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ABSTR_ACT 

The importance of filters is well known through the spread of technology and 

.communication, Analog .. ftlters use .in communication ir, .decreasing .and the digital .filters 
are increasing gradually. 

The applications of filters are increasing, audio systems, image processing 

systems, audio and video recording systems, communication systems and data 

smoothing systems are all some of the wide range of application fields that filters are 
involved in. 

The variations between time domain and frequency domain are blghJy 

determining the type of '.filtf'.r and even in the lime domain there are the continuous and 
discrete time frequency selective filters. 

The design of filters beginning from the low pass to the high pas~ and band pass 
filter by using C-OJ*Ilputer progra..11Js is really the field of interest of all engineers and 

using MATI_,AB is making things more convenient. 

Methods of approximation Chebyshtcv\ Butterworth and Elliptic approximations 

are all used to distinguish and provide solutions for design problems for filters. 

For soft ware development of J\-fATLAB and using it in the design of filtering 

circuits are commonly dependent on the function derivation of inputs and results 
obtained in out puts. 

MATLAB is a high performance language for technical computing. It integrates 

computation, by visualization and programming in an easy to use environment where 

problems and solutions are expressed in familiar mathematical notation. It is an 

interactive system whose basic data element is an array that does not require 

dimensioning. 
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Introduction 

In a variety of important application it is of interest to change the amplitudes of 

the frequency components in a signal or perhaps eliminate some frequency components 

entirely, a process referred to as filtering. For linear time invariant system the spectrum 

of -tl1e _output is that of the input multiplied by the fr.equency response of the system, 

consequently, filtering can be contently accomplish through the use of such &-ystem with 

.an appropriately chosen Ji:equency response these represent one of the very important 

application oflinear time invariant system. 

One example in which leaner time invariant filtering is encountered Is in audio 

system .. In such systems, a filter is .typically Included to permit the leister to modify the 
relative amounts of low frequency energy (bass) and high frequency energy (treble). 

The filter corresponds to a linear time variant system whose :frequency responds is 

changed by manipulating the tone controls. Also, in high fidelity audio system, a filter is 

often included .in the .preamplifier compensate for the frequency response characteristics 

of the speakers. An example. 

In this thesis, Design and implementation of Filters in general is discussed. 

The first chapter .represents classification, characteristics and applications of 

filters. Chapter provides comparison of analog and discrete fllrers. 

Chapter tow presents Approximation using Butterworth, Chebyshev, Elliptic 

and Linear phase approximations Chapter discusses analog filter design using Matlab. 

Chapter three provides different kinds of filters including the Fast Fourier 

Transformed (FFT) and the Discrete Fourier Transform. Chapter alsQ presa1ts Low 
pass, High pass, Jland pass. Narrow Band and IF Amplifier filters. 

Chapter four shows various applications of filters ({ some choo~n typt;'.s of 

filtering designs as high pass anti-aliasing, low pass anti-aliasing, nonlinear, advanced 

and discrete filtering methods. 

The conclusion presents important results, contribution of the authors and futaee 

research areas. 
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Chapter 1 

THEORY OF FILTERING 

1.1. Introduction 

For linear time invariant systems, the spectrum of the output Y(Jco) is that of the 
input U(Jco) multiplied by the frequency response of the system H(Jco). A filtering is a 

process of changing a relative amplitudes and frequency of spectrum or completely 

rejection some frequency components of signal. 

1.2. Applications of Filters 

1.2.1. Audio systems 

In such systems, a filter is typically included to permit the listener to modify the 

relative amounts of low frequency (bass) and high frequency (treble) energies. 

Manipulating the tone controls changes the filter frequency response. In high fidelity audio 

systems, the equalizing circuits are used to compensate for the frequency response of the 

speakers and the listening room. 

1.2.2. Image Processing Systems 

The frequency-response H(co) characteristic of differentiating filter are shown in 

Figure 2.1 (a) and (b ). Differentiating filter provides rapid transitions and is useful to 

enhance of edges in picture processing. 

u(Jco) ~ H(Jco) ~ y(Jco). .. (I. I) , ········· 



H((J)) H(w) 

n I 2 

(J) (J) 

- Jr /2 

(a) (b) 
Figure 1.1 

1.2.3. Audio And Video Recording Systems 

Frequency-selective filters, which pass signals undistorted in one or a set of 

frequency bands and attenuate or totally eliminate signals in the remaining frequency 

bands, are another important class of LTI filters. The Use of frequency-selective filters 

arises in a variety of situations. For example, if surface noise in an audio recording is in a 

higher frequency band than the music or voice on the recording, it can be removed by 

frequency-selective filtering. 

1.2.4. Communications Systems 

Another important application of frequency-selective filters is in communications 

systems. The basis for amplitude modulation (AM) systems is the transmission of 

information from many different sources simultaneously by putting the information from 

each channel into a separate frequency band and extracting the individual channels or bands 

at the receiver using frequency-selective filters. Frequency-selective filters for separating 

the individual channels and frequency-shaping filters for adjusting the tone quality form a 

major part of any home radio and television receiver. 

1.2.5. Data Smoothing Systems 

Analysis of economic data sequences such as the stock market average commonly 
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utilizes discrete-time filters. Often the long-term variations (which correspond to low 

frequencies) have a different significance than the short-term variations (which correspond 

to high frequencies), and it is useful to analyses these components separately. The 

separation of these components is typically accomplished using discrete-time frequency­ 

selective filters. Filtering of economic data sequences is also used to smooth the data to 

remove random fluctuations (which are generally high frequency) superimposed on the 

meaningful data. 

1.3. Frequency-Domain Characteristics Of Ideal Frequency Selective 

Filters 

The frequency-selective filters were defined in terms of a mathematical modeling. 

The ideal models represent lowpass, highpass, bandpass, bandstop, and all-pass filters (see 

Figure 1.2). Their shape represents the steady-state magnitude-frequency response of a 

filter with a transfer function of 

H( D )=H(s) I s=;r:l ; ....................•.............. ( 1.2) 

Ideal highpassjH(nJ = g. ~t=e~~:eBt (I .3) 

Ideal BandpassiH(D~ = {l ifO E [-B2,-BiJ:JrO E [B1,BJ 
0 otherwise , .. · ··· · · .... · · ... (1.4) 

Ideal 

BandstopjH(nl{~ ifD. E [- B:·,::~;,~ E [B,,B,]; (1.5) 

All-passiH(n~ = i foralli: E [-00,00]; (1.6) 
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B 

Allpass 

Highpass 

jH(w)I 

Bandstop 
lHf oo)l ! , I 

-B2 ..,Bl O Bl B2 

jH(m)I 

(i) 

Figure 1.2 

1.4. Time-Domain Characteristics of Ideal Frequency Selective Filters 

Often in designing and utilizing filters, it is also important to take into account the 

time-domain characteristics, such as the impulse response and step response. 

The impulse response of the ideal low-pass filter corresponds to the inverse Fourier 

transform of the frequency response of filter. It is given by the equation: 

4 



h () - oi, · (OJJ) · (1 7) t - -;-sin c ---;;- , .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . 

This impulse response is sketched in Figure 1.3. Here the width of the filter 

pass-band. 

l 

Figure 1.3 

ls proportional to OJC and the width of the main lobe of the impulse response is 

proportional to 1 I OJc . As the filter bandwidth increases, the impulse response bee 

narrower, and vice versa. This is, of course, consistent with the scaling property for 

Fourier transforms. 

Figurel.4 

s 



For the ideal low-pass filter with linear phase corresponding to figure 1.3. The 

response is simply delayed by a, as indicated in Figure 1.4. The step responses of 

I low-pass filter are illustrated in Figure 1.5. 

h,(t) 

Figurel.5 

ee that in the time domain, the response of an ideal low-pass filter exhibits 

. In some contexts this time-domain behavior may be undesirable. As we 

in the next section, for this and other reasons it is often of interest to design 

a more gradual transition from pass-band to stop-band. 

Ideal Frequency Selective Filters 

The classes of filters discussed are referred to as ideal filters because they 

one set of frequencies and completely reject others. However, this is in 

ossible and not necessarily desirable. For example, in many filtering contexts, 

o be separated do not lie in totally disjoint frequency bands. A typical situation 

icted in Figure 1.6 where the spectra of two signals overlap slightly. A filter 

al transition from pass-band to stop-band is generally preferable when filtering 
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the sum of signals with overlapping spectra. 

