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ABSTRACT 

There are four major types of search trees. First type is Binary Search Trees. These 

trees provide an asymptotic performance that is comparable to that of skip lists. The 

expected complexity of a search, insert, or delete operation is O(logn), while the worst 

case complexity is 8(11). 

The second type of search trees is A VL Trees. A VL trees perform at most one 

rotation following an insert and O(logn) rotations following a delete. 

The third type of search trees is Red-Black Trees. The run-time performance of these 

trees are slightly slower than A VL trees. red-black trees perform a single rotation 

following an insert or delete, the overall insert or delete time remains O(logn) if we use a 

red-black tree to represent a priority search tree. 

The fourth type of search trees is B-Trees. These are search trees of higher degree. 

For larger dictionaries (called external dictionaries or files) that must reside on a disk, 

we can get improved performance from this type. 

II 
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INTRODUCTION 

Computer programming requires sophisticated tools to cope with the complexity of real 

applications, and only practice with these tools builds skill in their use. Many of the 

algorithms and data structures possess an intrinsic elegance, a simplicity that covers the 

range and power of their applicability. 
1 . 

The program development process requires to represent data in an effective way and 

develop a suitabl61 step-by-step procedure (or algorithm), which can be implemented as a 

computer prograrri. 

The world of data structures has a wide variety of trees. In the present project we 
I 

discuss search trees. It develops tree structures suitable for the representation of a 

dictionary. 

We begin chapter 1 by examining binary search trees. These trees provide an 

asymptotic performance that is comparable to that of skip lists. The expected complexity 

of a search, insert, or delete operation is O(logn), while the worst case complexity is 

0(11). Next two chapters we consider two of the many known varieties of balance trees: 

A VL and red-black trees. When either A VL or red-black trees are used, a search, insert, 

or delete can be performed in logarithmic time (expected and worst case). The actual run­ 

time performance of both structures is similar, with AVL trees generally being slightly 

faster. Both balanced tree structures use "rotations" to maintain balance. A VL trees 

perform at most one rotation following an insert and O(logn) rotations following a delete. 

However, red-black trees perform a single rotation following either an insert or delete. 

This difference is not important in most applications where a rotation takes 0(1) time. It 

does, however, become important in advanced applications where rotation cannot be 

performed in constant ti me. One such app I ication is priority search trees are used to 

represent elements with two-dimensional keys. In this case each key is a pair (x,y). A 

priority search tree is simultaneously a priority queue on y and a search tree on x. When 

rotations are performed in these trees, each has a cost of O(logn). Since red-black trees 

perform a single rotation following an insert or delete, the overall insert or delete time 

remains O(logn) if we use a red-black tree to represent a priority search tree. When we 

use an A VL tree, the time for the delete operation becomes O(logn). 

Ill 



Although AVL and red-black trees provide good performance when the dictionary 

being represented is sufficiently small to fit in our computer's memory, they are quite 

inadequate for larger dictionaries. When the dictionary resides on disk, we need to use 

search trees with a much higher degree and hence a much smaller height. An example of 

such a search tree, the 8-tree, is also considered in the 4111 chapter. 

Three applications of search trees are developed in the applications section. The first 

is the computation of a histogram. The second application is the implementation of the 

best-fit approximation method for the NP-hard bin-packing problem of Section 5.1. 

IV 



CHAPTER 1 

BINARY SEARCH TREES 

1.1.Definition 

A binary search tree is a binary tree that may be empty. A nonempty binary search tree 
' 

satisfies the following properties: 

] .Every element has a key (or value) and no two elements have the same key; therefore, all 

keys are distinct. 

2.The keys (if any) in the left subtree of the root are smaller than the key in the root. 

3.The keys (if any) in the right subtree of the root are larger than the key in the root. 

4.The left and right subtrees of the root are also binary search trees. 

There is some redundancy in this definition. Properties 2,3, and 4 together imply that 

the keys must be distinct. Therefore, property I can be replaced by the following property: 

The root has a key. The preceding definition is, however, clearer than the nonredundant 

version. 

Some binary trees in which the elements have distinct keys appear in Figure 1.1. the 

number inside a node is the element key. The tree of Figure 1.1 (a) is not a binary search 

tree despite the fact that it satisfies properties J, 2, and 3. The right subtree fails to satisfy 

property 4. This subtree is not a binary search tree as its right subtree has a key value (22) 

that is smaller than that in the subtrees' root (25). The binary trees of Figures 1.1 (b) and (c) 

are binary search trees. 

(b) (c) (a) 

Figure 1.1 Binary trees 
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We can remove the requirement that all elements in a binary search tree need distinct 
I 

keys. Now we replac, smaller in property 2 by < and larger in property 3 by 2:; the resulting 

tree is called binary search tree with duplicates. 

An indexed bin~ry search tree is derived from an ordinary binary search tree by 

adding the field Lclt~ize to each tree node. This field gives the number of elements in the 

node's left subtree plus one. Figure I .2 shows two indexed binary search trees. The number 

inside a node is the element key, v-hile that outside is the value of LeftSizc. Notice that 

Lefl'Size also gives the rank of an element with respect to the elements in the subtree. For 

example, in the tree of figure I I .2(a), the elements (in sorted order) in the subtree with root 

20 are 12, 15, 18, 20, 25 and 30. The rank of the root is four (i.e., the element in the root is 

the fourth element in sorted order). In the subtree with root 25, the elements (in sorted 

order) are 25 and 30, so the rank of 25 is one and its LeftSize value is I. 

(a) 

Figure 1.2 Indexed binary search trees 

1.2.The ADTs BSTree and IndexedBSTree 

(b) 

ADT 1.1 gives the abstract data type specification for binary search tree. An indexed binary 

search tree supports all the binary search tree operations. In addition, it supports search and 

deletion by rank. Its abstract data type specification is given in ADT 1.2. The abstract types 

DBSTree (binary search trees with duplicates) and DlndexedBSTree may be specified in a 

similar way. 

AbstractDataType BSTree { 

2 
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Instances ( 

Binary trees, each node has an element with a key field; all keys are distinct; keys in the 

left subtree of any node are smaller than the key in the node; those in the right subtree are 
!~ 

larger. 

Operations 

Create(); create an empty binary search tree 

Search(k,e): return in e the element with key k 

return false if the operation fails, return true if it succeeds 

insert(e): insert element e into the search tree 

Delete(k,e): delete the element with key k and return it in e 

Ascend(): Output all elements in ascending order of key 

} 

ADT I. I Abstract data type specification of a binary search tree 

AbstractDataType BSTree { 

Instances 

Same as for BSTrec except that each node has a Leftxize field. 

Operations 

Create(); create an empty indexed binary search tree 

Search(k,e): return in e the element with key k 

return false if the operation fails, return true if it succeeds 

fndexSearch(k,e): return in e the kth element 

insert(e): insert element e into the search tree 

Delete(k,e): delete the element with key k and return it in e 

Ascend(): Output all elements in ascending order of key 

} 

ADT 1.2 Abstract data type specification of an indexed binary search tree 

1.3.The Class BSTree 

Since the number of elements in a binary search tree as well as its shape changes as 

operations are performed, a binary search tree is represented using the linked 

3 



representation. We can greatly simplify the task of developing the class BSTree if we 

define this class as a derived class of Bin,1ryTt·ee(see Appendix A program A.2) as is clone 

in Program 1.1. Since B'S'Iree is a derived class of Binarylrce, it inherits all members of 1 

BinaryTree. However, it has access only to the public and protected members. To access 

the private member root of BinaryTree, we need to make BS Tree a friend of B inarylree. 

ternplate<class E, class K> 
class BSTree: public BinaryTree<E> { 
public: 

boo! Search(const K& k, E& e),,const; 
BSTree<E,K>& Insert (const L& e) 
BSTree<E,K~>& Delete (const K& k, E& e); 
Void Ascend() { lnOutput();} 

) . 
f' 
Program 1.1 Class definition for binary search trees 

1; 

Notice that the elements of a binary tree can be output in ascending order by invoking the 
1, 

inorder output function lnOutput defined in Section 8.9 for binary trees. This function 
ii 

outputs the elernentS in the left subtree (i.e, smaller elements), then the root element, and 

finally those in the Ight subtree (i.e, larger elements). The time complexity is ®(n) for an 

n-element tree. I 
I 
I 
I 
i 

1.4.Scarching 

Suppose we wish to search for an element with key k. We begin at the root. If the root is 

NULL (i.e, zero), the search key contains no elements and the search is unsuccessful. 

Otherwise, we compare k with the key in the root. Tf k is less than the key in the root, then 

no element in the right subtree can have key value k and only the left subtree is to be 

searched. Lf k is larger than the key in the root, only the right subtree needs to be searched. 

The subtrees may be searched similarly. Program 1.2 gives the code. The time complexity 

is O(h) where h is the height of the tree being searched. 

template<class E, class K> 
bool BSTree<E,K>::Scarch (const K& k, E &e) const 
(// Search for element that matches It 

II pointer p starts at the root and moves through the tree looking for an element with 

4 



//key k 
BinaryTreeNode<E> "p 0= root; 
while (p) // examine p->data 

if (k < p->data) p= p->Left:Child; 
else if (k > p->data) p =, p->Ri/~htChild; 

else(// found element 
e "" p->data; 
return truc.} 

return false; 
} 
Program 1.2 Search a binary search tree 

We can perform an indexed search in an indexed binary search tree in a similar manner. 

Suppose we are looking for the third element in the tree of Figure l .2(a). The LeftSize field 

of the root is 4. So the third element is in the left subtree. The root of the left subtree has 

LeftSize = 2. So the third element is the smallest element in its right subtree. Since the root 

of this right subtree has LeftSize = I, the desired element is located hare. The time 

complexity of an indexed search is also O(h). 

LS.Inserting an Element 

To insert a new element e into a binary search tree, we must verify that its key is different 

from those of existing elements by performing a search for an element with the same key as 

that of e. If the search is unsuccessful, then the element is inserted at the point the search 

terminated. For instance, to insert an element with key 80 into the tree of Figure 1.1 (b), we 

first search for 80. This search terminates unsuccessfully, and the last node examined is the 

one with key 40. Thenew element is inserted as the right child of this node. The resulting 

search tree appea,rs in:rigure l .3(a). Figure I .3(b) shows the result of inserting key 35 into 

the search tree of figufe l.3(a). Program l.3 implements this insert strategy. 

5 
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Figure 1.3 Inserting into a binary search tree 

When inserting into an indexed binary search tree, we use a procedure similar to 

Program 1.3. This time, though, we also need to update Leftxize fields on the path from the 

root to the newly inserted node. Nevertheless, the insertion can be performed in O(h) time 

where h is the height of the search tree. 

1.6.Deleting an Element 

For deletion we consider the three possibilities for the node p that contains the element to 
I . 

be deleted: (I) p is a 11af, (2) p has exactly on,e nonempty subtree, and (3) p has exactly two 

nonempty subtrees. 

Case (I) is handled by discarding the leaf node. To delete 35 from the tree of Figure 

I .3(b), the left-child field of its parent is set to zero and the node discarded. The resulting 

tree appears in Figure 1.3(a). To delete the 80 from this 

template<class E, class K> 
l3STree<E,K>& BSTree<EJ(>::!11sert(co11st E& e) 
{//Insert e if not duplicate. 

BinaryTreeNodc<E> *p = root, /zsearch pointer 
*pp= O; //parent of p 

//find place to insert 
while (p) {// examine p->data 

pp ::c p; 
//move p to a child 
if (e < p->data) p= p->LefrChild: 
else if (e > p->data) p '"" p->RightChild; 

else throw Badlnput(); //duplicate 

6 



//get a node fore and attach to pp 
BinaryTreeNode<E> "r = new BinaryTreeNode<E> (e); 
if (root){// tree not empty 

If (e < pp->ciata) pp->Left:Child :?r; 
else pp->RightCl;iild 0-= r.} 

else// insertion int<J empty tree 
ii 

I 
root ''' r; 

return "this; 
l I 
I I 
Program 1.3 Inserting into a binary search tree 

I 
tree, the right-child field of 40 is set to zero, obtaining the tree of Figure I. l(b), and the 

node containing 80 is discarded. 

