
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

FIFO (511 X36) CONTROLLER

Graduation Project
COM-400

Murad Al- Juneydi

Mr. Mehmet Kadir Ozakman

Nicosia - 2007

..

AKNOWLEDGEMENT

IN THE NAME OF ALLAH, MOST GRACIOUS, MOST MERCIFUL.

I would like to express my deepest appreciation to my god who stood beside

me all the time, who supported me in all my achievements and who has given me the

power and patience to finish my college studies successfully.

Firstly I would like to thank my parents and also to my fiance" Ayten GUL"

and pay special regards for guiding me through my studies, which are enduring these

all expenses and supporting me in all events. I am nothing without their prayers. They

also encouraged me in crises. I shall never forget their sacrifices for my education so

that I can enjoy my successful life as they are expecting.

And /feel proud to pay my special regards to my project supervisor"Mehmet

Kadir OZAKMAN". He never disappointed me in any affair. He delivered me too

much information and did his best of efforts to make me able to complete my project.

He has Devine place in my heart and I am less than the half without his help. I am

really thankful to my instructor. Not to forget to give my thanks to the NEAR EAST

UNIVERSITY education staff members for their help to take this degree and to

achieve this level.

Specially" Mr. Okan DONANGIL" who always required all students respect with

his wise and character.

At the end, we will never forget the grievous and the happy days that we spent in

Cyprus, from the University to the good friends that we have enjoyed during the 4

years with them. We would like to thank them for their kindness.

.•

ABSTRACT

VHDL (Very high speed Hardware Description Language) is a programming

language: although VHDL was not designed for writing general purpose

programs, we can write any algorithm with this language. If we are able to write

programs, we will find in VHDL features similar to those found in procedural

languages such as C or PASCAL. It derives most of its syntax and semantics from

Ada. Knowing Ada is an advantage for learning VHDL because they are familiar.

Here are some advantages and general information about the VHDL

programming language:

• VHDL is designed to fill a number of needs in the design process.

• Describes the structures and the functions of a system.

• It allows the design of a system to be simulated before being manufactured, so

that the designer can test for correctness without the expense and delay the

hardware prototyping.

• It allows the description of a system at higher level of abstraction (abstraction

defines how much detail about the design is specified in a particular

description of it) to eliminate going into the design detail.

• A synthesis tool generates the detailed design.

• Portable and could be synthesized to FPGA programmable devices.

ii

•

AKNOWLEDGEMENT

ABSTRACT

TABLE OF CONTENTS

INTRODUCTION

CHAPTER ONE: FPGA Design Flow

i

ii

iii

1.1 Hardware Description Languages

1.2 Advantages of Using HDLs to Design FPGA Devices

1.2.1 Top-Down Approach for Large Projects

1.2.2 Functional Simulation Early in the Design Flow

1.2.3 Synthesis of HDL Code to Gates

1.2.4 Early Testing of Various Design Implementations

1.2.5 Reuse of RTL Code

1.3 Designing FPGA Devices with HDLs

1.3.1 Designing FPGA Devices with VHDL

1.3.2 Designing FPGA Devices with Synthesis Tools

1.3.3 Using FPGA System Features

1.3 .4 Designing Hierarchy

1.3 .5 Specifying Speed Requirements

1.4 FPGA Design Flow

1.4.1 Design Flow

1.4.2 Entering Your Design and Selecting Hierarchy

1.4.2.1 Design Entry Recommendations

1.4.2.2 Architecture Wizard

1.4.2.3 CORE Generator

1.4.3 Functional Simulation

1.4.3 .1 Simulation Recommendations

1.4.3.2 ModelSim Simulator

1.4.4 Synthesizing and Optimizing

1.4.4.1 Creating a Compile Run Script

1

2

2

2

3

3

3

4

4

4

s
s
s
6

6

7

8

9

9

10

12

13

13

13

14

14

iii

•.
1.4.4.2 Synthesizing Your Design

1.4.4.3 Reading Cores

1.4.5 Setting Constraints

1.4.6 Evaluating Design Size and Performance

1.4.6.1 Estimating Device Utilization and Performance

1.4.6.2 Determining Actual Device Utilization and Pre-routed

Performance

1.4.7 Evaluating Coding Style and System Features

1.4.7.1 Modifying Your Code

1.4.7.2 Using FPGA System Features

1.4.7.3 Using Xilinx-Specific Features of Your Synthesis Tool

1.4.8 Placing and Routing

1.4.9 Timing Simulation

CHAPTER TWO: ISE GENERAL INFORMATION

& USING PROJECT NAVIGATOR
2.1 ISE General Information

2.1.1 Xilinx ISE Overview

2.1.2 Design Entry

2.1.3 Synthesis

2.1.4 Implementation

2.1.5 Verification

2.1.6 Device Configuration

2.1.7 Architecture Support

2.1.8 Operating System Support

2.2 Using Project Navigator

2.2.1. Project Navigator Overview

2.2.2 Project Navigator Main Window

2.2.3 Using the Source Window

2.2.4 Using the Processes Window

iv

14

15

16

17

17

18

21

21

21

22

22

23

24

24

24

24

24

25

25

25

26

27

27

27

28

29

30

2.2.5 Process Types

2.2.6 Process Status

2.2.7 Running Processes

2.2.8 Setting Process Properties

2.2.9 Using the Workspace

2.2.10 Using the Transcript Window

2.2.11 Using the Toolbars

CHAPTER THREE: FIFO

CONTROLLER IN VHDL

31

31

33

34

35

35

36

(511 X 36)
37

· 3 .1 Requirement

3.2 Specifications

3.2.1 FIFOs Using Virtex-II Block RAM

3.2.1.1 Synchronous FIFO Using Common Clocks

3.2.1.2 Synchronous FIFO operation

3.2.1.3 Asynchronous FIFO Using Independent Clocks

3.2.1.4 Asynchronous FIFO operation

3 .2.1.5 Conclusion

3.3 How I have Created My Project

3.3.1 Creating an HDL Source

3.3.2 Creating a VHDL Source

3.3.3 Open Codes of My FIFO (511 X 36) Design

3.4 Synthesize

3 .5 Test Bench of The Design

3.6 Simulation

3.7 Implementation

Conclusion

References

38

38

38

38

40

42

43

45

46

49

49

59

65

66

72

75

76

77

V

Introduction

I have selected the VDHL coding language to learn how to do a hardware design

using the current methods and current technology.

I have selected FIFO (511 X 36) because it is used to design many electronic

devices. Nowadays you do not just buy the parts of your PC, by using the VHDL coding

system you just can write your electronic device code by your own and by using the

implementation and synthesis tools you can apply it to your device chips. In VHDL you

do not have to think about the details of your hardware, all you must do is writing codes.

The VHDL code shown in this project implements a 511x36 FIFO in a Virtex2

device. The inputs are a Clock, a Read Enable, a Write Enable, Write Data, and a

FIFO _gsr signal as an initial reset. The outputs are Read Data, Full, Empty, and the

FIFOcount outputs, which indicate how full the FIFO is.

In this project steps of creating a new project is considered. The project consists of an

introduction, 3 chapters and a conclusion.

Chapter One represents the FPGA design flow considering the Hardware

Description Language (HDL) and the advantages of Using HDLs to design FPGA

devices, designing FPGA devices with HDLs.

Chapter Two represents ISE general information & using project navigator to

create the design.

Chapter Three describes FIFO (511 X 36) CONTROLLER in VHDL about the

requirements and specification of the design, the VHDL codes, synthesis, the test bench,

simulation and the implementation of the design.

1

CHAPTER ONE: FPGA Design Flow

1.1 Hardware Description Languages

Designers use Hardware Description Languages (HDLs) to describe the behavior

and structure of system and circuit designs. This chapter includes:

• A general overview of designing FPGA devices with HDLs

• System requirements and installation instructions for designs available from the web

• A brief description of why FPGA devices are superior to ASIC devices for your design

needs understanding FPGA architecture allows you to create HDL code that effectively

uses FPGA system features. To learn more about designing FPGA devices with HDL:

• Enroll in training classes offered by Xilinx® and by the vendors of synthesis software.

• Review the sample HDL designs in the later chapters of this Guide.

• Download design examples from Xilinx Support.

• Take advantage of the many other resources offered by Xilinx, including

documentation, tutorials, Tech Tips, service packs, a telephone hotline, and an

answers database. See "Additional Resources" in the Preface of this Guide.

1.2 Advantages of Using HDLs to Design FPGA Devices

Using HDLs to design high-density FPGA devices has the following advantages:

• "Top-Down Approach for Large Projects"

• "Functional Simulation Early in the Design Flow"

• "Synthesis of HDL Code to Gates"

• "Early Testing of Various Design Implementations"

• "Reuse of RTL Code"

2

1.2.1 Top-Down Approach for Large Projects ..

Designers use HDLs to create complex designs. The top-down approach to system

design supported by HDLs is advantageous for large projects that require many designers

working together. After they determine the overall design plan, designers can work

independently on separate sections of the code.

1.2.2 Functional Simulation Early in the Design Flow

You can verify the functionality of your design early in the design flow by

simulating the HDL description. Testing your design decisions before the design is

implemented at the RTL or gate level allows you to make any necessary changes early in

the design process.

1.2.3 Synthesis of HDL Code to Gates

You can synthesize your hardware description to target the FPGA

implementation. This step:

• Decreases design time by allowing a higher-level specification of the design rather

than specifying the design from the FPGA base elements.

• Generally reduces the number of errors that can occur during a manual translation of a

hardware description to a schematic design.

• Allows you to apply the automation techniques used by the synthesis tool (such as

machine encoding styles and automatic I/0 insertion) during the optimization of

your design to the original HDL code. This results in greater optimization and

efficiency

3

1.2.4 Early Testing of Various Design Implementations

HDLs allow you to test different implementations of your design early in the

design flow. Use the synthesis tool to perform the logic synthesis and optimization into

gates. Additionally, Xilinx FPGA devices allow you to implement your design at your

computer.

Since the synthesis time is short, you have more time to explore different architectural

possibilities at the Register Transfer Level (RTL). You can reprogram Xilinx FPGA

devices to test several implementations of your design.

1.2.5 Reuse of RTL Code

You can retarget RTL code to new FPGA architectures with a minimum ofrecoding.

1.3 Designing FPGA Devices with HDLs

If you are used to schematic design entry, you may find it difficult at first to create HDL

designs. You must make the transition from graphical concepts, such as block diagrams,

state machines, flow diagrams, and truth tables, to abstract representations of design

components. Ease this transition by not losing sight of your overall design plan as you

code in HDL. To effectively use an HDL, you must understand the:

• Syntax of the language

• Synthesis and simulator software

• Architecture of your target device

• Implementation tools

4

1.3.1 Designing FPGA Devices with VHDL

VHSIC Hardware Description Language (VHDL) is a hardware description

language for designing Integrated Circuits (ICs). It was not originally intended as an

input to synthesis, and many VHDL constructs are not supported by synthesis software.

However, the high level of abstraction of VHDL makes it easy to describe the system

level components and test benches that are not synthesized.

In addition, the various synthesis tools use different subsets of the VHDL

language. The examples in this Guide work with most commonly used FPGA synthesis

software. The coding strategies presented in the remaining chapters of this Guide can

help you create HDL descriptions that can be synthesized.

1.3.2 Designing FPGA Devices with Synthesis Tools

Most of the commonly-used FPGA synthesis tools have special optimization

algorithms for Xilinx FPGA devices. Constraints and compiling options perform

differently depending on the target device. Some commands and constraints in ASIC

synthesis tools do not apply to FPGA devices. If you use them, they may adversely

impact your results. You should understand how your synthesis tool processes designs

before you create FPGA designs. Most FPGA synthesis vendors include information in

their guides specifically for Xilinx FPGA devices.

