NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Electrical and Electronic
Engineering

TELEREMOTE CONTROL WITH PLC

Graduation Project EE-400

Student: Bülent Kaptan (990519)

Supervisor: Özgür Cemal Özerdem

Lefkoşa - 2003

ACKNOWLEDGEMENT

First I want to thank Özgür Cemal Özerdem to be my Supervisor. Under this guidance, I succesfully overcome many difficulties and learn a lot about PLC with EE470 PLC and with EE315 cources. PLC depends greatly on technology. In each discussion, he explained my questions patiently and answered my questions quickly and in detail. He always help me a lot either in my study.

Thanks to faculty of Engineering for having such a good computational environment. I want to thank all my student friends in NEU. Being with them make my during educational in NEU full of fun.

I also special thanks to my sister and his husband (Neriman \& Güney Ünsal) and my brother (Cengiz Kaptan) with their kind help. I could succesfully to perform computational problems. They always help me a lot eiher in my studies.

Finally I want to thank especially my families. Without their endeless support and love for me.

Abstract

ASTRACT

In this study, a system of teleremote circuit via telephone lines. For building up the system minimum needs are Programmable Logic Controller (PLC), active telephone line, and teleremote control circuit.

The teleremote control circuit enables us to control some appliances: on the other hand the programmable logic controller (PLC) is controlled by teleremote control circuit. Therefore if there is a telephone line the control of the appliances can be any where.

The circuit described here can be used to switch up to nine appliances (corresponding to the digits 1 through 9 of the telephone key-pad). The DTMF signals on the telephone instrument are used as control signals. The digit ' 0 ' in DTMF mode is used to toggle between the appliance mode and normal telephone operation mode. Thus the telephone can be used to switch on or switch off the appliances via Programmable Logic Controller (PLC) and driven relays.

TABLE OF CONTENTS

ACKNOWLEDGEMENT i
ABSTRACT ii
INTRODUCTION iii

1. INTRODUCTION TO PLC
1.1. What is PLC? 1
I. The Central Processing Unit 1
II. The Input/Output System. 2
1.2. Inputs And Outputs. 2
1.3. Control Programs 3
1.4. How PLC Work? 4
1.5. Why Use PLC's? 5
1.6. Capabilities of the S7-212 CPUs 6
1.7. SIMATIC S7-200 Quick Reference Card. 13
2. PRINCIPLES OF THE CIRCUIT
2.1. Diode
2.1.1. PN Junction 15
2.1.1. Forward Bias 15
2.1.2. Reverse Bias. 17
2.1.3. Diode Characteristic curve 18
2.1.4. Diode Symbol. 20
2.2. Bipolar Junction Transistors
1.2.1. Introduction. 20
1.2.2. Transistor Construction. 21
1.2.3. Basic Transistor Operation. 22
2.3. Synchronous Up/Down Counters IC s. 24
2.4. Not Gate 26
2.5. D Type Flip-Flop 27
2.6. Optocouplers. 28
2.7. Interfacing Relays And Selenoids 29
2.8.555 Timer
2.8.1. Introduction 31
2.8.2. Time Delay Circuit 31
2.9.Demultıplexers 31
2.10.Code Converter 34
3.OPERATION PRINCIPLE OF CIRCUIT
3.1. General Operation of Teleremote Circuit 35
3.2. Operation of The Control Circuit 38
3. OPERATION OF PLC
4.1 Ladder Diagram \& Statement List 40
CONCLUSION 48
APPENDIX 49
REFERENCES 96

INTRODUCTION

The rapid developments in electronics have unstopply revolutionized the telecommunication and internet technology in recent years and have become a part of daily life, bringing in everything from Pampers to programmable logic devices. The rising usage of internet has been complemented with developments in communication technology.

Figure 1.Siemens S7 CPU212 PLC

Moreover, Telecommunication technologies start to invade the home to carry phone signals and comfort of telecommunication systems. These rapid developments show that internet based and telecommunication systems have had a huge role in home and business solutions nowadays and will have more in future.

Telecommunication technology allows companies to overcome many of the physical constraints that often prevent them from doing business in distant markets, which means that an a commerce market is fundamentally global (Choi and Whinston.1999).

By using the telephone code of lines are sent to telephone and control the equipment via PLC. Its possible doing the processes wherever you are.
The functional as follows:

- Calling of the destination number then destination number will answer automatically.
- By pressing numbers the control circuit will sent the information received from telephone lines to PLC for performing the processes.

Figure 2. Architecture

1. INTRODUCING THE PLC

1.1 What is PLC?

A PLC (programmable logic controller) is a small industrial computer which originally replaced the necessary sequential relay circuits for machine control. The PLC works by looking at its inputs and depending upon their state, turning on/off its outputs. It contained a program which executed a loop, scanning the inputs and taking actions based on these inputs. The user enters a program, usually via software, that gives the desired results.

PLCs are used in many "real world" applications. If there is industry present, chances are good that there is a PLC present. If you are involved in machining, packaging, material handling, automated assembly or countless other industries you are probably already using them. If you are not, you are wasting money and time. Almost any application that needs some type of electrical control has a need for a PLC.

A PLC, basically consists of two elements:

I. the central processing unit
II. the input/output system

1. The Central Processing Unit

The central processing unit (CPU) is the part of a programmable controller that retrieves, decodes, stores, and processes information. It also executes the control program stored in the PLC's memory. In essence, the CPU is the "brains" of a programmable controller. It functions much the same way the CPU of a regular computer does, except that it uses special instructions and coding to perform its functions.
The CPU has three parts:
I. the processor
II. the memory system
III. the power supply

The processor is the section of the CPU that codes, decodes, and computes data. The memory system is the section of the CPU that stores both the control program and data from the equipment connected to the PLC. The power supply is the section that provides the PLC with the voltage and current it needs to operate.

II. The Input/Output System

The input/output (I/O) system is the section of a PLC to which all of the field devices are connected. If the CPU can be thought of as the brains of a PLC, then the I/O system can be thought of as the arms and legs. The I/O system is what actually physically carries out the control commands from the program stored in the PLC's memory.
The I/O system consists of two main parts:
I. the rack
II. I/O modules

The rack is an enclosure with slots in it that is connected to the CPU. I/O modules are devices with connection terminals to which the field devices are wired. Together, the rack and the I/O modules form the interface between the field devices and the PLC. When set up properly, Each I/O module is both securely wired to its corresponding field devices and securely installed in a slot in the rack. This creates the physical connection between the field equipment and the PLC. In some small PLC's, the rack and the I/O modules come prepackaged as one unit

1.2 Inputs And Outputs

All of the field devices connected to a PLC can be classified in one of two categories:
I. inputs
II. outputs

Inputs are devices that supply a signal/data to a PLC. Typical examples of inputs are push buttons, switches, and measurement de-vices. Basically an input device tells the PLC, "Hey, something's happening out here...you need to check this out to see how it affects the control program.

Outputs are devices that await a signal/data from the PLC to perform their control functions. Lights, horns, motors, and valves are all good examples of output devices. These devices stay put, minding their own business, until the PLC says, "You need to turn on now" or "You'd better open up your valve a little more," etc.

There are two basic types of input and output devices:
I. discrete
II. analog

Discrete devices are inputs and outputs that have only two states: on and off. As a result, they send/receive simple signals to from a PLC. These signals consist of only 1 's and 0 's. A 1 means that the device is on and a means that the device is off.

Analog devices are inputs and outputs that can have an infinite number of states. These devices can not only be on and off, but they can also be barely on, almost totally on, not quite off, etc. These devices send receive complex signals to from a PLC. Their communications consist of a variety of signals, not just 1 's and 0 's. Because different input and output devices send different kinds of signals, they sometimes have a hard time communicating with the PLC. While PLC's are powerful devices, they can't always speak the "language" of every device connected to them. That's where the I/O modules we talked about earlier come in. The modules act as "translators" between the field devices and the PLC. They ensure that the PLC and the field devices all get the information they need in a language that they can understand.

1.3 Control Programs

We talked a little bit earlier about the control program. The control program is a software program in the PLC's memory. It's what puts the control in a programmable controller. The user or the system designer is usually the one who develops the control program. The control program is made up of things called instructions. Instructions are, in essence, little computer codes that make the inputs and outputs do what you want in order to get the result you need. There are all different kinds of instructions and they can make a PLC do just about anything (add and subtract data, time and count events,
compare information, etc.). All you have to do is program the instructions in the proper order and make sure that they are telling the right devices what to do and voila!...you have a PLC-controlled system. And remember, changing the system is a snap. If you want the system to act differently, just change the instructions in the control program. Different PLC's offer different kinds of instructions. That's part of what makes each type of PLC unique.
However, all PLCs use two basic types of instructions:
I. contacts
II. coils

Contacts are instructions that refer to the input conditions to the control program that is, to the information supplied by the input field devices. Each contact in the control program monitors a certain field device. The contact waits for the input to do something in particular (e.g., turn on, turn off, etc. this all depends on what type of contact it is). Then, the contact tells the PLC's control program, "The input device just did what it's supposed to do. You'd better check to see if this is supposed to affect any of the output devices."

Coils are instructions that refer to the outputs of the control program that is, to what each particular output device is supposed to do in the system. Like a contact, each coil also monitors a certain field device. However, unlike a contact, which monitors the field device and then tells the PLC what to do, a coil monitors the PLC control program and then tells the field device what to do. It tells the output device, "Hey, the PLC just told me that the switch turned on. That means that you're supposed to turn on now. So let's go!" In PLC talk, this three-step process of monitoring the inputs, executing the PLC control program, and changing the status of the

1.4 How PLC Work?

A PLC works by continually scanning a program. We can think of this scan cycle as consisting of 3 important steps. There are typically more than 3 but we can focus on the important parts and not worry about the others. Typically the others are checking the system and updating the current internal counter and timer values.

Step 1-CHECK INPUT STATUS-First the PLC takes a look at each input to determine if it is on or off. In other words, is the sensor connected to the first input on? How about the second input? How about the third... It records this data into its memory to be used during the next step.

Step 2-EXECUTE PROGRAM-Next the PLC executes your program one in struction at a time. Maybe your program said that if the first input was on then it should turn on the first output. Since it already knows which inputs are on/off from the previous step it will be able to decide whether the first output should be turned on based on the state of the first input. It will store the execution results for use later during the next step.

Step 3-UPDATE OUTPUT STATUS-Finally the PLC updates the status of the outputs. It updates the outputs based on which inputs were on during the first step and the results of executing your program during the second step.

1.5 Why Use PLC's?

The software advantage provided by programmable controllers is tremendous. In fact, it is one of the most important features of PLCs. Software makes changes in the control system easy and cheap. If you want a device in a PLC system to behave differently or to control a different process element, all you have to do is change the control program. In a traditional system, making this type of change would involve physically changing the wiring between the devices, a costly and time-consuming endeavor. In addition to the
programming flexibility we just mentioned, PLCs offer other advantages over traditional control systems.

These advantages include:

- high reliability
- small space requirements
- computing capabilities
- reduced costs
- ability to withstand harsh environments
- expandability

1.6 Capabilities of the S7-212 CPUs

The S7-200 family includes a wide variety of CPUs. This variety provides a range of features to aid in designing a cost-effective automation solution. Table 2 provides a summary of the major features of each S7-212 CPU.

Table 2
CPU 212 DC power supply, DC inputs, DC outputs
Order Number: 6ES7 212-1AA01-0XB0

General Fealures		Outpui Puints (continued)	
Plysical size ($1 \times W \times D)$	$\begin{aligned} & 160 \times 90 \times 62 \mathrm{mmin} \\ & (6.3 \times 3.15 \times 2.44 \mathrm{in} .) \end{aligned}$	Switching delay Surge current	$25 \mu s \mathrm{ON}, 120 \mu \mathrm{SOFF}$ 4A, 100 ms
Waidh	$0.3 \mathrm{~kg}(0.7 \mathrm{lbs})$	Voltage trop	
fvacr dissipation	5Wall.75 A load		curcht
1/ser progranm size/storage	512 wods/EFPROM	Optical isolation	500 Vh. 1 min
Usit ita sigestorage Dala retculion	512 wcrds/RAM 50 lir tepical (8 hr uinumurnat 40. C)	Whort cincuil protection	None
		Input Pointr	
Lenal I/O	$\$$ Liputs 6 onitpus	Inpui type (1EC: 1131-2)	Type I sinking
Maxisman nunber of expansion nucduiks	2	ON state tange	$15-30 \mathrm{VDC}$.4 mA minimam
Digital I/O smpported	64 impuls 64 outpuis	ON slate nominal	24 VIX .7 ma
Arabog 10 supportait	16 inputs/ $/ 6$ outputs	OFF stade maximunt	5 VIX .1 IdA
Brotean execuliou speed	$1.2 \mu \mathrm{sinstruction}$	Response time 10.0 to 10.7	0. 3 mits maximum
Intermal memory bits	128	Optical isolution	$500 \mathrm{Wh.C.C} 1$ min
Timers	64 liners	Power Supply	
Counters	64 catmiers	Sithage mage	20.46028 .8 / DC
High-spod connlers Analog adjusiments	I soltware (2 NH (z max.)	Jnput cutrent	$60 \mathrm{~ms} /$ ypical. CPI mily 500 mA maxinum lad
Standards compliance	UL 505 CSAC22.2 142 PM Class 1. Divisich 2 VDE Otooconpliant CE complian	ULCSA rating	50 VA
		Hodlup time	24 VDC
Ouiput Poink		Innush curmeut	10 A
Ouput type	Sourcing trasisor	Fusing (non-replaceablo)	
Wollage range	20.4 BDC 1023.8 VDC	Y VDC current	260 matac 340 mA for expansion 10
Maximuan load current Per singte poiat Rer 2 adjacell peints All points lotal	$\begin{array}{ll} \frac{0 \mathrm{ko4g} C}{0.75 \mathrm{~A}} & \frac{55^{\circ} \mathrm{C}}{0.50 \mathrm{~A}} \\ 1.00 \mathrm{~A} & 0.75 \mathrm{~A} \\ 2.25 \mathrm{~A} & 1.75 \mathrm{~A} \end{array}$	Trobated	No
		DC. Senser Supply	
Indoctive lowd clamping Singhe pulsz Repetitive	(per cormon) 2 $\mathrm{A} / \mathrm{R}=10 \mathrm{~ms}$ $\mathrm{LA} / \mathrm{R}=1 \mathrm{RO}$ ms 1 Wencrgy disaipation (I/21Fx switchrate \& 1 W)	Follage ramge	16.41028 .8 D DC
		Ripple/noise (< 10917e)	Sonve as supplicit volage
		24 TDC avaikble chrrent Shot-circhil cumere himit	$\begin{aligned} & 180 \mathrm{~mA} \\ & \times 600 \mathrm{~mL} \end{aligned}$
1eakate chment	$100 \mu \lambda$	Isolaled	No

