
NEAR EAST UNIVERSITY

FACULTY OF ENGINEERING

Department of Electrical and Electronic
Engineering

PROGRAMMABLE LOGIC CONTROLLER (PLC)

Graduation Project

Student : RAMAZAN DEMIRSOY (20000431)

Supervisior : Özgür C. Özerdem

Lefkoşa-2005

ACKNOWLEDGMENTS

First I want to thank Mr. Ozgur Cemal Ozerdem to be my advisor.I learned a

lot of things with his helps.When I have any problem he always help me.I asked many

questions about this project and other courses and he always answered my question .I

believe that I will be succesfull in the future with his advises.

I also want to thank my friends in NEU.Serkan,Halil,,Serhat and other

friends.We always have been together for 4 years and will be continious to be together.

Finally I want to thank my familly,especcially my parents and older sister and

brother for their endless support.And also wants to thank my maternal familly.

ABSTRACT

The main objective of this project is learning the PLC structure and working

of PLC programming.
Mechanical parts of this project were prepared before by one student who

graduated from Near East University.But in mechanical parts there were untidy and

broken devices.These all untidy and broken devices required the modification.

First of all for modification broken devices repaired and put on the box.And
·---._

also untidy cabels were placed.In this way I provided the tidy.In addition I put on

the inputs and outputs connector to the box to connection the PLC easly and

practically.
And finally after modification PLC program were prepared which is the

main objective of this project.

11

15

17

19

TABLE OF CONTENTS

ACKKNOWLEDEMENT

ABSTRACT

INTRODUCTION

CHAPTERl

1.1.PLC HISTORY

1 .2.PLC Inside

1 .3 .PLC Operation

1 A.Response Time

1 .4. 1 Response Time Concerns

1 .4.2.Interrupt function.

1 .4.3 PLC Registers

1 .5 Level Application Example

1.5.1 The Program Scan

CHAPTER2

2. 1 DC INPUTS

2.2 AC INPUTS

2.3 TRANSISTOR OUTPUTS

CHAPTER3

3.1 RS-232 Communications (hardware)

3.2 RS-232 Communications (software)

3.3 Using RS-232 with Ladder Logic

CONCLUSION

REFERENCES

APPENDIX

11

ııı

1

2

4

5

5

7

8

10

12

21

24

28

30

31

111

INTRODUCTION

With developing technology day by day control systems are developing as

well.PLCs are the good example for these developed control system.Usually PLCs are

used in the industry rather than other control systems. ,,,-

Before PLCs relay systems were used.In some industries relay system is still

used.However,day by day this systems is leaved.Relay systems and other control

systems require the supplement and develop in time.In addition they causes the new

expenses.It's possible to make program easly in PLC with minimum expences,effort and

time.These features are the most important differences between the PLC and relay

sytem and other control systems.In addition,old programs can be saved in the PLC and

finding faulty controlling, maintanence can make easly and speedly.

Input output number ,memory capacity,type and number of timer and

counter,working speed are very important to choose PLC. PLCs are can be found

compact and modular form.In compact PLC all parts placed in a box including the

power supply,I/0 units,memory,CPU etc.But modular PLCs are manifactured as

separete card.The PLC can be mounted on a rock depending upon the desiret operation.

Nowadays there are many brands of PLc manifactured.these are

Siemens,Mitsubishi,Ornron,Texas etc. Siemens is used commonly in Turkey industry

and also we used Siemens S7 200 in our project.

1

CHAPTERl

1.1. PLC HISTORY · ~
In the late 1960's PLCs were first introduced. The primary reason for designing such a

device was eliminating the large cost involved in replacing the complicated relay based

machine control systems. Bedford Associates (Bedford, MA) proposed something

called a Modular Digital Controller (MODICON) to a major US car manufacturer.

Other companies at the time proposed computer based schemes, one of which was

based upon the PDP-8. The MODICON 084 brought the world's first PLC into

commercial production.
When production requirements changed so did the control system. This becomes very

expensive when the change is frequent. Since relays are mechanical devices they also

have a limited lifetime which required strict adhesion to maintenance schedules.

Troubleshooting was also quite tedious when so many relays are involved. Now picture

a machine control panel that included many, possibly hundreds or thousands, of

individual relays. The size could be mind boggling. How about the complicated initial

wiring of so many individual devices! These relays would be individually wired

together in a manner that would yield the desired outcome.

These "new controllers" also had to be easily programmed by maintenance and plant

engineers. The lifetime had to be long and programming changes easily performed.

They also had to survive the harsh industrial environment. The answers were to use a

programming technique most people were already familiar with and replace mechanical

parts with solid-state ones.
In the mid70's the dominant PLC technologies were sequencer state-machines and the

bit-slice based CPU. The AMD 2901 and 2903 were quite popular in Modicon and A-B

PLCs. Conventional microprocessors lacked the power to quickly solve PLC logic in all

but the smallest PLCs. As conventional microprocessors evolved, larger and larger

PLCs were being based upon them. However, even today some are still based upon the

2903. (ref A-B's PLC-3) Modicon has yet to build a faster PLC than their 984A/B/X

which was based upon the 2901.
Communications abilities began to appear in approximately 1973. The first such system

was Modicon's Modbus. The PLC could now talk to other PLCs and they could be far

away from the actual machine they were controlling. They could also now be used to

send and receive varying voltages to allow them to enter the analog world.

Unfortunately, the lack of standardization coupled with continually changing
I

technology has made PLC communications a nightmare of incompatible protocols and

physical networks.