1.3.3 Using FPGA System Features

To improve device performance, area utilization, and power characteristics, create

HDL code that uses such FPGA system features as DCM, multipliers, shift registers, and

memory. For a description of these and other features, see the FPGA data sheet and user

guide. The choice of the size (width and depth) and functional characteristics need to be

taken into account by understanding the target FPGA resources and making the proper

system choices to best target the underlying architecture.

5

1.3.4 Designing Hierarchy •

HDLs give added flexibility in describing the design. However, not all HDL code

is optimized the same. How and where the functionality is described can have dramatic

effects on end optimization. For example:

• Certain techniques may unnecessarily increase the design size and power while

decreasing performance.

• Other techniques can result in more optimal designs in terms of any or all of those

same metrics.

This Guide will help instruct you in techniques for optional FPGA design

methodologies. Design hierarchy is important in both the implementation of an FPGA

and during interactive changes. Some synthesizers maintain the hierarchical boundaries

unless you group modules together. Modules should have registered outputs so their

boundaries are not an impediment to optimization. Otherwise, modules should be as large

as possible within the limitations of your synthesis tool. The "5,000 gates per module"

rule is no longer valid, and can interfere with optimization.

Check with your synthesis vendor for the preferred module size. As a last resort,

use the grouping commands of your synthesizer, if available. The size and content of the

modules influence synthesis results and design implementation. This Guide describes

how to create effective design hierarchy.

1.3.5 Specifying Speed Requirements

To meet timing requirements, you should understand how to set timing constraints

in both the synthesis tool and the placement and routing tool. If you specify the desired

timing at the beginning, the tools can maximize not only performance, but also area,

6

power, and tool runtime. This generally results in a design that better matches the desired

performance. It may also result in a design that is smaller, and which consumes less

power and requires less time processing in the tools.

1.4 FPGA Design Flow

I will try to describes the steps in a typical HDL design flow. Although these steps

may vary with each design, the information in this chapter is a good starting point for any

design. This chapter includes the following sections.

• "Design Flow"

• "Entering Your Design and Selecting Hierarchy"

• "Functional Simulation"

• "Synthesizing and Optimizing"

• "Setting Constraints"

• "Evaluating Design Size and Performance"

• "Evaluating Coding Style and System Features"

• "Placing and Routing"

• "Timing Simulation"

7

1.4.1 Design Flow •

Entering your design and .
selecting hierarchy ~

Functional Simulation
of your Design ~

Adding Design .
Constraints ~

Synthesizing and
Optimizing .
your Design

.
Evaluating your Design's Coding

Style

Evaluating your Design Size
and System Features

and Performance

i
Placing and Routing Timing Simulation Static Timing

your Design of your Design Analysis

'

,Ir

Generating a Bitstream

Downloading to the
Device,

In-System Debugging

Creating a PROM, ACE
or JTAG File

8

1.4.2 Entering Your Design and Selecting Hierarc6y

The first step in implementing your design is to create the HDL code based on

your design criteria.

1.4.2.1 Design Entry Recommendations

The following recommendations can help you create effective designs.

Use RTL Code, Use register transfer level (RTL) code, and, when possible, do not

instantiate specific components. Following these two practices allows for:

• Readable code

• Ability to use the same code for synthesis and simulation

• Faster and simpler simulation

• Portable code for migration to different device families

• Reusable code for future designs

In some cases instantiating optimized CORE Generator™ modules is beneficial with

RTL. Select the Correct Design Hierarchy, selecting the correct design hierarchy:

• Improves simulation and synthesis results

• Improves debugging

• Allows parallel engineering, in which a team of engineers can work on different parts

of the design at the same time

• Improves the placement and routing by reducing routing congestion and improving

timing

• Allows for easier code reuse in the current design, as well as in future designs

9

1.4.2.2 Architecture Wizard

The Architecture Wizard in Project Navigator lets you configure complicated

aspects of some Xilinx® devices. The Architecture Wizard consists of several

components for configuring specific device features. Each component is presented as an

independent wizard. See "Architecture Wizard Components" below.

The Architecture Wizard can also produce a VHDL, Verilog, or EDIF file, depending on

the flow type that is passed to it. The generated HDL output is a module consisting of one

or more primitives and the corresponding properties, and not just a code snippet. This

allows the output file to be referenced from the HDL Editor. There is no UCF output file,

since the necessary attributes are embedded inside the HDL file.

Opening Architecture Wizard

There are three ways to open the Architecture Wizard:

• From Project Navigator

• From the CORE Generator

• From the command line

Opening Architecture Wizard from Project Navigator for information on opening

Architecture Wizard in ISE, see the ISE Help, especially Working with Architecture

Wizard IP. Opening Architecture Wizard from the CORE Generator To open the

Architecture Wizard from the CORE Generator, select any of the Architecture Wizard IP

from the list of available IP in the CORE Generator window. Opening Architecture

Wizard from the Command Line To open Architecture Wizard from the command line,

type arwz. Architecture Wizard Components

The following wizards make up the Architecture Wizard.

Clocking Wizard, the Clocking Wizard enables:

• Digital clock setup

• DCM and clock buffer viewing

10

• DRC checking •

The Clocking Wizard allows you to:

• View the DCM component

• Specify attributes

• Generate corresponding components and signals

• Execute DRC checks

• Display up to eight clock buffers

<Set up the Feedback Path information

• Set up the Clock Frequency Generator information and execute DRC checks

• View and edit component attributes

• View and edit component constraints

• View and configure one or two PMCDs (Phase Matched Clock Dividers) in a Virtex™-

4 FPGA device

• View and configure a Phase Locked Loop (PLL) in a Virtex-5 FPGA device

• Automatically place one component in the XA W file

• Save component settings in a VHDL file

• Save component settings in a Verilog file

RocketlO Wizard

The RocketIO Wizard enables serial connectivity between devices, backplanes,

and subsystems. The RocketIO Wizard allows you to:

• Specify RocketIO type

• Define Channel Bonding options

• Specify General Transmitter Settings, including encoding, CRC, and clock

• Specify General Receptor Settings, including encoding, CRC, and clock

• Provide the ability to specify Synchronization

• Specify Equalization, Signal integrity tip (resister, termination mode ...)

11

• View and edit component attributes.

• View and edit component constraints

• Automatically place one component in the XA W file

• Save component settings to a VHDL file

• Save component settings to a Verilog file

ChipSync Wizard The ChipSync Wizard applies to Virtex-4 and Virtex-5 only.

The ChipSync Wizard facilitates the implementation of high-speed source synchronous

applications. The wizard configures a group of 1/0 blocks into an interface for use in

memory, networking, or any other type of bus interface. The ChipSync Wizard creates

HDL code with these features configured according to your input:

• Width and IO standard of data, address, and clocks for the interface

• Additional pins such as reference clocks and control pins

• Adjustable input delay for data and clock pins

• Clock buffers (BUFIO) for input clocks

• ISERDES/OSERDES or IDDR/ODDR blocks to control the width of data, clock

enables, and tristate signals to the fabric XtremeDSP Slice Wizard The XtremeDSP Slice

Wizard applies to Virtex-4 and Virtex-5 only. The XtremeDSP Slice Wizard facilitates

the implementation of the XtremeDSP Slice. For more information, see the Virtex-4 and

Virtex-5 data sheets, the XtremeDSP for Virtex-4 FPGAs User Guide, and the Virtex-5

XtremeDSP User Guide, both available from the Xilinx user guide web page.

1.4.2.3 CORE Generator

The CORE Generator™ delivers parameterized IP optimized for Xilinx FPGA

devices. It provides a catalog of ready-made functions ranging in complexity from FIFOs

and memories to high level system functions such as a Reed-Soloman Decoder and

Encoder, FIR filters, FFTs for DSP applications, standard bus interfaces such as PCI and

PCI-X, and connectivity and networking interfaces.

12

1.4.3 Functional Simulation ..

Use functional or RTL simulation to verify the syntax and functionality of your design.

1.4.3.1 Simulation Recommendations

Xilinx recommends that you do the following when you simulate your design.

Perform Separate Simulations with larger hierarchical HDL designs, perform separate

simulations on each module before testing your entire design. This makes it easier to

debug your code. Create a Test Bench. Once each module functions as· expected, create a

test bench to verify that your entire design functions as planned. Use the same test bench

again for the final timing simulation to confirm that your design functions as expected

under worst-case delay conditions.

1.4.3.2 ModelSim Simulators

You can use ModelSim simulators with Project Navigator. The appropriate

processes appear in Project Navigator when you choose ModelSim as your design

simulator, provided you have installed any of the following:

• ModelSim Xilinx Edition-II

• ModelSim PE, EE or SE

You can also use these simulators with third-party synthesis tools in Project Navigator.

For more information about ModelSim support, see the Xilinx Tech Tips.

13

1.4.4 Synthesizing and Optimizing •

This section includes recommendations for compiling your designs to improve

your results and decrease the run time. For more information, see your synthesis tool

documentation.

1.4.4.1 Creating a Compile Run Script

TCL scripting can make compiling your design easier and faster while achieving

shorter compile times. With more advanced scripting, you can run a compile multiple

times using different options and write to different directories. You can also invoke and

run other command line tools. You can run the following sample scripts from the

command line or from the application. Precision RTL Synthesis to run the TCL script

from Precision RTL Synthesis:

1. Set up your project in Precision.

2. Synthesize your project.

3. Run the following commands to save and run the TCL script.

1.4.4.2 Synthesizing Your Design

Xilinx recommends the following to help you successfully synthesize your design.

Modifying Your Design

You may need to modify your code to successfully synthesize your design

because certain design constructs that are effective for simulation may not be as effective

for synthesis. The synthesis syntax and code set may differ slightly from the simulator

syntax and code set.

14

1.4.4.3 Reading Cores •.

The following synthesis tools support incorporating the information in CORE

Generator NDF files when performing design timing and area analysis:

• "XST"

• "Synplify Pro"

• "Precision RTL Synthesis"

Including the IP core NDF files in a design when analyzing a design results in

better timing and resource optimizations for the surrounding logic. The NDF is used to

estimate the delay through the logic elements associated with the IP core. The synthesis

tools do not optimize the IP core itself, nor do they integrate the IP core netlist into the

synthesized design output netlist. The procedures for reading in cores in these synthesis

tools are as follows.

XST

Invoke XST using the read cores switch. When the switch is set to on, the default,

XST, reads in EDIF and NGC netlists. For more information, see the Xilinx XST User

Guide. For more information on doing this in ISE, see the Project Navigator help.

Synplify Pro

EDIF is treated as another source format, but when reading in EDIF, you must

specify the top level VHDL or Verilog in your project.

Precision RTL Synthesis
Precision RTL Synthesis can add EDIF and NGC files to your project as source

files. For more information, see the Precision RTL Synthesis help.

15

••

1.4.5 Setting Constraints

Setting constraints is an important step in the design process. It allows you to

control timing optimization and enables more efficient use of synthesis tools and

implementation processes. This efficiency helps minimize runtime and achieve the

requirements of your design. There are many different types of constraints that can be set.

Precision RTL Synthesis and Synplify have constraints editors that allow you to apply

constraints to your HDL design. For more information on how to use your synthesis

tool's constraints editor, see your synthesis tool documentation. You can add the

following constraints:

• Clock frequency or cycle and offset

• Input and Output timing

• Signal Preservation

• Module constraints

• Buffering ports

• Path timing

• Global timing

Constraints defined for synthesis can also be passed to implementation in an NCF

file or the output EDIF file. However, Xilinx recommends that you do not pass these

constraints to implementation. Instead, specify your constraints separately in a user

constraints file (UCF). The UCF gives you tight control over the overall specifications by

providing you with the ability to:

• Access more types of constraints

• Define precise timing paths

• Prioritize signal constraints

You can set constraints in ISE with:

16

•

• Xilinx Constraints Editor

• Floorplanner

•PACE

• Floorplan Editor

For more information on setting constraints in ISE, see the ISE Help.