(D 

--ft---, L___:t... ..• - """ + 

Figurel.6 

As we indicated another consideration is suggested by examination of the step 

response, shown in Figure 1.5, of an ideal low-pass filter. The step response 

su...aiciently far away from the discontinuity is approximately equal to the value of the 

step. In the vicinity of the discontinuity, however, it overshoots this value and exhibits 

ziaging, ln some sitnations this time-domain behavior may be undesirable. Since in 

many cases, the characteristics of the "ideal" frequency-selective filter are undesirable 

it is . ofien preferable to allow some flexibility in the behavior of the filter in the pass­ 

band and in the stop-band as well as to permit a more gradual transition between the 

pass-band and stop-hand as opposed to the abrupt transition characteristic of the 

"ideal" filters. Thus, specifications for a low-pass filter are often stated to require the 

magnitude of the filter frequency response to lie in the no shaded area indicated in 

Figurel.7. 

Figurel.7 
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In this figure a deviation from unity of plus and minus 61 is allowed in the pass­ 

band and a deviation of 52 zero is allowed in the stop-band. The amount by which the 

frequency response differs from unity in the pass-band is referred to as the pass-band 

ripple and the amount by which it deviates from zero in the stop-band is referred to as the 

stop-band ripple. The frequency OJP, is referred to as the pass-band edge and OJ,. as the 

stop-band edge. The transition band f..OJ = OJ, - OJ P provides the transition from pass­ 

band to stop-band. 

Even in cases when the ideal frequency-selective characteristics are desirable, they 

may not be attainable. It is evident that the ideal low-pass filter is no causal and 

consequently must be approximated for real-time filtering by a causal system. It can 

similarly be shown that the ideal high-pass and band-pass filters are no causal. When 

filtering is to be carried out in real time, causality is a necessary constraint, and thus a 

causal approximation to the ideal characteristics would be required A further 

consideration that motivates providing some flexibility in the filter characteristics is ease 

of implementation. In general, the more precisely we try to approximate or implement an 

ideal frequency-selective filter, the more complicated or costly the implementation 

becomes whether in terms of components such as resistors, capacitors, and operational 

amplifiers, in continuous time, or in terms of memory registers, multipliers, and adders, in 

discrete time. In many filtering contexts a precise filter characteristic may not be essential 

and a simple filter will suffice. 

1.6.Examples Of Continuous-Time Frequency Selective Filters 

1.6.1. RC Low-Pass and High-Pass Filters 

As an example of a simple continuous-time low-pass filter, consider the 

first-order RC circuit in Figure 1.8. The capacitor voltage V0. Is considered to be the 

system output and the source voltage the system input the output voltage is related to the 

input voltage E through the linear constant-coefficient differential equation. 
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R I •·---c:::::r..,,, ..... -. 
E -LC 

- J : 

c) 

Figurel.8 

Applying Kirshhofs voltage law to the system, we obtain the following equations: 

RI (t) + V0 = E (t); ( 1. 8) 

v0(t)= ~ JI(t)dt; (1.9) 

I(t) = C dVa (t) ; ( 1.10) 
dt . 
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dV0(t) _ . V0(t)+RC-- - E(t) , (1.11) 
dt 

Using the derivation property of Fourier transform we find the frequency response 

of filter 

G(j(i)) = Va(J(i)) = I . E(Jw) jwRC +1 , (1.12) 

Consider the graphical representations the frequency response characteristic using 

Bode plot. In this representation the 20log!G(w) and LG(w) are plotted versus frequency. 

» mnn=[l O]; 
» den=j l 1]; 
» bode(tf(num,den)) 

00 8 o de D ia g ra m s 

~ 
a, 0 
"O 
::, -1 0 
C: 
Ol -2 0 
"' ::;; -3 0 
~ 
0) -4 0 a, 
~ 
a> 80 

"' 60 "' .s:: 
0.. 40 

20 

1 0 
2 1 0·1 1 0 ° 1 0 

Frequency (rad/sec) 
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Frequency (rad/sec) Impulse response (see Figure 1.2 (b)) corresponding to the 

inverse Fourier transform 

g(t)= V0(t)= _!_e-'1 '; ................•...•........................... (1.13) 
'[ 

Where r = RC is a time constant of circuit. 

For step impulse we have 

1 
E(Jw) = j~ ; Va = Jw(1jw + I) 

- '[ - . jio tjco + 1 ,. · · · · · · · · ··· · .. · · ··· ... (1.14) 

Taking the Inverse Fourier transform we define step response shown in 

Figure 1.7 (c). 

vQ(t) = 1- «: T ; •••••••••••••••••••••••••••••• , ••••••••••••••••• (1.15) 

From Figure 1.7(a) note that with resistor the voltage taken as the output; 

the RC circuit behaves as an approximation to a high-pass filter 

C 

E M 

Figurel.10 
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G(@)= vR(@) = JaJRC . Vs{@) 1 · 0 __ nr, ,. · · · · · · · · · · · · · · · · · · · · ··· · · · · · · · · · · (J.16) 

Step response of filter 

1 j@RC - RC =-1 
Vs{J@)= j@.l+ }@RC -1+ }@RC !+ jto 

t: 

...................... (1.17) 

In the time domain V: (t) = e -y; Bode diagram 

Bode Diagrams 

0 

ai' -10 
~ 
Q) -20 "O ::, 
~ -30 0) 

~ 
~ 
Q) 80 ~ 
lll 60 
"' if 40 

20 

10·2 10·1 100 101 

Frequency (rad/sec) 

The step response is shown in Figurel. lO(b) and the Bode plot for the frequency 

response is shown in Figure 1. 11 As shown a simple RC circuit can serve as high-pass 

or a low-pass filter, depending upon the choice of the physical output variable. These 
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variable. These filters do not have a sharp transition from pass-band to stop-band. If 

desired, more complex filters with a sharper transition can be implemented by using 

more energy storage element (capacitances or inductances), leading to higher-order 

differential equations. 

1. 7. Introduction Discrete-Time Frequency Selective Filters 

Discrete-time systems characterized by linear constant-coefficient 

difference equations, are conveniently implemented using coefficient multipliers, 

storage or delay elements registers, and adders. We will introduce the tow basic classes 

of difference equations: 

Non recursive difference equations, for which the impulse response is of finite 

length, (FIR) and recursive difference equations, for which the impulse response is of 

infinite length,(FIR) There are specific advantages and disadvantages to recursive and 

no recursive filters. 

For example, it is often desirable for the phase characteristics of a filter to be 

zero or linear, so that the phase affects the shape of the output signal by at most a time 

delay. If a filter is to be causal and have exactly I in ear phase, its impulse response must 

be of finite length, and consequently the difference equation must be no recursive. On 

the other hand, it is generally true that the same filter specifications require a higher­ 

order equation and consequently more coefficients and delays when implemented using 

a no recursive difference equation compared with using a recursive difference equation. 

In the following discussion we consider separately the two classes of discrete-time 

filters. 

1.8. Non-recursive Discrete-Time Filters 

As we have emphasized in several discussions, low-pass filtering can be thought 

of as a smoothing operation. For discrete-time sequences a common smoothing 

operation is one referred to as a moving average, where the smoothed value y[n} for 
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any n,n0, is an average of values of x[n] in the vicinity of n0. The basic idea is that 

by averaging values locally, rapid variations from point to point will be averaged out 

and slow variations will be retained, corresponding to smoothing or low-pass filtering 

the original sequence. As an example, a three-point moving average of an input x[n] 
is of the form 

1 y[n] = -(x[n -1]+ x[n]+ x[n + l]); (1.18) 
3 

So that each output y[n] is the average of three consecutive input values. The 

frequency response associated with equation 1.9 

1 H(n) = ~{1 + 2cosf.2} ; (1.19) 
.) 

The magnitude and phase of H(n) are sketched in Figure 1.12 if. We observe 

that it has the general characteristics of a low-pass filter although, as with the circuit, it 

does not have a sharp transition from pass-band to stop-band. 

A similar approach can also be used to approximate a high-pass filter as well as a 

low-pass filter. To illustrate this, again with a simple example, consider the difference 

equation. 

y[n] = x[n]- x[n -1] ; (1.20) 
2 

Matlab 

» omega=0:2*pi/50:2*pi; 
» h=(l/3)*(1+2*cos(omega)); 
» plot(omega,h); 
» omega=0:2*pi/50:2*pi; 
» h=(l/3)*(1+2*cos(omega)); 
>> H=abs(h); 
» plot( omega,H) 

14 



HI 
1 

05 

0 

Figurel.12 

For input signals that are approximately constant, the value of y[n) is close to 
zero. For input signals that vary greatly from sample to sample, the values of y[n) can be 
expected to have large amplitude. We would thus expect this equation to approximate a 

high-pass filter, since high-frequency components are reflected in large variations 

between adjacent sequence values. The frequency response associated with Equation. 

( l. 1 1) Is 

H(n) - l [1 -jw] - . -jQ/ 2 . ( Q J . (] 2]) ::.~ - 2 -e - je sin 2 , . 

The three-point moving-average filter has no parameters that can be changed to 

adjust the effective cut-off frequency. As a generalization of this moving-average filter, 

we can consider averaging over N + M - I neighboring points, that is, to use a difference 

. ] M 
Equation of the form y[n] = L x[n - k); (1.22) 

N + M + l k=-N 

The corresponding impulse response is a rectangular pulse. If N=O or is negative 

15 



the moving average filter is causal. 