The 80's saw an attempt to standardize communications with General Motor's

manufacturing automation protocol(MAP). It was also a time for reducing the size of

the PLC and making them software programmable through symbolic programming on

personal computers instead of dedicated programming terminals or handheld

programmers. Today the world's smallest PLC is about the size of a single control relay!

The 90's have seen a gradual reduction in the introduction of new protocols, and the

modernization of the physical layers of some of the more popular protocols that

survived the 1980's. The latest standard (IEC 1131-3) has tried to merge PLC

programming languages under one international standard. We now have PLCs that are

programmable in function block diagrams, instruction lists, C and structured text all at

the same time! PC's are also being used to replace PLCs in some applications. The

original company who commissioned the MODICON 084 has actually switched to a PC

based control system.

1.2. PLC Inside

The PLC mainly consists of a CPU, memory areas, and appropriate circuits to receive

input/output data. We can actually consider the PLC to be a box full of hundreds or

thousands of separate relays, counters, timers and data storage locations. Do these

counters, timers, etc. really exist? No, they don't "physically" exist but rather they are

simulated and can be considered software counters, timers, etc. These internal relays are

simulated through bit locations in registers. (more on that later)

2

I

İnput

Circuit
CPU ~ıcouıılers II Output I

~ Relays

•••. I lntema EJ~
Utility Timers 8?819Relı,ys lorage

Memory

Output
Circuit

What does each part do?

INPUT RELAYS-(contacts)These are connected to the outside world. They physically

exist and receive signals from switches, sensors, etc. Typically they are not relays but

rather they are transistors.
INTERNAL UTILITY RELAYS-(contacts) These do not receive signals from the

outside world nor do they physically exist. They are simulated relays and are what

enables a PLC to eliminate external relays. There are also some special relays that are

dedicated to performing only one task. Some are always on while some are always off.

Some are on only once during power-on and are typically used for initializing data that

was stored.
COUNTERS-These again do not physically exist. They are simulated counters and they
can be programmed to count pulses. Typically these counters can count up, down or
both up and down. Since they are simulated they are limited in their counting speed.
Some manufacturers also include high-speed counters that are hardware based. We can

think of these as physically existing. Most times these counters can count up, down or
up and down.

TIMERS-These also do not physically exist. They come in many varieties and

increments. The most common type is an on-delay type. Others include off-delay and
both retentive and nonretentive types. Increments vary from 1 ms through 1 s.

3

\
OUTPUT RELAYS-(coils)These are connected to the outside world. They physically

exist and send on/off signals to solenoids, lights, etc. They can be transistors, relays, or

triacs depending upon the model chosen.
DATA STORAGE-Typically there are registers assigned to simply store data. They are

usually used as temporary storage for math or data manipulation. They can also

typically be used to store data when power is removed from the PLC. Upon power-up

they will still have the same contents as before power was removed.

1.3. PLC Operation

A PLC works by continually scanning a program. We can think of this scan

cycle as consisting of 3 important steps. There are typically more than 3 but we can

focus on the important parts and not worry about the others. Typically the others are

checking the system and updating the current internal counter and timer values.

Figure-1.2.

Step 1-CHECK INPUT STATUS-First the PLC takes a look at each input to

determine if it is on or off. In other words, is the sensor connected to the first input on?

How about the second input? How about the third... It records this data into its memory

to be used during the next step.
Step 2-EXECUTE PROGRAM-Next the PLC executes your program one instruction

at a time. Maybe your program said that if the first input was on then it should turn on

the first output. Since it already knows which inputs are on/off from the previous step it

will be able to decide whether the first output should be turned on based on the state of

the first input. It will store the execution results for use later during the next step.

Step 3-UPDATE OUTPUT STATUS-Finally the PLC updates the status ofthe outputs.

4

It updates the outputs based on which inputs were on during the first step and the results

of executing your program during the second step. Based on the example in step 2 it

would now tum on the first output because the first input was on and your program said

to tum on the first output when this condition is true.

After the third step the PLC goes back to step one and repeats the steps continuously.

One scan time is defined as the time it takes to execute the 3 steps listed above.

1.4. Response Time

input response time

3program execution time

output response time

= total response time

fıgure-1.3

1.4.1 Response Time Concerns

Now that we know about response time, here's what it really means to the application.

The PLC can only see an input tum on/off when it's looking. In other words, it only

looks at its inputs during the check input status part of the scan.

I ;J
on

off I I
I I -

1 out I ın1 out I in
I I

I
I

I
prog
exec

I
lout• in ı
I I I

I I

I scan 2

prog
exec

prog
exec

I

I scan 3

.

Iscan 1

Figure.1.4

In the diagram, input 1 is not seen until scan 2. This is because when input 1 turned on,

scan 1 had already finished looking at the inputs.

Input 2 is not seen until scan 3. This is also because when the input turned on scan 2 had

5

already finished looking at the inputs.

Input 3 is never seen. This is because when scan 3 was looking at the inputs, signal 3

was not on yet. It turns off before scan 4 looks at the inputs. Therefore signal 3 is never

seen by the PLC.

I I
. .L

I I 1

prog ı I
~ ıexecı I
I I - I I t' - Iout ın I ou ı ın 1I I I I

ı 1 input+ 1 scan ı
I

Figure-1.5

To avoid this we say that the input should be on for at least 1 input delay time + one

scan time.

But what if it was not possible for the input to be on this long? Then the PLC doesn't see

the input tum on. Therefore it becomes a paper weight! Not true... of course there must

be a way to get around this. Actually there are 2 ways.