1.4.6 Evaluating Design Size and Performance

Your design must:

• Function at the specified speed

• Fit in the targeted device

After your design is compiled, use your synthesis tool's reporting options to

determine preliminary device utilization and performance. After your design is mapped

by the Xilinx tools, you can determine the actual device utilization.

At this point in the design flow, you should verify that your chosen device is large

enough to accommodate any future changes or additions, and that your design will

perform as specified.

1.4.6.1. Estimating Device Utilization and Performance

Use the area and timing reporting options of your synthesis tool to estimate device

utilization and performance. After compiling, use the report area command to obtain a

report of device resource utilization. Some synthesis tools provide area reports

automatically. For correct command syntax, see your synthesis tool documentation.

The device utilization and performance report lists the compiled cells in your design,

As well as information on how your design is mapped in the FPGA. These reports are

17

generally accurate because the synthesis tool creates the logic from your code and maps

your design into the FPGA. However, these reports are different for the various synthesis

tools. Some reports specify the minimum number of CLBs required, while other reports

specify the "unpacked" number of CLBs to make an allowance for routing. For an

accurate comparison, compare reports from the Xilinx mapper tool after implementation.

Any instantiated components, such as CORE Generator modules, EDIF files, or other

components that your synthesis tool does not recognize during compilation, are not

included in the report file. If you include these components, you must include the logic

area used by these components when estimating design size. Sections of your design may

get trimmed during the mapping process, which may result in a smaller design.

Use the timing report command of your synthesis tool to obtain a report with estimated

data path delays. For more information on command syntax, see your synthesis tool

documentation. The timing report is based on the logic level delays from the cell libraries

and estimated wire-load models. This report is an estimate of how close you are to your

timing goals; however, it is not the actual timing. An accurate timing report is only

available after the design is placed and routed.

1.4.6.2 Determining Actual Device Utilization and Pre-routed

Performance

To determine if your design fits the specified device, map it using the Xilinx Map

program. The generated report file design_name.mrp contains the implemented device

utilization information. To read the report file, double-click Map Report in the Project

Navigator Processes window. Run the Map program from Project Navigator or from the

command line. Using Project Navigator to Map Your Design To map your design using

Project Navigator:

1. Go to the Processes window.

2. Click the "+" symbol in front of Implement Design.

3. Double-click Map.

4. To view the Map Report, double-click Map Report.

18

If the report does not currently exist, it is generated at this time. A green check

mark in front of the report name indicates that the report is up-to-date, and no processing

is performed.

5. If the report is not up-to-date:

a. Click the report name.

b. Select Process> Rerun to update the report.

The auto-make process automatically runs only the necessary processes to update

the report before displaying it. Alternatively, you may select Process > Rerun All to re

run all processes- even those processes that are currently up-to-date- from the top of the

design to the stage where the report would be.

6. View the Logic Level Timing Report with the Report Browser. This report shows the

performance of your design based on logic levels and best-case routing delays.

7. Run the integrated Timing Analyzer to create a more specific report of design paths

(optional).

8; Use the Logic Level Timing Report and any reports generated with the Timing

Analyzer or the Map program to evaluate how close you are to your performance and

utilization goals.

Use these reports to decide whether to proceed to the place and route phase of

implementation, or to go back and modify your design or implementation options to

attain your performance goals. You should have some slack in routing delays to allow the

place and route tools to successfully complete your design. Use the verbose option in the

Timing Analyzer to see block-by-block delay. The timing report of a mapped design

(before place and route) shows block delays, as well as minimum routing delays.

19

A typical Virtex, Virtex-E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, or Virtex-4

design should allow 40% of the delay for logic, and 60% of the delay for routing. If most

of your time is taken by logic, the design will probably not meet timing after place and

route.

Using the Command Line to Map Your Design

For available options, enter only the tree command at the command line without any

arguments. To map your design using the command line:

1. Run the following command to translate your design:

ngdbuild -p target_device design_name.edf (or nge)

2. Run the following command to map your design:

map design_name.ngd

3. Use a text editor to view the Device Summary section of the design_name.mrp Map

Report. This section contains the device utilization information.

4. Run a timing analysis of the logic level delays from your mapped design as follows.

tree [options] design_name.ned

Use the Trace reports to evaluate how close you are to your performance goals.

Use the report to decide whether to proceed to the place and route phase of

implementation, or to go back and modify your design or implementation options to

attain your performance goals. You should have some slack in routing delays to allow the

place and route tools to successfully complete your design.

20

1.4. 7 Evaluating Coding Style and System Features

At this point, if you are not satisfied with your design performance, re-evaluate

your code and make any necessary improvements. Modifying your code and selecting

different compiler options can dramatically improve device utilization and speed.

This section describes ways to improve design performance by modifying your code and

by incorporating FPGA system features. Most of these techniques are described in more

detail in this Guide.

1.4.7.1 Modifying Your Code

Improve design performance with the following design modifications.

• Reduce levels of logic to improve timing

• Use pipelining and retiming techniques

• Rewrite the HDL descriptions

• Enable or disable resource sharing

• Redefine hierarchical boundaries to help the compiler optimize design logic

• Restructure logic

• Reduce critical nets fanout to improve placement and reduce congestion

• Perform logic replication

• Take advantage of device resource with the CORE Generator modules

1.4.7.2 Using FPGA System Features

After correcting any coding style problems, use any of the following FPGA

system features in your design to improve resource utilization and to enhance the speed

of critical paths. Each device family has a unique set of system features. For more

information about the system features available for the device you are targeting, see the

device data sheet.

21

• Use clock enables •

• In Virtex family components, modify large multiplexers to use tristate buffers

• Use one-hot encoding for large or complex state machines

• Use 1/0 registers when applicable

• In Virtex families, use dedicated shift registers

• In Virtex-II families, use dedicated multipliers

1.4.7.3 Using Xilinx-Specific Features of Your Synthesis Tool

Your synthesis tool allows better control over the logic generated, the number of

logic levels, the architecture elements used, and fanout. The place and route tool (PAR)

has advanced its algorithms to make it more efficient to use your synthesis tool to achieve

design performance if your design performance is more than a few percentages away

from the requirements of your design. Most synthesis tools have special options for the

Xilinx-specific features listed in the previous section. For more information on using

Xilinx-specific features, see your synthesis tool documentation.

1.4.8 Placing and Routing

The overall goal when placing and routing your design is fast implementation and

high quality results. However, depending on the situation and your design, you may not

always accomplish this goal, as described in the following examples.

• Earlier in the design cycle, run time is generally more important than the quality of

results, and later in the design cycle, the converse is usually true.

• If the targeted device is highly utilized, the routing may become congested, and your

design may be difficult to route. In this case, the placer and router may take longer to

meet your timing requirements.

• If design constraints are rigorous, it may take longer to correctly place and route your

design, and meet the specified timing.

22

For more information on placing and routing your design, see the Xilinx Development

System Reference Guide.

1.4.9 Timing Simulation

Timing simulation is important in verifying the operation of your circuit after the

worst case placed and routed delays are calculated for your design. In many cases, you

can use the same test bench that you used for functional simulation to perform a more

accurate simulation with less effort. Compare the results from the two simulations to

verify that your design is performing as initially specified. The Xilinx tools create a

VHDL or Verilog simulation netlist of your placed and routed design, and provide

libraries that work with many common HDL simulators. Timing-driven PAR is based

upon TRACE, the Xilinx timing analysis software. TRACE is an integrated static timing

analysis, and does not depend on input stimulus to the circuit. Placement and routing are

executed according to timing constraints that you specify at the beginning of the design

process. TRACE interacts with PAR to make sure that the timing constraints you impose

on the design are met.

If you have timing constraints, TRACE generates a report based on your

constraints. If there are no constraints, TRACE has an option to write out a timing report

containing:

• An analysis that enumerates all clocks and the required OFFSETs for each clock

• An analysis of paths having only combinatorial logic, ordered by delay

23

CHAPTER TWO: ISE GENERAL INFORMATION &

USING PROJECT NAVIGATOR

2.1 ISE General Information

2.1.1 Xilinx ISE overview

The integrated Software Environment (ISE ™) is the Xilinx® design software

suite that allows us to take our design from design entry through Xilinx device

programming. The ISE Project Navigator manages and processes our design through

steps in the ISE design flow.

2.1.2 Design Entry

Design entry is the first step in the ISE design flow. During design entry, we

create our source field based on our design objectives. We can create our top-level design

file using Hardware Description Language (HDL), such as VHDL, Verilog and ABEL, or

using a schematic. We can use multiple formats for the lower-level source files in our

design. Ifwe are working with a synthesized EDIF or NGC/NGO file, we can skip design

entry and synthesis and start with the implementation process.

2.1.3 Synthesis

After design entry and optional simulation, we run synthesis. During this step,

VHDL, Verilog, or mixed language designs become netlist files that are accepted as input

to the implementation step.

24

2.1.4 Implementation

After synthesis, we run design implementation, which converts the logic design

into a physical file format that can be downloaded to the selected target device. From

Project Navigator, we can run the implementation processes separately. Implementation

processes vary depending on whether we are targeting a Field Programmable Gate Array

(FPGA) or a Complex Programmable Logic Device (CPLD).

2.1.5 Verification

We can verify the functionality of our design at several points in the design flow.

We can use simulator software to verify the functionality and timing of our design or a

portion of our design. The simulators interpret VHDL or Verilog code into circuit

functionality and display logical results of the described HDL or determine correct circuit

operation. Simulation allows us to create and verify complex functions in a relatively

small amount of time. We can also run in-circuit verification after programming the

device.

2.1.6 Device Configuration

After generating a programming file, we configure our device. During

configuration, we generate configuration files and download the programming file from a

host computer to a Xilinx device. Xilinx ISE overview Architecture Support.

25

2.1. 7 Architecture Support ..

The ISE™ software supports the following device families.

Table 2.1 Supported devices by ISE

Spartan ™-II Cool Runner™ XPLA3

Spartan-IIE Cool Runner-II

Spartan-3 XC9500™

Spartan-3E XC9500XL

Spartan-3L XC9500XV

Virtex™

Virtex-E

Virtex-II

Virtex-II Pro

Virtex-II Pro X

Virtex-4

Virtex-5

26

2.1.8 Operating System Support

The ISE™ software is supported on following operating systems.

Table 2.2 Supported operating systems by ISE

Windows® Windows XP® Professional

Windows 2000® Professional

Solaris® Solaris 8

Solaris 9

Linux Red Hat® Enterprise WS 3.0 32-bit/64-bit

Red Hat® Enterprise WS 4.0 32-bit/64-bit

2.2 Using Project Navigator

2.2.1 Project Navigator Overview
Project Navigator organizes our design files and runs processes to move the design

from design entry through implementation to programming the targeted Xilinx® device.

Project Navigator is the high-level manager of our Xilinx FPGA and CPLD designs,

which allows us to do the following:

1. Add and create design source files, which appear in the source window.

2. Modify the source files in the workspace.

3. Run processes on the source files in the process window.

4. View output from the processes in the transcript window.

27

2.2.2 Project Navigator Main Window

The following figure shows the Project Navigator main window, which allows us

to manage our design starting with design entry through device configuration.

C,~eNewSwce 16

V •••• Oes,,nSlllYn~ ,17
18 Des1,11Ulities is

UserCilnmlliril• 2·0
Si,-lhe,izd<ST 21
lmplemeri Desig:, 22
Geneiale Progamning Fje 23

24
25
26
27
26

llodule Loot Updatej 08/29/00 ti!oetlr _ce_v2 .vhd

Description rIFO controller top level.
Implements a 511x$6 FIFO v/cormon read/vritd e locks.

