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ABSTRACT

In the real life, there are such image recognition problems that need construction of

intelligent systems with high accuracy and very quick decision-makingmechanism. One of

approaches to solve these problems is Neural Networks.

Neural network applicationshave lately become a common feature with varying degrees of

success and usability. Neural networks can provide sufficient and robust solutions to

problems where automationis required.

The back-propagation learning algorithm has been implemented and tested on application,

character recognition. Experimental results including training, time and recognition

accuracy are gıven.
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INTRODUCTION

Many recognition techniques such as image processing techniques and a neural network

(NN) technique have been proposed for the character recognition. Based on several

previous research studies, it seems that the NN technique is more suitable and robust for

recognition than any other techniques because of its self-organization and generalization

abilities. Therefore, the NN techniquehas been applied to the character recognition system.

This recognition system has been applied to recognize one set of characters with a "Times

New Roman" font. System has been trained with a clean set of these characters and tested

by trained set andnoisy character set which are not trained to the neural network.

The aims of the work presented within this project:

• To investigateNeural Networks algorithmsand techniques,

• To provide an intelligent character recognition system

• To design and simulate a neural network for character recognitionusing Matlab.

This project consists of 4 chapters and a conclusion. First three chapters gıve an

introduction about the background of this work, Neural Networks and Character

Recognition Systemsand the last chapters explain the work done.
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CHAPTER 1

INTRODUCTION TO CHARACTER RECOGNITION SYSTEMS

1.1 Object Recognition

Object recognition consists of locating the positions and possibly orientations and scales of

instances of objects in an image. The purpose may also be to assign a class label to a detected

object. Our survey of the literature on object recognition using ANNs indicates that in most

applications, ANNs have been trained to locate individual objects based direction pixel data.

Another less frequently used approach is to map the contents of a window onto a feature

space that is provided as input to a neural classifier.

1.1.1 Optical Character Recognition
The recognition of handwritten or printed text by computer is referred to as Optical Character

Recognition. When the input device is a digitizer tablet that transmits the signal in real time

(as in pen-based computers and personal digital assistants) or includes timing information

together with pen position (as in signature capture) we speak of dynamic recognition. When

the input device is a still camera or a scanner, which captures the position of digital ink on the

page but not the order in which it was laid down, we speak of static or image-based OCR.

Dynamic OCR is an increasingly important modality in Human Computer I interaction, and

the difficulties encountered in the process are largely similar to those found in other HCI

modalities, in particular, Speech Recognition. The stream of position/pen pressure values

output by the digitizer tablet is analogous to the stream of speech signal vectors output by the

audio processing front end, and the same kinds of lossy data compression techniques,

including cepstral analysis, linear predictive coding, and vector quantization, are widely

employed for both.
Static OCR encompasses a range of problems that have no counterpart in the recognition of

spoken or signed language, usually collected under the heading of page decomposition or

layout analysis. These include both the separation of linguistic material from photos, line

drawings, and other non-linguistic information, establishing the local horizontal and vertical

axes (deskewing), and the appropriate grouping of titles, headers, footers, and other material

set in a font different from the main body of the text. Another OCR-specific problem is that

we often find different scripts, such as Kanji and Kana, or Cyrillic and Latin, in the same

running text.
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While the early experimental OCR systems were often rule-based, by the eighties these have

been completely replaced by systems based on statistical, Pattern Recognition. For clearly

segmented printed materials such techniques offer virtually error-free OCR for the most

important alphabetic systems including vaıiants of the Latin, Greek, Cyrillic, and Hebrew

alphabets.

However, when the number of symbols is large, as in the Chinese or Korean wıiting systems,

or the symbols are not separated from one another, as in Arabic or Devanagari print, OCR

systems are still far from the error rates of human readers, and the gap between the two is also

evident when the quality of the image is compromised e.g. by fax transmission. Until these

problems are resolved, OCR can not play the pivotal role in the transmission of cultural

heıitage to the digital age that it is often assumed to have.

In the recognition of handprint, algoıithms with successive segmentation, classification, and

identification (language modeling) stages are still in the lead, as shown in the later chapters.

1.2 Character Recognition

It is often useful to have a machine perform pattern recognition. In particular, machines that

can read symbols are very cost effective. A machine that reads banking checks can process

many more checks than a human being in the same time. This kind of application saves time

and money, and eliminates the requirement that a human perform such a repetitive task. The

script appcrl demonstrates how character recognition can be done with a backpropagation

network. Problem StatementA network is to be designed and trained to recognize the 26

letters of the alphabet. An imaging system that digitizes each letter centered in the system's

field of vision is available. The result is that each letter is represented as a 5 by 7 gıid of

boolean values. For example, here is the letter A. However, the imaging system is not perfect

and the letters may suffer from noise. Perfect classification of ideal input vectors is required,

and reasonably accurate classification of noisy vectors. The twenty-six 35-element input

vectors are defined in the function prprob as a matrix of input vectors called alphabet. The

target vectors are also defined in this file with a variable called targets. Each target vector is a

26-element vector with a 1 in the position of the letter it represents, and O's everywhere else.

For example, the letter A is to be represented by a 1 in the first element (as A is the first letter

of the alphabet), and O's in elements two through twenty-six.

2



1.3 Pattern Recognition

The act of recognition can be divided into two broad categories: recognizing concrete items

and recognizing abstract items. The recognition of concrete items involves the recognition of

spatial and temporal items. Examples of spatial items are fingerprints, weather maps, pictures

and physical objects. Examples of temporal items are waveforms and signatures. Recognition

of abstract items involves the recognition of a solution to a problem, an old conversation or

argument, etc. In other words, recognizing items that do not exist physically.

1.3.1 Filtering

Filtering is removing unwanted information or data from input. Depending on the application,

the filter algorithm or method will change. For example, consider finger print identification.

Each time we scan our fingerprints through a (non-ink) fingerprint device, the scanned output

may be different. The difference may be due to a change in contrast or brightness or in the

background of the image. There could be some distortion, In order to process the input, we

may need only lines in the fingerprints and we may not need the other parts or background of

the fingerprint. In order to filter out the unwanted portion of the image and replace it with a

white background, we need a filter mechanism. Once the image is filtered through the filter

mechanism, we will get standard clean finger prints only with lines, which in tum helps with

the process of feature extraction.

1.3.2 Feature extraction

Is a process of studying and deriving useful information from the filtered input patterns. The

derived information may be general features, which are evaluated to ease further processing.

For example, in image recognition, the extracted features will contain information about gray

shade, texture, shape or context of the image. This is the main information used in image

processıng. The methods of feature extraction and the extracted features are application

dependent.

1.3.3 Classification

Is the final stage of the pattern recognition. This is the stage where an automated system

declares that the inputted object belongs to a particular category. There are many

classification methods in the field. Classification method designs are based on the following

concepts.
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1.3.4 Member-roster concept

Under this template-matching concept, a set of patterns belonging to a same pattern is stored

in a classification system. When an unknown pattern is given as input, it is compared with

existing patterns and placed under the matching pattern class.

1.3.5 Common property concept

In this concept, the common properties of patterns are stored in a classification system. When

an unknown pattern comes inside, the system checks its extracted common property against

the common properties of existing classes and places the pattern/object under a class, which

has similar, common properties.

1.3.6 Clustering concept

Here, the patterns of the targeted classes are represented in vectors whose components are

real numbers. So, using its clustering properties, we can easily classify the unknown pattern.

If the target vectors are far apart in geometrical arrangement, it is easy to classify the

unknown patterns. If they are nearby or if there is any overlap in the cluster arrangement, we

need more complex algorithms to classify the unknown patterns. One simple algorithm based

on the clustering concept is Minimum Distance Classification. This method computes the

distance between the unknown pattern and the desired set of known patterns and determines

which known pattern is closest to the unknown and, finally, the unknown pattern is placed

under the known pattern to which it has minimum distance. This algorithm works well when

the target patterns are far apart.