Next consider the case when the element to be deleted is in a node p that has only one 

nonempty subtree. If p has no parent(i.e, it is the root), node p is discarded and the root of 

its single subtree becomes the new search tree root. If p has parent pp,then we change the 

pointer from pp so that it points to p's only child and then delete the node p. For instance, if 

we wish to delete the element with key 5 from the tree of Figure l .3(b), we change the left­ 

child field of its parent (i.e, the node containing 30) to point to the node containing the 2. 

Finally, to delete an element in a node that has two nonempty subtrees, we replace this 

element with either the largest element in its left subtree or the smallest element in its right 

subtree. Suppose we wish to delete the element with key 40 from the tree of Figure I .4(a). 

Either the largest element (35) from its left subtree or the smallest (60) from its right 

subtree can replace this element. If we opt for the smallest element in the right subtree, we 

move the element with key 60 to the node from which the 40 was deleted, and the leaf from 

which the 60 is moved is deleted. The resulting tree appears in Figure l .4(b). 

7 



(b) 

(cl) 

Figure 1.4 Deletion from a binary search tree 

Suppose, instead, that when deleting 40 from the search tree of Figure l .4(a), we ·had 

opted for the largest element in the 'eft subtree of 40. This element has key 35 and is in a 

node of degree 1. we move the element into the node that currently contains 40 and the left­ 

child pointer of this node changes to point to the lone child of the node from which the 35 

was moved. The result is shown in Figure I .4(c). 

As another example, consider the deletion of 30 from the tree of Figure I .4(c). We 

may replace this element with either the 5 or 31. if we opt for the 5, then since 5 is 

currently in a node with degree 1, we change the left-child pointer of the parent node to pint 

to the lone child. The result is the tree of Figure I .4(d). If we had opted to replace 30 with 

31, then since 31 is in a leaf, we need merely delete this leaf. 

8 



Notice that the element with smallest key in the right subtree (as well as that with 

largest key in the right subtree) is guaranteed to be in a node with either zero or one 

nonempty subtree. Note also that we carr find the largest element in the left subtree of a 

node by moving to the root of that subtree and then following a sequence of right-child 

pointers until we reach a node whose right-child pointer is 0. Similarly, we can find the 

smallest element in the right subtree of a node by moving to the root of the right subtree 

and then following a sequence of left-child pointers until we reach a node whose left-child 

pointer is 0. 

Program 1.4 implements the deletion strategy outlined above. When deleting from a 

node with two nonempty subtrees, this code always uses the largest element in the left 

subtree as a replacement. The complexity of this code is O(h). We can perform an indexed 

deletion from an indexed binary search tree in the same amount of time using an analogous 

procedure. We first perform an indexed search to locate the element to be deleted. Next we 

delete the element as outlined here and update Left:Size fields on the path from the root to 

the physically deleted node as necessary. 

1.7.The Class DBSTrcc 

The class for the case when the binary search tree is permitted to contain elements that have 

the same key is called DBSTree. We can implement this class by changing the while loop 

of BSTrec::lnsert (Program 1.3) to that shown in Program 1.5. No other changes are 

needed. 

LS.Height of Binary Search Tree 
I 

i 
Unless care is taken, the height of binary search tree with n elements can become as large 

11 

as n. The tree height becomes this large, for instance, when Program 1.3 is used to insert 

elements with keys [I 2, 3, ... , n], in this order, into an initially empty binary search tree. 

As a result, a search, insert, or delete operation on a binary search tree takes O(n) time. This 
I 

time is no better than! the times for these operations using unordered chain. However, we 

can show that when insertions and deletions are made at random using Program 1.3 and 

9 
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1.4, the height of the binary search tree is O(logn) on the average. As a result, the expected 

time for each of the search tree operations is O(logn). 

template<class E, class K> 
BSTree<E,K>& BSTree<E,K>::Delete (const K& k, E& e) 
{// Delete element with key k and put it in e. 

II set p to point to node with key k 
BinayrTreeNode<E> *p = root, //search pointer 

*pp ::0 O; //parent of p 
while (p && p->data !" k) {//move to a child of p 

pp c: p: 
if(k < p->data) p = p->Left:Child; 
else p = p-c-Leftrhild; 
} 

if (!p) throw Badlnput(); //no element with key k 
e =-= p-c-data: //save element to delete 
//restructure tree 
//handle case when p has two children 
if (p->LeftChild && p-c-Rightthild) {//two children 

//convert to zero or one child case 
//find largest element in left subtree of p 
BinaryTreeNocle<E> *s = p->LeftChild, 

*ps = p; //parent of s 
while (s->RigljtChild) {//move to larger clement 

ps = s; :, 
s = s->RightChild;} 

//move largest '1from s to p 
p-c-data = s->dbta; 

If . 

p=s; I 
pp==ps.] I 

//p has at most oq chi Id 
//save child pointpr inc 
BinaryTreeNode,E> "c; 
if (p->Left:Child) c = p->LeftCb{1d; 
else c = p->RightChild; 
//delete p 
if (p == root) root = c; 
else {//is p left or right chi Id of pp? 

if (p == pp->LeftChild) 
pp->LeftChild = c; 

else pp->RightChild = c.} 
delete p; 
return *this; 

10 
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Programl.4 Deleting from a binary search tree 

while (p) { 
pp= p; 
if (e <= p->data) p = p->Left:Child; 
else p =, p->RightChild; 
} 

Program 1.5 New while loop for Program 1.3 to permit duplicates 

11 



CHAPTER2 

AVLTREES 

2.1.Defirtition 

ii 

We can guarantee O(!ogn) performance for each search tree operation by ensuring that the 

search tree height is 11ways O(logn ). Trees with a worst-case height of O(logn) are cal led 
I 

balanced trees. One] of the more popular balanced trees, known as an A VL tree, was 

introduced in 1962 by.Adelson-Velskii and Landis. 

Definition An empty binary is an A VL tree. If T is a nonempty binary tree with T1, and 

Tu as its left and right subtrees, then T is an A YL tree if( 1) T,, and T,1 are A YL trees and 

(2) I h ; - h,1 I :'S I where h,. and h,1 1re the heights of T, and T11, respectively. 

An AVL search tree is a binary search tree that is also an A VL tree. Trees (a) and (b) 

of Figure 1.1 are A VL trees, while tree (c) is not. Tree (a) is not an A YL search tree, as its 

not a binary search tree. Tree (b) is an A VL search tree. The trees of Figure 1.3 are A VL 

search trees. 

An indexed A VL search tree is an indexed binary search tree that is also an A VL 

tree. Both the search trees of Figure 1.2 are indexed A VL searcl! trees. In the remainder of 

this chapter, we shall not consider indexed A VL search trees explicitly. However, the 

techniques we develop carry over in a rather straight forward manner to such trees. 

If we are to use A VL search trees to represent a dictionary and perform each 

dictionary operation in logarithmic time, then we must establish the following properties: 

I .The height of an A VL tree with n ~:lements/nodes is O(logn). 

2.For every value of n, n~O, there exists an A YL tree. (Otherwise, some insertions 

cannot leave behind an A VL tree, as no such tree exists for the current number of 

elernents.) 

3.An n-elernent A VL search tree can be searched in O(height) = O(logn) time. 

-LA new element can be inserted into an n element A VL search tree so that in the result rs 

an n + 1 element A VL tree and such an insertion can be done in O(logn) time. 

12 
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5.An element can be deleted from an n-element A VL search tree so that the result is an 
i 

n - I element A VL tree and such a .reletion can be done in O(logn) time. 

Property 2 follows from property 4, so we shall not show property 2 explicitly. 

Properties I, 2, 3, and 5 are established 111 the following subsections. 

2.2.Height of an A VL Tree 

We shall obtain a bound on the height of an A VL tree that has n nodes in it. Let N1, be the 

minimum number of nodes in an A VL tree of height h. In the worst case the height of one 

of the subtrees is h - 1 , and the height of the other is h - 2. Both these subtrees are also 

A VL trees. Hence 

Notice the similarity between this definition for N1, and the definition of the Fibonacci 

numbers. 

F,, = F,,_1 + F,,_2, 1'~ = 0, and F1 = I 

From Fibonacci number theory we know that F1, ~ <1>1, I ls where cD = (1 +ls) 12. Hence 
N1, ~ <1>"+2 I ls -1. If there are n nodes in the tree, then its height h is at most 

lcg., ( ls (n + I)) - 2 ~ l .44 log , (11 + 2) = O(log n). 

2.3.Representation of an A VL Tree 

A VL trees are normally represented using the linked representation using the linked 

representation scheme for binary trees. However, to facilitate insertion and deletion, a 

balance factor bf is associated with each node. The balance factor bftx) of a node x is 

defined to be 

height of left subtree of x - height of right subtree of x 

From the definition of an A VL tree, it follows that the permissible balance factors are 

-1, 0, and I. Figure 2.1 shows two A VL search trees and the balance factors for each node. 

13 
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The number outside ea.cJ1 node is its balncs tactor 

Figure 2.1 A VL search trees 

2.4.Searching an A VL Search Tree 

To search an A VL search tree, we may use the code of Program l .2 without change. Since 
I 

the height of an A VcL tree with n elements is O(logn}, the search time is O(nlogn). 
ii 

2.5.Inserting int1 an AVL Search Tree 

I 
If we use the strategy of Program 1.3 to insert an element into an A VL search tree, the tree 

following the insertion may no longer be A VL. For instance, when an element with key 32 

is inserted into the A VL tree of Figure 2.1 (b ), the new search tree is the one shown in 

Figure 2.2(a). since this tree contains nodes with balance factors other than -1, 0, and 1, it is 

not an A YL tree. When an insertion into an A VL tree using the strategy of Program 1.3 

results in a search tree that has one or more nodes with balance factors other than -1, 0, and 

I, the resulting search tree is unbalanced. We can restore balance (i.e., make all balance 

factors -I, 0, and I) by shifting some of the subtrees of the unbalanced tree as in Figure 

2.2(b). 
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( a) I rrnnecliatley after inseriion 

Figure 2.2 Sample insertion into an A VL search tree 

Before examining the subtree movement needed to restore balance, let us make some 

observations about the unbalanced tree that results from an insertion. 

I I :In the unbalanced tree the balance factors are limited to -2, -1, 0, 1, and 2. 

12:A node with balance factor 2 had a balance factor I before the insertion. Similarly, 

a node with balance factor -2 had a balance factor - I before the insertion. 

13 :The balance factors of only those nodes on the path from the root to the newly 

inserted node can change as a result of the insertion. 

14:Let A denote the nearest ancestor of the newly inserted node whose balance factor 

is either -2 or 2. (In the case of Figure 2.2(a), the A node is the node with key 40.) 

The balance factor of all nodes on the path from A to the newly inserted node was 

0 prior to the insertion. 

Node A (see 14) may be identified while we are moving down from the root searching 

for the place to insert the new element. From 12 it follows that bf(A) was either -1 or 1 prior 

to the insertion. Let « denote the last node encountered that has such a balance factor. 
I 

When inserting 32 into the A VL tree of Figure 2.1 (b), Xis the node with key 40; when 
' ' I: 

inserting 22, 28, or SQ into the A VL tree of Figure 2.1 (a), Xis the node with key 25; and 
I 

when inserting I 0, I " 16 or 19 into the A VL tree of Figure 2. l(a), there is no node X. 

