
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

BEKMAR PROGRAMMING
SYSTEM WITH DELPHI

Graduation Project
COM400

Student: Kadir BEKiROGLU (20020565)

Supervisor: Mr. Elbrus IMANOV

LefkoJa-2007

To my parents

© Kadir BEKiROGLU
All Rights Reserved 2007

I

TABLE OF CONTENT
TABLE OF CONTENT I

ACKNOWLAGMENTS IV

ABSTRACT V

INTRODUCTION VI

CHAPTER 1: DELPHI 1
1.1 Introduction to Delphi 1
1.2 First Delphi Program 1
1.3 Delphi Style 4
1.4 Introduction To Design Patterns In Delphi 6
1.5 How Delphi Helps You Define Patterns 6

1.5.1 Delphi Examples of Design Patterns 7
1.5.2 Pattern: Singletion 8

1.5.2.1 Applications in Delphi 8
1.5.2.2 Implementation Example 8

1.5.3 Pattern: Adapter 13
1.5.3.1 Implementation Example 13

1.5.4 Pattern: Template Method 22
1.5.4.1 Applications in Delphi 22

1.5.5 Pattern: Builder 25
1.5.5.1 Applications in Delphi 25
1.5.5.2 Implementation Example 25

1.5.6 Pattern: Abstract Factory 29
1.5.6.1 Applications in Delphi 29
1.5.6.2 Implementation Example 29

1.5.7 Pattern: Factory Method 31
1.5.7.1 Applications in Delphi 31
1.5.7.2 Implementation Example 31

1.6 APPENDIX : Key Elements of Delphi Class Definitions 32
1.6.1 Unit Structure 32

1.6.1 Class Interfaces 33
1.6.3 Properties 33
1.6.4 Inheritance 33
1.6.5 Abstract Methods 35
1.6.6 Messages 36
1.6. 7 Events 36
1.6.8 Constructors and Destructors 36

1.7 Delphi Compilers 37
1.7.1 Free Delphi IDEs and Compilers 37
1. 7.2 Free Delphi Compression Libraries 37
1.7.3 Free Delphi Script Engines 38
1.7.4 Free Database Components 38
1.7.5 Delphi UI Components 39
1.7.6 Printing and Reports 40
1.7.7 Free Delphi Unicode Libraries 40
1.7.8 Delphi Component Directories 41
1. 7 .9 Free Delphi Libraries, Components, Utilities 42
1.7.10 Graphics Libraries 43
1.7.113D Programming 44
1.7.12 Delphi Game Programming 45
1. 7.13 Delphi Programs with Source 46
1.7.14 Internet and Communication Components 47
1.7.15 Core Delphi 47
1.7.16 Resource Editors 48
1. 7 .17 Delphi Tools 48
1. 7 .18 Delphi Magazines 48
1.7.19 Delphi Communities 48
1.7.20 Tutorials 49
1.7.21 Delphi Resources 49

-
1.8 Conclusion About Delphi 50

II

III

CHAPTER2 DATABASE 53
2.1 Introduction to Database 53
2.2 De-merits of Absence of Database 54
2.3 Merits of database 54
2.4 Introduction to Database Design 54
2.5 Database Models 55

2.5.1 Flat Model 56
2.5.2 Network Model 56
2.5.3 Relational Model 56

2.5.3.1 Why we use a Relational Database Design 57
2.6 Relationships between Tables 58

2.6.1 One-To-One Relationships 58
2.6.2 One-To-Many Relationships 58

2.7 Data Modeling 59
2.7.1 Database Normalization 59
2. 7 .2 Primary Key 60
2.7.3 Foreign Key 61
2.7.4 Compound Key 61

CHAPTER 3 USER'S MANUAL 62

CONCLUSION 72

APPENDIX 73

ACKNOWLEDGMENT

First of all I am happy to complete the task which I had given with blessing of God

and also I am grateful to all the people in my life who have, supported me, advised me.