1.4 Neural Network

The network receives the 35 Boolean values as a 35-element input vector. It is then required

to identify the letter by responding with a 26-element output vector. The 26 elements of the

output vector each represent a letter. To operate correctly, the network should respond with a

1 in the position of the letter being presented to the network. All other values in the output

vector should be O. In addition, the network should be able to handle noise. In practice, the

network does not receive a perfect Boolean vector as input. Specifically, the network should

make as few mistakes as possible when classifying vectors with noise of mean O and standard

deviation of 0.2 or less.
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1.5 Architecture

The neural network needs 35 inputs and 26 neurons in its output layer to identify the letters.

The network is a two-layer log-sigmoid/log-sigmoid network. The log-sigmoid transfer

function was picked because its output range (O to 1) is perfect for learning to output boolean

values. The hidden (first) layer has 10 neurons. This number was picked by guesswork and

experience. If the network has trouble learning, then neurons can be added to this layer. The

network is trained to output a 1 in the correct position of the output vector and to fill the rest

of the output vector with O's. However, noisy input vectors may result in the network not

creating perfect 1 's and O's. After the network is trained the output is passed through the

competitive transfer function compet. This makes sure that the output corresponding to the

letter most like the noisy input vector takes on a value of 1, and all others have a value of O.

The result of this post-processing is the output that is actually used.

1.6 Initialization of Neural Network

Initial values of back propagation learning algorithm can be seen below.

sı = ıoo;
[R,Q] = size(P2);

[S2,Q] = size(T);

net= newff(minmax(P2),[S 1 S2], {'logsig' 'logsig'} ,'traingdx');

1.7 Training of Neural Network

Final training parameters of neural network can be seen below.

net.perfonnFcn = 'sse';

net.trainParam.goal = O.Ol;

net.trainParam.show = 20;

net.trainParam.lr = 0.003;

net.trainParam.epochs = 10000;

net.trainParam.mc = 0.15;

[net,tr] = train(net,P2,T);

save('TrainedNetwork mat' 'P2' 'Pl' 'T' 'net' 'tr')·. ' ' ' ' ' '
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CHAPTER2

NEURAL NETWORKS

2.lOverview

This chapter presents an introduction about the general neural networks, development of

neural networks, biological neural networks, artificial models and methods of neural

networks. Also major components of artificial neurons, connection types, learning laws and

comparison of neural networks with traditional computing will be explained.

2.2 Origins of Neural Networks
In the early 1940s, Warren McCulloch (1899-1969, was an American neurophysiologist and

cybernetician' ) and Walter Pitts (1928-late 1960's, was logician who worked in the field of

Cognitive Psychology) published a seminar paper titled "A Logical Calculus of the Ideas

Immanent in Nervous Activity". In it, they proposed a mathematical model of a neuron, which

could perform computations. This artificial neuron, or neurode (some call them neurons), was

a simple device, which could receive input from other such devices [1].

The neurode's output was either a 1 or a O, reflecting the all-or-none theory of biological

neurons. When the total input reached a certain critical level, the neurode would send its

output to other neurodes with which it was connected. This method is called threshold logic.

In basic propositional logic, something can be either true or false. Since a neurode's state is

either a 1 or a O, it can be represented by a proposition. If you organize simple neurodes into a

network, they can combine to form more complex propositions. This theory was so influential

that this type of neurode is called the McCulloch- Pitts neuron. Some modern neural networks

use neurodes, which are essentially extensions of the McCulloch-Pitts neuron.

The concept of neural networks has been around since the early 1950s, but was mostly

dormant until the mid 1980s. One of the first neural networks developed was the perceptron.

Created by a psychologist named Frank Rosenblatt in 1958, theperceptron was a very simple

system that used interconnected neurodes to analyze data, usually visual patterns. Rosenblatt

published a series of papers, which generated a great deal of interest in the perceptron. Many

people researched and developed further the perceptron model, even implementing it in

hardware. The perceptron was widely and unrealistically praised by researchers. Rosenblatt

and other scientists claimed that eventually, with enough complexity and speed, the

perceptron would be able to solve almost any problem.
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This was far from the truth. In 1969, Marvin Minsky (1927, is an American scientist in the

field of Artificial Intelligence) and Seymour Papert (1928, is an MIT1 mathematician. He is

one of the pioneers of AI) published an influential book titled "Perceptrons". In it, they proved

several theorems, which showed that the perceptron could never solve a class of simple

problems, and hinted at several other serious, fundamental flaws in the model. After

"Perceptrons", scientists working on neural network type devices found it almost impossible

to receive funding.

2.3 Biological Neuron

The brain is a collection of about 1 O billion interconnected neurons [ 1]. Each neuron is a cell

that uses biochemical reactions to receive, process and transmit information. A neuron's

dendritic tree is connected to a thousand neighboring neurons. When one of those neurons

fire, a positive or negative charge is received by one of the dendrites. The strengths of all the

received charges are added together through the processes of spatial and temporal summation.

Spatial summation occurs when several weak signals are converted into a single large one,

while temporal summation converts a rapid series of weak pulses from one source into one

large signal. The aggregate input is then passed to the soma (cell body). The soma and the

enclosed nucleus don't play a significant role in the processing of incoming and outgoing data.

Their pıimary function is to perform the continuous maintenance required to keep the neuron

functional. The part of the soma that does concern itself with the signal is the axon hillock. If

the aggregate input is greater than the axon hillock's threshold value, then the neuron fires,

and an output signal is transmitted down the axon. The strength of the output is constant,

regardless of whether the input was just above the threshold, or a hundred times as great. The

output strength is unaffected by the many divisions in the axon; it reaches each terminal

button with the same intensity it had at the axon hillock. This uniformity is critical in an

analogue device such as a brain where small errors can snowball, and where error correction

is more difficult than in a digital system (Figure 2.1).

Each terminal button is connected to other neurons across a small gap called a synapse [ 1]

(Figure 2.2). The physical and neurochemical characteristics of each synapse determines the

strength and polarity of the new input signal. This is where the brain is

the most flexible, and the most vulnerable. Changing the constitution of various neuro­

transmitter chemicals can increase or decrease the amount of stimulation that the firing axon

imparts on the neighboring dendrite. Altering the neurotransmitters can also change whether

the stimulation is excitatory or inhibitory. Many drugs such as alcohol and LSD have dramatic
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effects on the production or destruction of these critical chemicals. The infamous nerve gas

sarin can kill because it neutralizes a chemical (acetyl cholinesterase) that is normally

responsible for the destruction of a neurotransmitter (acetylcholine). This means that once a

neuron fires, it keeps on triggeıing all the neurons in the vicinity. One no longer has control

over muscles, and suffocation ensues.

Figure 2.1 Schematic of Biological Neuron

Figure 2.2 The synapse

2.4 Artificial Neuron Models

Computational neurobiologists have constructed very elaborate computer models of neurons

in order to run detailed simulations of particular circuits in the brain. As Computer Scientists,

we are more interested in the general properties of neural networks; independent of how they

are actually "implemented" in the brain. This means that we can use much simpler, abstract

"neurons", which (hopefully) capture the essence of neural computation even if they leave out

much of the details of how biological neurons work.
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People have implemented model neurons in hardware as electronic circuits, often integrated

on VLSI chips. Remember though that computers run much faster than brains - we can

therefore run fairly large networks of simple model neurons as software simulations in

reasonable time. This has obvious advantages over having to use special "neural" computer

hardware.

