
NEAR EAST UNIVERSTIY

Faculty of Engineering

Department of Computer Engineering

IMPLEMENTATIONS OF NEURAL NETWORKS

Graduation Project
COM:400

Student : Yousef Ahmed Haif
Supervisor : Assoc.Prof.Dr.Adnan Khashman

Nicosia - 2003

i

· ACKNOWLEDGMENT

First, I would like to thanks my supervisor Assoc.Prof.Dr Adnan khashman for his

great advice and recommendations to finish this project properly.

Although I faced many problems collection data but he has guided me the

appropriate references.

Second, I would like to thank my father and my brothers for supporting me to

finish my school and giving me a lot of support to be a good man in this life.

Third, I thank all the staff of the Department of Computer Engineering for giving

me the facilities to practice and solving any problem I was facing during working in this

project.

Fourth, Thanks for all my friends for their advices and support me.

Finally I would like to dedicate this work to all those who are interested in Neural
Network.

ii

ABSTRACT

Work on artificial neural networks, commonly referred to as "neural networks",

has been motivated right from its inception by the recognition that the brain computes in

an entirely different way from the conventional digital computer.

When we are talking about a neural network, we should more properly say

"artificial neural network" (ANN), Biological neural networks are much more

complicated than the mathematical models we use for artificial neural networks. But it

is customary to be lazy and drop the "A" or the "artificial".

Neural networks are computing devices that are loosely based on the operation of

the brain. A neural network consists of a large number of simple processing' units (or

"neurons"), massively interconnected and operating in parallel.

This project describes what artificial neural networks are, how to use them, and

where they are currently being applied. A brief overview of neural networks and their

history is provided. The project describes the individual neurons that comprise an

artificial neural network in detail, along with the most common training procedures in
use.

Neural networks architectures and algorithms are presented. The project briefly

summarizes application areas where neural networks are commonly applied. Finally,

neural networks application in fraud detection is noted.

111

ACKNOWLEDGMENT i
ABSTRACT il
TABLE OF CONTENTS ill
INTRODUCTION 1

CHAPTER ONE: INTRODUCTION 3
TO NEURAL NETWORKS

1.1 Overview 3
1.2 Artificial Neural Networks 3
1.3 History ofNeural Networks 3
1.4 Artificial Neural and How They work 7
1.5 Why are Neural Networks Important 10
1.6 Electronic Implementation of Artificial Neurons 10
1. 7 Artificial Network Operations 12
1. 8 The Future of artificial Neural Networks 13
1.9 Summary 14

CHAPTER TWO: NERUAL NETWORKS 15
ALGORITHMES

2.1 Overview 15
2.2 Model of A Neuron 15
2.3 Network for classification 19

2.3.1 Leaming Vector Quantization 19
2.4 Neural Networks Structure 20

2.4.1 Feed forward, Back-Propagation 20
2.4.2 Higher Order Neural Network or Functional 22

link Network
2.4.3 Training an Artificial Neural Network 23

2.4.3.1 Supervised Training 23
2.4.3 .2 Unsupervised or Adaptive Training 24
2.4.3.3 Leaming Rates 25
2.4.3.4 Leaming Laws 26

2.5 Advanced Neural Networks 28
2.5.1 Kohonen Self-organizing Networks 28
2.5 .2 Algorithm 29

2.6 Problem Using Neural Network 30
2.6.1 Local Minimum 30
2.6.2 Practical Problems 31

2.7 Summary 31

CHAPTER THREE: NEURAL NETWORKS 33
APPLICATIONS

3 .1 Overview 3 3

IV

3.2 How Artificial Neural Network are Being Used 33
3.3 Language Processing 35
3.4 Character Recognition 36
3.5 Image Compression 36
3.6 Pattern Recognition 40
3. 7 Signal Processing 41
3.8 Financial 42
3.9 Neural Network in Medicine 43
3 .10 Electronic Noses 43
3 .11 Applications in the Arts 45
3.12 Neural Networks in Telecommunications 47
3.13 Summary 48

CHAPTER FOUR: DIGIT RECOGNITION USING 49
NEURAL NETWORKS

4.1 Overview 49
4.2 Training · 50
4.3 Training and Test-Data 51
4.4 The Back propagation 52
4.5 Network Convergence 55
4.6 Method 56
4.7 Evaluation 58
4.8 Results 60
4.9 Summary 61

CONCLUSION 63
REFERENCES 65

1

INTRODUCTION

Humans and other living beings manage to survive within a very complex world in
their daily life. An uncountable number of decisions have to be taken on the way. Many

of which are substantially based on existing knowledge and made by complex and

discovered inference mechanism. Eventually, these decisions are derived either

unconsciously or consciously. The ability of humans to make decisions has been created

by an evolutionary selection process. The property is more powerful than any

corresponding software implementation on existing system. Decisions, as a matter of fact,

are taken mainly by actions of the brain and may be characterized by a complex

hierarchical structure of associated subroutines. The decisions may solve, for instance, a

pattern classification, recognition, or other problems. They may lead to certain control

actions of the body, or they may not have any direct output.

System modeling has been an important issue in both engineering and non

engineering areas. Conventional approaches to system modeling rely heavily on

mathematical tools that emphasize the precision and exact description of each quantity
involved. The use of these. mathematical tools such as (difference equations, transfer

functions, relation models etc) is appropriate when the system is simple and/or well

defined

To overcome the problems encountered by conventional modeling methods, Neural

Network modeling have been proposed as viable alternatives and successfully employed

in various areas where conventional approaches fail to provide satisfactory solutions.

Artificial Neural Networks are being touted as the wave of the future in computing.

They are indeed self learning mechanisms which don't require the traditional skills of a

programmer. But unfortunately, misconceptions have arisen. Writers have hyped that

these neuron-inspired misconceptions have arisen. Writers have hyped that these neuron-

2

ired misconceptions have arisen. Writers have hyped that these neuron-inspired their

lems with neural networks.

Although Artificial Neural Networks (ANNs) have been around since the late

950's, it wasn't until the mid-1980 that algorithms became sophisticated enough for

general applications. Today ANNs are being applied to an increasing number of real

world problems of considerable complexity.

There are multitudes of different types of ANNs. Some of the more popular include

the multilayer perceptron which is generally trained with the back propagation of error

algorithm, learning vector quantization, radial basis function, Hopfield, and Kohonen, to

name a few. Some ANNs are classified as feedforward while others are recurrent (i.e.,

implement feedback) depending on how data is processed through the network. Another

way of classifying ANN types is by their method of learning (or training), as some ANN s

employ supervised training while others are referred to as unsupervised or self

organizing. Supervised training is analogous to a student guided by an instructor.

Unsupervised algorithms essentially perform clustering of the data into similar groups

based on the measured attributes or features serving as inputs to the algorithms. This is

analogous to a student who derives the lesson totally on his or her own. ANNs can be

implemented in software or in specialized hardware.

In chapter one we have demonstrated a basic introduction to neural networks.

Within the chapter we have explained that neural networks are groups of select neurons

that are connected with one another and they are functional circuits in the brain that

process information and create useful activities by sending outputs to the body. In chapter

two we have discussed neural networks classified according to their learning processes

into two types, supervised learning and unsupervised learning. Also this chapter

discussed the various types of neural networks structures and algorithms. In chapter three

we demonstrate applications of artificial neural networks in various fields. We have

described briefly neural networks applications in language processing, character and

pattern recognition, and servo control application. In chapter four we have demonstrate

how to recognize the hand written digital recognition a using percepton neural network

and using the back propagation algorithms.

3

The aim of this project is to investigate and demonstrate application of neural

etwork in real life.

Various structures of neural networks will also be described .

CHAPTER ONE

INTRODUCTION TO NEURAL NETWORKS

1.1 Overview

This chapter intended to act a brief introduction to Artificial Neural Network

technology and what Artificial Neural Networks are, how to use them, why they are

important and who should know about Neural Networks. And will explain where

Artificial Neural Networks have come from and presents a brief history of Neural

Networks. Also this chapter discusses how they are currently being applied, and what

types of application are currently utilizing the different structures. It will also detail why

there has been such a large amount of interest generated in this are, and where the future

of this technology.

1.2 Artificial Neural Networks

Artificial Neural Networks are relatively crude electronic models based on the

neural structure of the brain. The brain· basically learns from experience. It is natural

proof that some problems that are beyond the scope of current computers are indeed

solvable by small energy efficient packages. This brain modeling also promises a less

technical way to develop machine solutions. This new approach to computing also

provides a more graceful degradation during system overload than its more traditional

counterparts.

These biologically inspired methods of computing are thought to be the next major

advancement in the computing industry. Even simple animal brains are capable of

functions that are currently impossible for computers. Computers do rote things well, like

keeping ledgers or performing complex math. But computers have trouble recognizing

even simple patterns much less generalizing those patterns of the past into actions of the

future.

4

5

Now, advances in biological research promise an initial understanding of the natural

thinking mechanism. This research shows that brains store information as patterns.

Some of these patterns are very complicated and allow us the ability to recognize

individual faces from many different angles. This process of storing information as

patterns, utilizing those patterns, and then solving problems encompasses a new field in

computing. This field, as mentioned before, does not utilize traditional progra~ing but

involves the creation of massively parallel networks and the training of those networks to

solve specific problems. This field also utilizes words very different from traditional

computing, words like behave, react, self-organize, learn, generalize, and forget.

Unfortunately, that confusion has come from the industry itself. An avalanche of

articles has appeared touting a large assortment of different neural networks, all with

unique claims and specific examples. Currently, only a few of these neuron-based

structures, paradigms actually, are being used commercially. One particular structure, the

feed forward, back propagation network, is by far and away the most popular. Most of the

other neural network structures represent models for "thinking" that are still being

evolved in the laboratories. Yet, all of these networks are· simply tools and as such the

only real demand they make is that they require the network architect to learn how to use

them.

1.3 History of Neural Networks

The study of the human brain is thousands of years old. With the advent of modem

electronics, it was only natural to try to harness this thinking process.

The history of neural networks can be traced back to the work of trying to model

the neuron. The first model of a neuron was by physiologists, McCulloch and Pitts (1943)

[1]. The model they created had two inputs and a single output. McCulloch and Pitts

noted that a neuron would not activate if only one of the inputs was active. The weights

for each input were equal, and the output was binary. Until the inputs summed up to a

certain threshold level, the output would remain zero. The McCulloch and Pitts' neuron

has become known today as a logic circuit.

The perceptron was developed as the next model of the neuron by Rosenblatt

958) [2], as seen in Figure 1.2. Rosenblatt, who was a physiologist, randomly

interconnected the perceptrons and used trial and error to randomly change the weights in

order to achieve "learning." Ironically, McCulloch and Pitts' neuron is a much better

model for the electrochemical process that goes on inside the neuron than the perceptron,

which is the basis for the modem day field of neural networks (Anderson and Rosenfeld,

1987) [3].

The electrochemical process of a neuron works like a voltage-to-frequency

translator (Anderson and Rosenfeld, 1987) [3]. The inputs to the neuron cause a chemical

reaction such that, when the chemicals build to a certain threshold, the neuron discharges.

As higher inputs come into the neuron, the neuron then fires at a higher frequency, but

the magnitude of the output from the neuron is the same. Figure 1.2 is a model of a

neuron. A visual comparison of Figures 1.1 and 1.2 shows the origins of the idea of the

perceptron can be traced back to the neuron. Externally, a perceptron seems to resemble

the neuron with multiple inputs and a single output. However, this similarity does not

really begin to model the complex electrochemical processes that actually go on inside a

neuron. The perceptron is a very simple mathematical representation of the neuron.

w..,
Cr

./----/ <:»: ·3 x ,.A•, .:;~

Figure 1.1 The Perceptron

Selfridges (1958) [4] brought the idea of the weight space to the perceptron.

Rosenblatt adjusted the weights in a trial-and-error method. Selfridges adjusted the

weights by randomly choosing a direction vector. If the performance did not improve, the

weights were returned to their previous values, and a new random direction vector was

6

()'"j······ >:···.··.
' . . j ·. . . ., \ r - lllilacl<

l /
~ ··. -=::· .axon

rt
•• ~!t_

osen. Selfridges referred to this process as climbing the mountain, as seen in Figure

.~. Today, it is referred to as descending on the gradient because, generally, error

squared, or the energy, is being minimized.

"!1· .. li ·.·. - · · c~n membrane,

Figure 1.2 The Biological Neuron

After Perceptrons was published, research into neural networks went unfunded, and

would remain so, until a method was developed to solve n-separable problems. Werbos

(1974) [7] was first to develop the back propagation algorithm.