Taught me and who have always encouraged me to follow my dreams and ambitions.

I wish to thank my supervisor, Mr. ELBRUS IMANOV, for intellectual support,

encouragement, and enthusiasm, which made this project possible, and his patience for

correcting both my stylistic and scientific errors.

And thank my dearest parents who encouraged me to continue beyond my

undergraduate studies, to my father who proceeded before me and to my mother who

encouraged me along the way.

To all my friends, especially Ahmet Kayabaf,Fetullah Akatay and Hadi Turus for

sharing wonderful moments, advice, and for making me feel at home.

And above, I thank God for giving me stamina and courage to achieve my objectives.

KA.DIR BEKIROGLU

IV

ABSTRACT

Data, gathered around us as a collection of facts, is of no use unless it is organized and

represented in some meaningful form. Data represented in some meaningful form like,

tables, charts, or graphs become information, which can be easily processed. The collection

of data, usually refereed to as the database, contains information about one particular

enterprise. These days databases are used by a variety of users and organizations, which are

important tools in processing DBMS, which are designed to manage large amount of data.

This project has as its goal to develop software, processing information about activities of a

computer-part sales company. Software developed in this project contains both employee

information, and information associated with sales and purchase of computer parts. The

project can be developed by improving the software for processing all activities of the

company.

V

INTRODUCTION

Nowadays the technology is developed a lot and started to use by anyone in the world no

matter who he/she is. Because of the technology is entered to every platform of our life

human needed to combine both software and hardware. Without software the machines are

nothing. They need software to operate.

The automation is also became a part of our lives. The people operate with automation

systems in everywhere. My project is Bekmar Program System. This Automation is used to

keep the information about the receiving, coming ang going products and sales and price.

Bekmar Program System is used in every super market, product , to storage databases and

folders.

In my project the main point is making the user's job easy. It lets to the manager to

documents, product, supplier and tax information easily. And we he/she can get the data

report specific date, type who receiving documents.

VI

CHAPTERl

DELPHI

1.1 INTRODUCTION TO DELPHI

Although I am not the most experienced or knowledgeable person on the forums I

thought it was time to write a good introductory article for Delphi beginners.

Delphi is a Rapid Application Development (RAD) environment. It allows you

to drag and drop components on to a blank canvas to create a program. Delphi will

also allow you to use write console based DOS like programs.

Delphi is based around the Pascal language but is more developed object orientated

derivative. Unlike Visual Basic, Delphi uses punctuation in its basic syntax to make the

program easily readable and to help the compiler sort the code. Although Delphi code is

not case sensitive there is a generally accepted way of writing Delphi code. The main

reason for this is so that any programmer can read your code and easily understand what

you are doing, because they write their code like you write yours.

For the purposes of this series I will be using Delphi 7. There are more recent versions

available (2005 and 2006) however Delphi 7 should be available inexpensively

compared to the new versions which will set you back a lot of money. Delphi 7 will

more than likely be available in a magazine for free.

1.2 FIRST DELPHI PROGRAM

First thing is first, fire up your copy of Delphi and open the Project > Options menu. To

compile a console application you need to change a setting on the Linker tab called

'Generate console application', check the box and click OK.Now select File > Close All

if anything is already loaded.

1

Then select File > New > Other > Console Application.

You should have something like this:

Delphi Code:

program Projectl;

{$APPTYPE CONSOLE}

uses

SysUtils;

begin
{ TODO -oUser -cConsole Main: Insert code here}

end.

Notice the first line refers to the keyword program. You can rename this to Hello World.

You can also remove the commented portion enclosed in curly brackets.

The uses keyword allows you to list all units that you want to use in the program. At the

moment just leave it as it is, SysUtils is all we need.

,

Your unit should now look like this:

Delphi Code:

program Hello World;

{$APPTYPE CONSOLE}

uses

SysUtils;

begin

end.

2

Now what we have just done is written a program, it currently doesn't do a thing

however. Hit the run button and see the result. Now wasn't that completely worthless.