When node X does not exist, all nodes on the path from the root to the newly inserted 

node have balance fajtor O prior to the insertion. The tree cannot be unbalanced following 

the insertion because kn insertion changes balance factors by -1, 0, or l, and only balance 
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factors on the path from the root 1112;' change. Therefore, if the tree is unbalanced following 

the insertion, X exists. If bj(X) = 0 after the insertion, then the height of the subtree with 

root Xis the same before and after the insertion. For example, if this height was h before 

the insertion and if ~f(X) was I, the-height of its left subtree XL was h-1 and that of its 

right subtree X,1 was h-2 before the insertion must be made in X,1 resulting in an x;1 of 

height h-1 (see Figure 2.3(b )). The height x;1 must increase to h-1 as all balance factors on 

the path from X to the newly inserted code were O prior to the insertion. The height of X 

remains h and the balance factors of the ancestors of X are the same before and after the 

insertion, so the tree is balanced. 

(--~--, 
\_ ) / --~·\ 

// \ 
// \ 

\., 

XR XL 
tr t 

V V AP. xt ..(J. I. 
i .,ll. J~ 

/;-/ /;~.2 lr! lt-! /; r-: 
( a) Before inseriion (b ).After inseriing into X ;: (c).After· msertinq into X 1 

Balance factor of Xis inside the node 
Subtree heights are below subtree names. 

!! ., 

Figure 2.3: Inserting iro an A VL search tree 

The only way the ltree can become unbalanced is if the insertion causes ~f(X) to change 

from -I to -2 or froml l to 2. For the latter case to occur, the insertion must be made in the 
I 

left subtree XL of X[ (see Figure 2.3(c)). Now the height of x;, must become h (as all 
I 

balance factors on the path from Xto the newly inserted node were O prior to the insertion). 

Therefore, the A node referred to in observation 14 is X. 

When the A node has been identified, the imbalance at A can be classified as either an L 

(the newly inserted node is in the left subtree of A) or R type imbalance. This imbalance 

classification may be refined by determining which grandchild of A is on the path to the 

newly inserted node. Notice that such a grandchild exists, as the height of the subtree of A 

that contains the new node must be at least 2 for the balance factor of A to be -2 or 2. With 
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this refinement of the imbalance classification, the imbalance at A is of the types LL (new 

node is in the left subtree of the left subtree of A), LR (new node is in the right subtree of 

the left subtree of A), RR, and RL. 

(a)Before insertion lb)After intserting into BL 

Balance factors are inside nodes. 
Subtree heights are below subtree names 

h h 

(c)After LL rotation 

I 

Figure 2.4 An LL rotation , 

A generic LL typ~ imbalance appears in Figure 2.4. Figure 2.4(a) shows the conditions 

before the insertion, ·~nd Figure 2.4(b) shows the situation following the insertion of an 

element into the left subtree BL of B. The subtree movement needed to restore balance at A 
I 

appears in Figure 2.4(c). B becomes the root of the subtree that A was previously root of, 

B; remains the left subtree of B, A becomes the root of B's right subtree of A, and the right 

subtree of A is unchanged. The balance factors of nodes in B;_ that are on the path from B 

to the newly inserted node change as does the balance factor of A. The remaining balance 

factors are the same as before the rotation. Since the heights of the subtrees of Figures 

2.4(a) and (c) are the same, the balance factors of the ancestors (if any) of this subtree are 

the same as before the insertion. S~ no nodes with a balance factor other than -1, 0, or I 

remain. A single LL rotation has rebalanced the entire tree! You may verify that the 

rebalanced tree is indeed a binary search tree. 

17 
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(a)Before insertion 

(b )./IJ1:er inserting into 
b=O =>bj(B)=bf(A)=O after rotation 
b=I =>bj(B)=O and bf{A)=-1 after rotation 
b=-l=>bf(B)=l and b}(A)=O after rotation 

C C L R 

(c)After LR rotation 

Figure 2.5 An LR rotation 

Figure 2.5 shows a generic LR type imbalance. Since the insertion took place in the 

right subtree of B, this subtree cannot be empty following the insertion; therefore, node C 

exists. However, its subtrees C, and C\ may be empty. The rearrangement of subtrees 

needed to rebalance appears in Figure 2.S(c). The values bj(B) and bj(A) following the 

rearrangement depend on the value, b, of bj(C) just after the insertion but before the 

rearrangement. The figure gives these values as a function of b. The rearranged subtree is 

seen to be a binary search tree. Also, since the heights of the subtrees of Figures 2.S(a) and 

( c) are the same, the balance factors of their ancestors (if any) are the same before and after 

the insertion. So a single LR rotation at A rebalances the entire == 
The cases RR and RL are symmetric to the ones we just seen. The transformations done 

to remedy LL and RR imbalances are often called single rotations, while those done for 

LR and RL imbalances are called double rotations. The transformations for an LR 

imbalance can be viewed as an RR rotation followed by an LL rotation, while that for an 

RL imbalance can be viewed as an LL rotation followed by an RR rotation. 

The steps in the A VL search-tree-insertion algorithm that results from our discussion 

appear in Figure 2.6. These steps can be refined into C++ code that has a complexity of 

O(height) = O(logn). Notice that a single rotation is sufficient to restore balance if the 

insertion causes imbalance. 
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Stepl: Find the place Ito insert the new element by following a path from the root as in a 

search for an element with thi. same key. During this process, keep track of the 

most recently sben node with balance factor -1 or 1. Let this node be A. If an 

element with the same key is found, the insert fails and the remaining steps are not ../ 

performed. 

Step2: If there is no node A, then make another pass from the root, updating balance 
factors. Terminate following this pass. 

Step3: If bf(A) == I and the new node was inserted in the right subtree of A or if 

bf(A) == - I and the insertion took place in the left subtree, then the new balance 

factor of A is zero. In this case update balance factors on the path from A to the 
new node and terminate. 

Step4: Classify the imbalance at A a~d perform the appropriate rotation. Change balance 

Factors as required by the rotation as well as those of nodes on the path from the 
new subtree root to the newly inserted node. 

Figure 2.6 Steps for A VL search tee insertion 

2.6.Deletion from an A VL Search Tree 

To delete an element from an A VL search tree, we proceed as in Program J .4. Let q be the 

parent of the node that was physically deleted. For example, if the element with key 25 is 

deleted from the tree of Figure 2.1 (a), the node containing this element is deleted and the 

right-child pointer from the root diverted to the only child of the deleted node. The parent 

of the deleted node is the root, so q is the root. If instead, the element with key 15 is 

deleted, its spot is used by the element with key 12 and the node previously containing this 

element deleted. Now q is the node that originally contained IS(i.e., the left child of the 

root). Since the balance factors of some ( or all) of the nodes on the path from the root to q 

have changed as a result of the deletion, we retrace this path backwards from q towards the 
root. 
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If the deletion took place from "he left subtree of q, bf(q) decreases by I, and if it took 

place from the right subtree, bf(q) increases by I. We may make the following 

observations. 

DI :1 f the new balance factor of q is 0, its height has decreased by 1, and we need to 

change the balance factor of its parent (if any) and possibly those of its other 

ancestors. 

02: If the new balance factor of q is either -1 or I, its height is the same as before the 

deletion and the balance factors of its ancestors are unchanged. 

03:lfthe new balance factor of q is either -2 or 2, the tree is unbalanced at q. 

Since balance factor changes may propagate up the tree along the path from q to the 

root (see observation D2), it is possible for the balance factor of a node on th is path to 

become -2 or 2. Let A be the first such node on this path. To restore balance at node A, we 

classify the type of imbalance. The imbalance is of type L if the deletion took place from 

A's left subtree. Otherwise, it is of type R. If bj(A) = 2 after the deletion, it must have been 

I before. So A has left subtree with root B. A type R imbalance is sub classified into the 

types RO, RI, and R-1 depending on bf(B). The type R-1, for instance, refers to the case 
I 

when the deletion took place from the right subtree of A and bf(B) = -1. In a similar manner 
,1 

type L imbalances arei sub classified into types LO, LI, and L-1. 

An RO' imbalance at A is rectified by performing the rotation shown in Figure 2.7. 

Notice that the heigh ti of the shown subtree was h+ 2 before the deletion and is h+ 2 after. So 

the balance factors or the remainir.:s nodes on the path to the root are unchanged. As a 

result, the entire tree 11as been rebalanced. 
I 
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(a)Before deletion 
(b )After deleting from A J: 

I 
ri-) B /·---\ / \ 

/ \ 
s, (~"} A 

/ ',._/\ 

h / '\\ 

A' 
}: 

h-1 

(c )After RO rotation 

Figure 2.7 An RO rotation (single rotation) 

Figure 2.8 shows how to handle an RI imbalance. While the pointer changes are the 

same as for an RO imbalance, the new balance factors for A and B are different and the 

height of the subtree following the rotation is now h+ I, which is one less than before the 

deletion. So if A is not the root, the balance factors of some of its ancestors will change and 

further rotations may be necessary. Following an R 1 rotation, we must continue to examine 

nodes on the path to the root. Unlike the case of an insertion, one rotation may not suffice 

to restore balance following a deletion. The number of rotations needed is O(logn). 

(a)Before deletion 

A~ 
/\ ... _.,/,\ j I ,· ·J-, 

/ \ 
./ \ 

/ \ 
B1: 
' I N-, 

(b)JlJter deleting from AR 

B R 
h-1 

A~ 
h-1 

( c )After F l rotation 

11 

Figure 2.8,An RI rotrltion (single rotation) 
·I 
11 

The transformatioh needed when the imbalance is of type R-1 appears in Figure 2.10. 

The bal a nee factors o { A and B fo II owing the rotation depend on the ba I an ce factor b of the 

i 
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right of B. This rotation leaves behind a subtree of height h+ 1, while the subtree height 

prior to the deletion was h+2. So we need to continue on the path to the root. 

LL and Rl rotati6ns are identical; LL and RO rotations differ only in the final balance 

factors of A and B; and LR and R-1 rotations are identical. 
ii 
I 
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CHAPTER3 

Rf:D-BLACK TREE 

3.1.Definition 

A red-black tree is a binary search tree in which every node is colored either red or black. 

The remaining properties satisfied by a red-black tree are best stated in terms of the 

corresponding extended binary tree. We obtain an extended binary tree from a regular 

binary tree by replacing every null pointer with an external node. The additional properties 

are 

RB 1. The root and all external nodes are colored black. 

RB2. No root-to-external-node path has two consecutive red nodes. 

RB3. All root-to-external-node paths have the same number of black nodes. 

An equivalent definition arises from assigning colors to the pointers between a node 

and its children. The pointer from a parentto a black child is black and to a red child is red. 

Additionally, 

RB J ', Pointers from an internal node to an external node are black. 

RB2 ', No root-to-external-node path has two consecutive red pointers. 

RB3 '. All root-to-external-nodes paths have the same number of black pointers. 

Notice that is we know the pointer colors, we can deduce the node colors and vice­ 

versa. In the red-black tree of Figure 3. I, the external nodes are solid squares, black 

pointers are think lines, and red pointers are thin lines. The colors of the nodes may be 

deduced from the pointer colors and property RB I. The nodes with 5, 50, 62, and 70 are 

reel, as they have reel pointers from their parents. The remaining nodes are black. Notice 

that every path from the root to an external node has exactly two black pointers and three 

black nodes (including the root and the external node); no such path has two consecutive 

reel nodes or pointers. 
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Figure 3.1 A red-black tree 

Let the rank of a node in a red-black tree be the number of black pointers on. any path 

from the node to any external node in its subtree. So the rank of an external node is zero. 

The rank of the root of Figure 3. l is 2, that of its left child is 2, and of its right child is I. 

Lemma 3.1 Let the length of a root-to-external-node path be the number of pointers on the 

path. If P and Q are two root-to-external-node paths in a red-black tree, then length(P) :S 

2length(Q). 

Proof Consider any red-black tree. Suppose that the rank of the root is r. From RB l ' the 

last pointer on each root-to-external-node path is black. From RB2' no such path has two 

consecutive red pointers. So each red pointer is followed by a black pointer. As a result, 

each root-to-external-node path has between rand 2r pointers, so length(P) :S 2/ength(Q). 

