Figure shows .using status chart total turns value in memory location VW4

XIII

2) Step motor speed control
Speed control is made by a Up/Down Counter (C48). This counter has three inputs (I0.2
I0.3 IO. 7).
When input 1(0.2) is gives pulses to counter, counter increments own value by one.
When input I(OJ) is gives pulses to counter, counter decrements own value by one.
When input I(O. 7) is gives pulses to counter, counter resets own value.
All timers selection value is this counter value(C48). This value is decimal number. Our
timer are selected between T33-T37. That means timers minimum steps lOms. All timer set
values multiplied by 10, that's results inputs of timers set value is 10 times more then
counter(C48) value.
In this procedures shows how can we control speed.

3) Calculating number of turns
The Number of turns is stored in the memory of PLC, it can be shown by PLC programmer
program (Micro/Win_Step 7).
As we described before step motor has three inputs and resolution is 24. For each turn we
must be send 8 cycle. Cycle means sending outputs with beginning first coil(QO.O), then
second coil(QO. l), and third coil(Q0.2).
In this program there is a Count Up counter (CO) is selected for sensing 8 cycle. Input of
this counter is QO.O,When output of QO.O is sets eight times counter value is eight. Then
counter increases selected memory byte (VW 4) by one with add instruction. Other input
(counter reset) of counter is connect with IO.O. That means counter counts the number of
turns at beginning of the starting of step motor.

XIV

Conclusion

In industrial control systems, positioning and variable controlling are very popular problems.
When solving this problem we will phase some problems. Which system is gives best accuracy
and reliability.
In position controlling step motors gives us many advantages. In step motor applications there
is no need feedback to control. So, it eliminates most of the problems. For positioning if our
system is related with computer, that gives power in complex calculations.
In our application PLC's is used as a bridge to computer. When inputs are given by a computer
many complex movement can be done by PLC. PLC generates needed output signal form for
step motor.
All this thinks shows us, there is a need for engineers and technicians to be familiar with PLCs
and to be able to programme, service and repair PLC based systems. Although the appearance
and size of the PLC may vary from model to model, between manufacturers and in the style of
programming in general, they all have the same requirement; the need to be connected to a
physical system and be programmed correctly if they are-tu provide the quality of monitoring
and control required.

xv

- - --- ----.--~ -

	Page 1
	Titles
	NEAR EAST UNIVERSITY
	GRADUATION PROJECT
	"Step yWotor Control witfi <PLC"

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 2
	Images
	Image 1
	Image 2

	Page 3
	Titles
	31
	31
	31
	31
	33
	34
	34
	34
	43
	43
	43

	Images
	Image 1
	Image 2

	Page 4
	Images
	Image 1

	Tables
	Table 1

	Page 5
	Titles
	6-+
	66

	Images
	Image 1
	Image 2

	Page 6
	Images
	Image 1

	Tables
	Table 1

	Page 7
	Images
	Image 1

	Tables
	Table 1

	Page 8
	Titles
	Introduction To Programmable Logic Controllers (PLCs)
	HISTORY OF PLC's
	ADVANTAGES
	Logic Control in Industrial Automation
	Relays and Ladder Logic

	Images
	Image 1

	Page 9
	Titles
	System Overview

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 10
	Titles
	CPU Overview
	Architecture
	Memory map

	Images
	Image 1

	Tables
	Table 1

	Page 11
	Images
	Image 1

	Tables
	Table 1
	Table 2
	Table 3

	Page 12
	Images
	Image 1
	Image 2

	Tables
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7

	Page 13
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 14
	Titles
	Program Execution Modes
	Interrupt Processing

	Images
	Image 1
	Image 2

	Page 15
	Titles
	Subroutines
	Jump Instruction
	Error Handling

	Images
	Image 1

	Page 16
	Titles
	Troubleshooting

	Images
	Image 1
	Image 2

	Page 17
	Titles
	Hardware Features

	Images
	Image 1
	Image 2

	Page 18
	Titles
	LEDs
	Super Capacitor

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 19
	Titles
	~lode Switch
	Memory Module

	Images
	Image 1

	Page 20
	Titles
	Analog Potentiometer
	Communication Port
 _

	Images
	Image 1
	Image 2
	Image 3

	Page 21
	Titles
	Panel Mounting Holes
	Field Wiring Connector
	Bus Expansion Port
	Mounting