Pulse stretch function. This function extends the length of the input signal until the

PLC looks at the inputs during the next scan. (i.e. it stretches the duration of the pulse.)

6

pulse strech

I scan 'I

n I I

I I
I I
I Iout ı in

prog I

I
eııec out 1 ın

Figure-1.6

1.4.2 Interrupt function.
This function interrupts the scan to process a special routine that you have

written. İ.e. As soon as the input turns on, regardless of where the scan currently is, the

PLC immediately stops what its doing and executes an interrupt routine. (A routine can

be thought of as a mini program outside of the main program.) After its done executing

the interrupt routine, it goes back to the point it left off at and continues on with the

normal scan process.

interrupt

I I . I I

1 out I ın I prog
1 out I in

I eııec II I I I

'
I Iscan

Figure 1.7

Now let's consider the longest time for an output to actually tum on. Let's assume that

when a switch turns on we need to tum on a load connected to the PLC output. The

diagram below shows the longest delay (worst case because the input is not seen until

scan 2) for the output to tum on after the input has turned on.. .

7

END

The maximum delay is thus 2 scan cycles - 1 input delay time.

on

I INPUT : I I OUTPUT
I

I I Ioff I I I I
ı out : in I :~:~; out I in ı I out I in 1 :~:~ I out]
I I I I I I I I I I

I I I Iı scan 1 I scan 2 I
Figure-1.8

1.4.3 PLC Registers

We'll now take the previous example and change switch 2 (SW2) to a normally

closed symbol (load bar instruction). SWI will be physically OFF and SW2 will be

physically ON initially. The ladder diagram now looks like

INPUTS
0000 0001

OUTPUT
0500

S\ı/1 S\ı/2 COIL

Figure 1.9

Notice also that we now gave each symbol (or instruction) an address. This address sets

aside a certain storage area in the PLCs data files so that the status of the instruction (i.e.

true/false) can be stored. Many PLCs use 16 slot or bit storage locations. In the example

above we are using two different storage locations or registers.

8

I REGISTEROO

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

I 1 o
REGISTER05

15 14 13 12 11 10 09 08 07 06 05 04 03 02 Ol 00

o

Table 1.1

In the tables above we can see that in register 00, bit 00 (i.e. input 0000) was a logic O

and bit Ol (i.e. input 0001) was a logic 1. Register 05 shows that bit 00 (i.e. output

0500) was a logic O. The logic O or 1 indicates whether an instruction is False or True.

*Although most of the items in the register tables above are empty, they should each

contain a O. They were left blank to emphasize the locations we were concerned with.

LOGICAL CONDITION OF SYMBOL
LOGIC BITS LD LOB OUT

Logic O False True False
Logic 1 True False True

Table 1.2

The PLC will only energize an output when all conditions on the rung are TRUE. So,

looking at the table above, we see that in the previous example SWI has to be logic 1

and SW2 must be logic O. Then and ONLY then will the coil be true (i.e. energized). If

any of the instructions on the rung before the output (coil) are false then the output

(coil) will be false (not energized).

Let's now look at a truth table of our previous program to further illustrate this

important point. Our truth table will show ALL possible combinations of the status of

the two inputs.

9

PLC

Inputs Outputs Register Logic Bits

SW1 (LO) SW2(LOB) COIL(OUT) SW1 (LO) SW2(LOB) COIL(OUT)
False True False o o o
False False False o 1 o
True True True 1 o 1
True False False 1 1 o

Table 1.3

Notice from the chart that as the inputs change their states over time, so will the output.

The output is only true (energized) when all preceding instructions on the rung are true.

1.5 Level Application Example

Now that we've seen how registers work, let's process a program like PLCs do to

enhance our understanding of how the program gets scanned.

Let's consider the following application:

We are controlling lubricating oil being dispensed from a tank. This is possible by using

two sensors. We put one near the bottom and one near the top, as shown in the picture

below

high level

low level

fill motor

Figure 1.10 Dispensing oil from a tank

Here, we want the fill motor to pump lubricating oil into the tank until the high level

sensor turns on. At that point we want to turn off the motor until the level falls below

the low level sensor. Then we should turn on the fill motor and repeat the process.

Here we have a need for 3 I/O (i.e. Inputs/Outputs). 2 are inputs (the sensors) and 1 is an

10

output (the fill motor). Both of our inputs will be NC (normally closed) fiber-optic level

sensors. When they are NOT immersed in liquid they will be ON. When they are

immersed in liquid they will be OFF.

We will give each input and output device an address. This lets the PLC know where

they are physically connected. The addresses are shown in the following tables:

Inputs Address Output Address Internal Utilitv Relay

Low 0000 Motor 0500 1000
High 0001

Table 1.4

Below is what the ladder diagram will actually look like. Notice that we are using an

internal utility relay in this example. You can use the contacts of these relays as many

times as required. Here they are used twice to simulate a relay with 2 sets of contacts.

Remember, these relays DO NOT physically exist in the PLC but rather they are bits in

a register that you can use to SIMULATE a relay.

0000 0001 1000

1000

END

Figure 1.11

We should always remember that the most common reason for using PLCs in our

applications is for replacing real-world relays. The internal utility relays make this

action possible. It's impossible to indicate how many internal relays are included with

each brand of PLC. Some include 1 OO's while other include 1 OOO's while still others

include lü's of lOOO's! Typically, PLC size (not physical size but rather I/O size) is the

deciding factor. If we are using a micro-PLC with a few I/O we don't need many

internal relays. If however, we are using a large PLC with lOO's or lOOO's of 110 we'll

11

certainly need many more internal relays.