2.4.1 An Artificial Neuron

Basic computational element (model neuron) is often called a node or unit (Figure 2.3). It

receives input from some other units, or perhaps from an external source. Each input has an

associated weight w, which can be modified so as to model synaptic learning. The unit

computes some function/of the weighted sum of its inputs:

Y; = f(L WuY)
j

ts output, in tum, can serve as input to other units.

~1

••••
Y; = f(net;)

Figure 2.3 A Simple Artificial Neuron

• The weighted sum Li wuy1 is called the net input to unit i, often written net;

• Note that Wu refers to the weight from unit} to unit i (not the other way around).

• The function/is the unit's activationfunction. In the simplest case,fis the identity

function, and the unit's output is just its net input. This is called a linear unit.
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2.4.2 Major Components of Artificial Neurons

Major components of an artificial neuron are described as shown below [1]. These

components are valid whether the neuron is used for input, output, or is in one of the

hidden layers.

2.4.2.1 Weighting Factors

A neuron usually receives many simultaneous inputs. Each input has its own relative

weight, which gives the input the impact that it needs on the processing element's

summation function. These weights perform the same type of function, as do the

varying synaptic strengths of biological neurons. In both cases, some inputs are made

more important than others so that they have a greater effect on the processing element

as they combine to produce a neural response. Weights are adaptive coefficients within

the network that determine the intensity of the input signal as registered by the

artificial neuron. They are a measure of an input's connection strength. These strengths

can be modified in response to vaıious training sets and according to a network's

specific topology or through its learning rules.

2.4.2.2 Summation Function

The first step in a processing element's operation is to compute the weighted sum of all

of the inputs. Mathematically, the inputs and the corresponding weights are vectors

which can be represented as (i1, iı ... i11) and (w1, w2 ... w,z). The total input signal is

the dot, or inner, product of these two vectors. This simplistic summation function is

found by multiplying each component of the i vector by the corresponding component

of thew vector and then adding up all the products. Input, = ıı * wı, input, = i2 * w2,

etc., are added as input, + input, + ... + input.; The result is a single number, not a

multi-element vector. Geometrically, the inner product of two vectors can be

considered a measure of their similarity. If the vectors point in the same direction, the

inner product is maximum; if the vectors point in opposite direction (180 degrees out

of phase), their inner product is minimum. The summation function can be more

complex than just the simple input and weight sum of products. The input and

weighting coefficients can be combined in many different ways before passing on to

the transfer function. In addition to a simple product summing, the summation

function can select the minimum, maximum, majoıity, product, or several normalizing
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algoıithms. The specific algorithm for combining neural inputs is determined by the

chosen network architecture and paradigm.

Some summation functions have an additional process applied to the result before it is

passed on to the transfer function. This process is sometimes called the activation

function. The purpose of utilizing an activation function is to allow the summation

output to vary with respect to time. Activation functions currently are pretty much

confined to research. Most of the current network implementations use an "identity"

activation function, which is equivalent to not having one. Additionally, such a

function is likely to be a component of the network as a whole rather than of each

individual processing element component.

2.4.2.3 Transfer Function

The result of the suımnation function, almost always the weighted sum, is transformed

to a working output through an algorithmic process known as the transfer function. In

the transfer function the summation total can be compared with some threshold to

deteımine the neural output. If the sum is greater than the threshold value, the

processing element generates a signal. If the sum of the input and weight products is

less than the threshold, no signal (or some inhibitory signal) is generated. Both types

of response are significant. The threshold, or transfer function, is generally non­

linear. Linear (straight-line)

Ha rd l iırı it ıı r
Ram pin{J Fun ct ion

'I

-----1
ıı: " il, 'l ~ -1
X ti.: 0.ı -Y, : l 

X < O, y" ()
(I tl X !£1, 'f# :x
X > 1. ,'" 1

,_.
I

Sig m okl
f:urıc1 ions

L
o

X ~ !) , '/ ,- 1 ·• 1 I( 1 +X )
X < il, 'i " • 1 + 1 i( l • X}

Figure 2.4 Sample Transfer Functions
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functions are limited because the output is simply proportional to the input. Linear

functions are not very useful. That was the problem in the earliest network models as

noted in Minsky and Papert's book Perceptrons. The transfer function could be

something as simple as depending upon whether the result of the sununation function

is positive or negative. The network could output zero and one, one and minus one, or

other numeric combinations. The transfer function would then be a "hard limiter" or

step function. See Figure 2.4 for sample transfer functions.

Another type of transfer function, the threshold or ramping function, could minor the

input within a given range and still act as a hard limiter outside that range. It is a linear

function that has been clipped to minimum and maximum values, making it non­

linear. Yet another option would be a sigmoid or S-shaped curve. That curve

approaches a minimum and maximum value at the asymptotes. It is common for this

curve to be called a sigmoid when it ranges between O and 1, and a hyperbolic tangent

when it ranges between - 1 and 1. Mathematically, the exciting feature of these curves

is that both the function and its derivatives are continuous. This option works fairly

well and is often the transfer function of choice. Other transfer functions are dedicated

to specific network architectures. Prior to applying the transfer function, uniformly

distributed random noise may be added. The source and amount of this noise is

determined by the learning mode of a given network paradigm. This noise is normally

referred to as "temperature" of the artificial neurons. The name, temperature, is

derived from the physical phenomenon that as people become too hot or cold their

ability to think is affected. Electronically, this process is simulated by adding noise.

Indeed, by adding different levels of noise to the summation result, more brain-like

transfer functions are realized. To more closely mimic nature's characteristics, some

experimenters are using a gaussian noise source. Gaussian noise is similar to

uniformly distributed noise except that the distribution of random numbers within the

temperature range is along a bell curve. The use of temperature is an ongoing research

area and is not being applied to many engineering applications.

NASA announced a network topology, which uses what it calls a temperature

coefficient in a new feed-forward, back-propagation learning function. But this

temperature coefficient is a global term that is applied to the gain of the transfer

function. It should not be confused with the more common term, temperature, which is

simple noise being added to individual neurons. In contrast, the global temperature

coefficient allows the transfer function to have a learning variable much like the

12



synaptic input weights. This concept is claimed to create a network, which has a

significantly faster (by several order of magnitudes) learning rate and provides more

accurate results than other feed forward, back-propagation networks.

2.4.2.4 Scaling and Limiting

After the processing element's transfer function, the result can pass through additional

processes, which scale and limit. This scaling simply multiplies a scale factor times

the transfer value, and then adds an offset. Limiting is the mechanism, which insures

that the scaled result does not exceed an upper, or lower bound. This limiting is in

addition to the hard limits that the original transfer function may have performed. This

type of scaling and limiting is mainly used in topologies to test biological neuron

models, such as James Anderson's brain-state-in-the-box [l].

2.4.2.5 Output Function (Competition)

Each processing element is allowed one output signal, which it may output to

hundreds of other neurons. This is just like the biological neuron, where there are

many inputs and only one output action. Normally, the output is directly equivalent to

the transfer function's result. Some network topologies, however, modify the transfer

result to incorporate competition among neighboring processing elements. Neurons are

allowed to compete with each other, inhibiting processing elements unless they have

great strength. Competition can occur at one or both of two levels. First, competition

determines which artificial neuron will be active, or provides an output. Second,

competitive inputs help determine which processing element will participate in the

learning or adaptation process.

2.4.2.6 EITor Function and Back-Propagated Value

In most learning networks the difference between the current output and the desired

output is calculated. This raw error is then transformed by the error function to match

particular network architecture. The most basic architectures use this error directly, but

some square the error while retaining its sign, some cube the error, other paradigms

modify the raw error to fit their specific purposes. The artificial neuron's error is then

typically propagated into the learning function of another processing element. This

error term is sometimes called the current error. The current error is typically

propagated backwards to a previous layer. Yet, this back-propagated value can be
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either the current error, the current error scaled in some manner (often by the

derivative of the transfer function), or some other desired output depending on the

network type. Normally, this back-propagated value, after being scaled by the learning

function, is multiplied against each of the incoming connection weights to modify

them before the next learning cycle.