	Images
	Image 1

	Page 22
	Titles
	..Ł..
	-Programmable Parameters

	Images
	Image 1

	Tables
	Table 1

	Page 23
	Titles
	Hardware Interrupts
	Communication Interrupts

	Images
	Image 1
	Image 2

	Page 24
	Titles
	Cyclic Interrupts
	Passwords and Protection Levels

	Images
	Image 1

	Tables
	Table 1

	Page 25
	Titles
	Overview

	Images
	Image 1

	Page 26
	Titles
	Immediate 1/0
	High Speed Counter

	Images
	Image 1

	Page 27
	Titles
	Pulse outputs
	-Operator Interfaces

	Images
	Image 1
	Image 2

	Page 1
	Titles
	OPS
	4
	99
	99
	499

	Images
	Image 1
	Image 2

	Page 2
	Titles
	OP25
	EJ\ ...Ł · .. 1,-.,.,.·.·~··· .'. ·.···· l· \36GSciJ. l
	B.(:~ ··Ł.·· I~ [,],:;JG] II
	B···· :r, ·. I ~GGJG
	a.~.:,Ł .. ·;;..__,..o"'.~ I El G];;J[IJ I
	'il.~BBEJB~B~Łr ~i~·.··
	NIA
	-Programming

	Images
	Image 1
	Image 2

	Page 3
	Titles
	Ladder Logic Programming
	I
	Statement List Programming
	Instruction Set

	Images
	Image 1
	Image 2

	Page 4
	Titles
	Ladder Instruction Set
	-Ir-
	Normally
	Closed
	Immediate
	Normally Closed Contact
	-11r-
	-l1rr-
	Compare Byte Equal Contact
	Normally
	-Irr-
	Open
	Immediate
	-l==Br-
	n2

	Images
	Image 1

	Page 5
	Titles
	-l>=Br-
	-l>=Ir-
	-l<=Br-
	-l<=Ir-
	-l==Ir-

	Images
	Image 1

	Page 6
	Titles
	-l==Df--
	-l==Rf--
	-l>=Df--
	-l>=Rf--
	-l<=Df--

	Images
	Image 1

	Page 7
	Titles
	Compare Real Less Than Or
	-l<=Rr-
	n2
	Negative Transition Contact
	-1Nr-
	Ladder Contact Examples
	-~
	Invert Power Flow Contact
	-INoTr-
	==I I INoTI ()
	Positive Transition Contact
	N C)
	p C)

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 8
	Titles
	Read Real Time Clock
	Set Real Time Clock

	Images
	Image 1

	Tables
	Table 1
	Table 2

	Page 9
	Titles
	Real-time
	Clock
	Instruction
	I I EN
	BCD to Integer
	µ0.2
	I I IEN

	Images
	Image 1
	Image 2
	Image 3

	Page 10
	Images
	Image 1

	Page 11
	Titles
	Encode
	ASCII to Hex
	Segment
	Hex to ASCII

	Images
	Image 1

	Page 12
	Titles
	Ladder Conversion Instruction
	I
	HSC Definition

	Images
	Image 1
	Image 2
	Image 3

	Page 13
	Titles
	High Speed Counter
	Ladder High-speed
	Operation
	Pulse Output

	Images
	Image 1
	Image 2

	Tables
	Table 1
	Table 2

	Page 14
	Titles
	Interrupt Routine
	Detach Interrupts
	Attach Interrupts

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Tables
	Table 1

	Page 15
	Titles
	Enable Interrupts
	Network Read
	Disable Interrupts
	-----1(E IS Y
	Return from Interrupts

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 16
	Titles
	Network Write
	Data
	Sharing
	with
	Interrupt
	Programming Techniques for Data
	Transmit

	Images
	Image 1
	Image 2
	Image 3

	Page 17
	Titles
	Interrupt Event Priority Table
	(current value = preset value)
	y
	y
	y
	y

	Images
	Image 1
	Image 2

	Page 18
	Titles
	Ladder Interrupt I Communication
	~No)
	I I I IEN
	Horizontal Lines
	Vertical Lines
	1---.------1 EN

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Tables
	Table 1

	Page 19
	Titles
	OR Word
	AND Word
	AND Double Word

	Images
	Image 1
	Image 2

	Page 20
	Titles
	XOR Double Word
	OR Double Word
	XOR Word

	Images
	Image 1
	Image 2

	Page 21
	Titles
	Invert Word
	Ladder
	Logical
	Operations
	Invert Double Word
	-----t EN
	II IP I EN