To see that upper bound is possible, consider the red-black tree of Figure 3.1. The path 

from the root to the left child of S has length 4, while that to the right child of 80 has length 

2. 

Lemma 3.2 Leth be the height of a red-black tree (excluding the external nodes), let 11 be 

the number of internal nodes in the Lee, and let r be the rank of the root. 

(a)h:S2r 

(b) 11 ?. 2 1 - ] 
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Proof From the proof of Lemma 3.1, we know that no root-to-external-node path has 

length > 2r, so h S 2r. (The height of the red-black tree of Figure 3.1 with external nodes 

removed is 2r = 4.) 

Since the rank of the root is r, there are no external nodes at levels 1 through r, so there 

are 2' - I internal nodes at these levels. Consequently, the total number of internal nodes is 

at least this much. (In the red-black tree of Figure 3.1, levels 1 and 2 have 3 = 22 - I internal 

nodes. There are additional internal nodes at levels 3 and 4.) 
) 

From (b) it follows that rs log , (n + 1). This inequality together with (a) yields (c). 

Since the height of a red-black tree is at most 2 log , (n + 1), search, insert, and delete 

algorithms that work in O(h) time have complexity O(logn). 

Notice that the worst-case height of a red-black tree is more that the worst-case height 

(approximately 1.44 log , (n + 2)) of an A VL tree with the same number of (internal) nodes. 

3.2.Representation of a Red-Black Tree 

Although it is convenient to include external nodes when defining red-black trees, in an 

implementation, null or zero pointers, rather than physical nodes, represent these codes. 

Further, since pointer and node colors are closely related, with each node we need to store 

only its color or the color of the two pointers to its children. Node colors require just one 

additional bit per node, while pointer colors require two. Since both schemes require almost 

the same amount of space, we may choose between them on the basis of actual run times of 

the resulting red-blac~: tree algorithms. 

In our discussion 1f the insert and delete operations, we sh al I exp I icitly state the needed 

color changes only f01J!the nodes. The corresponding pointer color changes may be inferred. 
I 

i 
I 
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3.3.Searching a Red-Black Tree 

We can search a red-black tree with the code we used to search an ordinary binary search 

tree (Program 1.2). This code has complexity O(h), which is O(logn) for a red-black tree. 

Since we use the same code to search ordinary binary search trees, A VL trees, and red­ 

black trees and since the worst-case height of an A VL tree is least, we expect A VL trees to 

show the best worst-case performance in applications where search is dominant operation. 

3.4.Inserting into Red-Black Tree 

Elements may be inserted using the strategy used for ordinary binary trees (Program 1.3). 

When the new node is attached to the red-black tree, we need to assign it a color. lf the tree 

was empty before the insertion, then the new node is the root and must be colored black 

(see property RB I). Suppose the tree was not empty prior to the insertion. If the new node 

is given the color black, then we will have an extra black node on paths from the root to the 

external nodes that are children of the new node. On the other hand, if the new node is 

assigned the color red, then we might have two consecutive red nodes. Making the new 

node black is guaranteed to cause a violation of property RB3, while making the new node 

red may or may not violate property RB2. We shall make the new node red. 

If making the ,new node red causes a violation of property RB2, we shall say that the 

tree has become imbalanced. The nature of the imbalance is classified by examining the 

new node u, its parent pu, and the grandparent gu of u. Observe that since property RB2 has 

been violated, we have two consecutive red nodes. One of these red nodes is u, and other 

must be its parent; therefore, pu exists. Since pu is red, it cannot be the root (as the root is 

black by property RB l); u must have a grandparent, gu, which must be' black (property 

RB2). When pu is the left child of gu, u is the left child ofpu, and the other child of gu is 

black (this case includes the case when the other child of gu is an external node), the 

imbalance is of type LLb. The other imbalance types are LLr (pu is the left chi Id of gu, u is 

the left child of pu, the other child of gu is red), LRb (pu is the left child of gu, u is the right 

child of pu, the other child of gu is black), LLb, LR.r, RRb, RRr, RLb, and RLr. 
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Imbalances of type XYr (X and Y may be L or R) are handled by changing colors, 

while those of type XYb require a rotation. When we change a color, the RB2 voilation 

i:11ay propagate two levels up the tree. In this case we will need to reclassify at the new 

level, with the new u being the former gu, and apply the transformations again. When a 

rotation is done, the RB2 violation is taken care of, and no further work is needed. 

Figure 3.2 shows the color changes performed for LLr and LRr imbalances; these color 

changes are identical. Black nodes are shaded dark, while red ones are shaded light. In 

Figure 3.2(a), for example, gu is black, while pu and u are red; the pointers from gu to its 

left and right children are red; gu!I is the right subtree of gu; and pu!I is the right subtree 

of pu. Both LLr and LRr color changes require us to change the color of pu and of the right 
) 

child of gu from red to black. Additionally, we change the color of gu from black to red 

provided gu is not the root. Since this color change is not done when gu is the root, the 

number of black nodes on all root-to-external-node paths increases by one when gu is the 

root of the red-black tree. 

u 
L 

(a)LLr imbalance 

,, 

(c)LRJ· imbalance: 
I 

gun 
?Oji /-, 

,.,.. . ' 
//" OU 

' b-R 
u 0/ . 

/
' rn: ' i'"'R 

u 
L 

u 
.l .. 

(b)A.fter LLr color change 

u 
L 

u 
R 

( d)il,£t:er LRr c 0101· change 
'I 

Figure 3.2 LLr and Lltr color changes 

If changing the colbr of gu to red causes ah imbalance, gu becomes the new u node, its 

parent becomes the n1w pu, and itS grandparent becomes the new gu and we continue to 

I 
I 
i 
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rebalance. If gu is the root or if the color change does not cause an RB2 violation at gu, we 

are done. 

Figure 3.3 shows the rotations performed to handle LLb arid LRb imbalances. In 

Figures 3.3(a) and (b), u is the root of puL. Notice the similarity between these rotations 

and the LL (refer to Figure 2.4) and LR (refer to Figure 2.5) rotations used to handle an 

imbalance following an insertion in an A VL tree. The pointer changes are the same. In the 

case of an LLb rotation, for example, in addition to pointer changes, we need to change the 

color of gu from black to red and of pu from red to black. 

In examining the node (or pointer) colors after the rotations of Figure 3.3, we see that 

the number of black nodes (or pointers) on all root-to-external-node paths is unchanged. 

Further, the root of the involved subtree (gu before the rotation and pu after) is black 

following the rotation; therefore, two consecutive red nodes cannot exist on the path from 

the tree root to the new pii: Consequently, no additional rebalancing work is to be done. A 

single rotation (preceded possibly by Otlogn) color changes) suffices to restore balance 

following an insertion! 

( a)LLb 'imbalance 1; 
••• 1, 

I 

gu • :1 

,/" !1 

pu c( o,· I 
/ ''·." 6·' RI 

u o I 
puL /-" ! 

u 
I.. u 

P. ' 

(c)LRb imbalance 

PU1: '2U ~ ,_, •. ~ 

(b ).After LLb rotation 

pu , .• .,!.. 
u u 
L .~ gu .~· 

(d)iUter LRb rotation 

Figure 3.3 LLb and LRb rotations for red-black insertion 

Example 3.1 Consider the red-black tree of figure 3.4(a). This figure shows only pointer 

colors; node colors may be inferred from the pointer colors and the knowledge that the root 
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color is always black. External nodes are shown for convenience. In an actual 

implementation, the shown black pointers to external nodes are simple null ore zero, and 

external nodes are not represented. Notice that all root-to-external-node paths have two 

black pointers. 

To insert 70 into this red-black tree, we use the algorithm of Program 1.3. The new 

node is added as the left child of 80. Since the insertion is done into a nonempty tree, the 

new node is assigned the color red. So the pointer to it from its parent (80) is also red. This 

insertion does not result in a violation of property RB2, and no remedial action is 

necessary. Notice that the number of black pointers on all root-to-external-node paths is the 

same as before the insertion. 

Next, insert 60 into the tree of Figure 3.4(b). The algorithm of Program l.3 attaches a 
l 

new node as the left child of 70 as in Figure 3.4(c). The new node is red, and the pointer to 

it is also red. The nery node is the u node, its parent (70) is pu, and its grandparent (80) is 

gu. Since pu and u at;ie red, we have an imbalance. This imbalance is classified as an LLr 

imbalance (as pu is tlr left child of gu, u is the left child of pu, and the other child of gu is 

reel). When the LLr color change of Figure 3.2(a) and (b) is performed, we get the tree of 
I 

Figure 3.4(d). Now u,ipu, and gu are each moved two levels up the tree. The node with 80 

is the new u node; the root becomes pu, and gu is zero. Since there is no gu node, we 

cannot have an RB2 imbalance at this location and we are done. All root-to-external-node 
., 

paths have exactly two black pointers. 
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(a)Irntial 

(c)Insert 150 

(e)Inse1t 155 

(b)Insett 70 

( d)LLr color change 

(f;LRb rotation 

Figure 3.4 lnsertion into a red-black tree(continues) 

Now insert 65 into the tree of Figure 3.4(d). The result appears in Figure 3.4(e). The 

new node is the u node. Its parent cind grandparent are, respectively, the pu and gu nodes. 

We have an LRb imbalance that requires us to perform the rotation of Figure 3.3(c) and (d). 

The result is the tree of Figure 3.4(f). 
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(g)Insett 62 
Q1)LRr color change 

(i)RLb rotation 

Figure 3.4 Insertion into a red-black tree (concluded 

Finally, insert 62 to obtain the tree of Figure 3.4(g). We have an LRr imbalance that 

requires a color change. The resulting tree and the new u, pu, and gu nodes appear in Figure 

3.4(h). The color change just performed has caused an RLb imbalance two levels up, we 

now need to perform an RLb rotation. The rotation results in the tree of Figure 3.4(i). 

Following a rotation, no further work is needed and we are done. 

3.5.Deletion from a Red-Blaca{ Tree 

Deletion are performed by first using the deletion algorithm for ordinary binary search trees 

(Program 1.4) and then performing remedial color changes and a single rotation if 

necessary. Consider the red-black tree of Figure 3.5(a). If Program 1.4 is used to delete 70, 
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we get the tree of Figure 3.5(b). (If pointer colors are represented, we will also need to 

change the color of 90's left pointer to get th is tree). When 90 is deleted from tree(a), tree( c) 

results. (If pointer colors are used, the right-pointer color of 65 will need to be changed to 

get this tree.) The deletion of 65 from tree(a) results in tree (d). (Again, if pointer colors are 

used, a pointer-color change is needed.) Let y denote the node that takes the place of the 

physically deleted node. They nodes for the deletion examples appear in Figure 3.5. In the 

case of Figure 3.5(b), for example, :;1e left child of 90 was deleted. Its new left child is the 

external node y. 

(a)A red-black tree 

(c)Delete 90 

(b)Delete 70 

(d)Delete 65 

Figure 3.5 Red-black deletion examples 

In the case of tree(b), the deleted node (i.e., the one that contained 70 in tree (a)) was 

red. Its deletion does not affect the number of black nodes on root-to-external-node paths, 

and no remedial work is necessary. ln tree (c) the deleted node (i.e., the one with 90 in tree 

(a)) was black, and the number of black nodes (and hence pointers) on paths from the mot­ 

to-external-nodes in y is one less than before. Since y is not the new root, an RB3 violation 

occurs. In tree (d) the deleted node was red, and no RB3 violation occurs. An RB3 violation 
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occurs only when the deleted node was black and y is not the root of the resulting tree. No 

other red-black property violations are possible following a deletion using Program 1.4. 