It was then independently rediscovered by Parker (1985) [8] and by Rumelhart and

McClelland (1986) [9], simultaneously. Back propagation is a generalization of the

Widrow-Hoff LMS algorithm and allowed perceptrons to be trained in a multilayer

configuration, thus a n-1 node neural network could be constructed and trained. The

weights are adjusted based on the error between the output and some known desired

output. As the name suggests, the weights are adjusted backwards through the neural

network, starting with the output layer and working through each hidden layer until the

input layer is reached. The back propagation algorithm changes the schematic of the

perceptron by using a sigmoidal function as the squashing function. Earlier versions of

the perceptron used a signum function. The advantage of the sigmoidal function over the

signum function is that the sigmoidal function is differentiable. This permits the back

propagation algorithm to transfer the gradient information through the nonlinear

squashing function, allowing the neural network to converge to a local minimum. Neuro

7

Soma: Procaae 'the inputs

uting: Foundations of Research (Anderson and Rosenfeld, 1987) [3] is an excellent

e of the work that was done before 1986. It is a collection of papers and gives an

teresting overview of the events in the field of neural networks before 1986.

Although the golden age of neural network research ended 25 years ago, the

· scovery of back propagation has reenergized the research being done in this area. The

feed-forward neural network is the interconnection of perceptrons and is used by the vast

majority of the papers reviewed.

1.4 Artificial Neurons and How They Work

The fundamental processing element of a neural network is a neuron. This building

block of human awareness encompasses a few general capabilities. Basically, a

biological neuron receives inputs from other sources, combines them m some way,

performs a generally nonlinear operation combines them in some way, performs a
I

generally nonlinear operation on the result, and then outputs the fmal result. The figure

shows the relationship of these four parts.

:;;:::.,r "1 Parts of a
'/ ~,rJool N,m GSI

Den:lritas: Accei:t inputs

Ax:on: Turn ihe pro:::essed ini:uls
inlo outputs,

Synapses: The electrochemical
coni.o:t between neurons

Figure 1.3 Simple Biological Neuron

8

(

humans there are many variations on this basic type of neuron, further

licating man's attempts at electrically replicating the process of thinking. Yet, all

neurons have the same four basic components. These components are known by

err biological names - dendrites, soma, axon, and synapses. Dendrites are hair-like

ensions of the soma which act like input channels. These input channels receive their

· put through the synapses of other neurons. The soma then processes these incoming

signals over time. The soma then turns that processed value into an output which is sent

to other neurons through the axon and the synapses.

Recent experimental data has provided further evidence that biological neurons are

structurally more complex than the simplistic explanation above. They are significantly

more complex than the existing artificial neurons that are built into today's artificial

neural networks. As biology provides a better understanding of neurons, and as

technology advances, network designers can continue to improve their systems by

building upon man's understanding of the biological brain.

But currently, the goal of artificial neural networks is not the grandiose recreation

of the brain. On the contrary, neural network researchers are seeking an understanding of

nature's capabilities for which people.can engineer solutions to problems that have not

been solved by traditional computing.

To do this, the basic units of neural networks, the artificial neurons, simulate the

four basic functions of natural neurons. The figure shows a fundamental representation
of an artificial neuron.

9

Some applications require "black and white," or binary, answers. These

·~~
Im 1... \\'); 1. Smnma:km . '!
Y~, r(~1frr,1llil'.:I

Oulµui
Pmh

Pm:r.rll1Sfog
E:kim:mt

Figure 1.4 A Basic Artificial Neuron

In the figure above, various inputs to the network are represented by the

mathematical symbol, x(n). Each of these inputs is multiplied by a connection weight.

These weights are represented by w(n). In the simplest case, these products are simply

summed, fed through a transfer function to generate a result, and then output. This

process lends itself to physical implementation on a large scale in a small package. This

electronic implementation is still possible with other network structures which utilize

different summing functions as well as different transfer functions.

applications include the recognition of text, the identification of speech, and the image

deciphering of scenes. These applications are required to tum real- world inputs into

discrete values. These potential values are limited to some known set, like the ASCII

characters or the most common 50,000 English words. Because of this limitation of

output options, these applications don't always utilize networks composed of neurons that

simply sum up, and thereby smooth, inputs. These networks may utilize the binary

roperties of ORing and ANDing of inputs. These functions, and many others, can be

uilt into the summation and transfer functions of a network.

10

Other networks work on problems where the resolutions are not just one of several

m values. These networks need to be capable of an infinite number of responses.

· ations of this type include the "intelligence" behind robotic movements. This

elligence" processes inputs and then creates outputs which actually cause some device
move.

Other applications might simply sum and compare to a threshold, thereby producing

of two possible outputs, a zero or a one. Other functions scale the outputs to match

application, such as the values minus one and one. Some functions even integrate the

ut data over time, creating time-dependent networks.

1..5 Why Are Neural Networks Important

Neural networks are responsible for the basic functions of our nervous system. They

determine how we behave as an individual. Our emotions experienced as fear, anger, and

·hat we enjoy in life come from neural networks in the brain. Even our ability to think

and store memories depends on neural networks. Neural networks in the brain and spinal

ord program all our movements including how fast we can type on a computer keyboard

o how well we play sports. Our ability to see or hear is disturbed if something happens to

the neural networks for vision or hearing in the brain.

Neural networks also control important functions of our bodies. Keeping a constant

body temperature and blood pressure are examples where neural networks operate

automatically to make our bodies work without us knowing what the networks are doing.

These are called autonomic functions of neural networks because they are automatic and

occur continuously without us being aware of them.

1.6 Electronic Implementation of Artificial Neurons

In currently available software packages these artificial neurons are called

rocessing elements" and have many more capabilities than the simple artificial neuron

escribed above. Those capabilities will be discussed later in this report. The figure

ich shown below is a more detailed schematic of this still simplistic artificial neuron.

11

-0. 5 O. 5 1

According to the inputs, inputs enter into the processing element from the upper left.

,,. first step is for each of these inputs to be multiplied by their respective weighting

or (w(n)). Then these modified inputs are fed into the summing function, which

lly just sums these products. Yet, many different types of operations can be selected.

ese operations could produce a number of different values which are then propagated

rward; values such as the average, the largest, the smallest, the ORed values, the

-~ 'H)ed values, etc. Furthermore, most commercial development products allow

software engineers to create their own summing functions via routines coded in a higher

evel language (C is commonly supported). Sometimes the summing function is further

complicated by the addition of an activation function which enables the summing

function to operate in a time sensitive way.

This sigmoid transfer function takes the value from the summation function, called

sum in the figure below, and turns it into a value between zero and one.

Out put, va.l, ue

1 . ,.--- ,.-·

0.8f I
o. E-rl

-1
......._...._...._ .•..•• -=:::.....__._....._--1-...._....__......_.__.___.__.__._......_ Inp1..1.t. va L u.e

0.1'
/
I

CV2
/' ...•

Transfer f1.1rLct.ion =
1 /(l+Exp [-sum])

Figure 1.5 Sigmoid Transfer Function

12

INFUT
LAYER

Finally, the processing element is ready to output the result of its transfer function.

· ~ output is then input into other processing elements, or to an outside connection, as

- crated by the structure of the network.

1. 7 Artificial Network Operations

The other part of the "art" of using neural networks revolves around the myriad of

ys these individual neurons can be clustered together. This clustering occurs in the

.uman mind in such a way that information can be processed in a dynamic, interactive,

d self-organizing way. Biologically, neural networks are constructed in a three

dimensional world from microscopic components. These neurons seem capable of nearly

unrestricted interconnections. That is not true of any proposed, or existing, man-made

network. Integrated circuits, using current technology, are two-dimensional devices with

limited number of layers for interconnection. This physical reality restrains the types,

and scope, of artificial neural networks that can be implemented in silicon.

Currently, neural networks are the simple clustering of the primitive artificial

eurons. This clustering occurs by creating layers which are then connected to one

other. How these layers connect is the other part of the "art" of engineering networks

resolve real world problems.

(there mny bl?' ..s•:werol
hidd.;;n by;ar.sJ

Figure 1.6 A Simple Neural Network Diagram

13

Basically, all artificial neural networks have a similar strncture or topology as

- •. own in the figure above. In that strncture some of the neurons interface to the real

orld to receive its inputs. Other neurons provide the real world with the network's

urputs. This output might be the particular character that the network thinks that it has

- canned or the particular image it thinks is being viewed. All the rest of the neurons are
· dden from view.

But a neural network is more than a bunch of neurons. Some early researchers tried

to simply connect neurons in a random manner, without much success. Now, it is known

that even the brains of snails are strnctured devices. One of the easiest ways to design a

structure is to create layers of elements. It is the grouping of these neurons into layers,

the connections between these layers, and the summation and transfer functions that

comprises a functioning neural network. The general terms used to describe these
characteristics are common to all

1.8 The Future of Artificial Neural Networks

There is no doubt that neural networks are here to stay. There has been an intense

amount of interest in them during recent years and as technology advances they will only

become more valuable tools. There are a number of potential avenues that have, as yet,

remained untapped, that will help to bring this technology to the forefront.

The first of these is the development of hardware acceleration for neural circuitry. It

bas been shown time and time again that when a technology begins to be supported by

dedicated hardware that advances come in leaps and bounds. At present much of the

vork undertaken is done via software simulation, which obviously places severe
·estrictions upon performance.

There are many ways to try and attack this very complex problem, the first of which

s to build neural models of particular brain centers without to much regard to the

mderlying neural strncture. The models can then be tested against various behavioral

aradigms like operant conditioning or classical conditioning. This technique is growing

1 its popularity with many neurophysiologists. An alternative approach is to attempt to

14

~ as much of the neural substructure's complexity as possible. The problem with

ach is that you very rapidly run out of available processing power.

Summary

In this chapter we have demonstrated a basic introduction to neural networks.

· the chapter we have explained that neural networks are groups of select neurons

are connected with one another and they are functional circuits in the brain that

ess information and create useful activities by sending outputs to the body. As we

-e discussed in the sections, neural networks have had a unique history in the realm of
(

hnology and the earliest work in neural computing goes back to the 1940's when the

- t neural network computing model was developed. Also we have explained the

efinition of artificial neural networks as computing devices that are loosely based on the

operation of the brain. Also we have considered the importance of neural networks, who

should know about neural networks and their use. We have also explained where neural

networks are being used giving some application of there use. Last but not least we have

discussed the future of neural networks considering that there is a great deal of researches

is going on in neural networks worldwide.

15

CHAPTER TWO

NEURAL NETWORKS ALGORITHMS

1 Overview

This Chapter presents a description of architectures and algorithms used to train

eural networks. This chapter will explain the Model of a neuron and structures of neural

erworks including the single layer feed forward networks, multilayer feed forward

networks, recurrent networks, and radial basis function networks. The sections below

explains the artificial neural networks training and learning involved neural networks

earning; supervised learning and unsupervised learning. Also this chapter discusses some

dvanced neural networks learning and problems using neural networks

2.2 Model of a Neuron

A neuron is an information-processing unit that is fundamental to the operation of a

neural network. Figure 2.1 shows the model for a neuron. We may identify three basic
elements of the neuron model, as described here:

A set of .f Pn0?ses or connecting link, each of which is characterized by a weight or

strength of its own. Specially, a signal ~· at the input of synapse of./ connected to

neuron .lis multiplied by the synaptic weight w1-;: It is important to make a note of the

manner in which the subscripts of the synaptic weight w1y· are written. The first

subscript refers to the neuron in question and the second subscript refers to the input

end of the synapse to which the weight refers; the reverse of this notation is also used

in the literature. The weight w1/ is positive if the associated synapse is excitatory; it is
negative if the synapse is inhibitory,

An adder for summing the input signals, weighted by the respective synapses of the

neuron; the operations described here constitutes a liner combine,~

An activation fanction for limiting the amplitude of the output of a neuron. The

activation function is also referred to in the literature as a squashi11g.Ji.t11ctio11 in that it

16

,P

uA- = L w17x./
/"'I

(2.1)

5Qll3.50es (limits) the permissible amplitude range of the output signal to some finite

. Typically, the normalized amplitude range of the output of a neuron is written

e closed unit interval [O, 1] or alternatively [-1, 1].

The model of a neuron shown in Fig. 2.1 also includes an externally applied

hold eA- that has the effect of lowering the net input of the activation function. On the

hand, the net input of the activation function may be increased by employing a bias

rather than a threshold; the bias is the negative of the threshold.

Input
ignals

Activation
function

• • • • • •

Output
,__.JJ,t

~~
Synaptic
Weights

Summing
junction

(),t

Threshold

Figure 2.1 Nonlinear Model Of A Neuron.

In mathematical terms, we may describe a neuron kby writing the following pair of
equations:

And

(2.2)

Where xj , x2, ... , Xp are the input signals; wk1, wk2, ... , Wkp are the synaptic weights

~ neuron k, U,t is the linear combiner output, B,t is the threshold, ((J(,) is the activatio11

'off, and Y-t is the output signal of the neuron. The use of thresholds, has the effect of

17

(2.3)

affine tran{lomzation to the output u1. of the linear combiner in the model of

own by

particular, depending on whether the threshold 8,t is positive of negative, the

- wsbip between the effective internal activity level or activation potential v1. of

and the linear combiner output U,t is modified in the manner illustrated in Fig .