2.4.2.7 Leaming Function

The purpose of the learning function is to modify the variable connection weights on

the inputs of each processing element according to some neural based algorithm. This

process of changing the weights of the input connections to achieve some desired

result can also be called the adaptionfunction, as well as the learning mode. There are

two types of learning: supervised and unsupervised. Supervised learning requires a

teacher. The teacher may be a training set of data or an observer who grades the

performance of the network results. Either way, having a teacher is learning by

reinforcement. When there is no external teacher, the system must organize itself by

some internal criteria designed into the network.

2.5 Comparing Neural Networks and Traditional Computing

Neural networks offer a different way to analyze data, and to recognize patterns within that

data, than traditional computing methods. However, they are not a solution for all computing

problems. Traditional computing methods work well for problems that can be well

characterized. Balancing checkbooks, keeping ledgers, and keeping tabs of inventory are well

defined and do not require the special characteristics of neural networks. Table 2. 1 identifies

the basic differences between the two computing approaches. Traditional computers are ideal

for many applications. They can process data, track inventories, network results, and protect

equipment. These applications do not need the special characteristics of neural networks.

2.6 Network Layers

Basically, all artificial neural networks have simple topologic structures. Some neuron are

used to get inputs from real world and some other neurons are used to form the real world at

the output of the network. All remained neurons are called hidden neurons because of their

invisibility.
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Table 2.1 Comparison of Computing Approaches

TRADITIONAL ARTIFICIAL NEURAL
CHARACTERISTICS COMPUTING NETWORKS

(including Expert Systems)
Processing Style Sequential Parallel
Functions Logically (left brained) Gestault (right brained)

via via
Rules Images
Concepts Pictures
Calculations Controls

Functions Logically (left brained) Gestault (right brained)
vıa vıa

Rules Images
Concepts Pictures
Calculations Controls

Learning Method by rules by example
Applications Accounting, word processing math, Sensor processing, speech

inventory, digital communications recognition, pattern recognition,
text recognition

When inputs reach to input layer, neurons produce outputs that are the inputs of other layers.

The number of the hidden neurons is so important because ifwe use too much hidden neurons

in out network, we cannot reach to desired output. And it means, there is a generalization in

our network.

2.7 Communication and Types of Connections

Neurons are connected via a network of paths carrying the output of one neuron as input to

another neuron. These paths is normally unidirectional, there might however be a two-way

connection between two neurons, because there may be another path in reverse direction. A

neuron receives input from many neurons, but produce a single output, which is

communicated to other neurons.

The neuron in a layer may communicate with each other, or they may not have any

connections. The neurons of one layer are always connected to the neurons of at least another

layer.

2.7.1 Inter-Layer Connections

There are different types of connections used between layers; these connections

between layers are called inter-layer connections [3].
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2.7.1.1 Fully Connected

Each neuron on the·first layer is connected to every neuron on the second layer (Figure

2.5) [3].

Figure 2.5 Fully Connected Neural Networks

2.7.1.2 Partially Connected

A neuron of the first layer does not have to be connected to all neurons on the second

layer (Figure 2.6) [3].

2.7.1.3 Feed Forward

The neurons on the first layer send their output to the neurons on the second layer, but

they do not receive any input back form the neurons on the second layer (Figure 1.7)

[3 ].
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Figure 2.6 Partially Connected Neural Networks

Input Layer Hidden Layer Output Layer

Figure 2.7 Feed Forward Neural Networks

2.7.1.4 Bi-directional

There is another set of connections carrying the output of the neurons of the second

layer into the neurons of the first layer.

Feed forward and bi-directional connections could be fully- or partially connected [3].

2.7.1.5 Hierarchical

If a neural network has a hierarchical structure, the neurons of a lower layer may only

communicate with neurons on the next level of layer (figure 2.8) [3].
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2.7.1.6 Resonance

The layers have bi-directional comıections, and they can continue sending messages

across the connections a number of times until a certain condition is achieved [3].

2.7.2 Intra-Layer Connections

In more complex structures the neurons communicate among themselves within a

layer, this is known as intra-layer connections. There are two types of intra-layer

connections [3].

DDDDDDDD

Figure 2.8 Classic Hierarchical Connection

2.7.2.1 Recurrent

The neurons within a layer are fully- or partially connected to one another. After these

neurons receive input form another layer, they communicate their outputs with one another a

number of times before they are allowed to send their outputs to another layer. Generally

some conditions among the neurons of the layer should be achieved before they communicate

their outputs to another layer [3].

2.7.2.2 On-Center I Off-Surround

A neuron within a layer has excitatory connections to itself and its immediate

neighbors, and has inhibitory comıections to other neurons. One can imagine this

type of connection as a competitive gang of neurons. Each gang excites itself and its

gang members and inhibits all members of other gangs. After a few rounds of signal
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interchange, the neurons with an active output value will win, and is allowed to

update its and its gang member's weights. (There are two types of connections

between two neurons, excitatory or inhibitory. In the excitatory connection, the

output of one neuron increases the action potential of the neuron to which it is

connected. When the connection type between two neurons is inhibitory, then the

output of the neuron sending a message would reduce the activity or action potential

of the receiving neuron. One causes the summing mechanism of the next neuron to

add while the other causes it to subtract. One excites while the other inhibits.)

2.8 A Simple Artificial Neural Network

Basically, all artificial neural networks have a similar structure or topology as shown in

Figure 2.9. In that structure some of the neurons interfaces to the real world to receive its

inputs. Other neurons provide the real world with the network's outputs. This output might be

the particular character that the network thinks that it has scanned or the particular image it

thinks is being viewed. All the rest of the neurons are hidden from view.

But a neural network is more than a bunch of neurons. Some early researchers tried to simply

connect neurons in a random manner, without much success. Now, it is known that even the

brains of snails are structured devices. One of the easiest ways to design a structure is to

create layers of elements. It is the grouping of these neurons into layers, the connections

between these layers, and the summation and transfer functions that comprises a functioning

neural network. The general terms used to describe these characteristics are common to all

networks.

Although there are useful networks, which contain only one layer, or even one element, most

applications require networks that contain at least the three normal types of layers - input,

hidden, and output. The layers of input neurons receive the data either from input files or

directly from electronic sensors in real-time applications. The output layer sends information

directly to the outside world, to a secondary computer process, or to other devices such as a

mechanical control system. Between these two layers can be many hidden layers. These

internal layers contain many of the neurons in various interconnected structures. The inputs

and outputs of each of these hidden neurons simply go to other neurons.
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In most networks each neuron in a hidden layer receives the signals from all of the neurons in

a layer above it, typically an input layer. After a neuron performs its function it passes its

output to all of the neurons in the layer below it, providing a feed forward path to the output.

These lines of communication from one neuron to another are important aspects of neural

networks. They are the glue to the system. They are the connections, which provide a variable

strength to an input. There are two types of these connections. One causes the summing

mechanism of the next neuron to add while the other causes it to subtract. In more human

terms one excites while the other inhibits.

o
o

INPUT LAYER

HIDDEN LA YER

OUTPUT LA YER

Figure 2.9 Simple Neural Network Diagram

Some networks want a neuron to inhibit the other neurons in the same layer. This is called

lateral inhibition. The most common use of this is in the output layer. For example in text

recognition if the probability of a character being a "P" is .85 and the probability of the

character being an "F" is .65, the network wants to choose the highest probability and inhibit

all the others. It can do that with lateral inhibition. This concept is also called competition.

Another type of connection isfeedback. This is where the output of one-layer routes back to a

previous layer. An example of this is shown in Figure 2. 10.

