
-- - -------- ··--

NEAR EAST UNIVERSTY

Faculty of Engineering

Department of Computer Engineering

Internet Protocol Version 6

Graduation Project

Com-400

Student :Syed Taimoor Hussain(20002214)

Supervisor : As~rof Firudin Muradov

Lefkoşa-2004

l!Jll~~t~
NEU 



ACKNOWLEDGMENT

I want to thank Ass.Prof. Firudin Muradov to be my adviser under his guidance I

successfully overcome difficulties and learn a lot about Internet Protocol Version 6 . In

each discussion he explained my questions patiently and I felt my quick progress from

his advices.

I also want to thank my friends for there help: irfan, rehan, dawood . Being with

them make my time full of fun .

Finally I want to thank my family especially my parents. Without their endless

support and love for me I would never achieve my current position

t.



----- ---. -------,,-. -- ~----- ·-·-- -

Abstract

This project presents the Internet Protocol Version 6 (IPv6) in detail which will also

cover architectures and design of IPv6.

It describes the OSI model, TCP, comparison with IPv4 new features in version6

and focuses on the basic knowledge of networking concepts and terminology used in

data communication.

It defines how to assign and configure the IPs to different network topologies and it

also informs how 1Pv6 functions during data communication.

This project helps to understand the problems that can occur in IPv6 and debugging of

these problems by using commands.

The project also provides security issues available in IPv6 firewalls, and their

implementation, Encryption, authentication.

11



. .-- -- --'--
-- - ------

Table of Contents

ACKNOWLEDGMENT

ABSTRACT

TABLE OF CONTENTS

INTRODUCTION

11

ııı

vı

Chapter 1 Networking

1 . 1 Computer Networks

1 .2 General Ethernet Information

1 .3 Protocols Speeds and Bandwidth

1.4 Requirements for using

1

24

27

32

Chapter2 Basics

2. 1 What is IPv6

2.2 History of IPv6

2.3 How do IPv6 Addresses look Like

2.4 FAQ (Basics)

33

33

34

36

Chapters3 Address Types

3. 1 Address without a special prefix

3.2 Network Part, also known as prefix

3.3 Address types (host part)

3 .4 Prefix Lengths for Routing

38

39

43

45

Chapter4 IPv6-Ready System Check

4. 1 IPv6 Ready Kernels

4.2 IPv6 Ready Network Configuration tools

4.3 IPv6 Ready Test/Debug Programs

46

48

49

ııı



-- - •··-~

4.4 IPv6 Ready Programs

4.5 IPv6 Ready Client Programs

4.6 IPv6 Ready Server Programs

4.7 FAQ IPv6 Ready System Check

52

52

54

54

ChaptersS Configuring interfaces

5.1 Different Network Devices

5.2 Bringing Interfaces Up/Down

56

57

Clıapter6 Configuring JPv6 Addresses

6.1 Displaying Existing IPv6 Addresses

6.2 Add an 1Pv6 Address

6.3 Removing an IPv6 Address

Chapter7 Configuring normal 1Pv6 Routes

58

59

59

7. 1 Displaying Existing IPv6 Route

7.2 Add an IPv6 Route Through a gateway

7.3 Removing an IPv6 Route through a gateway

7.4 Add an IPv6 Route through an Interface

7.5 Removing an IPv6 Route Through an Interface

7.6 FAQ for IPv6 Routes

61

62

62

63

03

Clıapters8 Configuring JPv6-in-JPv4 Tunnels

8.1 Types of Tunnels

8.2 Displaying Existing Tunnels

8.3 Setup of Point-to-Point Tunnels

8.4 Setup of 6-4 Tunnels

65

67

67

70 

Chapter9 Network Debugging

9.1 Server socket binding 73



--- ·-- -·. .::::::::._..: - -~ - -~

9.2 Examples tcpduınp packet dumps 75

Chapter 10 Support for persistent 1Pv6

configuration in Linux distributions

10.1 Red hat Linux and clones

10.2 SuSE linux

77

78

Chapter 11 firewalling and security issues

11.1 Firewalling 79

Chapter 12 Encryption and Authentication

12.1 Support in kernel 87 

Chapter 13 Hints for 1Pv6 Enabled Daemons

13 .1 Berkley internet name Daemon bind

13 .2 Internet super daemon

13.3Listening on IPv6 addresses

13.4 Router Advertisment daemon

13.5 tep.Wrapper

88

91

92 

93

95

CONCLUSION

REPEREN CESS

98

91)



INTRODUCTION

IPv6 is a new layer 3 transport protocol which will supersede IPv4 (also known as IP).

IPv4 was designed long time ago (RFC 760 from January 1980) and since its inception,

there have been many requests for more addresses and enhanced capabilities. Major

changes in IPv6 are the design of the header, including the increase of address size from

32 bits to 128 bits Because layer 3 is responsible for end-to-end packet transport using

packet routing based on addresses, it must include the new IPv6 addresses (source and

destination), like IPv4.For more information about the IPv6 history take a look at older

IPv6 related RFCs listed e.g. at Switch.
On any IP header, the first 4 bits are reserved for protocol version. So theoretically a

protocol number between O and 15 is possible:

4: is already used for IPv4
5: is reserved for the Stream Protocol (STP, RFC 1819) (which never really made it to

the public) The next free number was 6. Hence 1Pv6 was bom

The first IPv6 related network code was added to the Linux kernel 2.1.8 in November

1996 by Pedro Roque Because of lack of manpower, the IPv6 implementation in the

kernel was unable to follow the discussed drafts or newly released RPCs. In October

2000, a project was started in Japan, called USAGI, whose aim was to implement all

missing or outdated IPv6 support in Linux. It tracks the current IPv6 implementation in

Free BSD made by the KAME project. From time to lime they create snapshots against

current vanilla Linux
1Pv6 defines address types based on some leading bits, which are hopefully never going

to be broken in the future (unlike 1Pv4 today and the history of class A, B, and C).Also

the number of bits are separated into a network part (upper 64 bits) and a host part

(lower 64 bits), to facilitate auto-configuration

This interfaces are normally named site. The name sit is a shortcut for Simple Internet

Transition. This device has the capability to encapsulate IPv6 packets into IPv4 ones

and tunnel them to a foreign end point has a special meaning and cannot be used for

dedicated tunnels.

Vl



·---·-- --·----------- ·-·---- -···-·----- ·---. ------ --------

IPv6 firewalling is important, especially if using IPv6 on internal networks with global

IPv6 addresses. Because unlike at IPv4 networks where in common internal hosts are

protected automatically using private IPv4 addresses like RFC 1918 I Address

Allocation for Private Internets or APIPA I Automatic Private IP Addressing, in IPv6

normally global addresses are used and someone with IPv6 connectivity can reach all

internal IPv6 enabled nodes

Unlike in IPv4 current versions doesn't allow to bind a server socket to dedicated IPv6

addresses so only any or none are valid. Because this can be a security issue, check the

Access Control List (ACL)

vıı



--·-- --~---- -"-~·-- --------

Chapter 1

NETWORKING

1.1 COMPUTER NETWORK

A network can consist of two computers connected together on a desk or il cuıı consist

of many Local Area Networks (LANs) connected together to form a Wide Area

Network (WAN) across a continent. The key is that two or more computers arc

connected together by a medium and are sharing resources- These resources can be

fi !es, printers, hard

drives, or CPU number-crunching power.

1.1.1 NETWORK HARDWARE

There is no generally accepted taxonomy into which all computer networks fit bul ı..»
dimensions stand out as important: transmission technology anu scale. We will now

examine each of these in turn.

Broadly speaking, there are two types of transmission technology:

a. Broadcast networks.

b. Point-to-point networks.

a. Broadcast Networks:

Broadcast Networks have a single communication channel that is shared by all the

machines on the network- Short messages, called packets in certain contexts, sent by

any machine are received by all the others. An address field within the packet specifies

for whom it is intended. Upon receiving a packet, a machine checks tlıe address field If

the packet is intended for itself, it processes the packet; if the packet is intended for

some other machine, it is just ignored.

As an analogy, consider someone standing at the end of a corridor with nıany rooms o Cf

it and shouting "Watson, come here. I want you." Although the packet may actually be

received (heard) by many people, only Watson responds. The others just ignore it

Another example is an airport announcement asking all flight 64--1- passengers to report

to gate 12.Broadcast systems generally also allow the possibility of addressing a packet

to all destinations by using a special code in die address field. When a packet with this



---~-- ·- -·· --·---- -·- ---- ..----
- . ---- -~·-·--- . --· ----

code is transmitted, it is received and processed by every machine on the network. This

mode of operation is called broadcasting. Some broadcast systems also support

transmission to a subset of the machines, something known as mulıicasıing. One

possible scheme is to reserve one bit to indicate multicasting. The remaining n-I address

bits can hold a group number. Each machine can "subscribe" to any or all of the groups.

When a packet is sent to a certain group, it is delivered to all machines subscribing lo

that group.

b. Point-To-Point:

In contrast, point-to-point networks consist of many connections between individual

pairs of machines. To go from the source to the destination, a packet on this type of

network may have to first visit one or more intermediate machines. Often multiple

routes, of different lengths are possible, so routing algorithms play an important role in

point-to-point networks. As a general rule (although there are many exceptions) smaller,

geographically localized networks tend to use broadcasting, whereas larger networks

usually are point-to-point.

lı'laeı'{lHıoaaseır
qj~~i\t.i!;

Pr:ml~Hı50ıt'i:,;
\ııq._l)i((:~ ill~ilm\\.

t iTi

--· ~ rıo:n .l--···~u~~-· _ ., ı t ~ı ~r~9'l\~h#ılM!ı;

Figure 1 Classification of Interconnected Processors by scale



--- - ---- ====--- --·-- ----- -- --

An alternative criterion for classifying networks is their scale, In Fig. 1-2 we give a

classification of multiple processor systems arranged by their physical size. At the top

are data flow machines, highly parallel computers with many functional units ull

working on the same program. Next come the multicomputers systems that

communicate by sending messages over very short, very fast' buses. Beyond me

multicomputers are the true networks, computers that communicate by exchanging

messages over longer cables. These can be divided into local, metropolitan, and wide

area networks. Finally, the connection of two or more networks is called an

internetwork. The worldwide Internet is a well-known example of an internetwork

Distance is important as a classification metric because different techniques are used at

different scales.

1.1.2 Local Area Network (LAN) 

A communications network connecting a group of computers, printers, and other

devices located within a relatively limited area (for example, a building). A LAN allows

any connected device to interact with any other on the network. Local area networks,

generally called LANs, are privately owned networks within a single building or

campus of up to a few kilometers in size. They are widely used to connect personal

computers and workstations in company offices and factories to

share resources (e.g., printers) and exchange information. LANs are distinguished from

other kinds of networks by three characteristics:

1 . Their size

2. Their transmission technology, and

3. Their topology.

LANs are restricted in size, which means that the worst-case transmission time ıs

bounded and known in advance. Knowing this bound makes il possible to use certain

kinds of designs that would not otherwise be possible. It also si.nplilics network

management, LANs often use a transmission technology consisting of a single cable to

which all the machines are attached, like the telephone company party lines once used

in rural areas. Traditional LANs run at speeds of 1 O to l 00

Mbps, have low delay (tens of microseconds), and make very few errors- Newer LANs

may operate at higher speeds, up to hundreds of megabits/sec.

3



-- - --------- ------------. -~--- -------- -~· - - --------- -- - ---···
- --- --- - ----------

Various topologies are possible for broadcast LANs- An arbitraüo.. mechanism is

needed to resolve conflicts when two or more machines warn to transmit

simultaneously. The arbitration mechanism may be centralized or distributed. lEEE

802.3, popularly called Ethernet, for example, is a bus-based broadcast network with

decentralized control operating at 1 O or 100 Mbps- Computers on arı Ethernet can

transmit whenever they want to; if two or more packets collide, each computer

just waits a random time and tries again later.

ı::ı:r··\t;? I
r···· \ J l ···1··
L.J\ /,, .•...•.

Figure 2 Local Area Network in a building

A second type of broadcast system is the ring. In a ring, each bit propagates arouııd on

its own, not waiting for the rest of the packet to which it belongs. Typically, each bit

circumnavigates the entire ring in the time it takes to transmit a few bits, often before

the complete packet has even been ransmitted. Like all other broadcasl systems, some

rule is needed for arbitrating simultaneous accesses to the ring. Various methods are in

use and will be discussed later in this book. IEEE 802.5 (the IBM token ring), is a

popular ring-based LAN operating at 4 and 16 Mbps.

Broadcast networks can be farther divided into static and dynamic, depending on lıow

the channel is allocated. A typical static allocation would be to divide up time into

discrete intervals and run a round robin algorithm, allowing each machine to broadcast

only when its time slot comes up. Static allocation wastes channel capacity when a

4



--·· ----- ----·-·- ---__ . ·-·· -·---- ---

--------~---·

machine has nothing to say during its allocated slot, so most systems attempt lo allocate

me channel dynamically (i.e., on demand)
Dynamic allocation methods for a common channel are either centralized or

decentralized, m the centralized channel allocation method, there is a single entity, for

example a bus arbitration unit, which determines who goes next. lt might do this Ly

accepting requests and making a decision according to some internal algorithm. In the

decentralized channel allocation method, there is no central entity; each machine must

decide for itself whether or not to transmit. You might think that this always leads to

chaos, but it does not. Later we will study many algorithms designed lo bring order out

of the potential chaos.
The other kind of LAN is built using point-to-point lines. Individual lines connect a

specific machine with another specific machine. Such a LAN is really a miniature wide

area network.

1.1.3 NETWORK SOFTWARE 

The :first computer networks were designed with the hardware as the main concern

and the software as an afterthought. This strategy no longer works. Network software is

now highly structured.

Protocol Hierarchies
To reduce their design complexity, most networks are organized as a series of byers or

levels, each one built upon the one below it. The number of layers, the name of each

layer, the contents of each layer, and the function of each layer differ Crom network lo

network.However in all networks, the purpose of each layer is to offer certain services

to the higher layers, shielding those layers from the details of how the offered services

are actually implemented.

Layer n on one machine carries on a conversation with layer won another machine. The

rules and conventions used in this conversation are collectively known as the layer I ı

protocol.Basically a protocol is an agreement between the communicating parties u,-ı

how communication is to proceed.

We have five-layer network illustrated here. The entities comprising die corresponding

layers on different machines are called peers. In other words, it is the peers ıhaı

communicate using the protocol.

5



-- --
-------

Figure 3 Layers, protocols, and interfaces

In reality, no data are directly transferred from layer n on one machine to layer n on

another machine. Instead, each layer passes data and control information to the layer

immediately below it, until the lowest layer is reached. Below layer I is the physical

medium through which actual communication occurs.

Between each pair of adjacent layers there is an interface. The interface defines which

primitive operations and services the lower layer offers to the upper one. When network

designers decide how many layers to include in a network and what each one should do,

one of the most important considerations is defining clean interfaces between tlıe layers.

Doing so, in turn, requires that each layer perform a specific collection of well

understood fünctions. In addition to minimizing the amount of information ılıaı must be

passed between layers, clean-cut interfaces also make it simpler to replace the

implementation of one layer with a completely different implementation (e.g., al I the

telephone lines are replaced by satellite channels), because all that is required of ılıc

new implementation is

ıJ



- -----·~---- ------ ------ . ----- -- ---~- -~ 

that it offers exactly the same set of services to its upstairs neighbor as the old

implementation did.
A set of layers and protocols is called architecture. The specification of architecture

must contain enough information to allow an implementer to write the program or build

the hardware for each layer so that it will correctly obey the appropriate protocol.

Neither the details of the implementation nor the specification of the interfaces are part

of the architecture because these are hidden away inside the machines and not visible

from the outside. It is not even necessary mat the interfaces on all machines in a

network be the same, provided that each machine can correctly use all the protocols. A

list of protocols used by a certain system, one protocol per layer, is called a protocol

stack.

il
I ;.ıypı: h tl• C\Mı:n I

"'-,,,. ,.,:, . ., ,,.,

!Lüyi\f 4 pm:Jı,r.. ı:A
-~ ' ·,~-,Jr··""~~ .• "~- -·f. <•-• ~ ,..,

r ;,ttvı ;J
I ,,• ı_ . . ,.. I
r,_1,ııj,:,{.Wıf l · l ( I j, I M ı
I' • ,. ••• :. ': ı: ' •

i _ ı,-ı, () r
"'-ılı, •• ,·. . l I
IJ{r;forn il I' .1 ! , .ı. ı ·t ı, ] M ·. 0\: I. , .• ,I ' . ·,ı i , ." '"-; ,, =~ f • '

ı "- ı . )./ I

',,
~_c,;;\"!'•'-,-.·-•··""''~' •''/ •--~;,>.,4=,.,,.,._.,..,,·. •·, . .,,i.,-.,-~,

1'
I
l
I

ı1

Figure 4 Example information flow supporting virtual communication in layer 5

Now consider a more teclmical example: how to provide communication to me top layer

of the five-layer network. A message, M, is produced by an application process running

in layer 5 and given to layer 4 for transmission. Layer 4 puts a header in front of the

7



- -- -- ·---

message to identify me message and passes the result to layer 3. The header incl udcs

control information, such as sequence numbers, to allow layer 4 on the destination

machine to deliver messages in the right order if the lower layers do not maintain

sequence. In some layers, headers also contain sizes, times, and other control fields.

In many networks, there is no limit to the size of messages transmıued in me layer 4

protocol, but there is nearly always a limit imposed by the layer 3 protocol.

Consequently, layer 3 must break up the incoming messages into smaller

Layer 3 decides which of the outgoing lines to use and passes ıhe packets to layer 2.

Layer 2 adds to only a header to each piece, but also a trailer, and gives the resulting

unit to layer I for physical transmission. At the receiving machine the message moves

upward, from layer to layer, with headers being stripped off as İl progresses. None of

the headers for layers below n are passed up to layer n.

The peer processes in layer 4, for example, conceptually think of their communication

as being "horizontal," using the layer 4 protocol. Each one is likely lo have a procedure

called something like SendToOıherSide and GetFronıOtherSide. even though these

procedures actually communicate with lower layers across the 3/4 interfaces, not with

the other side.

The peer process abstraction is crucial to all network design. Using it, the unmanageable

task of designing the complete network can be broken into several smaller, manageable,

design problems, namely the design of the individual layers.

"Network Software," it is worth poinling out that the lower layers of a protocol

hierarchy are frequently implemented in hardware or firmware. Nevertheless, complex

protocol algorithms are involved, even if they are embedded (in whole or in part) in

hardware.

1.1.4 Design Issues for the Layers

Some of the key design issues mat occur in computer networking are present in several

layers. Below, we will briefly mention some of the more important ones.

Every layer needs a mechanism for identifying senders and receivers. Since a network

normally has many computers, some of which have multiple processes, a means is

needed for a process on one machine to specify with whom ıı wants lo talk. rıs a

consequence of having multiple destinations, some form of addressing is needed in

order to specify a specific destination.

8



Another set of design decisions concerns the rules for data transfer, bi some systems,

data only travel in one direction (simplex communication). In others they can travel in

either direction, but not simultaneously (half-duplex communication). In sti il others they

travel in both directions at once (full-duplex communication). The protocol must also

determine how many logical channels the connection corresponds to, and what their

priorities are. Many

networks provide at least two logical channels per connection, one for normal data and

one for urgent data.
Error control is an important issue because physical communication circuits are not

perfect Many error-detecting and error-correcting codes are known, but both ends of the

connection must agree on which one is being used. In addition, the rccei ver must have

some way of telling the sender which messages have been correctly received and which

have not.Not all communication channels preserve the order of messages sent on them.

To deal with a possible loss of sequencing, the protocol must make explicit provision

for the receiver to allow the pieces to be put back together properly. An obvious

solution is to number the pieces, but this solution still leaves open the question of what

should be done with pieces that ani ve out of order.

An issue that occurs at every level is how to keep a fast sender from swamping a slow

receiver with data. Various solutions have been proposed and will be discussed later.

Some of them involve some kind of feedback from the receiver to the sender, either

directly or indirectly, about the receiver's current situation. Others limit the sender to an

agreed upon transmission rate.

Another problem mat must be solved at several levels is the inability of all processes to

accept arbitrarily long messages. This property leads to mechanisms for disassembling,

transmitting, and then reassembling messages. A related issue is/what to do when

processes insist upon transmitting data in units that are so sin all that sending each one

separately is inefficient. Rare the solution is to gather together several small messages

beading toward a common destination into a single large message and dismember the

large message at the other side.

When it is inconvenient or expensive to set up a separate connection for each pair of

communicating processes, the underlying layer may decide to use the same connection

for multiple, unrelated conversations. As long as this multiplexing and demultiplexing is

done transparently, any layer can use it. Multiplexing is needed in the physical layer, for

9



example. where all the traffic for all comıections has to be sent over at most a few

physical circuits

When there are multiple paths between source and destination, a route rnusl be chosen.

Sometimes this decision must be split over two or more layers. For example, to send

data from London to Rome, a high-level decision might have to be made to go via

France or Germany based on their respective privacy laws, and a low-level decision

might have to be made to choose one of the many available circuits based on the current

traffic load.

1.1.5 Interfaces and Services 

The function of each layer is to provide services to me layer above it. In this section we

will look at precisely what a service is in more detail, but first we will give some

terminology.

The active elements in each layer are often called entities. An entity can be a software

entity (such as a process), or a hardware entity (such as an intelligent J/0 chip). Entities

in the same layer on different machines are called peer entities. The entities in layer n

implement a service used by layer n + 1. In this case layer n is called the service provider

and layer n + 1 is called me service user. Layer n may use the services of layer ıı - l in

order to provide its service. It may offer several classes of service, for example, fast,

expensive communication and slow, cheap communication.