When an RB3 violation occurs, the subtree rooted at y is one black node (or 

equivalently, one black pointer) deficient; therefore, the number of black nodes (and hence 

pointers) on paths from the root to external nodes in the subtree y is one less than on paths 

to other external nodes. We shall say that the tree has become unbalanced. We classify the 

nature of the imbalance by identifying the parent py and sibling v of y. When y is the right 

child of py, the imbalance is of type R. Otherwise, it is of type L. Observe that since y is 

one black node deficient, v cannot b- an external node. If v is a black node, the imbalance is 

of type Lb or Rb. When vis red, the imbalance is of typ,e Lr or Rr. 

First, consider an Rb imbalance. Imbalances of type Lb are handled in a similar way. 

Rb imbalances may be divided into three subcases on the basis of the number of v's red 

children. The three subcases are RbO, Rb 1, and Rb2. 

When the imbalance type is RbO, a color change is performed (Figure 3.6). Figure 3.6 

shows the two possibilities for the color of py. If py was black prior to the color change, 

then the color change causes the subtree rooted at py to be one black node deficient. Also, 

in Figure 3.6(b) the number of black nodes on paths to external nodes in v is one less than 

before the color change. Therefore, regardless of whether the path goes to an external node 

in v or y, following the color change, it is one black node deficient. If py is the root of the 

whole red-black tree, nothing more is to be done. If it is not, then py becomes the new y; 

the imbalance aty is reclassified, and appropriate remedial action occurs at this new y. 

(a)RbO imbalance (b)RbO color change 

Figure 3.6 RbO color change for red-black deletion 

When py was red before the color change, the number of black nodes on paths to 

external nodes in y increases by c.ne but is unchanged for those in y. The entire tree 
, I 

becomes balanced, and we are done. 
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Rotations are performed when the imbalance type is Rbl or Rb2. These rotations 
! l 

appear in Figure 3.7. An unshaded node denotes a node that may be either red or black. The 

color of such node is not changed as a result of the rotation. Therefore, in Figure 3.7(b) the 

root of the shown subtree has the same color before and after the rotation-the color of v in 

(b) is the same as that of py in (a). You should verify that following the rotation the number 

of black nodes (and hence black pointers) on paths from the root to the remaining external 

nodes. As a result, a rotation rebalances the tree, and no further work is to be done. 

VL 

w w L }: 

(e)Rb2 unbalance 

(b ).After Rb 1 (i) rotation 

v. 1.. w w 
L s y 

(d)A.fter Rb 1 (ii) rotation 

w w 
L. l: 

)-' 

(f)A.fter Rb2 rotation 

Figure 3.7 Rb I and Rb2 rotations for red-black deletion 

Next, consider imbalances of type Rr. The case of Lr imbalances is symmetric. Since y 

is one black node deficient and vis red, both v1 and vi/ have at least one black node that is 

not an external node; therefore, both children of v are internal nodes. Rr imbalances may be 

subdivided into three cases according to the number of red children (0, I, or 2) that v's right 

child has. All three cases of an Rr imbalance are handled by a rotation. The rotations appear 
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in Figures 3.8 and 3.9. Once again, you can verify that the shown rotation restores balance 

to the entire tree. 

PV. 
/~ // 

V .. -/ 

/-·, y 

V. 
/~8PY 

v. / ~ L .; 

/ 
v.~ Vl~ y 

(a)RsO imbalance (b )BsO rotation 

Figure 3.8 RrO rotation for red-black deletion 

Example 3.2 If we delete 90 from the red-black tree of Figure 3.4(i), we get the tree of 

Figure 3.1 O(a). Since the deleted jiode was not the root and was black, we have an 

imbalance. The imbalance is of type RbO, and a color change is performed to get the tree of 

Figure 3.1 O(b ). Since py was originally a red node, this color change rebalances the tree and 

we are done. 

If we now delete 80 from the tree (b), tree (c) results. A red node was deleted, so the 

tree remains balanced. When 70 is deleted from tree (c), we get tree (cl). This time a 

non root black node was deleted, and the tree is unbalanced. The imbalance type is Rr I (ii) 

(the right child w of v has one red pointer, which is itself the right-child pointer of w). 

Following an Rrl(ii) rotation, tree (e) is obtained. This tree is balanced. 

3.6.Implementation Considerations and Complexity 

The remedial action taken to rebalance a red-black tree following an insertion or deletion 

requires us to move back on the path taken from the root to the point of insertion or 

deletion. This backward movement is easy to do if each node has a parent field in addition 

to data, left child, and color fields. An alternative to adding a parent field to each node is to 

save, on a stack, pointers to nodes encountered on the downward path from the root to the 

point of insertion/deletion. Now we may move back toward the root by performing deletes 

from the stack of saved pointers. For an 11-element red-black tree, the addition of parent 

fields increases the sp,f1ce requirements by G(n), while the use of a stack increases the space 
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requirements by 0(logn). Although the stack scheme is more efficient on space 

requirements, the parent-pointer scheme runs slightly faster. 

(a)F.s 1 (i) imbalance 
i~y. 
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(c}Rrl (ii) imbalance 

(f).A.fter Fs2 rotation 

w w., L ;.. y 

(b)After Rs 1 (i) rotation X. 
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(d) After Rs 1 (ii) rotation 

w 
L 

X • 
}_. 

(e):Rs2 unbalance 

Figure 3.9 Rr I and Rf2 rotations for red-black deletion 
' ! 

Since the color changes performed following an insert or delete may propagate back 
'I . . 

towards the root, O(logn) of these color changes may be performed. Rotations, on the other 
i ii i 

hand, guarantee to rebalance the tree. As a result, at most one rotation may be performed 
I 

following each insert/delete. The time needed for each color change or rotation operation is 
I 

0(1), the total time needed to insert/delete is O(logn). 
! 
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(b)After RbO color change 

(c)Delete 80 

( e) After Rr 1 (ii) rota tion 

Figure 3.10 Deletion from a red-black tree 
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CHAPTER4 

B-TREES 

4.1.Indexed Sequential Access Method 

A VL and red-black trees guarantee good performance when the dictionary is smal I enough 

to reside in internal memory. For larger dictionaries (called external dictionaries or files) 

that must reside on a disk, we can get improved performance using search trees of higher 

degree. Before we jump into the study of high these high degree search trees, let us take a 

look at the popular indexed sequential access method (ISAM) for external dictionaries. 

This method provides good sequential and random access. 

In the ISAM method the available disk space is divided into blocks, a block being the 

smallest unit of disk space that will be input or output. Typically, a block is one track long 

and can be input or output with a single seek and latency delay. The dictionary elements are 

packed into the blocks in ascending order and the blocks are used in an order that 

minimizes the delay in going from one block to next. 

For sequential access the blocks are input in order, and the elements in each block are 

retrieved in ascending order. If each block contains 111 elements, the number of disk 

accesses per element is llm. 

To support random access, an index is maintained. This index contains the largest key 

in each block. Since the index contains only as many keys as there are blocks and since a 

block generally houses may elements (i.e., m is usually large), the index is generally small 

enough to reside in internal memory. To perform a random access of an element with key k, 

the index is searched for the single block that can contain the corresponding element; this 

block is retrieved from the disk and searched internally for the desired element. As a result, 

a single disk access is sufficient to perform a random access. 

This technique may be extended to larger dictionaries that span several disks. Now the 

elements are assigned to disks in ascending order and then to blocks within a disk also in 

ascending order. Each disk maintains a block index that retains the largest key in each 

block. Additionally, an overall disk index maintains the largest key in each disk. This index 

generally resides in memory. 
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To perform a random access, the disk index is searched to determine the single disk that 

the desired record might reside on. Next, the block index for this disk is retrieved from the 

appropriate disk and searched for the block that is to block that is to be fetched from the 

disk. The block is then fetched and searched internally. In the extended scheme a random 

access requires two disk accesses (one to fetch a block index and another to fetch a block). 

Since the ISAM method is essentially a formula based representation scheme, it runs 

into difficulty when inserts and deletes are performed. We can partially alleviate this 

difficulty by leaving space in each block so that a few inserts can be performed without 

moving elements across block boun..aries. Similarly, we can leave empty space in the block 

after deletes, rather than perform an expensive shift of the elements across block boundaries 

to use the new free space. 

4.2. m-way Search Trees 

Definition An m-way search tree may be empty. If it is not empty, it is a tree that satisfies 

the following properties: 

1.Jn the corresponding extended search tree (obtained by replacing zero pointers with 

external nodes), each internal node has up tom children and between I and 111 - 1 

elements. (External nodes contain no elements and have no children.) 

2. Every node with p elements has exactly p + I children. 

3.Consider any node with p elements. Let k, , ... , k" be the keys of these elements. The 

elements are ordered so that k, < k2 < ... < k". Let c0,c1 , ... .c ; be the p + 1 children of the 

of the node.The elements in the subtree with root c0 have keys smaller than k., those in 

the subtree with root c" have keys larger than k", and those in the subtree with root c , 

have keys larger than k, but smaller than k;+i , 1 :'S i < p. 

Although it is useful to include external nodes when defining an m-way search tree, 

external nodes are not physically represented in actual implementations. Rather, a null or 

zero pointers appears Wherever there would otherwise be an external node. 

Figure ~. I shows 1k seven-way search tree. External nodes are shown as sol id squares. 

All other nodes are i1~ternal nodes. The root has two elements (with keys IO and 80) and 

ii 
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three children. The middle child of the root has six elements and seven children; six of 

these children are external nodes. 

10 I 80 

Figure 4.1 A seven-way search tree · 

Searching an 111-Way Search Tree 

To search the seven-way search tree in Figure 4.1 for an element with key 31, we begin at 

the root. Since 3 l lies between IO and 80, we follow the middle pointer. (By definition, all 

elements in the first subtree have key< I 0, and all in the third one have key> 80.) The root 

of the middle subtree is searched. Since k2 < 3 J < k3, we move into the first subtree. Now 

we determine that 3 l < k., This move causes us to fa! I off the tree; that is, we reach an 

external node. We conclude that the search tree contains no element with key 3 J. 

Inserting into an m-Way Search Tree 

If we wish to insert an element with key 31, we search for 3 J as above and fall off the tree 
I 

at the node (32,36]. Since this node can hold up to six elements (each node of a seven-way 
I · !i 

search tree can have up to six elements), the new element may be inserted as the first one in 

the node. ii 

To insert an element with key 65, we search for 65 and fall off the tree by moving to the 

sixth subtree of the nlode [20,30,40,50,60,70]. This node cannot accommodate additional 
I 

elements, and a new dode is obtained. The new element is put into this node, and the new 

node becomes the sixth child of [20,30,40,50,60,70]. 
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Deleting from an m-Way Search Tree 

To delete the element with key 20 rrom the search tree of Figure 4.1', we first perform a 

search. The element is the first element in the element in the middle child of the root. Since 

k, = 20 and c0 = c1 = 0, we may simply delete the element from the node. The new middle 

child of the 84, we first locate the element. It is the second element in the third child of the 

root. Since c1 = c2 = 0, the element may be deleted from this node and the new node 

configuration [82,86,88]. 

When deleting the element with key 5, we have to do more work. Since the element to 

be deleted is the first one in its node and since at least one of its neighboring children (these 

children are c0 and c1) is nonzero, we need to replace the deleted element with an element 

from a nonempty neighboring subtree. From the left neighboring subtree ( c0 ), we may 

move up the element with largest ke; (i.e., the element with key 4). 

To delete the element with key IO from the root of Figure 4.1, we may replace th is 

element with either the largest element in c0 or the smallest element in c1• If we opt to 

replace it with the largest in c0, then the element with key 5 moves up and we need to find 

a replacement for this element in its original node. The element with key 4 is moved up. 

Height of an m-Way Search Tree 

An 111-way search tree of height h (excluding external nodes) may have as few ash elements 

(one node per level and one element per node) and as many as m" - I. The upper bound is 

achieved by an m-way search tree of height h in which each node at levels, I through h - I 

has exactly 111 children and nodes at level h have no children. Such a tree has 
h-1 L m' = tm" -1) /(m -1) nodes. Since each of these nodes has m - I elements, the number 
i=O 

of elements is 111" -1. 