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Tables
	Table 1

	Page 22
	Titles
	Add Integer
	Add Real
	Add Double Integer

	Images
	Image 1

	Page 23
	Titles
	ubtract Integer
	Subtract Real
	Subtract Double Integer

	Images
	Image 1
	Image 2

	Page 24
	Titles
	Ylultiply Integer
	Divide Integer
	Multiply Real

	Images
	Image 1
	Image 2

	Page 25
	Titles
	JfN =OUT
	Divide Real
	Increment Double Word
	Square Root Real

	Images
	Image 1
	Image 2

	Page 26
	Titles
	Decrement Word
	l\!lath/Inc/Dec Examples
	Decrement Double Word

	Images
	Image 1
	Image 2

	Page 27
	Titles
	Ylove Byte
	Move Double Word
	Move Word
	Move Real

	Images
	Image 1
	Image 2

	Page 28
	Titles
	Block l\'love Byte
	Swap
	Block Move Word
	Shift Right Word

	Images
	Image 1

	Page 29
	Titles
	Shift Left Word
	Shift Left Double Word

	Images
	Image 1
	Image 2

	Page 30
	Images
	Image 1

	Page 1
	Titles
	Rotate Right Double Word
	Rotate Left Double Word
	Rotate Left Word

	Images
	Image 1

	Page 2
	Titles
	Shift Register Bit
	Move I Shift I Rotate I Fill
	r--j
	Fill Memory

	Images
	Image 1

	Tables
	Table 1

	Page 3
	Titles
	Output
	n
	-c)
	Output Immediate Coil
	n
	-(I)
	I p
	~ND)
	Set
	-(s)

	Images
	Image 1

	Tables
	Table 1

	Page 4
	Titles
	Set Immediate Coil
	Ladder Output Coil Examples
	Reset Coil
	L_ __ :i°·o Q0.1
	I I I ()
	--(s_r)
	I Cs)
	I (R)
	Reset Immediate Coil
	--(R_r)
	~No)

	Images
	Image 1
	Image 2

	Page 5
	Titles
	End
	Jump
	Stop
	Watchdog Reset
	Label
	Call

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9

	Page 6
	Titles
	Subroutine
	HE xi)
	No Operation
	Next
	-=---cRET)
	Return
	For

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 7
	Titles
	Ladder
	Program
	Control
	L_Jo.3
	r-----,==BI IEN
	~ojo (wnR)

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10
	Image 11
	Image 12

	Page 8
	Titles
	Add to Table
	FIFO (First In First Out)
	LIFO (Last In First Out)

	Images
	Image 1
	Image 2

	Page 9
	Titles
	Ladder Table I Find Instruction
	Find Table
	TBL FIND

	Images
	Image 1
	Image 2

	Page 10
	Titles
	Timer - On Delay
	Count Up
	~
	Count Up I Down
	Timer - Retentive On Delay
	~

	Images
	Image 1

	Page 11
	Titles
)
	co
	-------1cu CTU
	1-----------1 R
	rM°i'
	~
	30-k___J
	11 ()

	Images
	Image 1

	Tables
	Table 1

	Page 12
	Titles
	Statement List Instruction Set
	Out (STL)
	n
	And Immediate (STL)
	AI
	n
	I
	Out Immediate (STL)
	=I n
	And (STL)
	And Load (STL)
	A n

	Images
	Image 1

	Tables
	Table 1

	Page 13
	Titles
	And Not (STL)
	Format:
	Edge Up (STL)
	Load (STL)
	LD n
	I
	And Not Immediate (STL)
	~_,_'n n
	Edge Down (STL)
	ED

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 14
	Titles
	Load Immediate (STL)
	LDI n
	Logic Pop (STL)
	Load Not (STL)
	LDN n
	Load Not Immediate (STL)
	LDNI n

	Images
	Image 1

	Tables
	Table 1

	Page 15
	Titles
	Logic Push (STL)
	Logical Negation (STL)
	LPS
	NOT
	Or (STL)
	Or Immediate (STL)
	OI n

	Images
	Image 1

	Tables
	Table 1
	Table 2

	Page 16
	Titles
	Or Load (STL)
	LD
	Or Not Immediate (STL)
	ONI n
	Or Not (STL)
	ON
	Reset (STL)
	R

	Images
	Image 1

	Tables
	Table 1

	Page 17
	Titles
	Reset Immediate (STL)
	Set Immediate (STL)
	Read Time of Day (STL)
	Q
	TODR T
	Set (STL)
	TODR VB400

	Images
	Image 1

	Tables
	Table 1

	Page 18
	Titles
	Compare Byte Equal Instructions
	Write Time of Day (STL)
	TODW T