[^0]

Infuts (15 VDC to 30 VDC)

Connector Terminal Identification for CPU 212 DC/DC/DC

CPU 212 AC Power Supply, DC Inputs, Relay Outputs
Order Number: 6ES7 212-18A01-0XB0

1 The CPU nestves $\$$ process-image inputand 8 prosest-image oupou image register points for hoal 10 .

Connector Terminal Identification for CPU 212 AC/DC/Relay

24 VAC CPU 212 Power Supply, DC Inputs, Relay Outputs
Order Numbser: 6ES7 212-1FA01-0XB0

1 The CPU veserves $\$$ proces-image inpul and 8 poovs-inage rulpal imuge register poins for bal $1 / 0$.

Note:

1. Actual component values may vary.
2. Connect $A C$ line to the L terminal.
3. DC circuit grounds are optional.

Connector Terminal Identification for CPU 21224 VAC/DC/Relay

－SIMATIC S7－200 Quick Reference Card

Interrupts				
（tsen）ifkup	Ewnt	Description		Piouty in Greal
Serugation －meatb ＊＊）	B	Prater Roroive charactes	다핖․	0
	8	Prato．Transmit		0
	23	Ponto：Rocelve fuestage	dxa	9
	24	Poull：Rosaiveresoye	3	1
	25	Pat 1：Fecote charactet	涯	1
	21	Pat 1：Transricil conylete	3	1
SC．merxpt： Mills privint	${ }^{8}$	Fising elge， BH_{6}	W23］	0
	$?$	Fixing elas， 10.1		1
	4	Feising etge， 10.2	\＃1ars	2
	6	Kising edge 1.3	込四的	3
	1	Fating eter，D． 0°	［y］ay	4
	3	Faliug eble， 1	［1asis	5
	5	Faling elys， 12	廌迷4	6
	3		四或发	7
	12	Hised＝ptese valus	7 4 atas	0
	13	HSCI＝presel vilue	m34	9
	14	HSC1 diecticn chauge	dank	0
	15	HSC1 exarmin necet	23x鿬	10
	16	HSC7＝prext valus	，	11
	17	HSC dimationctunge	［123	12
	18	HSCZ extersis poset	Hax	13
	19	Piso	［1924	14
	20	PLS 1	비미3	15
Tined indernuyts Iowesa pioidy	90	limed0		0
	11	Tinedt	51013	1
	21	1.32 ＝preest	［13）	2
	22	19s $=$ preset	11.10	5
4 CPU212	困 CPU214 21 CPU2t5		a CPU21	

SIMATIC S7－200 Quick Reference Card

Spacial Memory Bits			
S60．${ }^{\text {a }}$	Namen	Stino	Fosat of quaraion $=0$
क्र0．1	Fiel Scin	swn 1	
61．2	Retantiot hase bus	8412	N－gratios nall
Stios	Power up	SWhis	Drimanty
5 s 0.4	30 sallimem	S411．4	Fibleat
swo． 5	0．5soll $/ 458$ on	S415	Litle mepry
इ®0．6	CW1san／on 1 san	3／11．6	BeDrobinay muserich crour
S30．7	Smich in Rratipaition	\＄111．	ASCM lofe rewersinnotu

High－Speed Coumter Nodis					
Counter		Inpets			
FBCD		10.1			
Hici		10．6	80.7	11.1	41.1
HBC2		11.2	17．1	11.4	17.1
Hode	Docariplion	Cla	ck	Resel	Star
0 ± 2	Single phase withintanal divection	$\begin{aligned} & \text { पpipown: } \\ & 0,1,2 \end{aligned}$		1.2	2
3 log	Bingla phamo with owanna droction	$\begin{aligned} & \text { UNDown: } \\ & 5,4,5 \end{aligned}$	$\begin{aligned} & \text { Divection } \\ & 3,4.5 \end{aligned}$	4，5	5
6 cos	Twe ploeo	$\begin{aligned} & 4 \mathrm{lq}: \\ & 5,5,5 \end{aligned}$	$\begin{array}{\|l} \hline \text { Downis } \\ 4,7,8 \end{array}$	7，0	8
9611	Quatrame AE	${ }_{8}^{A} 0.11$	$\mathrm{E}: 90,11$	10， 11	11
［1］CPU	2 L 21 creat	CPU215	CPU71		

Coscription	Range Limit				Accessible as．．．			
	212	214	215	216	Bit	Byte	Whord	Dword
Itat Pragrus Sire	512 W	204s W	smb	40 Sa W				
Ubor Data Sivo	612 W	204\％	200W	2503 W		47x	Y＊\％	V）
Variable itericory	0.1023	2．409	Q5119	0．540	vey	Un）		D＊
trpul lanyp Rogidea	0.8	D． 7	07	0.3	k．${ }^{\text {c }}$	H2x	1	Com
Oupuillazee Rejstir	6.7	0.7	6.7	$\underline{0}$	Oncy	Of：	OW\％	18
Arealy lapets	630	0.310	0.30	0.30				
Amolig Catanls	0 019	030	0.5	035			ACMx	
Ein hiowary	E 15	6，31	0331	6.31	Lk．y	438	nWe	10.
Special Lextiory	0.5	0.65	6194	0194	Sitiy	Sis	sinve	3 Sb
Nolerinvo limest ins	1	Dरad	D）${ }^{\text {d }}$	0）34	18		18	
Fetertivo Tunces 10 ms	14	1．46E－E8	14．656	1－4， 5 ， 518	T＊		Tx	
	E\％	531， 3805	6.31 625	6．31， 6 E5	\％		\％	
OnDodaj Tmax 1 fas	37	32，96	32，96	32，96	T\％		Tr	
OnDelay Tunen 10 nom	113\％	3236，97－700	3336，97－100	33．\times ，97－100	Tir		Tr	
OnDolay Twnee 160 mes	37.63	37．63，131．127	37．63，101．25	37．63，101．20	Cx		C．	
Comulers	0.6	0.127	0.256	62				T6x
High SpeedCantr	0	6.2	0.3	0.3		AC：	ACA	MCx
Accumulaters	$\frac{123}{0.3}$	0.3	031	D31	$5 \times y$	815	Sis	${ }^{3} \mathrm{Dx}$
Seppence CambolRcty（scR）	0.3	0.8	0.256	0265				
Junpelabet	0.6	0.265	0，${ }^{\text {a }}$	0.59				
Calsubravine	0.15	0.65	0.68	0． 227				
Iftemupx Routines	0.5	0.127	$\frac{0.127}{6.72}$	$\frac{0.128}{0.26}$				
Intomypt Eyerts	6，1／2．0．12	6.20	6.23	0.				
Phtocps	NA	NA	0.7	Paterall				
Pats	Puif ${ }^{\text {a }}$	Patil	Porte，DP Porl	Pate，Fat				

2.ELECTRONIC CIRCUIT DEVICES

2.1.DIODE

2.1.1.PN Junction

Figure 2.1 Basic pn structure at the instant of junction formation. Both majority and minoriy carriers are shown.

Figure 2.1(a) shows a pn junction formed between the two regions when a piece of silicon is doped so that half is n-type and the other half is p-type. This basic structure forms a semiconductor diode. The n region has many free electrons (majority carriers) and only a few thermally generated holes (minority carriers). The p region has many holes (majority carriers) and only a few thermally generated free electrons (minority carriers). This is shown in Figure 2.1(b). The pn junction is fundamental to the operation of diodes, transistors, and other solid state devices .

2.1.2. Forward Bias

The term bias in electronics refers to a fixed dc voltage that sets the operating conditions for a semiconductor device. Forward bias is the condition that permits current across a pn junction. Figure 2.2 shows a dc voltage connected in a direction to forward-bias the diode. Notice that the negative terminal of the battery is connected to n region (called cathode), and the positive terminal is connected to the p region (called the anode).

Figure 2.2 Forward-bias connection. The purpose of the resistor is to limit the current 15 prevent damage to the diode.

This is how forward bias works: The negative terminal of the battery pushes the conduction electrons in the n region toward the junction, while the positive terminal pushes the holes in the p region also toward the junction. (Recall that like charges repel each other.) When it overcomes the barrier potential, the external bias voltage source provides the n-region electrons with enough energy to penetrate the depletion layer and cross the junction, where they combine with the p-region holes. As electrons leave the n-region, more folw in from the negative terminal of the battery. So, current through the n-region is the movement of the conduction electrons (majority carriers) toward the junction.

When the conduction electrons enter the p region and combine with holes, they become valence electrons. They then move as valence electrons from hole to hole toward the positive anode connection. The movement of these valence electrons essentially creates a movement of holes in the opposite direction as we our learned earlier. So, current in the p region is the movement of holes (majority carriers) toward the junction. Figure 2.3 illustrated electron flow in a forward-biased diode.

Figure 2.3 Electron flow in a pn junction diode.

2.1.3.Reverse Bias

Reverse bias isthe condition that pervents cuurent across the pn junction. Figure 2.4. shows a dc voltage source connected to reverse-bias the diode. Notice that the negative terminal of the battery is connected to the p region, and the positive terminal is connected to the n region. The negative terminal of the battery attracts holes in the p region away from the pn junction, wihle the positive terminal also attracts electrons away from the junction. As electrons and holes move away from the junction, the depletion layer widens; more positive ions are ceated in the n region, and more negative ions are created in the p region, as shown in Figure 2.5.

Figure 2.4 Reverse bias connection.

The deplation layer widens until the potential difference across it equals the external his voltage. At this point, the holes and electrons stop moving away from the junction and majority current ceases, as indicated in Figure 2.5(b). The initial movement of majority carriers away from the junction is called transient current and last only for a very short time upon application of reverse bias.

Figure 2.5 Reverse bias.

When the diode is reverse-biased, the depletion layer effectively acts as an insulator between the layers of oppositely charged ions. This effectively forms a capacitor, is illustrated in Figure 2.5(c). Since the deplation layer widens with increased reversebiased voltage, the capacitance decreases and vice versa. This internal capacitance is called deplation-layer capacitance.

2.1.4.Diode Characteristic Curve

A diode conducts current when it is forward-biased if the bias voltage exceeds the barrier potential, and the diode prevents current when it is reverse-biased at less than the

Trakdown voltage. Figure 2.6 shows a diode characteristic curve, which is a graph of Eiode current versus voltage. The upper right quadrant of the graph represents the firward-biased condition. As we can see, there is essentialy no forward current (If) for firward voltages (V_{f}) below the barrier potential. As the forward voltage approaches the salue of the barrier potential (typically 0.7 V for the silicon and the 0.3 V for germanium), the current begins to increase. Once the forward voltage reaches the barrier potential, the current insreaeses drastically and must be limited by a series resistor. The voltage across the forward-biased diode remains approximately equal to the barrier potential but increases slightly with forward current.

The tower left quadrant of the graph represents the reverse-biased condition. As the reverse voltage $\left(V_{R}\right)$ increases to the left, the current remains near zero until the breakdown voltage $\left(V_{B R}\right)$ is reached. When breakdown occurs, there is a large reverse current which, if not limited, can destroy the diode. Typically, the breakdown voltage is greater than 50 V for most rectifier diodes. Rectifier diodes should not be operated in reverse breakdown.

Figure 2.6 Diode characteristic curve

Figure 2.7(a) is the standart symbol for a general-purpose diode. The arrow points in the Irection of conventional current. The two terminals of the diode are the anode and cathode. When the anode is positive with respect to the cathode, the diode is forward biased and current is from anode to cathode, as shown in Figure 2.7(b). If there is any question about terminal polarities, always check the manufacturer's data book. Remember that when the diode is forward-biased, the barrier potential V_{B} always appears between anode and cathode, as indicated in the figure. When the anode is negative with respect to the cathode, the diode is reverse-biased, as shown in Figure 2.7 (c). The bias battery voltage is designated Vbв and is not the same as the barrier potential.

Figure 2.7 Gneral purpose diode and conditions of forward and reverse bias. The resistor limits the forward current to a safe value.

2.2.BIPOLAR JUNCTION TRANSISTORS

2.2.1.Introduction

The transistor was invested by a team of three men at Bell Laboraturies in 1947. Although this first transistor was not bipolar junction device, it was the begining of a technological revolution that is still continuing. All of the complex electronic devices and systems today are an outgrowth of early developments in semiconductor transistors.

There are two basic types of transistors the bipolar junction transistor (BJT), and the feld effect transistor (FET). The BJT is used in two broad areas as a linear amplifier to boost or amplify an electrical signal and as an electronic switch.