Luckily this isn't the end of the article so we'll actually have a worthwhile program at

the end of it. All we need to do is insert some code in the main procedure we have just

made.

Every good programmer's first program was 'Hello World' and you'll be no exception.

All we need to do is use the WriteLn procedure to write 'Hello World!' to the console,

simple.

Delphi Code:

program Hello World;

{$APPTYPE CONSOLE}

uses

SysUtils;

begin

WriteLn('Hello World!')

end.

Notice the semicolon at the end of the line, at the end of any statement you need to add

a semicolon. Run the program and see the results ...

Now I don't know about you but I saw hello world flash up and go away in a second, if

you didn't write the program you wouldn't even know what it said. To solve this

problem we need to tell the program to leave the console open until the user is ready to

close it. We can use ReadLn for this which reads the users input from the console.

Delphi Code:

program Hello World;

3

{$APPTYPE CONSOLE}

uses

SysUtils;

begin

WriteLn('Hello World!'+ #13#10 + #13#10 +

'Press RETURN to end ... ');

ReadLn;

end.

I have added a few extra things into the 'Hello World' string so the user knows what to

do to end the program as it could be a bit confusing. '#13#10' is to insert a carriage

return as 13 and 10 are the ASCII codes for a carriage return followed by a new line

feed. ASCII can be inserted in this way into strings.

1.3 DELPHI STYLE

You mean fashion? No, not which colour is this seasons black. I mean you coding

style, the way you format your code and the way in which you present it on the page.

Q - At the end of the day who cares about my style, I can read it, and Delphi strips all

the spaces out of it and doesn't care if I indent. Why waste my time?

A - Good question. Neatly present code which conforms to the accepted standards not

only makes your code much easier for you to read and debug but also but any one else

who might read your code to help you, or learn from you can do so with ease. After all

which code is easier to follow, example 1 or 2?

Delphi Code:

4

II Example 1

procedure xyz();

var

x,y ,z,a: integer;

begin

x:=l;y:=2;

for z:=x to y do begin

a:=power(z,y);

showmessage(inttostr(a));

end;

end;

Delphi Code:

II Example 2

procedure XYZ();

var

X,Y,Z,A: Integer;

begin

X := 1;

Y:=2;

for Z := X to Y do

begin

A := Power(Z, Y);

ShowMessage(IntToStr(A));

end; I I for end

end; I I procedure end

I think we'd both agree that although both examples do the same thing example two is

set out in an easy to read manner where as example 1 is a mess.

5

To learn more about how to style you code take a look at BDN's Object Pascal Style

Guide outlining the conventions set by the Delphi Team.

You see what power is - holding someone else's fear in your hand and showing it to

them!

1.4 INTRODUCTION TO DESIGN PATTERNS IN DELPHI

Design patterns are frequently recurring structures and relationships in object-oriented

design. Getting to know them can help you design better, more reusable code and also

help you learn to design more complex systems.

Much of the ground-breaking work on design patterns was presented in the book Design

Patterns: Elements of Reusable Object-Oriented Software by Gamma, Helm, Johnson

and Vlissides. You might also have heard of the authors referred to as "the Gang of

Four". If you haven't read this book before and you're designing objects, it's an excellent

primer to help structure your design. To get the most out of these examples, I

recommend reading the book as well.

This paper takes some sample patterns from Design Patterns and discusses their

implementation in Delphi.

Another good source of pattern concepts is the book Object Models: Strategies, Patterns

and Applications by Peter Coad. Coad's examples are more business oriented and he

emphasises learning strategies to identify patterns in your own work.

1.5 HOW DELPHI HELPS YOU DEFINE PATTERNS

Delphi implements a fully object-oriented language with many practical refinements

that simplify development.

A summary of Delphi class concepts can be found in the following appendix.

6

The most important class attributes from a pattern perspective are the basic inheritance

of classes; virtual and abstract methods; and use of protected and public scope. These

give you the tools to create patterns that can be reused and extended, and let you isolate

varying functionality from base attributes that are unchanging.