	Images
	Image 1

	Tables
	Table 1

	Page 19
	Titles
	Compare Byte Greater Than or
	Compare Word Equal Instructions
	Compare Byte Less Than or Equal
	Compare Word Greater Than or

	Images
	Image 1

	Page 20
	Images
	Image 1

	Page 21
	Titles
	Compare Real Equal Instructions
	Compare Real Less Than or Equal
	Compare Real Greater Than or
	ASCII to Hex (STL)

	Images
	Image 1

	Page 22
	Titles
	Convert BCD to Integer (STL)
	Format:
	Operands:
	Description of operation:
	Example:
	Description of operation:
	Integer Double Word to Real(STL)
	Format:
	Example:
	Decode (STL)
	Format:
	Operands:
	Description of operation:
	Example:
	Operands:
	Description of operation:
	Segment (STL)
	Format:
	Operands:
	Example:
	Encode (STL)
	Format:
	Operands:
	Description of operation:
	Example:

	Images
	Image 1

	Page 23
	Titles
	Hex to ASCII (STL)
	Truncate (STL)
	Count Up (STL)
	Convert Integer to BCD (STL)

	Images
	Image 1

	Page 24
	Titles
	Count Up/Down (STL)
	Detach Interrupt (STL)
	Interrupt Routine (STL)
	Attach Interrupt (STL)
	Enable Interrupt (STL)

	Images
	Image 1

	Tables
	Table 1

	Page 25
	Titles
	Disable Interrupt (STL)
	High-speed Counter Definition
	Conditional Return from Interrupt
	High-speed Counter (STL)
	Return from Interrupt (STL)

	Images
	Image 1

	Tables
	Table 1

	Page 26
	Titles
	Pulse (STL)
	Add Integer (STL)
	Subtract Integer (STL)
	IN2 (word):
	Transmit (STL)

	Images
	Image 1

	Tables
	Table 1

	Page 27
	Titles
	Add Double Integer (STL)
	Add Real (STL)
	Subtract Double Integer (STL)
	Subtract Real (STL)

	Images
	Image 1

	Page 28
	Titles
	Multiply Real (STL)
	Multiply Integer (STL)
	Divide Real (STL)
	Divide Integer (STL)

	Images
	Image 1

	Page 29
	Titles
	Square Root (STL)
	Block Move Word (STL)
	IN (Dword):
	Block Move Byte (STL)
	Memory Fill (STL)

	Images
	Image 1

	Page 30
	Titles
	Move Byte (STL)
	Format:
	Operands:
	Operands:
	Example:
	Description of operation:
	Description of operation:
	Example:
	Move Double Word (STL)
	Format:
	Move Word (STL)
	Format:
	Operands:
	Operands:
	Description of operation:
	Description of operation:
	Example:
	Move Real (STL)
	Note: CPU 214 only.
	Format:
	Example:

	Images
	Image 1

	Page 1
	Titles
	Swap Bytes (STL)
	Network Write (STL)
	Network Read (STL)
	Subroutine Call (STL)
	n:

	Images
	Image 1

	Page 2
	Titles
	Conditional Return from
	Conditional End (STL)
	Jump to Label (STL)
	For (STL)

	Images
	Image 1

	Page 3
	Titles
	Label (STL)
	Next (STL)
	No Operation (STL)
	Main Program End (STL)
	N:

	Images
	Image 1
	Image 2

	Page 4
	Titles
	Unconditional Return from
	Stop (STL)
	Watchdog Reset (STL)
	Subroutine (STL)
	Rotate Left Double Word (STL)

	Images
	Image 1
	Image 2

	Page 5
	Titles
	Rotate Left Word (STL)
	Rotate Right Word (STL)
	Rotate Right Double Word (STL)
	Shift Register Bit (STL)

	Images
	Image 1

	Page 6
	Titles
	Shift Left Double Word (STL)
	Shift Right Double Word (STL)
	Shift Left Word (STL)
	Shift Right Word (STL)
	= 1

	Images
	Image 1

	Page 7
	Titles
	Add To Table (STL)
	Find Less Than (STL)
	First In First Out (STL)
	Find Not Equal To (STL)

	Images
	Image 1
	Image 2

	Page 8
	Titles
	Find Equal To (STL)
	Last In First Out (STL)
	Find Greater Than (STL)

	Images
	Image 1

	Page 9
	Titles
	On Delay Timer (STL)
	AND Word (STL)
	OR Word (STL)
	Retentive On Delay Timer (STL)

	Images
	Image 1

	Tables
	Table 1

	Page 10
	Titles
	Exclusive OR Word (STL)
	OR Double Word (STL)
	AND Double Word (STL)
	Exclusive OR Double Word (STL)