Services are available at SAPs (Service Access Points). The layer n SAPs are the places

where layer n + 1 can access the services offered. Each SAP has an address that

uniquely identifies it. To make this point clearer, the SAPs in the telephone system arc

the sockets into which modular telephones can be plugged, and die SAP addresses arc

the telephone numbers of these sockets. To call someone, we must know the cal let's

SAP address. Similarly, in the postal system, the SAP addresses are street addresses auu

post office box numbers. To send a letter, you must know the addressee's SAP address.

In order for two layers to exchange information, there has to be an agreed upon set

of rules aboul the interface. At a typical interface, the layer n + I entity passes an

IDU (Interface Data Unit) to the layer n entity through the SAP. The !DU consists

of an SDU (Service Data Unit) and some control information. The SDU is me

information passed across the network to the peer entity and then up to layer n -t 1.

10



The control information is needed to help the lower layer do its job (e.g., the

number of bytes in the SDU) but is not part of the data itself.

In order to transfer the SDU, the layer n entity may have to fragment it into several

pieces each of which is given a header and sent as a separate PDU (Protocol Data Unit)

such as a packet. The PDU headers are used by the peer entities to carry out their peer

protocol. They identify which PDUs contain data and which contain control

information, provide sequence numbers and counts, and so on.

1.1.6 Connection-Oriented and Connectionless Services

Layers can offer two different types connection-oriented and connectionless. In tlıis

section we will Took at these two types and examine the differences between them.

Connection-oriented service is modeled after the telephone system. To talk to someone;

you pick up the phone, dial the number, talk, and then hang up. Similarly, to use a

connection-oriented network service, the service user first establishes a connection, uses

the connection,and then releases the connection. The essential aspect of a connection is

that it acts like a tube: the sender pushes objects (bits) in at one end, and the receiver

takes them out in the same order at the other end.

In contrast, connectionless service is modeled after the postal system. Each message

(letLer)carries the full destination address, and each one is routed through the system

independent of all the others. Normally, when two messages are sent to the same

destination, the first one sent will be the first one to arrived. However, it is possible that

the first one sent can be delayed so that the second one arrives first. With a connection

oriented service this is impossible.

Each service can be characterized by a quality of service. Some services are reliable in

the sense that they never lose data. Usually, a reliable service is implemented by haviııg

the receiver acknowledge me receipt of each message, so the sender is sure tlıat il

arrived. The aclmowledgement process introduces overhead and delays, which arc often

worth it but are sometimes undesirable.

A typical situation in which a reliable connection-oriented service is appropriate is file

transfer. The owner of the file wants to be sure that all the bits arrive correctly and in

the same order they were sent. Very few file transfer customers would prefer a service

that occasionally scrambles or loses a few bits, even if it is much faster.

11



Reliable connection-oriented service has two minor variations: message sequences and

byte streams, ın the former, the message boundaries are preserved, When two 1-KB

messages are sent, they arrive as two distinct 1-KB messages, never as one 2-KB

message. (Note: KB means kilobytes; kb means kilobits.) In the latter, the connection is

simply a stream of bytes with no message boundaries. When 2K bytes arrive at the

receiver, there is no way to tell if they were sent as one 2-KB message, two 1-KB

messages, or 2048 I-byte messages. If the pages of a book are sent over a network to a

phototypesetter as separate messages, it might important to preserve the message

boundaries. On the other hand, with a terminal logging

into a remote timesharing system, a byte stream from the terminal to the computer is all

that

is needed.

1.1. 7 Reference Models

Now that we have discussed layered networks in me abstract, it is rime to look at some

examples. In the next two sections we will discuss two important network architectures,

the OSI reference model and the TCP/IP reference model.

The OSI Reference Model

This model is based on a proposal developed by me International Standards

Organization (ISO) as a first step toward international standardization of the protocols

used in the various layers (Day and Zimmermann, 1983). The model is called the ISO

OST (Open Systems Interconnection) Reference Model because it deals with connecting

open systems-that is,systems that are open for communication with other systems. We

will usually just call it the OSI model for short.

The OS] model lıas seven layers. The principles that were applied to arrive at the seven

layers are as follows:

l. A layer should be created where a different level of abstraction is needed.

2. Each layer should perform a well-defined function.

3. The function of each layer should be chosen with an eye toward defining

standardized protocols.

4. The layer boundaries should be chosen to minimize the information flow across

the interfaces.

12



5. The number of layers should be large enough that distinct functions need not be

thrown together in the same layer out of necessity, and small

enough that the architecture does not become unwieldy.

Below we will discuss each layer of the model in turn, starting at the bottom layer. Note

that the OSI model itself is not a network architecture because it does not specify the

exact services and protocols to be used in each layer. It just tells what each layer should

do However, ISO has also produced standards for all the layers, although these are not

part of the reference model itself. Each one has been published as a separate

international

standard.

Lıııdıırd I
\ntı/ıı1'l)CI! • ,t

. c·-··•···-····""'"""J. r"«t.&,Uli.a'ı.ıUf\ t-O!,ct:.ııl c·---:---·:--.:-ı!i ·f'rı.,.,,:;rH.;ı.\lqı\ •••.•. ,, •.. -- • .,.--~--~·~~~fl.,_···----···--- Pv'ie$Ctıt;ı.ı.o~--·--·:·--"·-·· . .. r--
'"""('::'....L 1 s .•. • .. ,.. c..··---·---J~ · $ı11uiorı - -- -~···---- •.• J!.":::'!t'.fı!l:!.'!ı'*~ - • --· ---·- .• .,.. S,u:~IN,·r · ·· ---··--·r-· -·
[I-~ Tr.ıo~ ort rotoc~ı [· --~-~- ..........•!

i 1'r.ııli..ı;>,;'<1 .,._ .• • -. ~- ~.·-. -- --. - ~-. ·.•... e!.. -.. ~.. fr!....;;;. '.~.·.- ··.··.. ., .....,, ~· ---· Trol\f;. ~·ı
-··· . · CQq~nk:~l;<>ıı ~~t lınvtı\!ıı,y · · -- .. ---- ··-------·-'"-------. ·------' ~r ..··-·····J ,. r.-:-----~t.(i\tıl 1~~.!:~~ , --·· i ... :) L ~~:~W{'~·~-- j i.1 .•. ~~.ı.\.\ı&~--·~r .• ..; •• l'J~~~--J"'' ~- ~~tw~~!:.. I

t l' L~t"J·· ~L0."'~i<l-· {~"''.~-=}· · ·C~~~·•· ı
1 L ~-~~).!~~;=~~-~ .. .-[:~ ..ı..:.'.c·~. '-.···.r· ....[~~~~.~.~.. t-- }- -,{_:·!·~~~ı~-~ı--] b•~J...:ıı.ı A fllJl\J<ııı' f\r.ut,r , J tı;ışl e'·-·-~~· . . ~-- _ _.•..------··

~-- t-ıcıı.;ıo,tı;4 yq,r I\<>~~ 11'JI.Mf pmh-ı:ı:ırıi
-----•, Çj~H• lil'li. lı.n, !wııt·w,ılıi1J°pcolq'-OI

.. , --,~- t'.itıyıjiç;ı.i tıı~, }ıo~,'1)1.)i$!'~·~
1

Figure 5 The OSI reference model

1.1.8 The Physical Layer

The physical layer is connected with transmitting raw bits over a comu.unication

channel.The design issues have to do with making sure that when oııc side sends a I bit,

it is received by the other side as a 1 bit, not as a O bit. Typical questions here are how

many volts should be used to represent a 1 and how many for a O, how many

13



microsecond's a bit lasts- whether transmission may proceed simultaneously in both

directions, bow the initial connection is established and how it is torn down when both

sides are finished, and how many pins the network connector has and ,,lıat each pin is

used for. The design issues here largely deal with

mechanical, electrical, and procedural interfaces, and the physical transmission medium

which lies below the physical layer.

1.1.9 The Data Link Layer

The main task of the data link layer is to take a raw transmission facility and transform

it into a line that appears free of undetected transmission errors to the network layer. It

accomplishes this task by having the sender break the input data up into data frames

(typically a few hundred or a few thousand bytes), transmit the frames sequentially, and

process the acknowledgement frames sent back by the receiver. Since die physical layer

merely accepts and transmits a stream of bits without any regard to meaning or

structure, it is up to the data link layer to create and recognize frame boundaries. · Ihis

can be accomplished by attaching special bit patterns to the beginning and end of the

frame. lf these bit patterns can accidentally occur in me data, special care must be taken

to make sure these patterns are not incorrectly interpreted as frame delimiters.

A noise burst on the line can destroy a frame completely. In this case, the data liıık layer

software on the source machine can retransmit the frame. [Jowcver, multiple

transmissions of the same frame introduce the possibility of duplicate frames. A

duplicate frame could be sent if the acknowledgement frame from me receiver back to

the sender were lost. It is up to this layer to solve the problems caused by damaged, lost,

and duplicate frames. The data link layer may offer several different service classes to

the network layer, each of a different quality and with a different price.

Another issue that arises in the data link layer (and most of the higher layers as well) is

bow to keep a fast transmitter from drowning a slow receiver in dala. Some traffic

regulation mechanism must be employed to let the transmitter know how much buffer

space the receiver has at the moment. Frequently, miss flow regulation and the error

handling are integrated.

If me line can be used to transmit data in both directions, this introduces a new

complication that the data link layer software must deal with. The problem is that me

acknowledgement frames for A to B traffic compete for the use of the line with dala

14



frames for the B to A traffic. A clever solution (piggybacking) has been devised; we

will discuss it in detail later.

Broadcast networks have an additional issue in the data link layer: how to control access

to the shared channel. A special sub layer of the data link layer, the medium access sub

layer deals with this problem.

1.1.1 O Tlıe Network Layer

The network layer is concerned with controlling the operation of the subnet. A key

design issue is determining how packets are routed from source to destination. Routes

can be based on static tables that are "wired into" the network and rarely changed. They

can also be determined at the start of each conversation, for example a terminal session.

Finally, they can be highly dynamic, being determined anew for each packet, to reflect

the current network load.
If too many packets are present in the subnet at the same time, they will get rn each

other's way, forming bottlenecks. The control of such congestion also belongs to the

network layer.
Since the operators of the subnet may well expect remuneration for their efforts, there is

often some accounting function built into the network layer. At the very least, the

software must count how many packets or characters or bits are sent by each customer,

to produce billing information. When a packet crosses a national border, with different

rates on each side, the accounting can become complicated.

When a packet has to travel from one network to another to get to its destination, many

problems can arise. The addressing used by the second network may be different from

the first one. The second one may not accept the packet at all because it is too large. ı lıe

protocols may differ, and so on. It is up to the network layer to overcome all these

problems to allow heterogeneous networks to be interconnected.

In broadcast networks, the routing problem is simple, so the network layer is often thin

or even nonexistent.

1.1.11 Tlıe Transport Layer (1Pv6 works on this layer)

The basic function of the transport layer is to accept data from the session layer, split il

up into smaller units if need be, pass these to the network layer, and ensure ıhat the

15



pıeces all arrive correctly at the other end. Furthermore, all this must be done

efficiently, and in a way that isolates the upper layers from the inevitable changes in die

hardware technology.
Under normal conditions, die transport layer creates a distinct network connection for

each transport connection required by the session layer. If die transport connection

requires a high throughput, however, the transport layer might create multiple network

coımections, dividing the data among the network connections to improve throughput.

On the other hand, if creating or maintaining a network connection is expensive, the

transport layer might multiplex several transport connections onto the same network

connection to reduce the cost.

In all cases, the transport layer is required to make the multiplexing transparent lo ılıe

session layer
The transport layer also determines what type of service to provide the session layer,

and ultimately, the users of the network. The most popular type of transport connection

is an error-free point-to-point channel that delivers messages or bytes in the order in

which they were sent. However, other possible kinds of transport service are transport

of isolated messages with no guarantee about the order of delivery, and broadcasting of

messages to multiple destinations. The type of service is determined when the

connection is established.

The transport layer is a true end-to-end layer, from source to destination. ln other words,

a program on the source machine carries on a conversation with a similar program on

the destination machine, using the message headers and control messages. In the lower

layers, the protocols are between each machine and its immediate neighbors, and not l.y

the ultimate source and destination machines, which may be separa.cd by many routers.

The difference between layers 1 through 3 which are chained and layers 4 through 7.

Many hosts are multiprogrammed.which implies that multiple connections will be

entering and leaving each host. Their needs to be some way to tell which message

belong Lo winch

connection.

In addition to multiplexing several message streams onto one channel, fife transport

layer must take care of establishing and deleting connections across the network. "J his

requires some kind of naming mechanism, so that a process on one machine has a way

of describing with whom it wishes to converse. There must also be a mechanism lO

regulate the flow of information, so that a fast host cannot overrun a slow one- Such a

16



mechanism is called flow control and plays a key role in the transport layer (also in

other layers). Flow control between hosts is distinct from flow control between routers,

although we will later see that similar principles apply to both.

1.1.12 Tlıe Session Layer

The session layer allows users on different machines to establish sessions between them

A session allows ordinary data transport, as does the transport layer, but it also provides

enhanced services useful in some applications. A session might be used to allow a user

to log into a remote time sharing system or to transfer a file between two machines.

One of the services of the session layer is to manage dialogue control. Sessions can

allow traffic to go in both directions at the same time, or in only one direction at a time.

If traffic can only go one way at a time (analogous to a single railroad track), the session

layer can help keep track of whose turn it is.

A related session service is token management. For some protocols, it is essential that

both sides do not attempt the same operation at the same time. To manage these

activities, the session layer provides tokens that can be exchanged. Only the side

holding the token may perform the critical operation.

Another session service is synchronization. Consider the problems that might occur

when trying to do a 2-hour file transfer between two machines with a l-houı .ııean time

between crashes. After each transfer was aborted, the whole transfer would have to start

over again and would probably fail again the next time as well. To eliminate this

problem, the session layer provides a way to insert checkpoints i..to the data stream, su

that after a crash, only the

data transferred aft.er me last checkpoint have to be repeated.

1.1.13 The Presentation Layer

The presentation layer performs certain functions that are requested sufficiently often to

warrant finding a general solution for them, rather than Jetting each user solve the

problems In particular, unlike all me lower layers, which are just interested in moving

bits reliably from here to there, the presentation layer is concerned with the syntax and

semantics of the information transmitted.

17



A typical example of a presentation service is encoding data in a standard agreed upon

way.
Most user programs do not exchange random binary bit strings. They exchange things

such as people's names, dates, amounts of money, and invoices. These items are

represented as character strings, integers, floating-point numbers, and data structures

composed of several simpler items. Different computers have different codes for

representing character strings (e.g., ASCII and Unicode), integers (e.g., one 5

complement and two's complement), and so on. In order to make it possible for

computers with different representations to communicate the data structures to be

exchanged can be defined in an abstract way, along with a standard encoding to be used

"on the wire." The presentation layer manages these abstract data structures and

converts from the representation used inside me computer to the network standard

representation and back.

J.J.14 Tlıe Application Layer

The application layer contains a variety of protocols that are comınoııly needed. For

example, there are hundreds of incompatible terminal types in the world. Consider the

plight of a full screen editor that is supposed to work over a network with many

different terminal types, each with different screen layouts, escape sequences for

inserting and deleting text moving the cursor, etc
One way to solve this problem is to define an abstract network virtual terminal that

editors and other programs can be written to deal with. To handle each terminal type, a

piece of soft.ware must be written to map the functions of the network virtual terminal

onto the real terminal. For example, when the editor moves the virtual terminal's cursor

to the upper left-hand corner of the screen, this software must issue the proper command

sequence to the real terminal to get its cursor there too. All the virtual terminal software

is in the application layer.
Another application layer function is file transfer. Different file systems have differe1ıL

rile naming conventions, different ways of representing text lines, and so on.

Transferring a file between two different systems requires handling these and other

incompatibilities. This work, too, belongs to the application layer, as do electronic mail

remote job entry. different lookup, and various other general-purpose aud special-

purpose racilıues.

ı 8



l.1.15 Data Tmnsmission iıı the OSI Model 

Data can be transmitted using the OSI model. The sending process has some da.a it

wants to send to the receiving process. It gives the data to the application layer, which

then attaches the application header, AH to the front of it and gives the resulting item to

the presentation layer.

( flt- 1~<..lh' İt I' f)
\.. f ı j • '>• .·<;,I•- ~ J , ,•

···_·.·.. ··t ·;ı·:•.·.f;_.; l-' .... ··--·.~· .. .

)\Ii' .. ı.·~·.:I~ ~.

1
~--·--·-.-- - ·-·-.

,;.ı

\ 1 t •, I ,ı,.; ı. I I ;ı l I ı' I ~

ı:ı)~ q

fil.!.·.\d-,t:

·~ ~':/~::.;I

I l);~lh~'.ı~L

I
,., ı'·"'"

t't,11;.;<·iJI

·l:
. ,.,,.,,,

·~ Ri.(..'{\j;..i,~-ı.';t.lfli tJ\t,lj;_~!>\lrL:ı-h:1, J•(~l~\

The presentation layer may transform this item in various ways and possibly add a

header to the front, giving the result to the session layer. Iı is important to realize ıhaı

the presentation layer is not aware of which portion of the data given to it by the

application layer is AH, if any, and which is true user data.

This process is repeated until the data reach the physical layer, where they are actually

transmitted to die receiving machine. On that machine the various headers are stripped

off one by one as the message propagates up the layers until it finally arrives at ıhe

receıvuıg process.

The key idea throughout is that although actual data transmission is vertical, each layer

is programmed as though it were horizontal. When the sending transport layer, for

19



example, gets a message from the session layer, it attaches a transport header and sends

it to the receiving transport layer. From its point of view, the fact mat il must actually

hand the message to the network layer on its own machine is an unimportant

technicality.

The TCP/IP Reference Model
Let us now turn from the OSI reference model Lo the reference model used in ıhe

grandparent of all computer networks, the ARPAN ET, and its successor, the world wide

Internet Although we will give a brief history of the ARP ANET later, İl is useful lo

mention a few key aspects of it now. The ARPANET was a research network sponsored

by the DoD (US.Department of Defense). It eventually connected hundreds of

universities and government installations using leased telephone lines. Wlıen satellite

and radio networks were added later the existing protocols had trouble networking with

them, so a new reference architecture was needed. Thus the ability to connect multiple

networks together in a seamless way was one of the major design goals from the very

beginning. This architecture later became known as the TCP/JP Reference Model, after

its two primary protocols.

Given the DoD's worry that some of its precious hosts, routers, and internet-work

gateways might get blown to pieces at a moment's notice, another major goal was that

the network be able to survive loss of subnet hardware, with existing conversations not

being broken off. In other words, DoD wanted connections to remain intact as long as

the source and destination machines were functioning, even if some of the machines or

transmission lines in between were suddenly put out of operation. Furthermore, a

flexible architecture was needed, since applications with divergent requirements were

envisioned, ranging from transferring files to real-time speech transmission

1. 1.16 11ıe Internet Layer

All these requirements led to the choice of a packet-switching network based on a

conııectionless internetwork layer. This layer, called the Internet layer, is the linchpin

that holds the whole architecture together. Its job is lo permit hosts to inject packets into

any network and have them travel independently to the destination (potentially on a

different network). They may even arrive in a different order than they were sent, in

which case it is the job of higher layers to rearrange them, if in-order deli very is desirc.ı.

20



Note that "internet" is used here in a generic sense, even though this layer is present in

the Internet.
The analogy here is with the (snail) mail system. A person can drop a sequence of

international letters into a mail box in one country, and with a little luck, .uost of them

will be delivered to the correct address in the destination country. Probably ılıe leuers

will travel through one or more international mail gateways along the way, but this is

transparent to the users. Furthermore, that each country (i.e., each network) has its own

stamps, preferred envelope sizes, and delivery rules is hidden from the users.

0$1 TCPI\P

.,,.••. ,.... .- ., ... ,.,..•.•. ·., ·- . ..---
-- . l'lM f,l"C 1.&.'l\l

..? 1!1 lrı~ ft'll)dt.11

___ , ,,.• ,.....

--··· -~ __ ,... .,. ....

Figure 7 The TCP/IP reference model

The internet layer defines an official packet format and protocol called IP (Internet

Protocol). The job of the internet layer is to deliver IP packets where they are supposed

to go. Packet routing is clearly the major issue here, as is avoiding congestion. For these

reasons, it is reasonable to say that the TCP/IP internet layer is very similar in

functionality to the OSI network layer.

I.LI 7 Tlıe Tnımport Layer

The layer above the internet layer in the TCP/IP model is now usually called the

transport layer. It is designed to allow peer entities on the source and .J..:stimuiun hosts

21



to carry on a conversation, the same as in the OSI transporl layer. Two end-lo-end

protocols have been defined here. The first one, TCP (Transmission Control Protocol) is

a reliable connection-oriented protocol that allows a byte stream originating on one

machine to be delivered without error on any other machine in the internet. It fragments

the incoming byte stream into discrete messages and passes each one onto the internet

layer. At the destination, the receiving TCP process reassembles the recei vcd messages

into the output stream. TCP also handles flow control to make sure a fast semler cannot

swamp a slow receiver with more messages than it can handle.

The second protocol in this layer, UDP (User Data gram Protocol), is an unreliable

connectionless protocol for applications that do not want TCP's sequencing oı flow

control and wish to provide their own. It is also widely used for one-shot, client-server

type request-reply queries and applications in which prompt delivery is more important

than accurate delivery, such as transmitting speech or video. Since the model was

developed, IP has been implemented on many other networks.

Figure 8 Protocols and networks in the TCP/lP mouel initially

1.1.18 Tlıe Application Layer

The TCP/IP model does not have session or presentation layers. No need [or them was

perceived, so they were not included. Experience with the OSI model has proven this

view correct: they are of little use to most applications.