It is common to apply a moving-average filter to many economic indicators to 

attenuate the short-term fluctuations in relation to longer-term trends. 

A further generalization of the moving-average filter can be made by forming a 

weighted average of (N + M + l) neighboring points, that is, by using a difference equation 

of the form 
M 

y[n]= l)kx[n:__k]; (1.23) 
k=-N 

Where the coefficients bk can be selected to achieve the prescribed filter 

characteristics 

There are a variety of techniques available for choosing the coefficients in Eq. 

(1.13) to meet certain specifications on the filter. In general, the coefficients bk 

can be adjusted so that the cut-off is at a desired frequency. 

1.9. Recursive Discrete-Time Filters 

We considered moving-average or no recursive filters. Another important class of 

discrete-time filters are those described by the class of recursive difference equations. 

Consider the discrete-time system described by the difference equation 

y[n]-ay[n -1] = x[n] or y[n] = ay[n-1]+ x[n] ; (1.24) 

The corresponding frequency response is 

1 H(n) = _ n ; (1.25) 
1-ae 1 

The difference equation (1.15) behaves as a low-pass filter, whereas for a negative, 

it behaves as a high-pass filter. Just as with differential equations, higher-order recursive 

difference equations can be used to provide sharper filter characteristics and to provide 
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more flexibility in balancing time-domain and frequency-domain constraints. There are a 

number of specific classes of continuous- and discrete-time filters for which standard 

procedures have been developed to determine the coefficients of the associated differential 

or difference equation. 

1.10. Design of Analog Filters 

Analog filter design is often based on the use of several well-known models called 

Butterworth, Chebyshev, and elliptic (Cauer) filters. To standardize the design procedure, a 

set of normalized analog prototype filter models was agreed upon and reduced to tables, 

charts, and graphs. These models, called prototypes, were all developed as lowpass systems 

having a known gain (typically -1 dB or -3 dB passband attenuation) at a known critical 

cut-off frequency (typically 1 radian/second). The transfer function of an analog prototype 

filter, denoted HP(s), would be encapsulated in a standard table as a function of filter type 

and order. The prototype filter HP (s) would then be mapped into a final filter H(s) having 

critical frequencies specified by the designer. The ma ping rules, called frequency - 

frequency transforms are shown in figure 1.13 
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• 

LO 
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Figurel.13 

Frequency-to-frequency scaling to different types filters is shown in table 

Below 

Table 1.1 

Nth Order prototype Frequency-to-frequency Transform Order 

Lowpass to s <= sf QP N 

Lowpass 

Lowpass to s<=DP/s N 

High pass 

Lowpass to S ¢= (s2 + (nplnpJ)/(s(np2 - n"J 2N 

Bandpass 

Lowpass to s <= (s(n/J2 -n/Ji))/(s2 +(n/J1n/JJ) 2N 

Bandstop 
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Examplel.1 

The analog filter implementation in figure (2.12) and defined by 

H )s) = l/(s3 + 2s2 + 2s +I); (1.26) 

The filter has poles located at s=-1.0 ands= 0.5 ±j0.866. 

2H 

+ + I lF 
Figure 1.14(a) 

• 
Figurel.14(b) 

The magnitude-frequency response of the prototype filter has the gain is -3 dB at 

Q = I rad/sec. Assume that the desired filter has a similar shape, except that the desired -3 

dB critical frequency is translated out to I kHz. The desired filter can be realized by scaling 
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the prototype model H)O.), under the appropriate lowpass-to-lowpass frequency- 

frequency in particular, 

H(s)= S3 +2s/+2s+Ils-;s/Dp ; (1.27) 

Where QP is given by QP = 2nlOOO(radlsec)ll(rad/sec)= 6283.The final filter 

H(s) then becomes, 

l 
H(s) = -12 3 -s ) -4 ; ··· · ·· ·· · ··· · .••. · ······ .. (1.28) 

4.03xl0 s +5.07xl0 s-+3.18x10 s+I 

The new poles are located at s = -6283 ands= -3142 ±j5441. Note also that the poles 

159 nff 

(a) 

U) I ... ·."': 

, Q, rad/sec 

HJ 
(b) 

Figure 1.15 
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Are scaled by s = s/ n P. The frequency response of the final ft lter, and its 

attendant circuit elements are shown in Figure( 1.13) 
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Chapter 2 

2.APPROXIMATION POLYNOMIAL FOR FILTERING 

2.1. Approximations 

2.1.1. Butterworth Approximation 

The magnitude-squared response of an analog lowpass Butterworth filter 

H0 (s) of N'h order is given by, 

IH)Jnf = _ 1_ ~- \,N ..............................•....... (2.1) 

It can be easily shown that the first 2N-1 derivatives of IH);nf at 

n = 0 are equal to zero. and as a result, the Butterworth filter is said to have a 

maximally-flat magnitude n = 0 The gain of the Butterworth filter in dB is given by, 

G(n) = lOlog10IH);nf dB (2.2) 

A de ie , at = 0, the gain in dB is equal to zero, and at c, the gain is, 

G(nc) = lOlog10(1j2) = -3.0103 = -3dB (2.3) 

And therefore, He is often called the 3-dB cutoff frequencies. Since the 

derivative of the squared-magnitude response, or equivalently, of the magnitude 

response is always negative for positive values ofQ, the magnitude response, is 

monotonically decreasing with increasing n for n >> nc the squared-magnitude 

function can be approximated by, 
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jH)JQf =. ,_ ~- \2N ...............•............ (2.4) 

is given by, 

G(OJ = -20 log,{~: r = G(O, )- 6N dB, ... (2.5) 
- 

Where G( Q1) is the gain in dB at Q1 As a result, the gain roll-off per 

octave in the stopband decreases by 6 dB, or equivalently, by 20 dB per decade for an 

increase of the filter order by one. In other words, the passband and the stopband 

behaviors of the magnitude response improve with a corresponding decrease in the 

transition band as the fitter order N increases. A plot of the magnitude response of the 

normalized Butterworth lowpass filter with Qc = 1 for some typical values of N is 

shown in Figure 2.1 

0 ''1 ~i=""' 
• J 

0 .. 5 

Q 
+ 

figure2.1 

The two parameters completely characterizing a Butterworth filter are therefore 

the 3-dB cutoff frequency Qc and the order N. These are determined from the specified 

passband edge QP the minimum passband magnitude 1/ ri;-;;, the stopband edgeQ,, 
and the maximum stop band ripple 1/ A we get, 

IHJJQpr = ( 1 fN = _1_? (2.6) 
1+ Qp/Qc l+s- 
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IH)JDsf = 1 _ 1 1 + (Ds/DJ2N - A2 (2.7) 

By solving the above we get the expression for the order N as, 

_ 1 llog10l(A2 -1)/&2 J _ log10(l/K1) 

N - 2· log10(D,/DP) - log10(1/K r·· (2.8) 

Since the order N of the filter must be an integer, the value ofN computed using 

the above expression is rounded up to the next higher integer This value of N can be 

used next in either Eq.(2.7) or (2.8) to solve for the 3-dB cutoff frequency De If it is 

used in Eq.(2.7), the passband specification is met exactly, whereas the stopband 

specification is exceeded On the Other hand, if it is used in Eq.(2.8), the stopband 

specification is met exactly, whereas the passband specification is exceeded 

The expression for the transfer function of the Butterworth lowpass filter is 

given by, 

Example2.1. Determine the lowest order of a transfer function HH)s) I' 

having a maximally flat lowpass characteristic with a I-dB cutoff frequency at I kHz 

and a minimum attenuation of 40 dB at 5 kHz 

We first determine and A From Eq( ) 

lOlog10(-1 ~,) = -1, (2.9) 
1 + E- 

Which yields Likewise, 

lOlog1a(~2) = -40, (2.10) 

Which leads to A 2 = 10,000. Substituting the values in Eq. 