• IOte that as a result of this affine transformation, the graph of V,t versus U,t no longer

ugh the origin.

Total internal
activity level,

V,t
Threshold B.t < 0

B-t=O
81,> 0

Linear combiner's
output, U.t

Figure 2.2. Affine Transformation Produced By The Presence Of A Threshold

The 8,t is an external parameter of artificial neuron k. We may account for its

;cr.:sence as in Eq. (2.2). Equivalently, we may formulate the combination of Eqs. (2.1)

2.2) as follows:

/J

v,(· = L w1ix./
f=O

(2.4)

and

18

Input
signals

(2.5) Y,- = (f)(v,.)
In Eq. (2.4) we have added a new synapse, whose input is

X0 =-1 (2.6)

and whose weight is

(2.7)

We may therefore reformulate the model of neuron k as in Fig. 2 .3 a. In this figure,

effect of the threshold is represented by doing two things: (1) adding a new input

fixed at -1, and (2) adding a new synaptic weight equal to the threshold Bt.

atively, we may model the neuron as in Fig. 2.3b,

Fixed inputXo= -1
, #:to = t9i (threshold)

0 ~ #7;..

Activation
function

~ <p(•) I
Output

• 4 2.. •
. Yi

•
• • •

Summing
junction

Synaptic weights
(including threshold)

(a)

Fixed input Xo = +1

Activation
function

Input
signals • • •

• • •
<p(.)

Output
Yi

Summing
junction

Synaptic weights
(including threshold)

20

(b)

Figure 2.3. Two Other Nonlinear Models Of A Neuron

Where the combination of fixed input x0 = + 1 and weight w1co = b1c accounts for the

- b.t- Although the models in Fig. 2.1 and 2.3 are different in appearance, they are

ematically equivalent.

Network for Classification

The previous section describes networks that attempt to make projections of the

e. But understanding trends and what impacts those trends might have is only one

~ several types of applications. The second class of applications is classification. A

erwork that can classify could be used in the medical industry to process both lab results

d doctor-recorded patience symptoms to determine the most likely disease. Other

applications can separate the "tire kicker" inquiries from the requests for information

from real buyers.

_.3.1. Leaming Vector Quantization.

This network topology was originally suggested by Tuevo Kohonen in the mid 80's,

well after his original work in self-organizing maps. Both this network and self

organizing maps are based on the Kohonen layer, which is Specifically, Leaming Vector

Quantization is a artificial neural network model used both for classification and image

segmentation problems.

Topologically, the network contains an input layer, a single Kohonen layer and an

output layer. An example network is shown in Figure 5.2.1. The output layer has as

many processing elements as there are distinct categories or classes. The Kohonen layer

has a number of processing elements grouped for each of these classes. The number of

21

ssing elements per class depends upon the complexity of the input-output

rionship. Usually, each class will have the same number of elements throughout the

yer, It is the Kohonen layer that learns and performs relational classifications with the

of a training set. This network uses supervised learning rules. However, these rules

' significantly from the back-propagation rules. To optimize the learning and recall

ctions, the input layer should contain only one processing element for each separable

ut parameter. Higher-order input structures could also be used.

4 Neural Network Structure

The manner in which the neurons of a neural network are structured is intimately

red with the learning algorithm used to train the network. We may therefore speak of

earning algorithms (rules) used in the design of neural networks as being structured.

general, we may identify four different classes of network architectures

_.4.1 Feed forward, Back-Propagation.

The feed forward, back-propagation architecture was developed in the early 1970's

., several independent sources. This independent co-development was the result of a

roliferation of articles and talks at various conferences which stimulated the entire

industry. Currently, this synergistically developed back-propagation architecture is the

most popular, effective, and easy to learn model for complex, multi-layered networks.

This network is used more than all others combined. It is used in many different types of

applications. This architecture has spawned a large class of network types with many

different topologies and training methods. Its greatest strength is in non-linear solutions

to ill- defined problems.

The typical back-propagation network has an input layer, an output layer, and at

east one hidden layer. There is no theoretical limit on the number of hidden layers but

_ pically there is just one or two. Some work has been done which indicates that a

maximum of four layers (three hidden layers plus an output layer) ate required to solve

blems of any complexity. Each layer is fully connected to the succeeding layer, as

snown in the figure. (Note: all of the drawings of networks in section 5 are from

Hidd,;,r, 1

~Ware's NeuralWorks Professional IT/Plus artificial neural network development

The in and out layers indicate the flow of information during recall. Recall is the

ess of putting input data into a trained network and receiving the answer. Back

gation is not used during recall, but only when the network is learning a training set.

Figure 2.4 Example Feed Forward Back-propagation Network.

The number of layers and the number of processing elements per layer are

portant decisions. These parameters to a feed forward, back-propagation topology are

so the most ethereal. They are the "art" of the network designer. There is no

quantifiable, best answer to the layout of the network for any particular application.

There are only general rules picked up over time and followed by most researchers and
engineers applying this architecture to their problems.

Rule One: As the complexity in the relationship between the input data and the

esired output increases, then the number of the processing elements in the hidden layer
should also increase.

Rule Two: If the process being modeled is separable into multiple stages, then

ditional hidden layer(s) may be required. If the process is not separable into stages,

en additional layers may simply enable memorization and not a true general solution.

Rule Three: The amount of training data available sets an upper bound for the

umber of processing elements in the hidden layer(s). To calculate this upper bound, use

e number of input- output pair examples in the training set and divide that number by

22

tal number of input and output processing elements in the network. Then divide

result again by a scaling factor between five and ten. Larger scaling factors are used

latively noisy data. Extremely noisy data may require a factor of twenty or even

y, while very clean input data with an exact relationship to the output might drop the

r to around two. It is important that the hidden layers have few processing elements.

Too many artificial neurons and the training set will be memorized. If that happens

no generalization of the data trends will occur, making the network useless on new

sets.

Once the above rules have been used to create a network, the process of teaching

This teaching process for a feed forward network normally uses some variant

the Delta Rule, which starts with the calculated difference between the actual outputs

the desired outputs. Using this error, connection weights are increased in proportion

the error times a scaling factor for global accuracy. Doing this for an individual node

that the inputs, the output, and the desired output all have to be present at the same

essing element. The complex part of this learning mechanism

- for the system to determine which input contributed the most to an incorrect output and

w does that element get changed to correct the error. An inactive node would not

tribute to the error and would have no need to change its weights.

To solve this problem, training inputs are applied to the input layer of the network,

desired outputs are compared at the output layer. During the learning process, a

ard sweep is made through the network, and the output of each element is computed

1yer by layer. The difference between the output of the final layer and the desired output

back-propagated to the previous layer(s), usually modified by the derivative of the

fer function, and the connection weights are normally adjusted using the Delta Rule.

process proceeds for the previous layer(s) until the input layer is reached.

23

_.4.2 Higher Order Neural Network or Functional Link Network

Either name is given to neural networks which expand the standard feedforward,

k-propagation architecture to include nodes at the input layer which provide the

ork with a more complete understanding of the input. Basically, the inputs are

transformed in a well understood mathematical way so that the network does not have to

learn some basic math functions: These functions do enhance the network's

understanding of a given problem. These mathematical functions transform the inputs

via higher-order functions such as squares, cubes, or sine's. It is from the very name of

these functions, higher-order or functionally linked mappings, that the two names for this

same concept were derived.
This technique has been shown to dramatically improve the learning rates of some

applications. An additional advantage to this extension of back- propagation is that these

higher order functions can be applied to other derivations - delta bar delta, extended delta

bar delta, or any other enhanced feed forward, back-propagation networks.

There are two basic ways of adding additional input nodes. First, the cross-products

of the input terms can be added into the model. This is also called the output product or

tensor model, where each component of the input pattern multiplies the entire input

pattern vector. A reasonable way to do this is to add all interaction terms between input

values. For example, for a back-propagation network with three inputs (A, B and C), the

cross-products would include: AA, BB, CC, AB, AC, and BC. This example adds

second-order terms to the input structure of the network. Third-order terms, such as

ABC, could also be added.

2.4.3 Training an Artificial Neural Network

Once a network has been structured for a particular application, that network is

ready to be trained. To start this process the initial weights are chosen randomly. Then,

the training, or learning, begins.

There are two approaches to training - supervised and unsupervised. Supervised

training involves a mechanism of providing the network with the desired output either by

manually "grading" the network's performance or by providing the desired outputs with

the inputs. Unsupervised training is where the network has to make sense of the inputs

without outside help.

2.4.3.1 Supervised Training.

24

In supervised training, both the inputs and the outputs are provided. The network

then processes the inputs and compares its resulting outputs against the desired outputs.

Errors are then propagated back through the system, causing the system to adjust the

weights which control the network this process occurs over and over as the weights are

continually tweaked. Training sets need to be fairly large to contain all the needed

information if the network is to learn the features and relationships that are important.

Not only do the sets have to be large but the training sessions must include a wide variety

of data. If the network is trained just one example at a time, all the weights set so

meticulously for one fact could be drastically altered in learning the next fact. The

previous facts could be forgotten in learning something new. As a result, the system has

to learn everything together, finding the best weight settings for the total set of facts. For

example, in teaching a system to recognize pixel patterns for the ten digits, if there were

twenty examples of each digit, all the examples of the digit seven should not be presented

at the same time.

If a network simply can't solve the problem, the designer then has to If a network

simply can't solve the problem, the designer then has to per layer, the connections

between the layers, the summation, transfer, and training functions, and even the initial

weights themselves. Those changes required to create a successful network constitute a

process wherein the "art" of neural networking occurs.

2.4.3.2 Unsupervised or Adaptive Training.

The other type of training is called unsupervised training. In unsupervised training,

the network is provided with inputs but not with desired outputs. The system itself must

then decide what features it will use to group the input data. This is often referred to as

self-organization or adoption.

At the present time, unsupervised learning is not well understood. This adaptation

to the environment is the promise which would enable science fiction types of robots to

continually learn on their own as they encounter new situations and new environments.

Life is filled with situations where exact training sets do not exist. Some of these

situations involve military action where new combat techniques and new weapons might

25

be encountered. Because of this unexpected aspect to life and the human desire to be

prepared, there continues to be research into, and hope for, this field. Yet, at the present

time, the vast bulk of neural network work is in systems with supervised learning.

Supervised learning is achieving results.

Unsupervised learning is the great promise of the future. It shouts that computers

could someday learn on their own in a true robotic sense. Currently, this learning method

is limited to networks known as self-organizing maps. These kinds of networks are not in

widespread use. They are basically an academic novelty. Yet, they have shown they can

provide a solution in a few instances, proving that their promise is not groundless. They

have been proven to be more effective than many algorithmic techniques for numerical

aerodynamic flow calculations. They are also being used in the lab where they are split

into a front-end network that recognizes short, phoneme-like fragments of speech which

are then passed on to a backend network. The second artificial network recognizes these

strings of fragments as words.

This promising field of unsupervised learning is sometimes called self-supervised

learning. These networks use no external influences to adjust their weights. Instead, they

internally monitor their performance. These networks look for regularities or trends in the

input signals, and makes adaptations according to the function of the network. Even

without being told whether it's right or wrong, the network still must have some

information about how to organize itself. This information is built into the network

topology and learning rules.

2.4.3.3 Leaming Rates

The rate at which ANNs learn depends upon several controllable factors. In

selecting the approach there are many trade-offs to consider. Obviously, a slower rate

means a lot more time is spent in accomplishing the off-line learning to produce an

adequately trained system. With the faster learning rates, however, the network may not

be able to make the fine discriminations possible with a system that learns more slowly.

Researchers are working on producing the best of both worlds.

26

Generally, several factors besides time have to be considered when discussing the

off-line training task, which is often described as "tiresome." Network complexity, size,

paradigm selection, architecture, type of learning rule or rules employed, and desired

accuracy must all be considered. These factors play a significant role in determining how

long it will take to train a network. Changing any one of these factors may either extend

the training time to an unreasonable length or even result in an unacceptable accuracy.

Most learning functions have some provision for a learning rate, or learning

constant. Usually this term is positive and between zero and one. If the learning rate is

greater than one, it is easy for the learning algorithm to overshoot in correcting the

weights, and the network will oscillate. Small values of the learning rate will not correct

the current error as quickly, but if small steps are taken in correcting errors, there is a

good chance of arriving at the best minimum convergence.

2.4.3.4 Leaming Laws

Many learning laws are in common use. Most of these laws are some sort of

variation of the best known and oldest learning law, Hebb's Rule. Research into different

learning functions continues as new ideas routinely show up in trade publications. Some

researchers have the modeling of biological learning as their main objective. Others are

experimenting with adaptations of their perceptions of how nature handles learning.

Either way, man's understanding of how neural processing actually works is very limited.