22 



On top of the transport layer is the application layer. It contains all the higher-level

protocols. The early ones included virtual terminal (TELNET), file transfer (FTP), and

electronic mail (SMTP). The virtual terminal protocol allows a user on one machine to

log into a distant machine and work there. The file transfer protocol provides a way to

move data efficiently from one machine to another. Electronic mail was originally just a

kind of file transfer, but later a specialized protocol was developed for it. Many other

protocols have been added to these over the years, such as the Domain Name Service

(DNS) for mapping
As a consequence, the protocols in the OSI model are better hidden than in the TCP/IP

model and can be replaced relatively easily as the technology changes. Being able to

make such changes is one of tlıe main purposes of having layered protocols in the first

place.

1.120. A Comparison of the OSI and TCP reference Models

The OSI reference model was devised before the protocols were invented. This ordering

means that the model was not biased toward one particular set of protocols, which made

it quite general. The down side of this ordering is that the designers did not have much

experience with the subject and did not have a good idea of which functionality to put in

which layer.
For example, die data link layer originally dealt only with point-to-point neıw 01ks.

When broadcast networks came around, a new sub layer had to be hacked into the

model.when people started to build real networks using the OSI models and existing

protocols, it was discovered that they did not match the required service specifications

(wonder of wonders), so convergence sub layers bad to be grafted onto the model to

provide a place for papering over the differences. Finally, the committee originally

expected that each country would have one network, run by the government and using

the OSI protocols, so no thought was given to internetworking. To make a long story

short, things did not turn out that way.

With the TCP/IP the reverse was true: the protocols came first, and the model was really

just a description of the existing protocols- There was no problem with the protocols

fitting the model. They fit perfectly. The only trouble was that the model did not lit aııy

other protocol stacks. Consequently, it was not especially useful for describing other

non-TCP/IP networks

)L) 



Turning from philosophical matters to more specific ones, an obvious difference

between the two models is the number oflayers: the OSI model has seven layers and the

TCP/IP has four layers. Both have (inter) network, transport, and application layers, but

the other layers are different.
Another difference is in the area of connectionless versus connection-oriented

communication. The OSI model supports both coımectionless and connection oriented

communication in the network layer, but only coımection-oriented communication in

the transport layer, where it counts (because the transport service is visible to the users).

The TCP/IP model has only one mode in the network layer (connectionless) but

supports both modes in me transport layer, giving the users a choice. This choice is

especially important for simple request response protocols.

1.2.1 General Ethernet Information

Ethernet devices names are 'ethO', 'ethl 1 ', 'eth2' etc. The first card detected by the kernel

is assigned 'ethO', and the rest are assigned sequentially in the order in which they are

detected.

Once we have our kernel properly built to support our Ethernet card, configuration of

the card is easy.

Typically we would use something like (which most distributions already do for dS, if"

we configured them to support our

Ethernet):

Root# ifconfig cthO 192,168.0.1 netmask 255.255.255.0 up

Root# route add -net 192.168.0.0 neımask 255.255.255.0 ethO

24



1.2.2 Physical Connection

The physical connection determines how many bits (1 's or O's) can be transmitted in a

single instance of time. If only 1 bit of information can be Lransrniıtcd over the data

transmission medium at a time then it is considered a serial communication.

{) JTl () o ı·rıo r·r10 -- ' . . . . .. ··. . ' ..-·- ' !,,,,,._,.."" -·· •..~- --·-~~
S..:irıd~ Daıa TnmmıiITT'ıh:ın Ivfodiımı ··,
:-fodul llMı Oııly l Wiı~!
J I ı iı uı u ıluıe
Brı.,;: u ıoo ıo ıo

R~cdv,~!;\
:i(.ı L,ı li,ıı,.

I !ıh ın u ıi ıı,,,
Byıo: OlOü JO lı,

Figure Serial Communication

If more than l bit of information is transmitted over the data transmission medium at a

time then it is considered a parallel communication.

'.i;,ıJH1S
l'uı,;ll,d n1ıııı
tl I) iı~ ırıuı ılıue
l\yte: o ıoo 1010
S,;ı-,w uı ı, wiı "
Ilı( ,rndı l;iıl