Kl= E ~ Weget, 

-1 =196.51334 (2.ll) 
K1 
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The inverse transition ratio here is 1/k = 5000/1000= 5 Substituting these values 

in Eq(2.8) we get 

log10 (1/ KJ _ log10 (196.51334) = 302811022 ... (2.12) 
N= log10(1/K) - log10(5) 

Since the order of the transfer function must be an integer, we round the above 

to the nearest integer N= 4 

2.1.2.Chebyshev Approximation 

There are two types of Chebyshev transfer functions In the Type 1 

approximation, the magnitude characteristic is equiripple in the passband and 

monotonic in the stopband, whereas in the Type 2 approximation, the magnitude 

response is monotonic in the passband and equiripple in the stopband. 

a)Type 1 Chebyshev Approximation 

The type 1 Chebyshev transfer function H0 (s) 
given by, 

has a magnitude response 

Where is the Chebyshev polynomial of order N 

{ 
cos(N cos' nl [n[ ~ 1, rN(n) = ( _1 , I I (2.14) 

cosh N cosh OJ, n > 1, 

Typical plots of the magnitude responses of the Type 1 Chebyshev Iowpass 

filter are shown in Figure2.6 for three different values of filter order N with the same 

passband ripple e From these plots it is seen that the square-magnitude response is 

equiripple between n = 0 and n =l, and it decreases monotonically for all n > 1 

The order N of the transfer function is determined from the attenuation 

specification in the 
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0.0 20 

b) 

Figure2.2 

Stopband at a particular frequency. For example, if at O = 0, the magnitude is 

equal to 1/A, then from Eqs (2.12) and (2.13), 

I H (Jn r = I = I )Il = _1 (2.15) 0 
' l+c2ri(ns/OP) l+c2{cosh[Ncosh-1(n,/OP 2 

A2 

cosh " ~/£ cosh-1(l/K1) (2.16) N= = I ' ''''''''''"''''''''''''''''''''''''''''''''' 
cosh " 0,/0P cosh (1; K) 

b) Type 2 Chebyshev Approximation 

The Type 2 Chebyshev magnitude response, also known as the inverse 

Chebyshev response, exhibits a monotonic behavior in the passband with a maximally 

flat response at O = 0 and an equiripple behavior in the stop band. The square­ 

magnitude response expression here is given by, 

Typical responses are as shown in Figure2.7. The transfer function of a Type 2 

Chebyshev lowpass filter is no longer an all-pole function and has both poles and zeros 

If we write, The order N of the Type 2 Chebyshev lowpass filter is determined from 

26 



given &,05 and A using Eq. (2.15). 

Example2.2 We wish to determine the minimum order N required designing a 

lowpass filter with a Chebyshev or an inverse Chebyshev response with the 

specifications given in Example2.1. 

From Example2.1, we have the following parameters. 

1/k1 = 19651334 and 1/k = 5. 

Substituting these values in Eq. (2.16), we arrive at, 

N = 2.6059 1 (2.18) 

Since the order of the filter must be an integer, we choose the next highest 

integer value 3 for N. Note that the order of the Chebyshev lowpass filter, is lower than 

that of a Butterworth lowpass filter meeting the same specifications as given by Eq 

(2.12). This is invariably the case for N;::: 2. 

2.1.3.Elliptic Approximation 

An elliptic filter, also known as a Gauer filter, has an equiripple passband and an 

equiripple stop band magnitude response, as indicated in Figure 1.3 for typical elliptic 

lowpass filters. The transfer function of an elliptic filter meets a given set of filter 

specifications, passband edge frequency nP, stopband edge frequency, passband ripple 

05, and minimum stopband attenuation A, with the lowest filter order N. The theory of 

elliptic filter approximation is mathematically quite involved. The square-magnitude 

response of an elliptic lowpass filter is given by, 

IH)Jnf =, ?n?\~·~ \ (2.19) 
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figure2.3 

· [n( M + N + 1 )] 
H(n) = . 1 e;D[(N-M)/2] sm 2 N + M + 1 sin(n/2 \ (2.20) 

for most applications, the filter order meeting a given set of specifications of 

passband edge frequency QP' , passband ripple &, , stopband edge frequency Os 

and the rmrumum stopband ripple A can be estimated by using the approximate 

formula, 

N - 2log10(4/ K1) (2.21) = log10(l/ P) . 

Where k, is the discrimination parameter and is computed as follow 

' f 2 K = ,;1 - K (2.22(a)) 

1-R Po = 
2(1 

+ fi<) .. · · ·· · .. · ·· · · · · (2.22(b)) 

P = Po +2(p0)5 +15(p0)9 +150(p0)13 (2.22(c)) 

Where k is the selective parameter. 

Example2.3 We wish to determine the minimum order N required designing 

an Iowpass elliptic filter with the specifications given in Example 2.1 

From Example2.1, we note that 

K 1/5 0 2 and 1/ K1 = 196.5 134 

Substituting these values in Eq (2.22(a), 2.22(c)), We arrive at 
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K' = 0.979796. Po = 0.00255135, 

p = 0. 0025 513 5 25 (2 .22( d)) 

Using the above values in Eq (2.21), we get 

N=2.23308 (2.22( e )) 

Rounding the above value to the nearest higher integer, we obtain N =3 as the 

appropriate order for the elliptic lowpass filter. 

2.1.4.Linear-Phase Approximation 

The previous three approximation techniques are for developing analog lowpass 

transfer functions meeting specified magnitude or gain response specifications without 

any concern for their phase responses. In a number of applications it is desirable that the 

analog lowpass, filter being designed have a linear-phase characteristic in the passband, 

in addition to approximating the magnitude specifications. One way to achieve this goal 

is to cascade an analog allpass filter with the filter designed to meet the magnitude 

specifications, so that the phase response of the overall cascade realization 

approximates linear-phase response in the passband This approach increases the overall 

hardware complexity of the analog filter and may not be desirable for designing an 

analog anti-aliasing filter in some AID conversion or designing an analog reconstruction 

filter in D/ A conversion applications It is possible to design a lowpass filter that 

approximates a linear-phase characteristic in the passband but with a poorer magnitude 

response than that can be achieved by the previous three techniques. Such a filter has an 

all-pole transfer function of the form, 

H(s) = do( ) = do N (2.23) 
BN s d0+d1s+ ... +dN_1s+s 

and provides a maximally flat approximation to the linear-phase characteristic at D = 0, 
i.e., has a maximally flat constant group delay at de (D = 0) For a normalized group 

delay of unity at de, the denominator polynomial fz BN (s) of the transfer function, 

called the Bessel polynomial, can be derived via the recursion relation, 
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BN(s) = (2N -l)BN -l(s )+ s2 BN_2(s) __ (2.24) 

starting with B, (s) = s + 1 and B2 (s) = s2 + 3s + 3. Alternatively, the coefficients of the 

Bessel polynomial BN(s) can be found from, 

(2N - f )! 
d - )1' 1, - 2 N -e f! ( n - f . f = 0,1, ,N -1 (2.25) 

These filters are often referred to as Bessel filters. 

2.2. Analog Filter Design Using MATLAB 

The Signal Processing Toolbox in MATLAB includes a number of M-file 

functions to directly develop analog transfer functions for each one of the above 

approximation techniques. 
,, 

2.2.1. Butterworth filter 

i' ., ., 
The Matlab files for the design of analog Butterworth filters are 

[ z, p, k] =buttap( N ), 

[num, deni] = butter ( N, Wn, 's' ), 

[num, den] = butter ( N, Wn, 'filtertype', s') 

[N,Wn] =buttord( Wp,Wn,Rp,'s') 

The function buttap (N) computes the zeros, poles, and gain factor of the 

normalized analog Butterworth lowpass filter transfer function of order N with a 3-dB 

cutoff frequency of I The output files are the length N column vector p providing the 

locations of the poles, a null vector z for the zero locations, and the gain factor k The 

form of the transfer function obtained is given by, 

H (s) = P)s) - K 
0 D)s) - (s - p(l)Xs - p(2)). .... (s _ p(N)) · · · · · · · · · · · · ··· · · · · · · · · · · .. (2.26) 
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To determine the numerator and denominator coefficients of the transfer 

function from the zeros and poles computed, we need to use the M-file function zp2tf (z, 

p, k). 

Alternatively, we can use the function butter (N, Wn, 's') to design an order N 

lowpass transfer function with a prescribed 3-dB cutoff frequency at Wn rad/sec, a 

nonzero number The output data of this function are the numerator and the 

denominator coefficient vectors, num and den, respectively, in descending powers of s 

If Wn is a two element vector [Wl, W2] with WI< W2, the function generates an order 

2N bandpass transfer function with 3-dB bandedge frequencies at WI and W2 with both 

being nonzero numbers To design an order N highpass or an order 2N bandstop filter, 

the function butter(N, Wn, 'jilter type' , 's') is employed where filter type = high for a 

highpass filter with a 3-dB cutoff frequency at Wn or filter type = stop for a bandstop 

filter with 3-dB stop band edges given by a two-element vector of nonzero numbers Wn 

. =[Wl, W2] with WI< W2. 

The function buttord (Wp, Ws, Rp, Rs, 's ') computes the lowest order N of a 

Butterworth analog transfer function meeting the specifications given by the filter 

parameters, Wp, Ws, Rp. and Rs, where Wp is the passband edge angular frequency in 

rad/sec, Ws is the stopband edge angular frequency in rad/sec, Rp is the maximum 

passband attenuation in dB, and Rs is the minimum stopband attenuation in dB The 

output data are the filter order N and the 3-dB cutoff angular frequency Wn in· rad/sec 

This function can also be used to calculate the order of any one of the four basic types of 

analog Butterworth filters. For lowpass design, Wp< Ws whereas for highpass design, 

Wp> Ws. For the other two types, Wp and Ws are two-element vectors specifying the 

passband and stopband edge frequencies. 