Delphi is a great example of an extensible application, through its component

architecture, IDE interfaces and tool interfaces. These interfaces define many virtual

and abstract constructors and operations.

1.5.1 Delphi Examples of Design Patterns

I should note from the outset, there may be alternative or better ways to implement

these patterns and I welcome your suggestions on ways to improve the design. The

following patterns from the book Design Patterns are discussed and illustrated in Delphi

to give you a starting point for implementing your own Delphi patterns.

Singleton

Definition

"Ensure a class has only one instance, and provide a global point

of access to it."

Pattern Name

Template Method

"Convert the interface of a class into another interface clients

expect. Adapter lets classes work together that couldn't otherwise

because of incompatible interfaces."

"Define the skeleton of an algorithm in an operation, deferring

some steps to subclasses. Template Method lets subclasses

redefine certain steps of an algorithm without changing the

algorithm's structure."

Adapter

Builder

"Separate the construction of a complex object from its

representation so that the same construction process can create

different representations."

7

Abstract Factory
"Provide an interface for creating families of related or dependant

objects without specifying their concrete classes."

"Define an interface for creating an object, but let subclasses

decide which class to instantiate. Factory method lets a class defer

instantiation to subclasses."

Factory Method

Note: These definitions are taken from Design Patterns.

1.5.2 Pattern: Singleton

Definition : "Ensure a class has only one instance, and provide a global point of access
to it. II

This is one of the easiest patterns to implement.

1.5.2.1 Applications in Delphi

There are several examples of this sort of class in the Delphi VCL, such as

T Application, TScreen or TClipboard. The pattern is useful whenever you want a single

global object in your application. Other uses might include a global exception handler,

application security, or a single point of interface to another application.

1.5.2.2 Implementation Example

To implement a class of this type, override the constructor and destructor of the class to

refer to a global (interface) variable of the class.

Abort the constructor if the variable is assigned, otherwise create the instance and

assign the variable.

In the destructor, clear the variable if it refers to the instance being destroyed.

Note: To make the creation and destruction of the single instance automatic, include its

creation in the initialization section of the unit. To destroy the instance, include its

destruction in an ExitProc (Delphi 1) or in the finalization section of the unit (Delphi 2).

8

The following Delphi 1 example illustrates two singleton classes, one derived from

TComponent and another derived from TObject.

unit Singletn;

interface

uses

SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,

Forms, Dialogs;

type

TC Singleton = class(TComponent)

public

constructor Create(AOwner: TComponent); override;

destructor Destroy; override;

end;

TOSingleton = class(TObject)

public

constructor Create;

destructor Destroy; override;

9

end;

var

Global_ CSingleton: TCSingleton;

Global_ OSingleton: TOSingleton;

procedure Register;

implementation

procedure Register;

begin

RegisterComponents('Design Patterns', [TC Singleton]);

end;

{ TCSingleton }

constructor TCSingleton. Create(A Owner: TComponent);

begin

if Global_CSingleton <> nil then

{NB could show a message or raise a different exception here}

Abort

10

else begin

inherited Create(AOwner);

Global_ CSingleton :== Self;

end;

end;

destructor TCSingleton.Destroy;

begin

if Global_ CSingleton = Self then

Global_ CSingleton := nil;

inherited Destroy;

end;

{ TOSingleton }

constructor TO Singleton. Create;

begin

if Global_ OSingleton <> nil then

{NB could show a message or raise a different exception here}

n

Abort

else

Global_ OSingleton := Self;

end;

destructor TOSingleton.Destroy;

begin

if Global_ OSingleton = Self then

Global_ OSingleton := nil;

inherited Destroy;

end;

procedure FreeGlobalObjects; far;

begin

if Global_ CSingleton <> nil then

Global_ CSingleton.Free;

ifGlobal_OSingleton <> nil then

Global_ OSingleton.Free;

end;

12

begin

AddExitProc(FreeGlobalObjects);

end.