If ever there is a question as to whether or not the manufacturer supplies enough internal

relays, consult their specification sheets. In all but the largest of large applications, the

supplied amount should be MORE than enough.

1.5.1 The Program Scan

0000 0001 1000

1000

END

Figure 1.12

Let's watch what happens in this program scan
Initially the tank is empty. Therefore, input 0000 is TRUE and input 0001 is also

TRUE.

TRUE TRUE TRUE TRUE TRUE TRUE

mr raınr
TRUE TRUE

~
TRUE TRUE

END

Figure 1.13 Figure 1.14

Gradually the tank fills because 500(fill motor) is on.

12

After 100 scans the oil level rises above the low level sensor and it becomes open. (i.e.

FALSE) ~ •. TRUE TRUE

·::~ ram
11 O
TRUE

Figure 1.15

Notice that even when the low level sensor is false there is still a path of true logic from

left to right. This is why we used an internal relay. Relay 1000 is latching the output

(500) on. It will stay this way until there is no true logic path from left to right.(i.e.

when 0001 becomes false)
After 1000 scans the oil level rises above the high level sensor at it also becomes open

(i.e. false)

FALSE FALSE FALSE FALSE FALSE FALSE

raını ·~·tr
FALSE FALSE

~
FALSE FALSE

END END

figure 1.16 figure 1.17

Since there is no more true logic path, output 500 is no longer energized (true) and

therefore the motor turns off.

13

After 1050 scans the oil level falls below the high level sensor and it will become true

agaın.
'

FALSE TRUE FALSE

m•r
FALSE

il C
FALSE

I
END

figure 1.18

Notice that even though the high level sensor became true there still is NO continuous

true logic path and therefore coil 1000 remains false!

After 2000 scans the oil level falls below the low level sensor and it will also become

true again. At this point the logic will appear the same as SCAN 1 above and the logic

will repeat as illustrated above.

14

CHAPTER2

2.1 DC INPUTS

Let's now take a look at how the input circuits of a PLC work. This will give us a better

understanding of how we should wire them up.

Typically, DC input modules are available that will work with 5, 12,24, and 48 volts.

We'll first look at how the de inputs work. DC input modules allow us to connect either

PNP (sourcing) or NPN (sinking) transistor type devices to them. If we are using a

regular switch (i.e. toggle or pushbutton,etc.) we typically don't have to worry about

whether we wire it as NPN or PNP. We should note that most PLCs won't let us mix

NPN and PNP devices on the same module. When we are using a sensor (photoeye,

proximity sensor, etc.) we do, however, have to worry about its output configuration.

The difference between the two types is whether the load (in our case, the PLC is the

load) is switched to ground or positive voltage. An NPN type sensor has the load

switched to ground whereas a PNP device has the load switched to positive voltage.

Below is what the outputs look like for NPN and PNP sensors.

NPN(SINKING)SENSOR

TO PLCINPUT

I -KıJ"SENSOR
OUTPUT
CIRCUITI 1-ı

GROUND(OV)

Figure 2.1

On the NPN sensor we connect one output to the PLCs input and the other output to the

power supply ground. If the sensor is not powered from the same supply as the PLC, we

should connect both grounds together. Engineers will say that PNP is better (i.e. safer)

because the load is switched to ground.

On the PNP sensor we connect one output to positive voltage and the other output to the

PLCs input. If the sensor is not powered from the same supply as the PLC, we should

connect both V+'s together. PNP sensors are most commonly used in Europe.

15

PNP(SOURCING)SENSOR

TO POSITIVE V+

-----f
SENSOR-KOUTPUT
cmcurr

I ı-ı..
TO PLC INPUT

Figure 2.2

Inside the sensor, the transistor is just acting as a switch. The sensors internal circuit

tells the output transistor to tum on when a target is present. The transistor then closes

the circuit between the 2 connections shown above. (V+ and PLC input).

COMMON INPUTOOOO INPUTOOOl

dC'dh I INTERNAL cmcurr I

Figure 2.3

The only things accessible to the user are the terminals labeled COMMON, INPUT

0000, INPUT 0001, INPUTxxxx... The common terminal either gets connected to V+
or ground. Where its connected depends upon the type of sensor used. When using an

NPN sensor this terminal is connected to V+. When using a PNP sensor this terminal is

connected to OV (ground).

A common switch (i.e. limit switch, pushbutton, toggle, etc.) would be connected to the

inputs in a similar fashion. One side of the switch would be connected directly to V+.

The other end goes to the PLC input terminal. This assumes the common terminal is

connected to OV (ground). If the common is connected to V+ then simply connect one

16

end of the switch to OV (ground) and the other end to the PLC input terminal.

The optocouplers are used to isolate the PLCs internal circuit from the inputs. This

eliminates the chance of any electrical noise entering the internal circuitry. They work

by converting the electrical input signal to light and then by converting the light back to

an electrical signal to be processed by the internal circuit.

2.2 AC INPUTS

Now that we understand how de inputs work, let's take a close look at ac inputs. An ac

voltage is nonpolarized. Typically, AC input modules are available that will work with

24, 48, 11 O, and 220 volts.

AC input modules are less common these days than de input modules. The reason being

that today's sensors typically have transistor outputs. A transistor will not work with an

ac voltage. Most commonly,the ac voltage is being switched through a limit switch or

other switch type. If your applicatipn is using a sensor it probably is operating on a de

voltage.