Leaming is certainly more complex than the simplifications represented by the learning

laws currently developed. A few of the major laws are presented as examples.

Hebh's Rule: The first, and undoubtedly the best known, learning rule as

introduced by Donald Hebb. The description appeared in his book Th e Organization ef
JJehavior in 1949 [14]. His basic rule is: If a neuron receives an input from another

neuron, and if both are highly active (mathematically have the same sign), the weight

between the neurons should be strengthened.

Hopfield Law: It is similar to Hebb's rule with the exception that it specifies the

magnitude of the strengthening or weakening. It states, "If the desired output and the

27

input are both active and both inactive, increment the connection weight by the learning

rate, otherwise decrement the weight by the learning rate." [15].

The Delta Rule: This rule is a further variation of Hebb's Rule. It is one of the most

commonly used. This rule is based on the simple idea of continuously modifying the

strengths of the input connections to reduce the difference (the delta) between the desired

output value and the actual output of a processing element. This rule changes the synaptic

weights in the way that minimizes the mean squared error of the network. This rule is

also referred to as the Widrow-Hoff Leaming Rule and the Least Mean Square (LMS)

Leaming Rule.
The way that the Delta Rule works is that the delta error in the output layer is

transformed by the derivative of the transfer function and is then used in the previous

neural layer to adjust input connection weights. In other words, this error is back

propagated into previous layers one layer at a time. The process of back-propagating the

network errors continues until the first layer is reached. The network type called

Feedforward, Back-propagation derives its name from this method of computing the error

term.
When using the delta rule, it is important to ensure that the input data set is well

randomized. Well ordered or structured presentation of the training set can lead to a

network which can not converge to the desired accuracy. If that happens, then the

network is incapable of learning the problem.

The Gradient Descent Rule: This rule is similar to the Delta Rule in that the

derivative of the transfer function is still used to modify the delta error before it is applied

to the connection weights. Here, however, an additional proportional constant tied to the

learning rate is appended to the final modifying factor acting upon the weight. This rule is

commonly used, even though it converges to a point of stability very slowly. It has been

shown that different learning rates for different layers of a network help the learning

process converge faster. In these tests, the learning rates for those layers close to the

output were set lower than those layers near the input. This is especially important for

applications where the input data is not derived from a strong underlying model.

Kohonen's Learning Law: This procedure, developed by Teuvo Kohonen, was

inspired by learning in biological systems. In this procedure, the processing elements

28

compete for the opportunity to learn, or update their weights. The processing element

with the largest output is declared the winner and has the capability of inhibiting its

competitors as well as exciting its neighbors. Only the winner is permitted an output, and

only the winner plus its neighbors are allowed to adjust their connection weights.

Further, the size of the neighborhood can vary during the training period. The usual

paradigm is to start with a larger definition of the neighborhood, and narrow in as the

training process proceeds. Because the winning element is defined as the one that has the

closest match to the input pattern, Kohonen networks model the distribution of the inputs.

This is good for statistical or topological modeling of the data and is sometimes referred

to as self-organizing maps or self-organizing topologies.

2.5 Advanced Neural Networks

Many advanced algorithms have been invented since the first simple neural

network. Some algorithms are based on the same assumptions or learning techniques as

the SLP and the MLP. A very different approach however was taken by Kohonen, in his

research in self-organizing networks.

2.5.1 Kohonen Self-Organizing Networks

The Kohonen self-organizing networks have a two-layer topology. The first layer is

the input layer; the second layer is itself a network in a plane. Every unit in the input

layer is connected to all the nodes in the grid in the second layer. Furthermore the units in

the grid function as the output nodes.

29

Figure 2.5 The Kohonen Topology

The nodes in the grid are only sparsely connected. Here each node has four

immediate neighbors.

2.5.2 Algorithm

The network (the units in the grid) is initialized with small random values. A

neighborhood radius is set to a large value. The input is presented and the Euclidean

distance between the input and each output node is calculated. The node with the

minimum distance is selected, and this node, together with its neighbors within the

neighborhood radius, will have their weights modified to increase similarity to the input.

The neighborhood radius decreases over time to let areas of the network be specialized to

a pattern.

The algorithm results in a network where groups of nodes respond to each class

thus creating a map of the found classes.

The big difference in the learning algorithm, compared with the MLP, is that the

Kohonen self-organizing net uses unsupervised learning. But after the learning period

when the network has mapped the test patterns, it is the operator's responsibility to label

the different patterns accordingly.

30

2.6 Problem using neural Network

2.6.1 Local Minimum

All the NN in this paper are described in their basic algorithm. Several suggestions

for improvements and modifications have been made. One of the well-known problems

in the MLP is the local minimum.· The network does not settle in one of the learned

minima but instead in a local minimum in the Energy landscape

Approaches to avoid local minimum:

• The gain term in the weight adaption function can be lowered progressively as the

network iterates. This would at first let the differences in weights and energy be large,

and then hopefully when the network is approaching the right solution, the steps

would be smaller. The tradeoff is when the gain term has decreased the network will

take a longer time to converge to right solution.

• A local minimum can be caused by a bad internal representation of the patterns. This

can be aided by the adding more internal nodes to the network.

• An extra term can be added to the weight adaption: the Momentum term. The

Momentum term should let the weight change be large if the current change in energy

is large.

• The network gradient descent can be disrupted by adding random noise to ensure sure

the system will take unequal steps toward the solution. This solution has the

advantage that it requires no extra computation time.

A similar problem is known in the Hopfield Network as metastable states. That is

when the network settles in a state that is not represented in the stored patterns. One way

to minimize this is by adjusting the number of nodes in the network (N) to the number of

patterns to store, so that the number of patterns does not exceed 0.15N. Another solution

is to add a probabilistic update rule to the Hopfield network. This is known as the

Boltzman machine.

31

2.6.2 Practical Problems

There are some practical problems applying neural networks to applications. It is

not possible to know in advance the ideal network for an application. So every time a NN

is to be built in an application, it requires tests and experiments with different network

settings or topologies to find a solution that performs well on the given application. This

is a problem because most NN requires a long training period - many iterations of the

same pattern set. And even after much iteration there is no way other that testing to see

whether the network is efficiently mapping the training sets. A solution for this might be

to adapt newer NN technologies such as the bump tree which need only one run through

the training set to adjust all weights in the network. The most commonly used network

still seems to be the MLP and the RBf 3 even though alternatives exist that can drastically

shorten processing time.

In general most NN include complex computation, which is time consuming. Some

of these computations could gain efficiency if they were to be implemented on a parallel

processing system, but the hardware implementation raises new problems of physical

limits and the NN need for changeability

2.7 Summary

As we have discussed neural networks classified according to their learning

processes into two types, supervised learning and unsupervised learning. Also this

chapter discussed the various types of neural networks structures and algorithms. The

most commonly used neural network configurations known as multilayer perceptron

(MLP) are described. Other structures discussed in this chapter include recurrent

(feedback) neural networks and radial basis function (RBF) network. Also we have

explained a brief description of Kohenon self-organizing networks and Hopfield

networks. Finally we have discussed the problems using neural networks including the

local minimum and practical problems

32

CHAPTER THREE

NEURAL NETWORKS APPLICATIONS

3.1 Overview

This chapter presents a brief description of some artificial neural networks

applications. The section below provides an understanding of how neural networks are

currently being used and the researches area in artificial neural networks. The

applications that artificial neural networks cover in this chapter such as language

processing, character recognition, servo control and pattern recognition are described

briefly. Also there will be a sufficient description about neural networks applications in

image compression, and some applications area in medicine and business, also the

applications in arts and telecommunications. Last section presents a determination if an

application is a neural network candidate and how to determine it.

3.2 How Artificial Neural Network Are Being Used

Artificial neural networks are undergoing the change that occurs when a concept

leaves the academic environment and is thrown into the harsher world of users who

simply want to get a job done. Many of the networks now being designed are statistically

quite accurate but they still leave a bad taste with users who expect computers to solve
-,

their problems absolutely. These networks might be 85% to 90% accurate. Unfortunately,

few applications tolerate that level of error.

While researchers continue to work on improving the accuracy of their "creations",

some explorers are finding uses for the current technology.

In reviewing this state of the art, it is hard not to be overcome by the bright

promises or tainted by the unachieved realities. Currently, neural networks are not the

user interface which translates spoken works into instructions for a machine, but some

day they will. Someday, VCRs, home security systems, CD players, and word processors

33

will simply be activated by voice. Touch screen and voice editing will replace the word

processors of today while bringing spreadsheets and data bases to a level of usability

pleasing to most everyone. But for now, neural networks are simply entering the

marketplace in niches where their statistical accuracy is valuable as they await what will

surely come.
Many of these niches indeed involve applications where answers are nebulous.

Loan approval is one. Financial institutions make more money by having the lowest bad

loan rate they can achieve. Systems that are "90% accurate" might be an improvement

over the current selection process. Indeed, some banks have proven that the failure rate

on loans approved by neural networks is lower than those approved by some of their best

traditional methods. Also, some credit card companies are using neural networks in their

application screening process.
This newest method of seeking the future by analyzing past experiences has

generated its own unique problems. One of those problems is to provide a reason behind

the computer-generated answer, say as to why a particular loan application was denied.

As mentioned throughout this report, the inner workings of neural networks are "black

boxes." Some people have even called the use of neural networks "voodoo engineering."

To explain how a network learned and why it recommends a particular decision has been

difficult. To facilitate this process of justification, several neural network tool makers

have provided programs which explain which input through which node dominates the

decision making process. From that information, experts in the application should be able

to infer the reason that a particular piece of data is important.

Besides this filling of niches, neural network work is progressing in other more

promising application areas. The next section of this chapter goes through some of these

areas and briefly details the current work. This is done to help stimulate within the reader

the various possibilities where neural networks might offer solutions, possibilities such as

language processing, character recognition, image compression, pattern recognition

among others.

34

3.3 Language Processing

Language processing encompasses a wide variety of applications. These

applications include text-to-speech conversion, auditory input for machines, automatic

language translation, secure voice keyed locks, automatic transcription, aids for the deaf,

aids for the physically disabled which respond to voice commands, and natural language

processmg.

Many companies and universities are researching how a computer, via ANNs, could

be programmed to respond to spoken commands. The potential economic rewards are a

proverbial gold mine. If this capability could be shrunk to a chip, that chip could become

part of almost any electronic device sold today. Literally hundreds of millions of these

chips could be sold.

This magic-like capability needs to be able to understand the 50,000 most

commonly spoken words. Currently, according to the academic journals, most of the

hearing-capable neural networks are trained to only one talker. These one-talker, isolated

word recognizers can recognize a few hundred words. Within the context of speech, with

pauses between each word, they can recognize up to 20,000 words.

Some researchers are touting even greater capabilities, but due to the potential

reward the true progress and methods involved, are being closely held. The most highly

touted, and demonstrated, speech-parsing system comes from the Apple Corporation.

This network, according to an April 1992 Wall Street Journal article, can recognize most

any person's speech through a limited vocabulary.

This works continues in Corporate America (particularly venture capital land), in

the universities, and in Japan.

35

3.4. Character Recognition

Character recognition is another area in which neural networks are providing

solutions. Some of these solutions are beyond simply academic curiosities. HNC Inc.,

according to a HNC spokesman, markets a neural network based product that can

recognize hand printed characters through a scanner. This product can take cards, like a

credit card application form, and put those recognized characters into a data base. This

product has been out for two and a half years. It is 98% to 99% accurate for numbers, a

little less for alphabetical characters. Currently, the system is built to highlight characters

below a certain percent probability of being right so that a user can manually fill in what

the computer could not. This product is in use by banks, financial institutions, and credit

card companies.
Electronic Engineering Times has also proved capable of recognizing characters,

including cursive. This capability utilizes Odin's proprietary Quantum Neural Network

software package called, QNspec. It has proven uncannily successful in analyzing

reasonably good handwriting. It actually benefits from the cursive stroking.

The largest amount of research in the field of character recognition is aimed at

scanning oriental characters into a computer. Currently, these characters require four or

five keystrokes each. This complicated process elongates the task of keying a page of text

into hours of drudgery. Several vendors are saying they are close to commercial products

that can scan pages.

3.5 Image Compression

A number of studies have been done proving that neural networks can do real-time

compression and decompression of data. These networks are auto associative in that they

can reduce eight bits of data to three and then reverse that process upon restructuring to

eight bits again. However, they are not lossless. Because of this losing of bits they do

not favorably compete with more traditional methods.

, Computer images are extremely data intensive and hence require large amounts of

memory for storage. As a result, the transmission of an image from one machine to

36

another can be very time consuming. By using data compression techniques, it is possible

to remove some of the redundant information contained in images, requiring less storage

space and less time to transmit. Neural networks can be used for the purpose of image

compression.