1.5.3 Pattern: Adapter

Definition : "Convert the interface of a class into another interface clients expect.

Adapter lets classes work together that couldn't otherwise because of incompatible

interfaces."

A typical example of this is the wrapper Delphi generates when you import a VBX or

OCX. Delphi generates a new class which translates the interface of the external control

into a Pascal compatible interface. Another typical case is when you want to build a

single interface to old and new systems.

Note Delphi does not allow class adaption through multiple inheritance in the way

described in Design Patterns. Instead, the adapter needs to refer to a specific instance of

the old class.

1.5.3.1 Implementation Example

The following example is a simple (read only) case of a new customer class, an adapter

class and an old customer class. The adapter illustrates handling the year 2000 problem,

translating an old customer record containing two digit years into a new date format.

The client using this wrapper only knows about the new customer class. Translation

between classes is handled by the use of virtual access methods for the properties. The

old customer class and adapter class are hidden in the implementation of the unit.

unit Adapter;

interface

13

14

uses SysUtils, Classes;

type

{ The new class }

TNewCustomer = class

private

FCustomerID: Longint;

FFirstName: string;

FLastName: string;

FDOB: TDateTime;

protected

function GetCustomerID: Longint; virtual;

function GetFirstName: string; virtual;

function GetLastName: string; virtual;

function GetDOB: TDateTime; virtual;

public

constructor Create(CustID: Longint); virtual;

property CustomerID: Longint read GetCustomerID;

15

property FirstName: string read GetFirstName;

property LastName: string read GetLastName;

property DOB: TDateTime read GetDOB;

end;

{ An interface method }

{ Lets us hide details of TOldCustomer from the client }

function GetCustomer(CustomerID: Longint): TNewCustomer;

implementation

const

Last_OldCustomer_At_Year_2000 = 15722;

Last_OldCustomer_In_Database = 30000;

{ The new class }

constructor TN ewCustomer. Create(CustID: Longint);

begin

FCustomerID := CustID;

FFirstName := 'A';

FLastName := 'New_ Customer';

FDOB :=Now;

end;

function TNewCustomer.GetCustomerID: Longint;

begin

Result:= FCustomerID;

end;

function TNewCustomer.GetFirstName: string;

begin

Result := FFirstName;

end;

function TNewCustomer.GetLastName: string;

begin

Result := FLastName;

end;

function TNewCustomer.GetDOB: TDateTime;

begin

Result:= FDOB;

16

end;

type

{ The old class }

TOldDOB = record

Day: 0 .. 31;

Month: 1..12;

Year: 0:.99;

end;

TOldCustomer = class

FCustomerID: Integer;

FName: string;

FDOB: TOldDOB;

public

constructor Create(CustID: Integer);

property CustomerID: Integer read FCustomerID;

property Name: string read FName;

property DOB: TOldDOB read FDOB·

17

function GetFirstName: string; override;

function GetLastName: string; override;

function GetDOB: TDateTime; override;

public

constructor Create(CustID: Longint); override;

destructor Destroy; override;

end;

{ The Adapter class }

constructor T AdaptedCustomer. Create(CustID: Longint);

begin

inherited Create(CustID);

FOldCustomer := TOldCustomer.Create(CustID);

end;

destructor T Adapted Customer.Destroy;

begin

FOldCustomer.Free;

19

inherited Destroy;

end;

function TAdaptedCustomer.GetCustomerID: Longint;

begin

Result:= FOldCustomer.CustomerID;

end;

function TAdaptedCustomer.GetFirstName: string;

var

SpacePos: integer;

begin

SpacePos := Pos(' ', FOldCustomer.Name);

if SpacePos = 0 then

Result:="

else

Result:= Copy(FOldCustomer.Name,l,SpacePos-1);

end;

function TAdaptedCustomer.GetLastName: string;