() ~,~••W

I _J ·l.~
n ~-~~..
u .. ,·,,, ....
I ,J"""L, 
o_,
I rl
n

!i.~~·~._,..•.£.!, t,,.,_ '··" !.>t.· .••.••.• _.,ı '"•••.•••••••..••..~ ..••.••• ~.,..,.J n
~,....H•..--~~~~~..ı.,.--- .. , l ,_l L_. 
~- ••••~~~,. .••• ı,, ••• ı•••~~ .••••••~---...... l)

~~~lf_tıııı-~ft•N Ntf¥1o.ıt.~~ .• 4~""·""''""--~"'""'"'ı.~-" l)
·-· -.--..,,......~~~ ~ ,.~. ·~ :> ..ır~~ ~ ...•..J-ı._

H~ır•.. r-.. ;

P.ıt ıılL I IJ.ıı,J
tl I İL,; "' il \1!110
U ;•le: LI 00 ıoıo

~, .•.--,u_..__,.~,..~-!!4W~"""''~"""'""'·- .•~ o
-..----~-· -·-· -· ·---- ••••••••..•.•••.•••.,.,.,.••••..•.•t•• ,_ L .., __rı ..... I.\,, ,,tı ı.l ı I ,iı l

1.2.3 Physical Layer
The OSI Model Physical Layer concerns itself with the trausnıissiou of bits

through the communication medium. The order of the bits--and importance-ıs

determined by the Protocol's packet

Asynchronous & Synchronous Communication in Asynchronous Communications, the

OST Physical layer concerned itself with the RS-232D standard (and the Voice



Channel). The RS-232D standard stated the electrical and mechanical characteristics of

the cable: these characteristics were for the transmission of the digital signal between

the DTE (PC) and DCE (modem). The Voice Channel stated the electrical and

mechanical characteristics of the connection between DCE to DCE (modem to modem)

through the phone lines.
The order of the bits was determined by me following: ASCH characters, the parity

(Odd/Even/None), the number of Stop Bits, and the Transfer Protocol. Examples of

Transfer

Protocols are shown below:

• Kermit

• Xınodern

• Ymodeın

• Zmodem
Similarly, in Synchronous Communications, the electrical and mechanical

characteristics of
the cable (for the transmission of the signal) are defined by the protocol that's used

between Network Interface Cards.

The electrical characteristics associated with the OSI Model's Physical layer are as

follows:

• Transmission rate (bits/sec)

• Voltage levels

• Line Encoding

• Propagation delay

• Termination impedance

The mechanical characteristics associated with me OSI Model's Physical layer arc

shown below:

• Connector type

• Cable type & size

• Cable Length

• Topology

• Shielding

In summary, the OSI Physical Layer is concerned with the transmission of bits on ılıe

network; the order of bits, bit level error checking, and the electrical I mechanical

characteristics.



l.j PROTOCOLS, SPEED, BANDWIDTH

1.3.l IP Addresses: an Explanation.

Internet Protocol Addresses are composed of four bytes. The convention is to write

addresses in what is called 'dotted decimal notation'. In this form, each byte is converted

to a decimal number, (0-255). It drops any leading zeros (unless the number is zero) and

written with each byte separated by a\* character. By convention, each interface vf a

host or router has an IP address. It is legal for the same IP address to be used on each

interface of a single machine but usually each interface will have its own address

Internet Protocol Networks are contiguous sequences of IP addresses. All addresses

within a network have a number of digits within the address in common. The portion of

the address that is common amongst all addresses within the network is called the

'network portion' of the address. The remaining digits are called the 'host portion'. The

number of bits that are shared by all addresses within a network is called the network. It

is the role of the network to determine which addresses belong to the network it is

applied to and which don't belong. For example, we consider the following:

--------------------------------- 

Host Address

Network Mask

Network Portion

Network Address

Broadcast Address

192.168.110.23

255.255.255.0

192.168.110.23

192.168.110.0

192.168.110.255

------------------------------------ -------

Any address that is 'bitwise anded' with its netmask will reveal the address of the

network that it belongs to. The network address is therefore always the lowest numbered

address within the range of addresses on the network, and it always has the host portion

of the address coded in all zeroes.

Tlıe broadcast address is a special address that every host on the network listens to (in

addition to its own unique address). This address is tile one that datagrams arc sent Lo if

l..ı



every host on the network is meant to receive it. Certain types of data, like routing

information and warning messages, are transmitted to the broadcast address so that

every host on the network can receive it simultaneously. There are two commonly used

standards for the broadcast address. The most widely accepted one is to use the highest

possible address on the network as the broadcast address. In the above example, this

would be 192.168.110.255. For some reason other sites have adopted the convention of

using the network address as the broadcast address. In practice il doesn't matter very

much which you use, but you must make sure that every host Oıı the network is

configured with the same broadcast address.For administrative reasons (some lime early

in the development of the IP protocol), some arbitrary groups of addresses were formed

into networks. These networks were grouped into what are called classes. Classes

provide a number of standard size networks that could be allocated. The ranges

allocated

are:

----------------------------------- -

\ Network \ N etrnask

\ Class

\Network Addresses

----------------------------------- 
\ A \ 255.0.0.0 \O.O.O.O -127.255.255.255

\ B \ 255.255.0.0 \128.0.0.0 -191.255.255.255

\ c \ 255.255.255.0\ 192.0.o.o -223.255.255.255

\ Multicast\ 24.0.0.0 \244.0.0.0 -239.255.255.255

------------------------------------ 

What addresses you should use depends on exactly what it is that you are doing. You

may have to use a combination of the following activities to get all me addresses you

need:

1.3.2 Linking two ııetworks using PPP
There is basically no difference between linking a single Linux PC lo a PPP server aııJ

linking two LANs using PPP (on a machine) on each LAN. Remember, PPP is a peer-

to-peer protocol.



In order to link two LANs, we must be using different IP network numbers (or subnets

of the same network number). We'll also need to use static IP numbers (or use IP

masquerade).

Setting up the IP numbers
We arrange with the network administrator (of the other LAN) the IP numbers

that
will be used for each end of the PPP interface. If we are using static IP numbers,

this will probably require us to dial into a specific telephone number Now we need

to edit the appropriate /etc/ppp/options(.ttyxx] file - it's a good idea to have a

specific modem and port at your end for this connection. This may well require us

to change our /etc/ppp/options file - and create appropriate options.ttyXX files for

any other connections! We will specify the IP numbers for our end of the PPP link

in link
appropriate options file.

Routing issues on a LAN
If we are connected to a LAN (but still want to use PPP on our personal Linux

machine), then we need to address some route packet issues. Speci fically, we're

discussing bere the packets that need to go from our machine to our LA~~ (through our

Ethernet interface): we are also talking about the ones that go to the remote PPP server

(and beyond).
In this section we do NOT attempt to discuss whole routing - we discuss only a simple

special case of (static) routing!

The basic rule of static routing: me DEFAULT route should be the one nıat points to the

MOST number of network addresses. We enter specific routes to the routing table for

other networks.
The ONLY situation we are going to cover here is as follows. Suppose that our Linux

box is on a LAN that is not connected to the Internet, and we want to dial out to the

Internet for personal use (while still connected to the LAN).We have to make sure that

our Ethernet route is set up to the specific network addresses available across our LAN

(NOT set to the default route) !We can check this by issuing a mule command. We

should see something like

below:

[root&hwin I root]# route -n

Kernel routing table

29 



Destination Gateway Genrnask Flags Mss Window Use I face

Loopback * 255.255.255.0 U 1936 O 50 lo

1 O.O.O.O * 255.255.255.0 U 1436 O 565 ethü

If our Ethernet interface (etlıO) is pointing at the default route, (the first column will

show "default" in the ethO line) then we need to change our Ethernet initialization

scripts. We need to make it point to the specific network numbers: not to point it toward

the default route. This
will allow pppd to set up your default route as

follows:

[root@hwin I root]# route -n

Kernel routing table
Destination Gateway Genmask Flags Mss Window Use Iface

10.144.153.51 * 255.255.255.255 VH 488 O O pppü

127.0.0.0 * 255.255.255.0 V 1936 O 50 10

10.1.0.0 * 255.255.255.0 V 1436 O 569 ethO

default 10.144.153.51 * VG 488 O 3 pppü

As we can sec, we have a host route to the PPP server ( 10.144.153.51) via pppO. We

also have a default network route; it is using the PPP server as its gateway.

lf our LAN already has routers on it, then we will already have gateways established to

the wider networks that are available at our site- We should STILL point our default

route at the
PPP interface. We make the other routes specific to the networks that they are serving,

1.3.3 Used terms Network related

Link
A link is a layer 2 network packet transport medium, examples are Ethernet, Token

Ring, PPP, SLIP,

ATM, lSDN, Frame Relay

Node

A node is a host or a router.

Host

30



Generally a single homed host on a link. Normally it has only one active network

interface e.g Ethernet or (not and) PPP.

Dual homed host
A dual horned host is a node with two network (physical or virtual) interfaces on two

different links but does not forward any packets between the interfaces.

Router
A router is a node with two or more network (physical or virtual) interfaces, capable of

forwarding packets between the interfaces.

Tunnel
A tunnel is topically a point-to-point connection over which packets are exchanged

which carry the data of another protocol, e.g. an IPv6-in-lPv4 tunnel.

NIC

Network Interface Card

l.3.4.1 Long code line wrapping signal char

The special character ""-" is used for signaling that this code line is wrapped for better

viewing in PDF and PS files-

1.3.4.2 Placeholders

In generic examples you will sometimes find the following:

My Ip address
For real use on your system command line or in scripts this has to be replaced with

relevant content(reınoving the< and> of course), the result would be e.g

1.2.3.4

1.3.4.3Commands in the siteli

Commands executable as non-root user begin with$, e.g,

$ whoami

Commands executable as root user begin with #,e.g.

# whoarni



1.4 Requirements for using

1.4.1. Personal prerequisites
We should be familiar with the major Unix tools e.g,grep,awk,find ... , and know about

their must commonly used command-line options,

1.4.1.2. Experience with networking theory
You should know about layers, protocols, addresses, cables, plugs, etc. We already

studied about networking in the bigining chapter of this booklet.

14.1.3. Experience with 1Pv4 configuration
You should definitely have some experience in IPv4 configuration, otherwise il will be

hard for you to understand what is really going on ,etc for example its same like lp

configuration while ur creating a network.

1.4.1.4. Experience with the Domain Name System (DNS)
Also you should understand what the Domain Name System (DNS) is, what it provides

and how to use it,

1. 8-1.5. Experience with network debugging strategies

You should at least understand how to use tcpdump and what it can show you.

Otherwise, network debugging will very difficult for you.

3.c.



Chapter 2.

Basics

2.1. What is 1Pv6?

IPv6 is a new layer 3 transport protocol which will supersede 1Pv4 (also known as JP).

1Pv4 was designed Jong time ago (RFC 760 from January 1980) amt since its inception,

there have been many requests for more addresses and enhanced capabilities. Major

changes in IPv6 are the design of the header, including the increase of address size from

32 bits to 128 bits Because layer 3 is responsible for end-to-end packet transport using

packet routing based on addresses, it must include the new 1Pv6 addresses (source and

destination), like IPv4.For more information about the TPv6 history take a look al older

IPv6 related RFCs listed e.g. at Switch.

2.2. History of 1Pv6

To-do: better lime-line, more conten etc,

2.2.1. Beginning

The first IPv6 related network code was added to the Linux kernel 2.1.8 in November

1996 by Pedro Roque.

H was based on the BSD A PI;

diff -u -recursive -new-file v2. 1. 7/linux/include/linux/in6.h

linux/include/linux/in6.h
---v2.1.7/linux/include/liux/in6.hThu Han 1 02:00:00:1970

+++ linux/include/linux/in6.hsun Nov 3 11:04:421999

@@ -0,0 +1,99 @@

+ I* 

+*Types and definitions for AF_INET6

+ * Linux INET6 implementation

+ * + * Authours:

3 _)



+ * Pedro Roque <******>

+*

+*Source:

+ * lpv6 Program Interfaces for BSD System

<draft-ietf-ipngwg-bsd-api-05. txt>

2.2.2. Iıı between

Because of lack of manpower, the IPv6 implementation in the kernel was unabıc lo

follow the discussed drafts or newly released RPCs. In October 2000, a projecl was

started in Japan, called USAGI, whose aim was to implement all missing or outdated

IPv6 support in Linux. It tracks the current IPv6 implementation in Free BSD made by

the KAME project. From time to lime they create snapshots against current vanilla

Linux

2.2.3. Current

Unfortunately, the USAG l patch is so big, that current networking maintaincb are

unable to include it in the production source of the Linux kernel 2.4-x series. Therefo,»

the 2Ax series is missing some (many) extensions and also does not confirm lo all

current drafts and RFCs. This can cause some interoperability problems with other

operating systems.

2.2.4. Future

USAGT is now making use of the new Linux kernel development series 2.5.x to insert

all of their current extensions into this development release. Hopefully the 2.6.x kernel

series will contain a true and up-to-date 1Pv6 implementation.

2.3. How do 1Pv6 addresses look like?

As previously mentioned, JPv6 addresses are 128 bits long. This number of bits

generates very high decimal numbers with up to 39 digits:

2h128}-1: 340262366920938463463374607431768211455 

34



Such numbers are not really addresses that can be memorized. Also the IPv6 address

schema is bit wise orientated (just like IPv4, but that's not often 1.;ı.:ognized). Therefore

a better notation of such big numbers is hexadecimal. In hexadecimal, 4 bits (also

known as "nibble") are represented by a digit or character from 0-9 and a-f (10-15). Th.s

format reduces the length of the 1Pv6 address to 32 characters.

2"(128-1:Oxffffffffffffffffffffffffffffffff
This representation is still not very convenient (possible mix-up or loss of single

hexadecimal digits), so the designers of 1Pv6 chose a hexadecimal formal with a colon

as separator after each block of 16 bits in addition, the leading "Ox" (a signifier for

hexadecimal values used in programming languages) is removed:

2 "(128}-1 : ffff: ffff: ffff ffff:ffff:ffff:ffff:ffff:ffff

A usable address (see address types later) is e.g.:

3ffe:ffff:01OO;fi01 :021O:a4ff:fee3:9566

For simplifications, leading zeros of each 16 bit block can be omitted:

3ffe:ffff:01OO:flOl:021O:a4ff:fee3:9566->

3ffe:ffff:1 OO:fl01 :21 O:a4ff:fee3: 9566
One sequence of 16 bit blocks containing only zeroes can be replaced with ";:". But not

more than one at a lime, otherwise it is no longer a unique representation.

3ffe:ffff:1 OO:fl01 :0:0:0:1 -> 3ffe:ffff:1 OO:fi01::I

The biggest reduction is seen by the IPv6 localhost address:

0000:0000:0000:0000:0000:0000:0000:0001 -> : : 1
There is also a so-called compact (base85 coded) representation defined RFC 192-i I , ·~ 

Compact Representation of1Pv6 Addresses here is an example:

# ipv6calc --addr_to __base85 3ffe: ffff: 01OO:f101: 021 O: a4ff: fee3: 9566

ltu&-ZQ82s>J%s99fJXT

35 



Info: ipv6calc is an IPv6 address formal calculator and converter program anJ can be

found on: ipv6calc

2.4. FAQ (Basics)

2.4. 1. Why is the name 1Pv6 and not IPv5 as successor for 1Pv4?

On any lP header, the first 4 bits are reserved for protocol version. So theoretically a

protocol number between O and 15 is possible:

4: is already used for IPv4
5: is reserved for the Stream Protocol (STP, RFC 1819) (which never really made it to

the public) The next free number was 6. Hence 1Pv6 was born.

2.4.2. IPv6 addresses: why such a high number of bits?

During the design of 1Pv4, people thought that 32 bits were enough for the world.

Looking back into the past 32 bits were enough until now and will perhaps be enough

for another few years. However, 32 bits are not enough to provide c.ıch network device

with a global address in die future. Think about mobile phones, cars (includiıı.,

electronic devices on its CAN-bus), toasters, refrigerators, light switches, and so on ...

So designers have chosen 128 bits, 4 limes more in length and 2"'96 greater in size than

in 1Pv4 today.The usable size is smaller than it may appear however. This is because in

the currently defined address schema, 64 bits are used for interface identifiers- The

other 64 bits are used for routing. Assuming the current strict levels of aggregation (/4 8,

/35, ... ), it is still possible to "run out" of space, but hopefully not in the near future.

2.4.3. IPv6 addresses: why so small a number of bits on a new design?

While, there are (possibly) some people on the Internet who are thinking about IPvS and

1Pvl6, their design is far away from acceptance and implementation. ln the meantime

128 bits was the best choice regarding header overhead and data transport. Consider ılıe

minimum Maximum Transfer Unit (MTU) in 1Pv4 (576 octets) and in IPv6 (1280

octets), the header length in IPv4 is 20 octets (minimum, can increase to 60 octets with

1Pv4 options) and in IPv6 is 48 octets (fixed). This is 3.4 % of MTU in 1Pv4 and 3.8%

of MTU in IPv6.

36



This means the header overhead is almost equal. More bits for addresses would require

bigger headers and therefore more overhead. Also, consider the maximum ıvrru on

normal links (like Ethernet today): it's 1500 octets (in special cases: 9k octets using

Jumbo frames).Ultimately, it wouldn't be a proper design if 1 O% or 20 % of transported

data in a Layer-3 packet were used for addresses and not

for payload.

37



Chap~r3

Add~ssfyp~

Like 1Pv4, 1Pv6 addresses can be split into network and host parts using subnet

masks.IPv4 has shown that sometimes it would be nice, if more than one IP address can

be assigned to an interface, each for a different purpose (aliases, multi-cast). To remain

extensible in the future, 1Pv6 is going further and allows more than one IPv6 address lo

be assigned to an interface. There is currently no limit defined by an RFC, only in the

implementation of the 1Pv6 stack (to prevent DoS attacks).Using this large number of

bits for addresses, IPv6 defines address types based on some leading bits, which are

hopefully never going to be broken in the future (unlike 1Pv4 today and the history of

class A, B, and C).Also the number of bits are separated into a network part (upper 64

bits) and a host part (lower 64 bits), to facilitate auto-configuration .

3.1. Addresses without a special prefix

3 .1.1. Localhost address
This is a special address for the loopback interface, simi liar to IPv4 with its "127 .0.0.1 ".

With IPv6 the localhost address is:

0000: 0000: 0000: 0000: 0000: 0000: 0000: 0001

or compressed:: 1

Packets with this address as source or destination should never leave the sending host.

3 .1.2. Unspecified address

This is a special address like "any" or "O.O.O.O" in IPv4 . For 1Pv6 it's:

0000: 0000: 0000: 0000: 0000: 0000: 0000: 0000

or:

These addresses are mostly used/seen in socket binding (to any 1Pv6 address) or routing

tables.Note: the unspecified address cannot be used as destination address.

38 



3.1.3. 1Pv6 address with embedded IPv4 address

There are two addresses which contain an IPv4 address.

3.1.3.1. 1Pv4-nuıpped 1Pv6 address

IPv4-only IPv6-comparible addresses are sometimes used/shown for sockets created by

an lPv6-enabled daemon, but only binding to an 1Pv4 address.

These addresses are defined with a special prefıx of length 96 (a.b.c.d is the IPv4

address):

O: O: O: O: O:ffff:a b.c.d/ 96

or in compressed format

:ffff:a.b.cd/96
For example, the 1Pv4 address 1.2.3 .4 looks like this ::ffff:12.3.4

3.1.3.2. !Pv4-compatible !Pv6 address

Also for sockets, in this case it is for a dual purpose and looks like:

0:0:0:0:0:0:a.b.c.d/96

or in compressed format

: :a.b.c.d/96
These addresses are also used by automatic tunneling, which is being replaced by 6to4

tunneling

3.2. Network part, also known as prefix

Designers defined some address types and left a lot of scope for future definitions as

currentlyUnknown requirements arise. RFC 2373 [July 1998]/ IP Version 6 Addressing

Architecture defines the current addressing scheme but there is alı .ady a new draft

available: draf-ietf-ipngwg-addr-arch-* .txt.

Now lets take a look at the different types of prefixes (and therefore address types):

3.2.1. Link local address type

39



These are special addresses which will only be valid on a link of an interface. Using this

address as destination the packet would never pass through a router. It's used for liıJ.

communications such as:anyone else here on this link? anyone here with a special

address (e-g- looking for a router)? They begin with ( where "x" is any hex character,

normally "O")
fe8<emphasis>x: <- currently the only one in use. </emphasis>

fe9<emphasis>x: </emphasis>

fea<emphasis>x: </emphasis>

feb<emphasis>x: </emphasis>
An address with this prefix is found on each IPv6-enabled interface after stateless auto-

confıguration(which is normally always the case).

Note: only fe80 is currently in use.

3.2.2. Site local address type

These are addresses similar to the RFC 1918 I Address Allocation for ıri vaıe Internets

in IPv4 today,with the added advantage that everyone who use this address type has the

capability to use the given 16 bits for a maximum number of 65536 subnets.

Comparable with the 10.0.0.0/8 in IPv4 today.Another advantage: because it's possible

to assign more than one address to an interface witlı IPv6,you can also assign such a site

local address in addition to a global one.

It begins with:
fec<emphasis>x: <- most commonly used. </emphasis>

fed<emphasis>x: </emphasis>

fee<emphasis>x:</emphasis>

fef<emphasis>x:</emphasis>

(where "x" is any hex character, normally "O")

3 .2.3. Global address type "Aggregatable global unicast"

Today, there is one global address type defined (the first design, called "provider

based," was thrown away some years ago RFC 1884 I IP Version 6 Addressing

Architecture [obsolete].

2<emphasis>xxx</emphasis>:

3<emphasis>xxx</emptıasis>:

40