Neural network architecture suitable for solving the image compression problem is

shown below. This type of structure--a large input layer feeding into a small hidden layer,

which then feeds into a large output layer, is referred to as a bottleneck type network. The

idea is this: suppose that the neural net shown below had been trained to implement the

identity map. Then, a tiny image presented to the network as input would appear exactly

the same at the output layer.

x.,..
Input

(8x8 Irrage)

Yli4,,
Output (8x8 Jrmge)
Loyer

Hidden
Loyer

Figure 3.1 Bottleneck-type Neural Net Architecture For Image Compression

In this case, the network could be used for image compression by breaking it in two
1as shown in the Figure below. The transmitter encodes and then transmits the output of

the hidden layer (only 16 values as compared to the 64 values of the original image).The

receiver receives and decodes the 16 hidden outputs and generates the 64 outputs. Since

the network is implementing an identity map, the output at the receiver is an exact

reconstruction of the original image.

37

Receive
& Decode

21

Figure 3.2 The Image Compression Scheme Using The Trained Neural Net

Actually, even though the bottleneck takes us from 64 nodes down to 16 nodes, no

real compression has occurred because unlike the 64 original inputs which are 8-bit pixel

values, the outputs of the hidden layer are real-valued (between -1 and 1), which requires

possibly an infinite number of bits to transmit. True image compression occurs when the

hidden layer outputs are quantized before transmission. The Figure below shows a typical

quantization scheme using 3 bits to encode each input. In this case, there are 8 possible

binary codes which may be formed: 000, 001, 010, 011, 100, 101, 110, 111. Each of these

codes represents a range of values for a hidden unit output. For example, consider the

first hidden output. When the value of is between -1.0 and -0.75, then the code 000 is

transmitted; when is between 0.25 and 0.5, then 101 is transmitted. To compute the

amount of image compression (measured in bits-per-pixel) for this level of quantization,

we compute the ratio of the total number of bits transmitted: to the total number of pixels

in the original image: 64; so in this case, the compression rate is given as bits/pixel.

Using 8 bit quantization of the hidden units gives a compression rate of bits/pixel.

38

Quantizer
f(net)

Bin.m:~r Code
I'raumitted

111

Figure 3.3 The Quantization Of Hidden Unit Outputs

The training of the neural net proceeds as follows, a 256x256 training image is used

to train the bottleneck type network to learn the required identity map. Training input

output pairs are produced from the training image by extracting small 8x8 chunks of the

image chosen at a uniformly random location in the image. The easiest way to extract

such a random chunk i s to generate a pair of random integers to serve as the upper left

hand comer of the extracted chunk. In this case, we choose random integers i and z, each

between O and 248, and then (1j) is the coordinate of the upper left hand corner of the

extracted chunk. The pixel values of the extracted image chunk are sent (left to right, top

to bottom) through the pixel-to-real mapping shown in the Figure below to construct the

64-dimensional neural net input. Since the goal is to learn the identity map, the desired

target for the constructed input is itself; hence, the training pair is used to update the

weights of the network.

39

l'ixd

1[Z]
CJ -<:=-- NeUJalNft

M~~ // ~!1'1Jt
-1 / 'it•/

0 25:5

(a}

255[Z]
Pixel NeUJalNft __. [I

Output-<:=-- / A(~~
i4t• I

0 / 1
-1 :Ji}

Af4, 41 = 15>

Figure 3.4 The Pixel-to-Real and Real-to-Pixel Conversions

Once training is complete, image compression is demonstrated in the recall phase.

In this case, we still present the neural net with 8x8 chunks of the image, but now instead

of randomly selecting the location of each chunk, we select the chunks in sequence from

left to right and from top to bottom. For each such 8x8 chunk, the output the network can

be computed and displayed on the screen to visually observe the performance of neural

net image compression. In addition, the 16 outputs of the hidden layer can be grouped

into a 4x4 "compressed image", which can be displayed as well.

' 3.6 Pattern Recognition

Recently, a number of pattern recognition applications have been written about in

the general press. The Wall Street Journal has featured a system that can detect bombs in

luggage at airports by identifying, from small variances, patterns from within specialized

sensor's outputs. Another article reported on how a physician had trained a back

propagation neural network on data collected in emergency rooms from people who felt

that they were experiencing a heart attack to provide a probability of a real heart attack

versus a false alarm. His system is touted as being a very good discriminator in an arena

where priority decisions have to be made all the time.
Another application involves the grading of rare coins. Digitized images from an

electronic camera are fed into a neural network. These images include several angles of

the front and back. These images are then compared against known patterns which

represent the various grades for a coin. This system has enabled a quick evaluation for

40

about $15 as opposed to the standard three-person evaluation which costs $200. The

results have shown that the neural network recommendations are as accurate as the

people-intensive grading method.
Yet, by far the biggest use of neural networks as a recognizer of patterns is within

the field known as quality control. A number of automated quality applications are now

in use. These applications are designed to find that one in a hundred or one in a thousand

part that is defective. Human inspectors become fatigued or distracted. Systems now

evaluate solder joints, welds, cuttings, and glue applications. One car manufacturer is

now even prototyping a system which evaluates the color of paints. This system digitizes

pictures of new batches of paint to determine if they are the right shades.

Another major area where neural networks are being built into pattern recognition

systems is as processors for sensors. Sensors can provide so much data that the few

meaningful pieces of information can become lost. People can lose interest as they stare

at screens looking for "the needle in the haystack." Many of these sensor-processing

applications exist within the defense industry. These neural network systems have been

shown successful at recognizing targets. These sensor processors take data from cameras,

sonar systems, seismic recorders, and infrared sensors. That data is then used to identify

probable phenomenon.
Another field related to defense sensor processing is the recognition of patterns

within the sensor data of the medical industry. A neural network is now being used in the

scanning of PAP smears. This network is trying to do a better job at reading the smears

than can the average lab technician. A missed diagnosis is a too common problem

throughout this industry. In many cases, a professional must perceive patterns from noise,

such as identifying a fracture from an X-ray or cancer from a X-ray "shadow." Neural

networks promise, particularly when faster hardware becomes available, help in many

areas of the medical profession where data is hard to read.

3. 7 Signal Processing

Neural networks' promise for signal processing has resulted in a number of

experiments in various university labs. Neural networks have proven capable of filtering

41

out noise. Widrow's MADALINE was the first network applied to a real-world problem.

It eliminates noise from phone lines.

Another application is a system that can detect engine misfire simply from the

noise. This system, developed by Odin Corp, works on engines up to 10,000 RPMS.

The Odin system satisfies the California Air Resources Board's mandate that by 1994

new automobiles will have to detect misfire in real time. Misfires are suspected of being

a leading cause of pollution. The Odin solution requires 3 kbytes of software running on

a Motorola 68030 microprocessor.

3.8 Financial

Neural networks are making big inroads into the financial worlds. Banking, credit

card companies, and lending institutions deal with decisions that are not clear cut. They

involve learning and statistical trends.

The Joan approval process involves filling out fo1711s which lJopefll}Jy C!lll tJJ!J/J}t Ii
loan officer to make a decision. The data from these Forms is now being used by neural

networks which have been trained on the data fJ-o.rn pasi- dec1s.ions. Incfeect, co zneer

government requirements as to why applications are being denied, these packages are

providing infonnation on what input, or combination of inputs, weighed heaviest on the

decision.
Credit card companies are also using similar back-propagation networks to aid in

establishing credit risks and credit limits.
In the world of direct marketing, neural networks are being applied to data bases so

that these phone peddlers can achieve higher ordering rates from those annoying calls

that most of us receive at dinner time. (A probably more lucrative business opportunity

awaits the person who can devise a system which will tailor all of the data bases in the

world so that certain phone numbers are never selected).
Neural networks are being used in all of the financial markets - stock, bonds,

international currency, and commodities. Some users are cackling that these systems just

make them "see green," money that is. Indeed, neural networks are reported to be highly

successful in the Japanese financial markets. Daiichi Kangyo Bank has reported that for

42

government bond transactions, neural networks have boosted their hit rate from 60% to

75%. Daiwa research Institute has reported a neural net system which has scored 20%

better than the Nikkei average. Daiwa Securities' stock prediction system has boosted the

companies hit rate from 70% to 80%.

3.9 Neural Network in Medicine

Artificial Neural Networks are currently a 'hot' research area in medicine and it is

believed that they will receive extensive application to biomedical systems in the next

few years. At the moment, the research is mostly on modeling parts of the human body

and recognizing diseases from various scans (e.g. cardiograms, CAT scans, ultrasonic

scans, etc.).

Neural networks are ideal in recognizing diseases using scans since there is no need

to provide a specific algorithm on how to identify the disease. Neural networks learn by

example so the details of how to recognize the disease are not needed. What is needed is

a set of examples that are representative of all the variations of the disease. The quantity

of examples is not as important as the 'quantity'. The examples need to be selected very

carefully if the system is to perform reliably and efficiently.

3.10 Electronic Noses

The two main components of an electronic nose are the sensing system and the

automated pattern recognition system. The sensing system can be an array of several

different sensing elements (e.g., chemical sensors), where each element measures a

different property of the sensed chemical, or it can be a single sensing device (e.g.,

spectrometer) that produces an array of measurements for each chemical, or it can be a

combination. Each chemical vapor presented to the sensor array produces a signature or

pattern characteristic of the vapor. By presenting many different chemicals to the sensor

array, a database of signatures is built up. This database of labeled signatures is used to

train the pattern recognition system. The goal of this training process is to configure the

43

recognition system to produce unique classifications of each chemical so that an

automated identification can be implemented.
The quantity and complexity of the data collected by sensors array can make

conventional chemical analysis of data in an automated fashion difficult. One approach to

chemical vapor identification is to build an array of sensors, where each sensor in the

array is designed to respond to a specific chemical. With this approach, the number of

unique sensors must be at least as great as the number of chemicals being monitored. It is

both expensive and difficult to build highly selective chemical sensors.

Artificial neural networks (ANNs), which have been used to analyze complex data

and to recognize patterns, are showing promising results in chemical vapor recognition.

When an ANN is combined with a sensor array, the number of detectable chemicals is

generally greater than the number of sensors [22]. Also, less selective sensors which are

generally less expensive can be used with this approach. Once the ANN is trained for

chemical vapor recognition, operation consists of propagating the sensor data through the

network. Since this is simply a series of vector-matrix multiplications, unknown

chemicals can be rapidly identified in the field.
Electronic noses that incorporate ANNs have been demonstrated in various

applications. Some of these applications will be discussed later in the paper. Many ANN

configurations and training algorithms have been used to build electronic noses including

back propagation-trained, feed-forward networks; fuzzy ARTmaps; Kohonen's self

organizing maps (SOMs); learning vector quantizes (LVQs); Hamming networks;

Boltzmann machines; and Hopfield networks. Figure 3.5 illustrates the basic schematic of

an electronic nose.

Figure 3.5 Schematic Diagram Of an Electronic Nose

44

Because the sense of smell is an important sense to the physician, an electronic nose

has applicability as a diagnostic tool. An electronic nose can examine odors from the

body (e.g., breath, wounds, body fluids, etc.) and identify possible problems. Odors in the

breath can be indicative of gastrointestinal problems, sinus problems, infections, diabetes,

and liver problems. Infected wounds and tissues emit distinctive odors that can be

detected by an electronic nose. Odors corning from body fluids can indicate liver and

bladder problems. Currently, an electronic nose for examining wound infections is being

tested at South Manchester University Hospital [23].

A more futuristic application of electronic noses has been recently proposed for

telesurgery [24]. While the inclusion of visual, aural, and tactile senses into telepresent

systems is widespread, the sense of smell has been largely ignored. An electronic nose

will potentially be a key component in an olfactory input to telepresent virtual reality

systems including telesurgery. The electronic nose would identify odors in the remote

surgical environment. These identified odors would then be electronically transmitted to

another site where an odor generation system would recreate them.

3.11 Applications in the Arts

We now turn to the artistic uses of NNs. Currently, this is a wide-open field;

exploration has just begun in most cases, and we've barely scratched the surface of

possibilities. The ideas below are mostly speculations on what networks could do, the

sorts of tasks they could be applied to in the arts, sometimes based on applications that

have already been done in scientific or engineering domains, and sometimes just based on

imaginative speculation. As such, these ideas are intended to spark people's imaginations

. further in the search for innovative uses of this powerful and flexible new technology.

The main place where neural networks have been put to creative and artistic use so

far is in music, as witnessed by the recent publication of the book, Music and

Connectionism Several applications have been done in this area, ranging from

psychological models of human pitch, chord, and melody perception, to networks for

algorithmic composition and performance control. Generally speaking, the applications

here (and in other fields) can be divided into two classes: "input" and "output", The input

45

side includes networks for recognition and understanding of a provided stimulus, for

instance speech recognition, or modeling how humans listen to and process a melody.