As the number of elements in an 111 - way search tree of height h ranges from a low of h 

to a high of 11/1 -1, the height of an 111 - way search tree with n elements ranges from a low 

of log, (n + 1) to a high of n. 
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A 200 - way search tree of height 5, for example, can hold 32 * 1010 - I elements but 

might told as few as 5. Equivalently, a 200 - way search tree with 32 * 1010 -1 elements has 

a height between 5 and 32 * I 010 - I. When the search tree resides on the disk, the search, 

insert, and delete times are dominated by the number of disk accesses made (under the 

assumption that each node is no longer than a disk block). Since the number of disk 

accesses needed for the search, insert, and delete operations are O(h) where h is the tree 

height, we need to ensure that the height is close to log, (11 + l). This assurance is provided 
I 

by balanced m - way search trees. 
I 

ii 
'r 

4.3. B-Trees of Order m 
! 

Definition A B - Tr~e of order 111 is an m - way search tree. lf the B - tree is not empty, 

the corresponding extended tree satisfies the following properties: 

I. The root has at least two children. 

2. All internal nodes other than the root have at least [m/2] children. 

3. All external nodes are at the same level. 

The seven - way search tree of Figure 4. 1 is not a B - tree of order 7, as it contains 

external nodes at more than one level (levels 3 and 4). Even if all its external nodes were at 

the same level, it would fail to be a B - tree of order 7 as it contains nonroot internal nodes 

with two (node [5]) and three (node [32,36]) children. Nonroot internal nodes in a B - tree 

of order 7 must have at least [7/2] = 4 children. A B - tree of order 7 appears in Figure 4.2. 

All external nodes are at level 3, the root has three children, and all remaining internal 

nodes have at least four children. Additionally, it is a seven - way search tree. 

in 
-------- -------~-------~---- _______ ....,-,-,--...,... 

C L' I 6 I 20 30 40 50 60 70 J "J 84J"J "J ••• 1 • • •I 
Figure 4.2 A B-tree of order 7 

In a B - tree of order 2, no internal node has more than two children. Since an internal 

node must have at least two children, all internal nodes of a B - tree of order 2 have exactly 
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two children. This observation coupled with the requirement that all external nodes be on 

the same level implies that B - trees of order 2 are full binary trees. As such, these trees 

exist only when the number of elements is i' - I for some integer h. 

ln a B - tree of order 3, internal nodes have either two or three children. So a B - tree of 

order 3 is also known as a 2 - 3 tree. Since internal nodes in B - trees of order four must 

have two, three, or four children, these B - trees are also referred to as 2-3-4 (or simply 2,4) 

trees. A 2 - 3 tree appears in Figure 4.3. Even though this tree has no internal node with 

four children, it is also an example of a 2-3-4 tree. To build a 2-3-4 tree in which at least 

one internal node has four children, simply add elements with keys 14 and 16 into the left 

child of 20. 

30 I so 
--·~------------------- 

~~ 

Figure 4.3 A 2-3 tree or 8-tree order 3 

:: 

4.4. Height of a B, Tree 
I 
'I 

11 

Lemma 4.1 Let T b91. a B-tree of order 111 and height h. Let d = [m/2] and let n be the 

number of elements i1l T. 

a) 2d'''' -15 n ~ m'' t I , 

b) lcg, (n + 1) <h :Slqg,1(11 + 1 /2) + I 
I 

Proof The upper bound on n follows from the fact that Tis an m - way search tree. For the 

lower bound the lower bound, note that the external nodes of the corresponding extended 

8-tree are at level h + l. The minimum number of nodes on levels I, 2, 3, 4, ... , h + 1 is 

1,2,2d,2d2 , ... .ia':', so the 1111n1mu111 number of external nodes is one more than the 

number of elements 

11 ~ 2dh-l -1 
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(b)follows directly from (a). 

From Lemma 4.1, it fol lows that a B-tree of order 200 and height 3 has at least 19,999 

elements, and one of the same order and height 5 has at least 2 * 108 - I elements. 

Consequently, if a B-tree of order 200 or more is used, the tree height is quite small even 

when the number of elements is rather large. In practice, the 8-tree order is determined by 

the disk block size and the size of individual elements. There is no advantage to using a 

node size smaller than the disk block size, as each disk access reads or writes one block. 

Using a larger node size involves multiple disk accesses, each accompanied by a seek and 

latency delay, so there is no advantage to making the node size larger than one block. 

Although in actual applications the 8-tree order is large, our examples use a small 111 

because a two-level B-tree of order 111 has at least 2d - I elements. When m is 200, dis I 00 

and two-level B-tree of order 200 has at least 199 elements. Manipulating trees with this 

many elements is quite cumbersom '· Our examples involve 2-3 trees and B-trees of order 

7. 

4.5. Searching a B-Tree 

A 8-tree is searched using the same algorithm as used for an m-way search tree. Since all 

internal nodes on some root-to-external-node path may be retrieved during the search, the 

number of disk accesses is at most h (his the height of the 8-tree). 

4.6. Inserting into a B-Tree 

To insert an element into a B-tree, we first search for the presence of an element with the 

same key. If such an element is found, the insert fails because duplicates are not permitted. 

When the search is unsuccessful, we attempt to insert the new element into the last internal 

node encountered on the search path. For example, when inserting an element with key 3 

into the B-tree of Figure 4.3, we examine the root and its left child. We fall off the tree at 

the second external node of the left child. We fall off the tree at the second external node of 

the left child. Since the left child currently has three elements and can hold up to six, the 
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new element may be inserted into this node. The result is the 8-tree of Figure 4.4(a). Two 

disk accesses are made to read in the root and its left child. An additional access is 

necessary to write out the modified left child. 

Next, let us try to insert an element with key 25 into the 8-tree of Figure 4.4(a). This 

element is to go into the node [20,30,40,50,60,70]. However, this node is full. When the 

new element needs to go into a.full node, thefull node is split. Let P be the full node. Insert 

the new element e together with a null pointer into P to get an overall node with m elements 

and 111 + 1 children. Denote this overall node as 

111' CO ' ( e I ' CI ) ' ... ' ( e Ill ' C Ill ) 

10 I so 
--------- ------------ 

~ ~ L· L' •• ,, • 30_.0 '° '°· 70- ~JJ::J "3 SB 3 
(a)Insett 3 mto Figure 4.2 

(bjlnsert 25 into a 

__ .,.--···· .... ---· 

32 I 85 

"~ 

~I • • • • 
(c)Insett 44 into Figure 4.3 

Figure 4.4 Inserting into B-tree 
I 

where the es are the elements and the cs are the children pointers. The node is split 
I : :I I 

ii 
around element e" where d = [m/2]. Elements to the left of this one remain in P, and those 
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to the right move into a new node Q. The pair ( e" ,Q) is inserted into the parent of P. The 

format of the new P and Q is 

Q: 111 - d, c r1 , ( e" + 1. c c1 + 1 ) , ••• , ( e 111 , c 111 ) 

Notice that the number of children of both P and Q is at least d. 
In our example, the overall node is 

7,0 (20,0), (25,0), (30,0), (40,0), (50,0), (60,0), (70,0) 

and d = 4. Splitting around e4 yields the two nodes 

P: 3, 0, (20,0), (25,0), (30,0) 

Q: 3, 0, (50,0), (60,0), (70,0) 

When the pair (40,Q) is inserted into the parent of P, we get the B-tree of Figure 4.4(b). 

To insert 25 into 4.4(a), we need to get the root and its middle child from the disk. Then 
I 

we write to disk the two split nodes and the modified root. The total number of disk 

accesses is five. 

As a final example, consider inserting an element with key 44 into the 2-3 tree of Figure 

4.5. This element goes into the node [35,40]. Since the node is full, we get the overall node 

3, 0, (35,0), (40,0), (44,0) 

Splitting around e" = e2 yields the two nodes 

P: I, 0, (35,0) 

Q: I, 0, ( 44,0) 

When we attempt to insert the pair ( 40,Q) into the parent A of P, we see that this node is 
ii 

full. Following the insertion, we get the overall node 
I 

A: 3, P, (40,Q), (50,C), (60,D) 

where C and Dare p9iinters to the nodes [55] and [70]. The overall node A is split to create 

a new node B. The net A and B are ' 

I A: 1,P,(40,Q) 

I B: 1, C, (60,D) 

Now we need to insert the pair (50,B) into the root. Prior to this insertion, the. root has the 

format 

R: 2, S, (30,A), (80,1) 
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where S and T are, respectively, pointers to the first and third subtrees of the root. 

Following the insertion of the pair (50,B), we get the overall node 

R: 3, S, (30,A), (50,B), (80,1) 

This node is split around the element with key 50 to create a new R and a new node U as 

below: 

R: I, S, (30,A) 

U: I, B, (80,1) 

The pair (50,U) would normally be inserted into the parent of R. However, since R has no 

parent, we create a new root with the format 

1, R, (50,U) 

The resulting 2-3 tree appears in Figure 4.4(c). 

The disk accesses are made to read in nodes [30,80], [50,60], and [35,40]. For each 

node that splits, two accesses are made to write the modified node and the newly created 

node. ln our case three nodes are split, so six write accesses are made. Finally, a new root is 

created and written out. This write takes an additional disk access. The total number of disk 

accesses is 10. 

When an insertion causes s nodes to split, the number of disk accesses is h (to read in 

the nodes on the search path)+ 2s(to write out the two split parts of each node that is split) 

+ I (to write the new root or the node into which an insertion that does not result in a split 

is made). Therefore, the number of disk accesses needed for an insertion is h + 2s + I, 

which is at most 3h + 1. 

) 

4. 7. Deletion from a B-Tree 

Deletion is first divided into two cases: (1) the element to be deleted in a node whose 

children are external nodes (i.e., the element is in a leaf), and (2) the element is to be 

deleted element from a non leaf. Case (2) is transformed into case (I) by replacing the 

deleted element with either the largest element in its left-neighboring subtree or the 

smallest element in its right-neighboring subtree. The replacing element is guaranteed to be 

in a leaf. 
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Consider deleting the element with key 80 from the 8-tree of Figure 4.4(a). Since the 

element is not in a leaf, we find a suitable replacement. The possibilities are the element 

with key 70 (i.e., the largest element in the left-neighboring subtree) and 82 (i.e., the 

smallest element in the right-neighboring subtree). When we use the 70, the problem of 

deleting this element from the leaf [20,30,40,50,60,70] remains. 

If we are to delete the element with key 80 from the 2-3 tree of Figure 4.4(c), we 

replace it with either the element with key 70 or that with 82. If we select the 82, the 

problem of deleting 82 from the leaf [82,85] remains. 
' 

Since case (2) may be transformed into case (I) quite easily, we concern ourselves with 
I; 

case (l) only. To delete an element from a leaf that contains more than the minimum 

number of elements d if the leaf is also the root and than the minimum number of elements 

(I if the leaf is also the root and [m/2] - I if it is not) requires us to simply write out the 

modified node. (In cale this node is the root, the 8-tree becomes empty.) To delete 50 from 

the 8-tree of Figure 4.4(a), we write out the modified node [20,30,40,60,70], and to delete 

85 from the 2-3 tree of Figure 4.4(c), we write out the node [82]. Both cases require h disk 

accesses to follow the search path down to the leaf and an additional access to write out the 

modified version of the leaf that contained the deleted element. 