There are some further subtypes defined, see below:

3.2.3.1. 6bone test addresses

These were the first global addresses which were defined and in use. They all starı with

3tfe:

Example:

3ffe:ffff:1 OO:fl02::I
A special 6bone test address which will be never be globally unique begins with

3ffe:ffff:
and is mostly shown in examples, because if real addresses are shown, its possible for

someone to do a copy & paste to their configuration files. Thus inaJvcrtently causing

duplicates on a globally unique address. This would cause serious problems for the

original host (e.g. getting answer packets for request that were never sent). You can still

apply for one of these prefixes, see here Mow to join 6bone. Also some tunnel brokers

still distribute 6bone test address prefixes.

3.2.3.2. 6to4 addresses

These addresses, designed for a special tunneling mechanism [RFC 3056 I Connection

of IPv6 Domains via 1Pv4 Clouds and RFC 2893 I Transition Mechanisms for tPvô

Hosts and Routers],encode a given IPv4 address and a possible subnet and begin with

2002:For example representing 192.168.1.1/5: 2002:c0a8:0101:5::1

A small shell command line can help you generating such address out of a given lPv4

one:
ipv4="1.2.3.4"; sla="5"; printf "2002:%02x%02x:%02x%02x:%D4x::1"echo $ipv4 \ tr

II." II II $sla

See also tunneling using 6to4 and information about 6to4 relay routers.

3.2.3. Global address type "Aggregatable global unicast" 15

3.2.3.3. Assigned by provider for Jıierarclıical routing

These addresses are delegated to Internet service providers (ISP) and begin v, i ıh

2001:Prefıxes to major (backbone owning) ISPs are delegated by local registries and

41



currently they assign to them a prefix with length 35.Major ISPs normally delegate lo

minor ISPs a prefix with length 48.

3.2.4. Multicast addresses

Multicast addresses are used for related services.

They alway start with (xx is the scope value)

ff<emphasis>x</emphasis>y:

They are split into scopes and types:

3.2.4.1. Multicast scopes

Multicast scope is a parameter to specify the maximum distance a multicast packet caıı

travel from the sending entity. Currently, the following regions (scopes) are defined;

ffxl : node-local, packets never leave the node.

ffx2: link-local, packets are never forwarded by routers, so they never leave tlıe

specified link.

ffx5: site-local, packets never leave the site.

ffx8: organization-local, packets never leave the organization (not so easy to implement,

must be covered by routing protocol).

ffxe: global scope, others are reserved

3.2.4.2. Multicast types

There are many types already defined/reserved (see RFC 2373 I IP Version 6

Addressing Architecture for details). Some examples are:

All Nodes Address: ID= 1 h, addresses all hosts on the local node (ff02:0:0:0:0:0:0:l). or

the connected link (ff02:0:0:0:0:0:0:l).

All Routers Address; 1D=2lı, addresses all routers on the local node

(ffOH:0:0:0:0:0:0:2), on the connected link (ff02:0:0:0:0:0:0:2), or on the local sile

(ffOS:0;0;0:0:0:0:2)

3.2.4.3. Solicited node link-local multicast address

42 



Special multicast address used as destination address in neighborhood discovery,

because unlike in IPv4, ARP no longer exists in IPv6.

An example of this address looks like

ff02:: 1:ffOO:1234
Used prefix shows that is a link-local multicast address. The suffix is generated from the

destination address. In this example, a packet should be sent to address "fe80;: 12.J..J.",

but the network stack doesn't know the current layer 2 MAC address. 1L replaces tlıe

upper l 04 bits with
"ff02:0:0:0:0:1:ff00::/104" and leaves the lower 24 bits untouched. This address is now

used 'on-link' to find the corresponding node which has to send a reply containing its

layer 2 MAC address.

3 .2.5. Anycası addresses
Anycast addresses are special addresses and are used to cover things like nearest DNS

server, nearest DHCP server, or similar dynamic groups. Addresses arc taken out of the

unicast address space(aggregalable global or site-local al the moment). The anycası

mechanism (client view) will be handled by dynamic routing protocols.

Note: Anycast addresses cannot be used as source addresses, they are only used as

destination addresses.

3.2.5.1. Subnet-router anycast address

A simple example for an anycast addresses is the subnet-router anycası address.

Assuming that a node has the following global assigned 1Pv6 address:

3ffe:ffff:1OO:f101 :21 O:a4ff:fee3:9566/64<- Node's address

The subnet-router anycast address will be created blanking the suffix (least significant

64 bits)completely:

3ffe:ffff:100:fl01::/64<- subnet-router anycast address.

3.3. Address types (host part)

For auto-configuration and mobility issues, it was decided to use ıhe lower 64 bits as

host part of the address in most of the current address types. Therefore each single

subnet can hold a large amount of addresses.

This host part can be inspected differently:

3 .3 .1. Automatically computed (also known as stateless)

43

/



With auto-configuration, the host part of the address is computed by converting the

MAC address of an interface (if available), with the EUI-64 method, to a unique 1Pv6

address. If no MAC address is available (happens e.g. on virtual devices), something

else (like the IPv4 addresses or the MAC address of a physical interface) is used instead.

Consider again the first example

3ffe:ffff:100:f\01 :21 O:a4ff:fee3:9566

here,

210:a4fffee3: 9566
is the host part and computed from the NIC's MAC address

00: 1 O:A4:E3:95:66
using the IEEE-Tutorial EUT-64 design for EUI-48 identifiers.

3.3.1.1. Privacy problem with automatically computed and solııtioıı

Because the "automatically computed" host part is globally unique (except when a

vendor of a NIC uses the same MAC address on more than one NIC), client trucking is

possible on the host when not using a proxy of any kind.

This is a known problem, and a solution was defined: privacy extension, defined in RFC

3041 /Privacy Extensions for Stateless Address Autoconfıguration in IPv6 (there is also

already a newel-draft available; draft-ietf-ipngwg-temp-addresscs-*. txı). Using a

random and a static value a new suffix is generated from Lime to time. Nole; this is only

reasonable for outgoing client connections and isn't really useful for well-kııo .. ıı

servers.

3.3.2. Manually set

For servers it's probably easier to remember simpler addresses, uııs can al,» be

accommodated- lt is possible to assign an additional IPv6 address to an interface, e.g.

3ffe:ffff:1OO:f101::1
For manual suffixes like ":: 1" shown in the above example it's required that the 6Llı

most significant)bit is set to O (the universal/local bit of the automatically generated

identifier). Also some other(otherwise unchosen) bit combinations are reserved for

anycast addresses, too.

Linux 1Pv6 lIOWTO

44 



3.4. Prefix lengths for routing
In the early design phase it was planned to use a fully hierarchical routing approach to

reduce the size of the routing tables maximally. The reasoning behind this approach

were the number of current 1Pv4 routing entries in core routers (> l 04 thousand in May

2001), reducing the need of memory in hardware routers (ASIC driven) to hold the

routing table and increase speed (fewer entries hopefully result in faster lookups).

Todays view is that routing will be mostly hierarchically designed for networks with

only one service provider. With more than one ISP cormections, this is not possible, uııd

subject lo an issue named multi-homing.

3 .4.1. Prefix lengths (also known as "netmasks")

Similar to 1Pv4 the routable network path for routing to take place. Because standard

netmask notation for 128 bits doesn't look nice, designers employed the 1Pv4 Classless

Inter Domain Routing (CIDR, R-FC 1519 I Classless Inter-Domain Routing) scheme,

which specifies the number of bits of the IP address to be used for routing. Tl is also

called the "slash" notation.

An example:

3ffe:ffff:100:1:2:3:4:5/48

This notation will be expanded Network

3ffe:fff:O 1 00:0000:0000:0000:0000:0000

Net-mask:

ffff:ffff: ffff:0000:0000:0000:0000

3.4.2. Matching a route

Under normal circumstances (no QoS) a lookup in a routing table results in the route

with the most significant number of address bits means the route with the biggest prefix

length matches first.
For example if a routing table shows following entries (list is not complete ):

3ffe:ffff:100::/48:: U 1 O O sit1

3ffe::/16 ::192.88 991 UG 1 O O tun6to4

2000::/3 ::192.88 991 UG 1 O O tun6to4

45



Chapter 4

1Pv6-ready system check

Before we can start using IPv6 on a network host we have to test, whether our system is

1Pv6-ready.We may have to do some work to enable il first.

4.1. IPv6-ready kernel

Modem Linux distributions already contain IPv6-ready kernels, the IPv6 capability is

generally compiled as a module, but it's possible that this module is not loı.ded

automatically on startup. See lPv6+Lmiix-SlaUis-Dislribntion page for most up-to-date

information.

4.1. l. Check for IPv6 support in the current running kernel

To check whether your current running kernel supports IPv6, take a look into your

/proc-fi le-system.

Following entry must exists:

/proc/net/if_inet6

A short automatical test looks like:

# test -f /proc/net/if_inet6 && echo "Running kernel is 1Pv6 ready"

If this fails, it is quite likely, that the IPv6 module is not loaded.

4.1.2. Try to load IPv6 module

You can try to load the IPv6 module executing

#modprobe ipv6

If this is successful, this module should be listed, testable with following auto-magically

line:
# 1smod !grep -w 'ipv6' && echo "1Pv6 module successfully loaded"

4.1.2.1. Autonıaıically Loading of module

46



Its possible to automatically load the IPv6 module on demand. You only have to add

following line in the configuration file of the kernel module loader (normally

/etc/modules.confor/etc/confmodules):

alias net-pf-1O ipv6 # automatically load 1Pv6 module on demand
H's also possible to disable automatically loading of the 1Pv6 module using following

line
alias net-pf-1O off# disable automatically load of 1Pv6 module on demand

4.1.3. Compile kernel with IPv6 capabilities

If both above shown results were negative and your kernel has no lP6 support, than you

have the following options. Update your distribution to a current one which supports

IPv6 out-of-tbe-box(recommeııded for newbies).Cornpile a new vanilla kernel (easy, if

you know which options you needed) Recompile kernel sources given by your Linux

distribution (sometimes not so easy)

Compile a kernel with USAGI extensions
If you decide to compile a kernel, you should have previous experience in kernel

compiling and read the.A mostly up-to-time comparison between vanilla and USAGT

extended kernels is available on

4.1.4. IPv6-ready network devices

Not all existing network devices have already (or ever) the capability to transport 1Pv6

packets, major issue is that because of the network layer structure of kernel

implementation an IPv6 packet isn't really recognized by its TP header number (6

instead of 4). It's recognized by the protocol number of the Laycı 2 transport protocol.

Therefore any transport protocol which doesn't use suclı protocol nuınbc. cannot

dispatch 1Pv6 packets. Note: the packet is still transported over the link, but on receivers

side,The dispatching won't work (you can see this e.g. using tcpdump).

4.1.4.1. Currently known never "I.Pv6 capable links"

47



Serial Line IP (SLIP,RFC 1055), should be better called now to SUPv4. device

named:slX.

Parallel Line IP (PLIP),same like SLIP,device names:plipX

ISDN with encapsulation Rawip,device names; isdnX

4.1.4.2. Currently known "not supported IPv6 capable links"

ISDN with encapsulation syncppp, device names: ipppX (design issue of ıhe ipppd, will

be merged into more general PPP layer in kernel series 2.5.x)

4.2. 1Pv6-ready network configuration tools

You wont get very far, if you are running an 1Pv6-ready kernel, bul bave no tools Lu

configure IPv6.There are several packages in existence which can configure 1Pv6.

4.2.1. net-tools package

The net-tool package includes some tools like if config and route, which helps you lo

configure IPv6 on an interface. Look at the output of if config - ? or route - ? , if

something is shown like 1Pv6 or inet6,then the tool is IPv6-ready.

Auto-magically check:
# /sbin/ifconfig ··? 2>& 1 [qrep -qw 'inet6' && echo "utility 'ifconfig' is

1Pv6-ready"

Same check can be done for route:
# /sbin/route -? 2>& ljgrep -qw 'inet6' && echo "utility 'route' is 1Pv6-ready"

4.2.2. iproute package

A newely created a tool-set which configures networks through the neılink device.

Using this tool-set you have more functionality than net-tools provides, but its not very

well documented and isn't for the faint of heart.

# /sbin/ip 2>&1 !grep -qw 'inet6' && echo "utility 'ip' is 1Pv6-ready"

48



If the program /sbin/ip isn't found, then I strongly recommend you install the iprouıe

package. You can download the tar-ball and recompile it: Original FTP source and

mırror (missing) You've able to look for a proper RPM package at

RPMfind/iproute(sometimes rebuilding of a SR.PMS package is recommended)

4.3. 1Pv6-ready test/debug programs

After you have prepared your system for IPv6, you now want to use JPv6 for network

communications. First you should learn how to examine 1Pv6 packets with a sniffer

program. This is strongly recommended because for debugging/troubleshooting issues

this can aide in providing a diagnosis very quickly.

4.3. 1. 1Pv6 ping
This program is normally included in package iputils. It is designed fur simple transport

tests sending ICMPv6 echo-request packets and wait for ICMPv6 echo-reply packets.

Usage
# pinq6 <hostwithipv6address>

# ping6 <ipv6address>

# ping6 [-1 <device>] <link-local-ipv6address>

Example

# ping6 -c 1 : : 1

PING ::1(::1) from ::1: 56 data bytes

64 bytes from : : 1: icmpseq=O hops=64 time=292 usec

--- : : 1 ping statistics ---

1 packets transmitted, 1 packets received, 0% packet loss

round-trip nıin/avg/max/mdev = 0.292/0.292/0.292/0 000 ms

Hint: ping6 needs raw access to socket and therefore root permissions. So if non-root

users cannot use ping6 then there are two possible problems:

ping6 is not in users path (probably, because ping6 is generally stored in /usr/sbin ->

add path (not really recommended)

ping6 doesn't execute properly, generally because of missing root permissions-> chm od

u+s /usr/sbin/ping6

4.3.1.1. Specifying interface for IPv6 ping

49 



Using link-local addresses for an IPv6 ping, the kernel does not know through which

(physically or virtual) device it must send the packet - each device bas a link-local

address. A try will result in following error message:

# ping6 fe80::212:34ff:fel2:3456

connect: Invalid argument

In this case you have to specify the interface additionally like shown here:

# ping6 -I ethO -c 1 fe80::2eo:18ff:fe90:9205

PING fe80::212:23ff:fel2:3456(fe80::212:23ff:fel2:3456)from

Fe80::212:34ff:fel2:3478ethO: 56 data byte
64 bytes from fe80::212:23ff:fel2:3456:icmp_seq=Ohops=64 time-445 usec

---fe80 :2e0:18ff:fe90:9205ping statistics ---
1 packets transmitted, 1 packets received, 0% packet loss round-trip

nıin/avg/max/mdev= 0.445/0.445/0.445/0000 ms

4.3 .2 IPv6 traceroute6

This program is normally included in package ipuptils. It's a program similar to lPv4

ıraceroute. But unlike modern IPv4 versions, the IPv6 one still doesn't understand to

ıraceroute using ICMP echo-request packets (which is more accepted by firewalls

around than UDP packets to high ports). Below you will see an

example;
3 3ffe:b00:cl8::5asymm 2 266.145ms pnıtu 1280

3 3ffe:3900:5::2asymm 4 346.632ms

4 3ffe:28ff:ffff:4::3asynım 5 365.965ms

5: 3ffe:lcff:O:ee::2asymm 4 534.704nıs

6: 3ffe:3800::1:1asymnı4578.126ms!N

Resume: pmtu 1280

4.3 .4. 1Pv6 tcpdump

On Linux, tcpduınp is the major tool for packet capturing. Below you fino some

examples. IPv6 support is normally built-in in current releases of version 3 .6.

tcpdump uses expressions for filtering packets to minimize the noise:

icmp6: filters native ICMPv6 traffic

ip6: filters native JPv6 traffic (including lCMPv6)

proto ipv6: filters tunneled JPv6-in-IPv4 traffic

50



,
//' .,.

//~<'[ı ::,
\ f- 

not port ssh: to suppress displaying SSH packets for running tcpdump in a remote SSl~~

~:
Also some command line options are very useful to catch and print ı.ıorc information in ~-
sessıon

a packet,mostly interesting for digging into lCMPv6 packets:

"-s 512": increase the snap length during capturing of a packet to 512 bytes

11-vv": really verbose output

"-n": don't resolve addresses to names, useful if reverse DNS resolving isn't working

proper

4.3.4.1. /Pıı6 ping to 3ffe:ffff:JOO.f101::1 native over a local link

# tcpdump -t -n. -i ethO -s 512 -vv ip6 or proto ipv6

tcpduınp: listening on ethO
3ffe:ffff:1 OO;flo1:2e0:18ff:fe90.9205> 3ffe;ffff:100:flOI::1: icmp6: echo

request (len 64, hilın 64)
3ffe:ffff:1 OO:fl01 :: 1 > 3ffe:ffff:1 OO:fl01 :2e0:18ff:fe90:9205:icmp6: echo

reply (len 64, hlim 64)

4.3.4.2. LPv6 ping to 3Jf'e~ffff:100:: 1 routed through mı IPv6-iıı-IPv4-tıumel

1.2.3.4 and 5.6.7.8 are tunnel endpoints (all addresses are examples)

# tcpdump -t -n -i pppO -s 512 -vv ip6 or proto ipv6

tcpdump: listening on pppO
1.2 3.4 > 5.6.7.8: 2002:ffff:f5f8::1 > 3ffe:ffff:100::1: icinp6: echo request

(len 64, hlim 64) (OF) (ttl 64, id O, len 124)
5.6,7.8 > 1.2.3.4: 3ffe:ffff:100::1 > 2002:ffff:f5f8::I: icmp6: echo reply (len

64,hlim 61) (tll 23, id 29887, len 124)
1.2.3.4 > 5.6.7.8; 2002:ffff:f5f8::1 > 3ffeffff:100::1: icınp6: echo request

(len 64, hlim 64) (OF) (ttl 64, id O, len 124)
5.6.7.8 > 1.2.3.4: 3ffe:ffff:100::1 > 2002:ffff:f5f8::1: icrap6; echo reply (len

64, lılim 61) (!ti 23, id 29919, len 124)

#traceroute6
traceroute to 6bone.net (3ffe:b00:cl8:l::10)from 3ffe:ffff:OOOO;fl01::2, 30

hops max, 16 byte packets
1 localipv6gat&way(3ffe: ffff:OOOO:f101::1) 1.354 ms 1.566 ms 0.407 ıns

2 swi6T1-TO.ipv6.switch.ch(3ffe:2000:0:400::1)90.431 ms 91.956 ms 92.377 ms

3 3ffe:2000 0:1 :: 132 (3ffe:2000:0:1::132) 118.945 ms 107.982 ıns 114.557 ms

4 3ffe:c00:8023:2b::2(3ffe:c00:8023:2b::2)968.468 ms 993.392 ıns 973.441 ms

5 3tte-.2e00.e-c..3 (3tte-.2eOO·.e-.c:.3) 507 .784 ms 505.549 ms 508.928 ms

51



6 www 6bone net (3ffe:b00:cl8:1 ::1 O) 1265 85 ms* 1304.74 ms

4.3.3. IPv6 tracepath6
This program is normally included in package iputi ls. It's a program like tracerouıcô and

traces the path to a given destination discovering the MTU along this ı1<tLh. Below you

will see an example:

# tracepath6 www.6bone.net

1?: [LOCALHOST] pıntu 1480

1: 3ffe:401 ::2c0:33ff:fe02: 14 150.705ms

2: 3ffe:b00:cl8::5 267.864ms

4.4. IPv6-ready programs
Current distributions already contain (he most needed IPv6 enabled client and

servers.Applications whether the program is already ported to IPv6 and usable with

Linux.

4.5. 1Pv6-ready client programs (selection)
To run the following shown tests, it's required that your system is IPv6 enabled, and

some examples show addresses which only can be reached if a connection to the 6bone

is available.

4.5.1. Checking DNS for resolving 1Pv6 addresses

Because of security updates in the last years every Domain Name System (DNS) server

should run newer software which already understands the (intermediate) IPv6 address

type AAAA (the newer one named A6 isn't still common at the moment because only

supported using BIND9 and newer and also the non-existent support of root domain

IP6.ARP A). A simple whether the used system can resolve IPv6 addresses is

# lıost -t AAAA www join.uni-muenster.de

and should show something like following:

www.join.unimuenstar.de. is an alias for ns.join.uni-ınuenster.de.

ns join.uni-muenster.de. has AAAA address 3ffe:400:10:100:201 :2fffeb5:3806

52



4.5.2. IPv6-ready telnet clients
1Pv6-ready telnet clients are available. A simple test can be done with

$ telnet 3ffe:400:100::1 80

Trying 3ffe:400: 100:: 1.

Connected to 3ffe:400: 100:: 1.

Escape character is 'A]'.

HEAD I HTTP/1.0

HTTP/1.1 200 Of<

Date: Sun, 16 Dec 2003 16:07:21

GMT Server:: Apache/2.0.28 (Unix)

Last-Modified: Wed/ 01 Aug 2003 21 :34:42 GMT

ETag: "3f02-a4d-blb3e080"

Accept-Ranges: bytes

content-Length: 2637

connection: close

Con tent-Type: text/h tm I: charset= I S0-8859-1

Connection closed by foreign host.

If the telnet client don't understand the IPv6 address and says something like "cannot

resolve hostname",then it's not IPv6-enabled.

4.5.3. TPv6-ready ssh clients

4.5.3.1. opensslı

Current versions of openssh are IPv6-ready. Depending on configuring before

compiling it has two behavior without-ipv4-default: the client tries an 1Pv6 connect first

automatically and fall back to IPv4 if not working

with-ipv4-default: default connection is IPv4,IPv6 connection must be force like

following

example shows

$ ssh -6 ::1

user@:: 1 's password: ******

[user@ipv6host user]$

If your ssh client doesn't understand the option 11-611 then it's not Il'vô-cnablcd, like most

ssh version 1 packages.

53



4.5.3.2. sslı.coııı

SSH.corn's SSH client and server is also IPv6 aware now and is free for all Linux and

FreeBSD machine regardless if used for personal or commercial use.

4.5.4. IPv6-ready web browsers
A current status of IPv6 enabled web browsers is available at rl'vô+Liuux-st.aus

apps.hlml#HTTP.Most of them have unresolved problems at die moment lf using an

1Pv4 only proxy in the settings, IPv6 requests will be sent to the proxy, but the proxy

will fail to understand the request and the request fails. Solution: update proxy sofi ware

(see later).

l .Automatic proxy settings (* .pac) cannot be extended to handle 1Pv6 requests

differently (e.g. don't use proxy) because of their nature (written in Java-script and well

hard coded in source like to be seen in Maxilla source code).

2.Also older versions don't understand an URL with IPv6 encoded addresses like

http://[3ffe:400:l00::l]/ (this given URL only works wiılı an IPv6-enabicd browserl).

A short test is to try shown URL with a given browser and using no proxy.

4.5.4.1. URLsfor testing

A good starting point for browsing using IPv6 is http://w,vw.kame.net/. If the turtle üıı

this page is animated, the connection is via IPv6, otherwise the turtle is static.

4.6. IPv6-ready server programs
In th.is part of this HOWTO, more client specific issues are ment Lorıe d .

Therefore hints for IPv6-readservers like sshd, ht tpd, telnetd, etc.

are shown below in Hints for IPv6-enabled daemons.

4.7. FAQ (1Pv6-ready system check)

4.7.l. Using tools

4. 7.1.1. Q: Cannot ping6 to link-local addresses

Error message: "connect:Invalid argument"

Kernel doesn't know, which physical or virtual link you want lo use to send such

ICMPv6 packets.Therefore it displays this error message.

54



Solution: Specify interface like: "ping6 -I ethO fe80::2e0:18ff:fe90:9205", see also

program ping6 usage.

4. 7.1.2. Q: Cannot piııg6 or tracerouteô as normal user

