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ABSTRACT 

VHDL (Very high speed Hardware Description Language) is a programming 

language: although VHDL was not designed for writing general purpose 

programs, we can write any algorithm with this language. If we are able to write 

programs, we will find in VHDL features similar to those found in procedural 

languages such as C or PASCAL. It derives most of its syntax and semantics from 

Ada. Knowing Ada is an advantage for learning VHDL because they are familiar. 

Here are some advantages and general information about the VHDL 

programming language: 

• VHDL is designed to fill a number of needs in the design process. 

• Describes the structures and the functions of a system. 

• It allows the design of a system to be simulated before being manufactured, so 

that the designer can test for correctness without the expense and delay the 

hardware prototyping. 

• It allows the description of a system at higher level of abstraction (abstraction 

defines how much detail about the design is specified in a particular 

description of it) to eliminate going into the design detail. 

• A synthesis tool generates the detailed design. 

• Portable and could be synthesized to FPGA programmable devices. 
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Introduction 

I have selected the VDHL coding language to learn how to do a hardware design 

using the current methods and current technology. 

I have selected FIFO (511 X 36) because it is used to design many electronic 

devices. Nowadays you do not just buy the parts of your PC, by using the VHDL coding 

system you just can write your electronic device code by your own and by using the 

implementation and synthesis tools you can apply it to your device chips. In VHDL you 

do not have to think about the details of your hardware, all you must do is writing codes. 

The VHDL code shown in this project implements a 511x36 FIFO in a Virtex2 

device. The inputs are a Clock, a Read Enable, a Write Enable, Write Data, and a 

FIFO _gsr signal as an initial reset. The outputs are Read Data, Full, Empty, and the 

FIFOcount outputs, which indicate how full the FIFO is. 

In this project steps of creating a new project is considered. The project consists of an 

introduction, 3 chapters and a conclusion. 

Chapter One represents the FPGA design flow considering the Hardware 

Description Language (HDL) and the advantages of Using HDLs to design FPGA 

devices, designing FPGA devices with HDLs. 

Chapter Two represents ISE general information & using project navigator to 

create the design. 

Chapter Three describes FIFO (511 X 36) CONTROLLER in VHDL about the 

requirements and specification of the design, the VHDL codes, synthesis, the test bench, 

simulation and the implementation of the design. 
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CHAPTER ONE: FPGA Design Flow 

1.1 Hardware Description Languages 

Designers use Hardware Description Languages (HDLs) to describe the behavior 

and structure of system and circuit designs. This chapter includes: 

• A general overview of designing FPGA devices with HDLs 

• System requirements and installation instructions for designs available from the web 

• A brief description of why FPGA devices are superior to ASIC devices for your design 

needs understanding FPGA architecture allows you to create HDL code that effectively 

uses FPGA system features. To learn more about designing FPGA devices with HDL: 

• Enroll in training classes offered by Xilinx® and by the vendors of synthesis software. 

• Review the sample HDL designs in the later chapters of this Guide. 

• Download design examples from Xilinx Support. 

• Take advantage of the many other resources offered by Xilinx, including 

documentation, tutorials, Tech Tips, service packs, a telephone hotline, and an 

answers database. See "Additional Resources" in the Preface of this Guide. 

1.2 Advantages of Using HDLs to Design FPGA Devices 

Using HDLs to design high-density FPGA devices has the following advantages: 

• "Top-Down Approach for Large Projects" 

• "Functional Simulation Early in the Design Flow" 

• "Synthesis of HDL Code to Gates" 

• "Early Testing of Various Design Implementations" 

• "Reuse of RTL Code" 
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1.2.1 Top-Down Approach for Large Projects .. 

Designers use HDLs to create complex designs. The top-down approach to system 

design supported by HDLs is advantageous for large projects that require many designers 

working together. After they determine the overall design plan, designers can work 

independently on separate sections of the code. 

1.2.2 Functional Simulation Early in the Design Flow 

You can verify the functionality of your design early in the design flow by 

simulating the HDL description. Testing your design decisions before the design is 

implemented at the RTL or gate level allows you to make any necessary changes early in 

the design process. 

1.2.3 Synthesis of HDL Code to Gates 

You can synthesize your hardware description to target the FPGA 

implementation. This step: 

• Decreases design time by allowing a higher-level specification of the design rather 

than specifying the design from the FPGA base elements. 

• Generally reduces the number of errors that can occur during a manual translation of a 

hardware description to a schematic design. 

• Allows you to apply the automation techniques used by the synthesis tool (such as 

machine encoding styles and automatic I/0 insertion) during the optimization of 

your design to the original HDL code. This results in greater optimization and 

efficiency 
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1.2.4 Early Testing of Various Design Implementations 

HDLs allow you to test different implementations of your design early in the 

design flow. Use the synthesis tool to perform the logic synthesis and optimization into 

gates. Additionally, Xilinx FPGA devices allow you to implement your design at your 

computer. 

Since the synthesis time is short, you have more time to explore different architectural 

possibilities at the Register Transfer Level (RTL). You can reprogram Xilinx FPGA 

devices to test several implementations of your design. 

1.2.5 Reuse of RTL Code 

You can retarget RTL code to new FPGA architectures with a minimum ofrecoding. 

1.3 Designing FPGA Devices with HDLs 

If you are used to schematic design entry, you may find it difficult at first to create HDL 

designs. You must make the transition from graphical concepts, such as block diagrams, 

state machines, flow diagrams, and truth tables, to abstract representations of design 

components. Ease this transition by not losing sight of your overall design plan as you 

code in HDL. To effectively use an HDL, you must understand the: 

• Syntax of the language 

• Synthesis and simulator software 

• Architecture of your target device 

• Implementation tools 

4 



1.3.1 Designing FPGA Devices with VHDL 

VHSIC Hardware Description Language (VHDL) is a hardware description 

language for designing Integrated Circuits (ICs). It was not originally intended as an 

input to synthesis, and many VHDL constructs are not supported by synthesis software. 

However, the high level of abstraction of VHDL makes it easy to describe the system 

level components and test benches that are not synthesized. 

In addition, the various synthesis tools use different subsets of the VHDL 

language. The examples in this Guide work with most commonly used FPGA synthesis 

software. The coding strategies presented in the remaining chapters of this Guide can 

help you create HDL descriptions that can be synthesized. 

1.3.2 Designing FPGA Devices with Synthesis Tools 

Most of the commonly-used FPGA synthesis tools have special optimization 

algorithms for Xilinx FPGA devices. Constraints and compiling options perform 

differently depending on the target device. Some commands and constraints in ASIC 

synthesis tools do not apply to FPGA devices. If you use them, they may adversely 

impact your results. You should understand how your synthesis tool processes designs 

before you create FPGA designs. Most FPGA synthesis vendors include information in 

their guides specifically for Xilinx FPGA devices. 

1.3.3 Using FPGA System Features 

To improve device performance, area utilization, and power characteristics, create 

HDL code that uses such FPGA system features as DCM, multipliers, shift registers, and 

memory. For a description of these and other features, see the FPGA data sheet and user 

guide. The choice of the size (width and depth) and functional characteristics need to be 

taken into account by understanding the target FPGA resources and making the proper 

system choices to best target the underlying architecture. 
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1.3.4 Designing Hierarchy • 

HDLs give added flexibility in describing the design. However, not all HDL code 

is optimized the same. How and where the functionality is described can have dramatic 

effects on end optimization. For example: 

• Certain techniques may unnecessarily increase the design size and power while 

decreasing performance. 

• Other techniques can result in more optimal designs in terms of any or all of those 

same metrics. 

This Guide will help instruct you in techniques for optional FPGA design 

methodologies. Design hierarchy is important in both the implementation of an FPGA 

and during interactive changes. Some synthesizers maintain the hierarchical boundaries 

unless you group modules together. Modules should have registered outputs so their 

boundaries are not an impediment to optimization. Otherwise, modules should be as large 

as possible within the limitations of your synthesis tool. The "5,000 gates per module" 

rule is no longer valid, and can interfere with optimization. 

Check with your synthesis vendor for the preferred module size. As a last resort, 

use the grouping commands of your synthesizer, if available. The size and content of the 

modules influence synthesis results and design implementation. This Guide describes 

how to create effective design hierarchy. 

1.3.5 Specifying Speed Requirements 

To meet timing requirements, you should understand how to set timing constraints 

in both the synthesis tool and the placement and routing tool. If you specify the desired 

timing at the beginning, the tools can maximize not only performance, but also area, 
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power, and tool runtime. This generally results in a design that better matches the desired 

performance. It may also result in a design that is smaller, and which consumes less 

power and requires less time processing in the tools. 

1.4 FPGA Design Flow 

I will try to describes the steps in a typical HDL design flow. Although these steps 

may vary with each design, the information in this chapter is a good starting point for any 

design. This chapter includes the following sections. 

• "Design Flow" 

• "Entering Your Design and Selecting Hierarchy" 

• "Functional Simulation" 

• "Synthesizing and Optimizing" 

• "Setting Constraints" 

• "Evaluating Design Size and Performance" 

• "Evaluating Coding Style and System Features" 

• "Placing and Routing" 

• "Timing Simulation" 
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1.4.1 Design Flow • 

Entering your design and . 
selecting hierarchy ~ 

Functional Simulation 
of your Design ~ 

Adding Design . 
Constraints ~ 

Synthesizing and 
Optimizing . 
your Design 

. 
Evaluating your Design's Coding 

Style 

Evaluating your Design Size 
and System Features 

and Performance 

i 
Placing and Routing Timing Simulation Static Timing 

your Design of your Design Analysis 

' 

,Ir 

Generating a Bitstream 

Downloading to the 
Device, 

In-System Debugging 

Creating a PROM, ACE 
or JTAG File 
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1.4.2 Entering Your Design and Selecting Hierarc6y 

The first step in implementing your design is to create the HDL code based on 

your design criteria. 

1.4.2.1 Design Entry Recommendations 

The following recommendations can help you create effective designs. 