; I 

. ' . ' 

2.2.2. Type 1 Chebyshev Filter 

The M-file functions for the design of analog Type 1 Chebyshev filters are as 

follows. 

[z, p, k] = cheblap ( N, Rp) 

[num, den] = chebyl ( N, Rp, Wn, 's') 
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[num, den] 

[N, Wn] 

= chebyl ( M, Rp, Wn, 'filter-type', 's') 

= cheblord ( Wp, Ws, Rp, Rs, 's') 

Where Rp - passband ripple in dB; 

Rs - the minimum stopband attenuation in dB, 

Wn - the passband edge angular frequency in rad/sec 

2.2.3. Type 2 Chebyshev Filter 

The M-file functions for the design of analog Type 2 Chebyshev filters are, 

[s,p,k] 

[num, den] 

[num, den] 

[N, Wn] 

=cheb2ap(N ,Rs) 

=cheby2(N ,Rs, W n,' s ') 

=cheby2(N ,Rs, Wn,filtertypes,' s ') 

= cheb2ord(Wp, Ws ,Rp, Rs, 's') 

The function cheb2ap (N, Rs) returns the zeros, poles, and gain factor of a 

normalized analog Type 2 Chebyshev lowpass filter of order N with a minimum 

stopband attenuation of Rs in dB. The normalized stopband edge angular frequency is 

set to 1. The output files are the length-N column vectors s and p. providing the 

locations the zeros and the poles, respectively, and the gain factor k. If N is odd, z is of 

length N-1 The form of the transfer function obtained is given by, 

it ,, ,, 

( ) 
p0(s) (s - z(l)Xs - z(2)) (s - z(N)) 

H0 S = -( ) = K ( _ ( )X _ ( )) ( _ ( )) , , , , . , , . , , , , , ... , ... , ... (2.27) 
D0 s s p 1 s p 2 ..... s p N 

Where Wn is the stopband edge angular frequency in rad/sec. 

2.2.4. Elliptic (Gauer) Filter 

The M-file functions for the designs of analog elliptic filters are 

[z, p, k] =ellipap (N, Rp, Rs) 

[num, den] =ellip (N, Rp, Rs, Wn,'s) 

[num, den] =ellip (N, Rp, Rs, Wn,'filtertype','s') 

[N, Wn] =ellipord (Wp, Ws, Rp, Rs, 's') 
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The function ellipap (N, Rp, Rs} determines the zeros, poles, and gain factor of a 

normalized analog elliptic lowpass filter of order N with a passband ripple of Rp dB and 

a minimum stopband attenuation of Rs dB The normalized passband edge angular 

frequency is set to 1. 

The output files are the length-N column vectors z and p. providing the locations 

of the zeros and the poles, respectively, and the gain factor k If N is odd, z is of length 

N-1 The form of the transfer function obtained is as given in Eq (2.27) 

The function ellip (N, Rp, Rs, Wn, 's') returns the transfer function of an elliptic 

analog lowpass filter when Wn is a scalar defining the passband edge angular frequency 

in rad/sec or a bandpass filter when Wn is a two-element vector defining the passband 

edge frequencies in rad/sec. The function ellip (N, Rp, Rs, Wn, 'filtertype', 's') is used 

to determine the transfer function of an elliptic highpass when filtertype = high, and Wn 

is a scalar defining the stopband edge angular frequency in rad/sec, or a bandstop filter 

when filtertype stop and Wn is a two-element vector defining the stopband edge angular 

frequencies in rad/sec. In all cases, the specified passband ripple is Rp dB and the 

minimum stopband attenuation is Rs in dB the output files are the vectors, num and den, 

containing the numerator and denominator coefficients in descending powers of s. 

j I 

2.2.5. Bessel Filter 

For the design of a Bessel tiller, the available M-file functions are, 

[ z,p,k ]=besselap(N) 

[num,den]=besself(N,Wn) 

[num, den]= besself ( N, Wn, 'filtertype') 

The function besselap (N) is employed to compute the zeros, poles, and gain 

factor. 
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2.3.Design examples 

Examples blow are illustrating the use of some of the above functions in the 

design of analog filters, In the first three examples, we repeat Examp1es2.3 tbrough2.4 

to determine the order of the transfer fun:ctio:rr usin!f the respective M~fiJe fuo:.ctkn-rs Ia 

the .remaining examples, wt d~~rmi11!.! :the corr~spQ11~#.ng transfer fo11ctions and then 
compute the frequency response. using the "?vt-file function fre.qs(uum, den, w)., where 

num and den are the vectors of the numerator and denominator coefficients jn 

descending powers of s, and w is a set of specified discrete angular frequencies. This 

function .generates a complex vector of frequency response samples from which 

magnitude and/or phase response samples can be readily computed. 

E:u.unple2.4. We next determine the order of analog Type 1 and Type 2 Chebyshev 

lowpass filter meeting the same specifications as above To this end, we. employ the 

commands [N, Wn] :::: cheblord (Wp, \Vs, Rp, Rs, 's') and [N, Wn] ::;:: cheblord (Wp , 

Ws, Rp, Rs, 's') respectively, For the Type 1 Chebysbev filter the computed output data 
am N = 3 and \Vn = 6 2 8 3 18, and for the Type 2 Chebyshev filter, the computed 

output data are N = 3 and Wn = 23440 97 The computed Wn in the former case, is the 

3-,.dB passband edge angular frequency in rad/sec, whereas in the second case, it is the 
40-dB stopband edge angular frequency in rad/sec. The order determined is identical to 

that derived in Example. 
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» [N,Wn]=buttord(2*pi*(l000),2*pi*(5000),1,40,'s') 

N=4 

Wn = 9.9347e+003 
» [z,p,k]=buttap(4) 

z = [] 

p= 

-0.3827 + 0.9239i 

-0.3827 - 0.9239i 

-0.9239 + 0.3827i 

-0.9239 - 0.3827i 

k=l 

» [num,den)=zp2tf(z,p,k) 

num=O O O O 1 

den= 1.0000 2.6131 3.4142 2.6131 1.0000 

» omega=O: 1:5;h=freqs(num,den,omega); 

» gain=20*log10(abs(h)); 

» plot( omega,gain) 

» grid 
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figure2.4 

35 



.Example2.5. To determine the order of an analog elliptic lowpass filter meeting the 

above specifications, we use the command [M, \Vh] = ellipord (Wp, Ws, Rp, Rs, 's'), 

.resulring in .the output data N =.3- and Wn = 6283 .l.85 and v..erifying the order obtained 

in Example23. Here Wn is the 1-dB passband edge angular frequency. 

» Fp=lOOO;N=4; 
» [num,den]=butter(N,Fp,'s') 
num =l.Oe+Oll * 
0 0 0 0 10.0000 
den =l.Oe+Oll * 
0.0000 0.0000 0.0000 0.0261 10.0000 
» omega=0:200:6000; 
» h=freqs(num,den,omega); 
» gain=20*loglO(abs(h)); 
» plot(omega,gain ); 
» grid 
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figure2.5 

Example2.6. We consider first the design of a fourth order maximally flat analog 

.Iowpass filter with .aJ •. dB cutoff'ftequency at .Q = I The pertinent lvfATLAB program 

is given below. 
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» N=4; 
» Rp==2; 
» Fp=lOOO; 
» [num,den]=c.hebyl(N,Rp,Fp,'s') 
num = 1.0e+Oll * 
0 0 0 0 1.6345 
den= l.Oe+Oll * 
0.0000 0.0000 0.0000 0.0052 2.0577 
» h=freqs(num,den,omega); 
» gain=20*logl0(abs(h) ); 
» plot(omega,gain) 
» grid 
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figure2.6 

Exampfo2.7. We now use MATLAB to complete the design of the Butterworth 

lowpass filter of Example2. L To this end we modify Program2_1 of Example2.6 as 

indicated below in Program2 _ I During execution, the program asks for the order of the 

filter and the 3-dB cutoff angular frequency (determined in Example23, to be equal t1.J 4 

and 794 7. 77, respectively) to be typed fo, It then generates the gain response plot.As 

can be seen from this plot, the 1-dB passband edge is at 1 kHz, as desired, and at 5 kHz 

the attenuation Is more than 40 dB, as expected. 
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» Rp=2; 
» N=4; 
» Fp=lOOO; 
» Fs=SOOO; 
» Rp=l; 
» Rs=40; 
» [num,den]=ellip(N,Rp,Rs,Fp,'s') 
num :::1.0e+Oll * 
0.0000 -0.0000 0.0000 -0.0000 3.2196 
den =l.Oe+Oll * 
0.0000 0.0000 0.0000 0.0080 3.6125 
» h=freqs(num,den,omega); 
» gain=20*log10(abs(h)); 
» plot( omega,gain) 
» grid 
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stopband attenuation of 40 dB, requires a Butterworth filter of order 29, a Chebyshev 

type 1 or 2 filter of order 10, 

Example2.8. We next illustrate the design of a Type 1 Chebyshev lowpass filter 

meeting .th.e sper.:ifications of £xample2_ l . The corresponding MATLAB program Js 

given below in Program 2 _ 3. As the program is run, it asks for the order of the filter, the 

passband edge angular frequency {.cletenni,~ed in Example 2A to be equal to 3 and 6283_ 

18. respectively), and the passband ripple (1 dB) to be typed in. It then generates the 
gain response plot. 