~~J~jo~ ın

Ii!; ._ ...= I I~=u
PLC

Figure 2.4

We typically connect an ac device to our input module as shown above. Commonly the

ac "hot" wire is connected to the switch while the "neutral" goes to the PLC common.

The ac ground (3rd wire where applicable) should be connected to the frame ground

terminal of the PLC.(not shown) As is true with de, ac connections are typically color

coded so that the individual wiring the device knows which wire is which. This coding

varies from country to country but in the US is commonly white (neutral), black (hot)

and green (3rd wire ground when applicable). Outside the US it's commonly coded as

17

brown (hot), blue (neutral) and green with a yellow stripe (3rd wire ground where

applicable).

The PLCs ac input module circuit typically looks like this:

COMMON INPUTOOOO

INTERNAL CIRCUIT

Figure 2.5

The only things accessible to the user are the terminals labeled COMMON, INPUT

0000, INPUTxxxx... The common terminal gets connected to the neutral wire.

A common switch (i.e. limit switch, pushbutton, toggle, etc.) would be connected to the

input terminals directly. One side of the switch would be connected directly to INPUT

XXX. The other end goes to the ac hot wire. This assumes the common terminal is

connected to neutral. Always check the manufacturers specifications before wiring, to

be sure AND SAFE.

The optocouplers are used to isolate the PLCs internal circuit from the inputs. This

eliminates the chance of any electrical noise entering the internal circuitry. They work

by converting the electrical input signal to light and then by converting the light back to

an electrical signal to be processed by the internal circuit.

One last note, typically an ac input takes longer than a de input for the PLC to see. In

most cases it doesn't matter to the programmer because an ac input device is typically a

mechanical switch and mechanical devices are slow. It's quite common for a PLC to

require that the input be on for 25 or more milliseconds before it's seen. This delay is

required because of the filtering, which is needed by the PLC internal circuit.

18

2.3 Transistor Outputs

The next type of output we should learn about is our transistor type outputs. It is important

to note that a transistor can only switch a de current. For this reason it cannot be used with

an AC voltage.

We should also keep in mind that as we saw before with the input circuits, there are

generally more than one type of transistor available. Typically a PLC will have either NPN

or PNP type outputs. The physical type of transistor used also varies from manufacturer to

manufacturer. Some of the common types available are BJT and MOSFET. A BJT type

(Bipolar Junction Transistor) often has less switching capacity (i.e. it can switch less

current) than a MOS-FET (Metal Oxide Semiconductor- Field Effect Transistor) type. The

BJT also has a slightly faster switching time.

+

z = ...o = =
I

.,. .,.= =
o
u

PLC

Figure 2.6

Shown above is how we typically connect our output device to the transistor output. Please

note that this is an NPN type transistor. If it were a PNP type, the common terminal would

most likely be connected to V+ and V- would connect to one end of our load. Note that

since this is a DC type output we must always observe proper polarity for the output. One

end of the load is connected directly to V+ as shown above.

Let's take a moment and see what happens inside the output circuit. Shown below is a

typical output circuit diagram for an NPN type output.

19

etc
-------ı-1'"'10 0500

-----------1C COM

Figure 2.7

Notice that as we saw with the transistor type inputs, there is a photocoupler isolating the

"real world' from the internal circuit. When the ladder diagram calls for it, the internal
-circuit turns on the photocoupler by applying a small voltage to the LED side of the

photocoupler. This makes the LED emit light and the receiving part of the photocoupler

will see it and allow current to flow. This small current will tum on the base of the output

transistor connected to output 0500. Therefore, whatever is connected between COM and

0500 will tum on. When the ladder tells 0500 to tum off, the LED will stop emitting light

and hence the output transistor connected between 0500 and COM will tum off. One other

important thing to note is that a transistor typically cannot switch as large a load as a relay.

Check the manufacturers specifications to find the largest load it can safely switch. If the

load current you need to switch exceeds the specificationof the output, you can connect the

PLC output to an external relay. Then connect the relay to the large load. You may be

thinking, "why not just use a relay in the first place"? The answer is because a relay is not

always the correct choice for every output. A transistor gives you the opportunity to use

external relayswhen and only when necessary.

In summary, a transistor is fast, switches a small current, has a long lifetime and works with

de only. Whereas a relay is slow, can switch a large current, has a shorter lifetime and

works with ac or de.

20

1,

CHAPTER3

COMMUNICATION

3.1 RS-232 Communications (hardware)

RS-232 communications is the most popular method of PLC to external device

communications. Let's tackle it piece by piece to see how simple it can be when we

understand it.

RS-232 is an asynchronous (a marching band must be "in sync" with each other so that

when one steps they all step. They are asynchronous in that they follow the band leader to

keep their timing) communications method. We use a binary system (l's and O's) to

transmit our data in the ASCII format. (American Standard Code for Information

Interchange- pronounced ASS-KEY) This code translates human readable code

(letters/numbers) into "computer readable" code (1 's and O's). Our pies serial port is used

for transmission/reception of the data. It works by sending/receiving a voltage. A positive

voltage is called a MARK and a negative voltage is called a SPACE. Typically, the PLC

works with +/-15volts. The voltage between +/- 3 volts is generally not used and is

considered noise.

There are 2 types ofRS-232 devices. The first is called a DTE device. This means Data

Terminal Equipment and a common example is a computer. The other type iDCE device.