Such applications are useful for communication from human to machine, and for artistic

analysis of a set of inputs. The output side includes the production of novel works,

applications such as music composition or drawing generation. "Input" tasks tend to be

much more difficult than "output" tasks (compare the state-of-the-art in speech

recognition versus speech production by computers), so most of the network applications

so far have focused on creation and generation of output, but continuing research has

begun to address this imbalance.
On the "input" side in musical applications, Sano and Jenkins have modeled human

pitch perception; Bharucha have modeled the perception and processing of harmony and

chords; Gjerdingen has explored networks that understand more complex musical

patterns; and Desain and Honing have devised a network for looking at the quantization

of musical time and rhythm. Dolson has also suggested some approaches to musical

signal processing by neural networks, including instrument recognition, generation, and

modification. In this regard, musical applications of networks have much to gain from

the vast literature on networks for speech processing (primarily recognition--see

Lippmann,
On the "output" side, several network models of music composition have been

devised. Todd and -Mozer use essentially the dynamic sequential network approach

mentioned earlier, in which a network is trained to map from one time-chunk of a piece

of music to the following time-chunk (e.g. measure N as input should produce measure

N+ 1 as output). The network's outputs are then connected back to its inputs for the

creation phase, and a new measure 1 is provided to begin the network down a new

dynamic path, creating one measure after another, and all the while incorporating the

sorts of features it learned from its training examples. In this way, new pieces that have a

sound like Bach or Joplin (or a combination of both!) can be created, if the network is

first trained on these composers. But the problems mentioned earlier of lack of higher

level structure emerge, and these compositions tend to wander, having no clear direction,

and seldom ending up anywhere in particular. Approaches for learning and using

hierarchical structure are being devised, and Lewis describes one such method, in which

46

the inputs to a network, rather than the weights in the network, are modified during a

learning stage, to produce an input which has a specified form or character. Kohonen

present still another method of composition, which uses a network-style approach to

build up a context-free grammar that models the music examples it's trained on.

Networks can also be used to generate musical performance parameters and

instructions, as Sayegh demonstrates in his paper on a network method for choosing

correct chord fingering for a simple melody. Many other musical performance

applications are possible, from synthesizer control to automatic rhythmic accompaniment

generators; Todd discusses some of these possibilities along with further ideas for

musical applications of neural networks.

3.12 Neural Networks in Telecommunications

The IEEE Communications Society is active in developing a list of state-of-the-art

topics in communications. Some of these are areas in which neural networks have a role,

such as signal processing for beam forming, adaptive antennas, consumer

communications, radio resource management and mobility management.

Beam forming employs signal processing in transmitting information over multiple

antennas. It is also used for receivers to create steerable arrays. The purpose of

beamforming is to minimize interference whether this is caused by fading, reflections or

the effects of multi-user interference. If the channel is unknown or is changing, an

adaptive antenna system will prove to be an advantage. Adaptive antennas can also offer

capacity enhancements or allow higher bit-rates to be used.
Consumer products will soon have the capability of high-speed communications.

This requires low cost and low power electronics. However, the domestic enviromnent

may not be RF-friendly so that an intelligent and adaptive receiver can improve the

throughput without requiring an increase in transmitter power. One such wireless

communications standard is Bluetooth; Bluetooth has to compete with IrDA (Infrared

Data Association) which is a line-of-sight system, whereas Bluetooth is not.

Wireless systems are demanding higher spectrum efficiency as applications become

more bandwidth-hungry. Radio resource management is essential and requires dynamic

47

--

channel assignment, interference avoidance, propagation prediction and automated

planning techniques which are conventional neural network applications. Handoff

requires a decision which is similar to a fuzzy logic rule.
When a user moves between a fixed and mobile platform, it will be essential that this

user can enjoy the same services and applications transparently. Research continues into

intelligent systems to implement dynamic routing, wireless A TM and location prediction.

3.13 Summary

This chapter demonstrates applications of artificial neural networks in vanous

fields. We have described briefly neural networks applications in language processing,

character and pattern recognition, and servo control application. Also we have discussed

the neural networks application in image compression and application fields in medicine

and business includes some examples, in addition to applications in arts and

telecommunication. Finally we have discussed how to determine if the application is a

neural network candidate.

48

CHAPTER FOUR

DIGIT RECOGNITION USING NEURAL NETWORK

4.1 Overview
By reducing the need for human numeral recognition system can speed up jobs such as

reading income tax returns, sorting inventory, and routing mail. Several steps are
necessary to achieve this. A recognition system must first capture digital snapshots of

handwritten numerals. Before attempting to classify the numerals, some preprocessing of
the snapshots might be necessary. If a string of adjacent numerals is captured at once, for

example, the system has to decide on boundaries between digits. An algorithm must then

classify each hand written numeral as one of the ten decimal digits. This information can

then be stored in a database, passed on to mail sorting robots, or utilized in some other

fashion.
Although a qualitative description of this process is straightforward, it cannot be easily

reduced to a few simple mathematical rules. The difficulty results from the natural

variation in human handwritten. A useful recognition system must be robust to alteration

in size, shape, orientation, thickness, etc. Closed form mathematical models tend to be
inadequate for such a task because of the many possible representations of the same

image. To be sufficiently robust such models require a very large number of rules.
Humans, on the other hand can accurately classify all but the most severely distorted

numerals. One natural idea then is to emulate in software the process that people use to

recognize numerals. As a child is growing up he learns to read by seeing images (letters,

numbers) and having a teacher(someone who already can read) tell him what the images

represented. After sufficient training the child becomes able to read without a teacher.

His education also generalizes so that he can even read unfamiliar handwritten. As an

example consider figure 1. Although the numerals in each pair look significantly

different, few readers will have difficulty identity them.

49

-,
L -

Figure 4.1 hand written numerals from different sources

Human learn to classify fuzzy patterns like these, and neural networks are well suited for

mapping this human style ofrecognition into a procedure implementable in software.

4.2 Training
Neural networks are highly nonlinear, so the only feasible method of setting the

neuron weights is to train the network. Initially the weights are s~t to small random

values. Then an input pattern is fed into the network, and the outputs from the neurons in

the final layer are observed. An error signal is calculated at each output neuron by

subtracting the observed output from the desired output. These errors are fed back into

network and used to update the neuron weights in each layer. The standard technique

used to do is the back propagation algorithm.
This process can be repeated with many input output pairs. Eventually the neural

network will learn to associate certain inputs with certain outputs. Additionally, the

network behavior will generalize to some extent. That is given an input that it has not

seen before, the network will match it with a similar input that it has seen before and will

produce a corresponding output. This is the characteristics of neural networks that make

them suitable for classifying patterns such as those in figure 1. A network is first trained

by feeding in many different images of hand written numerals and telling the network

what the output should be (i.e. what digit the input represents). After sufficient training

_ the network will be able to classify new images based on their similarity to images used

for training.

50

4.3 Training and Test Data
A reliable numeral recognition system must be trained on a large number of samples.

With a large training set the system will get to many different versions of each digit, and

the law of large numbers will work to our advantage. The effects of minor variations in

the hand written numerals will average out, while the key features of each digit will be

reinforced. As an example, consider the two"eight" in figure 1. Notice that one of them

learns a little to the left while the other leans a little to the right. If the network is trained

with lots of eights, some learning one way and some learning the other, it will conclude

that this is not an important feature in determine " eight ness" . All eights consist of two

touching ovals, however so the network will learn that this is a critical feature for all

eights. If the training set fa too small the network will not able to figure this out and

therefore will not generalize well.
The database used in this chapter was used originally assembled by Alpaydin and

Kaynak at Bogazici University in Turkey. The database and some background

information are available online [4]. It consists of one of about 3~00 samples from 30

people, and a second set of about 1800 samples from 13 different people. Each sample is

32x32 pixel binary images scanned from preprinted forms filled out by these 43 people.

Each digit zero through nine is represented an equal number of times.

Alpaydin and Kaynak also scaled and normalized the image using standard routine

from the National Institute of Standard and Technology (NIST). This preprocessing in

numeral independent and serves only to center the numerals is the 32x32 grids and

stretch, them to have consistent width and height. This is illustrate on figure 2, where the

one (originally a this line) was widened to be about as wide as the eight.

Figure 4.2 Normalized images

51

4.4 The Backpropagation Algorithm
The Error back propagation (or simple, backpropagation) algorithm is the most

important algorithm for the supervised training of multilayer feed forward ANNs. It

derives its name from the fact that error signals are propagated back ward through the

network on a layer by layer basis.
The back propagation algorithm is based on the selection of suitable error function or

cost function whose values are determined by the actual and desired outputs of the

network and which is also dependent on the network parameters such as the weights and

the thresholds. The basic idea is that the cost function has a particular surface over the

weight space and therefore an iterative process such as the gradient descent method can

be used for its minimization. The method of gradient descent is based on the fact that,

since the gradient of a function always points in the direction of maximum increase of the

function then, by moving to the direction of the negative gradient induces a maximal

"downhill" movement that will eventually reach the minimum of the function surfaces

over its parameter space. This is a rigorous and well establishes technique for

minimization of functions and has probably been the main factor behind the success of

backpropagation

(Input)

NodeJ

(Hidden) (output)

Figure 4.3 typical multilayer feed forward

52

A typical multilayer feed forward ANN is shown in figure 4.3. This type of network is

also known as a Multilayer Perceptron (MLP). The units (or nodes) of the network arte

nonlinear threshold units described by equations. The units are arranged in layers and

each unit in a layer has all its inputs connected to the units of a preceding layer (or to the

inputs from the external world in the case of the units in the first layer), but it dose not

have any connections to units of the same layer to which it belongs. The layers are

arrayed one succeeding the other so that there is an input layers multiple intermediate

layers and finally an output layer. Intermediate layers that is those that have no inputs or

outputs to the external world, are called hidden layer fig 4.3 show a MLP with only one

hidden layer. Backpropagation neural networks are usually fully connected. This means

that each unit is connected to every output from the preceding layer (or to every input

from the external world if the unit is in the first layer) as well as to a bias signal which is

common to all the units. Corresponding each unity has its output connected to every unit

in the succeeding layer. Generally, the input layer is considered as just a distributor of the

signals from the external world and is not there fore counted as layer. We will retain this

convention in our analysis and hence in the case of figure 4.3 the hidden layer is the first

layer of the network.

The back propagation training consists of two passes of computations: a forward pass

and a backward pass. In the forward pass an input pattern vector is applied to the sensory

nodes of the network that is to the units in the input layer. These signals from the input

layer propagate to the units in the first layer and each unit produces an output according

to equations. The outputs of these units are propagated to units in subsequent layers and

this process continuous unit; finally the signals reach the output layer where the actual

response of the network to the input vectors is obtained. During the forward pass the

synaptic weights of the network are fixed. During the backward pass, on the other hand

synaptic weights are all adjusted in accordance with error signal which is propagate

backward through the network against the direction of synaptic connection.

53

Forward Pass
a) Initialization: assign random values between -1 and + 1 to the weights between

input and hidden layers Wij, the weights between hidden and output layers Vji and

thresholds for hidden and output layers neurons 8j , Yi.

b) Train the networks by randomly selecting a pair of patterns Ak=(a\a\

............................ , a\), Yk=(y\,/2 , /n) for training

set.
c) Compute the input of hidden layer neurons Sj by using input pattern Ak, weights

Wij and threshold Bj, compute the hidden layer neuron activation b, by sigmoid

activation function.
11

Sj= LWij * a, - 8j
t=l

bj= f(sj) j=l,2, p

d) Compute the input of output layer neurons Li based on' hidden layer neuron

activation bj weights Vij and threshold Yi computer the output layer activation C1

by sigmoid activation function.
JJ

Lj= LVji * bi - Yj
J=l

t= 1,2, ,q Ci=f(Li) t=l,2, q

e) Compute then output layer error d\ by using the observed outputs C1 and target

output Yk.
d\ = (d\- C1)* Ci (1- Ci) t=l,2, q

f) Compute the hidden layer error e\ based on weights Vij output layer error d,

hidden layer output bi

k tJ . •
e j =(L Vji * d.) bi(1- bj) J=l,2, p

,=l

54

Yi(N+l) = Yj (N) + a* a\ t=l,2, q

Backward Pass
g) Adjust the weights Vii and threshold Y1 by hidden layer error a\ hidden layer output

bj
Vii(N+ 1) = Vji (N) + a* a\ + bi j=l,2, p t=l,2, q

(O<l3<l)

h) Adjust the weights Wii and threshold 8i by using hidden layer error li input layer At

Wii(N+ 1)= Wii (N) + l3*a* e\ i=l,2, ; nj=l,2 p

j=l,2, · · · · .p

4.5 Network Convergence
i) Select the next pair of patterns from training set randomly trains the network

from the step (c) until all patterns are used for network training.

ii) Reselect a pair of patterns from training set randomly, train the network from

the step (c) until the output layer error is within the specified tolerance for

each pattern and neuron.