» [num,den]=butter(S,1,'s'); 
» omega=0:.05: 1.5; 
» h=freqs(num,den,omega); 
» gain=20*1oglO(abs(b)); 
» plot(omega,gain);grid;hold on 
» (num,den)=ellip(S,1,40,1,'s'); 
» h=freqs(num,den,omega); 
» gain=20*1og10(abs(h)); 
» plot( omega,gain);grid 
» plot(omega,gain);grid; hold on 
» [num,den)=cheby2(8,40,1,'s'); 
» h=freqs(num,den,omega); 
» gain=20*1og10(abs(h)); 
» plot(omega,gain);grid; hold on 
» [num,den]=chebyl(8,l,1, 's'); 
» h=freqs(num,den,omega); 
» gain=20*Jogl O( abs(h )); 
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Chapter 3 

3. FILTERING CIRCUIT 

3.1. FFT, Filtering and MATLAB Analysis 

3.1.1. Things The FFT Can Do 

Once the waveform has been acquired and digitized, it can be fast-Fourier­ 

transformed to the freq_\lency domain. 'The FFT res\llts can be either real and imaginary, 

or magnitude and phase, functions of frequency. The choice of output format belongs to 

the user. 

Since the FFT generates the frequency spectrum for a time domain waveform, 

some fairly simple applications, e.g., harmonic analysis, distortion analysis, vibration 

analysis, and modulation measurements, might suggest themselves immediately. 

Another important area is that of frequency response estimation. A linear, time­ 

invariant system can be stimulated with an impulse function. Its output, the impulse 

response, can then be acquired and fast-Fourier-transformed to the frequency domain. 

The FFT of the impulse response, referred to as the frequency response function, 

completely characterizes the system. 

I I 

Once a system's frequency response function is known, one can predict how that 

system will react to any waveform. This is done by Convolution. 

An important aspect of the FFT is that convolution can easily be performed 

through frequency-domain multiplication. Let's say you know a system's impulse 

response, given by h(t), and an input waveform given by x(t). The output, say y(t), 

caused by x(t), can be computed in the classical manner by the convolution integral. But 

this is tedious and slow. An easier and faster approach is to FFT x(t) and h(t) to the 

frequency domain. Then the product of their frequency domain functions can be 

formed, giving Y (f) = X(f) H(f). Forming this product corresponds to time domain 

convolution, and the convolution result can be obtained by inverse-Fourier-transforming 

(IFT) the Y (f) function back to the time domain. 
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Correlation is another useful operation that the FFT makes easier. Mathematically, 

correlation looks and is performed in a manner similar to convolution. The difference is 

that one of the frequency domain functions is conjugated before the frequency domain 

product is formed. 

Although the operations of convolution and correlation may look similar, their 

applications are not. Correlation is a sort of searching or looking for similarities 

between two waveforms. When two waveforms have absolutely no similarity, like 

uncorrelated noise, their correlation function is zero. On the other hand, correlation two 

waveforms that are exactly alike produce a perfect correlation function. 

This property of finding similarities makes correlation a useful tool for detecting 

signals that are hidden or masked by other signals. 

Another useful property of correlation is its ability to indicate delay. This is 

particularly useful in measuring things like path delay, path diversity, and echo return 

times. 

Refer to the M-file list for an example of how to perform the FFT using Matlab, 

and also an m-file, which analyses .wav, files using the FFT. 

3.1.2. Filtering 

When a signal is measured as a time signal it can be converted to a spectrum. 

This spectral analysis shows the amplitude of the various frequencies contained within 

the signal. On this spectrum it is usual for a resonance to occur. The resonance is seen 

by comparatively large amplitude at a specific frequency. This frequency is of interest 

in terms of the device operating conditions. 

In order to further study the resonance it is possible to employ a band pass filter 

for a specified frequency range. This filter allows only the frequencies within the given 

band to pass. This method eliminates the noise, which occurs when sampling. It should 

be noted that the noise present is not only electrical but may be other resonance's, 

aliasing, and other components of the machine or even other devices in close proximity. 
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3.1.3. Anti-Aliasing Filters 

Aliasing is a problem when sampling a vibration. Filters can be used to avoid 

aliasing in signals containing many frequencies by subjecting the analog signal x(t) to 

an antialiasing filter. An antialiasing filter is a low-pass (i.e., only allows low 

frequencies throu~h) sharp cutoff filter. The filter effectively cuts off frequencies higher 

than about half the maximum frequency of interest, which is also called the Nyquist 

frequency. This means that some prior knowledge of the nature of the spectrum is often 

required before the exact sampling rate is determined 

This antialiasing filter must be employed before the signal is digitized. It is no 

good trying to use a low pass filter on the digitized signal because the aliasing effects 

occur because of the sampling process. Any aliasing effects would already be stored in 

the digitized signal and cannot be removed by low pass filtering as the effects appear as 

low frequencies in the signal. 

It should be noted that the SoundBlaster sound card, and most of its clones, do 

not include antialiasing circuitry in their design. One must include a low pass filter in 

the data acquisition circuit when connecting to a soundcard, or at the very least it must 

be ensured that no frequencies greater than half the sampling rate appear in the input 

signal. 

3.2. M-File List and Instructions 

3.2.1. What is an m-file? 

An M-file is script, or program, written in the MATLAB language. MATLAB, 

short for MA Trix LABabortory, was developed by as a numeric-processing tool. 

3.2.2. How do I download these m-files? 

Simply click on an M-file to download it. 

If you have the problem of your browser not requesting a location to save the file 

but instead display it in this frame, then you have to alter your browser setup. In the 

case of Netscape, 
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• From the menu, select Options General Preferences .... 

This will bring up the General Preferences Panel. 

• Select the Helpers tab on this General Preferences Panel. 

This will bring up the helpers panel. 

• Select the Create New Type ... button. 

This will bring up a new dialogue box. 

• Type application into the Mine Type field. Then type mfile into the Mine 

Subtype field. Finally, select the OK button. You will be taken back to the 

helper's panel. 

• On the helper's panel enter mat the File Extensions: line. 

• Change the current Action to Save to Disk. Once all changes are entered, select 

the OK Button. 

This will mean that once an mfile is selected from below, you will be prompted 

to give a saving location on your disk. 

3.2.3. What m-files are available for download? 

Gibbm 

Gibbs Phenomenon. 

Aliasing m 

An example of aliasing in the time and frequency domains. 

Fft-ex m 

An example of how to use the FFT in Matlab. 

Wav-nlvs m 

Wave File analysis. 

3.3. Discrete Fourier Transform and the FFT 

3.3.1. Introduction 

The Fourier Transform provides the means of transforming a signal defined in 

the time domain into one defined in the frequency domain. When a function is evaluated 

by numerical procedures, it is always necessary to sample it in some fashion. This 

means that in order to fully evaluate a Fourier transform with digital operations, it is 
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necessary that the time and frequency functions be sampled in some form or another. 

Thus the digital or Discrete Fourier Transform (DFT) is of primary interest 

3.3.2. The Fourier Transform 

The Fourier transform is used to transform a continuous time signal into the 

frequency .domain, It .describes the. continuous spectrum ofa nonperiodic time signal. 

The Fourier transform X(,f) of a. coutinuous. time functimtx(V can he expressed as 

00 

x(f)= J x(t}e-12nfidt (3.1) 
-00 

The inverse transform is 

00 

x(t)= f x(J)ei2nfidf (3.2) 
-cO 

3.3.3. The Discrete Fourier Transform 

This is used in the case where both the time and the frequency variables are 

.d.isc.ret.e (w,hich :they ,are ifm.gita,1 com.p1.tt~rs are being used to perform the analysis). Let 

x (nT) represent the discrete time signal, and let X (1.nF) represent the discrete frequency 

transform function. The Discrete Fourier Transform (DFT) is given by 

X(mF)= "z:x(nr)e-tnmznFT (3.3) 
n 

Where 

x(nT) = _!_ "z:X(mF)einmZnFT (3.4) 
Nm 

3.3.4. The Fast Fourier Transform 

The fast Fourier transform (FFT) is simply a class of special algorithms which 

.implement: .the .discrete Fourier transform with considerable savings in computational 

time. It must be pointed out that the FFT is not a different transform from the DFT, but 

46 



rather just a means of computing the DFT with a considerable reduction in the number 

of calculations required. 