DCE means Data Communications Equipment and a common example is a modem. Your

PLC may be either a DTE or DCE device. Check your documentations

The PLC serial port works by turning some pins on while turning other off. These pins each

are dedicated to a specific purpose. The serial port comes in 2 flavors a 25-pin type and a 9-

pin type. The pins and their purposes are shown below. (This chart assumes your PLC is

DTE device)

21

9-PIN 25-PIN PURPOSE

1 1 frame ground

2 3 receive data (RD)

3 2 transmit data (TO)

4 20 data terminal ready (DTR)

5 7 signal ground

6 6 data set ready (DSR)

7 - 4 request to send (RTS)

8 5 clear to send (CTS)

9 22 ring indicator (RI) *only for modems*

Table 3.1

Each pins purpose in detail:

· frame ground- This pin should be internally connected to the chassis of the device.

· receive data- This pin is where the data from the external device enters the PLC serial port.

· transmit data- This pin is where the data from the PLC serial port leaves the PLC enroute

to the external device.

· data terminal ready- This pin is a master control for the external device. When this pin is 1

the external device will not transmit or receive data.

· signal ground- Since data is sent as + or - voltage, this pin is the ground that is referenced.

· data set ready- Usually external devices have this pin as a permanent O and the PLC

basically uses it to determine that the external device is powered up and ready.

· request to send- This is part of hardware handshaking. When the PLC wants to send data

to the external device it sets this pin to a O. In other words, it sets the pin to a O and

basically says "I want to send you data. Is it ok?" The external device says it's OK to send

data by setting its clear to send pin to O. The PLC then sends the data.

22

I .

. clear to send- This is the other half of hardware handshaking. As noted above, the external

device sets this pin to O when it is ready to receive data from the PLC .

. ring indicator- only used when the PLC is connected to a modem.

What happens when your PLC and external device are both DTE (or both DCE)

devices? They can't talk to each other, that's what happens. The picture below shows why 2

same type devices can't communicate with each other.

DTE DEVICE

2 receive data

3 transmit data

DTE DEVICE

ı • 2 receive data

ı •3 transmit data

Figure 3.1

Notice that in the picture above, the receive data line (pin2) of the first device is connected

to the receive data line of the second device. And the transmit data line (pin3) of the first

device is connected to the transmit data of the second device. Ifs like talking through a

phone with the wires reversed. (i.e. your mouth piece is connected directly to the other

parties mouthpiece and your ear piece is connected directly to the other parties earpiece.)

Obviously, this won't work well!

The solution is to use a null-modem connection as shown below. This is typically done by

using a reverse (null-modem) cable to connect the devices.

!,

DTE DEVICE

2 receive data

3 transmit data

DTE DEVICE

2 receive data

3 transmit data

Figure 3.2

To summarize everything, here's a typical communications session. Both devices are

powered up. the PLC is DTE and the external device is DCE.

The external device turns on DSR which tells the PLC that's it's powered up and "there".

23

The PLC turns on RTS which is like asking the external device "are you ready to receive

some data?" The external device responds by turning on it's CTS which says it's ok to for

the PLC to send data. The PLC sends the data on its TD terminal and the external device

receives it on its RD terminal. Some data is sent and received. After a while, the external

device can't process the data quick enough. So, it turns off its CTS terminal and the PLC

pauses sending data. The external device catches up and then turns its CTS terminal back

on. The PLC again starts sending data on its TD terminal and the external device receives it

on its RD terminal. The PLC runs out of data to send and turns off its RTS terminal. The

external device sits and waits for more data.

3.2 RS-232 Communications (software)

Now that we understand the hardware part of the picture, let's dive right into the software

part. We'll define a few of the common terms.

ASCII is a human-readable to computer-readable translation code. (i.e. each letter/number

is translated to 1 's and O's) It's a 7-bit (a bit is a 1 or a O) code, so we can translate 128

characters. (2A7 is 128) Character sets that use the 81h bit do exist but they are not true

ASCII. Below is an ASCII chart showing its "human-readable" representation. We typically

refer to the characters by using hexadecimal terminology. "O" is 30h, "5" is 35h, "E" is 45h,

etc. ("h" means hexadecimal)

24

. -
Most si znificant bits

o 1 2 3 4 5 6 7
o space o (a), p ' p

1 XON ! 1 A Q a q
2 STX " 2 B R b r
3 ETX XOFF # 3 C s C s
4 $ 4 D T d t
5 NAK % 5 E u e u

Least 6 ACK & 6 F V f V
Sign. 7 ' 7 G w g w
Bits 8 (8 H X h X

9) 9 I y i y

A LF * J z J z
B + ' K [k {
C ' < L \ l I
D CR - = M] m }
E > N I\ n -
F I ? o o

Table 3.2

• Start bit-In RS-232 the first thing we send is called a start bit.This start bit(invented

during WWI by Kleinschmidt) is a synchronizing bit added just before each character

we are sending.This is considered a SPACE or negative voltage or a O.

• Stop bit- The last thing we send is called a stop bit.This stop bit tells us that the last

character was just sent.Thing of it as an end-of-character bit.This is considered a

MARK or positive voltage or a 1 .The start and stop bits are commonly called framing

bits because they surround the character we are sending.

• Parity bit-Since most PLCs/extemal equipment are byte-oriented(8 bits=l byte)it

seems natural to handle data as a byte.Althought ASCII is a 7-bit code it is rarely

transmitted that way.Typically,the s" bit is used as a parity bit for error checking.This

method of error checking gets its name from the math idea of parity.In simple

terms,prity means that all characters will either have an odd number of 1 's or an even

number of l's. .

25

Common forms of parity are None,Even, and Odd.(Mark and Space aren't very

common so I won't discuss them).Consider these examples;

Send "E" (45h or 1000101(binary)).