The way that the neurons are connected to each other has a significant impact on the operation

of the network. In the larger, more professional software development packages the user is

allowed to add, delete, and control these connections at will. By "tweaking" parameters these

connections can be made to either excite or inhibit.
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2.9 Learning
The brain basically learns from experience. Neural networks are sometimes called machine-

learning algorithms, because changing of its connection weights (training) causes the network

to learn the solution to a problem. The strength of connection between the neurons is stored as

a weight-value for the specific connection. The system learns new knowledge by adjusting

these connection weights. The learning ability of a neural network is determined by its

architecture and by the algorithmic method chosen for training.

Inputs Outputs

Figure 2.10 Simple Network with Feedback and Competition

The training method usually consists of one of two schemes:

2.9.1 Unsupervised learning
The hidden neurons must find a way to organize themselves without help from the

outside. In this approach, no sample outputs are provided to the network against

which it can measure its predictive performance for a given vector of inputs. This is

learning by doing. Figure 2.11

2.9.2 Supervised Learning
In a supervised learning process , the input data and its corresponding output

are presented to the neural network . The neural network , according to defined
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law , change its weights in order to be able to reproduce the correct output .

when an input is applied . Figure 2.12

Vector describing
state of the

tcu V 11 Vllll.l\,.,ı.ı.L

Environment •.... Learning
II"' System

Figure 2.11 Unsupervised learning

Vector describing
stare of the

environment--~~~~~--. ...-~~~--. 
Environment Teacher

Desired
response.

Actual
Learning I response
system

Error signal

Figure2.12 Supervised learning

2.10 Off-line and On-line Learning
One can categorize the learning methods into yet another group, off-line or on-line.

When the system uses input data to change its weights to learn the domain knowledge.
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the system could be in training mode or learning mode. When the system is being used

as a decision aid to make recommendations, it is in the operation mode; this is also

sometimes called recall.

2.10.1 Off-line
In the off-line learning methods, once the systems enters into the operation mode, its

weights are fixed and do not change any more. Most of the networks are of the off-line

learning type.

2.10.2 On-line
In on-line or real time learning, when the system is in operating mode (recall), it

continues to learn while being used as a decision tool. This type of learning has a more

complex design_structure.

2.11 Learning laws
There is a variety of learning laws, which are in common use [1]. These laws are

mathematical algorithms used to update the connection weights. Most of these laws are some

sort of variation of the best known and oldest learning law, Hebb's Rule. Man's

understanding of how neural processing actually works is very limited. Leaming is certainly

more complex than the simplification represented by the learning laws currently developed.

Research into different learning functions continues as new ideas routinely show up in trade

publications etc

2.12 Network Selection
Because all artificial neural networks are based on the concept of neurons, connections, and

transfer functions, there is a similarity between the different structures, or architectures, of

neural networks. The majority of the variations stems from the various learning rules and hoy·

those rules modify a network's typical topology. The following sections outline some of the

most coımnon artificial neural networks. They are organized in very rough categories of

application. These categories are not meant to be exclusive, they are merely meant to separate

out some of the confusion over network architectures and their best matches to specific
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applications. Basically, most applications of neural networks fall into the following five

categories:

• Prediction

• Classification

• Data association

• Data conceptualization

• Data filtering

Table 2.2 shows the differences between these network categoıies and shows which of the

more common network topologies belong to which primary category. This chart is intended as

a guide and is not meant to be all-inclusive. Some of these networks, which have been

grouped by application, have been used to solve more than one type of problem. Feed forward

back-propagation in particular has been used to solve almost all

Table 2.2 Network Selector Table1

NETWORK TYPE NETWORKS USE FOR NETWORK

Prediction -Back Propagation Use input values to predict some
-Delta Bar Delta output (e.g. pick the best stocks
-Extended Delta Bar Delta in the stock market, predict the
-Directed Random Search weather, identify people with
-Higher order Neural Networks cancer risk )
-Self Organizing Map into Back
Propagation

Classification -Learning vector quantization Use input values to determine
-Counter propagation the classification (e.g. is the
-Probabilistic Neural Networks input the letter A, is the blob of

the video data a plane and what
kind of plane is it)

Data Association -Hopfield Like classification but it also
-BoltzrnanMachine recognizes data that contains
-HammingNetwork en-ors (e.g. not only identify the
-Bi-directional associative characters that were scanned but
memory also identify when the scanner
-Spatio-temporal pattern doesn't work properly)
recognition

Data Conceptualization -Adaptive Resonance Network Analyze the input so that
-Self organizing map grouping relationships can be

inferred (e.g. extract from a data
base the names of those most
likely to buy a particular
product)

Data Filtering -Recirculation Smooth an input signal (e.g. take
the noise out of a telephone
signal)
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types of problems and indeed is the most popular for the first four categories. The next five

subsections describe these five network types.

2.13 Summary
In this chapter, the backgrounds of artificial neural networks and necessary infoıınation about

them were explained. Now, the parts of neural networks that are used in the application part

of this thesis will be focused.
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CHAPTER3

LEARNING METHODS IN NEURAL NETWORKS

3.1 Overview

The learning ability of a neural network is determined by its architecture and by the

algorithmic method chosen for training. In this chapter, all learning methods and their

algorithms will be described in details.

The training method usually consists of one of two schemes:

• Unsupervised learning

• Supervised Learning

3.2 Learning Methods

3.2.1 Unsupervised Learning

The hidden neurons must find a way to organize themselves without help from

the outside. In this approach, no sample outputs are provided to the network

against which it can measure its predictive performance for a given vector of

inputs. This is learning by doing.

3.2.1.1 Unsupervised Learners

a: Kohonen's Leaming:

Kohonen suggested that one of the important mechanism in the human brain

is placement of neurons in an orderly manner. Kohonen's

Artificial
Neural

Network

Input (x)t

Figure 3.1 - Unsupervised Leaming
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learning algorithm creates a feature map by adjusting weights from

input vectors to output vectors in a two layer network . The first

layer is input . The second is the competitive layer . The two layers

are fully interconnected . Input vectors are presented sequentially to

layer LI (input). Each unit computes the dot product of its weight

with the input vector . The unit with the highest dot product is

declared the winner . This and its neighbors are the only units
allowed to learn .

b- Competitive Learning

The simplest way to implement competitive learning is where each
unit in the hidden or output layers receives input from all the

units in the preceding layers . Within the layer units are broken

down into a set of inhibitary clusters . The units within the clusters

compete with one another to respond to data appearing at the

input layer . The move strongly any particular units responds to

incoming stimulus the more it inhibits other units within in the

cluster . The unit learns by shifting a fraction of its weights from

its inactive lines. The main disadvantage of competitive learning in

the loss of previous learnings (Figure 3.3).

L2
Output & Competitive

LI
Input

Figure 3.2 Kohonen's Leaming
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c- Adaptive Resonance Theory (ART)

Divided into 2 methods :

• Accept only binary

• Accept binary & continuous input

3.2.2 Supervised Learning
In a supervised learning process , the input data and its corresponding

output are presented to the neural network . The neural network , according

to defined law , change its weights in order to be able to reproduce the

correct output , when an input is applied .

L2
input

Ll
input

Figure 3.3 Competitive Learning

Artificial
Neural

Network

e(d,y)

Supervisor

Figure 3.4 - Supervised Leaming
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3.2.2.1 Supervised Learners

a- The Perceptron
This can be trained and can make decisions . During the training

phase, pairs of input & output vectors are used to train the network .

With each input vector , the output vector is compared with a desired

output (target) and the error between the actual and the desired output

vectors is used to update the weights.

b- Hopfield Network

It is essentially used with binary number. Weights are initialized usıng

training samples . In the decision making phase , the test data is

presented to the net at certain time . Following initialization the

Hopfield Network iterates in discrete time stops usıng some

mathematical function , and the network is considered to have

converged when the outputs no longer change on successive iterations

(Figure 3.7) .