3.3.5. Approximation of Continuous Time Transforms With The DFT 

The approximations involved when using the DFT in the analysis of continuous 

time systems must be carefully understood. There are problems that arise in the process 

that may lead to erroneous results unless proper precautions are taken. 

While the mathematical properties of the DFT are exact, the DFT is seldom of 

interest as the end goal. It is usually employed to transform data, which may arise from 

either an actual continuous time process, or perhaps a discrete time process, which is 

being analyzed from a continuous time system approach. The DFT is usually used to 

approximate the Fourier transform of a continuous time process, and it is necessary to 

understand some of the limitations inherent in this approach. 

There are three possible phenomena that result in errors between the computed and 

the desired transform. These three phenomena are (a) aliasing, (b) leakage, and (c) the 

picket-fence effect. 

(a) Aliasing. The only solution to the aliasing problem is to ensure that the sampling 

rate is high enough to avoid any spectral overlap, or to use an anti-aliasing filter. 

(b) Leakage. This problem arises because of the practical requirement that we must 

limit observation of the signal to a finite interval. The process of terminating the 

signal after a finite number of terms is equivalent to multiplying the signal by a 

window function. The net effect is a distortion of the spectrum. There is a spreading 

or leakage of the spectral components away from the correct frequency, resulting in 

an undesirable modification of the total spectrum. 

The leakage effect cannot always be isolated from the aliasing effect because 

leakage may also lead to aliasing. Since leakage results in a spreading of the spectrum, 

the upper frequency may move beyond the Nyquist frequency, and aliasing may then 

result. The best approach for alleviating the leakage effect is to. choose a suitable 

window function that minimizes the spreading. 
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(c) Picket-Fence Effect. This effect is produced by the inability of the DFT to observe 

the spectrum as a continuous function, since computation of the spectrum is limited to 

integer multiples of the fundamental frequency F (reciprocal of the sample length). 

Observation of the spectrum with the DFT is analogous to looking at it through a sort of 

"picket-fence," since we can observe the exact behavior only at discrete points. The 

major peak of a particular component could lie between two of the discrete transform 

lines, and the peak of this component might not be detected without some addition 

process mg. 

One procedure for reducing the picket-fence effect is to vary the number of 

points in a time period by adding zeros at the end of the original record, while 

maintaining the original record intact. This process artificially changes the period, 

which in turn changes the locations of the spectral lines without altering the continuous 

form of the original spectrum. In this manner, spectral components originally hidden 

from view can be shifted to points where they can be observed. 

To summaries this section, the DFT algorithm can be used to approximate the 

transform of a continuous time function, subject to the following limitations and 

difficulties. 

• The signal must be band limited, and the sampling rate must be sufficiently high 

to avoid aliasing. 

• If it necessary to limit the length of the signal for computational purposes, the 

spectrum will be degraded somewhat by the leakage effect. Leakage is most 

severe when the simple rectangular window function is used. 

• Components lying between discrete frequency lines are subject to error m 

magnitude due to the "picket-fence" effect. 

• The magnitude level may be different from that of the continuous-time 

transform due to the variation in definitions. 
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9 element High Power Low Pass Filter Plan Review 

(Plan is in PDF format, size is 17KB) 

Free Radio Berkeley 9 element High Power l..<l'W Pass Filter 

Extra pi:eces of board added to irmprove return toss 

figure 3.3.1 

A Low Pass Filter (LPF) is used after an RF amplifier to prevent the transmission of 

harmonic This design, which appears on Free Radio Berkley's web-site, is unusual in 

that it does not use discrete capacitors .. In this design, the capacitive elements of the 

filter been made up by the capacitance formed by large areas of copper with a ground 

plane underneath. The filter is a 9 pole Chebyshev (each reactive element contributes 

one pole). 

3.4. LC AND CRYSTAL FILTER SOFTWARE 

3.4.1. What is this LC and crystal filter software? 

Neil Heckt of Almost All Digital Electronics as an aid for filter designers to 

simply plug in various filter parameters and hey presto wrote the LC and crystal filter 

software! There is your finished design. Shortly I will present you with the design 

example of a crystal filter of the crystal ladder filters variety as designed on my 

evaluation copy of the downloaded software. 
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3.4.2. Designing a crystal filter 

Unfortunately you can never get away from the fact that you must first of all 

measure the parameters of the low cost crystals you are using. 

The usual design procedure proceeds as follows: 

Obtain a good selection of the same frequency surplus crystals. Let's say we can 

obtain very cheaply some 5 Mhz crystals. We need to determine the crystal parameters 

in figure 1 below. 

Lm Cm Rs 

Cp 

Figure 3.4.1 - parameters of crystal for a crystal filter 

Now your crystal parameters can be measured relatively easy, albeit indirectly. 

The crystal is placed between an accurate and stable signal source of known impedance 

and a load of known impedance, usually a 50-ohm detector. The signal source needs to 

be at least 10 mW, stable, preferably 50 ohms, capable of fine tuning and monitored by 

a quality frequency counter with lHz resolution. 

The crystal parameters starting with Cp can now be measured. Cp can be easily 

determined with a capacitance meter operating at a frequency far removed from the 

crystal frequency; it's as simple as that. 

The signal source is slowly adjusted until a peak response is noted; this is series 

resonance, Fs where both the inductive reactance and capacitive reactance of the crystal 

cancel one another. The crystal is then replaced by a small value variable resistor and 

adjusted for a similar response in the detector. The value determined by the variable 

resistor is Rs in figure 1 above. 

Next the crystal is reinserted and swept both sides of centre frequency to 

determine the 3 dB points, which gives us the loaded bandwidth Bw, or indirectly QL. 
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Figure 3.4.2 - crystal loaded bandwidth 

As the crystal is slowly swept slightly higher in frequency, maybe only a 1,000 

Hz or more a pronounced dip will be noted, this is the anti resonance or parallel 

resonant, Fp frequency where the effect of Cp effectively in series with Cm, resonates 

with Lm. 

3.5. LC BAND PASS FILTERS 

3.5.1. What are band pass filters? 

LC Band pass filters are usually LC filters containing resonator combinations of 

inductance and capacitance, which are designed mathematically to respond to design 

frequencies while rejecting all other out of band frequencies. Because LC bandpass 

filters have inherent limitations these statements should not be taken too literally. 

Now we move from the simple to the complicated. By this stage you should be 

able to understand: 

Unloaded Q ( Qu) 

Loaded Q ( QL ) 

Reactance. 

LC circuit combination for any given 

frequency. 

LC Band pass filters are derived from tables named after the 

mathematicians who did the original calculations. 
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The main filters considered are: 

Butterworth 

Chebyschev 

Bessel 

Gaussian 

Because of ease of alignment we will only consider the two and three resonator 

Butterworth LC bandpass filters of the relative narrow band variety. Here the term 

narrow band is a relative expression. Do NOT expect to design such a filter at 9 Mhz 

with a bandwidth of 3 KHz. 

3.5.2. Designing LC Bandpass filter 

Assume our source is from a proper 40-meter antenna of 50 ohms impedance 

and our load is a gee-whiz-bang-all-singing-all-dancing passive double balanced mixer, 

which also needs to see 50 ohms. 

You have two options. 

(a) Transformer coupling which is a turn's ratio of about 9: 1 leaving us with something 

like an almost impractical 2.7 turns coupling. 

(b) Capacitive coupling again. Where Cc is calculated by calculating reactance's: This 

50 pF is then subtracted from both C0's at either end to reduce that capacitance from 

150 pF to 100 pF. 

Figure 3.5.1 - LC band pass filter schematic 
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3.6. HIGH PASS FILTERS 

3.6.1. What are high pass filters? 

Assuming you have mastered the design of low pass LC filters we will now 

proceed to the design of a high pass filters. A high pass filter is simply the 

transformation of a low pass filter. For our purposes, we will say we need a five-pole 

butterworth filter with a cut off frequency Fe at 2000 KHz. That is we want to pass all 

frequencies above 2000 KHz (2 Mhz) but attenuate those below 2000 KHz. 

Perhaps this might be required for the antenna input to a receiver where AM 

Radio interference is proving troublesome. 

3.6.2. Design Procedure for high pass filters 

If you have done the tutorial on low pass filters and are confused by what comes 

next, be aware there are literally hundreds of low pass filter types. However all low pass 

filters transform to high pass filters. 

• • 

. · 1 
-,. <. IR < .. - 

1 
Figure 3.6.1 - low pass filters - equal terminations 

Which type you choose is a matter of choice which may well be influenced by 

your needs in some applications to have a DC blocking capacitor in the .input or output 

of the final finished high pass LC filter. In this case use schematic 2. 