Error message: "icmp socket.Operation not permitted"

These utilities create special JCMPv6 packets and send them out. This is done by using

raw sockets in the kernel. But raw sockets can only be used by die "root" user.

Therefore normal users get such error message. Solution: Tf it's really needed that all

users should be able to .use this utilities, you can add the "Suid" bit using "chınod

u+s/path/to/program", see also program ping6 usage. lf not all users should be able to,

you can change the group of the program to e.g. "wheel", add this power users to ınis

group and remove die execution bit for other users using "chmod o-rwx

/path/to/program". Or configure "sudo" to enable your security policy.

55 



Chapter 5.

Configuring interfaces

5.1. Different network devices

On a node, there exist different network devices. They can be collected in classes

Physically bounded, like ethO,trO Virtually existing, like pppO, tuuü, tapO, sitO,isdnO,

ipppO

5 .1.1. Physically bounded

Physically bounded interfaces like Ethernet or Token-Ring are norrnal'ones and need no

special treatment.

5. 1 .2. Virtually bounded

Virtually bounded interfaces always need special support

5.1.2.1. 1Pv6-iıı-1Pv4 tunnel iııterfaces

This interfaces are normally named site. The name sit is a shortcut for Simple Internet

Transition. This device has the capability to encapsulate IPv6 packets into IPv4 ones

and tunnel them to a foreign end point.sitO has a special meaning and cannot be used

for dedicated tunnels.

5.1.2.2. PPP interfaces

PPP interfaces get their IPv6 capability from an 1Pv6 enabled PPP daemon.

5.1.2.3. ISDN HDLC interfaces

1Pv6 capability for HDLC with encapsulation ip is already built-in in the kernel

5.1.2.4. ISDN PPP interfaces

ISDN PPP interfaces (ippp) aren't 1Pv6 enabled by kernel. Also there are also no plans

to do that because in kernel 2.5.+ they will be replaced by a more generic PJJP interface

layer.

5.1.2.5. SLIP+ PllP

56



Like mentioned earlier, this interfaces don't support IPv6 transport (sending is OK, but

dispatching on receiving don't work).

5.1.2.6. Ether-tap device

Ether-tap devices are 1Pv6-enabled and also stateless configured. For use, the module

"ethertap" has to be loaded before.

Currently not tested by the test teams.

5.1.2.8. AT~f

Aren't currently supported by all network test programes supported by USAGl

extension

5.2. Bringing interfaces up/down

Two methods can be used to bring interfaces up or down.

5.2.1. Using "ip"

Usage:

# ip link set dev <interface> up

# ip link set dev <interface> down

Example:

# ip link set dev ethO up

# ip link set dev etlıO down

5.2.2. Using "ifconfıg"

Usage:

# /sbin/ifconfig<interface> up

# /sbin/ifconfig <interface> down

Example:

# /sbin/ifconfigethO up

# /sbin/ifconfigetlıO down

57



Chapter 6

Configuring 1Pv6 addresses

There are different ways to configure an IPv6 address on an interface, we can use

"ifconfig" or "ip".

6.1. Displaying existing IPv6 addresses

First you should check, whether and which 1Pv6 addresses are already configured

(perhaps auto-magically during stateless auto-configuration).

6.1.1. Using "ip"

Usage:

# /sbin/ip -6 addr show dev <interface>

Example for a static configured host:

# /sbin/ip -6 addr slıow dev
2 :ethO hO:<BROADCAST,MULTICAST, UP&gt; mtu 1500 qdisc pfifo_fast qlen 100

inet6 fe80::210:a4ff:fee3:9566/10scope link

inet6 3ffe:ffff:O:fl01::1/64 scope global

net6 fec0:0:0:flOI : 1 /64 scope site

Example for a host which is auto-configured

Here you see some auto-magically configured 1Pv6 addresses and their Iifeıiıu...

# /sbin/ip -6 addr show dev ethO
3: ethO:<BROADCAST,MULTICAST,PRCMISC,UP&gt;mtu1500 qdisc pfifo_fast qleıı

100
inet6 2002:d950:f5f8:fl01:2e0:18ff:fe90:9205/64scope global dynamic

valid_lft 16sec preferred_1 ft 6sec
inet6 3ffe:400:1OO:f101 :2e0: 18ff:fe90:9205/64scope global dynamic

valid_lft 2591997secpreferred_lft604797sec inet6 fe80::2e0:18ff:fe90:9205/1O

scope link

6.1.2.Using"ifconfig"

Usage:

# /sbin/ifconfig <interface>

58



Example (output filtered with grep to display only IPv6 addresses). Here you see

different IPv6 addresses with different scopes.

# /sbin/ifconfigethO lgrep "iııet6 addr:"

iııet6 addr: fe80: :210:a4ff:fee3:9566/1O Scope:Liıık

iııet6 addr: 3ffe:ffff:O:fl01::l/643scope:Global

inet6 addr: fec0:0:0:f101::1 /64 scope:site

6.2. Add an IPv6 address

Adding an IPv6 address is similar to the mechanism of "IP ALIAS" addresses in Linux

1Pv4 addressed interfaces.

6.2.1. Using "ip"

Usage:

# /sbin/ip -6 addr add <ipv6address>/<prefıxlength>dev <interface>

Example:

# /sbin/ip -6 addr add 3ffe:ffff:O:fl01::1/64dev ethO

6.2.2. Using "ifconfıg"

Usage:

# /sbin/ifconfıg <interface> inet6 add <ipv6address>/<prefıxlength>

Example;

# /sbin/ifconfıg ethO inet6 add 3ffe:ffff:O:fl01::1/64

6.3. Removing an 1Pv6 address

Not so often needed be carefully with removing non existent IPv6 address, somcuınes

using older programs it results in a crash.

6.3.l. Using "ip"

Usage:

# /sbiıı/ip -6 addr del <ipv6address>/<prefixlength>dev <interface>

Example:

# /sbin/ip -6 addr del 3ffe:ffff:O:fl01::1/64 dev ethO

59



6.3.2. Using "ifconfig"

Usage:

# /sbin/ifconfıg <interface> inet6 del <ipv6address>/<prefıxlength>

Example:

# /sbin/ifconfıg ethO inet6 del 3ffe:ffff:O:fi01::1/64

60



Chapter 7

Configuring normal 1Pv6 routes

If you want to leave your link and want to send packets in the world wide 1Pv6-lnlenel

you need muling.If there is already an IPv6 enabled router on your link it's possible

enough to add 1Pv6 routes.Also here there are different ways to configure an IP, 6

address on an interface. You can use "ifconfıg" or "ip"

7.1. Displaying existing 1Pv6 routes
First you should check whether and which IPv6 addresses are already configured

(perhaps auto-magically during auto-configuration).

7. 1 .1. Using "IP"

Usage:
# /sbin/ip -6 route show (dev <device>]

Example:

# /sbin/ip -6 route show dev ethü
3ffe:ffff:0:f101::/64 proto kernel metric 256 mtu 1500 advmss 1440

fe80.:/IO proto kernel metric 256 ıntu 1500 advmss 1440

ffOO.:/8 proto kernel metric 256 nıtu 1500 advmss 1440

default proto kernel metric 256 mtu 1500 advmss 1440

7 .1.2. Using "route"

Usage:

# /sbin/route -A inet6
Example (output is filtered for interface ethO). Here you see different IPv6 routes for

different addresses on a single interface.

# /sbin/roule -A inet6 lgrep -w "etlıü"
3ffe:ffff:O:fl01 ::/64 :: UA 256 O O etlıü <- Interface route for global

address
fe80::/1O :: UA 256 O O etl10 <- Interface route for link-local address

ff00::/8 :: UA 256 O O etlıü <- Interface route for all multicast addresses

:/0 : UDA 256 O O ellıO <- Automaticdefault route

61



7.2. Add an 1Pv6 route through a gateway

Mostly needed to reach the outside with IPv6 using an IPv6-enabled router on your link.

7.2. 1. Using "ip"

Usage:

# /sbin/ip -6 route add <ipv6network>/<prefıxlength>via <ipv6address
[dev <device>]

Example:

# /sbin/ip -6 route add 2000::/3 via 3ffe:ffff:O:fl01:: 1

7.2.2. Using "route"

Usage:

# /sbin/route -A inet6 add <ipv6network>/<prefıxlength>gw

ipv6address> [dev <device>]

A device can be needed, too, if the 1Pv6 address of the gateway is a Iınk local one.

Following shown example adds a route for all currently global addresses (2000::/3)

through gateway 3ffe:ffff:o:fl o 1:: 1

# /sbin/route -A inet6 add 2000::/3 gw 3ffe:ffff:O:fl01::I

7.3. Removing an 1Pv6 route through a gateway

Not so often needed manually, mostly done by network configure scripts on shutdown

(full or peri nterface)

7.3.l. Using "ip"

Usage:

# /sbiıı/ip -6 route del <ipv6network>/<prefıxlength>via <ipv6address>
[dev <device>]

Example:

# /sbin/ip -6 route del 2000::/3 via 3ffe:ffff:O:fl01::I

7.3.2. Using "route"

62



Usage:

# /sbin/route -A inet6 del <network>/<prefixlength> [dev <device>]

Example for removing upper added route again:

# /sbin/route -A inet6 del 2000::/3 gw 3ffe:ffff:O:ft01 ::I

7.4. Add an 1Pv6 route through an interface

Not often needed, sometimes in cases of dedicated point-to-point links.

7.4. l. Using "ip"

Usage:

# /sbin/ip -6 route add <ipv6network>/<prefixlength> dev <device>

metric 1

Example:

# /sbin/ip -6 route add 2000::/3 dev ethO metric 1

Metric "1" is used here to be compatible with the metric used by route, because the

default metric on using "ip" is "1024".

7.4.2. Using "route"

Usage:

# /sbin/route -A inet6 add <network>/<prefixlength> dev <device>

Example:

# /sbin/route -A inet6 add 2000::/3 dev ethO

7 .5. Removing an 1Pv6 route through an interface

Not so often needed to use by hand, configuration scripts will use such on shutdown.

7.5.1. Using "ip"

usage:

# /sbin/ip -6 route del <ipv6network>/<prefixlength> dev <device>

Example:

# /sbin/ip -6 route del 2000::/3 dev etlıO

7.5.2. Using "route"

Usage:

63



# /sbin/route -A inet6 del <network>/<prefıxlength>dev <device>

Example:

# /sbin/route -A inet6 del 2000::/3 dev ethO

7.6. FAQ for 1Pv6 routes

7.6.1. Support of an IPv6 default route

One idea of IPv6 was a hierachical routing, therefore only less routing entries are

needed in routers.There are some issues in current experiments:

7.6.1.1. Clients

Client can setup a default route like prefix "O", they also learn such route on

autoconfıguration e.g using radvd on the link like following example shows:

# ip -6 route show I grep Adefault

default via fe80 :212:34ff:fel2:3450dev etlıO proto kernel metric 1024 expires
29sec mtu 1500 advmss 1440

7.6.1.2.Routers oıı packet forwarding

Current mainstream Linux kernel (at least<= 2.4.17) don't support default routes. You

can set them up, but the route lookup fails when a packet should be forwarded (normal

intention of a router Therefore at this time "default routing" can be setup using the

currently only global address prefix "2000::/3".The USAGI project already suppoıts this

in their extension with a hack.

64



Chapter 8.

Configuring IPv6-iıı-IPv4 tunnels

If you want to leave your link you have no IPv6 capable network around you, you need

IPv6-in-JPv4 lunneling to reach die World Wide IPv6-Intemet.

There are some kind of tunnel mechanism and also some possibilities to setup tunnels.

8.1. Types of tunnels

There are more than one possibility to tunnel IPv6 packets over IPv4-only links.

8.1.1. Static point-to-point tunneling: 6bone

A point-to-point tunnel is a dedicated tunnel to an endpoint, which knows about your

IPv6 network(for backward routing) and the IPv4 address of your tunnel endpoint and

defined in RFC 2893 /Transition Mechanisms for IPv6 Hosts and Routers.

Requirements:
1Pv4 address of your local tunnel endpoint must be static, global unique and reachable

from the foreign tunnel endpoint -A global IPv6 prefix assigned to you (see 6bone

registry)
A foreign tunnel endpoint which is capable to route your IPv6 prefix to your local

tunnel endpoint(rnostly remote manual configuration required)

8.1.2. Automatically tunneling

Automatic tunneling occurs, when a node directly connects another node gotten die

IPv4 address of the other node before.

8.1.3. 6to4-Tunneling
6to4 tunneling (RFC 3056 I Connection of IPv6 Domains via lPv4 Clouds) uses a

simple mechanism to create automatic tunnels. Each node with a global unique f Pv4

65



address is able to be a 6to4 tunnel endpoint (if no 1Pv4 firewall prohibits traffic ). ôto-l

tunneling is mostly not a one-to-one tunnel. This case of tunneling can be divided into

upstream and downstream tunneling. Also, a special IPv6 address indicates that this

node will use 6to4 tunneling for connecting the world-wide IPv6 network

8.1.3.1. Generation of 6to4 prefix

The 6to4 address is defined like following (schema is taken from RFC 3056 I

Connection ofIPv6 Domains via 1Pv4 Clouds);

13+13 I 32116164 bits I
I FP+TLA I V4ADDR I SLA ID I Interface ID I
I Ox2002 1111
Where FP is the known prefix for global addresses, TLA is the top level aggregator.

V4ADDR is the node's global unique IPv4 address (in hexadecimal notation). SLA is

the subnet identifier (65536 local subnets possible). Such prefix is generated and

normally using SLA "0000" and suffix":: l" assigned

to the 6to4 tunnel interface.

8.1.3.2. 6to4 upstream tunneling

The node has to know to which foreign tunnel endpoint its in IPv4 packed 1Pv6 packets

should be send to. In "early" days of 6to4 tunneling, dedicated upstream accepting

routers were defined. See NSayer's 6to4 information for a list of routers.

Nowadays, 6to4 upstream routers can be found auto-magically using the anycast

address 192.88.99.1.In the background routing protocols handle this, see RFC 3068 I An

Anycast Prefix for 6to4 Relay Routers for details.

8.1.3.3. 6to4 dowııstreaın tunneling

The downstream (6bone -> your 6to4 enabled node) is not really fix and can vary from

foreign host which originated packets were send to. There exist two possibilities:

Foreign host uses uses 6to4 and sends packet direct- back to your node (sec below)

Foreign host sends packets back to the world-wide [Pv6 network. and depending on the

dynamic routing a relay router create a automatic tunnel back to your node.

66



8.1.3.4. Possible 6to4 traffic
from 6to4 to 6to4: is normally directly tunneled between the both 6to4 enabled hosts

from 6to4 to 6to4: is sent via upstream tunneling

from 6to4 to 6to4: is sent via downstream tunneling

8.2. Displaying existing tunnels

8.2.1. Using "ip"

Usage:
# /sbin/ip -6 tunnel show [<device>]

8.2.2. Using "route"

Usage:

# /sbin/route -A inet6
Example (output is filtered to display only tunnels through virtual interface sitO):

# /sbin/route -A inet6 \ grep "\Wsit0\W+$"

::/96 :: u 256 2 O sitü

2002::/16 :: UA 256 O O sitO
2000::/3 :193.11358.75 UG 1 O O sitO

fe80: :/1 O : : UA 256 O O sitO

ff00::/8 :: UA 256 O O sitO

8.3. Setup of point-to-point tunnel

There are 3 possibilities to add or remove point-to-point tunnels.

8.3.1. Add point-to-point tunnels

8.3.1.1. Using "ip" and "route"

Common method at the moment for a small amount of tunnels Usage for creating a

tunnel device (but it's not up afterward, also a TTL must be specified because the

default value is O).
# /sbin/ip tunnel add <device> mode sit tt1 <ttldefault> remote

<ipv4addressofforeigntunnel>local <ipv4addresslocal>

Usage (generic example for tlu-ee tunnels):

67 



#/sbin/ip tunnel add sit1 mod sit ttl <ttldefault> remote

<ipv4addressofforeigntunnell> local <ipv4addresslocal>

# /sbin/ifconfig sit 1 up

# /sbin/route -A inet6 add <prefixtoroutel> dev sit1

# /sbin/ip tunnel add sit2 mode sit ttl <tt1default>

<ipv4addressofforeigntunnel2> local <ipv4addresslocal>

# /sbin/ifconfig sit2 up

# /sbin/route -A inet6 add <prefixtoroute2> dev sit2

# /sbin/ip tunnel add sit3 mode sit tll <ttldefault>

<ipv4addressofforeigntunnel3> local <ipv4addresslocal>

# /sbin/ifconfig sit3 up

# /sbin/route -A inet6 add <prefixtoroute3> dev sit3

8.3.1.2. Using "ifconfig" and "route" (deprecated)

This not very recommended way to add a tunnel because it's a little bit strange. No

problem if adding only one, but if you setup more than one, you cannot easy shutdown

the first ones and leave the others running. Usage (generic example for three tunnels):

# /sbin/ifconfigsitO up
# /sbin/ifconfigsitO tunnel <ipv4addressofforeigntunnell>

# /sbin/ifconfig sit1 up
# /sbin/route -A inet6 add <prefixtoroutel>dev sit1

# /sbin/ifconfigsitO tunnel <ipv4addressofforeigntunnel2>

# /sbin/ifconfigsit2 up
# /sbin/route -A inet6 add <prefixtoroute2>dev sit2
# /sbin/ifconfigsitO tunnel <ipv4addressofforeigntunne13>

# /sbin/ifconfigsit3 up
# /sbin/route -A inet6 add <prefixtoroute3>dev sit3

Important: DONT USE THIS, because this setup implicit enable "automatic tunneling"

from anywhere in the Internet, this is a risk, and it should not be advocated.

8.3.1.3 Using "route" only

It's also possible to setup tunnels in Non Broadcast Multiple Access (NBMA) style, it's

a easy way to add many tunnels at once. But none of the tunnel can be numbered (which

is a not required feature).

Usage (generic example for three tunnels):

68 



# /sbin/ifconfıg sitO up
# /sbin/route -A inet6 add <prefıxtoroutel>gw

:: <ipv4addressofforeigntunnel1> dev sitO
# /sbin/route -A inet6 add <prefixtoroute2>gw

:: <ipv4addressofforeigntunnel2>dev sitO

# /sbin/route -A inet6 add <prefixtoroute3>gw

::<ipv4addressofforeigntunnel3>dev sitO
Important: DON'T USE THIS, because this setup implicit enable "automatic tunneling"

from anywhere in the Internet, this is a risk, and it should not be advocated.

8.3.2. Removing point-to-point tunnels

Manually not so often needed, but used by scripts for clean shutdown or restart of IPv6

configuration.

8.3.2.1. Using "ip" and "route"

Usage for removing a tunnel device:

# /sbin/ip tunnel del <device>

Usage (generic example for three tunnels):

# /sbin/route -A inet6 del <prefıxtoroute1> dev sit1

# /sbin/ifconfıg sit1 down

# /sbin/ip tunnel del sit1
# /sbin/route -A inet6 del <prefıxtoroute2>dev sit2

# /sbin/ifconfigsit2 down

# /sbin/ip tunnel del sit2
# /sbin/route -A inet6 del <prefıxtoroute3>dev sit3

# /sbin/ifconfigsit3 down

# /sbin/ip tunnel del sit3

8.3.2.2. Using "ifconfig" and "route" (deprecated because not veı:vfuııny)

Not only the creation is strange, the shutdown also ... you have to remove die tunnels in

backorder,means the latest created must be removed first.Usage (generic example for

three tunnels);
# /sbin/route -A inet6 del <prefixtoroute3>dev sit3

# /sbin/ifconfıqsit3 down

69 



# /sbin/route -A inet6 del <prefıxtoroute2>dev sit2

# /sbin/ifconfıg sit2 down
# /sbin/route -A inel6 add <prefixtoroutel>dev sit1

# /sbin/ifconfıg sit1 down

# /sbinlifconfiq sitO down

8.3.2.3. Using "route"

This is like removing normal 1Pv6 routes Usage (generic example for three tunnels):

# /sbin/route -A inet6 del <prefixtoroute1 > gw

::<ipv4addressofforeigntunnel1> dev sitO

# /sbin/route -A inet6 del <prefıxtoroute2>gw

::<ipv4addressofforeigntunnel2>dev sitO
# /sbin/route -A inet6 del <prerixtoroute3>gw
::<ipv4addressofforeigntunnel3>dev sitO

# /sbin/ifconfigsitO down

8.3.3. Numbered point-to-point tunnels

Sometimes it's needed to configure a point-to-point tunnel with IPv6 addresses like in

1Pv4 today.This is only possible with the first (ifconfig+route - deprecated) and thiıu

(ip+route) tunnel setup. In such cases, you can add the IPv6 address to the tunnel

interface like shown on interface configuration.

8.4. Setup of 6to4 tunnels

Pay attention that the support of 6to4 tunnels currently lacks on vanilla kernel series

2.2.x (see/systeıncheck/kernel for more information). Also note that mat the prefix

length for a 6to4 address is 16 because of from network point of view, all other 6to4

enabled hosts are on the same layer 2.

8 .4 .1. Add a 6to4 tunnel
First, you have to calculate your 6to4 prefix using your local assigned global mutable

IPv4 address (if your host has no global mutable IPv4 address, in special cases NAT on

border gateways is possible )Assuming your IPv4 address is 1.2.3 .4

70 



the generated 6to4 prefix will be

2002:0102:0304::
Local 6to4 gateways should always assigned the manual suffix "::l ", therefore your

local 6to4 address will be

2002:0102:0304::1

Use e.g. following for automatic generation:

ipv4="1.2.3.4";printf "2002:%02x%02x:%02x%02x::1"'echo $ipv4 I tr "." ""

There are two ways possible to setup 6to4 tunneling now.

Bring interface up

# /sbin/ip link set dev tun6to4 up

Add local 6to4 address to interface

# /sbin/ip -6 addr add <local6to4address>/16dev tun6to4
Add (default) route to the global IPv6 network using the all-6to4-routers TPv4 anycast

address
# /sbin/ip -6 route add 2000::/3 via :: 192.88.99.1 dev tun6to4 metric 1

8.4.1.2. Usiııg "ifconfig" aııd "route" and generic tunnel device "sitO" (deprecated)

This is now deprecated because using the generic tunnel device sitO doesn't let specify

filtering perdevice. Bring generic tunnel interface sitO up

# /sbin /ifconfıg sitO up

Add local 6to4 address to interface

# /sbin/ifconfıq sitO add <local6to4address>/16

Add( clefault)route to the global IPv6 network using the all-6to4-relays IPv4 anycast

address
# /sbin/route -A inel6 add :2000::/3 gw : 192.88.99.1 dev sitO

8.4.2. Remove a 6to4 tunnel

8.4.2.1. Using "ip" and a dedicated tunııel devices /sbiıı/ip tunnel del tım6to4

8.4.2.2. Using "ifconfıg" and "route" and generic tunnel device "sitO" (deprecated)

Remove (default) route through the 6to4 tunnel interface

# /sbin/route -A inel6 del 2000::/3 gw ::192.88.99.1 dev sitO

71



Remove local 6to4 address to interface

# /sbin/ifconfigsitO del <local6to4address>/16
Shut down generic tunnel device (take care about this, perhaps it's still in use ... )

# /sbin/ifconfigsitO down
Remove all routes through this dedicated tunnel device

# /sbin/ip -6 route flush dev tun6to4

Shut down interface

# /sbin/ip link set dev tun6to4 down

Remove created tunnel device

# /sbin/ip tunnel del tun6to4

8.4.2.2. Using "ifcoııjig" and "route" and generic tunnel device "sitil" (deprecated)

Remove (default) route tnrough the 6to4 tunnel interface

# /sbin/route -A inet6 del 2000::/3 gw :: 192.88 99.1 dev sitO

Remove local 6to4 address to interface

# /sbin/ifconfigsitO del <local6to4address>/16
Shut down generic tunnel device (take care about this, perhaps it's still in use ... )

# /sbin/ifconfıgsitO down

72



Chapter 9.

Network debugging

9.1. Server socket binding

9 .1.1. Using "netstat" for server socket binding check

It's always interesting which server sockets are currently active on a noue. Using

"netstat" is a short way to get such information; Used options: -rıl ptu

Example:

# netstat -n 1 ptu
Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address Foreign Address State

1 PID/Proqram name
tep O O 0.0.0.0:32768O.O.O.O:* LISTEN

1 1258/rpc.statd

tep O O 0.0.0.0:32769O.O.O.O:* LISTEN

1 1502/rpc.mountd

tep O O 0.0.0.0:515 O.O.O.O:* LISTEN

1 22433/lpd Waiting

tep O O 1.2.3.1 :139 O.O.O.O:* LISTEN

1 1746/smbd
tep O O O.O.O.O:111 O.O.O.O:* LISTEN

1 1230/portmap

tep O O 0.0.0.0:6000O.O.O.O:* LISTEN

1 3551/X
tep O O 1.2.3.1:8081 O.O.O.O:* LISTEN

1 18735/junkbuster

tep O O 1.2.3.1 :3128 O.O.O.O:* LISTEN

118822/(squid)

tep O O 127.0 0.1 :953 O 0.0,0:* LISTEN

1 30734/named

tep O O ::ffff:1.2.3.1:993 :: * LISTEN

16742/xiııetd-ipv6

tep O O :::13 :::* LISTEN

1 6742/xinetd-ipv6

73



tep O O ::fffe:1.2.3.1:143 :::* LISTEN

1 6742/xinetd-ipv6

tep O O :::53 :::* LISTEN

1 30734/ııamed

tep O O :::22 :::* LISTEN

ı 1410/sshd

tep O O :::6010 :::* LISTEN

ı 13237/sshd

udp O O 0.0.0.0:32768 O.O.O.O:*

1 1258/rpe.statd

udp O O 0.0.0.0:2049 O.O.O.O:*

1-

udp O O 0.0.0.0:32770 O.O.O.O:*

1 1502/rpe.mouııtd

udp O O 0.0.0.0:32771 O O.O O:*

1-

udp O O 1.2.3.1:137 O.O O O:*

ı 1751/nmbd

udp O 0.0.0.0:137 O.O.O.O:*

ı 1751/ıımbd

udp O O 1.2.3.1:138 O.O.O.O:*

1 1751/nmbd

udp O O O.O.O.O: 138 O.O.O.O:*

ı 1751/ıımbd

udp O O 0.0.0.0:33044 O.O.O O:*

1 30734/ııamed

udp O O 1.2.3.1 53 O.O.O.O:*

1 30734/ııaiiied

udp O O 127.0.0.1 :53 O.O O.O:*

1 30734/named

udp O O 0.0.0.0:67 O.O.O.O:*

1 1530/dhepd

udp O O 0.0.0.0:67 0-0 O O:*