The tollovrng VHDL cede implement• a 51!x36 fIFO in a V!rEx2
device. The inputs are a crccx, a Read rnw,10, a Write E w,le,
lirite Data, and e. FIFO_gsr :!ignai as an initial reset. T outputs:
are React Data, Full, Elnpty, and the FIFOcount outputs, vh ch
indicate how full the FIFO as ,

Deoigner Nick Ctlll\illeri

Company Xilinx, Inc.

Disclaimer TllESt D!SIGIIS ill PROVIDE. D "AS IS" __ ll· ITH NO. -3A·RR_ ANTY
WHATSOEVER Al{J) XILINX SPEC]l!CALLY DISCLAU ANY
InP!,IED 9.\RRANTIES OF l!ERCHANTABIL!TY, rmr ss FOR
A PARTICULAR PURPOSE, OR AGUIIST INFRINGEH T,
THEY ARE CM.Y INn:NOED TO 6E UStD DY iILINX
CUSTO!!l:RS, AND U!THIN XILINX DEVICES.

Copyr19ht le) 2000 Xilinx, Inc,
All rights re!erved

Storted "Lounchin~ De,ign Swnnory",

,Storted "Launching ISE Text Editor to edit tifoctlr_cc_v2.vhd".

Figure 2.1 Project Navigator Main Window

1. Tool bar

2. Sources window

3. Processes window

4. Workspace

5. Transcript window

28

2.2.3 Using the Source Window ..

The first step in implementing our design for a Xilinx® FPGA or CPLD is to

assemble the design source files into a project. The source tab on the Sources window

shows the source files and allows us to create and add to our project, as shown in the

following figure.

Sources for: I Synthesis/Implementation
t \:J v2_fifo_ vhd_25S

, S· a xc3s1.ooe-4tq144
! .. , ~Jl.:tfifoctlr_cc_ v2 • fifoctlr_ cc_ v2_hdl (fifoctlr c

··-,, Snapshots 1
Figure 2.2 Source Window

The Design View ("Sources for") drop-down list at the top of the Sources tab

allows us to view only those sources files associated with the selected Design View (for

instance, Synthesis/Implementation).

The Sources tab shows us the hierarchy of our design. We can collapse and

expand the levels by clicking the plus (+) and the minus (-) icons. Each source file

appears next to an icon that shows its file type. The file we select determines the

processes available in the Process window. We can double-click a source file to open it

for editing in the workspace. For information on different file types, you can change the

project properties, such as the device family or target, the top-level module type, the

Synthesis tool, the simulator, and the generated simulation language.

29

Depending on the source file and tool we are working with, additional tabs are available

in the Sources window:

• Always available: Sources Tab, Snapshot tan, Libraries tab.

• Constraints Editor: Timing Constraints tab

• Floorplan Editor: Translated Netlist tab, Implemented Objects tab.

• Schematic Editor: Symbols tab.

• Technology Viewer: Design tab.

• Timing Analyzer: Timing tab.

2.2.4 Using the Processes Window

The processes tab in the processes window allows us to run actions or "processes"

on the source file we selected in the sources tab of the sources window. The processes

change according to the source file we select. The Process tab shows the available

processes in a hierarchical view. We can collapse and expand the levels by clicking the

plus (+) and the minus (~) icons. Processes are arranged in the order of a typical design

flow: project creation, constraints management, synthesis, implementation and

programming file creation.

Depending on the source file and tool we are working with, additional tabs are

available in the Processes Window:

• Always available: Processes tab.

• Floorplan Editor: Design Objective tab, Implemented - selection tab.

• ISE Simulator: Hierarchy Browser tab.

• Schematic Editor: Option tab.

• Timing Analyzer: Timing Objects tab.

30

2.2.5 Process Types,

The following types of processes are available as we work on our design:

When we run task process, the ISE software runs in "batch mode" that is, the

software processes our source file but does not open any additional software tools in

the workspace. Output from the processes appears in the transcript window.

• Reports [!l
Most Tasks include report sub-processes, which generate a summary or status report,

for instance, the Synthesis Report or Map Report. When we run a report process, the

report appears in the workspace.

2.2.6 Process Status
As work on our design, we may make changes that require some or all the

processes to be re-run. For example, if we edit a source file, it may require that the

Synthesis process and all subsequent processes be re-run. Project Navigator keeps

track of the changes we make and shows the status of each process with the following

status icon:

• Running

This icon shows that the process is running.

• Up-to-date 9
This icon shows that the process ran successfully with no errors and warnings and does

not need to be re-run. If the icon is next to a report process, the report is up-to-date;

however, associated tasks may have warnings or errors. If this occurs, we can read the

report to determine the cause of the warning or errors.

31

• W amings reported it ..
This icon shows that the processes ran successfully but with warnings were encountered.

• Errors reported 0
This icon shows that the process ran but encountered an error.

• Out-of-Date

This icon shows that we made design changes, which require that the process be re-run. If

this icon is next to a report process, we can re-run the associated task process to create an

up-to-date version of the report.

• No icon

If there is no icon, this shows that the process was never run.

32

2.2. 7 Running Processes

To run a process, we can do any of the following:

• Double-click on the process

• Right-click while positioned over the process, and we select Run from the pop-up

menu, as shown in the following figure.

Run
Rerun
Rerun All e

~ Stop
Open \Nithout Updating

Properties .. ,

Figure 2.3 Running Process

• Select the process, and then click the Run toolbar button ':lt .
• To run the Implement Design process and all preceding processes on the top

module cPa for the design, select Process > Implement Top Module.

When we run a process, Project Navigator automatically processes our design as follows:

• Automatically runs lower-level processes

When we run a high-level process, Project Navigator run associated lower-level

processes or sub-processes. For example, if we run Implement Design for our

FPGA design, all the following sub-processes run: Translate Map, and Place &

Route.

33

• Automatically runs preceding processes

When we run a process, Project Navigator runs any preceding processes that are required,

thereby "pulling" out design through the design flow. For example, to pull our design

through the entire flow, double-click Generate Programming File.

• Automatically runs related processes for out-of-date processes

If we run an out-of-date process, Project Navigator runs that process and any related

processes required to bring that process up-to-date. It does not necessarily run all

preceding processes. For example if we change our UCF file, the Synthesize process

remains up-to-date, but the Translate process becomes out-of-date. If we run the Map

process, Project Navigator runs Translate but does not run Synthesize.

2.2.8 Setting Process Properties

Most processes have a set of properties associated with them. Properties control

specific options, which correspond to command line options. When properties are

available for a process, we can right-click while positioned over the process and select

Properties from the pop-up menu, as shown in the following figure.

'ft Run
Rerun

~ RerunAII

~ Stop
Open Without Updating

~ Properties ••.

Figure 2.4 Process Properties

34

When we select Properties, a Process Properties dialog 'box appears, with standard

properties that we can set. The Process Properties dialog box differs depending on the

process we select.

After we become familiar with the standard properties, we can set additional,

advanced properties in the Process Properties dialog box; however, setting these options

us not recommended if we are just getting started with using the ISE software. When we

enable the advanced properties, both standard and advanced properties appear in the

Process Properties dialog box.

2.2.9 Using the Workspace

When we open a project source file, we open the Language Template, or run

certain processes, such as viewing reports or logs, the corresponding file or view appears

in the workspace. We can open multiple file or views at one time. Tabs at the bottom of

the Workspace show the names of each file or view. A tab is clicked it bring it to the

front. To open a file or a view in a standalone window outside of the Project Navigator

Workspace, the float toolbar button is used. To dock a floating window, the Dock toolbar

button is used.

• Float

• Dock

The Dock toolbar button is only available from the floating window.

2.2.10 Using the Transcript Window

The console tab of Transcript window shows output messages from the processes

we run. If a line number appears as part of the message, we can right-click the message

and select Go-to Source to open the source file with the appropriate line number

highlighted.

• Warning it
ErrorO •

35

• Depending on the source file and tool we are working with, additional tabs are

available in this Transcript window:

• Always available: Console tab, Errors tab, Warnings tab, Tel Console tab, Find in

File tab.

• ISE Simulator: Simulation Console tab.

• RTL and Technology Viewers: View by name tab, View by Category tab.

2.2.11 Using the Toolbars

Toolbars provide convenient access to frequently used commands. To execute a

command a tool bar button click once on. To see the short pop-up description of a toolbar

button, the mouse pointer is holding over the button for about two seconds. A longer

description appears in the status bar at the bottom of the main window.

36

CHAPTER THREE: FIFO (511 X 36) C:ONTROLLER IN

VHDL

Requirements

,Ir

Specification

. ~
,Ir

VHDL Code

,Ir

Synthesize

111'

Test Bench

,1,

Simulation

'

Implementation Tool

Figure 3.1. Thing will be done in this chapter

37

3.1 Requirement •.

My requirement is a FIFO (511 X 35) controller.

3.2 Specifications

3.2.1 FIFOs Using Virtex-11 Block RAM

I will describe a 511 X 36 FIFO; each port structure can be changed if the control

logic is changed accordingly. The size of the FIFO is 511 X 36 instead of

512 X 36 since one address is dropped out of the FIFO in order to provide distinct

Empty/Full conditions. First the design for a 511 X 36 with common Read and Write

clocks is described, and then the design changes required for the more difficult case of

independent Read and Write clocks are presented. Signal names in parenthesis are a

reference to the name in the VHDL code.

3.2.1.1 Synchronous FIFO Using Common Clocks

Figure 1 is a block diagram of a synchronous FIFO. When both the Read and

Write Clocks originate from the same source, it simplifies the operation and arbitration of

the FIFO, and the Empty and Full flags can be generated more easily. Binary counters are

used for both the read (read_addr) and write (write_addr) addresses counters. Table 1 lists

the Port Definitions for a synchronous FIFO design.

38

.•

1
:-

1
r----------.

2 -
.

I .. I
WRITE I Status I ,,

I 2 . Counter I Flag
Block ~ I (Binary)

I Generation
I RAM

3
Logic I

511 X 36 3
I .

I •.. I -., I I
4 - I I

I Fifocount I
I (9-bit I
I I 4 READ binary I •.. 5 I

••• - Counter -,, counter) --..

I (Binary) I ---------

Figure 3.2 511 X 36 Synchronous FIFO

My inputs are:

1- clock_in,2-fifo_gsr_in,3-write_enable_in, 4- write_data_in, 5- read_enable_in

My Outputs are:

1- full_out, 2- empty out, 3-read_data_out, 4- fifo_count_out

39

Table 3.1 Port Definitions

Signal Name Port Direction Port Width

Clock in input 1

Fifo _gsr _in input 1

Write enable in input 1 - -
Write data in input 36 - -

Read enable in input 1 - -
Read data out output 36 - -
Full out output 1

Empty_out output 1

Fifocount out output 4

3.2.1.2 Synchronous FIFO operation

To perform a read, Read Enable (read_enable) is driven high prior to a rising

clock edge, and the Read Data (read_data) will be presented on the outputs during the

next clock cycle To do a Burst Read, simply leave Read Enable High for as many clock

cycles are desired, but if empty goes active after reading, then the last word has been

read, and the next Read Data would be invalid.

To perform a write, the Write Data (write_data) must be present on the inputs, and

Write Enable (write_enable) is driven high prior to a rising clock edge. As long as the

Full flag is not set, the write will be executed. To do a Burst Write, the Write Enable is

left High, and new Write Data must be available every cycle.

40

A FIFO count (fifocount) is added for convenience, to-determine when the FIFO

is Y:z full, % full, etc .. , as shown in Table 3. Its binary count of the number of words

currently stored in the FIFO. It is incremented on Writes, decremented on Reads, and left

alone when the operations performed within the same clock cycle. In this application only

the upper four bits are sent to VO, but that can easily be modified.