Use RTL Code, Use register transfer level (RTL) code, and, when possible, do not 

instantiate specific components. Following these two practices allows for: 

• Readable code 

• Ability to use the same code for synthesis and simulation 

• Faster and simpler simulation 

• Portable code for migration to different device families 

• Reusable code for future designs 

In some cases instantiating optimized CORE Generator™ modules is beneficial with 

RTL. Select the Correct Design Hierarchy, selecting the correct design hierarchy: 

• Improves simulation and synthesis results 

• Improves debugging 

• Allows parallel engineering, in which a team of engineers can work on different parts 

of the design at the same time 

• Improves the placement and routing by reducing routing congestion and improving 

timing 

• Allows for easier code reuse in the current design, as well as in future designs 

9 



1.4.2.2 Architecture Wizard 

The Architecture Wizard in Project Navigator lets you configure complicated 

aspects of some Xilinx® devices. The Architecture Wizard consists of several 

components for configuring specific device features. Each component is presented as an 

independent wizard. See "Architecture Wizard Components" below. 

The Architecture Wizard can also produce a VHDL, Verilog, or EDIF file, depending on 

the flow type that is passed to it. The generated HDL output is a module consisting of one 

or more primitives and the corresponding properties, and not just a code snippet. This 

allows the output file to be referenced from the HDL Editor. There is no UCF output file, 

since the necessary attributes are embedded inside the HDL file. 

Opening Architecture Wizard 

There are three ways to open the Architecture Wizard: 

• From Project Navigator 

• From the CORE Generator 

• From the command line 

Opening Architecture Wizard from Project Navigator for information on opening 

Architecture Wizard in ISE, see the ISE Help, especially Working with Architecture 

Wizard IP. Opening Architecture Wizard from the CORE Generator To open the 

Architecture Wizard from the CORE Generator, select any of the Architecture Wizard IP 

from the list of available IP in the CORE Generator window. Opening Architecture 

Wizard from the Command Line To open Architecture Wizard from the command line, 

type arwz. Architecture Wizard Components 

The following wizards make up the Architecture Wizard. 

Clocking Wizard, the Clocking Wizard enables: 

• Digital clock setup 

• DCM and clock buffer viewing 

10 



• DRC checking • 

The Clocking Wizard allows you to: 

• View the DCM component 

• Specify attributes 

• Generate corresponding components and signals 

• Execute DRC checks 

• Display up to eight clock buffers 

<Set up the Feedback Path information 

• Set up the Clock Frequency Generator information and execute DRC checks 

• View and edit component attributes 

• View and edit component constraints 

• View and configure one or two PMCDs (Phase Matched Clock Dividers) in a Virtex™- 

4 FPGA device 

• View and configure a Phase Locked Loop (PLL) in a Virtex-5 FPGA device 

• Automatically place one component in the XA W file 

• Save component settings in a VHDL file 

• Save component settings in a Verilog file 

RocketlO Wizard 

The RocketIO Wizard enables serial connectivity between devices, backplanes, 

and subsystems. The RocketIO Wizard allows you to: 

• Specify RocketIO type 

• Define Channel Bonding options 

• Specify General Transmitter Settings, including encoding, CRC, and clock 

• Specify General Receptor Settings, including encoding, CRC, and clock 

• Provide the ability to specify Synchronization 

• Specify Equalization, Signal integrity tip (resister, termination mode ... ) 
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• View and edit component attributes. 

• View and edit component constraints 

• Automatically place one component in the XA W file 

• Save component settings to a VHDL file 

• Save component settings to a Verilog file 

ChipSync Wizard The ChipSync Wizard applies to Virtex-4 and Virtex-5 only. 

The ChipSync Wizard facilitates the implementation of high-speed source synchronous 

applications. The wizard configures a group of 1/0 blocks into an interface for use in 

memory, networking, or any other type of bus interface. The ChipSync Wizard creates 

HDL code with these features configured according to your input: 

• Width and IO standard of data, address, and clocks for the interface 

• Additional pins such as reference clocks and control pins 

• Adjustable input delay for data and clock pins 

• Clock buffers (BUFIO) for input clocks 

• ISERDES/OSERDES or IDDR/ODDR blocks to control the width of data, clock 

enables, and tristate signals to the fabric XtremeDSP Slice Wizard The XtremeDSP Slice 

Wizard applies to Virtex-4 and Virtex-5 only. The XtremeDSP Slice Wizard facilitates 

the implementation of the XtremeDSP Slice. For more information, see the Virtex-4 and 

Virtex-5 data sheets, the XtremeDSP for Virtex-4 FPGAs User Guide, and the Virtex-5 

XtremeDSP User Guide, both available from the Xilinx user guide web page. 

1.4.2.3 CORE Generator 

The CORE Generator™ delivers parameterized IP optimized for Xilinx FPGA 

devices. It provides a catalog of ready-made functions ranging in complexity from FIFOs 

and memories to high level system functions such as a Reed-Soloman Decoder and 

Encoder, FIR filters, FFTs for DSP applications, standard bus interfaces such as PCI and 

PCI-X, and connectivity and networking interfaces. 

12 



1.4.3 Functional Simulation .. 

Use functional or RTL simulation to verify the syntax and functionality of your design. 

1.4.3.1 Simulation Recommendations 

Xilinx recommends that you do the following when you simulate your design. 

Perform Separate Simulations with larger hierarchical HDL designs, perform separate 

simulations on each module before testing your entire design. This makes it easier to 

debug your code. Create a Test Bench. Once each module functions as· expected, create a 

test bench to verify that your entire design functions as planned. Use the same test bench 

again for the final timing simulation to confirm that your design functions as expected 

under worst-case delay conditions. 

1.4.3.2 ModelSim Simulators 

You can use ModelSim simulators with Project Navigator. The appropriate 

processes appear in Project Navigator when you choose ModelSim as your design 

simulator, provided you have installed any of the following: 

• ModelSim Xilinx Edition-II 

• ModelSim PE, EE or SE 

You can also use these simulators with third-party synthesis tools in Project Navigator. 

For more information about ModelSim support, see the Xilinx Tech Tips. 

13 



1.4.4 Synthesizing and Optimizing • 

This section includes recommendations for compiling your designs to improve 

your results and decrease the run time. For more information, see your synthesis tool 

documentation. 

1.4.4.1 Creating a Compile Run Script 

TCL scripting can make compiling your design easier and faster while achieving 

shorter compile times. With more advanced scripting, you can run a compile multiple 

times using different options and write to different directories. You can also invoke and 

run other command line tools. You can run the following sample scripts from the 

command line or from the application. Precision RTL Synthesis to run the TCL script 

from Precision RTL Synthesis: 

1. Set up your project in Precision. 

2. Synthesize your project. 

3. Run the following commands to save and run the TCL script. 

1.4.4.2 Synthesizing Your Design 

Xilinx recommends the following to help you successfully synthesize your design. 

Modifying Your Design 

You may need to modify your code to successfully synthesize your design 

because certain design constructs that are effective for simulation may not be as effective 

for synthesis. The synthesis syntax and code set may differ slightly from the simulator 

syntax and code set. 

14 



1.4.4.3 Reading Cores •. 

The following synthesis tools support incorporating the information in CORE 

Generator NDF files when performing design timing and area analysis: 

• "XST" 

• "Synplify Pro" 

• "Precision RTL Synthesis" 

Including the IP core NDF files in a design when analyzing a design results in 

better timing and resource optimizations for the surrounding logic. The NDF is used to 

estimate the delay through the logic elements associated with the IP core. The synthesis 

tools do not optimize the IP core itself, nor do they integrate the IP core netlist into the 

synthesized design output netlist. The procedures for reading in cores in these synthesis 

tools are as follows. 

XST 

Invoke XST using the read cores switch. When the switch is set to on, the default, 

XST, reads in EDIF and NGC netlists. For more information, see the Xilinx XST User 

Guide. For more information on doing this in ISE, see the Project Navigator help. 

Synplify Pro 

EDIF is treated as another source format, but when reading in EDIF, you must 

specify the top level VHDL or Verilog in your project. 

Precision RTL Synthesis 
Precision RTL Synthesis can add EDIF and NGC files to your project as source 

files. For more information, see the Precision RTL Synthesis help. 

15 
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1.4.5 Setting Constraints 

Setting constraints is an important step in the design process. It allows you to 

control timing optimization and enables more efficient use of synthesis tools and 

implementation processes. This efficiency helps minimize runtime and achieve the 

requirements of your design. There are many different types of constraints that can be set. 

Precision RTL Synthesis and Synplify have constraints editors that allow you to apply 

constraints to your HDL design. For more information on how to use your synthesis 

tool's constraints editor, see your synthesis tool documentation. You can add the 

following constraints: 

• Clock frequency or cycle and offset 

• Input and Output timing 

• Signal Preservation 

• Module constraints 

• Buffering ports 

• Path timing 

• Global timing 

Constraints defined for synthesis can also be passed to implementation in an NCF 

file or the output EDIF file. However, Xilinx recommends that you do not pass these 

constraints to implementation. Instead, specify your constraints separately in a user 

constraints file (UCF). The UCF gives you tight control over the overall specifications by 

providing you with the ability to: 

• Access more types of constraints 

• Define precise timing paths 

• Prioritize signal constraints 

You can set constraints in ISE with: 
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• Xilinx Constraints Editor 

• Floorplanner 

•PACE 

• Floorplan Editor 

For more information on setting constraints in ISE, see the ISE Help. 

1.4.6 Evaluating Design Size and Performance 

Your design must: 

• Function at the specified speed 

• Fit in the targeted device 

After your design is compiled, use your synthesis tool's reporting options to 

determine preliminary device utilization and performance. After your design is mapped 

by the Xilinx tools, you can determine the actual device utilization. 

At this point in the design flow, you should verify that your chosen device is large 

enough to accommodate any future changes or additions, and that your design will 

perform as specified. 

1.4.6.1. Estimating Device Utilization and Performance 

Use the area and timing reporting options of your synthesis tool to estimate device 

utilization and performance. After compiling, use the report area command to obtain a 

report of device resource utilization. Some synthesis tools provide area reports 

automatically. For correct command syntax, see your synthesis tool documentation. 