When the element is being deleted from a nonroot node that has exactly the minimum 

number of elements, we try to replace the deleted element with an element from its nearest­ 

left or -right sibling. Notice that e, ery node other than the root has either a nearest-left 

sibling or nearest-right sibling or both. For example, suppose we wish to delete 25 from the 

8-tree of Figure 4.4(b). This deletion leaves behind the node [20,30], which has just two 

elements. However, since this node is a non root node of a 8-tree of order 7, it must contain 

at least three elements. Its nearest-left sibling, [2,3,4,6], has an extra element. The largest 

element from here is moved to the parent node, and the intervening element (i.e., with key 

I 0) is moved down to create the 8-tree of Figure 4.5(a). The number of disk accesses is 2 

(to go from the root to the leaf that contains 25) + I (to read in the nearest-left sibling of 

this leaf)+ 3 (to write out the changed leaf, its sibling, and its parent)= 6. 

Suppose that instead of checking the nearest-left sibling of [20,30], we had checked its 

nearest-right sibling [50,60,70]. Since this node has only three elements, we cannot delete 

an element. (If the node had four or more, we would has moved its smallest element to the 
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(a)Delete 25 from Figure 44(b) 

~ • • 
(b)After mer~ng at leaf level 

(c)Delete 10 from Figure 4.3 

Figure 4.5 Deleting from a B-tree 

parent and moved the element in the parent that lies between these two siblings into the leaf 

that is one element short.) Now, we can proceed to check the nearest-left sibling of [20,30]. 

Performing this check requires an additional disk access, and we are not certain that this 

nearest sibling will have an extra n'ement. In the interest of keeping the worst-case disk 

access count low. we shall check only one of the nearest siblings of a node that is one 

element short. 

When the nearest sibling that is checked has no extra elements, we merge the two 

siblings with the element between them in the parent into a single node. Since the siblings 

have d - 2 and d - I elements each, the merged node has 2d - 2 elements. As 2d - 2 equals 
q 

111 - I when m is odd and m - 2 when m is even, there is enough space in a node to hold this 
I 

many elements. 

In our example the siblings [20,30] and [50,60,70] and the element with key 40 are 
ii 

merged into single no1de [20,30,40,50,60,70]. The resulting B-tree is that of Figure 4.4(a). 
I 
I 
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This deletion requires two disk accesses to get' to the node [20,25,30], another access to 

read in its nearest-right sibling, then two more accesses to write out the two nodes that are 

modified. The total number of disk accesses if five. 

Notice that since merging reduces the number of elements in the parent node, the parent 

may end up being one element short. If the parent becomes one element short, we will need 

to check the parent's nearest sibling and either get an element from there or merge with it. If 

we get an element from the nearest-right (-left) sibling, then the left-most (right-most) 

subtree of this sibling is also taken. lf we merge, the grandparent may become one element 

short and the process will need to be applied at the grandparent. At worst, the shortage will 

propagate back to the root. When the root is one element short, it is empty. The empty root 

is discarded, and the tree height decreases by one. 

Suppose we wish. to delete 10 from the 2-3 tree of Figure 4.5. This deletion leaves 

behind a leaf with zero elements. ,,lts nearest-right sibling [25] does not have an extra 

element. Therefore, the two sibling leaves and the in-between element in the parent (10) are 

merged into a single node. The new tree structure appears in Figure 4.S(b). We now have a 

node at level 2 that is an element short. lts nearest-right sibling has an extra element. The 

left-most element (i.e., the one with key 50) moves to parent and the element with key 30 

moves down. The resulting 2-3 tree appears in Figure 4.S(c). Notice that the left subtree of 

the former [50,60] has moved also. This deletion took three read accesses to get to the 

nearest-right siblings of the level 3 and 2 nodes; and four write accesses to write out the 

four nodes at levels 1, 2, and 3 that were modified. The total number of disk accesses is 

n me. 

As a final example, consider the deletion of 44 from the 2-3 tree of Figure 4.4(c). When 

the 44 is removed from the leaf it is 'in, this leaf becomes short one element. Its nearest-left 

sibling does not have an extra element, and so the two siblings together with the in-between 

element in the parent are merged to get the tree of Figure 4.6(a). We now have a node at 

level 3 that is one element short. Its nearest-left sibling is examined and found to have no 

extra elements, so the two siblings and the in-between element in their parent are merged. 

The tree of Figure 4.5(b) is obtained. Now we have a level 2 node that is one element short. 

Its nearest-right sibling has no extra elements, and we perform another merge to get the tree 

of Figure 4.6(c). Now the root is an element short. Since the root becomes an element short 
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only when it is empty, the root is discarded. The final 2-3 tree is shown in Figure 4.6(d). 

Notice that when the root is discarded, the tree height reduces by one. 

(a)After merging at leaf level 

(b )After merging at level 3 

We need four disk accesses to find the leaf that contains the element to be deleted, three 

nearest-sibling accesses, and three write accesses. The total number is I 0. 

The worst case for a deletion f;:,Jm a B-tree of height h is when merges take place at 

levels h, h - I, ... , and 3, and at level 2, we get an element from a nearest sibling. The 

worst-case disk access count is 3h; (h reads to find the leaf with the element to be deleted) 

+ (h - l reads to get nearest siblings at levels 2 through h) + (h - 2 writes of merged nodes 

at level 3 through h) + (3 writes for the modified root and two level 2 nodes). 

4.8. Node Structure 

Our discussion has assumed a node structure of the form 

s, c0, (e., c1 ), (e,, c2 ), ••• , (e,, c.,) 
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wheres is the number of elements in the node, the e.s are the elements in ascending order 

of key, and the cs are children poir.ers. When the element size is large relative to the size 

of a key, we may use the node structure. 

s, Co, (k., C1, Pi), Ck2, C2, P2 ), ... , (k,, c.,, P,) 
,. 

where the k.s are th~ element keys and the p,s are the disk locations of the corresponding 
I 

elements. 'By using this structure, we can use a 8-tree of a higher order. An even higher­ 
I 

order Bvtree, called aj 8'-tree, becomes possible if non leaf nodes contain 110 P, pointers and 
II 

if in the leaves we reilace the null children pointers with p, pointers. 
i 

Another possibility is to use a balanced binary search tree to represent the contents of 
! 

each node. Using a balanced binary search tree in this way reduces the permissible order of 

the Bvtree, as with each element we need a left- and right-child pointer as well as a balance 

factor or color field. However, the CPU time spent inserting/deleting an element into/from 

a node decreases. Whether this approach results in improved overall performance depends 

on the application. In some cases a smaller m might increase the B-tree height, resulting in 

more disk accesses for each search/insert/delete operation 
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CHAPTERS 

APPLICATIONS 

5.1.Histogramming 

In the histogramming problem we start with a collection of n keys and must output a list of 

the distinct keys and the number of times (i.e., frequency) each occurs in the collection. 

Figure 5.1 gives an example with 10 keys. The problem input appears in Figure 5.l(a), and 

the histogram is presented in Figure 5.l(b) as a table and as a bar chart in Figure 5.l(c). 

Histogramming is commonly performed to determine the distribution of data. For example, 

we may histogram the scores on a test, the gray-scale values in an image, the cars registered 

in Gainesvi lie (the key being the manufacturer), and the highest degree earned by persons 

living in Los Angeles. 

When the key values are integers in the range zero through rand r is reasonably small, 

the histogram can be computed in linear time by a rather simple procedure (Program 5.1) 

that uses the array element h[i] to determine the frequency of the key i. Other integral key 

types may be mapped into this range to use Program 5.1. For example, if the keys are 

lowercase letters, we may use the mapping [a, b, ... , z] = [O, I, ... , 25]. 

Program 5.1 becomes infeasible when the key range is very large as well as when the 

key type is not integral (for example, when the keys are real numbers). Suppose we are 

determining the frequency with which different words occur in a text. The number of 

possible different words in very large compared to the number that might actually appear in 

the text. In such a situation, we may sort the keys and then use a simple left-to-right scan to 

determine the number of keys for each distinct key value. The sort can be accomplished in 

O(nlogn) time, and the ensuing left-to-right scan takes G(n) time; the overall complexity is 

O(nlogn). This solution can be improved upon when the number 111 of distinct keys is small 

when compared to n. By using balanced search trees such as A VL and red-black trees, we 

can solve the histograrnming problem in O(nlogm) time. Furthermore, the balanced search 

tree solution requires only the distinct keys to be stored in memory. Therefore, this solution 

is appropriate even in situations when n is so large that we do not have enough memory to 

accommodate all keys (provided, of course, there is enough memory for the distinct keys). 
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n = 10, keys=[2,4,2,2,3,4,2,6,4,2) 

(a)Input 

key frequency 

2 s 

3 1 

4 3 

6 1 

5 

4 

frequency 
3 
2 

---------· 

3 4 6 '") ,:,. 

'.b)Output histogramrning example 

key 
(c)Histogra.tn plot 

Figure 5.1 Histogram ming example 

This solution we describe uses a binary search tree and so has expected complexity 

O(nlogm). By replacing the binary search tree used in this solution with a balanced search 

tree, the claimed complexity is achieved. In our binary search tree solution, we extend the 

class BSTrce by adding the public member 

BSTree<E,K>& lnsertVisit(const E& e, void (*Visit) (E& u)); 

that inserts element e into the search tree provided no element with key equal to e.key 

exists. In case such an element u exists, function visit is invoked. The code for this member 

may be obtained from that for Insert (Program 1.3) by replacing the line 

else throw Badlnpuu): //duplicate key 

with the I ines 

void main(voicl) 
(II Histogram of nonnegative integer values. 

int n, // number of elements 
r; // values between O and r 

cout << "Enter number of elements and range" 
<< endl; 

cin >> n >> r; 
II create histogram array h 
int *h; 
try {h = new int]r + IJ;} 
catch (NoMem) 
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{ cout << "range is too large"<< endl: 
exit(!);} 

II initialize array h to zero 
for (int i= O; i < r: i-1-+) 

hji] 0= O; 
II input data and compute histogram 
for (int i '" I; i <0-= n: i++) { 

int key; II input value 
cout << "Enter element"<< i << endl; 
cin >> kev: . ' 
h[key]++; 
} 

II output histogram 
cout << "Distinct elements and frequencies are" 

<< endln; 
for (inti= 0: i <=0 r; i++) 

if (h[i]) cout << I << 11 
" << h[i] << end In; } 

Program 5.1 Simple histogramming program 

else { Visit(p->data): 

return "this.}; 

Program 5.2 gives the code for the new histogramming program. During an element 

visit, its frequency count is incremented by one. 

class eType { 
friend void main(void): 
friend void Add l (cType&); 
friend ostrcarn& operator<< (r.-.treamcc. c'Iype); 
public: 

operator int() const { return key; l 
private: 

int key, II clement value 
count; II frequency 

I· 

-'' ostreamee operator<<( ostream& out. c'Type x) 
{out<< x.key << 11 "x.count <<" "; return out.} 

void Add I (eType& e) {e.count++;J 
void main(void) I 
{ II Histogram using d search tree. 
B'S'Tree-ce'I'ype int::J! T· ' I , 
int n; II 11umber of C/lements 
c~iut << "Enter numJber of clements"<< endl; 
Cll1 >> n; j 

I 

I 
I 
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II input elements and enter into tree 
for (inti= Li <000 n: i++) { 

eType e: II input element 
cout << "Enter element"<< i << cndl; 
cin >> e.key; 
e.count "' 1:. 
I! put e in tree unless match already there 
II in latter case increase count by I 
try {T.lnsertVisit (e, Add!);} 
catch (NoMem) 

{cout << "Out of memory"<< endl; 
exit( I);} 

} 
II output distinct elements and their counts 
cout << "Distinct elements and frequencies are"<< endl; 
T.Ascend(); 

\ 
J 
Program 5.2 Histogramming using a search tree 

5.2. Best-Fit Bin Packing 

By using a balanced search tree, we can implement the best-fit method to pack n objects 

into bins of capacity c to run in O(nbgn) time. The search tree will contain one element for 

each bin that is currently in use and has nonzero available capacity. Suppose that when 

object i is to be packed, there are nine bins (a through i) in use that still have some space 

left. Let the avai,lable capacity of these bins be l, 3, 12, 6, 8, 1, 20, 6, and 5, respectively. 
I 

Notice that it is possible for two or more bins to have the same available capacity. The nine 

bins may be stored I in a binary search tree with duplicates (i.e., a member of either 

DBSTrec or DA Vl.tree), using as key the available capacity of a bin. 
I I . 