In parity ofNone,the parity bit is always O so we send 10001010.

In parity of Even we must have an Even number of 1 's in our total character so the

original character currentky has 3 l 's(1000101)therefore our parity bit we will add

must be a 1.(1000101l)now we have an evev number of I's.

In odd paity we need an odd number of I's.Since our original character already has an

odd number of I's (3 is an odd number) our parity bit will be a 0.(10001010)

During transmission, the sender calculates the parity bit and sends it. The receiver

calculates parity for the 7 -bit character and compares the result to the parity bit received. If

the calculated and real parity bits don't match, an error occurred an we act appropriatelyIt's

strange that this parity method is so popular. The reason is because it's only effective half

the time. That is, parity checking can only find errors that effect an odd number of bits. If

the error affected 2 or 4 or 6 bits the method is useless.Typically,errors are caused by noise

which comes in bursts and rarely effects I bit. Block redundancy checks are used in other

communicationmethods to prevent this.

• Baud rate- I'll perpetuate the incorrect meaning since it's most commonly used

incorrectly. Think of baud rate as referring to the number of bits per second that are

being transmitted. So 1200means 1200 bits per second are being sent and 9600 means

9600 bits are being transmitted every second. Common values (speeds) are 1200,2400,

4800, 9600, 19200,and 38400.

• RS232 data format- (baud rate-data bits-parity-stop bits) This is the way the data

format is typically specified.For example, 9600-8-N-l means a baud rate of 9600,

8 data bits, parity of None, and I stop bit.

26

The picture below shows how data leaves the serial port for the character "E" (45h 100

0101b) and Even parity.

Figure 3.3

Another important thing that is sometimes used is called software handshaking (flow

control). Like the hardware handshaking we saw in the previous chapter, software

handshaking is used to make sure both devices are ready to send/receive data. The most

popular "character flow control" is called XON/XOFF. It's very simple to understand.

Simply put, the receiver sends the XOFF character when it wants the transmitter to pause

sending data. When it's ready to receive data again, it sends the transmitter the XON

character. XOFF is sometimes referred to as the hold off character and XON as the release

character. The last thing we should know about is delimiters. A delimiter is simply added to

the end of a message to tell the receiver to process the data it has received. The most

common is the CR or the CR and LF pair. The PLC/external device receives this and knows

to take the data from its buffer (where the data is stored temporarily before being

processed). An LF (line feed) is also sometimes sent with the CR character. If viewed on a

computer screen this would look like what happens on the typewriter when the carriage is

returned and the page moves down a line so you don't type over what you just typed.

Sometimes an STX and ETX pair is used for transmission/reception as well. STX is "start

of text" and ETX is "end of text". The STX is sent before the data and tells the external

device that data is coming. After all the data has been sent, an ETX character is sent.

Finally, we might also come across an ACK/NAK pair. This is rarely used but it

should be noted as well. Essentially, the transmitter sends its data. If the receiver gets it

without error, it sends back an ACK character. If there was an error, the receiver sends back

a NAK character and the transmitter resends the data.

27

3.3 Using RS-232 with Ladder Logic

Now that we understand what RS-232 is/means let's see how to use it with our PLC.

We should start out as always, remembering that a PLC is a PLC is a PLC ... In other words,

understand the theory first and then figure out how our manufacturer of choice "makes it

work". Some manufacturers include RS-232 communication capability in the main

processor. Some use the "programming port" for this. Others require you to purchase a

module to "talk RS-232" with an external device.

To communicate via RS-232 we have to setup a few things. Ask yourself the following

questions:

• Where, in data memory, will we store the data to be sent? Essentially we have to store

the data we will send. Where, in data memory, will we put the data we receive from the

external device?

• How will we tell the PLC when ifs time to send our data (the data we stored in data

memory) out

the serial port?

• How will we know when we have received data from our external device?

If you know the above, then the rest is easy. If you don't know the above, then make

something up and now the rest is easy. Huh??? Simple, pick a memory area to work with

and figure out if we can choose the internal relays to use to send and receive data or if the

PLC has ones that are dedicated to this

purpose.

1. We assign memory locations DMlOO through DM102 to be where we'll put our data before

we send it out the serial port. Many PLCs have dedicated areas of memory for this and only

this purpose.

2. We'll assign internal relay 1000 to be our send relay. In other words, when we tum on 1000

the PLC will send the data in DM100-DM102 out the serial port to our external device.

Note againMany PLCs have dedicated relays (special utility relays) for this and only this

purpose. Ifs great when the manufacturer makes our life easy!

28

We'll send the string "air" out the PLC serial port to an operator interface when our

temp sensor input turns on. This means our oven has become too hot. When the operator

interface receives this string it will displayed an alarm message for the operator to see. Look

back on the ASCII chart and you'll see that "air" is hexadecimal 61, 6C, 72. (a=61, 1=6C,

r=72) We'll write these ASCII characters (in hexadecimal form) into the individual data

memory locations. We'll use DMl00-102. Remember the LDA or MOV instruction? We'll

tum on our send relay (1000) when our temperature sensor (0000) turns on. The ladder is

shown below.

0000
61

LOA t-, J
temp sensor I ıOMlOO ı._J a

STA

DC
LOA rl]

OM101 1--1 I
STA

72 M]LOA

OM102 L____J r
STA

1000

send data

Figure 3.4

Some PLCs may not have dedicated internal relays that send out our data through the RS-

232 port. We may have to assign them manually. Further, some pies will have a special

instruction to tell us where the data is stored and when to send the data. This instruction is

commonly called AWT (ASCII Write) or RS.