The device utilization and performance report lists the compiled cells in your design, 

As well as information on how your design is mapped in the FPGA. These reports are 
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generally accurate because the synthesis tool creates the logic from your code and maps 

your design into the FPGA. However, these reports are different for the various synthesis 

tools. Some reports specify the minimum number of CLBs required, while other reports 

specify the "unpacked" number of CLBs to make an allowance for routing. For an 

accurate comparison, compare reports from the Xilinx mapper tool after implementation. 

Any instantiated components, such as CORE Generator modules, EDIF files, or other 

components that your synthesis tool does not recognize during compilation, are not 

included in the report file. If you include these components, you must include the logic 

area used by these components when estimating design size. Sections of your design may 

get trimmed during the mapping process, which may result in a smaller design. 

Use the timing report command of your synthesis tool to obtain a report with estimated 

data path delays. For more information on command syntax, see your synthesis tool 

documentation. The timing report is based on the logic level delays from the cell libraries 

and estimated wire-load models. This report is an estimate of how close you are to your 

timing goals; however, it is not the actual timing. An accurate timing report is only 

available after the design is placed and routed. 

1.4.6.2 Determining Actual Device Utilization and Pre-routed 

Performance 

To determine if your design fits the specified device, map it using the Xilinx Map 

program. The generated report file design_name.mrp contains the implemented device 

utilization information. To read the report file, double-click Map Report in the Project 

Navigator Processes window. Run the Map program from Project Navigator or from the 

command line. Using Project Navigator to Map Your Design To map your design using 

Project Navigator: 

1. Go to the Processes window. 

2. Click the "+" symbol in front of Implement Design. 

3. Double-click Map. 

4. To view the Map Report, double-click Map Report. 
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If the report does not currently exist, it is generated at this time. A green check 

mark in front of the report name indicates that the report is up-to-date, and no processing 

is performed. 

5. If the report is not up-to-date: 

a. Click the report name. 

b. Select Process> Rerun to update the report. 

The auto-make process automatically runs only the necessary processes to update 

the report before displaying it. Alternatively, you may select Process > Rerun All to re 

run all processes- even those processes that are currently up-to-date- from the top of the 

design to the stage where the report would be. 

6. View the Logic Level Timing Report with the Report Browser. This report shows the 

performance of your design based on logic levels and best-case routing delays. 

7. Run the integrated Timing Analyzer to create a more specific report of design paths 

( optional). 

8; Use the Logic Level Timing Report and any reports generated with the Timing 

Analyzer or the Map program to evaluate how close you are to your performance and 

utilization goals. 

Use these reports to decide whether to proceed to the place and route phase of 

implementation, or to go back and modify your design or implementation options to 

attain your performance goals. You should have some slack in routing delays to allow the 

place and route tools to successfully complete your design. Use the verbose option in the 

Timing Analyzer to see block-by-block delay. The timing report of a mapped design 

(before place and route) shows block delays, as well as minimum routing delays. 
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A typical Virtex, Virtex-E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, or Virtex-4 

design should allow 40% of the delay for logic, and 60% of the delay for routing. If most 

of your time is taken by logic, the design will probably not meet timing after place and 

route. 

Using the Command Line to Map Your Design 

For available options, enter only the tree command at the command line without any 

arguments. To map your design using the command line: 

1. Run the following command to translate your design: 

ngdbuild -p target_device design_name.edf (or nge) 

2. Run the following command to map your design: 

map design_name.ngd 

3. Use a text editor to view the Device Summary section of the design_name.mrp Map 

Report. This section contains the device utilization information. 

4. Run a timing analysis of the logic level delays from your mapped design as follows. 

tree [options] design_name.ned 

Use the Trace reports to evaluate how close you are to your performance goals. 

Use the report to decide whether to proceed to the place and route phase of 

implementation, or to go back and modify your design or implementation options to 

attain your performance goals. You should have some slack in routing delays to allow the 

place and route tools to successfully complete your design. 
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1.4. 7 Evaluating Coding Style and System Features 

At this point, if you are not satisfied with your design performance, re-evaluate 

your code and make any necessary improvements. Modifying your code and selecting 

different compiler options can dramatically improve device utilization and speed. 

This section describes ways to improve design performance by modifying your code and 

by incorporating FPGA system features. Most of these techniques are described in more 

detail in this Guide. 

1.4.7.1 Modifying Your Code 

Improve design performance with the following design modifications. 

• Reduce levels of logic to improve timing 

• Use pipelining and retiming techniques 

• Rewrite the HDL descriptions 

• Enable or disable resource sharing 

• Redefine hierarchical boundaries to help the compiler optimize design logic 

• Restructure logic 

• Reduce critical nets fanout to improve placement and reduce congestion 

• Perform logic replication 

• Take advantage of device resource with the CORE Generator modules 

1.4.7.2 Using FPGA System Features 

After correcting any coding style problems, use any of the following FPGA 

system features in your design to improve resource utilization and to enhance the speed 

of critical paths. Each device family has a unique set of system features. For more 

information about the system features available for the device you are targeting, see the 

device data sheet. 
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• Use clock enables • 

• In Virtex family components, modify large multiplexers to use tristate buffers 

• Use one-hot encoding for large or complex state machines 

• Use 1/0 registers when applicable 

• In Virtex families, use dedicated shift registers 

• In Virtex-II families, use dedicated multipliers 

1.4.7.3 Using Xilinx-Specific Features of Your Synthesis Tool 

Your synthesis tool allows better control over the logic generated, the number of 

logic levels, the architecture elements used, and fanout. The place and route tool (PAR) 

has advanced its algorithms to make it more efficient to use your synthesis tool to achieve 

design performance if your design performance is more than a few percentages away 

from the requirements of your design. Most synthesis tools have special options for the 

Xilinx-specific features listed in the previous section. For more information on using 

Xilinx-specific features, see your synthesis tool documentation. 

1.4.8 Placing and Routing 

The overall goal when placing and routing your design is fast implementation and 

high quality results. However, depending on the situation and your design, you may not 

always accomplish this goal, as described in the following examples. 

• Earlier in the design cycle, run time is generally more important than the quality of 

results, and later in the design cycle, the converse is usually true. 

• If the targeted device is highly utilized, the routing may become congested, and your 

design may be difficult to route. In this case, the placer and router may take longer to 

meet your timing requirements. 

• If design constraints are rigorous, it may take longer to correctly place and route your 

design, and meet the specified timing. 
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For more information on placing and routing your design, see the Xilinx Development 

System Reference Guide. 

1.4.9 Timing Simulation 

Timing simulation is important in verifying the operation of your circuit after the 

worst case placed and routed delays are calculated for your design. In many cases, you 

can use the same test bench that you used for functional simulation to perform a more 

accurate simulation with less effort. Compare the results from the two simulations to 

verify that your design is performing as initially specified. The Xilinx tools create a 

VHDL or Verilog simulation netlist of your placed and routed design, and provide 

libraries that work with many common HDL simulators. Timing-driven PAR is based 

upon TRACE, the Xilinx timing analysis software. TRACE is an integrated static timing 

analysis, and does not depend on input stimulus to the circuit. Placement and routing are 

executed according to timing constraints that you specify at the beginning of the design 

process. TRACE interacts with PAR to make sure that the timing constraints you impose 

on the design are met. 

If you have timing constraints, TRACE generates a report based on your 

constraints. If there are no constraints, TRACE has an option to write out a timing report 

containing: 

• An analysis that enumerates all clocks and the required OFFSETs for each clock 

• An analysis of paths having only combinatorial logic, ordered by delay 
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CHAPTER TWO: ISE GENERAL INFORMATION & 

USING PROJECT NAVIGATOR 

2.1 ISE General Information 

2.1.1 Xilinx ISE overview 

The integrated Software Environment (ISE ™) is the Xilinx® design software 

suite that allows us to take our design from design entry through Xilinx device 

programming. The ISE Project Navigator manages and processes our design through 

steps in the ISE design flow. 

2.1.2 Design Entry 

Design entry is the first step in the ISE design flow. During design entry, we 

create our source field based on our design objectives. We can create our top-level design 

file using Hardware Description Language (HDL), such as VHDL, Verilog and ABEL, or 

using a schematic. We can use multiple formats for the lower-level source files in our 

design. Ifwe are working with a synthesized EDIF or NGC/NGO file, we can skip design 

entry and synthesis and start with the implementation process. 

2.1.3 Synthesis 

After design entry and optional simulation, we run synthesis. During this step, 

VHDL, Verilog, or mixed language designs become netlist files that are accepted as input 

to the implementation step. 
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2.1.4 Implementation 

After synthesis, we run design implementation, which converts the logic design 

into a physical file format that can be downloaded to the selected target device. From 

Project Navigator, we can run the implementation processes separately. Implementation 

processes vary depending on whether we are targeting a Field Programmable Gate Array 

(FPGA) or a Complex Programmable Logic Device (CPLD). 

2.1.5 Verification 

We can verify the functionality of our design at several points in the design flow. 

We can use simulator software to verify the functionality and timing of our design or a 

portion of our design. The simulators interpret VHDL or Verilog code into circuit 

functionality and display logical results of the described HDL or determine correct circuit 

operation. Simulation allows us to create and verify complex functions in a relatively 

small amount of time. We can also run in-circuit verification after programming the 

device. 

2.1.6 Device Configuration 

After generating a programming file, we configure our device. During 

configuration, we generate configuration files and download the programming file from a 

host computer to a Xilinx device. Xilinx ISE overview Architecture Support. 
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2.1. 7 Architecture Support .. 

The ISE™ software supports the following device families. 

Table 2.1 Supported devices by ISE 

Spartan ™-II Cool Runner™ XPLA3 

Spartan-IIE Cool Runner-II 

Spartan-3 XC9500™ 

Spartan-3E XC9500XL 

Spartan-3L XC9500XV 

Virtex™ 

Virtex-E 

Virtex-II 

Virtex-II Pro 

Virtex-II Pro X 

Virtex-4 

Virtex-5 
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2.1.8 Operating System Support 

The ISE™ software is supported on following operating systems. 

Table 2.2 Supported operating systems by ISE 

Windows® Windows XP® Professional 

Windows 2000® Professional 

Solaris® Solaris 8 

Solaris 9 

Linux Red Hat® Enterprise WS 3.0 32-bit/64-bit 

Red Hat® Enterprise WS 4.0 32-bit/64-bit 

2.2 Using Project Navigator 

2.2.1 Project Navigator Overview 
Project Navigator organizes our design files and runs processes to move the design 

from design entry through implementation to programming the targeted Xilinx® device. 