The algorithm tested for this project is illustrated in this figure:

Neul:'al
N'e; 1024 ·~·~·~

32x:S2~,
to24pixcls

Figure 4.4 Tested Algorithms

The input to the neural network consists of all 1024 pixel amplitudes, and these are

one output corresponding to each digit 0-9. The desired response is + 1 at the output

corresponding to the identified digit and -1 at all the other outputs. The desired response

55

for the input shown in figure 4.4 then would is + 1 at output 3 and -1 at all other outputs.
Typically the outputs will not by exactly +/-1, but we hope that they are close say +/-0.95

or better. Some experiments were run to determine what type of neural network topology

worked best for this algorithm. Ultimately a 1024-100-10 network (i.e. 1024 inputs, 100

neurons in layer 1, 10 neurons in layer 2) was found to work best.

4.6 Method

For the experimental purpose of our project we have selected and trained a single

layer percetron to recognize handwritten digits. The training data set we used is obtained

from UCI machine learning repository (Courtesy of UCI machine learning repository)

which consists 1.934 cases of numeric digits of 'O', '1 ', '2', '3', '4', '5', '6', '7', '8',

'9'. Each training case is in digitized format see the figure of Os and 1 s at a resolution of

32X32. Based from this input format we designed the perceptron at accept 1,024 input

units 32X32=1024) and 10 output units see the next figure. The weights are fully

connected between input and output units. We chose a modified version of binary step

function to our perceptron activation function .the output of the perceptron is based from

this activation function given the input y.

F(y)=

1 ify > 0

O ify=O

-1 if y < 0

The perceptron algorithm we used in this project is not particular sensitive to the

initial values of weights or the value of the learning rate. For simplicity the default

weights and bias (b) are set to O and learning rate (a) is set to 1. The following is the

modified version of perceptron algorithm based on our initial setting:

Wij : weight associated with input unit I and output unit j
Si : raw data for input unit i.

xi : input unit i.
Ti : true pattern.

56

Y _in: summation of weighted inputs

Y: perceptron output computed by activation function

a: learning rate set tp 1
b: bias set to 0

I DD c:oODGIHH!ICIOOtH,UIJOIJii!QIJ'iU!ll U'U:UllU
i·!l!l!lli!D11J1Ioii1JO(l:!,!,llliliill100:!l'D:DDD·a a a
m11D11ooooonnu1111.1 u nmrn no nnl!
HlilHliPl:iQP0:0;!.l=,l:;J.J,l:i,U lllll:llOU D OD'D D .
iililHtiliDO't:!,1'!.llllUl U lHliDD a.n 0{10 0
ICillOllllJOJ.Ul;.llllilJ.l li.tlDJi UO ODO D
tcoooon:tt.'lllnmrn:n n11a a aaa a·aa
)l][lDODO:liii,'.l.1llOITT.lil0 n1).1.).;D Ii Ii nao:U U
ioooooa:i.t.:i.leitHIOOil!llll.11liD DD OCDDD
:.oooooooooooaoooiJnllll,llODliilllaaa
;ioooaoaaaaaaOOOO!ll l LLU:OUD OCIHJ:IJ,D
oooooooooaaoouoo11i,;1,1,uno·on norrtta
gpptJtJOOOCIJIJDDDIJilJ .• Ll.l.,LUD•llO:OOIJ:DIJill
ooooooooaaoooon 11.un1,nn·trlll1i!HlilliD!l
DOOOIJIJOOllO!Hllllll.l,iii.ll iUiUIHiiliiiOtlitliU
aar:11;:ii:JOOOWlitHl:UULlllllD C D•DDllDDlliDD
aooooomrnl'.loou1iui:.na·li•Dll:1HllDl!!lltili
OOOOOIJODililiJUUJ,l,LlLLLOIJ!fillJ!IMlDDDO
OOOOOOOi1l!Hli!llU,ll,J,llll,11Cl.OODD!lliO!l
OOOOOIJiJil'11Hl:D J..l,i•J..J.l;,l.l.l:J.LJ.l.OiiiOOQCO
oot)Ol:iEJl!)tl!lll,D:UD LlH1LJ.1].l,l,l,CD1l0C!0Ci
oaoaooooaa11:nao·num1n.1.1u:r.:r.:;.opoooo
mrn1;1oaoono D'ii nil D DOU IJ.lil.LliJ.:lolODODOO
aoooooooooaoaooDciiDDJ.J.:i.U?.ooaooo
OOIJllNl!lJOllii a D a.Ii D.litt.i.lillllQ:bli.?.lU,t.(!00000
!ltl!lil!lOUilD a a nu D ODDIJi[l:l,l,:l,:U,l'l,QQQOOO
oll!,mnn•nn non non oci:.:i.:r.:t.r.n:.:!0000000
!JtUlllll U:D.O U D•l,U,1L11:t.ioU.?.!.:loOOOOOCHJO
01:n10 a o,n on nu:i.ni.1,..:.:.1.:r.:i.;.oaoooooo
irn1i:~UliDODDlL1Ll.l.UiL!.:t.OOOD000iJOO.iJ
,D•D1lDO irn DD DD l,l,l,l,l,I, 1,lil,?.DDOOOOOOOOIJ
,rnwoiJ.DOP Q DD c:liiDU:!:.UCOOiiOCIOO!!OOO!'.lill

Figure 4.5 a) Digitized numeric digit 3 b) perceptron with 1024 input 10 output

unit and full connected weights

initial weights and bias

do {

if y = 1 then// update weight

y=

1 if y_in > 0

0 ify_in =0

-_ \\ 1 i~ <- \\

57

Wij (new)= Wi,j(old) + r,x,
Else // no change

w, (new)= Wij(old)

} while (at least one weight has been updated)

We also modified the training set which w obtained from UCI machine learning

repository all parameters (except number of training pattern) in the beginning of file were

removed.

4. 7 Evaluation & Discussion
The perceptron neural network was tested on the handwritten digits data set in the

UCI machine learning repository. Given a training data set and a separate testing data set,

we training the perceptron neural network using the training set and test it against the

testing set. The training is done in multiple passes. During a pass each data point inn the

training set is fed into the perceptron neural network. If the output is different from the

target label then the weights of the perceptron neural network are changed using the

perceptron learning rule, otherwise the weights remain the same. After we run a pass

through the training set we test the perceptron neural network against the testing set and

record the erroOr rate. One question arises is when to stop the training. We given a plot of

training and testing error rate for 50 passes (see the figure3) .here we use heuristic based

on the observation that when a learning algorithm starts over fitting the error rate on the

testing will go up. Our c is to run for 5 passes so that the algorithm wills stabilize and

then monitor the testing error rate; if the testing e1TOr rate starts going upon we stop. We

use th testing error rate at point A.

To get an unbiased estimated of the prediction error rate of the algorithm, we use

ten fold cross validation to evaluate the predicate error rate. The whole data set is divided

into 10 bins(more generally the data set can be divided into k bins in which case we have

the k fold cross validation). Each bin will be used as the testing set in tum when the

remaining 9 bins are used as the training set. The prediction en-or rates are averaged give

as estimated of the prediction en-or rate on the algorithm for future unseen data. In the

following we report the result in terms of cross validation testing en-or rate.

58

There are two formats of data set. The first one is the original 32x32 bitmap format.

n the second data format the 32x32 bitmap is divided into non overlapping blocks of 4x4

nd the number of ON pixels is counted. It is very interesting to compare the relative

dvantages and disadvantages of two formats. The preprocessed 8x8 blocks formats

educes the dimensions from 1024(32x32) to 64(8x8). This will speed up computation.

Iowever it is debatable whether it can improve accuracy on the one hand it gives

rstance to small distortions but on the other hand it loses some original information.

[ere are the results for 32x32 bitmap format the error rate is 9.98% for 8x8 blocks

ormats the error rate is 11. 7%. We are not sure whether this difference of 1 /\ is

ignificant if yes we can say the 8x8 blocks formats really loses much of the information

1 the original 32x32 bitmap imply that the WO term is an unnecessary degree of freedom

ero threshold is adequate for this data set of handwritten digits.

We also look at some variations on the algorithm. For example in our basic

lgorithm we do not include the WO term in the weight vector which in effect fix

ireshold to zero. We had expected to get a lower error rate when we include the WO

:rm for non zero threshold. But to turns out that this does not help. In fact the error rate

n the 32x32 bitmap format increasing slightly from 9.98% to 10.69% and from 11.07%

, 12.10% on the 8x8 block format. We were also curios about the capability of

erceptron, We believed based from the design of perceptron architecture that it will

:cognize other pattern as well provided with sufficient amount of training set. As an

ctension top our project we have created a small training set at a lower resolution (6x6)

ith three distinct patterns: A.F, Chinese's character for day (see figure 6).as we have

rpected the preceptron recognizes the patterns once it has been properly trained.

000100

001010
010010
011111
010001
100001

Figure 4.4 Characters 'A'

59

~.8 Results

v.letrics of interest

Three outcomes are possible when testing this algorithm given any input the network

an either make a correct identification an incorrect identification or no identification.

lhe first case is of course desirable. A three is correctly identity as a three. The second

iutcome occurs when the network makes a mistakes - a three is identity assume other

ligit. The third case occurs when the network is not sufficient in the output to make a

mess. My algorithm makes no identification if either all outputs are negative or more

han one output is positive. It will only venture guess when exactly one output is greater

han zero. This approach is often better than guessing with a high probability of error. In

orting mail for example it would be better to send unreadable addresses to a person

:larification rather than a route them to the wrong destination.

:lasses of data

The data used for testing can be divided into three categories. The first set consists of

:amples actually used in training. The network should identity these digits with near

. 00% accuracy since it has seen them before. If it does not the amount of training was

irobability adequate. The second class of data is composed of additional samples from

ieople who contributed to the training set. These samples are likely to resemble training

:ample very closely but they were not themselves used for training. Finally the system

:hould be tested with samples from people not use in training. Real systems must handle

his type of data robustly so accuracy on unfamiliar data is the most important metric.

We can see this software as an example for our project.

60

-~-~---------------------,------
'

•

I -~---------------------·~------

Figure 4.5 Examples for Recognition

4.9 Summary

In this chapter we have successfully demonstrated preceptron learning algorithm to

the problem of handwritten digits recognition. The cross validated error rate was 9.98%.

The algorithm runs best (in terms of lowest error rate) when setting threshold to zero and

training directly on the original 32x32 bitmap format. Allowed none zero thresholds does

not improve perceptron learning nor does dimension reduction using the 8x8 blocks

format although the · latter speed up computation. The perceptron model can recognize

other character data set besides hand written digits.

Automatic recognition of hand written numerals has many applications but designed

reliable system is challenging because of the neural variations in human handwritten. One

way to solve this problem is to use a neural network that learns to identify numerals much

61

like a person learns to read. If the training set for such a network is sufficient large and

diverse, the network will generalize top recognize hand written numerals from unfamiliar

sources.

62

CONCLUSION

Neural networks are developed with the goal of modeling information processing

and learning in the brain applied to a number of practical applications in various fields,

including computational molecular biology.

Artificial neural networks are one of the promises for the future in computing.

They offer an ability to perform tasks outside the scope of traditional processors. They

can recognize patterns within vast data sets and then generalize those patterns into

recommended courses of action. Neural networks learn, they are not programmed.

Yet, even though they are not traditionally. programmed, the designing of neural

networks does require a skill. It requires an "art." This art involves the understanding of

the various network topologies, current hardware, current software tools, the application

to be solved, and a strategy to acquire the necessary data to train the network. This art

further involves the selection of learning rules, transfer functions, summation functions,

and how to connect the neurons within the network.

Then, the art of neural networking requires a lot of hard work as data is fed into the

system, performances are monitored, processes tweaked, connections added, rules

modified, and on and on until the network achieves the desired results.

These desired results are statistical in nature. The network is not always right. It is

for that reason that neural networks are finding themselves in applications where

humans are also unable to always be right. Neural networks can now pick stocks, cull

marketing prospects, approve loans, deny credit cards, tweak control systems, grade

coins, and inspect work.

Yet, the future holds even more promises. Neural networks need faster hardware.

They need to become part of hybrid systems which also utilize fuzzy logic and expert

systems. It is then that these systems will be able to hear speech, read handwriting, and

formulate actions. Tuey will be able to become the intelligence behind robots that never

tire nor become distracted. It is then that they will become the leading edge in an age of

"intelligent" machines.

The aim of this project was to present an understanding to the broad subject of

neural networks explaining the implementations of neural networks.

Chapter one described a general introduction of neural networks, the definition of

artificial neural and the history of neural networks from 1940s when the first neuron

63

was developed. The differences between neural computing and traditional computing

were presented. Also it was explained how neural networks are being used and where

the future of neural networks technology may lie.

Chapter two was about neural networks architectures and algorithms. Single-layer

and multilayer feedforward networks, recurrent networks and radial basis function

networks were described. Supervised and unsupervised learning were also explained.