Basic
Perceptron

In

Figure 3.5 Basic Perceptron

Outputs

666 

Figure 3.6 The Perceptron Model
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c- Hamming Network

It is similar to Hopfield network . As shown in the figure 2.8, it

consists of four layer.

L 1 : Input layer

L2 : Calculates matching scores

L3 : Feedbacks as in Hopfield

L4 : Output layer

Output

1 2

Output

Hopfield

Select

Input

Input

Figure 3.7 Hopfield Network

L1

L4

L3

L2

XI X2 X3 X4

Figure 3.8 Hamming Network
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d- Back Propagation Training Algorithm

The equations that describe the network training and operation can be

divided into two categories . First, the feed-forward calculations. These are

used in both training mode in the operation of the trained neural network.

Second, the error back propagation calculations. These are applied only

during training. But before we present the two categories of calculations, we

have to describe another important element, activation function that the

algorithm will be based upon.

i - The Activation Function

An artificial neuron (Figure 2.1), as it was described in chapter 1, is the

fundamental building block in a back propagation network. The input to

the neuron is obtained as the weighted sum given by equation (2.1).

n
net= ~0.w.

~ l l (2.1)
i=l

In figure 2.9, Fis the activation function, which has a sigmoid form. The

simplicity of the derivative of the sigmoid function justifies it's

popularity and use as an activation function in training algorithms. With

a sigmoid activation function the output of the neuron is given by

equation (2.2) and (2.3).

net(t)

xn• I -

Output(t)=F(net(t))
Input :: : I :::ı

Figure 3.9 Artificial Neuron

out= F(net) (2.2)
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1
F(net) = (1 + exp(-net)) (2.3)

The derivative of the sigmoid function can be obtained as follows:

8F(net)
ônet

exp(-net)
(1 + exp(-net))2

[
1 J[ exp(-net) J

1 + exp(-net) 1 + exp(-net)

= out(l - out)

= F(net)[l - F(net)] (2.4)

Any other function that is differentiable everywhere can be used in the

back propagation algoıithm. For example, linear functions with

adjustable gain, relay functions with threshold characteıistics, linear

threshold characteristic functions and Sigmoid functions for different

values of gain, are all common activation functions that can be used.

ıı- Feed Forward Calculations

Figure 2. 1 O shows the most common configuration of a back propagation

neural network. This is the simple three layer back propagation model.

Each neuron is represented by a circle and each interconnection, with its

associated weight, by an arrow. The neurons labeled b are bias neurons.

Normalization of the input data prior to training is necessary. The values

of the input data into the input layer must be in the range (O - 1 ). The

stages of the feed forward calculations can be described according to the

layers. The suffixes i, h, and j are used for input, hidden and output

respectively.
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Figure 3.11 shows a neuron in the input layer. The output of\~

input layer neuron is exactly equal to the normalized input. ~

Input - Layer Output = O, = Ii (3.5)

ii.2 Hidden Layer (h)

Figure 3 .12 describes a neuron in the hidden layer. The signal

presented to a neuron in the hidden layer is equal to the sum of all

outputs of the input layer neurons multiplied by their associated

connectionweights, as in equation (2.6).

Input 2

Output 1Input 1

Output ni

INPUT
LAYER 

HIDDEN
LAYER 

OUTPUT
LAYER 

· Figure 3.10 Back Propagation Network Structure

Input Data Ii Input Layer
ı-~--~Output Oi

Figure 3.11 An Input Layer Neuron
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Each output of a hidden neuron is calculated using the sigmoid

function. This is described in equation (3.7).

1
Hidden - Layer Output, = Oh = (3.7)

1 + exp(-Jh)

ii.3 Output Layer (j)

Figure 3 .13 describes a neuron in the output layer. The signal

presented to a neuron in the output layer is equal to the sum of

all outputs of the hidden layer neurons multiplied by their

associated weights plus the bias weights at each neuron, as in

equation (3.8).

Output - Layer Input}= Ij = Iwjhoh
h

(3.8)

Each output of an output neuron is calculated using the sigmoid

function in a similar manner as in the hidden layer. This is

described in equation (3.9).

1Output - Layer Output
1

= 01 = (3.9)
1 + exp(-1)

Hidden-Layer
Input h

Hidden Layer
Eı---•• Output oh

Figure 2.12 A Hidden Layer Neuron

Output-Layer
Input Ij

Output Layer
~ı:--.91 Output O,

Figure 3.13 An Output Layer Neuron
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The set of calculations that has been described so far in the feed forward

calculations, can be carried out during the training phase as well as

during the testing I running phase.

iii- Error Back Propagation Calculations

The error back propagation calculations are applied only during the

training of the neural network. Vital elements in these calculations are

described below. These include, the error signal, some essential

parameters and weight adjustment.

iii. I Signal Error

During the network training, the feed forward output state calculation is

combined with backward error propagation and weight adjustment

calculations that represents the network's learning. Central to the concept

of training a neural network is the definition of network error. Rumelhart

and McClelland define an error term that depends on the difference

between the output neuron is supposed to have, called the target value 'I;·,

and the value it actually has as a result of the feed forward calculations,

01. The error term represents a measure of how well a network is training

on a particular training set.

Equation (1 O) presents the definitions for the error. The subscript p

denotes what the value is for a given pattern.

nJ

Ep = I (Tpj - Qpj) 2

j=ı
(2.1 O)

The aim of the training process is to minimize this error over all training

patterns. From equation (2.9), it can be seen that the output of a neuron

in the output layer is a function of its input, or 01 = f(I1). The first

derivative of this function, f' (I 1) is an important element in error back

propagation. For output layer neurons, a quantity called the error signal
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is represented by 6. J , which is defined in equation (2.11) and thus

equation (2. 12).

(2.11)

(2.12)

This error value is propagated back and appropriate weight adjustments

are performed. This is done by accumulating the 6. 's for each neuron for

the entire training set, add them, and propagate back the error based on

the grand total 6.. This called batch (epoch) training.

iii.2 Essential Parameters

There are two essential parameters that do affect the learning capabili

of the neural network. First, the learning coefficient rı that defines the

learning 'power' of a neural network. Second, the momentum factor a ,

which defines the speed at which, the neural network learns. This can be

adjusted to a certain value in order to prevent the neural network from

getting caught in what is called local energy minima. Both rates can have

a value between O and 1.

iii.3 Weight Adjustment

Each weight has to be set to an initial value. Random initialization is

usually performed. Weight adjustment is performed in stages. Starting at

the end of the feed forward phase, and going backward to the inputs of

the hidden layer.

iii.3.a Output-Layer Weights Update

The weights that feed the output layer (W1ı,) are updated using

equation (2.13 ). This also includes the bias weights at the output

layer neurons. However, in order to avoid the risk of the neural
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network getting caught in local minima, the momentum term can

be added as in equation (14).

(2.13)

wjh (new)= wjh (old)+ rı!ıJoh+ alöW)h (old) J (2.14)

Where c5Wj1ı (old) stands for the previous weight change.

iii.3.b Hidden-Layer Weights Update

The error term for an output layer is defined in equation (2.12).

For the hidden layer, it is not as simple to figure out a definition

for the error teım. However, a definition by Rumelhart and

McClelland describes the error term for a hidden neuron as in

equation (2.15) and, subsequently, in equation (2.16).

ni 

11ıı = f'(I1ı/f W11ı!ı1
)=O 

(2.15)

ıı.j
111ı = oh cı - o 1ı )Lw11ııı 1

)=O 
(2.16)

The weight adjustments for the connections feeding the hidden

layer from the input layer are now calculated in a similar manner

to those feeding the output layer. These adjustments are

calculated using equation (2.17).