Project Navigator is the high-level manager of our Xilinx FPGA and CPLD designs, 

which allows us to do the following: 

1. Add and create design source files, which appear in the source window. 

2. Modify the source files in the workspace. 

3. Run processes on the source files in the process window. 

4. View output from the processes in the transcript window. 
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2.2.2 Project Navigator Main Window 

The following figure shows the Project Navigator main window, which allows us 

to manage our design starting with design entry through device configuration. 
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Figure 2.1 Project Navigator Main Window 

1. Tool bar 

2. Sources window 

3. Processes window 

4. Workspace 

5. Transcript window 
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2.2.3 Using the Source Window .. 

The first step in implementing our design for a Xilinx® FPGA or CPLD is to 

assemble the design source files into a project. The source tab on the Sources window 

shows the source files and allows us to create and add to our project, as shown in the 

following figure. 

Sources for: I Synthesis/Implementation 
t \:J v2_fifo_ vhd_25S 

, S· a xc3s1.ooe-4tq144 
! .. , ~Jl.:tfifoctlr_cc_ v2 • fifoctlr_ cc_ v2_hdl (fifoctlr .... c 

··-,, Snapshots 1 
Figure 2.2 Source Window 

The Design View ("Sources for") drop-down list at the top of the Sources tab 

allows us to view only those sources files associated with the selected Design View (for 

instance, Synthesis/Implementation). 

The Sources tab shows us the hierarchy of our design. We can collapse and 

expand the levels by clicking the plus ( +) and the minus (-) icons. Each source file 

appears next to an icon that shows its file type. The file we select determines the 

processes available in the Process window. We can double-click a source file to open it 

for editing in the workspace. For information on different file types, you can change the 

project properties, such as the device family or target, the top-level module type, the 

Synthesis tool, the simulator, and the generated simulation language. 
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Depending on the source file and tool we are working with, additional tabs are available 

in the Sources window: 

• Always available: Sources Tab, Snapshot tan, Libraries tab. 

• Constraints Editor: Timing Constraints tab 

• Floorplan Editor: Translated Netlist tab, Implemented Objects tab. 

• Schematic Editor: Symbols tab. 

• Technology Viewer: Design tab. 

• Timing Analyzer: Timing tab. 

2.2.4 Using the Processes Window 

The processes tab in the processes window allows us to run actions or "processes" 

on the source file we selected in the sources tab of the sources window. The processes 

change according to the source file we select. The Process tab shows the available 

processes in a hierarchical view. We can collapse and expand the levels by clicking the 

plus (+) and the minus (~) icons. Processes are arranged in the order of a typical design 

flow: project creation, constraints management, synthesis, implementation and 

programming file creation. 

Depending on the source file and tool we are working with, additional tabs are 

available in the Processes Window: 

• Always available: Processes tab. 

• Floorplan Editor: Design Objective tab, Implemented - selection tab. 

• ISE Simulator: Hierarchy Browser tab. 

• Schematic Editor: Option tab. 

• Timing Analyzer: Timing Objects tab. 
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2.2.5 Process Types, 

The following types of processes are available as we work on our design: 

When we run task process, the ISE software runs in "batch mode" that is, the 

software processes our source file but does not open any additional software tools in 

the workspace. Output from the processes appears in the transcript window. 

• Reports [!l 
Most Tasks include report sub-processes, which generate a summary or status report, 

for instance, the Synthesis Report or Map Report. When we run a report process, the 

report appears in the workspace. 

2.2.6 Process Status 
As work on our design, we may make changes that require some or all the 

processes to be re-run. For example, if we edit a source file, it may require that the 

Synthesis process and all subsequent processes be re-run. Project Navigator keeps 

track of the changes we make and shows the status of each process with the following 

status icon: 

• Running 

This icon shows that the process is running. 

• Up-to-date 9 
This icon shows that the process ran successfully with no errors and warnings and does 

not need to be re-run. If the icon is next to a report process, the report is up-to-date; 

however, associated tasks may have warnings or errors. If this occurs, we can read the 

report to determine the cause of the warning or errors. 
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• W amings reported it .. 
This icon shows that the processes ran successfully but with warnings were encountered. 

• Errors reported 0 
This icon shows that the process ran but encountered an error. 

• Out-of-Date 

This icon shows that we made design changes, which require that the process be re-run. If 

this icon is next to a report process, we can re-run the associated task process to create an 

up-to-date version of the report. 

• No icon 

If there is no icon, this shows that the process was never run. 
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2.2. 7 Running Processes 

To run a process, we can do any of the following: 

• Double-click on the process 

• Right-click while positioned over the process, and we select Run from the pop-up 

menu, as shown in the following figure. 

Run 
Rerun 
Rerun All e 

~ Stop 
Open \Nithout Updating 

Properties .. , 

Figure 2.3 Running Process 

• Select the process, and then click the Run toolbar button ':lt . 
• To run the Implement Design process and all preceding processes on the top 

module cPa for the design, select Process > Implement Top Module. 

When we run a process, Project Navigator automatically processes our design as follows: 

• Automatically runs lower-level processes 

When we run a high-level process, Project Navigator run associated lower-level 

processes or sub-processes. For example, if we run Implement Design for our 

FPGA design, all the following sub-processes run: Translate Map, and Place & 

Route. 
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• Automatically runs preceding processes 

When we run a process, Project Navigator runs any preceding processes that are required, 

thereby "pulling" out design through the design flow. For example, to pull our design 

through the entire flow, double-click Generate Programming File. 

• Automatically runs related processes for out-of-date processes 

If we run an out-of-date process, Project Navigator runs that process and any related 

processes required to bring that process up-to-date. It does not necessarily run all 

preceding processes. For example if we change our UCF file, the Synthesize process 

remains up-to-date, but the Translate process becomes out-of-date. If we run the Map 

process, Project Navigator runs Translate but does not run Synthesize. 

2.2.8 Setting Process Properties 

Most processes have a set of properties associated with them. Properties control 

specific options, which correspond to command line options. When properties are 

available for a process, we can right-click while positioned over the process and select 

Properties from the pop-up menu, as shown in the following figure. 

'ft Run 
Rerun 

~ RerunAII 

~ Stop 
Open Without Updating 

~ Properties ••. 

Figure 2.4 Process Properties 
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When we select Properties, a Process Properties dialog 'box appears, with standard 

properties that we can set. The Process Properties dialog box differs depending on the 

process we select. 

After we become familiar with the standard properties, we can set additional, 

advanced properties in the Process Properties dialog box; however, setting these options 

us not recommended if we are just getting started with using the ISE software. When we 

enable the advanced properties, both standard and advanced properties appear in the 

Process Properties dialog box. 

2.2.9 Using the Workspace 

When we open a project source file, we open the Language Template, or run 

certain processes, such as viewing reports or logs, the corresponding file or view appears 

in the workspace. We can open multiple file or views at one time. Tabs at the bottom of 

the Workspace show the names of each file or view. A tab is clicked it bring it to the 

front. To open a file or a view in a standalone window outside of the Project Navigator 

Workspace, the float toolbar button is used. To dock a floating window, the Dock toolbar 

button is used. 

• Float 

• Dock 

The Dock toolbar button is only available from the floating window. 

2.2.10 Using the Transcript Window 

The console tab of Transcript window shows output messages from the processes 

we run. If a line number appears as part of the message, we can right-click the message 

and select Go-to Source to open the source file with the appropriate line number 

highlighted. 

• Warning it 
ErrorO • 
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• Depending on the source file and tool we are working with, additional tabs are 

available in this Transcript window: 

• Always available: Console tab, Errors tab, Warnings tab, Tel Console tab, Find in 

File tab. 

• ISE Simulator: Simulation Console tab. 

• RTL and Technology Viewers: View by name tab, View by Category tab. 

2.2.11 Using the Toolbars 

Toolbars provide convenient access to frequently used commands. To execute a 

command a tool bar button click once on. To see the short pop-up description of a toolbar 

button, the mouse pointer is holding over the button for about two seconds. A longer 

description appears in the status bar at the bottom of the main window. 
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CHAPTER THREE: FIFO (511 X 36) C:ONTROLLER IN 

VHDL 

Requirements 

,Ir 

Specification 

. ~ 
,Ir 

VHDL Code 

,Ir 

Synthesize 

111' 

Test Bench 

,1, 

Simulation 

' 

Implementation Tool 

Figure 3.1. Thing will be done in this chapter 
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3.1 Requirement •. 

My requirement is a FIFO (511 X 35) controller. 

3.2 Specifications 

3.2.1 FIFOs Using Virtex-11 Block RAM 

I will describe a 511 X 36 FIFO; each port structure can be changed if the control 

logic is changed accordingly. The size of the FIFO is 511 X 36 instead of 

512 X 36 since one address is dropped out of the FIFO in order to provide distinct 

Empty/Full conditions. First the design for a 511 X 36 with common Read and Write 

clocks is described, and then the design changes required for the more difficult case of 

independent Read and Write clocks are presented. Signal names in parenthesis are a 

reference to the name in the VHDL code. 

3.2.1.1 Synchronous FIFO Using Common Clocks 

Figure 1 is a block diagram of a synchronous FIFO. When both the Read and 

Write Clocks originate from the same source, it simplifies the operation and arbitration of 

the FIFO, and the Empty and Full flags can be generated more easily. Binary counters are 

used for both the read (read_addr) and write (write_addr) addresses counters. Table 1 lists 

the Port Definitions for a synchronous FIFO design. 
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Figure 3.2 511 X 36 Synchronous FIFO 

My inputs are: 

1- clock_in,2-fifo_gsr_in,3-write_enable_in, 4- write_data_in, 5- read_enable_in 

My Outputs are: 

1- full_out, 2- empty out, 3-read_data_out, 4- fifo_count_out 
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Table 3.1 Port Definitions 

Signal Name Port Direction Port Width 

Clock in input 1 

Fifo _gsr _in input 1 

Write enable in input 1 - - 
Write data in input 36 - - 

Read enable in input 1 - - 
Read data out output 36 - - 
Full out output 1 

Empty_out output 1 

Fifocount out output 4 

3.2.1.2 Synchronous FIFO operation 

To perform a read, Read Enable (read_enable) is driven high prior to a rising 

clock edge, and the Read Data (read_data) will be presented on the outputs during the 

next clock cycle To do a Burst Read, simply leave Read Enable High for as many clock 

cycles are desired, but if empty goes active after reading, then the last word has been 

read, and the next Read Data would be invalid. 