The Empty flag is set when either the fifocount is zero, or when the fifocount is

one and only a Read is being performed. This early decoding allows Empty to be set

immediately after the last Read. It is cleared after the Write operation (with no

simultaneous Read). Similarly, the Full flag is set when the fifocount is 511, or when the

fifocount is 510 and only a Write is being performed. It is cleared after a Read operation

(with no simultaneous Write). If the both Read and Write are done in the same clock

cycle, there is no change to the status flag. During Global Reset (fifo_gsr), both these

signals are driven high , to prevent any external logic from interfacing with the FIFO

during this time.

41

3.2.1.3 Asynchronous FIFO Using Independent Clocks

Figure 3.3 is the block diagram for a 511 X 36 asynchronous FIFO. The

asynchronous FIFO Read and Write port signals are clocked by independent Read and

Write clocks. Table 2 shows the port definition for an asynchronous FIFO.

1 . WRITE
1 . --------------- .

2 Counter
--,.

I 2 .
(Binary) Binary to FIFO Status .

3 Gray Code Flag
I .

. I . Converter Generation Block

4 (WRITE)
I RAM

. Logic I 3 . I
511 X 36 .

5
•.

. READ Binary to 9-Bit FIFO I .
6 Counter Gray Code Status I

. (Binary) Converter Register I

(READ) I
I 4 .

L-------------- I

Figure 3.3 511 X 36 Asynchronous FIFO

The inputs are:

1- write_clock_in, 2- write_enable_in, 3- write_data_in, 4- read_clock_in

5- read_enable_in, 6- fifo_gsr_in.

The outputs are:

1- fifostatus_out, 2- full_out, 3- empty_out, 4- read_data_out.

42

Table 3.2 Port Definitions

Signal Name Port Direction Port Width

Write clock in Input 1 - -
Read clock in Input 1 - -
Fifo_gsr_in input 1

Write enable in input 1 - -

Write data in input 36 - -

Read enable in output 1 - -

Read data out output 36 - -

Full out output 1

Empty_out output 1

Fifostatus out output 4

3.2.1.4 Asynchronous FIFO operation

In order to operate a FIFO with independent Read and Write clocks, some

asynchronous arbitration logic is needed to determine the status flag. The previous

Empty/Full generation logic and associated flip-flops are no longer reliable, because they

are now asynchronous with respect to one another, since empty is clocked by the Read

clock, and full is clocked by the Write clock.

To solve this problem, and to minimize the speed of the control logic, additional

logic complexity is accepted for increased performance. There are primary 9-bit Read

and Write binary address counters, which drive the address inputs to the block RAM. The

binary addresses are converted to Gray-code, and pipelined for a few stages to create

several address pointers (read_addrgray, read_nextgray, read_lastgray, write_addrgray,

43

write_nextgray) which are used to generate the Full and Empty flags as quickly as

possible.

Gray-code addresses are used so that the registered Full and Empty flags

are always clean, and never in an unknown state due to the asynchronous relationship of

the Read and Write clocks. In the worst case scenario, Full and Empty would simply stay

active one cycle longer, but this would not generate an error.

When the Read and Write Gray-code pointers are equal, the FIFO is

empty. When the Read and Write Gray-code pointer is equal to the next Gray-code

pointer, the FIFO is full, having 511 (36-bit) words stored. Additional comparisons are

done within the same carry chain to determine when the FIFO is almost Empty and

almost Full, so that Empty and Full can be generated on the same clock edge as the last

operation. (Traditional control uses an asynchronous signal to test the flags, but this is

much slower and limits the overall performance.)

The fifostatus signal indicates Y:z full, Yi full, etc., as shown in Table 3. the

task of generating fifostatus in the asynchronous version is more complex, and therefore

requires more logic. The overall performance can be improved if this signal is trimmed.

The fifostatus outputs have a one-cycle latency for write operations, and a two-cycle

latency for reads.

44

..

Table 3.3 FIFO count and FIFO status signal Description

Bit 3 Bit 2 Bit 1 Bit 0 FIFOStatus/FIFOCount

1 1 1 1 15/16 full

1 1 1 0 7 /8 full

1 1 0 1 13/16 full

1 1 0 0 3/4 full

1 0 1 1 11/16 full

1 0 1 0 5/8 full

1 0 0 1 9/16 full

1 0 0 0 1/2 full

0 1 1 1 7 /16 full

0 1 1 0 3/8 full

0 1 0 1 5/16 full

0 1 0 0 1/4 full

0 0 1 1 3/16 full

0 0 1 0 1/8 full

0 0 0 1 1/16 full

0 0 0 0 < 1/16 full

3.2.1.5 Conclusion

The Virtex II block RAM can be used to generate both synchronous and

asynchronous FIFOs. Asynchronous FIFOs are possible due to the true dual-port nature

of the block RAM feature. These FIFOs can be operate at speeds around 200 MHz.

45

3.3 How I have Created My Project ..

To create project I did the following:

1. I have selected File/New Project ... That Will Make the New Project Wizard

to Appear.

Open Project .
OpenEx~ .
Close Project
Save Project As ...

DNew ClrltN
.; Open ... Clr1+0

dose
-- iJ 5'Ve Ctrl+5

S.veAs ...
fl 5'VeA! ---tl~lb~i

Frint Preview ...
~ Pr'1t... Ctrl+P
------··-··---·, I

Recent Fies

Recent Projects

lilt Piocesses I http:/t.w.w.><ilinx.com

Started "Launching De3ign Swrmary".

Figure 3.4 Creating new Project

2. Typing fifo_ctlr in the Project Name field will name the project fifo_ctlr.

46

Enter a Name and Location for the Proiect

Project Name: Project Location
lm~_ctlr j j-C-:\X-ilinx---91-i\-sil ..•.. ent-\f-~o-_c_tl .•... r•... ----- ••.• , Q

Select the Type of T op·Level Source fo1 the Project
Top-Level SotifoeJ ype:

{HDL

< Back t(Next > J More Info Cancel

Figure 3.5 Naming new Project

3. Enter or browse to a location (directory path) for the new project. A tutorial

subdirectory is created automatically.

4. We should verify that HDL is selected from the Top-Level Source Type list.

5. Clicking Next allows us to move to the device properties page.

6. I've filled the properties in the table as shown below:

• Product Category: All

47

• Family: Spartan3 ••

• Device: XC3S200

• Package: FT256

• Speed Grade: -4

• Top-Level Source Type: HDL

• Synthesis Tool: XST VHDL

• Simulator: ISE Simulator VHDL

• Preferred Language: VHDL

• Verify that Enable Enhanced Design Summary is selected .

Leave the default values in the remaining fields.

When the table is complete, your project properties will look like the following:

Syn!!_)esis T e?I
Simulator
Prefeued Language

Select the Device and De~gn Flow- for the Project

f
~perl;Na;e- ---1~ -- - ,.,._ _;......;.._....;......;......;.._-1
oduct Category I AH I

1 Family ·-,,~~ 1 Spartan3 11

!Device- --·----~-"'~- 1XC3S200 -
'.i.io"&_;,,;o-~~~~ ~

Package 'FT256 - ,,-~=~-- ~------------------....; Speed ·4 -..,..,...,.....,..,.,....;:..,..,....,.- ..•. ~-
i _ _ 1__ ___...._....__...._....___...._ __ --4

r Top-Level Sourc~ Type - """""" lj HDL : cl
' XST (v'HDLNerilog)
Ii ISE Simulator (VHDLNerilog)
VHDL

Enable Enhanced Design Summar1
Enable Message Filtering
Display Incremental Messages

Moreh1fo Cancel

Figure 3.6 Device Properties

48

7. We click Next to proceed to the Create New Source window in the New Project

Wizard. At the end of the next section, new project will be complete.

3.3.1 Creating an HDL Source

In this section, I will show you how I have created a top-level HDL file for my

design.

A source file is any file that contains information about a design. Project

Navigator provides a wizard to help us create new source files for our project. If we are

targeting a Spartan-3A or Virtex-5 device, we can use the new source wizard to pre

assign package pins for an empty project. For details, Pre-Assigning Package Pins in the

New Source Wizard.

3.3.2 Creating a VHDL Source

Create a VHDL source file for the project as follows:

1. New Source button in the New Project Wizard.

2. Selecting VHDL Module as the source type.

49

3. Type in the file name FIFO 512 X 36 as follows. ..

\)' IP [Coregen & Architectuie Wizard)
ol Schematic

~ User Document
~ Verilog Module

Verilog Test Fixture
"NJ vBp~Module

VHDL Library
PlVHDL Package
yJ VHDL Test Bench

Fie name:

ltifo 51?X3~
Location:

lc:\Xilinx91i\silent\fifo_ctlr I 0

s I More_ Info c Back Next> Cancel

Figure 3.8 Source Type

4. We should verify that the Add to project checkbox is selected.

5. Click Next.

50

below in figure:

Entity Name lfifoctlr_cc_ v2

Arch~ecture Name !Behavioral I
Port Name f Direction
clock_in in

read_enable_in 1n

write_enable_in in
write_data_in in

-------~'"'
fifo_gsr_in lin
read_data_out lout
full_out I out ---
empty_out out
fifo_ count_ G1ut out

1n

I MSB I LSB

More Info < Back [Cancel j

Figure 3.9 Declaring Ports

7. We click Next and then Finish in order in the New Source Wizard - Summary dialog

box to complete the new source file template.

8. We click Next, then Next, then Finish.

After finishing my Entity part which used to define the inputs and the outputs

,the result will be shown like this:

51

entity fifo _ ctlr is

port (clock_in:

•.
IN std_logic;

read_enable_in: IN std_logic;

write_enable_in: IN std_logic;

write_data_in: IN std_logic_vector(35 downto O);

fifo_gsr_in: IN std_logic;

read_data_out: OUT std_logic_vector(35 downto O);

full_out: OUT std_logic;

empty_ out: OUT std _logic;

fifocount out: OUT std_logic_vector(3 downto O));

END fifo _ ctrl;

And then I wrote down the Architecture part which used to define the functions of

the design, the result would be shown like:

architecture fifo ctlr hdl of fifo ctlr is

signal clock:

signal read_ enable:

signal write_enable:

signal fifo _gsr:

signal read_ data:

std_logic;

std_logic;

std_logic;

std_logic;

std_logic_vector(35 downto 0)

:= "000000000000000000000000000000000000";

signal write_data: std_logic_ vector(35 downto O);

signal full: std_logic;

signal empty: std_logic;

signal read_addr: std_logic_vector(8 downto 0) := "000000000";

signal write_ addr: std _logic_ vector(8 down to 0) := "000000000";

signal fcounter: std _logic_ vector(8 downto 0) := "000000000";

signal read_allow: std_logic;

signal write_ allow: std _logic;

signal fcnt_allow: std_logic;

52

signal fcntandout:

signal ra_or_fcntO:

signal wa_or_fcntO:

signal emptyg:

signal fullg:

signal gnd_bus:

signal gnd:

signal pwr:

std _logic_ vector(3 downto O);

std_logic;

std_logic;

std_logic;

std_logic;

std _logic_ vector(3 5 down to O);

std_logic;

std_logic;

The next part I used to call the global buffer component which exists in the system:

component BUFGP

port (

I: IN std_logic;

0: OUT std_logic);

END component;

And here I have declared the block RAM codes which I described in my specification

section:

componentRAMB16_S36_S36

port (

ADDRA: IN std_logic_vector(8 downto O);

ADDRB: IN std_logic_vector(8 downto O);

DIA: IN std _logic_ vector(31 downto O);

DIB: IN std_logic_vector(31 downto O);

DIPA: IN std_logic_ vector(3 downto O);