	Images
	Image 1
	Image 2

	Page 11
	Titles
	Increment Word (STL)
	Decrement Double Word (STL)
	Decrement Word (STL)
	Invert Word (STL)
	Increment Double Word (STL)
	Invert Double Word (STL)

	Images
	Image 1

	Page 12
	Titles
	-Specifications
	CPU 212 DC

	Images
	Image 1
	Image 2
	Image 3

	Page 13
	Titles
	CPU 212 DC, DC In, DC Out
	+
	+
	000000000000
	0
	((((++ ((((
	0 1~00000000000
	93

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 14
	Titles
	CPU 212 AC

	Images
	Image 1

	Page 15
	Titles
	CPU 212 AC, DC In, Relay Out
	0
	QI~~~~?~?~~~~~

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 16
	Titles
	CPU 212 AC, AC In, AC Out
	!vAc I
	0
	l~c I.__~~~~~~~~~~--.
	0 1~~~~~?~~~0~~

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 17
	Titles
	CPU 214 DC

	Images
	Image 1
	Image 2

	Page 18
	Titles
	CPU 214 DC, DC In, DC Out
	... ~
	.-n-,
	000000000000000000
	0
	98

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1
	Table 2

	Page 19
	Titles
	CPU 214 AC

	Images
	Image 1

	Page 20
	Titles
	CPU 214 AC, DC In, Relay Out
	0
	0
	000000000000000000

	. . ' ' ('l '((((((
	T+ (((((((T+

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 21
	Titles
	CPU 214 AC, AC In, AC Out
	0

	000000000000000000
	0

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10
	Image 11
	Image 12

	Page 22
	Titles
	Digital Input, 8 Point, 24 VDC

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 23
	Titles
	Digital Input, 8 Point, 120 V AC
	0
	lAC1-;.;;JL~~~~~~~~~~~~~~~~~~~~-:--,

	Images
	Image 1
	Image 2
	Image 3

	Page 24
	Titles
	Digital Output, 8 Points, 24 VDC
	"

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 25
	Titles
	Digital Output, 8 Point, Relay
	0

	Images
	Image 1
	Image 2
	Image 3

	Page 26
	Titles
	Digital Output, 8 Point, 120/230 VAC
	0

	Images
	Image 1
	Image 2
	Image 3

	Page 27
	Titles
	Memory Cartridge Specification
	PC/PPI Cable Specification

	Images
	Image 1

	Page 28
	Titles
	(Symbolic Name)
	(Modular 1/0 Expansion)
	(Real-time Clock)

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 29
	Titles
	(Integrated Pulse Outputs)
	(Powerful Instruction Set)
	(On-board Communication Port)

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 30
	Titles
	(Exclusive Free Port Mode)
	(Password Protection)
	(Maintenance-Free)
	(High Speed Counter - Free)

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 1
	Images
	Image 1

	Page 2
	Titles
	STEP lVIOTOR CONTROL WITH PLC (SIEMENS S7_CPU212,DC)
	INTRODUCTION
	Why do we use PLC?
	Working of the PLC

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 3
	Titles
	CPU:
	Step motors
	3 (Courtesy of Robert Bosch Inc.)

	Images
	Image 1
	Image 2
	Image 3

	Page 4
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10

	Page 5
	Titles
	Advantages of the Step motors over controlling

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 6
	Titles
	Overview of the Project Application:
	Materials:
	Wiring Diagram

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 7
	Images
	Image 1
	Image 2

	Tables
	Table 1
	Table 2
	Table 3
	Table 4

	Page 8
	Titles
	Statement List of the PLC Program
	co, +8

	Images
	Image 1

	Tables
	Table 1

	Page 9
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 10
	Images
	Image 1

	Page 11
	Titles
	!OQf---1,~ >f--1Q'.2tQr)
	MOV_W
	Ł...... j" l tQ~O)
	')
	s)
	.
	.,
	pf-----
	--l /0.7 f---1 p 1----~
	--j rc.s l--------(c~t1)
	-(mo)
	X

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 12
	Titles
	--lD4tQ;2)
	';')
	s)
	rnlt~;)
	.)
	s)
	I
	c,ah__J

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 13
	Titles
	--j rs- 1:~~)
	R)
	mt]?
	')
	~o)
	Rn)
	XII

	Images
	Image 1
	Image 2

	Page 14
	Titles
	+O

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Tables
	Table 1

	Page 15
	Images
	Image 1

	Page 16
	Titles
	Conclusion
	xv

	Images
	Image 1