2.2.2.Transistor Construction

The bipolar junction transistor (BJT) is constructed with three doped semiconductor regions seperated by two pn junctions. The three regions are called emitter, base, and collector. The two types of bipolar transistor are shown in Figure 2.8. One type consists of two n regions seperated by n region (pnp).

Figure 2.8. Basic bipolar transistor construction.

The pn junction joining the base region and the emitter region is called the base-emitter junction. The junction joining the base region and the collector region is called basecollector junction, as indicated in Figure 2.8(a). A wire lead connects to each of the three regions, as shown. These leads are labeled E, B, and C for emitter, base, and collector, respectively.

The base region is lightly doped and very narrow compared to the heavily doped emitter and collector regions. Figure 2.9 shows the shematic symbols for the npn and pnp
molar transistors. The term bipolar refers to the use of both holes and electrons as =riers in the transistor structure.

Figure 2.9. Standard bipolar junction transistor (BJT) symbols.

2.2.3.Basic Transistor Operation

Figure 2.10 shows the proper bias arrangement for both npn and pnp transistors. Notice that in both cases the base-emitter (BE) junction is forward-biased and the collector (BC) junction is reverse-biased.

Figure 2.10. Forward-reverse bias of a bipolar transistor.

Now, let's examine what happens inside the transistor when it is forward-reverse biased. The forward bias from base emitter narrows the BE depletion layer, and the reverse bias from the base- collector widens the BC depletion layer, as depicted in Figure 2.11(a). The n type emitter region is teeming with conduction-band (free) electrons that easily diffuse across the forward-biased BE juntion in to the p type base region, just as in a forward-biased diode. The base region is lightly doped and very
zrrow so that it has a very limited numöber of holes. Thus, only a small percentage of Ill electrons flowing across the BE junction can combine with the available holes. These relatively few recombined electrons flow out of the base lead as valence electrons, forming the small base current IB_{B}, as shown in Figure 2.11(b).

Most of electrons flowing from the emitter into the narrow base region do not recombine and diffuse into the BC depletion layer. Once in this layer they are pulled across the reverse-biased BC juntion by the depletion layer field set up by the force of attraction between the positive and negative ions. Actually, we can think of the electrons are being pulled across the reverse-biased BC junction by the attraction of the positive ions on the other side. This is illustrated in Figure 2.11(c). The electrons now move through the collector region, out through the collector lead, and into the positive terminal of the external dc source. This forms the collector current, Ic, as shown. The amount of collector current depends directly on the amount of base current and is essentially independent the dc collector voltage.

Figure 2.11. Illustration of BJT action. The base region is very narrow, but it is shown wider here for clarity.

2.3.SYNCHRONOUS UP/DOWN COUNTERS ICs

Four-bit synchronous binary counters are available in a single integreted-circuit (IC) package. The popular synchronous IC counters are the 74192 and 74193 . They both have some features that were not available on the ripple counter ICs. The can count up or down and can be preset to any count that we desire. The 74192 is a BCD decade

Ip down counter and the 74193 is a 4-bit binary up/down counter. The logic symbol sed for both counters is shown in Figure 2.12.

$$
\begin{aligned}
& V_{C C}=\operatorname{Pin} 16 \\
& G N D=\operatorname{Pin} 8
\end{aligned}
$$

Figure 2.12 Logic symbol for the 74192 and 74193 synchronous counter ICs.

There are two separate clock inputs: C_{pu} for counting up and C_{pD} for counting down. One colck must be held HIGH while counting with the other. The binary output is taken from Q_{0} to Q_{3}, which are the outputs from four internal J-K flip-flops. The Master Reset (MR) is an active-HIGH Reset for resetting the Q outputs to zero.

The counter can be preset by placing any binary value on the parallel data inputs (D_{0} to D_{3}) and then driving the Prallel Load $(\overline{P L})$ line LOW. The parallel load operation will change the counter outputs regardless of the conditions of the clock inputs.

The Terminal Count Up ($\overline{\mathrm{TCU}}$) and Terminal Count Down ($\overline{\mathrm{TCD}}$) are normally HIGH. The $\overline{\mathrm{TCu}}$ is used to indicate that the maximum count is reached and the count is about to recycle to zero (carry condition). The $\overline{\mathrm{TCu}}$ line goes LOW for the 74193 when the count reaches 15 and the clock (Cpu) goes HIGH to LOW. TCu remains LOW until $\mathrm{C}_{p \mathrm{u}}$ returns HIGH. This LOW pulse at $\overline{\mathrm{TC}_{\mathrm{U}}}$ can be used as a clock input to the next-higherorder stage of a multistage counter.

The $\overline{\mathrm{TCu}}$ output for the 74192 is similar except that is goes LOW at 9 and a LOW C_{pu}. The Boolean equations for $\overline{\mathrm{TCu}}$, therefore, are as follows:

$$
\begin{aligned}
& \mathrm{LOW} \text { at } \overline{\mathrm{TCu}}=\mathrm{Q}_{0} \mathrm{Q}_{1} \mathrm{Q}_{2} \mathrm{Q}_{3} \overline{\mathrm{CpU}} \\
& \text { LOW at } \overline{\mathrm{TCu}}=\mathrm{Q}_{0} \mathrm{Q}_{3} \overline{\mathrm{CpU}}
\end{aligned}
$$

Terminal Count Down ($\overline{\mathrm{TCD}}$) is used to indicate that the minimum count is reached and the count is about the recycle to the maximum (15 to 9) count (borrow condition). Therefore, $\overline{\mathrm{TCD}}$ goes LOW when the down-count reaches zero and the input clock $\left(\mathrm{C}_{\mathrm{pD}}\right)$ goes LOW. The Boolen Equation at $\overline{\mathrm{TCD}_{\mathrm{D}}}$ is

$$
\text { LOW at } \overline{\mathrm{TCD}}=\overline{\mathrm{Q}_{0}} \overline{\mathrm{Q}_{1}} \overline{\mathrm{Q}_{2}} \overline{\mathrm{Q}_{3}} \overline{\mathrm{CpD}} \quad(74192 \text { and } 74193)
$$

The function table shown in Table 2.1 can be used to show the four operating modes (Reset, Load, Count Up, and Count Down) of the 74192 / 74193

Table 2.1 Function Table for the 74192 / 74193 Synchronous Counter Ics.

Operating	Inputs								Outputs					
	MR	PL	$C_{p u}$	$C_{p o}$	D_{0}	D_{1}	D_{2}	D_{3}	O_{0}	a_{1}	Q_{2}	a_{3}	T_{C}	$T_{\text {F }}$
Reset			\times	1	\times	\times	\times	\times	L	L	L	L	H H	$\stackrel{L}{L}$
	H H	\times	\times	H	\times	\times	\times	\times	L	L	L.	L.	H	H
Parallel Load		L	\times	L	L	L	L	L	L	L	\downarrow	L	H H	
	L	L	\times	H	L	L	L	L	L	L	L	L	${ }_{\text {H }}$	H H
	L	L	L	\times	H	H H	H	H H	\xrightarrow{H}	H H	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	H H	L	H H
	L	L	H	\times	H	H	H	H	Count up Count down			H		
Count Up	L	H	1	H	\times	\times	\times	\times					$\begin{array}{r} H \\ H \end{array}$	H H
Count Down	1	H	H	\uparrow	\times	\times	\times	\times						H

- H = WIGH voltage level; $L=$ LOW voltage level; $x=$ don't care; $\mid=$ LOW-so-HIGH clock transition.

2.4.NOT GATE (INVERTER)

The inverter is used to complement or invert a digital signal. It has a single input and single output. If HIGH level (1) comes in, it produces a LOW level (0) output. If a LOW level (0) comes in, it produces a HIGH level (1) output. The

Input A	Output X
0	1
1	0

Figure 2.13. Inverter symbol and truth table.
symbol and truth table for the inverter gate are shown in Figure 2.13.
The operation of the inverter is very simple and can be illustrated further by studying the timing diagram of Figure 2.14. The timing diagram graphically show us the operation of the inverter. When the input is HIGH, the output is LOW, and when the input is LOW, the output is HIGH. The output wave form is therefore the exact complement of the input.

Figure 2.14. Timing analysis of an inverter gate.

The Boolen equation for an inverter is written $\mathrm{X}=\overline{\mathrm{A}}(\mathrm{X}=$ NOT A$)$. The bar overthe A is an inversion bar, used to signify the complement.
2.5. D TYPE FLIP-FLOP (Data flip-flop)

Figure 2.15. S and R input and output relation for D flip flop.

It can be formed from the gated S-R flip-flop by the adddition of an inverter. In Figure 216 we can see that S and R will be complements of each other, and S is connected to a single line labeled D (Data). The operation is such that Q will be the same as D , while G is HIGH and Q will remain "latched" in whatever state it was in before the HIGH-toLOW transition on G.

Figure 2.16. Gated D flip flop.

2.6.0PTOCOUPLERS

Figure 2.17. An optocoupler consists of an LED packaged with a photodiode or phototransistor

An optocoupler is a light-activated electronic switch. It consists of a light-emitting diode (LED) packaged with a photodiode or phototransistor, devices that are activated (turned on) by lighting energy. See Figure 2.17. A pulse applied to the input side turns on (illuminates) the LED, and the light energy it generates activated photodiode or phototransistor. The latter devices can be connected to an open circuit to perform switching functions in any of the applications for which conventional diodes and transistors are used. The principal use of optocouplers is to interface circuits where good electrical isolation is required. Since there is no physical contact between the input
tircuit and output circuit, each can have a seperate ground, or referance. Because of this ability to isolate circuits, optocouplers are also called optoisolators.

The output circuit in Figure 2.17 contains phototransistors. In some commercially available units, the base is not an externally accessible terminal, since the only collector and emitter are neccessay to serve as switch terminals. In other units, the base terminal is accessible so that the user can have optionally connect the output circuit between the base and collector. In this mode, the device serves as a photodiode rather than as a phototransistor. The advantage of the photodiode mode is that switching is much faster than phototransistor mode. The advantage of the phootransistor mode is that, as in conventional devices, the transistor has the capability of driving a load.

The current tansfer ratio (CTR) of an optocoupler is the ratio of output current to input current. Depending on device design and application, it may range from 0.1 or less to several hundred. Optocoupler specifications usually include electrical isolation, expressed as a voltage. This voltage is the input-output voltage that the device can withstand without electrical cunduction occuring between input and output. A typical value is 2 kV . Other important specifications of an optocoupler relate to switching speed. These may be quoted in terms of rise and fall times. Typical value are 1 microsecond for an optocoupler using a photodiode and 5 microseconds for an optocoupler using a phototransistor.

2.7. INTERFACING RELAYS AND SOLENOIDS

A relay is mechanical switch or set of switches that are pened or closed by a magnetic field generated when electrical current is passed through a coil. See Figure 2.18. In the context of a relay, the switches are called contacts. When no current passes through the coil, it is said to be deenergized, the contacts are in their "normal" state: normally open or normally closed. When the coil is energized, the contacts switch to the opposite state. Like optocouplers, relays provide electrical isolation between an input circuit (the coil) and output circuits, the circuits connected to the contact. They are used to drive heavy loads. A relatively small voltage applied to the coil circuit opens and closes heavy-duty contacts that can switch high voltages and currents. A very common application of relay is to start oand stop and electrical motor. A solenoid is similar to a relay

Figure 2.18. The electromechanical relay.
except in stead of opening and closing switches when its coil energized, it opens or closes a mechanical value. Solenoids are used the control flow of liquits and gases. Relays and solenoids are both very slow in comparison to electronic switching speeds, so they are used only when the load is to be switched in or out of a circuit for long intervals of time. An example of such a load is the fan motor in an air conditioning system.

Figure 2.19 shows a circuit used to drive a relay coil. One of the problems with driving a relay is that a very large voltage spike appears across the coil terminals.

Figure 2.19. A relay-driver cicuit.

2.8. 555 TIMER

2.8.1.Introduction

The 555 Timer is a TTL digital logic circuit that is used in the controller circuit to produce a periodic square wave signal. The period and duty cycle of the square wave signal are determined by the resistors and capacitors connected to the timer. A square wave with a 50% duty cycle is desired. In order to obtain exactly a 50% duty cycle from the 555 Timer, two resistors of identical value are required. Since it is impractical to obtain two resistors of identical value, two resistors close in value are used to generate a square wave with a duty cycle close to 50%, and then a JK flip flop is used to create a square wave with a duty cycle of exactly 50%. The frequency of the square wave produced by the JK flip flop is $1 / 2$ the frequency of the output of the 555 timer.

2.8.2.Time Delay Circuit

555 IC is used for monostable and also for astable. For astable and monostable the time constant can be adjusted between microseconds and a few hours. Since it works with 5 V and 18 V we can adopted to all type of circuits. An also it feeds 200 mA , bulbs, relays, and some components which are like bulbs and relays can be drived directly. When the output of IC is high the IC spends 10 mA by itself, and when the output reaches the zero volt it uses 1 mA of 200 mA .

In my circuit it is used as monostable oscillator.

2.9. DEMULTIPLEXERS

Demultiplexing is the opposite procedure from multiplexing. We can think of demultiplexer as a data distributor. It takes a single input data value and routes it to one of several outputs, as illustrated in Figure 2.20.

Figure 2.20. Functional diagram of a four-line demultiplexer.

Integrated-circuit demultiplexers come in several configurations of inputs/outputs. There are two types which is one of the 74139 dual four-line demultiplexer and other one is 7415416 -line demultiplexer.