DIPB: IN std_logic_ vector(3 downto O);

WEA: IN std_logic;

WEB: IN std_logic;

CLKA: IN std _logic;

CLKB: IN std_logic;

53

SSRA: IN std_logic;

SSRB: IN std_logic;

ENA: IN std_logic;

ENB: IN std_logic;

DOA: OUT std_logic_vector(31 downto O);

DOB: OUT std_logic_vector(31 downto O);

DOPA: OUT std_logic_vector(3 downto O);

DOPB: OUT std_logic_vector(3 downto O));

END component;

••

Now I am making a connection between the Entity part with my signal:

BEGIN

read_enable <= read_enable_in;

write_enable <= write_enable_in;

fifo_gsr <= fifo_gsr_in;

write_data <= write_data_in;

read_ data_ out <= read_ data;

full_ out <= full;

empty_ out <= empty;

gnd _ bus <= "000000000000000000000000000000000000";

gnd <= 'O';

pwr <= '1';

I had to instantiant a global buffer to make sure that there is no any skew problem

appears:

gclkl: BUFGP port map (I=> clock_in, 0 => clock);

54

Before the processes began, I had to connect my block RANI to the signal, and I have

done it using the following codes:

braml: RAMB16_S36_S36 port map (ADDRA => read_addr, ADDRB => write_addr,

DIA=> gnd_bus(35 downto 4), DIPA => gnd_bus(3 downto 0),

DIB => write_data(35 downto 4), DIPB => write_data(3 downto 0),

WEA => gnd, WEB => pwr, CLKA => clock, CLKB => clock,

SSRA => gnd, SSRB => gnd, ENA=> read_allow, ENB => write_allow,

DOA=> read_data(35 downto 4), DOPA=> read_data(3 downto 0));

In my process case we have 7 different processes .I will try to obtain the processes as

following:

A. In the first two processes we have to set allow flags, which control the clock

enables for read, write, and count operations.

procl: PROCESS (clock, fifo_gsr)

BEGIN

IF (fifo _gsr = '1 ') THEN

read_allow <= 'O';

ELS IF (clock'EVENT AND clock = '1 ') THEN

read allow<= read enable AND NOT (fcntandout(O) AND fcntandout(l) - -

AND NOT write_allow);

END IF;

END PROCESS procl;

proc2: PROCESS (clock, fifo_gsr)

BEGIN

IF (fifo _gsr = '1 ') THEN

write allow<= 'O'· - ,
ELSIF (clock'EVENT AND clock= '1 ') THEN

55

write allow<= write enable AND NOT (fcntandouuz) AND fcntandout(3) - -
AND NOT read_allow);

END IF;

END PROCESS proc2;

fcnt_allow <= write_allow XOR read_allow;

B. When the empty flag is set on fifo_gsr (initial), or when on the next clock cycle,

Write Enable is low, and either the FIFOcount is equal to 0, or it is equal to 1

and Read Enable is high (about to go Empty).

ra_or_fcntO <= (read_allow OR NOT fcounter(O));

fcntandout(O) <= NOT (fcounter(4) OR fcounter(3) OR fcounter(2) OR fcounter(l)

OR fcounter(O));

fcntandout(l) <= NOT (fcounter(8) OR fcounter(7) OR fcounter(6) OR

fcounter(5));

emptyg <= (fcntandout(O) AND fcntandout(l) AND ra or fcntO AND NOT

write_allow);

proc3: PROCESS (clock, fifo_gsr)

BEGIN

IF (fifo_gsr = '1') THEN

empty<= '1';

ELS IF (clock'EVENT AND clock = 'l ') THEN

empty <= emptyg;

END IF;

END PROCESS proc3;

C. Full flag is set on fifo _gsr (but it is cleared on the first valid clock edge after

fifo _gsr is removed), or when on the next clock cycle, Read Enable is low, and

56

either the FIFOcount is equal to lFF (hex), or it is equal to lFE and the Write

Enable is high (about to go Full).

wa_or_fcntO <= (write_allow OR fcounter(O));

fcntandout(2) <= (fcounter(4) AND fcounter(3) AND fcounter(2) AND

fcounter(l));

fcntandout(3) <= (fcounter(8) AND fcounter(7) AND fcounter(6) AND

fcounter(5));

fullg <= (fcntandout(2) AND fcntandout(3) AND wa or fcntO AND NOT

read_allow);

proc4: PROCESS (clock, fifo_gsr)

BEGIN

IF (fifo _gsr = '1 ') THEN

full<= '1';

ELS IF (clock'EVENT AND clock = '1 ') THEN

full <= fullg;

END IF;

END PROCESS proc4;

D. The Generation of Read and Write address pointers are using binary counters,

because it is simpler in simulation, and the previous LFSR implementation

wasn't in the critical path. This is done for the process no. 5 & 6.

proc5: PROCESS (clock, fifo_gsr)

BEGIN

IF (fifo _gsr = '1 ') THEN

read addr <= "000000000"· - '
ELS IF (clock'EVENT AND clock = '1 ') THEN

IF (read_allow= '1') THEN

read_ addr <= read_ addr + '1 ';

57

END IF;

END IF;

END PROCESS proc5;

••

proc6: PROCESS (clock, fifo_gsr)

BEGIN

IF (fifo_gsr = '1') THEN
write addr <= "000000000"·

- '
ELS IF (clock'EVENT AND clock = 'l ') THEN
IF (write_allow = 'l') THEN
write_addr <= write_addr + '1';

END IF;

END IF;

END PROCESS proc6;

E. Generation of FIFOcount outputs. Used to determine how full FIFO is, based

on a counter that keeps track of how many words are in the FIFO. Also used to

generate Full and Empty flags. Only the upper four bits of the counter are sent

outside the module.

proc7: PROCESS (clock, fifo_gsr)

BEGIN

IF (fifo _gsr = '1 ') THEN
fcounter <= "000000000";

ELS IF (clock'EVENT AND clock = 'l ') THEN
IF (fcnt_allow = '1 ') THEN
IF (read_allow = 'O') THEN
fcounter <= fcounter + '1';

ELSE

fcounter <= fcounter - 'l';

END IF;

58

END IF;

END IF;

END PROCESS proc7;

..

fifocount out<= fcounter(8 downto 5);

END fifoctlr _cc_ v2 _hdl;

3.3.3 Open Codes of My FIFO (511 X 36) Design

library ieee;

use ieee.std_logic_l 164.all;

use ieee.std _logic_ unsigned.all;

-- synopsys translate_ off

library UNISIM;

use UNISIM.VCOMPONENTS.ALL;

-- synopsys translate_ on

entity fifo _ ctlr is

port (clock_in: IN std _logic;

read_enable_in: IN std_logic;

write_enable_in: IN std_logic;

write_data_in: IN std_logic_vector(35 downto O);

fifo_gsr_in: IN std_logic;

read_data_out: OUT std_logic_vector(35 downto O);

full_out: OUT std_logic;

empty_out: OUT std_logic;

fifocount out: OUT std_logic_vector(3 downto O));

END fifoctlr_cc_v2;

architecture fifo ctlr of fifo ctlr is - -

signal clock: std _logic;

signal read_enable:

signal write_enable:

signal fifo _gsr:

•.

std_logic;

std_logic;

std_logic;

signal read_ data: std _logic_ vector(35 downto 0)

"000000000000000000000000000000000000";

signal write_ data:

signal full:

signal empty:

signal read_ addr:

signal write_ addr:

signal fcounter:

signal read_ allow:

signal write_ allow:

signal fcnt_allow:

signal fcntandout:

signal ra_or_fcntO:

signal wa_or_fcntO:

signal emptyg:

signal fullg:

signal gnd_bus:

signal gnd:

signal pwr:

component BUFGP

port (

I: IN std_logic;

0: OUT std_logic);

END component;

std _logic_ vector(3 5 down to O);

std_logic;

std_logic;

std _logic_ vector(8 down to 0) := "000000000";

std_logic_ vector(8 downto 0) := "000000000";

std _logic_ vector(8 downto 0) := "000000000";

std_logic;

std_logic;

std_logic;

std _logic_ vector(3 downto O);

std_logic;

std_logic;

std_logic;

std_logic;

std_logic_ vector(35 downto O);

std_logic;

std_logic;

60

componentRAtv1Bl6_S36_S36

port (

ADDRA: IN std_logic_vector(8 downto O);

ADDRB: IN std_logic_vector(8 downto O);

DIA: IN std_logic_ vector(31 downto O);

DIB: IN std_logic_vector(31 downto O);

DIPA: IN std_logic_vector(3 downto O);

DIPB: IN std_logic_ vector(3 downto O);

WEA: IN std_logic;

WEB: IN std_logic;

CLKA: IN std_logic;

CLKB: IN std_logic;

SSRA: IN std_logic;

SSRB: IN std_logic;

ENA: IN std_logic;

ENB: IN std_logic;

DOA: OUT std _logic_ vector(31 downto O);

DOB: OUT std_logic_vector(31 downto O);

DOPA: OUT std _logic_ vector(3 downto O);

DOPB: OUT std_logic_vector(3 downto O));

END component;

BEGIN

read_enable <= read_enable_in;

write_enable <= write_enable_in;

fifo_gsr <= fifo_gsr_in;

write_data <= write_data_in;

read_ data_ out <= read_ data;

full_out <= full;

empty_ out <= empty;

gnd _ bus <= "000000000000000000000000000000000000";

61

gnd <= 'O'· '
pwr <= '1';

..

gclkl: BUFGP port map (I => clock _in, 0 => clock);

braml: RAMB16_S36_S36 port map (ADDRA => read_addr, ADDRB => write_addr,

DIA=> gnd_bus(35 downto 4), DIPA => gnd_bus(3 downto 0),

DIB => write_data(35 downto 4), DIPB => write_data(3 downto 0),

WEA => gnd, WEB => pwr, CLKA => clock, CLKB => clock,

SSRA => gnd, SSRB => gnd, ENA=> read_allow, ENB => write_allow,

DOA=> read_data(35 downto 4), DOPA=> read_data(3 downto 0));

procl: PROCESS (clock, fifo_gsr)

BEGIN

IF (fifo_gsr = 'l') THEN

read allow<= 'O'· - '
ELSIF (clock'EVENT AND clock= '1 ') THEN

read allow<= read enable AND NOT (fcntandout(O) AND fcntandout(l) - -
AND NOT write_allow);

END IF;

END PROCESS procl;

proc2: PROCESS (clock, fifo_gsr)

BEGIN

IF (fifo _gsr = '1 ') THEN

write allow<= 'O'· - '
ELS IF (clock'EVENT AND clock = '1 ') THEN

write_allow <= write_enable AND NOT (fcntandout(2) AND fcntandout(3)

AND NOT read_allow);

END IF;

END PROCESS proc2;

62

••

fcnt_allow <= write_allow XOR read_allow;

ra_or_fcntO <= (read_allow OR NOT fcounter(O));

fcntandout(O) <= NOT (fcounter(4) OR fcounter(3) OR fcounter(2) OR fcounter(l) OR

fcounter(O));

fcntandout(l) <= NOT (fcounter(8) OR fcounter(7) OR fcounter(6) OR fcounter(5));

emptyg <= (fcntandout(O) AND fcntandout(l) AND ra or fcntO AND NOT

write_ allow);

proc3: PROCESS (clock, fifo_gsr)

BEGIN

IF (fifo _gsr = 'l ') THEN

empty<= '1';

ELS IF (clock'EVENT AND clock = '1 ') THEN

empty <= emptyg;

END IF;