In the two schematics shown in figure 1 the principal difference is the placement 

of the first capacitor, denoted either C 1 or C2. 
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IR I .6I8H I .6I8H 

-~· ,,.\ .\ 1_rrrrL.-.-rr~r,rt-,----, 
V / ~· J_ J_ ~J_ l 

0.6I8F I 2F I 0.6I8F I ~~: IR 
l 

Figure 3.6.2 - low pass filters - equal terminations - normalized to 1 
Hz 

Notice that this low pass filter is normalized to 1 ohm impedance both in and out, 

a frequency of 1 Hz and capacitor values are expressed in Farads while Inductor values 
/ 

are in Henries. 

3.6.3. Transformation to High Pass Filter Prototype 

All right we have a low pass filter prototype, what now? We simply want to do 

the opposite to a low pass with our high pass filter, so we do the opposite and invert 

everything. Replace each component with it's opposite. 

A capacitor becomes an inductor and, an inductor becomes a capacitor and, at 

the same time the values are also inverted e.g. the first capacitor of 0.618F becomes an 

inductor of 1 I 0.618H. Cool? 

IR 0.6I8F 0.6I8F 

_t\.,.l~ .. ;'·\, ,-l( t I( t I 
_) _) _) __ :., 
_,) 0.5H ~ _,! I .6I8H > IR 
-::: -::I ---<: ~:> ;.r _r _r l 

I .6I8H 

Figure 3.6.3 - transform low pass filter to high pass filter 

3.6.4. Component calculations at Fe and at Zo - Frequency and Impedance scaling 

This is the truly simple part if you like doing basic sums on the calculator. If not, then 

you're in for some bother. 

54 



The transformation is effected using the following basic, yet simple formulas for 

transformation LC: 

AND L= RLn 
2 K r, 

Here C is the final capacitor value, L is the final inductor value, Cn and Ln are 
the pr.o:to:typ.e elemeor values .in.Fig .:l, J{ is yourfinal .impedance aloe and fc is the final 

cut off frequency. It's as simple as that! 

So for a cut off of 2000 kHz and a 50 ohms impedance the calculations for the 

nrsl capacitor and inductor we encoumer become, as a worked example for you . 

Cn 0.618F XI0-10 ..... (3.6) 
C= = = 9.836 = 984 pF 

2 K fcR 6.2832 X 2,000,000 X 50 

RLn 50Xl.618H x10-6 ... (3.7) L= = = 6.438 = 6A38 uH 
2 X r, 6.2832 X 2,000,000 

Note that the original prototype is always expressed in terms of 1 ohm, l hertz 

(Hz), Farads and Henries. 

When you do your sums you get back to numbers with negative expone.t:t;~ they 
.are the -1 o and the -6 respectively: To bring capacitance to pF we .multiply by exponent 
12 (that's number 1 followed by 12 zeroes as in 1,000,000,000,000). Why? Because 1 Pf 
is one 1,000,000,000,000th of a Farad. 

To bring inductance to uH we multiply by exponent 6 (that's number I followed 
by 6 zeroes as in l,000,000), Why? J3ecaµse .J uH is one ].000,000tb of a Remy 

Your final filter comes out as follows: 
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SOR 984 pF 984 pF 

TllSOR 
- - - 

6.4uH 2uH 6.4uH 

Figure 3.6.4 - final component calculations - high pass filter 

3.6.5~ Parannia to avoid with high pass filter values 

Firstly don't use an unnecessary precision with your values in high pass filters, A 

capacitance ralcnlated as 983.5752483 pF is totally Irrelevant, In the "real world we 
would use a standard I 000 pF capacitor, remembering it's tolerance is going to be +/- 

5% .. .anyway_ Consider also, .it is doubtful any impedance will be precisely 50 ohms. 

Finally, for this type of filter triodes are ideal and cheap to use as inductors. 

3.7. JF AMPLIFIER FILTERS 

3.7.1. What are 1F amplifier ftlters? 

For reasons of clarity, formulas will often be ,gif files, when you see the first 
one you will realize why. 

At the outset please understand that the best response you can possibly get from 

if amplifiers fihers would be a J % fractional bandwidth and even then you would be 

pushing it very hard. 

3.7.2 Designing IF Amplifier filter 

fiIFT &> imIFT H ~ imIFT j[ 
Ul )1 U2 H 

ii ii 

Figure 3. 7.1 - if amplifier filter block diagram 
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Transformers separated by two stages of amplification, which could be valves, 

transistors or integrated circuits. We will not consider the actual active or amplifier 

stages here now, just the 1.F. transformers and the circuit as a whole as an if amplifier 

filtering block. 

These called "synchronously tuned filters" because an active device couples each 

stage. From earlier filter tutorials you will remember the filter bandwidth determined 

the required bandpass Q or Qbp. An example we will use throughout this tutorial will.be 

an IF stage from a typical transistor radio at 455 KHz with a bandwidth of 10 KHz. 

If our IF is 455 KHz and bandwidth is 10 KHz then Qbp = 455 I 10 = 455 This is 
a higb P.umbe.r b111 :siogJe :filter sy11chmnousJy tuned stages (as in Fig 1) off er a 
relaxation on Qbp in accordance with the following formula Here's why it's a .gif file. 

m-:J y2 1+/ y3 2 -1= '12 -1 ......................................... (3.8) 

3. 7.3 Determining impedance of if amplifier filters 

You will recall that Z or more correctly R = (2 * pi * Fo * L * Qbp) Typical 45.5 
XHz JF zransformers are nominally 680 :uH variable inductors. resonated by 180 pF 

capacitors. In this case we get (2 * 3 .1416 * 0 A 5 5 * 680 uH * 23 .2) = 45,101 which is a 
typical impedance for that kind of transformer. 

If the collector load required for the transistor was say lOK then the transformer 

would be .cenrre-tapped. If the next stage wanted to see lK then the coupling turns 

winding would be the square root of 45K I lK = 6.7 That means the coupling winding 

or secondary would have 1 I 6. 7th number of turns as the primary. 

From here on it is a matter of simple algebra to plug in the known to derive the 

unknowns. 

An absolutely critical feature, as in all filters, are the terminating impedances. 

3.8. LO\V PASS FILTERS 

3.8.1. What are low pass filters? 
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L/H SIDE 14 R/H SIDE 

Ua l2a 

Cl C2 

Figure 3.8.2 - two L network low pass filters 

Where the reactance's are Cl = C2 = 50 ohms each and Lla = L2a = 50 ohms 

each or a total of 100 ohms. 

The attenuation of this particular filter is given by the equation: 

2n 

At1z = 10 log [ 1 + ( W / \V c ) ] 
.................................. .- (3.9) 

• W = the frequency of desired attenuation 
• We= the cutoff frequency ( WJiHi) of the filter 

• u ? the number of 'GltmGnts in the filter 

For our three ( n ) element filter above with a W('. of 7.5 

Mhz and checking out the first harmonic ( W ) at 15 l\1hz 

we find the attenuation at 15 Mhz is a mere 18.13 dB. 

Obviously that number would not over excite you yet it is a fact of life. How 

many of you have thought such a LPF would yield stunning results? 

A good e,~ijil)ple tP investigate is the same filter used as the input to a receiver 
with an IF of 455 KHz. Our local oscillarcr runs at 7500 KHz+ 455 KHz or 7955 Kl-v~ 

An image frequency would be at 8410 K._H..z. 

Well \vhat is the use of such a low pass filter? Firstly if you consider reducing 

interference to the low VHF TV band you can get acceptable performance, Do a 

calculation of the attenuation at 50 :Mhz. Secondly the filter is excellent as an 

impedanee converter 'or matching device, In this circumstance consider any attenuation 

benefits accruing. to be entirely a bonus. 
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CONCLUSION 

The importance of analog filters is declining day after day, but the digital filters 

are growing widely. 

The study of analog filters is of great importance because they provide the basis 

of the study of digitals filters. And anti-aliasing filters introduced to the signal 

processing system is based on analog filtering. Analog and digital conventional filters 

provide filtering if-there is no .overlap between spectrum signals and noise. 

The main design of filters is simple E~s the low pass filters {LPF) gives the basis 

of other filter designs that. becomes more complex High pass and band pass filters are 

an upgrade or transformation of low pass filters. 

Wireless and personal communication systems are .increasingly being regarded 

as essential communication tool for future. From this point of view- as new network 
' 

infrastructure are implemented and competition between them increases. 

The requirements of high voice quality from network provider are, required, 

solution of this need investigation of filtering in the wireless and personal 

communication system where frequency scattering is one of the important problems. 

The design .and .implementation of.filter circuits .is a challenge for every design 

engineer, and it requires a skill that cannot be learned by just taking classes and reading 

the nece.S.~.f books, It is not "textbook knowledge' that makes a good designer, but the 

experience that only can be obtained by practice and exposure to design projects, 
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