To perform a write, the Write Data (write_data) must be present on the inputs, and 

Write Enable (write_enable) is driven high prior to a rising clock edge. As long as the 

Full flag is not set, the write will be executed. To do a Burst Write, the Write Enable is 

left High, and new Write Data must be available every cycle. 
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A FIFO count (fifocount) is added for convenience, to-determine when the FIFO 

is Y:z full, % full, etc .. , as shown in Table 3. Its binary count of the number of words 

currently stored in the FIFO. It is incremented on Writes, decremented on Reads, and left 

alone when the operations performed within the same clock cycle. In this application only 

the upper four bits are sent to VO, but that can easily be modified. 

The Empty flag is set when either the fifocount is zero, or when the fifocount is 

one and only a Read is being performed. This early decoding allows Empty to be set 

immediately after the last Read. It is cleared after the Write operation (with no 

simultaneous Read). Similarly, the Full flag is set when the fifocount is 511, or when the 

fifocount is 510 and only a Write is being performed. It is cleared after a Read operation 

(with no simultaneous Write). If the both Read and Write are done in the same clock 

cycle, there is no change to the status flag. During Global Reset (fifo_gsr), both these 

signals are driven high , to prevent any external logic from interfacing with the FIFO 

during this time. 
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3.2.1.3 Asynchronous FIFO Using Independent Clocks 

Figure 3.3 is the block diagram for a 511 X 36 asynchronous FIFO. The 

asynchronous FIFO Read and Write port signals are clocked by independent Read and 

Write clocks. Table 2 shows the port definition for an asynchronous FIFO. 

1 . WRITE 
1 . --------------- . 

2 Counter 
--,. 

I 2 . 
(Binary) Binary to FIFO Status . 

3 Gray Code Flag 
I . 

. I . Converter Generation Block 

4 (WRITE) 
I RAM 

. Logic I 3 . I 
511 X 36 . 

5 
•. 

. READ Binary to 9-Bit FIFO I . 
6 Counter Gray Code Status I 

. (Binary) Converter Register I 

(READ) I 
I 4 . 

L-------------- I 

Figure 3.3 511 X 36 Asynchronous FIFO 

The inputs are: 

1- write_clock_in, 2- write_enable_in, 3- write_data_in, 4- read_clock_in 

5- read_enable_in, 6- fifo_gsr_in. 

The outputs are: 

1- fifostatus_out, 2- full_out, 3- empty_out, 4- read_data_out. 
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Table 3.2 Port Definitions 

Signal Name Port Direction Port Width 

Write clock in Input 1 - - 
Read clock in Input 1 - - 
Fifo_gsr_in input 1 

Write enable in input 1 - - 

Write data in input 36 - - 

Read enable in output 1 - - 

Read data out output 36 - - 

Full out output 1 

Empty_out output 1 

Fifostatus out output 4 

3.2.1.4 Asynchronous FIFO operation 

In order to operate a FIFO with independent Read and Write clocks, some 

asynchronous arbitration logic is needed to determine the status flag. The previous 

Empty/Full generation logic and associated flip-flops are no longer reliable, because they 

are now asynchronous with respect to one another, since empty is clocked by the Read 

clock, and full is clocked by the Write clock. 

To solve this problem, and to minimize the speed of the control logic, additional 

logic complexity is accepted for increased performance. There are primary 9-bit Read 

and Write binary address counters, which drive the address inputs to the block RAM. The 

binary addresses are converted to Gray-code, and pipelined for a few stages to create 

several address pointers (read_addrgray, read_nextgray, read_lastgray, write_addrgray, 
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write_nextgray) which are used to generate the Full and Empty flags as quickly as 

possible. 

Gray-code addresses are used so that the registered Full and Empty flags 

are always clean, and never in an unknown state due to the asynchronous relationship of 

the Read and Write clocks. In the worst case scenario, Full and Empty would simply stay 

active one cycle longer, but this would not generate an error. 

When the Read and Write Gray-code pointers are equal, the FIFO is 

empty. When the Read and Write Gray-code pointer is equal to the next Gray-code 

pointer, the FIFO is full, having 511 (36-bit) words stored. Additional comparisons are 

done within the same carry chain to determine when the FIFO is almost Empty and 

almost Full, so that Empty and Full can be generated on the same clock edge as the last 

operation. (Traditional control uses an asynchronous signal to test the flags, but this is 

much slower and limits the overall performance.) 

The fifostatus signal indicates Y:z full, Yi full, etc., as shown in Table 3. the 

task of generating fifostatus in the asynchronous version is more complex, and therefore 

requires more logic. The overall performance can be improved if this signal is trimmed. 

The fifostatus outputs have a one-cycle latency for write operations, and a two-cycle 

latency for reads. 
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.. 

Table 3.3 FIFO count and FIFO status signal Description 

Bit 3 Bit 2 Bit 1 Bit 0 FIFOStatus/FIFOCount 

1 1 1 1 15/16 full 

1 1 1 0 7 /8 full 

1 1 0 1 13/16 full 

1 1 0 0 3/4 full 

1 0 1 1 11/16 full 

1 0 1 0 5/8 full 

1 0 0 1 9/16 full 

1 0 0 0 1/2 full 

0 1 1 1 7 /16 full 

0 1 1 0 3/8 full 

0 1 0 1 5/16 full 

0 1 0 0 1/4 full 

0 0 1 1 3/16 full 

0 0 1 0 1/8 full 

0 0 0 1 1/16 full 

0 0 0 0 < 1/16 full 

3.2.1.5 Conclusion 

The Virtex II block RAM can be used to generate both synchronous and 

asynchronous FIFOs. Asynchronous FIFOs are possible due to the true dual-port nature 

of the block RAM feature. These FIFOs can be operate at speeds around 200 MHz. 
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3.3 How I have Created My Project .. 

To create project I did the following: 

1. I have selected File/New Project ... That Will Make the New Project Wizard 

to Appear. 

Open Project . 
OpenEx~ . 
Close Project 
Save Project As ... 

DNew ClrltN 
.; Open ... Clr1+0 

dose 
-- iJ 5'Ve Ctrl+5 

S.veAs ... 
fl 5'VeA! ---tl~lb~i 

Frint Preview ... 
~ Pr'1t... Ctrl+P 
------··-··---·, I 

Recent Fies 

Recent Projects 

lilt Piocesses I http:/t.w.w.><ilinx.com 

Started "Launching De3ign Swrmary". 

Figure 3.4 Creating new Project 

2. Typing fifo_ctlr in the Project Name field will name the project fifo_ctlr. 
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Enter a Name and Location for the Proiect 

Project Name: Project Location 
lm~_ctlr j j-C-:\X-ilinx---91-i\-sil ..•.. ent-\f-~o-_c_tl .•... r ......•... ----- ••.• , Q 

Select the Type of T op·Level Source fo1 the Project 
Top-Level SotifoeJ ype: 

{HDL 

< Back t( Next > J More Info Cancel 

Figure 3.5 Naming new Project 

3. Enter or browse to a location (directory path) for the new project. A tutorial 

subdirectory is created automatically. 

4. We should verify that HDL is selected from the Top-Level Source Type list. 

5. Clicking Next allows us to move to the device properties page. 

6. I've filled the properties in the table as shown below: 

• Product Category: All 
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• Family: Spartan3 •• 

• Device: XC3S200 

• Package: FT256 

• Speed Grade: -4 

• Top-Level Source Type: HDL 

• Synthesis Tool: XST VHDL 

• Simulator: ISE Simulator VHDL 

• Preferred Language: VHDL 

• Verify that Enable Enhanced Design Summary is selected . 

Leave the default values in the remaining fields. 

When the table is complete, your project properties will look like the following: 

Syn!!_)esis T e?I 
Simulator 
Prefeued Language 

Select the Device and De~gn Flow- for the Project 

f
~perl;Na;e- ---1~ -- - ,.,._ _ ....;......;.._....;......;......;.._-1 
oduct Category I AH I 

1 Family ·-,,~~ 1 Spartan3 11 

!Device- --·----~-"'~- 1XC3S200 - 
'.i.io"&_;,,;o-~~~~ ~ 

Package 'FT256 - ,,-~=~-- ~------------------....; Speed ·4 -..,..,...,.....,..,.,....;:..,..,....,.- ..•. ~- 
i _ _ 1__ __ ...._...._...._ ...._...._....___...._ __ --4 

r Top-Level Sourc~ Type - """""" lj HDL : cl 
' XST (v'HDLNerilog) 
Ii ISE Simulator (VHDLNerilog) 
VHDL 

Enable Enhanced Design Summar1 
Enable Message Filtering 
Display Incremental Messages 

Moreh1fo Cancel 

Figure 3.6 Device Properties 

48 



7. We click Next to proceed to the Create New Source window in the New Project 

Wizard. At the end of the next section, new project will be complete. 

3.3.1 Creating an HDL Source 

In this section, I will show you how I have created a top-level HDL file for my 

design. 

A source file is any file that contains information about a design. Project 

Navigator provides a wizard to help us create new source files for our project. If we are 

targeting a Spartan-3A or Virtex-5 device, we can use the new source wizard to pre 

assign package pins for an empty project. For details, Pre-Assigning Package Pins in the 

New Source Wizard. 

3.3.2 Creating a VHDL Source 

Create a VHDL source file for the project as follows: 

1. New Source button in the New Project Wizard. 

2. Selecting VHDL Module as the source type. 
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3. Type in the file name FIFO 512 X 36 as follows. .. 