Chapter three was aimed to present real applications to let the reader to enter the

world of neural networks as they are used. Neural networks applied in vast amounts of

field, in medicine, business, pattern recognition, image compression arts and

telecommunications. These applications were discussed.

Chapter four was aimed to show the important application of neural networks in

fraud detection concentrating on credit card fraud detection and how to use

unsupervised neural networks in fraud detection. In this project we have successfully

applied preceptron learning algorithm to the problem of handwritten digits recognition.

Our cross validated error rate 9.98%. We find the algorithm runs best (in terms of

lowest error rate) when setting threshold to zero and training directly on the original

32x32 bitmap format. Allowed none zero thresholds does not improve perceptron

learning nor does dimension reduction using the 8x8 blocks format although the latter

speed up computation. Our perceptron model can recognize other character data set

besides hand written digits. Automatic recognition of hand written has much

application, but designing reliable systems is challenging because of the natural

variations is human handwriting. One way to solve this problem is to use a neural

network that learns to identify numerals much like a person learns to read. If the

training set for such a network is sufficient large and diverse, the network will

generalize to recognize hand written numerals from unfamiliar sources.

64

REFERENCES

[1] McCulloch, W. S. and Pitts, W. H. "A logical calculus ef the tdeas immanent in
nervous activity'; Bulletin of Mathematical Biophysics, 5: 115-133, .1943.

[2] Rosenblatt, F.Rosenblatt, 'The perceptron: A probabt!lstic model far i'1fonnation

storage and organization in the brain': Psychological Review, 65:386-408, 1958.

[3] Anderson, J. A., and Rosenfeld, E. (Eds.), "Neurocomputing· Foundations o/'

.Research'; Cambridge, MA: MIT Press, 1988

[4] Selfridge, 0. G., "Pandemonium: a paradigm for learning. Mechanisation of Thought

Processes", Proceedings ef a Symposium Held al the National Physical .LaboratoJJJ,

1958.

[5] Widrow, B and Hoff, "Adaptive Switching Circuits", ./n /.96(} ./.RE !f::FSCON

Convention .Record, pages 96 - 104. IRE., 1960.

[6] Minsky, M. and Papert, S., "Perceptron.l', MIT Press, Cambridge. 1969

[7] Werbos, P.J., "The .Roots o/: .llaclc-propagatiod', NY: John Wiley &Sons, 1974/1994.

[8] Parker, D.B., ".Leaming-Logic', MIT Center for Computational Research in

Economic and Management Science, Cambridge, MA, 1985

[9] Rumelhart, D., J. McClelland & the PDP Research Group, "Parallel .Distributed

Processing: .Explorations in the Mi'crostructure o/' Cognition Y. //2', MIT Press,

Cambridge, MA, 1986.

[10] Churchland, P. and Sejnowski, T, "The Computational .llraid', MIT Press

Cambridge, 1992.

[11] Haykin, S. and Li, L., "Nonlinear adaptive prediction of no nstationary signals" .

./£.EE Transactions on Signal Processing, 43(2):526-535, 1995.

[12] Bishop, C. M., "Neural Networbfar .Pattern .Recognitiod'. Oxford University Press,

1995.

[13] Kohonen, T., "An adaptive associative memory principle" . ./£££ T!·ansactions on

Computers, C-23:444-445, 1974.

[14] Hebb, D. 0., "The Organization o/'. .1Jehav101r. Wiley, 1949.

65

[15] Hopfield, J. J., ''Neural networks and physical systems with emergent computational

abilities", Proceedings if the .National Academy if Sciences, 79:2554, 1982
[16] Kashman A., Neural Networks: "Lecture Notes of COM420", Near East University,

Nicosia, 2002.
[17] Scheff, K. and Szu, H. "Gram-Schmidt Orthogonalization Neural Networks for

Optical Character Recognition", Journal if .Neural .Network Computing, Winter, 1990.

[18] Paul Watta, Brijesh Desaie, Norman Dannug, Mohamad Hassoun, ".Image

Compression using .Bac/cpro;J', 1996.
[19] Schalkoff, R. J., "Pattern .Recognition: Statistical, Structural, and .Neural

Approaches', John Wiley & Sons, New York, NY, 1992.

[20] Hutchison, W.R. & Stephens, K.R., "The Airline Marketing Tactician (AMT): a

commercial application of adaptive networking". Proceedings o/' the first ./ntemationa!

Conference on .Neural .Networh, 4: 753-756. IEEE Press. 1987.

[21] Robert Hecht-Nielsen., ".Neurocomputing''. Addison-Wesley, 1989
[22] B.S. Hoffheins, Using Sensor Arrays and Pattern Recognition to Identify Organic

Compounds. MS-Thesis, the University of Tennessee, Knoxville, TN, 1989.
[23] K. Pope, ''Technology Improves on the Nose As Science Tries to Imitate Smell",

/Pall Street Journal, pp. Bl-2, 1995.
[24] P.E. Keller, R.T. Kouzes, L.J. Kangas, and S. Hashem, "T!-ansmission ef 0(/actory

./'!farmationfar Te!emedicine', IOS Press, Amsterdam,, pp. 168-172, 1995.

[25] Pacific Northwest National Laboratory (PNNL)

"http ://v.rww .emsl.pnl. gov:2080/proj/neuron/neural ".

[26] Todd, P.M., and D.G. Loy (Eds.), "Music and Connectionism'. Cambridge, MA:

MIT Press, 1991

[27] Lippmann, R.P., "Review of neural networks for speech recognition". Neural

Computation, 1 1-38, 1989

[28] Brause, R., Langsdorf T. and Hepp M., "Neural Data Mining for Credit Card Fraud

Detection". Proceedings. //th .IEEE .International Conference on Tools with Art(/icial

.Intelligence, 1999.

66

(29] Hassibi, K., ".Detecting Payment Card Fraud with Neural Networks. .Business

Applications if Neural JVetworH'. P.J.G. Lisboa, A.Vellido, B.Edisbury Eds. Singapore:

World Scientific, 2000.

67

	Page 1
	Titles
	NEAR EAST UNIVERSTIY
	Faculty of Engineering
	Department of Computer Engineering
	IMPLEMENTATIONS OF NEURAL NETWORKS
	Graduation Project

	Images
	Image 1
	Image 2
	Image 3

	Page 2
	Titles
	· ACKNOWLEDGMENT
	i

	Images
	Image 1

	Page 3
	Titles
	ABSTRACT
	ii

	Images
	Image 1

	Page 4
	Images
	Image 1

	Page 5
	Images
	Image 1

	Page 6
	Titles
	INTRODUCTION

	Images
	Image 1

	Page 7
	Images
	Image 1

	Page 8
	Images
	Image 1

	Page 9
	Titles
	CHAPTER ONE
	INTRODUCTION TO NEURAL NETWORKS
	1.1 Overview
	1.2 Artificial Neural Networks

	Images
	Image 1

	Page 10
	Titles
	1.3 History of Neural Networks

	Images
	Image 1

	Page 11
	Titles
	Cr
	<:»:
	x

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 12
	Titles
	()'"j······ >:···.··.
	l /
	~ ··. -=::· .axon
	"!1· .. li ·.·. -
	7

	Images
	Image 1
	Image 2

	Page 13
	Titles
	1.4 Artificial Neurons and How They Work

	Images
	Image 1
	Image 2

	Page 14
	Titles
	9

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 15
	Images
	Image 1
	Image 2
	Image 3

	Page 16
	Titles
	1..5 Why Are Neural Networks Important
	1.6 Electronic Implementation of Artificial Neurons

	Images
	Image 1

	Page 17
	Titles
	0.1'
	CV2
	/'
_...._...._ .�..�� -=:::.....__._....._--1-...._....__......_.__.___.__.__._......_ Inp1..1.t. va L u.e
	-1
	1 .
	,.---
	0.8f I

	Images
	Image 1

	Page 18
	Titles
	1. 7 Artificial Network Operations

	Images
	Image 1
	Image 2

	Page 19
	Titles
	1.8 The Future of Artificial Neural Networks

	Images
	Image 1

	Page 20
	Titles
	Summary

	Images
	Image 1
	Image 2
	Image 3

	Page 21
	Titles
	CHAPTER TWO
	NEURAL NETWORKS ALGORITHMS
	1 Overview
	2.2 Model of a Neuron

	Images
	Image 1

	Page 22
	Images
	Image 1
	Image 2
	Image 3

	Page 23
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 24
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Tables
	Table 1

	Page 25
	Titles
	Network for Classification
	_.3.1. Leaming Vector Quantization.

	Images
	Image 1

	Page 26
	Titles
	4 Neural Network Structure
	_.4.1 Feed forward, Back-Propagation.

	Images
	Image 1
	Image 2

	Page 27
	Images
	Image 1
	Image 2
	Image 3

	Page 28
	Titles
	_.4.2 Higher Order Neural Network or Functional Link Network

	Images
	Image 1
	Image 2

	Page 29
	Titles
	2.4.3.1 Supervised Training.
	2.4.3 Training an Artificial Neural Network

	Images
	Image 1

	Page 30
	Titles
	2.4.3.2 Unsupervised or Adaptive Training.

	Images
	Image 1
	Image 2

	Page 31
	Titles
	2.4.3.3 Leaming Rates

	Images
	Image 1
	Image 2

	Page 32
	Titles
	2.4.3.4 Leaming Laws

	Images
	Image 1
	Image 2
	Image 3

	Page 33
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 34
	Titles
	2.5 Advanced Neural Networks
	2.5.1 Kohonen Self-Organizing Networks

	Images
	Image 1

	Page 35
	Titles
	2.5.2 Algorithm

	Images
	Image 1
	Image 2
	Image 3

	Page 36
	Titles
	2.6 Problem using neural Network
	2.6.1 Local Minimum

	Images
	Image 1

	Page 37
	Titles
	2.6.2 Practical Problems
	2.7 Summary

	Images
	Image 1

	Page 38
	Titles
	CHAPTER THREE
	NEURAL NETWORKS APPLICATIONS
	3.1 Overview
	3.2 How Artificial Neural Network Are Being Used

	Images
	Image 1

	Page 39
	Page 40
	Titles
	3.3 Language Processing

	Images
	Image 1
	Image 2

	Page 41
	Titles
	3.4. Character Recognition
	3.5 Image Compression

	Images
	Image 1

	Page 42
	Titles
,,
	x.,..

	Images
	Image 1
	Image 2
	Image 3

	Page 43
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 44
	Images
	Image 1
	Image 2

	Page 45
	Titles
	' 3.6 Pattern Recognition

	Images
	Image 1

	Page 46
	Titles
	3. 7 Signal Processing

	Images
	Image 1
	Image 2

	Page 47
	Titles
	3.8 Financial
	The Joan approval process involves filling out fo1711s which lJopefll}Jy C!lll tJJ!J/J}t Ii

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 48
	Titles
	3.9 Neural Network in Medicine
	3.10 Electronic Noses

	Images
	Image 1

	Page 49
	Images
	Image 1
	Image 2

	Page 50
	Titles
	3.11 Applications in the Arts

	Images
	Image 1

	Page 51
	Images
	Image 1
	Image 2

	Page 52
	Titles
	3.12 Neural Networks in Telecommunications
	--

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 53
	Titles
	3.13 Summary

	Images
	Image 1
	Image 2
	Image 3

	Page 54
	Titles
	CHAPTER FOUR
	DIGIT RECOGNITION USING NEURAL NETWORK
	4.1 Overview

	Images
	Image 1
	Image 2

	Page 55
	Titles
	-,
	L -
	4.2 Training

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9

	Page 56
	Titles
	4.3 Training and Test Data

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 57
	Titles
	4.4 The Backpropagation Algorithm

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 58
	Images
	Image 1
	Image 2

	Page 59
	Titles
	Forward Pass

	Images
	Image 1

	Page 60
	Titles
	4.5 Network Convergence
	Backward Pass
	bj
	1024

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Page 61
	Titles
	4.6 Method

	Page 62
	Titles
	Y _in: summation of weighted inputs
	Y: perceptron output computed by activation function
	a: learning rate set tp 1
	b: bias set to 0
	Figure 4.5 a) Digitized numeric digit 3
	initial weights and bias
	y=
	if y = 1 then// update weight
	b) perceptron with 1024 input 10 output
	1 if y_in > 0
	0 ify_in =0
	57

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 63
	Titles
	4. 7 Evaluation & Discussion

	Page 64
	Images
	Image 1

	Page 65
	Titles
	~.8 Results

	Images
	Image 1
	Image 2
	Image 3

	Page 66
	Titles
	-~-~---------------------,------
	�
	-~---------------------·~------
	4.9 Summary

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 67
	Images
	Image 1

	Page 68
	Titles
	CONCLUSION

	Page 69
	Images
	Image 1
	Image 2

	Page 70
	Titles
	REFERENCES

	Images
	Image 1

	Page 71
	Images
	Image 1
	Image 2
	Image 3

	Page 72
	Titles
	67

	Images
	Image 1
	Image 2