Put the data in a memory location and then turn on a relay to send the data.

29

CONCLUSION

The aim of this project is the learning PLC structure and working of PLC

programming.But to see the working of PLC programming we should have devices

which works steady.In this project mechanical were prepared before by an other student

who graduated from NEU.So there were some broken devices and also motos and

electromagnets were not work.Due to these problems first of all mechanical parts

repaired to see PLC working clearly.

After repairing mechanical parts were modified.And finally PLC programme

prepared.But we could not active every step.Because our PLC outputs was not enough

to active.So the program were was seperated.

In the future application using another PLC which have more output and also

usıng extra devices like a sensor program can be developed.

30

REFERENCES...
1. SIEMENS cataloque.

2. Benjamin C. Kuo. Automatic Control Systems.

3. Brogan William L. Modem Control Theory.

4. SIEMENS PLC handbook.

5. www.odevim.com

31

APPENDIX

w L ~ C
~L--..------' ~

-bl
I -C\J~

..-<M
- O!~ ----- ----

ı ~ ;.--..___._~~ I I ~ I I ~ -~ gı (Y)
~---'--4-~ ~ ~ - -[

L~ ı;ı ~ - O'.'.'.

_0 ı......~ D
- - ı--

r--JJ'--'o'----~ o @ ---[D
-"'-~ı _ ::Z:::

-

I -o "'.....-+---"l-----...,l-,-+---~----_J----,,----t-10'~O! ~ r,. .--------+-----~ V - ,....

'--- +I
I

+
'-" '-"

__,,-- ~ ro
~ ~

:;I -~ c5 c5
I.I ~I - ~ S::: S:::
~ 8: ._ ro~ d d
< ~ -- a:::~ - lJ1

I ~ LJ:L..__+ - ~ ~
-~

~ ;-,a-- -- I'-,~ OJ
...J I ~ OJ

I i; ~ ~ ı-- H=
t. u + O'.'.'.

' .ıı ~ ~~ D~ _~r ı--
i~' - n~-rC D
~ 8: ~ ılı
C ~ -~ ~ '--- L
; _JL_ + .__

~~I -gıt;: 8: LI) ~ ,_ _ _,t,___ı
~u ~ I a:::~~ci LJL_ + _.:__ı--

,....
,.... +

I I

3- '-"
(\J "<I".., ~ ~

-"'- n -z5 -z5
"<I" cl, c s:::

: __ ~g '--- d d

I '--- ~~

-:;;
I - - - (") ~ ,----ı~ .--I

! - ~ ~g - -[
'-- - O'.'.'.
'-- rı......~ D

u '-- -l!._J I-
! _J '-- (\J~ "' ---[D

I

I Q_ - -- ~g - L
- -

I - --
I -"''-----------------------------l:__....L..I ~"'-----1--~-a1

ıı ~g -
l ~

Motor 1 (A)-34 (+)

Motor 1 (B)- 35 (-)

Motor 2 (A)- 56 (+)

Motor 2 (B)- 57 (-)

Motor 3 (A)- 62 (+)

Motor 3 (B)- 63 (-)

Contact (1)-7

Contact (2)-2

Contact (3)-3

Contact (4)-4

Contact (5)-5

Contact (6)-6

Groung =O

COLOR CODES

(M1Rl-MlR2)-72 = Ml (up)

(MlR3-MlR4)-73= Ml (down)

(M2Rl-M2R2)- 74=M2 (right)

(M2R3-M2R4)-75=M2 (left)

(M3Rl-M3R2)-76=M3 (right)

(M3R3-M3R4)-77=M3 (left)

green button-42 MlRl-99

red button- 43 M1R2-98

switch--44 M1R3-97

gound =O M1R4-96

electromagnet (1)-22 M2Rl-95

electromagnet (2)-23 M2R2-94

electromagnet (3)-24 M2R3-93

M2R4-92

De suppliers
Elevator motor 1 and straight line Elec.---342(2 pieces)

Straight line motor 2 and 3 ---343 (2 pieces)

Elevator elec.---344 (one pieces)

Straight line elec.---345 (one pieces)

Outputs

74=motor 2 rigth

77=motor 3 left

72 =motor 1 up

76 =motor 3 rigth

75 =motor 2 left

73 =motor 1 down

22 =El

23 =E2

24=E3

Inputs

44=switch

7=Cl

2=C2

3=C3

4=C4

5=C5

6=C6

42 =green button

43 = redbutton

M3Rl-90

M3R2-89

M3R3-88

M3R4-87

El-86

E2-85

E3-84

I O.O

Q o. o

I 0.4 I I 0.5 I COUNTER 1 I O.O 'ı~ı-()/I I II I
Q o. o Q o. o

Q0.0 T 37

~

Q O .2

Q O. O T 37 I O.~ ()

I II I II I \/~

Q O. 2

I O. 1 T 38

~

Q O. 3

I 0.1 I O.O T 38 ()/I I II I
Q O. 3

Q O. 3

COUNTER 1

I O.O

I 0.5

3

Q O. 1

~ o i col~"ı ' [I o.ı' ['ı ~3~)

Q O. 1

Q O. 1ı
T 39

300

Q O. 4

I0.3~)QO.l T 39

I I I/
Q O. 4

Q O. 4 I 0.3 T 40

-\/\ I
300

Q 0.5

Q O .5

COUNTER 2

I 0.2

I 0.5

3