END PROCESS proc3;

wa_or_fcntO <= (write_allow OR fcounter(O));

fcntandout(2) <= (fcounter(4) AND fcounter(3) AND fcounter(2) AND fcounter(l));

fcntandout(3) <= (fcounter(8) AND fcounter(7) AND fcounter(6) AND fcounter(5));

fullg <= (fcntandout(2) AND fcntandout(3) AND wa_or_fcntO AND NOT read_allow);

proc4: PROCESS (clock, fifo_gsr)

BEGIN

IF (fifo_gsr = '1') THEN

full<= '1 ';

ELS IF (clock'EVENT AND clock = 'l ') THEN

full <= fullg;

END IF;

63

END PROCESS proc4; ..

proc5: PROCESS (clock, fifo_gsr)

BEGIN

IF (fifo _gsr == '1 ') THEN

read_addr <== "000000000";

ELS IF (clock'EVENT AND clock == 'l ') THEN

IF (read_allow == '1') THEN

read_ addr <== read_ addr + '1 ';
END IF;

END IF;

END PROCESS proc5;

proc6: PROCESS (clock, fifo_gsr)

BEGIN
IF (fifo _gsr == '1 ') THEN

write_addr <== "000000000";

ELS IF (clock'EVENT AND clock == '1 ') THEN

IF (write_allow == '1') THEN

write_addr <== write_addr + '1';
END IF;

END IF;

END PROCESS proc6;

proc7: PROCESS (clock, fifo_gsr)

BEGIN

IF (fifo _gsr == '1 ') THEN

fcounter <== "000000000";

ELS IF (clock'EVENT AND clock== '1 ') THEN

IF (fcnt_allow == 'l') THEN

IF (read_allow == 'O') THEN

64

fcounter <= fcounter + '1';
ELSE

fcounter <= fcounter - '1 ';

END IF;

END IF;

END IF;

END PROCESS proc7;

fifocount_out <= fcounter(8 downto 5);

END fifo_ctrl;

3.4 Synthesize

When the source files are complete, I had to check the syntax of the design to find errors

and types.

1. Firstly, verifying that Synthesis/Implementation is selected from the drop-down list

in the Sources window is the most important thing.

2. Selecting the fifo _ ctlr design source in the Sources window to display the related

processes in the Processes window.

3. The "+" used to expand the process group. (It's next to the Synthesize-XST process.)

4. Double-click the Check Syntax process.

Note: I used to correct any errors found in my source files. We can check for errors in

the Console tab of the Transcript window. Cause if you continue without valid syntax,

you will not be able to simulate or synthesize your design.

65

5. Then I closed the HDL file. •.

3.5 Test Bench of The Design

Now we need to test out design and we do it using the Test Bench tool for that.

We make sure that Synthesis/Implementation checked in source window, we mark on our

HDL design then click Project -+ New Source.

We should note that VHDL Test Bench must be checked on and we write fifo ctrl tb in

File name field. Then we click finish until we finish the process.

The figure below shows us:

'<J IP (Coiegen & Architecture Wizard)
- MEM Fie

",J Implementation Constraints File
State Diagram

.n. Test Bench Waveform

I E User Document
Y Verilog Module

I Verilog Test Fixture I "w VHDL Module
VHDL Libia,y I P VHDL Package

v VHDL Test Bench

[

Filename:

[fifo_ctrl_tb

Location:

jc:\Xainx91 i\silent\v2_filo_ vhd_258 ! 0

0 Add to project ______ ,,_ __ ~"~--~--'
MOie lrfo <Back..J[_Next>] I Cancel

Figure 3.10 Source Type

66

..
After clicking Finish, here is the result on Behavioral Simulation in source window:

LIBRARY ieee;

USE ieee.std_logic_l 164.ALL;

USE ieee.std _logic_ unsigned.all;

USE ieee.numeric _ std.ALL;

ENTITY fifo ctrl tb vhd IS - - -

END fifo_ctrl_tb_vhd;

ARCHITECTURE behavior OF fifo ctrl tb vhd IS

-- Component Declaration for the Unit Under Test (UUT)

COMPONENT fifo ctlr

PORT(

clock_in: IN std_logic;

read_enable_in: IN std_logic;

write_enable_in: IN std_logic;

write_data_in: IN std_logic_vector(35 downto O);

fifo_gsr_in: IN std_logic;

read_data_out: OUT std_logic_vector(35 downto O);

full_out: OUT std_logic;

empty_out: OUT std_logic;

fifocount_ out : OUT std _logic_ vector(3 downto 0)

);

END COMPONENT;

67

--Inputs

SIGNAL clock in: std Iogic := 'O';

SIGNAL read_enable_in: std Iogic := 'O';

SIGNAL write_enable_in: std_logic := 'O';

SIGNAL fifo_gsr_in: std_logic := 'O';

SIGNAL write_data_in: std_logic_vector(35 downto 0) := (others=>'O');

--Outputs

SIGNAL read_data_out: std_logic_vector(35 downto O);

SIGNAL full_out: std Iogic;

SIGNAL empty_out: stdIogic;

SIGNAL fifocount out: std_logic_vector(3 downto O);

BEGIN

-- Instantiate the Unit Under Test (UUT)

uut: fifoctlr _cc_ v2 PORT MAP(

clock _in=> clock _in,

read enable in=> read enable jn,

writeenable jn => write_enable_in,

write_data_in => write jlata jn,

fifo_gsr_in => fifo_gsr_in,

read , data_ out => read , data , out,

full , out=> full , out,

empty_ out => empty_ out,

fifocount out => fifocount out

);

68

••

tb: PROCESS

BEGIN

-- Wait 100 ns for global reset to finish

wait for 100 ns;

-- Place stimulus here

wait; -- will wait forever

END PROCESS;

END;

Here is my entity part which I used to define my Inputs/Outputs in it:

clock_in: IN std_logic;

read_enable_in: IN std_logic;

write_enable_in: IN std_logic;

write_data_in: IN std_logic_vector(35 downto O);

fifo_gsr_in: IN std_logic;

read_data_out: OUT std_logic_ vector(35 downto O);

full_out: OUT std_logic;

empty_out: OUT std_logic;

fifocount_ out : OUT std _logic_ vector(3 downto 0)

Afterwards I define my signals (functions) in Architecture part:

--Inputs

SIGNAL clock in: std_logic := 'O';

SIGNAL read_enable_in: std_logic := 'O';

69

SIGNAL write_enable_in: std_logic := 'O'; ..
SIGNAL fifo_gsr_in: std_logic := 'O';

SIGNAL write_data_in: std_logic_vector(35 downto 0) := (others=>'O');

--Outputs

SIGNAL read_data_out: std_logic_vector(35 downto O);

SIGNAL full_out: std_logic;

SIGNAL empty_out: std_logic;

SIGNAL fifocount out : std _logic_ vector(3 downto O);

Then I connect my Inputs/Outputs to my signal using these codes:

clock _in=> clock _in,
read_enable_in => read_enable_in,
write_enable_in => write_enable_in,
write_data_in => write_data_in,
fifo_gsr_in => fifo_gsr_in,
read_ data_ out => read_ data_ out,
full_out => full_out,
empty_ out => empty_ out,
fifocount out => fifocount out - -

I created a clock process using these:

elk _proc: process

begin
clock _in<='O';
wait for 5 ns;
clock_in<='l ';
wait for 5 ns;
end process;

I reset my FIFO giving a value 1 to my global reset, enabling to write by giving 1 and un

enabling to read by Oby:

tb: PROCESS
BEGIN

70

fifo _gsr _in<=' 1 ';
-- Wait 100 ns for global reset to finish
wait for 100 ns;

write enable in<= '1 '· - - '
read_enable_in <= 'O';
fifo _gsr _in<='O';

write_data_in <= (write_data_in'range=>'O');

wait for 20 ns;

Afterward I made a loop of 511 to make sure that I used all of the FIFO without

bad addressing or errors, enabling the read and un-enabling and incrementing the write

process by:

for i in O to 511 loop
write_data_in <= write_data_in + "10";
wait for 20 ns;
end loop;

-- Place stimulus here
read_enable_in <= '1';
write_enable_in <= 'O';
wait; -- will wait forever

After we have finished our coding we must make sure that we used correct codes,

we do it by using Checking Syntax tool, correct any syntax errors.

71

••

3.6 Simulation

I can simply reach the Simulation tool by selecting Behavioral Simulation from

the Source Window, and then Xilinx ISE Simulator ~ Simulate Behavioral Model

from the Process window. As shown in the figure below:

'-~v2..lifo_l'hd_258
t::h:3s100e-4tq144
~-~IJ~_cc)>_vhd,~(m.vhd)

tuU_ou~ •> !ul)_out,
empey_out •> empty_out,
tUocount out •> titocount out

52) ; - -
53

55
S6 begin

~:!s f(J: floctk_cc_tb_ vhd · ~
r- r:l Add E~sting Souce
'-o Creale New Swi;e S·» XinidSE S~oc

'f ,~ Check SJ"la.

57 clock in<:=101;

Sa 'i,ait tor s ns;
5~ cloclt_in<•' 1';
60 vait tor S ns;
61 enct process;
62
'63
64 tb : PROCESS
65 BEGIN
66 tifo gsr in<•' 1';
67 _: llait 100 tis .to~ global reset to tinish
6S 11ait tor 100 ns:
69 vriu eneble in <• '1';
70 read_enable_in <• '0';
?1
7~
73
74
75
76

vrite_data_in <• (wdt1t_data_in' range•>' 0');

vait for 20 ns;
tor i in O to 511 loop

run all
stop -s
Stopped at line•S9 tile nameaC: / Ki linx911/ si lent/v2 _f if_o _ vhcl _2 58/ aaa. vhd

Fild,1 fries 1

Figure 3.11 Simulation the Design

72

..

Running Simulation causes us to get these results:

Figure 3.12 Simulation Result

As we can see from the figure. When the global reset goes from 1 to 0, the

resetting process stops. And when the write_enable_in become 1, it starts to write into the

FIFO.

We should note that the write_data_in is increasing 2 by 2 that's the cause of our shown

code:

write_data_in <= write_data_in + "10";

73

..

And here is another screen shot which shows us that after a certain time the

read_ data_ out is also increasing, as shown below:

Figure 3.13 Simulation Result

This means that I wrote data in my FIFO and I can read them, and that was my objective.

74

3. 7 Implementation ••

You can Implement and view the Translate, Map, Place & Route reports and then

apply it your electronic device. The figure below shows how to Implement your design

(you must have a green tick as shown, which means that the reports generated

successfully):

"}'.: Fae Edi: 1/iew Project Sou',e ,. f'°'"'' Wlidow HelJ
110 ~ ~ c,.t~~rn~~xtl\')e1 ftijfof':rcx;l!,,@i~~~ s III gig> 111 i100~1§:dfect?':' ih Q

0 t!'Ht~~~~(H)

NoErrois

~
i Wed Ma,, 30 23:19:28
!i 2007

C1eate New Souce
View Design S\.1Yl1l'1¥y
De~Utitie$
u~Ct>nS:traints
Si,,tt>esize·XST

(~~Tron,late
$,~$Map
$--'~Place & Route
,~@GeneioteProg,amfringF'rle

r Total time: 7 :,;;'c~
I

Process -cenecaee pcet.-p Iece & Route Static:: Timing" completed eucceeerut tv

Figure 3.14 Implementation the design

75

Conclusion ..

I designed a FIFO Controller using Integrated Software Environment (ISE)

development tools. My design approach was to define my inputs, outputs and functions

using the VHDL, generated a Test Bench to write into 512 location with different data,

and to read this 512 data location one-by-one. I used the Test Bench Simulator Tool to

see what I wrote I read it back. The simulation was successful, that means I have read the

data correctly.

I used 5 different functions (processes) to fill the locations of my FIFO, and here

they are:

• I set allow flags, which control the clock enables for read, write, and count

operations.