\)' IP [Coregen & Architectuie Wizard) 
ol Schematic 

~ User Document 
~ Verilog Module 

Verilog Test Fixture 
"NJ vBp~Module 

VHDL Library 
PlVHDL Package 
yJ VHDL Test Bench 

Fie name: 

ltifo 51?X3~ 
Location: 

lc:\Xilinx91i\silent\fifo_ctlr I 0 

s I More_ Info c Back Next> Cancel 

Figure 3.8 Source Type 

4. We should verify that the Add to project checkbox is selected. 

5. Click Next. 
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below in figure: 

Entity Name lfifoctlr_cc_ v2 

Arch~ecture Name !Behavioral I 
Port Name f Direction 
clock_in in 

read_enable_in 1n 

write_enable_in in 
write_data_in in 

-------~'"' 
fifo_gsr_in lin 
read_data_out lout 
full_out I out --- 
empty_out out 
fifo_ count_ G1ut out 

1n 

I MSB I LSB 

More Info < Back [ Cancel j 

Figure 3.9 Declaring Ports 

7. We click Next and then Finish in order in the New Source Wizard - Summary dialog 

box to complete the new source file template. 

8. We click Next, then Next, then Finish. 

After finishing my Entity part which used to define the inputs and the outputs 

,the result will be shown like this: 
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entity fifo _ ctlr is 

port (clock_in: 

•. 
IN std_logic; 

read_enable_in: IN std_logic; 

write_enable_in: IN std_logic; 

write_data_in: IN std_logic_vector(35 downto O); 

fifo_gsr_in: IN std_logic; 

read_data_out: OUT std_logic_vector(35 downto O); 

full_out: OUT std_logic; 

empty_ out: OUT std _logic; 

fifocount out: OUT std_logic_vector(3 downto O)); 

END fifo _ ctrl; 

And then I wrote down the Architecture part which used to define the functions of 

the design, the result would be shown like: 

architecture fifo ctlr hdl of fifo ctlr is 

signal clock: 

signal read_ enable: 

signal write_enable: 

signal fifo _gsr: 

signal read_ data: 

std_logic; 

std_logic; 

std_logic; 

std_logic; 

std_logic_vector(35 downto 0) 

:= "000000000000000000000000000000000000"; 

signal write_data: std_logic_ vector(35 downto O); 

signal full: std_logic; 

signal empty: std_logic; 

signal read_addr: std_logic_vector(8 downto 0) := "000000000"; 

signal write_ addr: std _logic_ vector(8 down to 0) := "000000000"; 

signal fcounter: std _logic_ vector(8 downto 0) := "000000000"; 

signal read_allow: std_logic; 

signal write_ allow: std _logic; 

signal fcnt_allow: std_logic; 
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signal fcntandout: 

signal ra_or_fcntO: 

signal wa_or_fcntO: 

signal emptyg: 

signal fullg: 

signal gnd_bus: 

signal gnd: 

signal pwr: 

std _logic_ vector(3 downto O); 

std_logic; 

std_logic; 

std_logic; 

std_logic; 

std _logic_ vector(3 5 down to O); 

std_logic; 

std_logic; 

The next part I used to call the global buffer component which exists in the system: 

component BUFGP 

port ( 

I: IN std_logic; 

0: OUT std_logic); 

END component; 

And here I have declared the block RAM codes which I described in my specification 

section: 

componentRAMB16_S36_S36 

port ( 

ADDRA: IN std_logic_vector(8 downto O); 

ADDRB: IN std_logic_vector(8 downto O); 

DIA: IN std _logic_ vector(31 downto O); 

DIB: IN std_logic_vector(31 downto O); 

DIPA: IN std_logic_ vector(3 downto O); 

DIPB: IN std_logic_ vector(3 downto O); 

WEA: IN std_logic; 

WEB: IN std_logic; 

CLKA: IN std _logic; 

CLKB: IN std_logic; 
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SSRA: IN std_logic; 

SSRB: IN std_logic; 

ENA: IN std_logic; 

ENB: IN std_logic; 

DOA: OUT std_logic_vector(31 downto O); 

DOB: OUT std_logic_vector(31 downto O); 

DOPA: OUT std_logic_vector(3 downto O); 

DOPB: OUT std_logic_vector(3 downto O)); 

END component; 

•• 

Now I am making a connection between the Entity part with my signal: 

BEGIN 

read_enable <= read_enable_in; 

write_enable <= write_enable_in; 

fifo_gsr <= fifo_gsr_in; 

write_data <= write_data_in; 

read_ data_ out <= read_ data; 

full_ out <= full; 

empty_ out <= empty; 

gnd _ bus <= "000000000000000000000000000000000000"; 

gnd <= 'O'; 

pwr <= '1'; 

I had to instantiant a global buffer to make sure that there is no any skew problem 

appears: 

gclkl: BUFGP port map (I=> clock_in, 0 => clock); 
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Before the processes began, I had to connect my block RANI to the signal, and I have 

done it using the following codes: 

braml: RAMB16_S36_S36 port map (ADDRA => read_addr, ADDRB => write_addr, 

DIA=> gnd_bus(35 downto 4), DIPA => gnd_bus(3 downto 0), 

DIB => write_data(35 downto 4), DIPB => write_data(3 downto 0), 

WEA => gnd, WEB => pwr, CLKA => clock, CLKB => clock, 

SSRA => gnd, SSRB => gnd, ENA=> read_allow, ENB => write_allow, 

DOA=> read_data(35 downto 4), DOPA=> read_data(3 downto 0) ); 

In my process case we have 7 different processes .I will try to obtain the processes as 

following: 

A. In the first two processes we have to set allow flags, which control the clock 

enables for read, write, and count operations. 

procl: PROCESS (clock, fifo_gsr) 

BEGIN 

IF ( fifo _gsr = '1 ') THEN 

read_allow <= 'O'; 

ELS IF ( clock'EVENT AND clock = '1 ') THEN 

read allow<= read enable AND NOT (fcntandout(O) AND fcntandout(l) - - 

AND NOT write_allow); 

END IF; 

END PROCESS procl; 

proc2: PROCESS (clock, fifo_gsr) 

BEGIN 

IF ( fifo _gsr = '1 ') THEN 

write allow<= 'O'· - , 
ELSIF (clock'EVENT AND clock= '1 ') THEN 
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write allow<= write enable AND NOT (fcntandouuz) AND fcntandout(3) - - 
AND NOT read_allow); 

END IF; 

END PROCESS proc2; 

fcnt_allow <= write_allow XOR read_allow; 

B. When the empty flag is set on fifo_gsr (initial), or when on the next clock cycle, 

Write Enable is low, and either the FIFOcount is equal to 0, or it is equal to 1 

and Read Enable is high (about to go Empty). 

ra_or_fcntO <= (read_allow OR NOT fcounter(O)); 

fcntandout(O) <= NOT (fcounter(4) OR fcounter(3) OR fcounter(2) OR fcounter(l) 

OR fcounter(O)); 

fcntandout(l) <= NOT (fcounter(8) OR fcounter(7) OR fcounter(6) OR 

fcounter(5)); 

emptyg <= (fcntandout(O) AND fcntandout(l) AND ra or fcntO AND NOT 

write_allow); 

proc3: PROCESS (clock, fifo_gsr) 

BEGIN 

IF (fifo_gsr = '1') THEN 

empty<= '1'; 

ELS IF ( clock'EVENT AND clock = 'l ') THEN 

empty <= emptyg; 

END IF; 

END PROCESS proc3; 

C. Full flag is set on fifo _gsr (but it is cleared on the first valid clock edge after 

fifo _gsr is removed), or when on the next clock cycle, Read Enable is low, and 
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either the FIFOcount is equal to lFF (hex), or it is equal to lFE and the Write 

Enable is high (about to go Full). 

wa_or_fcntO <= (write_allow OR fcounter(O)); 

fcntandout(2) <= (fcounter(4) AND fcounter(3) AND fcounter(2) AND 

fcounter(l)); 

fcntandout(3) <= (fcounter(8) AND fcounter(7) AND fcounter(6) AND 

fcounter(5)); 

fullg <= (fcntandout(2) AND fcntandout(3) AND wa or fcntO AND NOT 

read_allow); 

proc4: PROCESS (clock, fifo_gsr) 

BEGIN 

IF (fifo _gsr = '1 ') THEN 

full<= '1'; 

ELS IF ( clock'EVENT AND clock = '1 ') THEN 

full <= fullg; 

END IF; 

END PROCESS proc4; 

D. The Generation of Read and Write address pointers are using binary counters, 

because it is simpler in simulation, and the previous LFSR implementation 

wasn't in the critical path. This is done for the process no. 5 & 6. 

proc5: PROCESS (clock, fifo_gsr) 

BEGIN 

IF ( fifo _gsr = '1 ') THEN 

read addr <= "000000000"· - ' 
ELS IF ( clock'EVENT AND clock = '1 ') THEN 

IF (read_allow= '1') THEN 

read_ addr <= read_ addr + '1 '; 
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END IF; 

END IF; 

END PROCESS proc5; 

•• 

proc6: PROCESS (clock, fifo_gsr) 

BEGIN 

IF (fifo_gsr = '1') THEN 
write addr <= "000000000"· 

- ' 
ELS IF ( clock'EVENT AND clock = 'l ') THEN 
IF (write_allow = 'l') THEN 
write_addr <= write_addr + '1'; 

END IF; 

END IF; 

END PROCESS proc6; 

E. Generation of FIFOcount outputs. Used to determine how full FIFO is, based 

on a counter that keeps track of how many words are in the FIFO. Also used to 

generate Full and Empty flags. Only the upper four bits of the counter are sent 

outside the module. 

proc7: PROCESS (clock, fifo_gsr) 

BEGIN 

IF ( fifo _gsr = '1 ') THEN 
fcounter <= "000000000"; 

ELS IF ( clock'EVENT AND clock = 'l ') THEN 
IF (fcnt_allow = '1 ') THEN 
IF (read_allow = 'O') THEN 
fcounter <= fcounter + '1'; 

ELSE 

fcounter <= fcounter - 'l'; 

END IF; 
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END IF; 

END IF; 

END PROCESS proc7; 

.. 

fifocount out<= fcounter(8 downto 5); 

END fifoctlr _cc_ v2 _hdl; 