ı 1530/dlıepd

udp O O 0.0.0.0:32859 O.O.O.O:*

ı 18822/ (squid)

udp O O 0.0.0.0:4827 O.O.O O:*

ı 18822/ (squid)

udp O O 0.0.0.0:111 O O.O O:*

ı 1230/portmap

74 



udp O O :::53 :::*

130734/named

9.2 Examples for tcpdump packet dumps

Here some examples of captured packets are shown, perhaps useful for your own

debugging more coming next.

9 .2.1 . Router discovery

9.2.1.1. Router advertisement

5:43:49.484751 fe80::212:34ff:fel2:3450> ff02::I: icmp6: router

1advertisement(chlim=64,router_ltime=30,reachable_time=O,

1 retrans_time=O)(prefixinfo: AR valid ltime=30, preffered_ltime=20,

1prefix=2002:0102:0304:1::/64)(prefix info: LAR valid_ltime=2592000,

1preffered_ltinıe=604800,prefix=3ffe:ffff:0:1::/64)(srcl\addr:

1 0:12:34:12:34:50)(len 88, hlim 255)
Router with link-local address "fe80::212:34ff:fel2:3450" send an adveı ıisement to the

all-node-on-link multicast address "ff02::l" containing prefixestwo

"2002:0102:0304:1::/64" (lifetime 30 s) and "3ffe:fflF:O:l::/64" (lifetime 2592000 s)

including its own layer 2 MAC address "O: 12:34: 12:34:50"

9.2.1.2. Router solicitation

15:44:21.152646fe80::212:34ff:fel2:3456> ff02::2: icmp6: router solicitation

1 (src lladdr: 0:12:34:12:34:56)(len 16, hlira 255)

Node with link-local address "fe80::212:34ff:fel2:3456" and layer ı MAC address

"0:12:34:12:34:56"is looking for a router on-link,therefore sending this solicitation to

the a11-router-on-1ink multicast address "ff02::2".

9.2.2. Neighbor discovery
9.2.2.1 Neighbor discovery solicitation for duplicate address detection

following packets are sent by a node with layer 2 MAC address "O: 12:34: 12:34:56"

during autoconfıguration to check whether a potential address is already used by another

node on the link sending tills to the solicited-node link-local multicast address rlode

75



wants to configure its link-local address "fe80::212:34ff:fel2:3456", checks for

duplicate now

15:44:17.712338:: > ff02::1 :ffl2:3456: icınp6: neighborsol: who has

1 fe80::2'12.34ff:fe12:3456(srclladdr: 0:12:34:12:34:50)(len 32, hliın 255)

Node wants to configure its global address "3ffe:ffff:O:l:212:34ff:fel2:3456" (after

receiving advertisement shown above),checks for duplicate now

15:44:22.304028:: > ff02::1 :ffl2:3456: icmp6: neighbor sol: who has

13ffe:ffff:O:1 :212:34ff:fel2:3456(src lladdr: O : 12: 34 : 12: 34 : 56) (len 32, hliın 255)

Node wants to configure its global address "3ffe:ffff:O:l:2 l 2:34ff:fel2:3456" (after

receiving advertisement shown above), checks for duplicate now

15 :44:22.304028:: > ff02::l:ffl2:3456:icmp6: neighbor sol: who has

13ffe:ffff:O:l:212:34ff:fel2:3456(srclladdr: O: 12:34:12:34:56) (len 32, hlim

255)

9.2.2.2. Neighbor discovery solicitationfor lookingfor lıost or gateway

Note wants to send packages to "3ffe;ffff:O: 1:: 1 O" but has no layer 2 MAC address to

send packet, so send solicitation now

13:07:47.6645382002:0102:0304:1:2e0:18ff:fe90:9205> ff02::l:ff00:1O: icmp6:

1 neighbor sol: who has 3ffe:ffff:0:1:: 10(src lladdr: O:e0:18:90:92:5)(len 32,

1 hlim 255)

Node looks for "fe80::10" now -

13: 11 :20.870070 fe80::2e0:18ff:fe90:9205> ff02::l:ff00:1O: icmp6: neighbor

1sol: who has fe80:: 10 (src lladdr: O:eO: 18: 90: 92: 5) (len 32, hlim 255)

76



Chapter 10 

Support for persistent 1Pv6 

Configuration in Linux distributions 

Some Linux distribution contain already support of a persistent IPv6 configuration

using existing or new configuration and script files and some hook in the 1Pv4 script

files.

10.1. Red Hat Linux and "clones" 

To enable a persistent IPv6 configuration which catch most of the wished cases like

host-only, router-only, dual-homed-host, router with second stub network, normal

tunnels, 6to4 tunnels and so on.Nowadays there exists a set of configuration and script

files which do the job very well (never heard about real problems, but we don't know

how many use the set. Because this configuration and scrips files are extended from

time to time, they got their own HOWTO page: IPv6-HOWTO/scripts/cLııuTent.Because

we are using 1Pv6 experience using a Red
Hat Linux 5.0 clone, my 1Pv6 development systems are mostly Red Hat Linux based

now it's kind a logic that the scripts are developed for this kind of distribution (so called

historic issue). Also it was very easy to extend some configuration files, create new ones

and create some simple hook for calling 1Pv6 setup during IPv4 setup.

Fortunately, in Red Hat Linux since 7.1 a snapshot ofIPv6 scripts is included, this was

and is still
Further Mandrake since version 8.0 also includes an 1Pv6-enabled initscript package,

but a minor bug still prevents usage ("ifconfig" misses "inet6" before "add"),

10.1. l. Test for IPv6 support of network configuration scripts

You can test, whether your Linux distribution contain support for persistent 1Pv6

configuration using my set Following script library should exist:

/etc/sysconfıg/network-scripts/network-functions-ipv6

Auto-magically test:

77



# test -t /etc/sysconfıg/network-scripts/network-functions-ipv6&& echo "Main

1Pv6 script libary exists"
The version of the library is important if you miss some features. You can get it

executing following( or easier look at the top of the file):

# source/etc/sysconfıg/network-scripts/network-functions-ipv6&&

getversion_ipv6_functions

20011124
In shown example, the used version is 20011124. Check this against latest information

on IPv6-HOWTO/scripts/current to see what has been changed. There is also a change-

log available in the distributed tar-ball.

10.1.2. Short hint for enabling IPv6 on current RHL 7.1,7.2, ...

Check whether running system has already IPv6 module loaded

# modprobe -c I grep net-pf-1O

alias net-pf-1O off
If result is "off'l.then enable IPv6 networking by editing/etc/sysconfıg/network, add

following new line.

NETWORKING_\PV6=yes

Reboot or restart networking using

# service network restart

Now lPv6 module should be loaded

# modprobe -c I grep ipv6

alias net-pf-1O ipv6
If your system is on a link which provides router advertisement, autoconfıguraüon will

be done automatically For more information which settings are supported sec

/usr/share/doc/initscripts-$version/sysconfig.txt.

10.2.SuSELinux 

In newer versions there is a really rudimentary support available, see /etc/rc.confıg for

details Because of the really different configuration and script file structure it is bard (or

impossible) to use the set for Red Hat Linux and clones with this Jıstribution.

78



Chapter 11

Firewalling and security issues

IPv6 firewalling is important, especially if using IPv6 on internal networks with global

IPv6 addresses. Because unlike at IPv4 networks where in common internal hosts are

protected automatically using private 1Pv4 addresses like RFC 1918 I Address

Allocation for Private Internets or APIPA I Automatic Private lP Addressing, in 1Pv6

normally global addresses are used and someone with 1Pv6 connectivity can reach all

internal 1Pv6 enabled nodes.

11.1.Firewalling

11.1. l.Firewalling using netfilter6
Native IPv6 firewalling is only supported in kernel versions 2.4+. In older 2.2- you can

only filter IPv6 -in-1Pv4 by protocol 41. Attention: no warranty that described rules or

examples are really protect your system!

11.1.1.1.More information

Netfilter project

maillist archive of net:fılter users

maillist archive of netfılter developers

Unofficial status informations

11.1.2 .Preparation

11.1.2.1.Extract sources

Change to source directory:

# cd /path/to/src

Unpack and rename kernel sources

# tar z\jxf kernel-version.tar.gz!bz2
# mv linux linux-version-iptables-version+IPv6

Unpack iptables sources

79



# tar zjjxf iptables-version.tar.gzlbz2

1J.J.2.2.Apply latest iptables/1Pv6-relatedpatches to keme/ source

Change to iptables directory

# cd iptables.version

Apply pending patches
# make pending-patchesKERNEL_DIR=/path/to/src/linux-version-iptables-version/

Apply additional IPv6 related patches (still not in the vanilla kernel included)

# make patch-o-matic KERNEL_DIR=/path/to/src/linux-version-iptables-version/

Say yes at following options (iptables-1.2.2)

ah-esp.patch
masq-dynaddr.patch(only needed for systems with dynamic IP assigned WAN

connections like PPP or PPPoE)

# make print-extensions
Extensions found: IPv6:owner IPv6:Limit IPv6:mac IPv6:multiport

11.1.2.3.Coııfigııre, build and install new keme/

Change to kernel sources

# cd /path/to/src/linux-version-iptables-version/

Edit Makefile

- EXTRAVERSION=
+ EXTRAVERSION= -iptables-version+IPv6-try

Run configure enable IPv6 related

Code maturity level options
Prompt for development and/or incomplete code/drivers : yes

Networking options
Network packet filtering: yes

The 1Pv6 protocol: module

1Pv6: Netfilter Configuration

IPV6 tables support: module

All new options like following:

limit match support: module
MAC address match support: module

Multiple port match support: module

Owner match support: module

80



netfılter MARK match support: module

Aggreigated address check: module

Packet filtering: module

REJECT target support: module

LOG target support: module

Packet mangling: module

MARI< target support: module

Configure other related to your system, too

Compilation and installing: see the kernel section here and other HOWTOs

11.1.2.4.Rebııild aııd install binaries of iptables

Make sure, that upper kernel source tree is also available at/usr/src/linux/

Rename older directory

# mv/usr/src/linux/usr/src/linux.old

Create a new soft.link
# In /path/to/src/linux-version-iptables-version/usr/src/linux

Rebuild SRPMS
# rpm --rebuild /patlı/to/SRPMS/iptables-version-release.srcrpm

Install new iptables packages (iptables + iptables-ipv6)
On RH 7 .1 systems, normally, already an older version is installed, therefore use

"freshen"
# rpnı -Fhv I patlı/to/RPMS/cpu/iptables*-version-release.cpu.rpm

If not already installed,use "install"
# rpnı -ilıv /patlı/to/RPMS/cpu/iptables*-version-release.cpu.rpm
On RH 6.2 systems, normally, no kernel 2.4.x is installed therefore the requirements

don't fit. Use "-nodeps" to install it
# rpm -ihv --nodep /patlı/to/RPMS/cpu/iptables*-version-release.cpu.rpm

Perhaps it's necessary to create a softlink for iptables libraries where iptables looks for

them
# In -s /lib/iptables/ /usr/lib/iptables

11. l.3.Usage

11.1.3.1. Ctıeckfor support

81



Load module, if so compiled

# modprobe ip6_tables

Check for capability
# [ ! -f /proc/neUip6 tables names ] && echo "Current kernel doesn't support

ipbtables' fırewailing (1Pv6)!"

11.1.3.2.Leam Iıow to ııse ip6tables

List all IPv6 netfılter entries

Short

# ip6tables -L

Extended
# ip6tables -n -v --line-numbers-L

List specified filter

#lp6tables-n -v -line-number-L INPUT

Insert a log rule at the input filter with options
# ip6tables -table Filter --append INPUT -j LOG --log-prefix"INPUT:"

--log-Level 7

Insert a drop rule at the input :filler

# lp6tables -table filter -append INPUT -j DROP

Delete a rule by number

# ip6tables -table filter --delete INPUT 1
Allow JCMPv6,at the moment with unpatched kernel 2.4.5 and iptables-1.2.2 no type

can be specified Accept incoming ICMPv6 through tunnels

# ip6tables -A INPUT -i sit+ ·P icmpv6 -j ACCEPT

Allow outgoing ICMPv6 through tunnels

# ip6tables -A OUTPUT -o sit+ -p icmpv6 -j ACCEPT
Allow incoming SSH, here an example is shown for a ruleset which allows incoming

SSH coırnection from a specified IPv6 address Allow incoming SSI-I from

3ffe:400: 100:: 1/128
# ip6tables -A INPUT -i sit+ -p tep -s 3ffe:400:100::1/128-sport 512:65535

-oport 22 -j ACCEPT
Allow response packets (at the moment IPv6 connection tracking isn't in mainstream

netfilter6 implemented)
# iptitables -A OUTPUT -o sit+ -p tep -d 3ffe:400:100::1/128dport 512:65535

-sport 22 ! -syn j ACCEPT

82



Enable tunneled IPv6-in-IPv4, to accept tunneled IPv6-in-IPv4 packets, you have to

insert rules in your IPv4 firewall setup relating to such packets, for example Accept

incoming IPv6-in-IPv4 on interface pppO

# iptables -A INPUT -i pppO -p ipv6 -j ACCEPT

Allow outgoing IPv6-in-IPv4 to interface ppp

# iptables -A OUTPUT -o pppO -p lpv6 -j ACCEPT

If you have only a static tuımel, you can specify the IPv4 addresses, too, like

Accept incoming IPv6-in-IPv4 on interface pppO from tuımel endpoint 1.2.3.4

# iptables -A INPUT -i pppO -p ipv6 -s 1.2.3.4 -j ACCEPT

Allow outgoing IPv6-in-IPv4 to interface pppO to tunnel endpoint 1.2.3.-4

# iptables -A OUTPUT -o pppO -p ipv6 -d 1.2.3.4 -j ACCEPT

Protect against incoming TCP connection requests (VERY RECOMMENDED*-), for

security issues you should really insert a rule which blocks incoming TCP connection

requests. Adapt "-i" option, if other interface names are in use!

Block incoming TCP connection requests to this host

# ip6tables -I INPUT -i sit+ -p tep -syn -j DROP

Block incoming TCP coımection requests to hosts behind this router

# ip6tables -I FORWARD -i sit+ -p tep --syn -j DROP

Perhaps the rules have to be placed below others, but that is wort you have to think

about it.Best way is to create a script and execute rules in a specified way. Protect

against incoming UDP connection requests (ALSO RECOMMENDED!), like

mentioned on my firewall information it's possible to control the ports on outgoing

UDP/TCP sessions. So if all of your local IPv6 systems are use local ports e.g. from

32768 to 60999 you are able to filter UDP coımections also

(until connection tracking works) like; Block incoming UDP packets which cannot be

responses of outgoing requests of this host

# ip6tables -I INPUT -i sit+ -p udp ! -dport 32768:60999 -j DROP

Block incoming UDP packets which cannot be responses of forwarded requests of hosts

behind this router
lp6tables -I FORWARD -i. sit+ -p udp ! -dport 32768:60999 -j DROP

11.1.3.3.Demoııstratioıı example

Following lines show a more sophisticated setup as an example. Happy netfilterô rulesct

creation ....

83



# ip6tables -n -v -L
Chain INPUT (policy DROP O packets.O bytes)

pkts bytes target prot opt in out source destination

O O extlN all sit+ * ::/0 ::/0

4 384 intlN all ethO * ::/0 ::/0
O O ACCEPT all** ::1/128 ::1/128

O O ACCEPT all lo* ::/0 ::/0

O O LOG all** ::/0 ::/0
log flags O level 7 prefix INPUT-default:

O O DROP all** ::/0 ::/0
chain FORWARD(policyDROP O packets.O bytes)

pkts bytes target prot opt in out source destination

O O int2ext all ethO sit+ ::/0 ::/0

O O ext2int all sit+ etlıO ::/0 ::/0

O O LOG all * * : :/0 : :/0
LOG flags O level 7 prefix 'FORNARO-default:'

O O DROP all * * : :/0 : :/0
Chain OUTPUT (policy DROP O packets.O bytes)

pkts bytes target prot opt in out source destination

O O extOUT all* sit+ ::/0 ::/0

4 384 intOUT all* ethO ::/0 ::/0

O O ACCEPTall**:: 1/128 :: 1/128

O O ACCEPT all* lo ::/0 ::/0

O O LOG all** ::/0 ::/0
Log flags O level 7 prefix 'OUTPUT-default: '

O O DROP all** ::/0 ::/0

Chain ext2int (1 references)
pkt bytes target prot opt in out source destination

O O ACCEPT icınpv6 * * ::/0 ::/0

O O ACCEPT tep** ::/0 ::/0
tep spts:1:65535dpts:1024:65535flags: !Ox16/0x02

O O LOG all** ::/0 ::/0
LOG flags O level 7 prefix 'ext2int-default: '

O O DROP tep** ::/0 ::/0

O O DROP udp * * ::/0 ::/0

O O DROP all** ::/0 ::/0

Chain extlN (1 references)
pks bytes target prol opt in out source destination

O O ACCEPT tep*' 3ffe:400:100::1/128::/0

tep spts:512:65535dpt:22

84



O O ACCEPT tep*' 3ffe:400:100::/128 ::/0

tep spbs:512:65535dpt:22

O O ACCEPT icmpv6 * * ::/0 ::/0

O O ACCEPT tep** ::/0 ::/0

tep spts: 1 :65535 dpts:1024:65535flags: !Ox16/0x02

O O ACCEPTudp * * ::/0 ::/0

udp spts:1:65535dpts:1024:65535

00 LOG all*" ::/0 ::/0
limit: avg 5/min burst 5 LOG flags O level 7 prefix 'extlN-default: '

O O DROP all** ::/0 ::/0
chain extOUT (1 references)

pkt bytes target pro! opt in out source destination

O O ACCEPT top** ::/0
3ffe:400:100 :l/12Stcp spt:22 dpts:512:65535flags: !Ox16/0x02

O O ACCEPT tep** ::/0
3ffe:400:100::1/128tcpspt:22 dpts:512:65535flags:! Ox16/0x0

O O ACCEPT icmpv6 * * ::/0 ::/0

O O ACCEPTtep** ::/0 :/0

tep spts:1024:65535dpts:1:65535

O O ACCEPT udp * * ::/0 ::/0

udp spts:1024:65535dpts:1:65535

O O LOG all* *::/0 ::/0
LOG flags O level 7 prefix extOUT-default:

O O DROP all** ::/0 ::/0

Chain int2ext (1 references)
pkts bytes target prot opt in out source destination

O O ACCEPT icmpv6 * * ::/0 ::/0

O O ACCEPT tep** ::/0 ::/0

tep spts:1024:65535dpts:1:65535

O O LOG all** ::/0 ::/0

LOG flags O level 7 prefix 'int2ext:'

O O DROP all** ::/0 ::/0

O O LOG all** ::/0 ::/0

LOG flags O level 7 prefix 'int2ext-dafauit'

O O DROP tep** ::/0 ::/0

O O DROP udp **::O ::/0

O O DROP all** ::/0 ::/0

Chain intlN (1 references)
pkts bytes target prot opt in out source destination

O O ACCEPT all** ::/0

85



fe80: :/ffcO::

4 384 ACCEPT all** ::/0 ff02::/16

Chain intOUT (1 references)

pkts bytes target prot opt in out source destination

O O ACCEPT all** ::/0

fe80::/ffc0:

4 384 ACCEPT all** ::/0 ff02::/16

O O LOG all** ::/0 ::/0

LOG flags O level 7 prefix 'intOUT-default:'

O O DROP all** ::/0 ::/0

86



Chapter 12 

Encryption and Authentication 

Unlike in IPv4 encryption and authentication is a mandatory feature of IPv6. This

features are normally implemented using IPsec ( which can be also used by 1Pv4)l3ut

because of the independence of encryption and authentication from the key exchange

protocol here exists currently some interoperability problems regarding this issue.

12.1.Support in kernel 

12.1.1.Sııpport in vanilla Linux kernel

There is an issue about keeping the Linux kernel source free ofexport/import-control

laws regarding encryption code. This is also one case why FreeS/W AN project (1Pv4

only TPsec) isn't still contained in vanilla source.

12.1.2.Support in USAGI keme/

The USAGI project has taken over in July 2001 the IPv6 enabled FrceS/WAN code

from the IABG /IPv6 Project and included in their kernel extensions, but still work in

progress, means that not all IABG features are already working in USAGI extension.

87 



13.1.1.2.Disable BIND named for listening on IPıı6 address

To disable IPv6 for listening, following options are requested to change

options {
# sure other options here, too

listen-on-v6 { none; };

};

13.l.2.IPıı6 enabled Access Control Lists (ACL)

IPv6 enabled ACLs are possible and should be used whenever it's possible. An example

looks like following:

acl internal-net {

127 0.0.1;

1 2.3.0/24;

3ffe:ffff 100::/56;

::1/128;
::ffff:1.2.3.4/123;

};
acl ns-internal-net{

1.2.3.4;

1.2.3.5;

3ffe:ffff:100::4/128;

3ffe:ffff:100::5/128;

};
This ACLs can be used e.g. for queries of clients and transfer zones to secondary name-

servers. This prevents also your caching name-server to be used "from outside using

1Pv6.

options {
# sure other options here, too

listen-on-v6 { none; } ;

allow-query ( internal-net; };

allow-transfer{ ns-iııternal-net; } ;
It's also possible to set the allow-query and allow-transfer option for most of single Lune

definitions too.

13 .1.3. Sending queries with dedicated IPv6 address

This option is not required bul perhaps needed:

89



query-source-v6 address <ipv6address \*> port <porı ]">;

13 .1.4. Per zone defined dedicated IPv6 addresses
It's also possible to define per zone some IPv6 addresses.IPv6 enabled Access Control

Lists (ACL) 6917.1.4.1. Transfer source address Transfer source address is used for

outgoing zone transfers:

transfer-source-v6 <ipv6addrl*> [port port] ;

13 .1.4 .2. Notify source address
Notify source address is used for outgoing notify messages:

notiy-source-v6 <ipv6addr I*> [port port];

13.l.5. Serving IPv6 related DNS data
For IPv6 new types and root zones for reverse lookups are defined:

AAAA and reverse IP6.INT: specified in RFC 18S6 I DNS Extensions to support iı:>

version 6, usable since BIND version 4.9.6
A6, DNAME and reverse IP6.ARPA; specified in RFC 2874/DNS Extensions Lu

Support IPv6 Address Aggregation and Renumbering usable since BIND 9, bul sec also

an information about die current state at dra:ft-ietf-dnsext-ipv6-addresses-00.Lxt

Perhaps filled later more content, for the meantime Lake a look at given RFCs and

AAAA and reverse IP6.INT: 1Pv6 DNS Setup Information A6 DNA!\,1E and reverse

IP6.ARPA: take a look into chapter 4 and 6 of the BIND 9 Administrator

Reference Manual (ARM) distributed which die hind-package or get this hcre.Lılbll)

version 9 AR1ıI (PDF) Because IP6.INT is deprecated (but still in use )a DNS server

which will support IPv6 information has to serve both reverse zones.

13.1.5.1.Cıırreııt best practice

Because there are some troubles around using die new formats current best practice is;

Forward lookup support:

AAAA
A6 without chaining, means prefix length value set to O

Reverse lookup support:

Reverse nibble format for zone ip6.int

90



Reverse nibble format for zone ip6.arpa

Per zone defined dedicated 1Pv6 addresses 70

13. 1 .6.Checking IPv6-enabled connect
To check whether BIND is listening on an IPv6 socket and serving dala ::.ee following

examples.

13.1.6.1. 1Pıı6 connect but denied by ACL
Specifying a dedicated server for the query an IPv6 connect can be forced:

$ host -t aaaa www.6bone.net3ffe:ffff:200: f\01::1

Using domain server:

Name:3ffe:ffff:200:f\01::I

Address:3ffe:ffff:200:fl01:: 1 #53

A1iases:
Host www 6bone.net.notfound: 5(REFUSE0}

Related log entry looks like following:

Jan 3 12:43:32 gate named[12347]:client
3ffe:ffff:200:f101:212:34ff:fel2:3156#32770:

query denied
lf you see such entries in die log check whether requests from this client should be

allowed and perhaps review your ACL configuration.

13.1.6.2. Successful 1Pıı6 connect

A successful JPv6 connect looks like following:

$ host -t aaaa www.6bone.net3ffer:ffff:200:f\Ol::1

using domain server:

Name: 3ffe:ffff:200:fl01::1

Address: 3ffe:ffff:200:fl01::1 #53

Aliases:
www.6bonenet. is an alias for 6bone.net.
ôbone.net.hasAAAA address 3ffe:b00: cl8:1::10

13.2.Internet super daemon (xinetd) 
IPv6 is supported since version around 1.8.9. Always use newest available version. At

least version 2.3.3 must be used, older versions can contain remote exploitable security

holes.Some Linux distribution contain an extra package for the IPv6 enabled xineıd,

91



some others start the IPv6-enabled xinetd if following variable ıs s"'ı:

NETWORKING_IPV6="yes", mostly done by /etc/sysconfıg/network (only valid f01

Red Hat like distributions).
If you enable a built-in service like e.g. daytime by modifying the configuration file in

Ietc/x inetd. d/daytime

like
# diff -u /etc/xinetd.d/daytime.orig/etc/xinetd.d/daytime

--- /etc/xinetd d/daytiine.orig Sun Dec 16 19:00:14 2003

+++ /etc/xinetd.d/daylimeSun Dec 16 19:00:22 2003

@@-10,5 +10,5@@

protocol = tep

user =root:

wait= no

-disable = yes

+disable = no

After restarting the xinetd you should get a positive result like:

# nelstat -lnptu -A inet6 lgrep "xinetd*"
tep O O ::ffff:192.168.1.1:993:::* LISTEN 12345/xinetd-ipv6

tep O O :::13 :::* LISTEN 12345/xinetd-ipv6 <- service

daytime/tep
tep O O ::ffff:192.1681.1:143 :::* LISTEN 123-35/xinetd-ipvt6