• Empty flag is set on fifo _gsr (initial), or when on the next clock cycle,

Write Enable is low, and either the FIFOcount is equal to 0, or it is equal

to 1 and Read Enable is high (about to go Empty).

• Full flag is set on fifo _gsr (but it is cleared on the first valid clock edge

after fifo_gsr is removed), or when on the next clock cycle, Read Enable is

low, and either the FIFOcount is equal to lFF (hex), or it is equal to lFE

and the Write Enable is high (about to go Full).

• Generation of Read and Write address pointers. They now se binary

counters, because it is simpler in simulation, and the previous LFSR

implementation wasn't in the critical path.

• Generation of FIFO count outputs. Used to determine how full FIFO is,

based on a counter that keeps track of how many words are in the FIFO.

Also used to generate Full and Empty flags. Only the upper four bits of

the counter are sent outside the module.

76

Conclusion

I designed a FIFO (511X36) Controller using VHDL. I have used the Integrated

Software Environment (ISE) development tools to develop and implement the project.

My design approach was to define the requirements of the design, then derive the

specification. I wrote my VHDL codes defining my inputs, outputs and functions (I used

5 different processes to design the function of the FIFO) my functions were signals, so I

used to connect my entity part to my signal. I used the synthesis tool to check my design

syntax then I generated a Test Bench to write into 512 locations with different data, and

to read this 512 data location one-by-one (I made a FOR loop of 511 to make sure that I

used all of the FIFO without bad addressing or errors, enabling the read and un-enabling

and incrementing the write process). Checked the Syntax and everything was under

control.

I used the Test Bench Simulator Tool to see what I wrote I read it back then I

have created some implement reports like (translate, map, place & route). The simulation

was successful; the codes are ready to be uploaded into the electronic device, which

means I have reached my objective.

76

REFERENCES

• Xilinx ISE Software Manual.

• Xilinx ISE Application Notes.

• Xilinx ISE Tutorials: Xilinx ISE Quick Start and Xilinx ISE Tutorials on the

Web.

• Xilinx ISE Web Page.

77

	Page 1
	Titles
	NEAR EAST UNIVERSITY
	Faculty of Engineering

	Images
	Image 1
	Image 2
	Image 3

	Page 2
	Titles
	..
	AKNOWLEDGEMENT
	IN THE NAME OF ALLAH, MOST GRACIOUS, MOST MERCIFUL.

	Images
	Image 1

	Page 3
	Titles
	.Ł
	ABSTRACT

	Images
	Image 1

	Page 4
	Titles
	AKNOWLEDGEMENT
	TABLE OF CONTENTS
	CHAPTER ONE: FPGA Design Flow
	i
	ii
	iii
	1

	Images
	Image 1

	Page 5
	Titles
	Ł.

	Images
	Image 1

	Page 6
	Titles
	CHAPTER THREE: FIFO
	CONTROLLER IN VHDL
	(511
	X
	36)
	37
	Conclusion
	77

	Images
	Image 1

	Page 7
	Titles
	Introduction
	1

	Images
	Image 1

	Page 8
	Titles
	CHAPTER ONE: FPGA Design Flow
	1.1 Hardware Description Languages
	1.2 Advantages of Using HDLs to Design FPGA Devices

	Images
	Image 1

	Page 9
	Titles
	1.2.1 Top-Down Approach for Large Projects
	..
	1.2.2 Functional Simulation Early in the Design Flow
	1.2.3 Synthesis of HDL Code to Gates

	Images
	Image 1

	Page 10
	Titles
	1.2.4 Early Testing of Various Design Implementations
	1.2.5 Reuse of RTL Code
	1.3 Designing FPGA Devices with HDLs

	Images
	Image 1

	Page 11
	Titles
	1.3.1 Designing FPGA Devices with VHDL
	1.3.2 Designing FPGA Devices with Synthesis Tools
	1.3.3 Using FPGA System Features

	Images
	Image 1

	Page 12
	Titles
	1.3.4 Designing Hierarchy
	Ł
	1.3.5 Specifying Speed Requirements

	Images
	Image 1

	Page 13
	Titles
	1.4 FPGA Design Flow

	Images
	Image 1

	Page 14
	Titles
	1.4.1 Design Flow
	Ł
	8

	Images
	Image 1

	Tables
	Table 1

	Page 15
	Titles
	1.4.2 Entering Your Design and Selecting Hierarc6y
	1.4.2.1 Design Entry Recommendations

	Images
	Image 1

	Page 16
	Titles
	1.4.2.2 Architecture Wizard

	Images
	Image 1

	Page 17
	Titles
	Ł

	Images
	Image 1

	Page 18
	Titles
	1.4.2.3 CORE Generator

	Images
	Image 1

	Page 19
	Titles
	1.4.3 Functional Simulation
	..
	1.4.3.1 Simulation Recommendations
	1.4.3.2 ModelSim Simulators

	Images
	Image 1

	Page 20
	Titles
	1.4.4 Synthesizing and Optimizing
	1.4.4.1 Creating a Compile Run Script
	1.4.4.2 Synthesizing Your Design

	Images
	Image 1

	Page 21
	Titles
	1.4.4.3 Reading Cores
	Ł.
	Precision RTL Synthesis

	Images
	Image 1

	Page 22
	Titles
	1.4.5 Setting Constraints

	Images
	Image 1

	Page 23
	Titles
	Ł
	1.4.6 Evaluating Design Size and Performance
	1.4.6.1. Estimating Device Utilization and Performance

	Images
	Image 1

	Page 24
	Titles
	1.4.6.2 Determining Actual Device Utilization and Pre-routed

	Images
	Image 1

	Page 25
	Images
	Image 1

	Page 26
	Images
	Image 1

	Page 1
	Titles
	1.4. 7 Evaluating Coding Style and System Features
	1.4.7.1 Modifying Your Code
	1.4.7.2 Using FPGA System Features

	Images
	Image 1

	Page 2
	Titles
	Ł
	1.4.7.3 Using Xilinx-Specific Features of Your Synthesis Tool
	1.4.8 Placing and Routing

	Images
	Image 1

	Page 3
	Titles
	1.4.9 Timing Simulation

	Images
	Image 1

	Page 4
	Titles
	CHAPTER TWO: ISE GENERAL INFORMATION &
	2.1 ISE General Information
	2.1.1 Xilinx ISE overview
	2.1.2 Design Entry
	2.1.3 Synthesis

	Images
	Image 1

	Page 5
	Titles
	2.1.4 Implementation
	2.1.5 Verification
	2.1.6 Device Configuration

	Images
	Image 1

	Page 6
	Titles
	2.1. 7 Architecture Support
	..

	Images
	Image 1
	Image 2

	Page 7
	Titles
	2.1.8 Operating System Support
	2.2 Using Project Navigator
	2.2.1 Project Navigator Overview

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 8
	Titles
	2.2.2 Project Navigator Main Window

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Tables
	Table 1
	Table 2

	Page 9
	Titles
	2.2.3 Using the Source Window
	..
	Sources for: I Synthesis/Implementation
	t \:J v2_fifo_ vhd_25S
	! .. , ~Jl.:tfifoctlr_cc_ v2 Ł fifoctlr_ cc_ v2_hdl (fifoctlr c
	··-,, Snapshots
	1

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 10
	Titles
	2.2.4 Using the Processes Window

	Images
	Image 1

	Page 11
	Titles
	2.2.5 Process Types,
	2.2.6 Process Status

	Images
	Image 1
	Image 2

	Page 12
	Titles
	..

	Images
	Image 1

	Page 13
	Titles
	Rerun All
	2.2. 7 Running Processes
	Run
	e
	Open \Nithout Updating
	Properties .. ,

	Images
	Image 1
	Image 2

	Page 14
	Titles
	2.2.8 Setting Process Properties
	'ft Run
	~ RerunAII
	Open Without Updating
	~ Properties ŁŁ.

	Images
	Image 1
	Image 2

	Page 15
	Titles
	2.2.9 Using the Workspace
	2.2.10 Using the Transcript Window
	Ł
	Ł

	Images
	Image 1

	Page 16
	Titles
	2.2.11 Using the Toolbars

	Images
	Image 1

	Page 17
	Titles
	CHAPTER THREE: FIFO (511 X 36) C:ONTROLLER IN

	Images
	Image 1

	Tables
	Table 1

	Page 18
	Titles
	3.1 Requirement
	3.2 Specifications
	3.2.1 FIFOs Using Virtex-11 Block RAM
	Ł.
	3.2.1.1 Synchronous FIFO Using Common Clocks

	Images
	Image 1

	Page 19
	Titles
	.Ł

	Images
	Image 1

	Tables
	Table 1

	Page 20
	Titles
	3.2.1.2 Synchronous FIFO operation
	40

	Images
	Image 1

	Tables
	Table 1

	Page 1
	Images
	Image 1

	Page 2
	Titles
	3.2.1.3 Asynchronous FIFO Using Independent Clocks

	Images
	Image 1

	Tables
	Table 1

	Page 3
	Titles
	3.2.1.4 Asynchronous FIFO operation

	Images
	Image 1

	Tables
	Table 1

	Page 4
	Images
	Image 1

	Page 5
	Titles
	..
	3.2.1.5 Conclusion

	Images
	Image 1

	Tables
	Table 1

	Page 6
	Titles
	3.3 How I have Created My Project
	..
	---tl~lb~i

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Tables
	Table 1

	Page 7
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 8
	Titles
	Leave the default values in the remaining fields.
	When the table is complete, your project properties will look like the following:
	f~perl;Na;e- ---1~ --
	- ,.,._ _;......;.._....;......;......;.._-1
	- ,,-~=~-- ~------------------....;
	Figure 3.6 Device Properties
	48

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Tables
	Table 1

	Page 9
	Titles
	3.3.1 Creating an HDL Source
	3.3.2 Creating a VHDL Source

	Images
	Image 1
	Image 2

	Page 10
	Titles
	..
	ltifo 51?X3~

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 11
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Tables
	Table 1

	Page 12
	Titles
	Ł.

	Images
	Image 1

	Page 13
	Images
	Image 1

	Page 14
	Titles
	ŁŁ

	Images
	Image 1
	Image 2
	Image 3

	Page 15
	Titles
	- -
	- ,

	Images
	Image 1

	Page 16
	Images
	Image 1

	Page 17
	Titles
	- '

	Images
	Image 1

	Page 18
	Images
	Image 1

	Page 19
	Titles
	3.3.3 Open Codes of My FIFO (511 X 36) Design
	..

	Images
	Image 1

	Page 20
	Titles
	Ł.

	Images
	Image 1

	Page 1
	Images
	Image 1

	Page 2
	Titles
	'
	..
	- '
	- '

	Images
	Image 1
	Image 2
	Image 3

	Page 3
	Titles
	ŁŁ

	Images
	Image 1

	Page 4
	Titles
	..

	Images
	Image 1

	Page 5
	Titles
	3.4 Synthesize

	Images
	Image 1
	Image 2

	Page 6
	Titles
	Ł.
	3.5 Test Bench of The Design
	______ ,,_ __ ~"~--~--'
	[

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 7
	Titles
	..

	Images
	Image 1

	Page 8
	Images
	Image 1

	Page 9
	Images
	Image 1

	Page 10
	Titles
	..
	- -

	Images
	Image 1

	Page 11
	Images
	Image 1

	Page 12
	Titles
	3.6 Simulation

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8
	Image 9
	Image 10

	Page 13
	Titles
	..

	Images
	Image 1
	Image 2
	Image 3

	Page 14
	Titles
	..

	Images
	Image 1
	Image 2
	Image 3

	Page 15
	Titles
	3. 7 Implementation
	ŁŁ

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 16
	Titles
	Conclusion
	..

	Page 17
	Titles
	Conclusion

	Images
	Image 1

	Page 18
	Titles
	REFERENCES

	Images
	Image 1