Figure 5.2 show~ a possible binary seatlch tree for the nine bins. For each bin, the 
I 

available capacity is ~hovvn inside a node, and the bin name, outside. This tree is also an 

A VL tree. If the object i that is to be packed requires s[i] = 4 units, we can find the bin that 
provides the best fit by starting at the root of the tree of Figure 5.2. The root tells us bin h 

has an available capacity of six. Since object i fits into this bin, bin h becomes the candidate 

for the best bin. Also, since the capacity of all bins in the right subtree is at least six, we 
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need not look at the bins in this subtree in our quest for the best bin. The search proceeds to 

the left subtree. The capacity of bin b isn't adequate to accommodate our object, so the 

search for the best bin moves into the right subtree of bin b. The bin, bin i, at the root of 

this subtree has enough capacity, and it becomes the new candidate for th~ best bin. From 

here, the search moves into the left subtree of bin i, Since this subtree is empty, there are no 
better candidate bins and bin i is selected. 

As another example of the sear h for the best bin, suppose s[i] = 7. The search again 

starts at the root. The root bin, bin h, does not have enough capacity for this object, so our 

quest for a bin moves into the right subtree. Bin c has enough capacity and becomes the 

new candidate bin. From here we move into e's left subtree and examine bin d. It does not 

have enough capacity to accommodate the object, so we continue with the right subtree of 

d. Bin e has enough capacity and becomes the new candidate bin. We then move into its 

left subtree, which is empty. The search terminates. 

When we find the best bin, we can delete it from the search tree, reduce its capacity by 

s[i], and reinsert it (uhless its remaining capacity is zero). If we do not find a bin with 
I ' . . ii bi enoug 1 capacity, we can start a new 111. 

To implement thislcheme, we can use the' class DBSTree to obtain O(nlogn) expected 

performance or the class DA Vl.tree for O(nlogn) performance in all instances. In either I 

case we need to extend the class definition to include a public member FinclGF'.:(k,kout) that 
I 

finds the smallest bin/ capacity Kout that is 2': k. This member takes the from given 111 

Program 5.3. Its complexity is O(height). The code for the class A Vl.tree is identical. 

templatc<class E,class K> 
boo! DBSTrce<E,K>::FinclGE(const K& k, K& Kout) const 
{II Find smallest element with value>= k. 

BinaryTreeNode<E> "p = root, II search pointer 
"s = O; II pointer to smallest 

II>= k found so far 
II search the tree 

while (p) { 
II is pa candidate? 
if (k <= p->data) {II yes 

s = p; II p is a better candidate than s 
I I smaller clements in left subtree only 
p = p->LeflChild;} 

else II no, p->data too small, try right subtree 
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p = p->R ightChi ld; 
I 
f 

if (!s) return false; II not found 
ko u t '" s->cla ta; 
return true; 

} 
Program 5.3 Finding the smallest key > k 

Program 5.4 packs n objects into bins using best-fit strategy. 

class BinNode{ I 
friend void BestFit;Pack(int *, int.' int); 
friend ostrcamee oi~erator<< (ostrearn&. BinNode); 
public:. I 

operator int() const {return avail.} 
private: I 

int ID.. II bin ldentificr 
avail; II available capacity 

\· 
J ' 

ostrearn& opcrator<<(ostrcam& out, BinNode x) 
{out<< "Bin"<< x.lD <<" "<< x.avail: 
return out.} 

void BcstFitPack(int s[], int n, int c) 

int b = O; II number of bins used 
DBSTree<BinNode, int> T; II tree of bin capacities 
II pack objects one by one 
for (inti= l ; i <= n; i++) {II pack object i 

int k; II best fit bin number 
BinNode c; II corresponding node 
if (T.FindGE(s[i], k)) II find best bin 

T.Delete(k, e); II remove best bin from tree 
else (II no bin large enough start a new bin 

e = *(new Bin Node); 
e.ID = ++b; 
e.avail = c.} 

cout << "Pack object " << i << " in bin " 
<< e.ID << endl; 

II update available capacity and put bin in tree unless avail capacity is zero 
e.avai I -'' sli]; 
if (e.avail) 'Llnsertte); 
} 

I 
J 

Program 5.4 Bin packing using best' fit 
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CONCLUSION 

The world of data structures has a wide variety of trees. In the present project wed iscussed 

search trees. It develops tree structures suitable for the representation of a dictionary. We 

examined search trees. These trees provide an asymptotic performance that is comparable 

to that of skip I ists. The expected complexity of a search, insert, or delete operation is 

O(logn), while the worst case complexity is 0(n). A VL trees perform at most one rotation 

following an insert and O(logn) rotations following a delete. However, red-black trees 

perform a single rotation following either an insert or delete. A VL and red-black trees 

guarantee good performance when the dictionary is small enough to reside in internal 

memory. For larger dictionaries (called external dictionaries or files) that must reside on a 

disk, we can get improved performance using search trees of higher degree that is B-Trees. 
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APPENDIX A 

template <class T> 
class Binary'Ireel-lode] 

' 

public: l ii 
BinaryTreeNo~e() { LeftCh i lsl=RightCh i ld=O;} 
BinaryTreeNode(const T& eJ 
f I 
l l 

data= e· 
I' 

LeftChild=RightChild=O;} 
BinaryTreeNode(const T& e, BinaryTreeNode *l, BinaryTreeNode *r) 
{ 

data= e; 
LeftChild=l; 
RightChild=r;} 

private: 
T data; 
BinaryTreeNode<T> *LeftChild, 

*RightChild; 
}; 

template <class T> e 

void lnOrder(BinaryTreeNode<T> *t) 
{ 

if (t){ 
lnOrder(t->LeftCh i Id); 

Yisit(t); 
lnOrder(t->RightCh i Id); 

} 
} 
template <class T> 
void PostOrder(BinaryTreeNode<T> *t) 
{ 

if (t) { 
PostOrder(t->LeftCh i Id); 
PostOrder(t-> R ightCh i Id); 
Yisit(t); 

} 
} 
template <class T> 
void lnfix(BinaryTreeNode<T> *t) 
{ 
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if(t) {cout << '('; 
lnfix(t->LeftCh i Id); 
cout<< t->data; 
Infix(t->RightChi Id); 
cout << ')';} 

} 
template <class T> 
void LevelOrder(BinaryTreeNode<T> *t) 
{ while(t) { 

Yisit(t); 
it~t->LeftChild) Q.Add(t->LeftChild); 
if(t->RightChild) Q.Add(t->RightChi Id); 
try{ Q.Delete(t);} 
catch (OutOfBounds) {return;} 

} 
} 
Program A.1 Node class for linked list and Implementation of its public members 

#include <iostream.h> 
#include "BinaryTreeNode.cpp" 
template<class T> 
class BinaryTree:public BinaryTreeNode<T>{ 

public: 
BinaryTree() {root= O;}; 
-BinaryTree(){}; 
boo! lsEmpty() const 
{return ((root)?false: true);} 
boo! Root(T& x) const; 
void MakeTree(const T& element, 

BinaryTree<T>& left, BinaryTree<T>& right); 
void Break.Tree(T& element, BinaryTree<T>& left, BinaryTree<T>& 

right); 
void PreOrder(void(*Yisit)(BinaryTreeNode<T> *u)) 
{PreOrder(Visit, root);} 
void lnOrder(void(*Visit)(BinaryTreeNode<T> *u)) 
{lnOrder(Visit,root);} 
void PdstOrder 

\void(* Yisit)(BinaryTreeNode<T> *u)) 
{ Posto\·der(Yisit root).} 

I ' 'J 
void Ltjve]Order 

;(void(* Yisit)(8 inaryTreeNode<T> *u)); 
void Pr~Output() 
{ PreOr~er(Output,root);cout< <encl I;} 
void lnOutput() 
{lnOrder(Output,root);cout << encl!;} 
void PostOutput() 
{PostOrder(Output,root);cout << encll;} 
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.. 

void LevelOutput() 
{LevelOrder(Output);cout << endl;} 

private: 
B inaryTreeNode<T> * root; 
void PreOrder(void(*Visit) 

(BinaryTreeNode<T> *u), BinaryTreeNode<T> *t); 
void fnOrcler (void(*Visit) 

(BinaryTreeNode<T> *u), BinaryTreeNocle<T> *t); 
void PostOrcler(void(*Visit) 

(BinaryTreeNode<T> "u), BinaryTreeNode<T> *t); 
static void Output(BinaryTreeNocle<T> *t) 
f cout << t->clata << ,.,. 1. 
l 'J 

} ; 
template<class T> 
bool BinaryTree<T>::Root(T& x) canst 
{ 

if (root) {x=root->clata; 
return true;} 
else return false; 

} 
ternplate'<class T> 
void BinaryTree<T>::MakeTree(const T& element, 

BinaryTree<T>& left, 
BinaryTree<T>& right) 
{ 

root= new BinaryTreeNocle<T> 
(element, left.root, right.root); 

left.root=right.root=O; 
} 
template<class T> 
void BinaryTree<T>::BreakTree(T& element, BinaryTree<T>& left, BinarvTree<T>& 
right){ 
if (!root) throw Bad Input(); 
element=root->clata; 
left.root=root->LeftChilcl; 
right.root=root-> RightCh i lei; 
delete.root; 
root=O; 
} 
template<class T> 
void BinaryTree<T>::PreOrcler(void(* 

I 
{ I 

I , 
if (t) {Visit(t); I 

PreOrder(Visitl t->LeftChilcl); 
PreOrcler(Visit( t->RightChi lei): 
} 

isit)(BinaryTreeNocle<T> *u), 
BinaryTreeNocle<T> *t) 
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template <class T> 
void BinaryTree<T>:: InOrder(void(* Visit)(Bi naryTreeNocle<T> * u),B inaryTreeNode<T> 
*t) 
{ 

if (t) { I nOrcler(Visit, t->LeflCh i Id); 
Visit(t); 
lnOrder(Visit, t->RightChilcl); 
} 

} 
template <class T> 
void BinaryTree<T>:: PostOrder(voiEl(*Visit)(B inaryTreeNode<T> *u ), 

· BinaryTreeNode<T> *t) 
{ 

if (t) {PostOrder(Visit, t->LeftChild); 
PostOrder(Visit, t->RightCh i Id); 

} 
I 
J 

template <class T> 
void B inaryTree<T>: :LevelOrder(voicl(*Visit)(B inaryTreeNode<T> *u)) 
{ 

LinkedQueue<BinaryTreeNocle<T>*> Q; 
BinaryTreeNode<T> "t; 
t=root; 
while (t) { 

Visit(t); 
if (t->LeftCh i Id) Q.Adcl(t->LeftCh i Id); 
if (t->I~ ightChi Id) Q.Adcl(t->RightChi Id); 
try {Q.Delete(t);} 

I 
catch (OutOfBounds) [return.} 

} 
} 
int count=O; 
BinaryTree<int> a.x.y.z: 
template <class T> 
void ct(BinaryTreeNode<T> "t) { count++;} 
void main(void) 
{ 

y.MakeTree( I ,a,a); 
z.MakeTree(2,a,a); 
x.MakeTree(3,y,z); 
y.MakeTree( 4,x,a); 
y.PreOrder( ct); 
y. PreOutput(); 
cout << "\11"; 
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cout <<count<< endl; 
} 
Program A.2 Binary tree complete Program 

A.l. Output 

The Output of the above is 

4312 

4 

COUt << COrlllt 
1: 
:1 

statement gives out 4. y.PreOutput() gives out 4 3 2 l as output. 
11 I 

1:1 
i! 
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