3.3.3 Open Codes of My FIFO (511 X 36) Design 

library ieee; 

use ieee.std_logic_l 164.all; 

use ieee.std _logic_ unsigned.all; 

-- synopsys translate_ off 

library UNISIM; 

use UNISIM.VCOMPONENTS.ALL; 

-- synopsys translate_ on 

entity fifo _ ctlr is 

port (clock_in: IN std _logic; 

read_enable_in: IN std_logic; 

write_enable_in: IN std_logic; 

write_data_in: IN std_logic_vector(35 downto O); 

fifo_gsr_in: IN std_logic; 

read_data_out: OUT std_logic_vector(35 downto O); 

full_out: OUT std_logic; 

empty_out: OUT std_logic; 

fifocount out: OUT std_logic_vector(3 downto O)); 

END fifoctlr_cc_v2; 



architecture fifo ctlr of fifo ctlr is - - 

signal clock: std _logic; 

signal read_enable: 

signal write_enable: 

signal fifo _gsr: 

•. 

std_logic; 

std_logic; 

std_logic; 

signal read_ data: std _logic_ vector(35 downto 0) 

"000000000000000000000000000000000000"; 

signal write_ data: 

signal full: 

signal empty: 

signal read_ addr: 

signal write_ addr: 

signal fcounter: 

signal read_ allow: 

signal write_ allow: 

signal fcnt_allow: 

signal fcntandout: 

signal ra_or_fcntO: 

signal wa_or_fcntO: 

signal emptyg: 

signal fullg: 

signal gnd_bus: 

signal gnd: 

signal pwr: 

component BUFGP 

port ( 

I: IN std_logic; 

0: OUT std_logic); 

END component; 

std _logic_ vector(3 5 down to O); 

std_logic; 

std_logic; 

std _logic_ vector(8 down to 0) := "000000000"; 

std_logic_ vector(8 downto 0) := "000000000"; 

std _logic_ vector(8 downto 0) := "000000000"; 

std_logic; 

std_logic; 

std_logic; 

std _logic_ vector(3 downto O); 

std_logic; 

std_logic; 

std_logic; 

std_logic; 

std_logic_ vector(35 downto O); 

std_logic; 

std_logic; 

60 



componentRAtv1Bl6_S36_S36 

port ( 

ADDRA: IN std_logic_vector(8 downto O); 

ADDRB: IN std_logic_vector(8 downto O); 

DIA: IN std_logic_ vector(31 downto O); 

DIB: IN std_logic_vector(31 downto O); 

DIPA: IN std_logic_vector(3 downto O); 

DIPB: IN std_logic_ vector(3 downto O); 

WEA: IN std_logic; 

WEB: IN std_logic; 

CLKA: IN std_logic; 

CLKB: IN std_logic; 

SSRA: IN std_logic; 

SSRB: IN std_logic; 

ENA: IN std_logic; 

ENB: IN std_logic; 

DOA: OUT std _logic_ vector(31 downto O); 

DOB: OUT std_logic_vector(31 downto O); 

DOPA: OUT std _logic_ vector(3 downto O); 

DOPB: OUT std_logic_vector(3 downto O)); 

END component; 

BEGIN 

read_enable <= read_enable_in; 

write_enable <= write_enable_in; 

fifo_gsr <= fifo_gsr_in; 

write_data <= write_data_in; 

read_ data_ out <= read_ data; 

full_out <= full; 

empty_ out <= empty; 

gnd _ bus <= "000000000000000000000000000000000000"; 
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gnd <= 'O'· ' 
pwr <= '1'; 

.. 

gclkl: BUFGP port map (I => clock _in, 0 => clock); 

braml: RAMB16_S36_S36 port map (ADDRA => read_addr, ADDRB => write_addr, 

DIA=> gnd_bus(35 downto 4), DIPA => gnd_bus(3 downto 0), 

DIB => write_data(35 downto 4), DIPB => write_data(3 downto 0), 

WEA => gnd, WEB => pwr, CLKA => clock, CLKB => clock, 

SSRA => gnd, SSRB => gnd, ENA=> read_allow, ENB => write_allow, 

DOA=> read_data(35 downto 4), DOPA=> read_data(3 downto 0) ); 

procl: PROCESS (clock, fifo_gsr) 

BEGIN 

IF (fifo_gsr = 'l') THEN 

read allow<= 'O'· - ' 
ELSIF (clock'EVENT AND clock= '1 ') THEN 

read allow<= read enable AND NOT (fcntandout(O) AND fcntandout(l) - - 
AND NOT write_allow); 

END IF; 

END PROCESS procl; 

proc2: PROCESS (clock, fifo_gsr) 

BEGIN 

IF ( fifo _gsr = '1 ') THEN 

write allow<= 'O'· - ' 
ELS IF ( clock'EVENT AND clock = '1 ') THEN 

write_allow <= write_enable AND NOT (fcntandout(2) AND fcntandout(3) 

AND NOT read_allow); 

END IF; 

END PROCESS proc2; 
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•• 

fcnt_allow <= write_allow XOR read_allow; 

ra_or_fcntO <= (read_allow OR NOT fcounter(O)); 

fcntandout(O) <= NOT (fcounter(4) OR fcounter(3) OR fcounter(2) OR fcounter(l) OR 

fcounter(O)); 

fcntandout(l) <= NOT (fcounter(8) OR fcounter(7) OR fcounter(6) OR fcounter(5)); 

emptyg <= (fcntandout(O) AND fcntandout(l) AND ra or fcntO AND NOT 

write_ allow); 

proc3: PROCESS (clock, fifo_gsr) 

BEGIN 

IF ( fifo _gsr = 'l ') THEN 

empty<= '1'; 

ELS IF ( clock'EVENT AND clock = '1 ') THEN 

empty <= emptyg; 

END IF; 

END PROCESS proc3; 

wa_or_fcntO <= (write_allow OR fcounter(O)); 

fcntandout(2) <= (fcounter(4) AND fcounter(3) AND fcounter(2) AND fcounter(l)); 

fcntandout(3) <= (fcounter(8) AND fcounter(7) AND fcounter(6) AND fcounter(5)); 

fullg <= (fcntandout(2) AND fcntandout(3) AND wa_or_fcntO AND NOT read_allow); 

proc4: PROCESS (clock, fifo_gsr) 

BEGIN 

IF (fifo_gsr = '1') THEN 

full<= '1 '; 

ELS IF ( clock'EVENT AND clock = 'l ') THEN 

full <= fullg; 

END IF; 
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END PROCESS proc4; .. 

proc5: PROCESS (clock, fifo_gsr) 

BEGIN 

IF ( fifo _gsr == '1 ') THEN 

read_addr <== "000000000"; 

ELS IF ( clock'EVENT AND clock == 'l ') THEN 

IF (read_allow == '1') THEN 

read_ addr <== read_ addr + '1 '; 
END IF; 

END IF; 

END PROCESS proc5; 

proc6: PROCESS (clock, fifo_gsr) 

BEGIN 
IF ( fifo _gsr == '1 ') THEN 

write_addr <== "000000000"; 

ELS IF ( clock'EVENT AND clock == '1 ') THEN 

IF (write_allow == '1') THEN 

write_addr <== write_addr + '1'; 
END IF; 

END IF; 

END PROCESS proc6; 

proc7: PROCESS (clock, fifo_gsr) 

BEGIN 

IF ( fifo _gsr == '1 ') THEN 

fcounter <== "000000000"; 

ELS IF ( clock'EVENT AND clock== '1 ') THEN 

IF (fcnt_allow == 'l') THEN 

IF (read_allow == 'O') THEN 

64 



fcounter <= fcounter + '1'; 
ELSE 

fcounter <= fcounter - '1 '; 

END IF; 

END IF; 

END IF; 

END PROCESS proc7; 

fifocount_out <= fcounter(8 downto 5); 

END fifo_ctrl; 

3.4 Synthesize 

When the source files are complete, I had to check the syntax of the design to find errors 

and types. 

1. Firstly, verifying that Synthesis/Implementation is selected from the drop-down list 

in the Sources window is the most important thing. 

2. Selecting the fifo _ ctlr design source in the Sources window to display the related 

processes in the Processes window. 

3. The "+" used to expand the process group. (It's next to the Synthesize-XST process.) 

4. Double-click the Check Syntax process. 

Note: I used to correct any errors found in my source files. We can check for errors in 

the Console tab of the Transcript window. Cause if you continue without valid syntax, 

you will not be able to simulate or synthesize your design. 

65 



5. Then I closed the HDL file. •. 

3.5 Test Bench of The Design 

Now we need to test out design and we do it using the Test Bench tool for that. 

We make sure that Synthesis/Implementation checked in source window, we mark on our 

HDL design then click Project -+ New Source. 

We should note that VHDL Test Bench must be checked on and we write fifo ctrl tb in 

File name field. Then we click finish until we finish the process. 