The bias weights at the hidden layer neurons are updated,

similarly, using equation (2.17).
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3.3 Summary 
In this chapter, the learning methods of neural networks and their learners were

presented. Also supervised and Unsupervised Leaming methods were described in

details.
In Unsupervised Leaming, Kohonen's Leaming, Competitive Leaming and Adaptive

Resonance Theory were described.
In Supervised Leaming, A Perceptron, Hopfield, Hamming and Back Propagation

Leaming were described.
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CHAPTER4 

CHARACTER RECOGNITION SYSTEM & RESULTS 

4.1 Overview 
This chapter presents developed character recognition system in details. Final parameters,

used methods and character databases are presented.

4.2 Character Recognition System 
Developed Character Recognition System (CRS) has been implemented using Matlab

program. It consists two phases: Training Phase and Testing Phase.

4.2.1 Training Phase of CRS 
26 English characters are used to train neural network. As shown in the network topology

(Figure 4.1), neural network has 2500 inputs, 1 hidden layer with 30 neurons, and 26 output

neurons. In this part, both training and training phases of neural networks will be described.

4.2.1.l Inputs of Neural Network 
Neural Network have 2500 input neurons comes from 50x50 characters

I
++O---.o 
++O
++O

Input 2500 --K) 

Input Layer Hidden Layer Output Layer

Figure 4.1 - Neural Network Topology
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4.2.1.2 Hidden Layer of Network 

When outputs of input layer are reached to hidden layer, it starts to calculate hidden layer

inputs for each pattern using hidden layer weights. After calculating hidden layer inputs,

hidden layer outputs are calculated using Sigmoid Function. After various experiments 100
hidden neurons are determined to use in system.

4.2.1.3 Output Layer of Network 

Hidden layer and output layer calculations and principles are similar to each other. When

outputs of hidden layer are reached to output layer, it starts to calculate output layer inputs for

each pattern using output layer weights. After calculating output layer inputs, output layer

outputs are calculated using Sigmoid Function.

4.2.1.4 Errors and Back Propagation 

After calculating the outputs of output layer for each pattern, it is necessary to compare them

with desired outputs. After comparing output layer output of each pattern with desired output,

error for each pattern and error is calculated. Error of each pattern is used to update weights

and Error is used for stopping condition. Error Level was assigned to O.Ol because this value

is sufficient for the required accuracy of the developed system and to keep neural network

training time as low as possible. When error is reached to desired level, program will save
final weights and stop.

These steps will repeat until error is less than O.Ol or iterations reach to 10,000. All steps of
training can be shown in figure 4.2.
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Opening input
files

Opening target
files

Initializing random first weights for hidden layer and output layer

Calculating Hidden Layer inputs for each pattern

Calculating Hidden Layer outputs for each pattern

Calculating Output Layer inputs for each pattern

Calculating Output Layer outputs for each pattern

Compare Output Layer outputs with target outputs

Calculate Error and RMS Error

Calculate tı for Hidden Layer

Save Final
Weights

Calculate new weights for
Hidden Layer

Calculate tı for Output Layer

Display Training
Results

Calculate new weights for
Output Layer

Figure 4.2 - Flowchart of CRS 
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4.2.2 System Testing 

In running phase, only one iteration could be executed. Running phase uses the saved final

weights of training program and it doesn't use any term of momentum, learning rate or error

(Figure 4.3). Running phases is the last phase of system that gives us final results.

Opening input
fıles

Opening Saved
Final Weights

Calculating Hidden Layer inputs for each pattern

Calculating Hidden Layer outputs for each pattern

Calculating Output Layer inputs for each pattern

Calculating Output Layer outputs for each pattern

Displaying Result

Figure 4.3 - Running Phase of CRS

4.3 Character Image Database 

There are 26 characters in English alphabets and CRS are developed to recognize these

characters with optimum recognition rate in minimum time. There are 2 databases in CRS.

One for training database and the other for testing database. Training database can be seen in

Figure 4.4 and testing database can be seen in Figure 4.5.
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Figure 4.4 - Training Database
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Figure 4.5 -Testing Database

4.4 Experimental Results 
Experiments had been performed in two stages. In first stage, trained characters had been

generalized to test the learning efficiency of the system. In second stage, noise added

characters which are not trained to neural network were tested. Final neural network

parameters and error-level graph of training can be seen in Table 4.1 and Figure 4.6

respectively.

Table 4.1 - Final Neural Network Parameters

Input Layer Nodes 2500
Hidden Layer Nodes 100
Output Layer Nodes 26

Learning Rate 0.003
Momentum Rate 0.15
Minimum Error O.Ol

Iterations 2737
Training Time 122 sec.
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10 •

210

_.:,::
101Ll 

ns
OJ

I

rn
Cl
0

100a.ı
::ı

OJrn 
C
C 10·1~

f-

10·2

10·3o~~-,too-------;;;:;';;-"-- 
500 1000 1500 2000 2500

2737 Epochs

Figure 4.6 - Error Level Graph of Neural Network during Training

In stage 1, recognition rate of trained characters was reached to 100% which was expected

from neural networks. In second stage, system recognized 25/26 characters which mean

96.12% of recognition rate. Totally system reached to 98.07% of success rate by recognizing

51 characters of 52. Table 4.2 shows the general results of experiments.

Table 4.2 - Experimental Results

Total 

26/26
100%
25/26

96.12%
51/52

98.07%

Trained Patterns 

Noisy Patterns 

4.5 Overview 
In this chapter, all details of CRS and performed experiments were presented in details.
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CONCLUSION 

Project is devoted one of the actual problem Character Recognition System. A set of

English characters have been applied to the NN recognition system. These characters were

recognized by using the back-propagation NN.

Moreover, to confıım the recognition ability and flexibility of the system, noisy character

images were applied to the system.

From the experimental results, it seems that this recognition system is effective for clean

and noisy character images of Times New Roman font.

The investigation of Neural Networks is carried out to provide an intelligent system

Character Recognition System that recognizes characters. Simulation of a neural network

for character recognition using Matlab, carried out.

51



REFERENCES 

[1]http://pocket-pc-software.penreader.com

[2]http://homepages.cwi.nl

[3]http://csdl2.computer.org

[4]http://www.dontveter.com

[5]http://www.dontveter.com

[6]Boran Şekeroğlu Intelligent Bnknote Identification System(IBIS) Master Thesis Nicosia-
2004

52



APPENDIX 

Program to Read Character Images 

ele;

close all;

start_time = cputime;

a= double(rgb2gray(imread('a.jpg')));

b = douôle(rgb2gray(imread('b.jpg')));

c = double(rgb2gray(imread('c.jpg')));

d = double(rgb2gray(imread('d.jpg')));

e = double(rgb2gray(imread('e.jpg')));

f = double(rgb2gray(imread('f.jpg')));

g = double(rgb2gray(imread('g.jpg')));

h = double(rgb2gray(imread('h.jpg')));

i = double(rgb2gray(imread('i.jpg')));

j = double(rgb2gray(imread('j.jpg')));

k = double(rgb2gray(imread('k.jpg')));

1 = double(rgb2gray(imread('l.jpg')));

m = double(rgb2gray(imread('m.jpg')));

n = double(rgb2gray(imread('n.jpg')));

o= double(rgb2gray(imread('o.jpg')));

p = double(rgb2gray(imread('p.jpg')));

q = double(rgb2gray(iınread('q.jpg')));

r = double(rgb2gray(imread('r.jpg')));

s = double(rgb2gray(imread('s.jpg')));

t = double(rgb2gray(imread('t.jpg')));

u = double(rgb2gray(imread('u.jpg')));

v = double(rgb2gray(imread('v.jpg')));

w = double(rgb2gray(imread('w.jpg')));

x = double(rgb2gray(iınread('x.jpg')));

y = double(rgb2gray(imread('y.jpg')));

z = double(rgb2gray(imread('z.jpg')));
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Ps {1,1}= a;