The logig diagram and logic symbol for the 74139 are given in Figure 2.21. Notice that the 74139 is divided into two equal sections. By looking at the logic diagram, we will see that the schematic is the same as that of a 2 -line-to-4-line decoder. Decoders and demultiplexers are the same, except with a decoder we hold the E enable line LOW and enter a code at the $\mathrm{A}_{0} \mathrm{~A}_{1}$ inputs. As a demultiplexer, the $\mathrm{A}_{0} \mathrm{~A}_{1}$ inputs are used to select the destination of input data. The input data are brought in via the E line. The 74138 3-line-to-8-line decoder.

Figure 2.21. The 74139 dual 4-line demultiplexer: (a) logic symbol; (b) logic diagram.

To use the 74139 as a demultiplexer to route some input data signal to, let's say, the 2 a output, the connections shown in Figure 2.22 would be made. In the figure the destination 2a selected by making $\mathrm{Ala}_{\mathrm{a}}=1, \mathrm{~A}_{0 \mathrm{a}}=0$. The input signal is brought into the enable line (Ea). When Ea goes LOW the selected output line goes LOW; when $\mathrm{Ea}_{\text {a }}$ goes high, the selected output line goes HIGH.

Figure 2.22. Connections to route an input data signal to the 2 a output of a 74139 demultiplexer.

Figure 2.23. The 74154 demultiplexer connections to route an input signal to the 5 output.

The 74154 can also be used as a 16-line demultiplexer. Figure 2.23 shows how it can be connected to route an input data signal to the 5 output.

2.10. CODE CONVERTER

Quite often it is important to convert a coded number info another from that is more usable by a computer or digital system. The prime example of this is with binary-codeddecimal ($B C D$). We have seen that $B C D$ is very important for visual display communication between a computer and human begins. But BCD is very difficult to deal with arithmetically. Algorithms, or procedures, have been developed for conversion of BCD to binary by computer programs (software) so that the computer will be able to perform all arithmetic operations in binary.

Another way to convert BCD to binary, the hardware approach, is with MSI integrated circuits. Additional circuitry is involved, but it is faster to convert using hardware rather than software.

3.OPERATION PRINCIPLE OF CIRCUIT

3.1. GENERAL OPERATION OF TELEREMOTE CIRCUIT

Figure 3.1. Receiver circuit

Figure 3.2. Counter circuit.

Figure 3.3. Time delay circuit.

Figure 3.4. Control circuit.

Figure 3.5. Oscillator Circuit

When the DTMF is send to the optocoupler part of the circuit the light emitting diode will emitte lights. The light emitted will be detected by the phototransistor will convert the light source to an electrical signal the TR1 will be driven and then the coil of the relay will be magnetized. Since the signal of the telephone line is high for a certain time and then of therefore when the high signal comes to the circuit the relay will operate but when low signal comes to the circuit the relay will not operate. This on and off period will be detected by counter part of that circuit. Each active position of relay will be accepted as one by counter circuit. And counter will count up to eight. When the eight tones are reached. The telephone you are calling will answer you. And after this operations the timer will set eleven seconds time delay. This time delay can be adjusted by changing the value of the capacitors and resistors. And also the counter value can be changed between some specific values of the resistors and capacitors are shown in Table 3.1.

Table 3.1 Resistors and capacitors value of monostable timer.

	$0.001 \mu \mathrm{~F}$	$0.01 \mu \mathrm{~F}$	$0.1 \mu \mathrm{~F}$	$1 \mu \mathrm{~F}$	$10 \mu \mathrm{~F}$	$100 \mu \mathrm{~F}$	$1000 \mu \mathrm{~F}$
$1 \mathrm{k} \Omega$	-	$11 \mu \mathrm{~S}$	$110 \mu \mathrm{~S}$	1.1 mS	11 mS	110 mS	1.1 S
$10 \mathrm{k} \Omega$	$11 \mu \mathrm{~S}$	$110 \mu \mathrm{~S}$	1.1 mS	11 mS	110 mS	1.1 S	11 S
$100 \mathrm{k} \Omega$	$110 \mu \mathrm{~S}$	1.1 mS	11 mS	110 mS	1.1 S	11 S	110 S
$1 \mathrm{M} \Omega$	1.1 mS	11 mS	110 mS	1.1 S	11 S	110 S	1100 S

This eleven seconds time will let you do your operation. In this stituation, operations shoul be finished in limited time which is eleven seconds. When the zero button is pressed after operation, the operation will be finished. Or after counter counts eight if you zero button is pressed the system will give you unlimited time to perform your operation and again by pressing zero button, the operation will be finished.

3.2. OPERATIN OF THE CONTROL CIRCUIT

The circuit uses IC MT8870 (DTMF to BCD converter), 74154 (4-to-16-line Demultiplexer), and five CD4013 (D flip flop) ICs. The working of the circuit is as follows.

Once a call is established (after hearing ring-back tone), dial ' 0 '" in DTMF mode. IC1 decodes this as ' 1010 ', which is further demultiplexed by IC2 as output 010 (at pin 11) of IC2 (74154). The active low output of IC2, after inversion by an inverter gate of IC3 (CD4049), becomes logic 1. This is used to toggle flip-flop-1 (F/F-1) and relay RL1 is energised. Relay RL1 has two changeover contacts, RL1(a) and RL1(b). The energised RL1(a) contacts provide a 220 -ohm loop across the telephone line while RL1(b) contacts inject a 10 kHz tone on the line, which indicates to the caller that appliance mode has been selected. The 220 -ohm loop on telephone line disconnects the ringer from the telephone line in the exchange. The line is now connected for appliance mode of operation.

FEgit ' 0 ' is not dialed (in DTMF) after establishing the call, the ring continues and the zephone can be used for normal conversation. After selection of the appliance mode of aperation, if digit ' 1 ' is dialed, it is decoded by IC1 and its output is ' 0001 '. This BCD $=d e$ is then multiplexed by 4 -to-16-line demultiplexer IC2 whose corresponding autput, after inversion by a CD4049 inverter gate, goes to logic 1 state. This pulse aggles the corresponding flip-flop to alternate state. The flip-flop output is used to trive a relay (RL2) which can switch on or switch off the appliance connected through its contacts. By dialing other digits in a similar way, other appliances can also be switched 'on' or 'off'. Once the switching operation is over, the 220 -ohm loop resistance and 10 kHz tone needs to be removed from the telephone line. To achieve this, digit ' 0 ' (in DTMF mode) is dialed again to toggle flip-flop-1 to de-energise relay RL1, which terminates the loop on line and the 10 kHz tone is also disconnected. The telephone line is thus again set free to receive normal calls. This circuit is to be connected in parallel to the telephone instrument.

4. OPERATION OF PLC

4.1. LADDER DIAGRAM \& STATEMENT LIST

Network 1

When press the button one, I 0.0 input will operated and heater $(\mathrm{Q} 0.0)$ is operated as timer count as.

Network 2

When I 0.0 is active, counter (C 0) count one and when press the button seven, it will be reset.

Network 3

After the counter (C0) count one, timer (T36) will counted thirty sec.

Network 4

When press the button two (three times), I 0.4 input will active and heater (Q 0.4) would be operated as timer count as.

Network 5

When I 0.4 is active, the counter (C 1) count two and it will be reset when press the button seven.

Network 6

After counter (C1) count, timer (T38) count sixty sec.

Network 7

When we press the button eight, I 0.1 input is active and washing machine (Q 0.1) will operate.

Network 8

When the button nine was pressed, I 0.2 input will active and microwave oven (Q 0.2) would operated as timer count as.

Network 9

When I 0.2 is active, counter (C2) counts one.And it will reset with button seven.

Network 10

When counter (C2) counts one, timer (T39) will count thirty sec.

Network 11

When the button five was pressed (three times), I 0.3 input would be active and microwave oven (Q 0.5) will operate as timer count as.

Network 12

When I 0.3 is operate, counter (C3) will count two and when pressing the button seven, it will be reset.

Network 13

After counter (C3) counted, the timer would count sixty sec.

The operation will finish.

Ifr help and example program

Heater operation for 30 sec .

Network 3 Timer count 30 sec .

enork 5 Counter count 2.

Network 6 Timer count 60 sec .

Network $7 \quad$ Washing machine operation

Counter count 1.

Network 11 Microwave oven operation for 60 sec .

eswork 13 Timer count for 60 sec .

Ketwork 14 Operation will finish.
(END)
T37
Q0. 0
ETWORK
10.0
I0.7
C0, +1
serwork 4
I 0.4
T38 //Heater operation for 60 sec .
C0
T37, +180
10.4
T38
Q0. 4
serwork 5 //Counter count 2 .
$20 \quad 10.4$
10 I0.7
CTU C1, +2
sะIWORK 6 //Timer count 60 sec .
$\begin{array}{ll}\text { IDON } & \text { C1 } \\ \text { T38, }\end{array}$
SETWORK 7 //Washing machine operation
LD IO.1
$=\quad$ Q0.1
NETWORK 8 //Microwave oven operation for 30 sec .
LD I0.2
AN T39
Q0. 2
NETWORK 9 //Counter count 1 .
LD I0.2
LD I0.7
CTU C2, +1
NETWORK $10 / /$ Timer count 30 sec .
$\begin{array}{ll}\text { LD } & \text { C2 } \\ \text { TON } & \text { T39, }+180\end{array}$
NETWORK 11 //Microwave oven operation for 60 sec .
LD IO. 3
AN T36
Q0. 2
NETWORK 12 //Counter count 2 .
LD IO. 3
$\begin{array}{ll}\text { LD } & \text { I0. } 7 \\ \text { CTU } & \text { C3, }+2\end{array}$
NETWORK $13 / /$ Timer count for 60 sec .
$\begin{array}{ll}\text { LD } & \text { C3 } \\ \text { TON } & \text { T36, }+360\end{array}$
NETWORK 14 //Operation will finish.
MEND

CONCLUSION

The aim of the study is showing that any process can be managed remotely with easy.
Need for remote managing could appear in health-critical or dangerous conditions, being far away job, etc. It could be extremely useful for managers to check or administer.

In fact, a production unit may have a PLC or other types of control device on their processes, so that they may not need this part of job. In this case, if some computers make the data collection and control the process with telephone lines.

In our study, since the telephone lines are live, the processes are controlled in seconds easily. Of course if the destination number is in local area, only dialling will be faster therefore the process will be faster.

In practice, after answering the telephone the tele-secretary will be activated and direct the user by its voice commans.

Our study enables user perform processes twice for safety the password may be set. As human life is busy or be far away from their houses and factories. The remote control becomes very important, since most of equipments are controlled by telephone line.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks

		ImpliedDisconnect ${ }^{\text {tu }}$	PACMAN ${ }^{\text {T }}$	SPM ${ }^{\text {Tu }}$
ACEx ${ }^{\text {TH }}$	FACT ${ }^{\text {th }}$	Implied Disconned	POPTN	Stealth ${ }^{\text {Th }}$
ActiveArray ${ }^{\text {TH }}$	FACT Quiet Series ${ }^{\text {T }}$	ISOPLANAR	Power247 ${ }^{\text {ma }}$	SuperSOT ${ }^{\text {TM }}$-3
Bottomless ${ }^{\text {Th }}$	FAS	LitteFET ${ }^{\text {TH }}$	PowerTrench ${ }^{\text {P }}$	SuperSOT ${ }^{\text {TM }}$-6
COOIFET ${ }^{\text {tu }}$	FASTr ${ }^{+}$		QFET ${ }^{\text {a }}$	SuperSOT ${ }^{\text {TH/8 }} 8$
CROSSVOLT	FRFET	Micropak ${ }^{\text {N }}$ MICROWRET	QS ${ }^{\text {TH }}$	SyncFET ${ }^{\text {tw }}$
DOME ${ }^{\text {TL }}$	Globaloptoisolator ${ }^{\text {T/ }}$	MICROWIRE ${ }^{\text {ns }}$	QT Optoelectronics ${ }^{\text {TH }}$	TinyLogic ${ }^{(0)}$
EcoSPARK ${ }^{\text {TH }}$	GTO ${ }^{\text {T }}$	MSXProtm		TruTranslation
ECMOS ${ }^{\text {TM }}$	$\mathrm{HiSeC}^{\text {tu }}$	MSXPro ${ }^{\text {m }}$	RapidConfigure	UHC ${ }^{\text {T }}$
EnSigna ${ }^{\text {Th }}$	$1^{2} C^{4 M}$	OCX	RapidConnect ${ }^{\text {TM }}$	UltrafET ${ }^{\text {B }}$
Across the boa	Around the wo	OPTOLOGC ${ }^{\text {B }}$	SILENT SWITCHER ${ }^{3}$	VCX
The Power Fra	ise	OPTOPLANAR ${ }^{\text {W }}$	SMART START ${ }^{\text {™ }}$	
Programmable	ve Droop ${ }^{\text {TM }}$	OPIOPL		

DSCLAMER

AIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FUR THER ARTIOE NOTICE TO ANYPRODUCIS OR CIRCI ASUME ANY LIEREN.NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS NOR THE RIGHTS OF OTHERS.

UFE SUPPORT POLICY

FAIRCHILD'S PROOUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORI CTS ARE NOT AUTHORS As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain Ife, of (c) whose faiture to perform when properly used in accordanca with instructions for use provided in the labeling, can be reasonably expected to result in significant mjury to the user.
PRODUCT STATUS DEFNIIIONS
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time wlhout notice in order to improve design.
Obsokete	Not in Production	This datasheet contains specifications on a product that has been discontimued by Fairchild semiconductor. The datasheet is printed for reference information only.

CD4013BC Dual D-Type Flip-Flop

General Description

The CD4013B dual D-type flip-flop is a monolthic complesentary MOS (CMOS) integrated ciroui constructed with $\%$ and P-channel enhanoement mode transistors. Each Tip-Hlop has independent data, sel, reset, and clock inputs and ${ }^{-} Q$ " and " \bar{Q} " oulputs. These devioes can be used for stifl register applications, and by connecting $\overline{{ }^{\circ}}$ output to the data imput, for counter and toggle applications. The logic level present at the "D" input is transferred to the Q output curing the positive-going transition of the dock pulse. Setting or resetting is inde pendent of the clock and is accomplished by a high level on the set or reset line respectively.