Shown example also displays an IMAP and IMAP-SSL [Pv4-only listening xinetd.

Note: An IPv4-only xinetd won't start on an 1Pv6-enabled node and also the 1Pv6-

enabled won't start on an IPv4-only node (will be hopefully fixed in the future).

13.3.Listening on 1Pv6 addresses 

Note: virtual hosts on IPv6 addresses are broken in versions until 2.0.28 (a patch is

available for 2.0.28).

13.3.1.Viıiual host listen on an IPv6 address only

Listen [3ffe:ffff:100::1]:80

<VirtualHost [3ffe:ffff:100: :1 ]:80>
serverName ipv6only.yourdomain.yourtopleveldomain

# ... sure more config lines

<VirtualHost>

92 



13.3.1.1. Virtual Jıost listen 011 {Ill !Pv6 aııd 011 an !Pv4 address

Listen [3ffe ffff:100::2]:80

Listen 1.2.3.4:80
<virtua!Host [3ffe:ffff:100::2] :80 1.2.3.4:80>
serverName ipv6andipv4.yourdomain.yourtopleveldomain

# ... sure more confıg lines

</virtua!Host>

This should result after restart in e.g.

# netstat -1 nptu lgrep "httpd2\W*$"
tep O O 1.2.3.4:80 O.O.O.O:* LISTEN 12345/httpd2

tep O O 3ffe:ffff:100::1:80:::* LISTEN 12345/httpd2

tep O O 3ffe:ffff:100::2:80 : : :* LISTEN 12345/httpd2

For simple tests use the telnet example already shown.

13.4.Router Advertisement Daemon (radvd) 
The router advertisement daemon is very useful on a LAN, if clients should be auto

configured. The daemon itself should run a Linux router (not necessary the default IPv4

gateway). You can specify some information and flags which should be contained in the

advertisement.

Common used are Prefix (needed) Lifetime of the prefix

Frequency of sending advertisements (optional)

After a proper configuration the daemon sends advertisements through specified

interfaces and clients are hopefully receive them and auto-magically configure

addresses with received prefix and the default route.

13 .4. 1 .Configuring radvd
13.4.1.1. Simple configuration

Radvd's config file is normally /etc/radvd.conf. An simple example looks like

following:

interface ethO {

AdvsendAdverton ;

MinRtrAdvlnterval 3;

MaxRlrAdvlnterval 10;

prefix 3ffe:ffff:nl00:fl01:/64 {

AdvOnlink on;

93



AdvAutonomous on;

AdvRouterAddr on;

};

};

This results on client side in

# ip -6 addr show ethO
3:ethO: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fastqlen 100

inet6 3ffe:ffff:1 OO:fl01 :2e0:12ff:fe34:1234/64 scope global dynamic

valid_lft 2591992secpreferred_lft604792sec

inet6 fe80::2e0:12ff:fe34:1234/10scope link

Because no lifetime was defined a very high value was used.

13.4.1.2.Special 6to4 configuration 

Version since 0.6.2pl3 support the automatic (re)-generation of the prefix depenuıug on

an IPv4 address of a specified interface. This can be used to distı ıbute advertisements in

a LAN after the 6to4 tunneling has changed. Mostly used behind a dynamic dial-on

demand Linux router. Because of the sure shorter lifetime of such prefix (after each

dial-up, another prefix is valid), the lifetime configured to minimal values:

interface ethO [

AdvsendAdverton ;

MinrtrAdv Interval 3;

MaxrlrAdvlrıterval1 O;

prefix O:O:O:flOl::/64{

advonlink off;

advautonomouson ;

advrouterAddron;

base6to4Interface pppü;

Advpreferredlifetime20 ;

AdvValidlifetime30;

};

};

This results on client side in (assuming, pppO has currently 1.2.3.4 as local IPv-+

address):

# ip -6 addr show ethO
3: elhO: OROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fastqlen 100

inet6 2002:o·ı02:0304:fl01:2e0:12ff:fe34:1234/64 scope global dynamic

valid_lft 22sec preferred_lft 12 sec

94



inel6 fe80::2e:12e:fe4:1234/10 scope Link
Because a small lifetime was defined, such prefix will be thrown away quickly, if no

related advertisement was received.

13.4.2.Debııgging
A program called "radvdump" can help you looking into sent or received

advertisements- Simple to use:

# radvdump
Router advertisementfrom fe80::280:c8ff:feb9:cef9(hoplimit 255)

AdvCurHoplimit:64

AdvManaqedFlaq:off

AdvOtherConfigFlag:off
AdvHomeAgentFlag: off

AdvReachableTime: O

AdvRetransTimer: O
Prefix 2002:0102:0304:fi01::/64

AdvValidlifetime:30
AdvPreferredlifetime:20

Advonlink: off

AdvAutonomous:on

AdvRouterAddr: on

Prefix 3ffe:ffff:1 OO:fi01 ::/64

AdvValidlifetime:2592000

AdvPreferredlifetime:604300

Advonlink: on
AdvAatonomous:on

AdvRouterAddr:on
AdvSourceLLAddress:00 80 12 34 56 78
Output shows you each advertisement package in readable format. You sııould see your

configured values here again, if not, perhaps it's not your radvd which sends the

advertisement...look for another router on the link (and take die LLAd<lress, which is

the MAC address for tracing).

13.5.tcp _ wrapper 
tep_mapper is a library which can help you to protect service against misuse.

13. 5.1.Filtering capabilities
you can use tep_ wrapper for Filtering against source addresses (1Pv4 or IPv6)

95



Filtering against users (requires a running ident daemon on the client)

13.5.2.Which program uses tcp_wrapper
Following are known-Each service which is called by xinetd(if xinetd is compiled using

tep_ wrapper library) sshd (if compiled using tep_ wrapper)

13.5.3.Usage
Tcp_wrapper is controlled by two files name /etc/hosts, allow and /etc/hosts-deny. For

more information see

$ man hosts.all

13.5.3.1.Example [or/etc/hosts.allow 

In this file each service which should be positive filtered (means connects are accepted)

need a line.
Sshd:1.2 3. [3ffe:ffff:100:200::]/64
daytime-stream: 1.2.3. [3ffe:ffff:100:200::]/64

13.5.3.2.Exaınplefor /etc/hosts.deny 

This file contains all negative filter entries and should normally deny the rest using

ALL: ALL
If this node is a more sensible one you can replace the standard line above with this one,

but this can cause a DoS attack (load of mailer and spool directory), if too many

connects were made in short time.

Perhaps a logwatch is better for such issues.

ALL: ALL: spawn (echo "Attempt from %1ı %a to %ct at 'date"

I lee -a /var/log/tep.denylog I mail root@locallıosl)

13 .5 A.Logging

Depending on the entry in the syslog daemon configuration file etc/syslog.conf the

tep_wrapper logs normally into /var/log/secure.

13. 5. 4. 1 .Refused connection

96 



A refused connection via 1Pv4 to an xinetd covered daytime service produces a line like

following

example
Jan 2 20:40:44 gate xinetd-ipv6[12346]:FAIL: daytime-stream libwrap

from=::ffff:1.2.3.4
Jan 2 20:32:06 gate xinetd-ipv6[12346]:FAIL: daytime-stream libwrap

from=3ffe:ffff:100:200: :212:34ff:fel2:3456
A refused connection via IPv4 to an dual-listen sshd produces a line like following

example
Jan 2 20:24:17 gate sshd[12345]: refused connect from (::ffff:1.2.3.4)

jan 2 20:39:33 qate sshd[123451: refused connect

form 3ffe:ffff:I00:200::212:34ff:fel2:3456

(3ffe:ffff:100:200::212:34ff:fel2:3456)

13.5.4.2.Permitted coııııectioıı

A permitted connection via 1Pv4 to an xinetd covered daytime service produces a line

like following

example
Jan 2 20:37:50 gate xinetd-ipv6[12346): START: daytime-streampid=O

from=::ffff:1.2.3.4
jan 2 20:37:56 gale xinetd-ipv6[12346): START: daytime-streampid=O

from=3ffe:ffff:100:200::212:34ff:fel2:3456
A permitted connection via 1Pv4 to an dual-listen sshd produces a line like following

example
Jan 2 20:43:10 gate sshd[21975]: Accepted password for user from ::ffff:12.3.4

port 33391 ssh2
Jan 2 20:42:19 gale sshd[12345] Accepted password for user

from 3ffe:ffff:100:200::212:34ff:fel2:3456port 33380 ssh2.

97 



CONCLUSION 

The field of networking is as old as Computer, and to do networking v«: use various

types of protocols to configure IP addresses . Presently what we use to configure IP

addresses is IPv4 Addressing type which is in use from the begging of the computers

network age. As IPv4 supports 32 bit addressing scheme, which is getting old and out of

space because of the expenditure of internet users. To allow more addressing space lo

the internet the new and better version of IPv4 is the IPv6(lnkrnet protocol version6)

which is supporting 128 bits addressing schemes. So as 1Pv6 is a new version of IPv4

so a was to field of new technollogies are supporting 1Pv6 .

98 



REFERENCES 

Articles, Books, Online Reviews (mixed) 

Getting Connected with 6to4 by Huber Feyrer,06/01/2001

how Long the Aversion to IP Version 6 - Review of META Group, Inc., full access

needs (free )registration at META Group, Inc.

O'reilly Network search for keyword IPv6 results in 29 hits (28. January 2002)

Wireless boosting 1Pv6 by Carolyn Duffy Matsan, 10/23/2000

IPv6, theorie et pratique (french) 2e edition, mars 1999, O'Reilly (??? no newer one

available ???)

ISBN: 2-84177-085-0
Intenetworking IPv6 with Cisco Routers by Silvano Gai, McGrawHill Italia, l 997 13

chapters and appendix A-Dare downloadable as PDF-documents.

Secure and Dynamic Tunnel Broker by Vegar Skaerven Wang, Master of Engineering

Thesis in Computer Science, 2.June 2000, Faculty of Science, Dep.of Computer

Science, University of Tromso, Norway.

Aufbruch in die neue Welt - IPv6 in IPv4 Netzen von Dipl.lng. RalfDoring, TU

Illmenau, 1999
Migration and Co-existence of IPv4 and 1Pv6 in Residential Networks by Pckka

Savola,CSC/FUNET, 2002

Book IPv6 Essentials written by Silvia Hagen, release planned for April 2002

Others 
See following URL for more: SWITCH IPv6 Pilot I References

WWW.1PV6.COM

WWW.FAQ1Pv6.COM

Ipv6-net.org,

WWW.CISCO.COM

\ıVWW.LINUX.COM

Major regional registries 

America: ARlN,ARIN I registration page, ARFN I IPv6 guidelines

EMEA: Ripe NCC, Ripe NCC I registration page. Ripe NCC I IPv6 registration

Asia/Pacific: APN 1 C, APNIC I IPv6 informai.ion

99



Latin America and Caribbea: LACNIC

Affria: AfriNIC

Also a list of major (prefix length 35) allocations per local registry is available here:

Ripe NCC I

1Pv6

allocations.

Tunnel brokers 

Freenet6,Canada

Hurricane Electric, US backbone

Centro Studi e Laboratory Telecomunicazioni, Italy

Wanadoo, Belgium

CERTNET-Nolda, China

Tunnelbroker Leipzig, Germany -Dialup Users with dynamic IP's caıı get a Ii., 1Pv6

IP ...

Internet Initiative Japan, Japan - with IPv6 native line service and 1Pv6 tunneling

Service

XS26 - "Access to Six", Netherland - with POPs in Slovak Republic, Czech Republic,

Netherlands,

Germany and Hungary.

IPng Netherland, Netherland - Intouch. SurfNet, AMS-IX, UUNet,Cistron, RIPE NCC

andAT&T are connected at the AMS-IX. It is possible (there are requirements ... ) to get

an static tunnel.

UNINETT, Norway - Pilot IPv6 Service (for Customers): tunnelbroker & address

allocation NTT Europe, NTT Europe, United Kingdom - IPv6 Trial. 1Pv4 Tunnel and

native IPv6 leased Line connections. POPs are located in London, UK Dusseldorf,

Germany New Jersey, USA (East Coast) Cupertino, USA (West Coast) Tokyo, Japan

ESnet, USA - Energy Sciences Network; Tunnel Registry & Address Lclegation for

directly connected ESnet sites and ESnet collaborators.

6REN, USA - The 6ren initiative is being coordinated by the Energy Sciences Network

(ESnet),the network for the Energy Research program of the OS Dept. of Energy,

located at the University of California's Lawrence Berkeley National Laboratory



See also here for more information and URLs: ipv6-net.org.

NSayer's 6to..J. information

RFC 3068 I An Anycast Prefix for 6to4 Relay Routers

Protocol references

Current IEFT drafts of IP Version 6 Working Group (ipv6)

Network Sorcery I IPv6, Internet Protocol version 6, IPv6 protocol header

SWITCH IPv6 Pilot I References, big list of IPv6 references maintained by Simon

Leinen

Linux related 

Ipv6-HowTo for LUILIX by Peter Bieringer - Germany, and his Bieringcr I 1Pv6 -

software archive

Linux i IPv6 status by Peter Bieringer - Germany

USAGI project - Japan, and their USAGI project - software archive

General 

IPv6.org

6bone

UK lPv6 Resource Centre - UK

.JOIN:JPv6 information - Germany,by the JOIN project team maintaining also Links to

external

WWW pages comprising IPv6/IPng

TIPSTER6 project - Hungary, "Testing Experimental 1Pv6 Technology and Services in

Hungary"

WIDE project - Japan

SWITCH 1Pv6 Pilot - Switzerland

IPv6 Corner of Hubert Feyrer - Germany

Vermicelli Project -Norway

101



1Pv6 Forum - a world-wide consortium of leading Internet vendors. Research &

Education Networks ...

Playground.sun.com /IPv6 Info Page - maintained by Robert Hinden, Nokia

NASA Ames Research Center (old content)

6INIT -IPv6 Internet Initiative -an EU Fifth Framework Project under the 1 ST

Programme

Something missing? Suggestions are welcome!

FCCN (National Foundalion for the Scientific Computation)

Grupo de Pesquisa em 1Pv6 do Brasil

University of Algarve, Portugal

IPv6-MFA

BY Countries 

Australia 

Carl's Australian IPv6 Pages (old content)

Belgium 

TELNET -ıhe Belgian Research Network

Euroneı-one of the biggest ISP's of Belgium ...

Germany 

Complete! IPv6 inforniation, German ISP

IPv6-net-org, German IPv6 forum

France 

Renater -Renater IPv6 Project Page

Italy

Edisontcl-IPv6 Portal of Edisontel

Japan 

Yamaha JPv6 (sorry, all in Japanese native ... )

Korea 

JPv6 Forum Korea - Korean IPv6 Deployment Project

Mexico 

IPv6 Mexico (spain & english version) - IPv6 Project Homepage of The National

Autonomous

University of Mexico (UNAM)

Netherland 

102



SURFnet-SURFnet IPv6 Backbone

STACK, STACK (1Pv6) - Students* computer association of the Eindlıoven University

of Technology, Netherland.

IPng.nl,collaboration between WiseGuys and Intouch.

By operating systems 

Cisco IOS 

Cisco IOS IPv6 Entry Page

Compaq

IPv6 at Compaq - Presentations, White Papers, Documentation ...

Microsoft 

Microsoft Windows 2000 IPv6

MSRIPv6 - Microsoft Research Network - IPv6 Homepage

Getting Started with the Microsoft IPv6 Technology Preview for Windows 2000

103


	Page 1
	Titles
	l!Jll~~t~ 

	Images
	Image 1


	Page 2
	Titles
	ACKNOWLEDGMENT 
	t. 

	Images
	Image 1


	Page 3
	Titles
	Abstract 


	Page 4
	Titles
	Table of Contents 


	Page 5
	Page 6
	Page 7
	Titles
	INTRODUCTION 

	Images
	Image 1


	Page 8
	Titles
	------ 


	Page 9
	Titles
	----- 
	Chapter 1 
	NETWORKING 
	1.1 COMPUTER NETWORK 
	1.1.1 NETWORK HARDWARE 


	Page 10
	Titles
	--· ~ rıo :n .l--···~u~~-· _ ., ı t ~ı ~r~9' l\~h#ılM!ı; 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7


	Page 11
	Titles
	--- - ---- ==== 


	Page 12
	Titles
	------ -- - ---··· 
	ı::ı:r··\t;? I 
	r···· \ J l ···1·· 

	Images
	Image 1
	Image 2


	Page 13
	Page 14
	Images
	Image 1


	Page 15
	Titles
	~- -~ 
	Lüyi\f 4 pm:Jı,r .. ı:A 
	! 
	ı "- ı . )./ I 
	IJ{r;forn il I' .1 ! , .ı. ı ·t ı, ] M ·. 0\: I 
	" '"-; ,, =~ f • ' 
	' 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9


	Page 16
	Page 17
	Titles
	9 

	Images
	Image 1
	Image 2


	Page 18
	Images
	Image 1


	Page 19
	Images
	Image 1
	Image 2


	Page 20
	Images
	Image 1
	Image 2


	Page 21
	Titles
	. c·-··•···-····""'"""J. r"«t.&,Uli.a'ı.ıUf\ t-O!,ct:.ııl c·---:---·:--.:-ı 
	--·--·:·--"·-·· . .. r-- 
	'"""('::'....L 1 s .•. • .. ,.. c .. ··---·---J 
	·r · ·· ---··--·r-· -· 
	·-------·-'"-------. ·------' ~ 
	t l 
	' L~t"J·· ~L0."'~i<l-· {~"''.~-=}· · ·C~~~·•· ı 
	1 L ~-~~).!~~;=~~-~ .. .-[:~ .. ı..:.'.c·~. '-.···.r· .... [~~~~.~.~ .. t-- }- -,{_:·!·~~~ı~-~ı--] b•~ 
	'·-·-~~· . . ~-- _ _. •.. ------·· 

	Images
	Image 1


	Page 1
	Images
	Image 1
	Image 2


	Page 2
	Images
	Image 1


	Page 3
	Titles
	16 

	Images
	Image 1


	Page 4
	Images
	Image 1
	Image 2
	Image 3


	Page 5
	Titles
	ı 8 

	Images
	Image 1
	Image 2


	Page 6
	Titles
	···_·.·.. ··t ·;ı·: •. ·.f;_.; l- 
	' .... ··--·.~· . 
	·l: 
	19 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8


	Page 7
	Images
	Image 1


	Page 8
	Titles
	21 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 9
	Images
	Image 1
	Image 2
	Image 3


	Page 10
	Images
	Image 1


	Page 11
	Titles
	1.2.1 General Ethernet Information 

	Images
	Image 1


	Page 12
	Titles
	{) JTl () o ı·rıo r·r10 -- ' . . . . .. ··. . ' .. 
	-·- ' !,,,,,._, .. "" -·· •.. ~- --·-~~ 
	J I ı iı uı u ıluıe 
	I _J ·l.~ 
	n ~-~~ .. 
	I ,J"""L, 
	I rl 
	~,....H•..--~~~~~..ı.,.--- .. , l ,_l L_. 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8


	Page 13
	Images
	Image 1


	Page 14
	Titles
	l.j PROTOCOLS, SPEED, BANDWIDTH 

	Images
	Image 1
	Image 2


	Page 15
	Titles
	----------------------------------- - 

	Images
	Image 1


	Page 16
	Images
	Image 1


	Page 17
	Images
	Image 1
	Image 2


	Page 18
	Titles
	l.3.4.1 Long code line wrapping signal char 

	Images
	Image 1


	Page 19
	Titles
	1.4 Requirements for using 

	Images
	Image 1


	Page 20
	Titles
	Chapter 2. 
	Basics 
	2.1. What is 1Pv6? 
	2.2. History of 1Pv6 
	2.2.1. Beginning 

	Images
	Image 1
	Image 2
	Image 3


	Page 21
	Images
	Image 1


	Page 22
	Images
	Image 1


	Page 23
	Titles
	2.4. FAQ (Basics) 
	2.4. 1. Why is the name 1Pv6 and not IPv5 as successor for 1Pv4? 
	2.4.2. IPv6 addresses: why such a high number of bits? 
	2.4.3. IPv6 addresses: why so small a number of bits on a new design? 

	Images
	Image 1


	Page 24
	Images
	Image 1
	Image 2


	Page 25
	Titles
	Chap~r3 
	3.1. Addresses without a special prefix 
	3 .1.1. Localhost address 
	3 .1.2. Unspecified address 

	Images
	Image 1


	Page 26
	Titles
	3.2. Network part, also known as prefix 
	3.2.1. Link local address type 

	Images
	Image 1


	Page 27
	Titles
	3 .2.3. Global address type "Aggregatable global unicast" 

	Images
	Image 1


	Page 28
	Titles
	3.2.3. Global address type "Aggregatable global unicast" 15 

	Images
	Image 1


	Page 29
	Titles
	3.2.4. Multicast addresses 

	Images
	Image 1


	Page 30
	Titles
	3 .2.5. Anycası addresses 
	3.3. Address types (host part) 
	3 .3 .1. Automatically computed ( also known as stateless) 
	/ 

	Images
	Image 1


	Page 31
	Titles
	3.3.2. Manually set 
	44 

	Images
	Image 1


	Page 32
	Titles
	3.4. Prefix lengths for routing 
	3 .4.1. Prefix lengths (also known as "netmasks") 
	3.4.2. Matching a route 

	Images
	Image 1


	Page 33
	Titles
	Chapter 4 
	4.1. IPv6-ready kernel 
	4.1. l. Check for IPv6 support in the current running kernel 
	4.1.2. Try to load IPv6 module 

	Images
	Image 1


	Page 34
	Titles
	4.1.3. Compile kernel with IPv6 capabilities 
	4.1.4. IPv6-ready network devices 

	Images
	Image 1


	Page 35
	Titles
	4.2. 1Pv6-ready network configuration tools 
	4.2.1. net-tools package 
	4.2.2. iproute package 

	Images
	Image 1


	Page 36
	Titles
	4.3. 1Pv6-ready test/debug programs 
	4.3. 1. 1Pv6 ping 

	Images
	Image 1


	Page 1
	Titles
	4.3 .2 IPv6 traceroute6 
	4.3 .4. 1Pv6 tcpdump 

	Images
	Image 1


	Page 2
	Titles
	[ı ::, 
	~: 

	Images
	Image 1
	Image 2


	Page 3
	Titles
	4.3.3. IPv6 tracepath6 
	4.4. IPv6-ready programs 
	4.5. 1Pv6-ready client programs (selection) 
	4.5.1. Checking DNS for resolving 1Pv6 addresses 

	Images
	Image 1


	Page 4
	Titles
	4.5.2. IPv6-ready telnet clients 
	4.5.3. TPv6-ready ssh clients 

	Images
	Image 1


	Page 5
	Titles
	4.5.4. IPv6-ready web browsers 
	4.6. IPv6-ready server programs 
	4.7. FAQ (1Pv6-ready system check) 

	Images
	Image 1


	Page 6
	Images
	Image 1


	Page 7
	Titles
	Chapter 5. 
	Configuring interfaces 
	5.1. Different network devices 

	Images
	Image 1


	Page 8
	Titles
	5.2. Bringing interfaces up/down 
	5.2.2. Using "ifconfıg" 

	Images
	Image 1


	Page 9
	Titles
	Chapter 6 
	Configuring 1Pv6 addresses 
	6.1. Displaying existing IPv6 addresses 
	6.1.1. Using "ip" 
	6.1.2.Using"ifconfig" 

	Images
	Image 1


	Page 10
	Titles
	6.2. Add an IPv6 address 
	6.2.1. Using "ip" 
	6.2.2. Using "ifconfıg" 
	6.3. Removing an 1Pv6 address 
	6.3.l. Using "ip" 

	Images
	Image 1


	Page 11
	Titles
	6.3.2. Using "ifconfig" 

	Images
	Image 1


	Page 12
	Titles
	Chapter 7 
	Configuring normal 1Pv6 routes 
	7.1. Displaying existing 1Pv6 routes 
	7. 1 .1. Using "IP" 
	7 .1.2. Using "route" 

	Images
	Image 1


	Page 13
	Titles
	7.2. Add an 1Pv6 route through a gateway 
	7.2. 1. Using "ip" 
	7.2.2. Using "route" 
	7.3. Removing an 1Pv6 route through a gateway 
	7.3.l. Using "ip" 

	Images
	Image 1


	Page 14
	Titles
	7.4. Add an 1Pv6 route through an interface 
	7.4. l. Using "ip" 
	7.4.2. Using "route" 
	7 .5. Removing an 1Pv6 route through an interface 
	7.5.2. Using "route" 

	Images
	Image 1


	Page 15
	Titles
	7.6. FAQ for 1Pv6 routes 
	7.6.1. Support of an IPv6 default route 

	Images
	Image 1


	Page 16
	Titles
	Chapter 8. 
	Configuring IPv6-iıı-IPv4 tunnels 
	8.1. Types of tunnels 
	8.1.1. Static point-to-point tunneling: 6bone 
	8.1.2. Automatically tunneling 
	8.1.3. 6to4-Tunneling 

	Images
	Image 1


	Page 17
	Images
	Image 1


	Page 18
	Titles
	8.2. Displaying existing tunnels 
	8.2.2. Using "route" 
	8.3. Setup of point-to-point tunnel 
	8.3.1. Add point-to-point tunnels 

	Images
	Image 1


	Page 19
	Images
	Image 1


	Page 20
	Titles
	8.3.2. Removing point-to-point tunnels 

	Images
	Image 1


	Page 21
	Titles
	8.3.3. Numbered point-to-point tunnels 
	8.4. Setup of 6to4 tunnels 
	8 .4 .1. Add a 6to4 tunnel 

	Images
	Image 1


	Page 22
	Titles
	8.4.2. Remove a 6to4 tunnel 

	Images
	Image 1


	Page 23
	Images
	Image 1


	Page 24
	Titles
	Chapter 9. 
	Network debugging 
	9.1. Server socket binding 
	9 .1.1. Using "netstat" for server socket binding check 

	Images
	Image 1


	Page 25
	Titles
	74 

	Images
	Image 1


	Page 26
	Titles
	9.2.2. Neighbor discovery 
	9 .2.1 . Router discovery 
	9.2 Examples for tcpdump packet dumps 

	Images
	Image 1


	Page 1
	Images
	Image 1


	Page 2
	Titles
	Chapter 10 
	Support for persistent 1Pv6 
	10.1. Red Hat Linux and "clones" 
	10.1. l. Test for IPv6 support of network configuration scripts 

	Images
	Image 1


	Page 3
	Titles
	10.1.2. Short hint for enabling IPv6 on current RHL 7.1,7.2, ... 
	10.2.SuSELinux 

	Images
	Image 1


	Page 4
	Titles
	Chapter 11 
	Firewalling and security issues 
	11.1.Firewalling 
	11.1. l.Firewalling using netfilter6 

	Images
	Image 1


	Page 5
	Images
	Image 1


	Page 6
	Titles
	11. l.3.Usage 

	Images
	Image 1


	Page 7
	Images
	Image 1


	Page 8
	Images
	Image 1


	Page 9
	Images
	Image 1


	Page 1
	Images
	Image 1


	Page 2
	Images
	Image 1


	Page 3
	Titles
	Chapter 12 
	Encryption and Authentication 
	12.1.Support in kernel 
	12.1.1.Sııpport in vanilla Linux kernel 

	Images
	Image 1


	Page 4
	Titles
	13 .1.3. Sending queries with dedicated IPv6 address 

	Images
	Image 1
	Image 2


	Page 5
	Images
	Image 1


	Page 6
	Titles
	13. 1 .6.Checking IPv6-enabled connect 
	13.1.6.1. 1Pıı6 connect but denied by ACL 
	13.1.6.2. Successful 1Pıı6 connect 
	13.2.Internet super daemon (xinetd) 

	Images
	Image 1


	Page 7
	Titles
	13.3.Listening on 1Pv6 addresses 
	13.3.1.Viıiual host listen on an IPv6 address only 

	Images
	Image 1


	Page 8
	Titles
	13.4.Router Advertisement Daemon (radvd) 

	Images
	Image 1
	Image 2


	Page 9
	Images
	Image 1


	Page 10
	Titles
	13.5.tcp _ wrapper 

	Images
	Image 1


	Page 11
	Titles
	13.5.3.Usage 
	13 .5 A.Logging 

	Images
	Image 1


	Page 12
	Images
	Image 1
	Image 2


	Page 13
	Titles
	CONCLUSION 

	Images
	Image 1
	Image 2


	Page 14
	Titles
	REFERENCES 

	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 15
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 16
	Titles
	Protocol references 
	Linux related 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 17
	Titles
	102 

	Images
	Image 1
	Image 2


	Page 18
	Images
	Image 1