The figure below shows us: 

'<J IP (Coiegen & Architecture Wizard) 
- MEM Fie 

",J Implementation Constraints File 
State Diagram 

.n. Test Bench Waveform 

I E User Document 
Y Verilog Module 

I Verilog Test Fixture I "w VHDL Module 
VHDL Libia,y I P VHDL Package 

v VHDL Test Bench 

[ 

Filename: 

[fifo_ctrl_tb 

Location: 

jc:\Xainx91 i\silent\v2_filo_ vhd_258 ! 0 

0 Add to project ______ ,,_ __ ~"~--~--' 
MOie lrfo <Back..J[_Next> ] I Cancel 

Figure 3.10 Source Type 
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.. 
After clicking Finish, here is the result on Behavioral Simulation in source window: 

LIBRARY ieee; 

USE ieee.std_logic_l 164.ALL; 

USE ieee.std _logic_ unsigned.all; 

USE ieee.numeric _ std.ALL; 

ENTITY fifo ctrl tb vhd IS - - - 

END fifo_ctrl_tb_vhd; 

ARCHITECTURE behavior OF fifo ctrl tb vhd IS 

-- Component Declaration for the Unit Under Test (UUT) 

COMPONENT fifo ctlr 

PORT( 

clock_in: IN std_logic; 

read_enable_in: IN std_logic; 

write_enable_in: IN std_logic; 

write_data_in: IN std_logic_vector(35 downto O); 

fifo_gsr_in: IN std_logic; 

read_data_out: OUT std_logic_vector(35 downto O); 

full_out: OUT std_logic; 

empty_out: OUT std_logic; 

fifocount_ out : OUT std _logic_ vector(3 downto 0) 

); 

END COMPONENT; 
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--Inputs 

SIGNAL clock in: std Iogic := 'O'; 

SIGNAL read_enable_in: std Iogic := 'O'; 

SIGNAL write_enable_in: std_logic := 'O'; 

SIGNAL fifo_gsr_in: std_logic := 'O'; 

SIGNAL write_data_in: std_logic_vector(35 downto 0) := (others=>'O'); 

--Outputs 

SIGNAL read_data_out: std_logic_vector(35 downto O); 

SIGNAL full_out: std Iogic; 

SIGNAL empty_out: stdIogic; 

SIGNAL fifocount out: std_logic_vector(3 downto O); 

BEGIN 

-- Instantiate the Unit Under Test (UUT) 

uut: fifoctlr _cc_ v2 PORT MAP( 

clock _in=> clock _in, 

read enable in=> read enable jn, 

writeenable jn => write_enable_in, 

write_data_in => write jlata jn, 

fifo_gsr_in => fifo_gsr_in, 

read , data_ out => read , data , out, 

full , out=> full , out, 

empty_ out => empty_ out, 

fifocount out => fifocount out 

); 
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•• 

tb: PROCESS 

BEGIN 

-- Wait 100 ns for global reset to finish 

wait for 100 ns; 

-- Place stimulus here 

wait; -- will wait forever 

END PROCESS; 

END; 

Here is my entity part which I used to define my Inputs/Outputs in it: 

clock_in: IN std_logic; 

read_enable_in: IN std_logic; 

write_enable_in: IN std_logic; 

write_data_in: IN std_logic_vector(35 downto O); 

fifo_gsr_in: IN std_logic; 

read_data_out: OUT std_logic_ vector(35 downto O); 

full_out: OUT std_logic; 

empty_out: OUT std_logic; 

fifocount_ out : OUT std _logic_ vector(3 downto 0) 

Afterwards I define my signals ( functions) in Architecture part: 

--Inputs 

SIGNAL clock in: std_logic := 'O'; 

SIGNAL read_enable_in: std_logic := 'O'; 
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SIGNAL write_enable_in: std_logic := 'O'; .. 
SIGNAL fifo_gsr_in: std_logic := 'O'; 

SIGNAL write_data_in: std_logic_vector(35 downto 0) := (others=>'O'); 

--Outputs 

SIGNAL read_data_out: std_logic_vector(35 downto O); 

SIGNAL full_out: std_logic; 

SIGNAL empty_out: std_logic; 

SIGNAL fifocount out : std _logic_ vector(3 downto O); 

Then I connect my Inputs/Outputs to my signal using these codes: 

clock _in=> clock _in, 
read_enable_in => read_enable_in, 
write_enable_in => write_enable_in, 
write_data_in => write_data_in, 
fifo_gsr_in => fifo_gsr_in, 
read_ data_ out => read_ data_ out, 
full_out => full_out, 
empty_ out => empty_ out, 
fifocount out => fifocount out - - 

I created a clock process using these: 

elk _proc: process 

begin 
clock _in<='O'; 
wait for 5 ns; 
clock_in<='l '; 
wait for 5 ns; 
end process; 

I reset my FIFO giving a value 1 to my global reset, enabling to write by giving 1 and un 

enabling to read by Oby: 

tb: PROCESS 
BEGIN 
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fifo _gsr _in<=' 1 '; 
-- Wait 100 ns for global reset to finish 
wait for 100 ns; 

write enable in<= '1 '· - - ' 
read_enable_in <= 'O'; 
fifo _gsr _in<='O'; 

write_data_in <= (write_data_in'range=>'O'); 

wait for 20 ns; 

Afterward I made a loop of 511 to make sure that I used all of the FIFO without 

bad addressing or errors, enabling the read and un-enabling and incrementing the write 

process by: 

for i in O to 511 loop 
write_data_in <= write_data_in + "10"; 
wait for 20 ns; 
end loop; 

-- Place stimulus here 
read_enable_in <= '1'; 
write_enable_in <= 'O'; 
wait; -- will wait forever 

After we have finished our coding we must make sure that we used correct codes, 

we do it by using Checking Syntax tool, correct any syntax errors. 
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•• 

3.6 Simulation 

I can simply reach the Simulation tool by selecting Behavioral Simulation from 

the Source Window, and then Xilinx ISE Simulator ~ Simulate Behavioral Model 

from the Process window. As shown in the figure below: 

'-~v2..lifo_l'hd_258 
t::h:3s100e-4tq144 
~-~IJ~_cc)>_vhd,~(m.vhd) 

tuU_ou~ •> !ul)_out, 
empey_out •> empty_out, 
tUocount out •> titocount out 

52 ) ; - - 
53 

55 
S6 begin 

~:!s f(J: floctk_cc_tb_ vhd · ~ 
r- r:l Add E~sting Souce 
'-o Creale New Swi;e S·» XinidSE S~oc 

'f ,~ Check SJ"la. 

57 clock in<:=101; 

Sa 'i,ait tor s ns; 
5~ cloclt_in<•' 1'; 
60 vait tor S ns; 
61 enct process; 
62 
'63 
64 tb : PROCESS 
65 BEGIN 
66 tifo gsr in<•' 1'; 
67 _: llait 100 tis .to~ global reset to tinish 
6S 11ait tor 100 ns: 
69 vriu eneble in <• '1'; 
70 read_enable_in <• '0'; 
?1 
7~ 
73 
74 
75 
76 

vrite_data_in <• (wdt1t_data_in' range•>' 0'); 

vait for 20 ns; 
tor i in O to 511 loop 

run all 
stop -s 
Stopped at line•S9 tile nameaC: / Ki linx911/ si lent/v2 _f if_o _ vhcl _2 58/ aaa. vhd 

Fild,1 fries 1 

Figure 3.11 Simulation the Design 
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.. 

Running Simulation causes us to get these results: 

Figure 3.12 Simulation Result 

As we can see from the figure. When the global reset goes from 1 to 0, the 

resetting process stops. And when the write_enable_in become 1, it starts to write into the 

FIFO. 

We should note that the write_data_in is increasing 2 by 2 that's the cause of our shown 

code: 

write_data_in <= write_data_in + "10"; 
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.. 

And here is another screen shot which shows us that after a certain time the 

read_ data_ out is also increasing, as shown below: 

Figure 3.13 Simulation Result 

This means that I wrote data in my FIFO and I can read them, and that was my objective. 
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3. 7 Implementation •• 

You can Implement and view the Translate, Map, Place & Route reports and then 

apply it your electronic device. The figure below shows how to Implement your design 

(you must have a green tick as shown, which means that the reports generated 

successfully): 

"}'.: Fae Edi: 1/iew Project Sou',e ,. f'°'"'' Wlidow HelJ 
110 ~ ~ c,.t~~rn~~xtl\')e1 ftijfof':rcx;l!,,@i~~~ s III gig> 111 i100~1§:dfect?':' ih Q 

0 t!'Ht~~~~(H) 

NoErrois 

~ 
i Wed Ma,, 30 23:19:28 
!i 2007 

C1eate New Souce 
View Design S\.1Yl1l'1¥y 
De~Utitie$ 
u~Ct>nS:traints 
Si,,tt>esize·XST 

(~~Tron,late 
$ ,~$Map 
$--'~Place & Route 
,~@GeneioteProg,amfringF'rle 

r Total time: 7 :,;;'c~ 
I 

Process -cenecaee pcet.-p Iece & Route Static:: Timing" completed eucceeerut tv 

Figure 3.14 Implementation the design 
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Conclusion .. 

I designed a FIFO Controller using Integrated Software Environment (ISE) 

development tools. My design approach was to define my inputs, outputs and functions 

using the VHDL, generated a Test Bench to write into 512 location with different data, 

and to read this 512 data location one-by-one. I used the Test Bench Simulator Tool to 

see what I wrote I read it back. The simulation was successful, that means I have read the 

data correctly. 

I used 5 different functions (processes) to fill the locations of my FIFO, and here 

they are: 

• I set allow flags, which control the clock enables for read, write, and count 

operations. 

• Empty flag is set on fifo _gsr (initial), or when on the next clock cycle, 

Write Enable is low, and either the FIFOcount is equal to 0, or it is equal 

to 1 and Read Enable is high (about to go Empty). 

• Full flag is set on fifo _gsr (but it is cleared on the first valid clock edge 

after fifo_gsr is removed), or when on the next clock cycle, Read Enable is 

low, and either the FIFOcount is equal to lFF (hex), or it is equal to lFE 

and the Write Enable is high (about to go Full). 

• Generation of Read and Write address pointers. They now se binary 

counters, because it is simpler in simulation, and the previous LFSR 

implementation wasn't in the critical path. 

• Generation of FIFO count outputs. Used to determine how full FIFO is, 

based on a counter that keeps track of how many words are in the FIFO. 

Also used to generate Full and Empty flags. Only the upper four bits of 

the counter are sent outside the module. 
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Conclusion 

I designed a FIFO (511X36) Controller using VHDL. I have used the Integrated 

Software Environment (ISE) development tools to develop and implement the project. 

My design approach was to define the requirements of the design, then derive the 

specification. I wrote my VHDL codes defining my inputs, outputs and functions (I used 

5 different processes to design the function of the FIFO) my functions were signals, so I 

used to connect my entity part to my signal. I used the synthesis tool to check my design 

syntax then I generated a Test Bench to write into 512 locations with different data, and 

to read this 512 data location one-by-one (I made a FOR loop of 511 to make sure that I 

used all of the FIFO without bad addressing or errors, enabling the read and un-enabling 

and incrementing the write process). Checked the Syntax and everything was under 

control. 

I used the Test Bench Simulator Tool to see what I wrote I read it back then I 

have created some implement reports like (translate, map, place & route). The simulation 

was successful; the codes are ready to be uploaded into the electronic device, which 

means I have reached my objective. 
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