Features

Wide supply vottage range: 3.0 w to 15 w

- High noise immunity: 0.45 VOD (typ.)
- Low power TTL: fan out of 2 criving 74L compatibility: or 1 driving 74LS

Applications

- Aubomolive
- Data terminals
- Instrumentation
- Medical electronics
- Alarm systern
- Inclustrial electronics
- Remote metering
- Computers

Ordering Code:

Order Number	Package Number	-s Ciront (SOKC). JEDEC MS-012, $0.150{ }^{\text {" }}$ Namow
CD4013ECM	M14A	14-Lead Small Outline integrated Cirouk (SIAJ TYPE II, 5.3 mm Wide
CD4013BCSJ	M14D	14-Lead Sinall Outine Package (SOP). EIAJ THPE II,
CD4O13BCN	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC Mo.

Connection Diagram

Top View

Truth Table

$\begin{gathered} \mathrm{CL} \\ (\text { Note } 1) \end{gathered}$	D	R	S	0	$\overline{0}$
\sim	0	0	0	0	1
\sim	1	0	0	1	0
-	x	0	0	0	$\overline{\mathrm{O}}$
x	x	1	0	0	1
x	x	0	1	1	0
\times	x	1	1	1	1

NoChange
$\mathrm{x}=$ Donit Case Case
Ncte 1: Leved Change

\qquad
www.fairchild semi.com

Absolute Maximum Ratings（Note 2）
Note 3）
DC Supply voltage（VDD） Input Voltage（Vin） Storage Temperature Range（TS）
Power Dissipation（ P_{D} ）

Dual－In－Line

Small Outline
Lead Temperalure（ T_{L} ）
（Soldering， 10 seconds）

Recommended Operating Conditions（Note 3）

DC Supply Voltage（VDD）
+3 Voc to $+15 \mathrm{~V} / \mathrm{Dc}$
input Voltage（Vin）
0 VDC to VDD VDC
Operating Temperature Range（ T_{A} ）
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Note 2：＂Abschue Maximum Ratings＂ae inse values beyond which the salet d hedevios cannol be guaranised，they ate nol meant to imply thas the devices should be operated al those limits．The bebles of＇Reoom menter Operaing Conditions＇and＇Electrical Charadenistirs＇provitecon diliors for adual desice oparation
Note 3： $\mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}$ unless otherwise specilied

DC Electrical Characteristics（Note 3）

Symbal	Parameter	Canditions	$-55 \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$		Units
			hin	Nax	Min	Typ	MI3x	Inin	max	
len	Quiescent Davice Current	$\begin{aligned} & V_{D O}=5 \mathrm{~V}, V_{\mathrm{N}}=V_{\mathrm{DD}} \text { or } V_{\mathrm{SS}} \\ & V_{\mathrm{DD}}=10 \mathrm{Y}, V_{\mathrm{N}}=V_{\mathrm{CD}} \text { or } V_{S S} \\ & V_{\mathrm{DO}}=15 \mathrm{~V}, V_{\mathrm{R}}=V_{\mathrm{CD}} \text { or } V_{\mathrm{SS}} \end{aligned}$		$\begin{aligned} & 1.0 \\ & 2.0 \\ & 4.0 \end{aligned}$			$\begin{aligned} & 1.0 \\ & 2.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 30 \\ & 60 \\ & 120 \end{aligned}$	$\mu \mu^{\prime \prime}$
Va	LOW Level Output volisge	$\begin{aligned} & V_{O I}<1.0 \mu \mathrm{~A} \\ & V_{D O}=5 \mathrm{~V} \\ & V_{D O}=10 \mathrm{~V} \\ & V_{D O}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \\ & \hline \end{aligned}$			$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	V
$V_{\text {CH }}$	HIGH Level Oupul Vilage	$\begin{aligned} & V_{\mathrm{CO}}<1.0 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & V_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DO}}=15 \mathrm{~V} \end{aligned}$	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$		$\begin{gathered} 4.95 \\ 9.95 \\ 14.85 \end{gathered}$			4.95 9.95 14.95		V
$V_{\text {H }}$	HIGH Level Input Voliage	$\begin{aligned} & \mid \mathrm{VD}<1.0 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ & V_{\mathrm{DD}}=10 \mathrm{~V}, V_{\mathrm{O}}=1.0 \mathrm{~V} \text { cr } 9.0 \mathrm{~V} \\ & V_{\mathrm{DD}}=15 \mathrm{~V} . V_{O}=1.5 \mathrm{~V} \text { cr } 13.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \end{gathered}$		$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11.0 \end{aligned}$			3.5 7.0 11.0		V
100	LOW Level Outpul Curtant（Nete 4）	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, V_{O}=0.4 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \mathrm{v} \\ & v_{\mathrm{DD}}=15 \mathrm{v}, V_{O}=1.5 \mathrm{v} \end{aligned}$	$\begin{aligned} & \hline 0.64 \\ & 1.6 \\ & 4.2 \end{aligned}$		$\begin{array}{r} \hline 0.51 \\ 1.3 \\ 3.4 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.88 \\ & 2.25 \\ & 8.8 \\ & \hline \end{aligned}$		0.36 0.9 2.4		mA
${ }^{\text {OH }}$	HIGH Level Output Current（Nate 4）	$\begin{aligned} & V_{D O}=5 V, V_{0}=4.6 \mathrm{~V} \\ & V_{D O}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V} \\ & V_{D O}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline-0.84 \\ & -1.6 \\ & -4.2 \end{aligned}$		$\begin{gathered} -0.51 \\ -1.3 \\ -3.4 \end{gathered}$	$\begin{gathered} -0.88 \\ -2.25 \\ -8.8 \end{gathered}$		$\begin{gathered} -0.36 \\ -0.9 \\ -2.4 \end{gathered}$		mA
InN	Input Curranl	$\begin{aligned} & V_{D O}=15 \mathrm{~V}, V_{\mathrm{N}}=0 \mathrm{~V} \\ & V_{\mathrm{DO}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{N}}=15 \mathrm{~V} \end{aligned}$		-0.1 0.1		-10^{-3} 10^{-5}	-0.1 0.1		$\begin{array}{r} -1.0 \\ 1.0 \end{array}$	$\mu \cdot \hat{A}$

[^1]AC Electrical Characteristics (Note 5)

Phy sical Dimensions inches (millimeters) untess othervise noted

14-Lead Small Outline Integrated Circuit iSOIC). JEDEC MS-012.0.150" Natrow
Package Number M14A

Physical Dimensions inches (millineters) unless othervise noted (Continued)

14-Lead Simall Outline Package (SOP). EIAJ TYPE II. 5.3 mm Wide Package Number H 14D

Thy sical Dimensions inches (millimeters) unless othenvise noted (Continued)

Fairchild does not assume ans responsibility for use of any cirouitry described, no circuit patent licenses are impliad and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY
FAIRCHILDS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITKAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMMCONDUCTOR CORPORATION. As used herein:

1. Life support devices or systiems are devides or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain lite, and (c) whose failure to perform when properly used in acoondance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or systern whose failure to perform can be roasonably expected to cause the faiture of the lite support devioe or system, or to affect its safely or effoctiveness.
wive:fairchildsemi.com

MALL
 vitac OPTOCOUPLERS Size does matter, but bigger isn't always better.

Poitable and compact devices require optocouplers that deliver the performance of a standard 4- or 8 -pin clual inline package (DIP), but occupy only a fraction of the space. Fairchild Semiconductor's small outline package (SOP) optocouplers meet that need.

AN SO-8 PACKAGE HAS A 69% SMALLER FOOTPRINT THAN AN 8 -PIN DIP

SO-8 Raw kase

INI-FLAT PACKAGE HAS A 37\% SMALLER FOOTPRINT IHAN A 4.PIN DIP A FULL-PITCH MINI-FLAT PACKAGE HAS A 37\% SMAILER

A HALF-PITCH MINI-FLAT PACKAGE HAS A 61\% SMALLER FOOTPRINI THAN A 4-PIN DIP

For more information, including data sheets, go to www.fairchildsemi.com/sopopto

SO- 8 Package Optocouplers

High-Speed (1 Mbit/s) Transistor Output, GaAsP Input Optocoupler High-Speed ($10 \mathrm{Mbit} / \mathrm{s}$) Logic Gate Output, GaAsP Input Optocoupler
High-Gain (>300\% CTR) Split Darlington Output, GaAsP Input Optocoupler
Phototransistor Output, GaAs Input Optocoupler
Photodarlington Output. GaAs Input Optocoupler
Transistor Output, AC GaAs Input Optocoupler
Dual-Channel Phototransistor Output, GaAs Input Optocoupler
Dual-Channel Photodarlington Output, GaAs Input Optocoupler

Full- and Half-Pitch Mini-Flat Package Optocouplers

Phototransistor Output, GaAs Input Optocoupler
Phototransistor Output, AC GaAs Input Optocoupler

Safety Regulatory Agency Approvals

BSI, CSA and UL certified.

Tape and Reel Ordering Information

Option R1 - 500 devices per reel, 7 inch (178 mm) reel diameter Option R2 - 2,500 devices per reel, 13 inch (330 mm) reel diameter

Footprint Drawings for PCB Layout
 SO-8 PACKAGE

FULL-PITCH MINI-FLAT PACKAGE

HALF-PITCH MIN-FLAT PACKAGE

> SO-8 Package
> High Speed
> Tramsistor Output
> Optocouplers

Part Number	$\begin{gathered} \text { CTR } \\ 16 \mathrm{~mA} / \mathrm{f}(\%) \end{gathered}$		$V_{C a}$ (N) เทีх	lan (μA) max	$T_{\text {FI }} / T_{\text {FA. }}$ (us) max	V_{100} AC [RMS]
	min	\max				
HCM, -0452*	19	50	0.4	200	0.8×0.8	2.5 kV
	7	50	0.4	200	1.511.5	2.5 kV
HCPL-0500	7			200	0.810 .8	2.5 kV
HCP. 0501	19	50	0.4			

-Base not comected tor HCPL.O452
SO-8 Package High Speed
Logic Gate
Optocouplers

Part Nunuber	$\begin{aligned} & I_{7} \\ & (\mathrm{~mA}) \\ & \max \end{aligned}$	V_{4} (V) max	$\begin{gathered} C M_{1} / C M_{1} \\ (\mathrm{WV} / \mathrm{Hs}) \\ \mathrm{min} \end{gathered}$	lay (mA) max		$\begin{gathered} V_{8 o} \\ \text { AC [RMS] } \end{gathered}$
		05		13	75175	2.5 kV
HCP. 0600	5	0.6	5	13	75175	2.5 kV
HCPL-0601	5	0.6	5	13		

SO-8 Package
High Gain
Split Darlington
Optocouplers

Part Number	$\begin{gathered} \text { CTRe } \\ 1.6 \mathrm{~mA} 4(X) \end{gathered}$		V_{ot} (N) กเบx	I_{OH} ($\mu \mathrm{A})$ max	$\begin{aligned} & T_{\text {Pun }} T_{P \\| H} \\ & (y s) \\ & \text { max } \end{aligned}$	V150 AC [RMS]
HCM. 0700	300	2600	0.4	250	1035	2.5 kV
200		2600	0.4	100	$25 / 60$	2.5 kV
HCP. 0701	500	2600				

Full-Pitch
Mini-Flat Package
4-Pin Optacouplers

Part Number	$\begin{gathered} \text { CTR }{ }^{5} \\ 5 \mathrm{~mA} \mid \text { (\%) } \end{gathered}$		$\begin{gathered} \mathrm{BV}_{\mathrm{CE}} \\ \mathrm{(V)} \\ \text { min } \end{gathered}$	BV 100 M กเหก	$\mathrm{t}_{1} \mathrm{H}_{4}$ (us) typical	V_{500} AC [RMS]
HMA121	50	600	90	7	3/3	3.75 kV
	100	1200	80	7	$3 / 3$	3.75 kV
HMA124	100		40	7	3/3	3.75 kV
HMAZ701	50	300	40			3.75 kV
HMAA2705	50°	$300{ }^{\circ}$	40	7	$3 / 3$	3.15

HLA121. HMA124, HHA27OI

Part Number	$\begin{gathered} \text { CTR } \\ 5 \mathrm{~mA} \&(\%) \end{gathered}$		$\begin{gathered} \mathrm{BV}_{\mathrm{CO}} \\ \mathrm{M} \\ \mathrm{~min} \end{gathered}$	$\begin{gathered} B V_{100} \\ \mathrm{M} \\ \mathrm{mn} \end{gathered}$	$\begin{aligned} & 4_{R} / n_{\mathrm{H}} \\ & \text { (Hst } \\ & \text { typical } \end{aligned}$	$\begin{gathered} V_{B O} \\ A C[R M S] \end{gathered}$
		\max				
HMWN281	50	800	80	7	$3 / 3$	2.5 kV
HMinzar	50^{-}	$600{ }^{-}$	80	7	$3 / 3$	2.5 kV
HMMALA20				7	3/3	2.5 kV
HMHHA2801	80	600	23			