Ps {1,2}=b;

Ps {1,3}= c;

Ps {1,4}= d;

Ps {1,5}= e;

Ps {1,6}= f;

Ps {1,7}= g;

Ps {1,8}= h;

Ps {1,9}= i;

Ps {1,10}= j;

Ps{llP=k
' J '

Ps {1,12}= 1;

Ps {1,13}= m;

Ps { 1, 14 }= n;

Ps {1,15}= o;

Ps {1,16}= p;

Ps {1,17}= q;

Ps {1,18}= r;

Ps {1,19}= s;

Ps {l,20}=t;

Ps {1,2l}=u;

Ps {1,22}=v;

Ps {1,23}=w;

Ps {1,24}= x;

Ps {l,25}=y;

Ps { 1 ,26}= z;

1=1;

m=l;

for i = 1:26

for j = 1:50

fork= 1:50

P(l,m) = Ps{l,i}U,k) I 255;
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m=m+ 1;

end

end

l=l+ 1;

m= 1;

end

save('P .mat','P');
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Training Program 

Pl=O;

% T=eye([26 2500]);

% T(l,:) = P(l,:);

% S 1 = 1 O; S2 = 26;

%Pl =P(l,:);

%Pl =P';

% net= newff(minmax(P),[S 1 S2], {'logsig' 'logsig'} ,'traingdx');

%

% net.performFcn = 'sse';

% net.trainParam.goal = O. 1;

% net.trainParam.show = 20;

% net.trainParam.epochs = 1000;

% net.trainParam.mc = 0.95;

% [net,tr] = train(net,P,T);

%

% figure;

% imagesc(k);

% colonnap(gray);

% title('Downsampled by Factor of 2');

% axis image;

%k

%

%

% % get stop time

% stop_ time = cputime;

%

% % obtain the execution time of the program

% execution_time = stop_time - start_time;

%

% % display the execution time of the program
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% disp('Execution Time: ');

% <lisp('--------------');

% execution time

%
% 11 = 50;

% load('targets.dat');

% T=targets'

% k = double(k);

% for i=l:50

% for j=l:50

% kml((i-l)*Il+j)=k(i,j);

% % resim(Il)=k(i,j)/255;

%% Il=Il+l;

% end

%end

% %resim = double(resim);

% % kml = kml ';%resim;

% [R,Q] = size(kml);

% [S2,Q] = size(T);

% S1=10;

%P=kml';
% net= newff(mimnax(P),[Sl S2],{'logsig' 'logsig'},'traingdx');

% net.performFcn = 'sse';

% net.trainParam.lr = 0.03;

%net.trainParam.goal = 0.1;

% net.trainParam.show = 20;

% net.trainParam.epochs = 500;

% net.trainParam.mc = 0.95;

%
% [net,tr,Y,E] = train(net,P,T);

% clear;

% ele;
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% close all;

%load('P .mat');

Pl= O;

T=eye([26 26]);

% T(l,:) = P(l,:);

Sl = 10; %S2 = 26;

for i=l :2500

Pl(l,i) = P(12,i); % Character number comes here

end

% Pl = P(l,:);

% Pl =P;

P2=P';

%Pl =Pl';

% P = [O 1 2 3 4 5 6 7 8 9 10];

% T = [O 1 2 3 4 3 2 1 2 3 4];

sı = ıoo;
[R,Q] = size(P2);

[S2,Q] = size(T);

net= newff(minmax(P2),[S 1 S2], {'logsig' 'logsig'} ,'traingdx');

net.perfonnFcn = 'sse';

net.trainParam.goal =O.Ol;

net.trainParam.show = 20;

net.trainParam.lr = 0.003;

net.trainParam.epochs = 10000;

net.trainParam.mc = 0.15;

[net,tr] = train(net,P2,T);

save('TrainedNetwork mat' 'P2' 'Pl' 'T' 'net' 'tr')·. ' ' ' ' ' '
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Test Program 

% pause

% resim= Pl;

% A2 = sim(net,P 1 ')

% A2 = compet(A2);

% answer = find( compet(A2) == 1 );

% plotchar(P2(:,answer));

% figure; imshow(a)

% clear;

% ele;

% close all;

%load('P .mat');

Pl= O;

T=eye([26 26]);

% T(l,:) = P(l,:);

Sl = 10; %S2 = 26;

for i=l :2500

Pl(l,i) = P(12,i); % Character number comes here

end

% Pl = P(l,:);

% Pl= P;

P2=P';

%Pl=Pl';

% P = [O 1 2 3 4 5 6 7 8 9 10];

% T = [O 1 2 3 4 3 2 1 2 3 4];

Sl = 100;

[R,Q] = size(P2);

[S2,QJ = size(T);
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net= newff(minmax(P2),[S 1 S2], {'logsig' 'logsig'} ,'traingdx');

net.perfoımFcn = 'sse';

net.trainParam.goal =O.Ol;

net.trainParam.show = 20;

net.trainParam.lr = 0.003;

net.trainParam.epochs = 10000;

net.trainParam.mc = 0.15;

[net,tr] = train(net,P2,T);

save('TrainedNetwork mat' 'P2' 'Pl' 'T' 'net' 'tr');. ' ' ' ' ' '

% pause

% resim= Pl;

% A2 = sim(net,Pl ')

% A2 = compet(A2);

% answer= find(compet(A2) == 1);

% plotchar(P2(:,answer));

% figure; imshow(a)

% load('TrainedN etwork.mat');

resim= Pl;

A2 = sim(net,P l ')

A2 = compet(A2);

answer= find(compet(A2) == 1);

plotchar(P2(:,answer));

j = l ;

max= O;

for i = 1 : 26
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if A2(i)> max

max = A2(i);

J = ı;

end

end

if j == 1

a= iımead('a.jpg')

figure; imshow(a)

end

if j == 2

b = iımead('b.jpg')

figure; imshow(b)

end

if j == 3

c = iınread ('c.jpg')

figure; imshow(c)

end

if j == 4

d = imread('d.jpg')

figure; imshow(d)

end

if j == 5

e = iımead('e.jpg')

figure; imshow(e)

end

if j == 6

f = imread('f.jpg')

figure; imshow(f)
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end

if j == 7

g= mread('g.jpg')

figure; imshow(g)

end

if j == 8

h = imread('h.jpg')

figure; imshow(h)

end

if j == 9

i = imread('i.jpg')

figure; imshow(i)

end

if j==lO

j=imread('j.jpg')

figure; imshow(j)

end

if j==ll

k=imread('k.jpg')

figure; imshow(k)

end

if j == 12

1 = iımead('l.jpg')

figure; imshow(l)

end

if j == 13

m= imread('m.jpg')
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figure; imshow(m)

end

if j == 14

n = imread('n.jpg')

figure; imshow(n)

end

if j == 15

o= imread('O.jpg')

figure; imshow(O)

end

if j == 16

p = imread('p.jpg')

figure; imshow(p)

end

if j == 17

q = imread('q.jpg')

figure; imshow( q)

end

if j == 18

r = imread('r.jpg')

figure; imshow(r)

end
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if j == 19

s = imread('s.jpg')

figure; imshow( s)

end

if j == 20



t = imread('t.jpg')

figure; imshow( t)

end

if j == 21

u = imread('u.jpg')

figure; imshow(u)

end

if j == 22

v = imread('v.jpg')

figure; imshow(v)

end

if j == 23

w = imread('w.jpg')

figure; imshow(w)

end

if j == 24

x = imread('x.jpg')

figure; imshow(x)

end

if j == 25

y = imread('y.jpg')

figure; imshow(y)

end

if j == 26

z = imread('z.jpg')

figure; imshow(z)

end
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