Hhalaz81, HMHAZBO1

SO- 8 Package Phototransistor Output

GaAs Input
Optocouplers

Part Number	$\begin{gathered} \text { CTR } \\ 10 \mathrm{~mA}+(\mathscr{O}) \end{gathered}$		Bymo (V) niin	BV Loo (V) \min	${ }^{4} \mathrm{CNT}$ ($\mu \mathrm{s}$) typical	V_{pO} AC \{PMS!
	min					
HOC205	40	80	70	7	3.012 .8	3.0 kV
		125	70	7	3.02 .8	3.0 kV
MOC206	63	125		7	3.02 .8	3.0 kV
MOC207	100	200	10			3.0
1.10C208	40	125	70	7	3.07 .8	
	20	--	30	7	7.5/5.7	3.0 kV
WOCC211	50	--	30	7	$7.5 / 5.7$	3.0 kV
MOC212	100		30	7	7.515.7	3.0 kV
MOC213	100		30	7	7.515.	3.0 kV
WOCL 215	20°		30	7	7.5/5.7	3.0 kV
M0C216	$50{ }^{\circ}$	-	30	7	7.5/5.7	3.9 kV
MOC217	760°	--	30			

SO- 8 Package Photodarlington Output GaAs Input
Optocoupler

SO-8 Package
Transistor Output
AC Input
Optocoupler

SO-8 Package
Dual Chamel Phototransistor Output

GaAs Input

Optocouplers

SO- 8 Package
Dual Channel Photodarlington Output

GaAs Input
Optacoupler

SYNCHRONOUS UP/DOWN DECADE COUNTER

- HIGH SPEED
${ }^{\text {MAX }}=55 \mathrm{MHz}$ (TYP.) at $\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$
- LOW POWER DISSIPATION:
$I_{C C}=4 \mu \mathrm{~A}\left(\mathrm{MAX}\right.$.) at $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$
* HIGH NOISE IMMUNITY:
$V_{\text {NIH }}=V_{\text {NIL }}=28 \% V_{C C}($ MIN. $)$
* SYMMETRICAL OUTPUT IMPEDANCE:
$\|_{\mathrm{OH}} \mid=I_{\mathrm{OL}}=4 \mathrm{~mA}(\mathrm{MIN})$
- BALANCED PROPAGATION DELAYS:
$\mathrm{t}_{\mathrm{PLH}} \equiv \mathrm{t}_{\mathrm{PHL}}$
- WIDE OPERATING VOLTAGE RANGE:
$V_{C C}(O P R)=2 V$ to 6 V
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 192

DESCRIPTION

The M74HC192 is an high speed CMOS SYNCRONOUS UP/DOWN DECADE COUNTERS fabricated with silicon gate $C^{2} \mathrm{MOS}$ lechnology.
The counter has two separate clock inputs, an UP COUNT input and a DOWN COUNT input. All sutputs of the flip-flop are simultaneously riggered on the low to high transition of either slock while the other input is held high. The Eirection of counting is determined by which input is clocked. This counter may be preset by entering the desired data on the DATA A, DATA B, DATA C, and DATA D input. When the LOAD input is taken low the data is loaded independently of either clock input. This feature allows the counters to be used as divide-by-n counters by modifying the count length with the preset inputs. In addition

ORDER CODES

PACKAGE	TUBE	T \& R
DIP	M74HC192B1R	
SOP	M74HC192M1R	M74HC192RM13TR
TSSOP		M74HC192TTR

the counter can also be cleared. This is accomplished by inputting a high on the CLEAR input. All 4 internal stages are set to low independently of either COUNT input. Both a BORROW and CARRY output are provided to enable cascading of both up and down counting functions. The BORROW output produces a negative going pulse when the counter underflows and the CARRY outputs a pulse when the counters overflows. The counter can be cascaded by connection the CARRY and BORROW outputs of one device to the COUNT UP and COUNT DOWN inputs, respectively, of the next device. All inputs are equipped with protection circuits against static discharge and transient excess voltage.

PIN CONNECTION AND IEC LOGIC SYMBOLS

ent and OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
$3,2,6,7$	QA to QD	Flip-Flop Outputs
4	COUNT DOWN	Count Down Clock Input
5	COUNT UP	Count Up Clock Input
11	$\overline{\text { LOAD }}$	Asynchronous Parallel Load Input (Active LOW)
12	$\overline{\text { CARRY }}$	Count Up (Carry) Output (Active LOW)
13	$\overline{\text { BORROW }}$	Count Down (Borrow) Output (Active LOW)
14	CLEAR	Asynchronous Reset Input (Active High)
$15,1,10,9$	A to D	Data Inputs
8	GND	Ground (0V)
16	Vcc	Positive Supply Voltage

TUTH TABLE

COUNT UP	COUNT DOWN	LOAD	CLEAR	FUNCTION
Γ	H	H	L	COUNT UP
Z	H	H	L	NO COUNT
H	-	H	L	COUNT DOWN
H	L	H	L	NO COUNT
X	X	L	PRESET	
X	X	H	RESET	

5: Don't Care

This logic diagram has not be used to estimate propagation delays

aBSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Symbol		-0.5 to +7	V
V_{Cc}	Supply Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
v_{1}	DC Input Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
V_{0}	DC Output Voltage	± 20	mA
IIK	DC Input Diode Current	± 20	mA
Іок	DC Output Diode Current	\pm	mA
10	DC Output Current	± 50	mA
loc or $\mathrm{I}_{\text {GND }}$	DC V_{CC} or Ground Current	500(*)	mW
$P_{\text {D }}$	Power Dissipation	500()	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature		
	Lead Temperature (10 sec)	300	${ }^{\circ} \mathrm{C}$

beyond which damage to the device may occur. Functional operation under these conditions is not implied
(7 500 mW at $65^{\circ} \mathrm{C}$; derate to 300 mW by $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from $65^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	2 to 6	V
$\mathrm{~V}_{1}$	Input Voltage	0 to V_{CC}	V
V_{O}	Output Voltage	0 to V_{CC}	V
T_{op}	Operating Temperature	-55 to 125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time		0 to 1000

a SPECIFICATIONS

$=$ ECTRICAL CHARACTERISTICS ($C_{L}=50 \mathrm{pF}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$)

nemel	Parameter	Test Condition								Unit	
		$\begin{aligned} & V_{c c} \\ & (V) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$			
			Min.	Typ. M	Max.	Min.	Max.	Min	Max.		
7-7-4 $\frac{0}{1}$	Output Transition Time	2.0		30	75		95		110	ns	
		$\frac{2.0}{4.5}$		8	15		19		22		
		4.5 6.0		7	13		16		19		
Rem	Propagation Delay Time (COUNT UP, DOWN - Q)	2.0		65	190		240		285	ns	
		4.5		20	38		48		57		
		6.0		16	32		41		48		
$\mathrm{F}+\mathrm{Fm}$	Propagation Delay Time (COUNT UP CARRY)	2.0		40	130		165		195	ns	
		4.5		13	26		33		33		
		6.0		11	130		165		19	ns	
$=\mathrm{FHL}$	Propagation Delay Time (COUNT DOWN BORROW)	2.0		13	26		33		39		
		4.5		11	22		28		33		
		6.0		85	220		275		33	ns	
- $=1 \mathrm{PHL}$	Propagation Delay Time (LOAD - Q)	2.0		25	44		55		6		
		4.5		20	37		47				
		6.0		110	250		315			ns	
-HP ${ }^{\text {P }}$	Propagation Delay Time (LOAD CARRY)	$\frac{2.0}{4.5}$		30	50		63				
		4.5 6.0		25	43		54				
CLH tphi	Propagation Delay Time (LOAD BORROW)	2.0		110	250		315			ns	
		4.5		31	50		63				
		6.0		25	43		54				
YLH LPML	Propagation Delay Time (DATA - Q)	2.0		80	190		48			ns	
		4.5		$\frac{25}{20}$	32		41				
		6.0		120	250		31			ns	
$\stackrel{\text { PLH }}{ }{ }^{\text {tPHL }}$	$\begin{aligned} & \text { Propagation Delay } \\ & \text { Time (DATA - } \\ & \hline \text { CARRY) } \end{aligned}$	2.0		34	50		63				
		4.5		28	43			4			
		6.0		110	250			15		ns	
${ }^{\text {P PLH }}$ TPHL	Propagation Delay Time (DATA - BORROW)	2.0		30	50			3			
		6.0		25	43			54			
	Propagation Delay Time (CLEAR-Q)	- 2.0		100	225			80		ns	
${ }_{\text {tPHL }}$		2.5 4.5		30	45			56			
		6.0		25	38			48			
${ }_{\text {tplh }}$	Propagation Delay Time (CLEAR -CARRY)	\% 2.0		120	- 250			315		ns	
		4.5		35	50			63			
		6.0		29	43			54		ns	
${ }_{\text {tPHL }}$	Propagation Delay Time (CLEAR BORROW)	1		35	- 50			63			
		- 6.0		$5{ }^{5}$			4		3.4		MHz
$f_{\text {max }}$	Maximum Clock Frequency	2.0		25 48			20		17		
		4.5		30.55			24		20		

nem	Parameter	Test Condition		Value							Unit
		$V_{c c}$ (V)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
					34	100		125		150	ns
0	Minimum Pulse Width (COUNT UP/ DOWN)	2.0			9	20		25		30	
		4.5			7	17		21		26	
		6.0			34	75		95		110	ns
\%	Minimum Pulse Width (년)	2.0			9	15		19		22	
		4.5			7	13		16		19	
4		6.0			40	100		125		150	ns
	Minimum Pulse Width (CLEAR)	2.0			12	20		25		30	
		6.0			10	17		21		26	
4	Minimum Set-up Time (DATA -LOAD)	2.0			30	75		95		110	ns
		4.5			9	15		19		19	
		6.0			7	13		0		0	ns
1	Minimum Hold Time	2.0				0		0		0	
		4.5				0		0		0	
		6.0			6	50		65		75	ns
lem	Minimum Removal Time (는)	2.0			2	10		13		15	
		4.5			2	9		11		13	
		6.0 2.0			14	50		65		75	ns
sem	Minimum Removal Time (CLEAR)	2.0 4.5 6.0			4	10		13		15	
		6.0			3	9		11			

LAPACITIVE CHARACTERISTICS

Symbol	Parameter	Test Condition	Value							Unit
		$\begin{aligned} & V_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
			Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
				5	10		10		10	pF
$\mathrm{Cin}_{\text {IN }}$	Input Capacitance	5.0								
CPD	Power Dissipation Capacitance (note	5.0		68						pF

IE DRCUIT

- STpF or equivalent (includes jig and probe capacitance)
$=-2 u r$ of pulse generator (typically 50Ω)
FIVEFORM 1 : PROPAGATION DELAY TIME, MINIMUM PULSE WIDTH (COUNT UP AND DOWN) $=-\mathrm{MHz} ; 50 \%$ duty cycle)

5-10004
($E=O R M 2$: PROPAGATION DELAY TIME, MINIMUM PULSE WIDTH (CLEAR, $\overline{\text { LOAD }}$)

S-10006

WAVEFORM 3 : SETUP AND HOLD TIME (A, B, C, D to $\overline{\text { LOAD }}$) ($\mathrm{f}=1 \mathrm{MHz} ; 50 \%$ duty cycle)

S-10005

EIEFORM 4: MINIMUM REMOVAL TIME (COUNT UP OR DOWN TO CLEAR)
-ilizz, 50% duty cycle)

5-10008

WAVEFORM 5 : MINIMUM REMOVAL TIME (COUNT UP OR DOWN TO $\overline{\text { LOAD }}$) $=1 \mathrm{MHz} ; 50 \%$ duty cycle)

S-10007

M74HC192

Plastic DIP-16 (0.25) MECHANICAL DATA

SO-16 MECHANICAL DATA

TSSOP16 MECHANICAL DATA

20.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	
-			1.2			0.047
					0.004	0.006
4	0.05		0.15	0.002	0.004	
	0.8	1	1.05	0.031	0.039	0.041
42				0.007		0.012
b	0.19		0.30			
c	0.09		0.20	0.004		0.0089
D	4.9	5	5.1	0.193	0.197	0.201
		6.4	6.6	0.244	0.252	0.260
E	6.2				0.173	0.176
E1	4.3	4.4	4.48	0.169		
e		0.65 BSC			0.0256 BSC	
K	0°		8°	0°		8°
K	0.45	0.60	0.75	0.018	0.024	0.030
L						

PIN 1 IDENTIFICATION

0080338D

FAIRCHILD
 SEMIDONDUCTDRTM
 CD4049UBC•CD4050BC Hex Inverting Buffer • Hex Non-Inverting Buffer

General Description

The CD4049UBC and CD4050BC hex buflers are monoahic complementary MOS (CMOS) integrated circuits construcled wilh NH - and P-channel enhanoement mode ransistors. These dewibes leature logic level conversion sing only one supply voltage (V_{DD}). The imput signal high leval $\left(\mathrm{V}_{\mathbb{H}}\right)$ can exceed the VOD supply wollage when these devices are used for logic level conversions. These terices are intended for use as hex buffers, CMOS to DTL TL converlers, or as ClNOS cLrrent chivers, and at $\mathrm{V}_{\mathrm{gO}}=$ 5.ON. they can drive directly two DTL/TTL loads over the lull operating temperature range.

Ordering Code:

Order Number	Package Number	Package Description
CD4049UBCM	M16A	16-Lead Small Outine Integraled Circuit (SOKC). JEDEC MS-012,0.150* Narrovi
CD4049UBCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
CD4050BCM	M16A	16-Lead Small Oulline hiograted Circuit (SOFC) JEDEC MS-012,0.150* Narrow
CD4050BCN	N16E	16-Lead Phastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300* Wide

Connection Diagrams
Pin Assignments for DIP

Features

E Wide supply wollage range: 3.0 V to 15 V
Direct drive to 2 TTL loads at 5.0 V over full temperature range
Wigh source and sink current capability

- Special inpul protection pemits input voltages greater than V DD

Applications

- CMOS hex inverter/buffer
- CMOS to DTL/TTL hex converter
- CMOS current "sink" or "sounce" driver
- CMOS HIGH-to-LOMN logic loved converter

Schematic Diagrams

CD4050BC
1 of 6 ledentical Units

Absolute Maximum Ratings(Note 1)
Nazle 2)

Supply Voltage (VOD)
hput Voltage $\left(V_{M}\right)$
Vhlage at Any Outpul Pin (VOUT) Scrage Temperature Range (TS')
Power Dissipation (PD)
DuaHn-Line
Small Oulline
Lead Temperature (T_{L})
iSoldering, 10 seconds)
$-0.5 V$ to $+18 v$
-0.5 V to +18 V
-0.5 V to $\mathrm{V} \mathrm{DO}+0.5 \mathrm{~V}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

700 mW 500 m *
$260^{\circ} \mathrm{C}$

Recommended Operating
Conditions (Note 2)
Supply Voltage (VDD)
Input Voltage (ViN)
Vollage al Any Output Pin(VOUT)
3 V to 15 V
0 V 1015 V
0 to V / DO
Operating Temperature Range (T_{A}) CD4049UBC, CD4050BC
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Note 1: "Abssdule Maximem Ralings" are those values beyend which the salety d the darice cannol te guaranteed; they ame nol mean to imply thal the derices shoutd be operated at theee fintits. The tathe of "Recom mended Operating Condifions" and Elechieat Chanclerisics' provides
condivions for actual device operation
Note 2: $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{Y}$ urless otherwise spacifed.

DC Electrical Characteristics ${ }_{\text {Note 3) }}$

DC Electrical Characteristics (Continued)
Note 4: These ate peak output current capabilimes Continucus oulpul curent is rated at $12 \mathrm{~m}^{\mathbf{4}}$ maximurn. The outpul current shauld nol be allowed to eroeed lis value lor entended periceds of thene. l_{O} and l_{OH} are kested one outpuat a time.

AC Electrical Characteristics (Nole 5)
CD4048UBC

Note 5: AC Parameters areguaranteed by DC convetated lesting.
AC Electrical Characteristics (Note 6)

Note 6: AC Paramelers areguarnoed by DC conelated lesling

Switching Time Waveforms

Typical Applications

$V_{\text {bict }}$ 2 $V_{\text {bod }}$
In the case of the CD4049UBC the outpul ditve capabily inceases with inereasing input vallaze
Eg．II $\mathrm{Y}_{\mathrm{DD}}=10 \mathrm{~V}$ the CD4049UBC could dime 4 T 7 l ．loads

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millineters) unless othervise noted (Continued)

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice bo change said circuitry and specifications.

LIFE SUPPORT POLICY

FÄRCHILDS PRODUCTS ARE MOT AUTHORIZED FOR USE AS CRITICAL COHPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accondance with instructions for use provided in the tabeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be neasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www fairchildsonicom

Features

- Complete DTMF Receiver
- Low power consumption
- Internal gain setting amplifier
- Adjustable guard time
- Central office quality
- Power-down mode
- Inhibit mode
- Backward compatible with MT8870C/MT8870C-1

Applications

- Receiver system for British Telecom (BT) or CEPT Spec (MT8870D-1)
- Paging systems
- Repeater systems/mobile radio
- Credit card systems
- Remote control
- Personal computers
- Telephone answering machine

Description

The MT8870D/MT8870D-1 is a complete DTMF receiver integrating both the bandsplit filter and digital decoder functions. The filter section uses switched capacitor techniques for high and low group filters; the decoder uses digital counting techniques to detect and decode all 16 DTMF tonepairs into a 4-bit code. External component count is minimized by on chip provision of a differential input amplifier, clock oscillator and latched three-state bus interface.

Figure 1 - Functional Block Diagram

18 PIN PLASTIC DIPISOIC

20 PIN SSOP

Figure 2 - Pin Connections
Description

$=$	\%	Name	Description
	29		
	1	IN+	Non-Inverting Op-Amp (Input).
	2	IN -	Inverting Op-Amp (Input).
	3	GS	Gain Select. Gives access to output of front end differential amplifier for connection of feedback resistor.
-	4	$V_{\text {Ref }}$	Reference Voltage (Output). Nominally $V_{D D} / 2$ is used to bias inputs at mid-rail (see Fig. 6 and Fig. 10).
	5	INH	Inhibit (Input). Logic high inhibits the detection of tones representing characters A, B, C and D. This pin input is internally pulled down.
	6	PWDN	Power Down (Input). Active high. Powers down the device and inhibits the oscillator. This pin input is internally pulled down.
	8	OSC1	Clock (Input).
1	9	OSC2	Clock (Output). A 3.579545 MHz crystal connected between pins OSC1 and OSC2 completes the internal oscillator circuit.
2	10	$V_{S S}$	Ground (Input). OV typical.
0	11	TOE	Three State Output Enable (Input). Logic high enables the outputs Q1-Q4. This pin is pulled up internally.
5	$\begin{aligned} & 12- \\ & 15 \end{aligned}$	Q1-Q4	Three State Data (Output). When enabled by TOE, provide the code corresponding to the last valid tone-pair received (see Table 1). When TOE is logic low, the data outputs are high impedance.
5	17	StD	Delayed Steering (Output). Presents a logic high when a received tone-pair has been registered and the output latch updated; returns to logic low when the voltage on St/GT falls below $V_{T S t}$.
\%	18	ESt	Early Steering (Output). Presents a logic high once the digital algorithm has detected a valid tone pair (signal condition). Any momentary loss of signal condition will cause ESt to return to a logic low.
-	19	St/GT	Steering Input/Guard time (Output) Bidirectional. A voltage greater than $V_{T S t}$ detected at St causes the device to register the detected tone pair and update the output latch. A voltage less than $V_{T S t}$ frees the device to accept a new tone pair. The GT output acts to reset the external steering time-constant; its state is a function of ESt and the voltage on St.
13	20	$V_{D D}$	Positive power supply (Input). +5 V typical.
	7 16	NC	No Connection.

Functional Description

The MT8870D/MT8870D-1 monolithic DTMF receiver offers small size, low power consumption and high performance. Its architecture consists of a bandsplit filter section, which separates the high and low group tones, followed by a digital counting section which verifies the frequency and duration of the received tones before passing the corresponding code to the output bus.

Filter Section

Separation of the low-group and high group tones is achieved by applying the DTMF signal to the inputs of two sixth-order switched capacitor bandpass filters, the bandwidths of which correspond to the low and high group frequencies. The filter section also incorporates notches at 350 and 440 Hz for exceptional dial tone rejection (see Figure 3). Each filter output is followed by a single order switched capacitor filter section which smooths the signals prior to limiting. Limiting is performed by high-gain comparators which are provided with hysteresis to prevent detection of unwanted low-level signals. The outputs of the comparators provide full rail logic swings at the frequencies of the incoming DTMF signals.

Decoder Section

Following the filter section is a decoder employing digital counting techniques to determine the frequencies of the incoming tones and to verify that they correspond to standard DTMF frequencies. A complex averaging algorithm protects against tone simulation by extraneous signals such as voice while

Figure 4 - Basic Steering Circuit
providing tolerance to small frequency deviations and variations. This averaging algorithm has been developed to ensure an optimum combination of immunity to talk-off and tolerance to the presence of interfering frequencies (third tones) and noise. When the detector recognizes the presence of two valid tones (this is referred to as the "signal condition" in some industry specifications) the "Early Steering" (ESt) output will go to an active state. Any subsequent loss of signal condition will cause ESt to assume an inactive state (see "Steering Circuit").

Steering Circuit

Before registration of a decoded tone pair, the receiver checks for a valid signal duration (referred to as character recognition condition). This check is performed by an external RC time constant driven by ESt. A logic high on ESt causes v_{c} (see Figure 4) to rise as the capacitor discharges. Provided signal

ATTENUATION (dB)

Figure 3 - Filter Response
is maintained (ESt remains high) for the period ($t_{\text {GTP }}$), v_{c} reaches the threshold the steering logic to register the tone pair, is corresponding 4-bit code (see Table 1) output latch. At this point the GT output is c and drives V_{C} to $V_{D D}$. GT continues to drive long as ESt remains high. Finally, after a lay to allow the output latch to settle, the steering output flag (StD) goes high, that a received tone pair has been
d. The contents of the output latch are a lable on the 4-bit output bus by raising the - state control input (TOE) to a logic high. The circuit works in reverse to validate the pause between signals. Thus, as well as signals too short to be considered valid, the will tolerate signal interruptions (dropout) to be considered a valid pause. This facility, - Der with the capability of selecting the steering e constants externally, allows the designer to - performance to meet a wide variety of system - $=$ ments.

Fard Time Adjustment

- -any situations not requiring selection of tone Eaton and interdigital pause, the simple steering =at shown in Figure 4 is applicable. Component eves are chosen according to the formula:

$$
\begin{gathered}
t_{R E C}=t_{D P}+t_{G T P} \\
t_{I D}=t_{D A}+t_{G T A}
\end{gathered}
$$

value of $t_{D P}$ is a device parameter (see Figure and $t_{\text {REC }}$ is the minimum signal duration to be mognized by the receiver. A value for C of $0.1 \mu \mathrm{~F}$ is

Figure 5 - Guard Time Adjustment

Digit	TOE	INH	ESt	Q_{4}	Q_{3}	Q_{2}	Q_{1}
ANY	L	X	H	Z	Z	Z	Z
1	H	x	H	0	0	0	1
2	H	x	H	0	0	1	0
3	H	x	H	0	0	1	1
4	H	x	H	0	1	0	0
5	H	x	H	0	1	0	1
6	H	x	H	0	1	1	0
7	H	x	H	0	1	1	1
8	H	X	H	1	0	0	0
9	H	x	H	1	0	0	1
0	H	X	H	1	0	1	0
*	H	X	H	1	0	1	1
\#	H	X	H	1	1	0	0
A	H	L	H	1	1	0	1
B	H	L	H	1	1	1	0
C	H	L	H	1	1	1	1
D	H	L	H	0	0	0	0
A	H	H	L	undetected, the output code will remain the same as the previous detected code			
B	H	H	L				
C	H	H	L				
D	H	H	L				

Table 1. Functional Decode Table
L=LOGIC LOW, H=LOGIC HIGH, Z=HIGH IMPEDANCE $X=$ DON'T CARE
recommended for most applications, leaving R to be selected by the designer.

Different steering arrangements may be used to select independently the guard times for tone present ($\mathrm{t}_{\text {GTP }}$) and tone absent ($\mathrm{t}_{\text {GTA }}$). This may be necessary to meet system specifications which place both accept and reject limits on both tone duration and interdigital pause. Guard time adjustment also allows the designer to tailor system parameters such as talk off and noise immunity. Increasing $t_{\text {REC }}$ improves talk-off performance since it reduces the probability that tones simulated by speech will maintain signal condition long enough to be registered. Alternatively, a relatively short $t_{\text {REC }}$ with a long too would be appropriate for extremely noisy environments where fast acquisition time and immunity to tone drop-outs are required. Design information for guard time adjustment is shown in Figure 5.

Power-down and Inhibit Mode

A logic high applied to pin 6 (PWDN) will power down the device to minimize the power consumption in a standby mode. It stops the oscillator and the Iunctions of the filters.

Ihibit mode is enabled by a logic high input to the gin $5(\mathrm{NH})$. It inhibits the detection of tones representing characters $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D. The output code will remain the same as the previous detected code (see Table 1).

Differential Input Configuration

The input arrangement of the MT8870D/MT8870D-1 provides a differential-input operational amplifier as well as a bias source $\left(V_{\text {Ref }}\right)$ which is used to bias the inputs at mid-rail. Provision is made for connection of a feedback resistor to the op-amp output (GS) for adjustment of gain. In a single-ended configuration, the input pins are connected as shown in Figure 10 with the op-amp connected for unity gain and $V_{\text {Ref }}$ biasing the input at $1 / 2 V_{D D}$. Figure 6 shows the differential configuration, which permits the adjustment of gain with the feedback resistor R_{5}.

Crystal Oscillator

The internal clock circuit is completed with the addition of an external 3.579545 MHz crystal and is normally connected as shown in Figure 10 (SingleEnded Input Configuration). However, it is possible to configure several MT8870D/MT8870D-1 devices employing only a single oscillator crystal. The oscillator output of the first device in the chain is coupled through a 30 pF capacitor to the oscillator input (OSC1) of the next device. Subsequent devices are connected in a similar fashion. Refer to Figure 7 for details. The problems associated with unbalanced loading are not a concern with the arrangement shown, i.e., precision balancing capacitors are not required.

Figure 6 - Differential Input Configuration

Figure 7-Oscillator Connection

Parameter	Unit	Resonator
R1	Ohms	10.752
L 1	mH	.432
C1	pF	4.984
C0	pF	37.915
Qm	-	896.37
$\Delta \mathrm{f}$	$\%$	$\pm 0.2 \%$

Table 2. Recommended Resonator Specifications Note: $Q m=q u a l i t y ~ f a c t o r ~ o f ~ R L C ~ m o d e l, ~ i . e ., ~ 1 / 2 \Pi f R 1 C 1 . ~ . ~$

-

ER SYSTEM FOR BRITISH TELECOM -roe 1151

I- shown in Fig. 9 illustrates the use of [-- device in a typical receiver system. BT -ines the input signals less than -34 dBm as - merate level. This condition can be attained a suitable values of R_{1} and R_{2} to 21 dB attenuation, such that -34 dBm input - correspond to -37 dBm at the gain setting $==$ MT8870D-1. As shown in the diagram, the ent values of R_{3} and C_{2} are the guard time nenents when the total component tolerance is $=$ better performance, it is recommended to = non-symmetric guard time circuit in Fig. 8.

Figure 8 - Non-Symmetric Guard Time Circuit

Figure 9-Single-Ended Input Configuration for BT or CEPT Spec

Parameter	Symbol	Min	Max	Units
DC Power Supply Voltage	$V_{D D}$		7	V
- Voltage on any pin	V_{1}	$\mathrm{~V}_{\mathrm{SS}^{-}-0.3}$	$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
Current at any pin (other than supply)	I_{I}		10	mA
Storage temperature	$\mathrm{T}_{\mathrm{STG}}$	-65	+150	${ }^{\circ} \mathrm{C}$

Package power dissipation
P_{D}
ding these values may cause permanent damage. Functiond
above $75^{\circ} \mathrm{C}$ at $16 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. All leads soldered to board.

Recommended Operating Conditions - Voltages are with respect to ground (V_{SS}) unless otherwise stated.

	Parameter	Sym	Min	Typ ${ }^{\ddagger}$	Max	Units	Test Conditions
1	DC Power Supply Voltage	$V_{D D}$	4.75	5.0	5.25	V	
2	Operating Temperature	To	-40		+85	${ }^{\circ} \mathrm{C}$	
$\frac{2}{3}$	Operating Crystal/Clock Frequency	fc		3.579545		MHz	
3	Crystal/Clock Frequency	$\Delta \mathrm{fc}$		± 0.1		\%	
4	Crystal/Clock Freq. Tolerance				Pr	ante	

I Typical figures are at $25^{\circ} \mathrm{C}$ and are for design aid only: not guaranteed and not subject to production testing.
DC Electrical Characteristics $-\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=\mathrm{OV},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{O}} \leq+85^{\circ} \mathrm{C}$, unless otherwise stated.

[^2]ing Characteristics $-V_{D D}=5.0 \mathrm{~V} \pm 5 \%, V_{S S}=0 \mathrm{~V},-40^{\circ} \mathrm{C} \leq T_{\mathrm{O}} \leq+85^{\circ} \mathrm{C}$, unless otherwise stated. - Setting Amplifier

	Characteristics	Sym	Min	Typ ${ }^{\ddagger}$	Max	Units	Test Conditions
	Iput leakage current	I_{IN}			100	nA	$V_{S S} \leq V_{\text {IN }} \leq V_{\text {DD }}$
	rput resistance	R_{IN}	10			$\mathrm{M} \Omega$	
	Input offset voltage	$\mathrm{V}_{\text {OS }}$			25	mV	
2	fower supply rejection	PSRR	50			dB	1 kHz
12	Pommon mode rejection	CMRR	40			dB	$\begin{aligned} & 0.75 \mathrm{~V} \leq \mathrm{V}_{1 \mathrm{~N}} \leq 4.25 \mathrm{~V} \text { biased } \\ & \text { at } V_{\text {Ref }}=2.5 \mathrm{~V} \end{aligned}$
$\#$	DC open loop voltage gain	AVOL	32			dB	
17	Unity gain bandwidth	${ }_{\text {f }}$	0.30			MHz	
$=$	Output voltage swing	V_{O}	4.0			$V_{p p}$	Load $\geq 100 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {SS }} @ \mathrm{GS}$
\#	Maximum capacitive load (GS)	C_{L}			100	pF	
1	Resistive load (GS)	R_{L}			50	$\mathrm{k} \Omega$	
	Common mode range	V_{CM}	2.5			V_{pp}	No Load

IT8870D AC Electrical Characteristics - $V_{D D}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}_{,}-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{O}} \leq+85^{\circ} \mathrm{C}$, using Test Circuit shown in Figure 10.

Tpical figures are at $25^{\circ} \mathrm{C}$ and are for design aid only: not guaranteed and not subject to production testing.
*otes
dBm= decibels above or below a reference power of 1 mW into a 600 ohm load.

- Digit sequence consists of all DTMF tones.

Tone duration $=40 \mathrm{~ms}$, tone pause $=40 \mathrm{~ms}$.
4 Signal condition consists of nominal DTMF frequencies.
Both tones in composite signal have an equal amplitude.
Tone pair is deviated by $\pm 1.5 \% \pm 2 \mathrm{~Hz}$.
Bandwidth limited (3 kHz) Gaussian noise.
\pm The precise dial tone frequencies are (350 Hz and 440 Hz) $\pm 2 \%$.
For an error rate of better than 1 in 10,000.
Referenced to lowest level frequency component in DTMF signal.
Referenced to the minimum valid accept level.
Guaranteed by design and characterization.

MT8870D-1 AC Electrical Characteristics - $V_{D D}=5.0 \mathrm{~V} \pm 5 \%, V_{S S}=0 \mathrm{~V},-40^{\circ} \mathrm{C} \leq T_{\mathrm{O}} \leq+85^{\circ} \mathrm{C}$, using Test Circuit shown in Figure 10.

	Characteristics	Sym	Min	Typ ${ }^{\ddagger}$	Max	Units	Notes*
1	Valid input signal levels (each tone of composite signal)		-31		+1	dBm	$\begin{aligned} & \text { Tested at } \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ & 1,2,3,5,6,9 \end{aligned}$
			21.8		869	$m V_{\text {RMS }}$	
2	Input Signal Level Reject		-37			dBm	$\begin{aligned} & \text { Tested at } \vee_{D D}=5.0 \mathrm{~V} \\ & 1,2,3,5,6,9 \end{aligned}$
			10.9			$m V_{\text {RMS }}$	
3	Negative twist accept				8	dB	2,3,6,9,13
4	Positive twist accept				8	dB	2,3,6,9,13
5	Frequency deviation accept		$\pm 1.5 \% \pm 2 \mathrm{~Hz}$				2,3,5,9
6	Frequency deviation reject		$\pm 3.5 \%$				2,3,5,9
7	Third zone tolerance			-18.5		dB	2,3,4,5,9,12
8	Noise tolerance			-12		dB	2,3,4,5,7,9,10
9	Dial tone tolerance			+22		dB	2,3,4,5,8,9,11

\ddagger Typical figures are at $25^{\circ} \mathrm{C}$ and are for design aid only: not guaranteed and not subject to production testing.
*notes

1. $\mathrm{dBm}=$ decibels above or below a reference power of 1 mW into a 600 ohm load.
2. Digit sequence consists of all DTMF tones.
3. Tone duration $=40 \mathrm{~ms}$, tone pause $=40 \mathrm{~ms}$
4. Signal condition consists of nominal DTMF frequencies.
5. Both tones in composite signal have an equal amplitude.
6. Tone pair is deviated by $\pm 1.5 \% \pm 2 \mathrm{~Hz}$.
7. Bandwidth limited (3 kHz) Gaussian noise.
8. The precise dial tone frequencies are (350 Hz and 440 Hz) $\pm 2 \%$.
9. For an error rate of better than 1 in 10,000 .
10. Referenced to lowest level frequency component in DTMF signal.
11. Referenced to the minimum valid accept level.
12. Referenced to Fig. 10 input DTMF tone level at $-25 \mathrm{dBm}(-28 \mathrm{dBm}$ at GS Pin) interference frequency range between $480-3400 \mathrm{~Hz}$.
13. Guaranteed by design and characterization.

MT8870D/MT8870D-1 ISO 2-CMOS

AC Electrical Characteristics $-V_{D D}=5.0 \mathrm{~V} \pm 5 \%, V_{S S}=0 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{To} \leq+85^{\circ} \mathrm{C}$, using Test Circuit shown in Figure 10 .

		Characteristics	Sym	Min	Typ ${ }^{\ddagger}$	Max	Units	Conditions
1	$\begin{aligned} & T \\ & 1 \\ & M \\ & M \\ & 1 \\ & N \\ & G \end{aligned}$	Tone present detect time	$t_{\text {DP }}$	5	11	14	ms	Note 1
2		Tone absent detect time	$t_{\text {DA }}$	0.5	4	8.5	ms	Note 1
3		Tone duration accept	$t_{\text {REC }}$			40	ms	Note 2
4		Tone duration reject	trec	20			ms	Note 2
5		Interdigit pause accept	t_{10}			40	ms	Note 2
6		Interdigit pause reject	t_{DO}	20			ms	Note 2
7	OUTPUTS	Propagation delay (St to Q)	${ }^{t_{P Q}}$		8	11	$\mu \mathrm{s}$	TOE $=V_{\text {DD }}$
8		Propagation delay (St to StD)	$t_{\text {PStD }}$		12	16	$\mu \mathrm{s}$	TOE $=V_{D D}$
9		Output data set up (Q to StD)	$t_{\text {QStD }}$		3.4		$\mu \mathrm{s}$	$T O E=V_{D D}$
10		Propagation delay (TOE to Q ENABLE)	$t_{\text {tpte }}$		50		ns	load of $10 \mathrm{k} \Omega$ 50 pF
11		Propagation delay (TOE to Q DISABLE)	$t_{\text {PTD }}$		300		ns	load of $10 \mathrm{k} \Omega$, 50 pF
12	$\begin{aligned} & \hline P \\ & \mathrm{D} \\ & \mathrm{~W} \\ & \mathrm{~N} \end{aligned}$	Power-up time	$t_{\text {pu }}$		30		ms	Note 3
13		Power-down time	$t_{\text {PD }}$		20		ms	
14	$\begin{aligned} & \text { C } \\ & \text { L } \\ & 0 \\ & \text { C } \\ & \text { K } \end{aligned}$	Crystal/clock frequency	${ }_{c}$	3.5759	3.5795	3.5831	MHz	
15		Clock input rise time	$t_{\text {LHCL }}$			110	ns	Ext. clock
16		Clock input fall time	$\mathrm{t}_{\mathrm{HLCL}}$			110	ns	Ext. clock
17		Clock input duty cycle	$\mathrm{DC}_{\mathrm{CL}}$	40	50	60	\%	Ext. clock
18		Capacitive load (OSC2)	$\mathrm{C}_{\text {Lo }}$			30	pF	

Nores.
Used for guard-time calculation purposes only.
These, user adjustable parameters, are not device specifications. The adjustable settings of these minimums and maximums are recommendations based upon network requirements.
With valid tone present at input, $\mathrm{t}_{\text {PU }}$ equals time from PDWN going low until ESt going high.

NOTES:
$R_{1}, R_{2}=100 \mathrm{~K} \Omega \pm 1 \%$
$R_{3}=300 \mathrm{~K} \Omega \pm 1 \%$
$\mathrm{C}_{1}, \mathrm{C}_{2}=100 \mathrm{nF} \pm 5 \%$
X-tal $=3.579545 \mathrm{MHz} \pm 0.1 \%$
Figure 10-Single-Ended Input Configuration

The 555 timer

Figure: The 555 internal circuit
The 555 circuit is consisted by two comparators, one ohmic ladder one flip-flop and a discharging transistor, as it is shown in figure 1.1.

Figure: The 555 modes of operation a) monostable b) astable (multivibrator).
This circuit can be connected as a monostable multivibrator or an astable multivibrator. The 555 , connected as a monostable is shown in figure 1.1a. In this mode of operation the trigger input sets the flip flop which drives the output to high. The discharge transistor is turned off and therefore the capacitor $C t$ is charged via Rt. When the voltage on the capacitor ($C t$) reaches the control voltage, which is defined by the three resistor voltage divider (Vcont=2/3
$\pi=1$, the flip-flop is resetted. This turns the discharge transistor on, which discharge the apacitor. Thereafter the circuit can be charged again by a new pulse at the trigger input. The ined period is given by the equation:

$$
T=1.1 R t^{*} C t
$$

Were T is the output pulse high period, $C t$ the charging capacitance measured in Farads and $R t$ te charging resistor in Ohms.
If the circuit is connected as an astable multivibrator (figure 1.1b), the comparator 2 of figure 1.1 sets the flip-flop, when the voltage on the capacitor $C t$ falls below $1 / 3 \mathrm{Vcc}$, while the comparator 1 resets the flip-flop when the voltage on the capacitor becomes bigger than $23 V c c$. In this case the discharging transistor is turned on, which discharge the time capacitor Ct via $R b$.
This allows the use of the 555 as an oscillator (figure 1.1b) The time at the high (or charging) period is given by the equation:

$$
T h=0.7(R a+R b) C t
$$

While the time for the low period is given by the equation:

$$
T l=0.7 R b * C t
$$

The obvious observation from the above equations is that the duty cycle of the oscillator is always bigger than 50%. Or in other words the charging time is always bigger that the discharging period, since $R a+R b>R b$ taken in account that $R a>0$. Yet if $R a>R b$ then a 50% duty cycle can be approximated.

REFERANCES

Yourdon, 1997. Analysis \& Forecast: Software Engineering Viewpoint,IEEE Spectrum, 34 (1): 66-67

Floyd. Electronic Devices

THOMAS L. Floyd. Digital Fundamentals Sixth Edition
THOMAS L. Floyd. Electronic Devices Fourth Edition
Electronic Workbench
Wincc Siemens: http://www.wincc. de.
Data Sheet:http://elfa.se./8870
Data Sheet: http://fairchildsemi.com.
İsmail Kanık, 1987. Electronic Devices With 555, Second Edition
Electronic Devices: http://electronic-circuits-diagrams.com.
Electronic Devices: http://st.com

[^0]: 1 The CPU reserves is process-inage inputant 8 process-inage ontpu image regizter point for licall:O.
 2 Linear detate 40 to $55^{\circ} \mathrm{C}$ Vertical monnt derate $10^{\circ} \mathrm{C}^{\circ}$.

[^1]: Note 4： D_{3} and l_{51} are measured one ouptil a a time．

[^2]: \ddagger Typical figures are at $25^{\circ} \mathrm{C}$ and are for design aid oniy: not guaranteed and not subject to production testing.