20

var

SpacePos: integer;

begin

SpacePos := Pos(' ', FOldCustomer.Name);

if SpacePos = 0 then

Result:= FOldCustomer.Name

else

Result := Copy(FOldCustomer.Name,SpacePos+ 1,255);

end;

function TAdaptedCustomer.GetDOB: TDateTime;

var

FullYear: Word;

begin

if CustomerID > Last OldCustomer At Year 2000 then - - - -

FullYear := 2000 +FOldCustomer.DOB.Year

else

FullYear := 1900 + FOldCustomer.DOB.Year;

21

Result := EncodeDate(FullYear,

FOldCustomer.DOB.Day);

FOldCustomer.DOB.Month,

end;

function GetCustomer(CustomerID: Longint): TNewCustomer;

begin

if CustomerID > Last OldCustomer In Database then - - -

Result := TNewCustomer.Create(CustomerID)

else

Result := TAdaptedCustomer.Create(CustomerID) as TNewCustomer;

end;

end.

1.5.4 Pattern: Template Method

Definition: "Define the skeleton of an algorithm in an operation, deferring some steps to

subclasses. Template Method lets subclasses redefine certain steps of an algorithm

without changing the algorithm's structure."

This pattern is essentially an extension of abstract methods to more complex algorithms.

1.5.4.1 Applications in Delphi

Abstraction is implemented in Delphi by abstract virtual methods. Abstract methods

differ from virtual methods by the base class not providing any implementation. The

22

descendant class is completely responsible for implementing an abstract method.

Calling an abstract method that has not been overridden will result in a runtime error.

A typical example of abstraction is the TGraphic class.

TGraphic is an abstract class used to implement TBitmap, Tlcon and TMetafile. Other

developers have frequently used TGraphic as the basis for other graphics objects such as

PCX, GIF, JPG representations. TGraphic defines abstract methods such as Draw,

LoadFromFile and SaveToFile which are then overridden in the concrete classes. Other .•.
objects that use TGraphic, such as a TCanvas only know about the abstract Draw

method, yet are used with the concrete class at runtime.

Many classes that use complex algorithms are likely to benefit from abstraction using

the template method approach. Typical examples include data compression, encryption

and advanced graphics processing.

Implementation Example

To implement template methods you need an abstract class and concrete classes for

each alternate implementation. Define a public interface to an algorithm in an abstract

base class. In that public method, implement the steps of the algorithm in calls to

protected abstract methods of the class. In concrete classes derived from the base class,

override each step of the algorithm with a concrete implementation specific to that

class.

This example shows some very simple alogrithm steps, but illustrates the principle of

deferring implementation to a subclass.

unit Tpl meth;

interface

type

TAbstractTemplateClass = class(TObject)

23

protected

function Algorithm_StepA: Integer; virtual; abstract;

function Algorithm_StepB: Integer; virtual; abstract;

function Algorithm_StepC: Integer; virtual; abstract;

public

function Algorithm: Integer;

end;

TConcreteClassA = class(TAbstractTemplateClass)

protected

function Algorithm_ StepA: Integer; override;

function Algorithm_ StepB: Integer; override;

function Algorithm_StepC: Integer; override;

end;

TConcreteClassB :::;: class(T AbstractT emplateClass)

protected

function Algorithm_ StepA: Integer; override;

function Algorithm_StepB: Integer; override;

24

function Algorithm_StepC: Integer; override;

end;

1.5.5 Pattern: Builder

Definition :"Separate the construction of a complex object from its representation so

that the same construction process can create different representations."

A Builder seems similar in concept to the Abstract Factory. The difference as 1 sec it is

the Builder refers to single complex objects of different concrete classes but containing

multiple parts, whereas the abstract factory lets you create whole families of concrete

classes, For example, a builder might construct a house, cottage or office. You might

employ a different builder for a brick house or a timber house, though you would give

them both similar instructions :-ih,1111 the size and sh:-ipe 111 ihe hn11se On 1ht'. oilier l,;md

the factory generates parts and not the whole. It might produce a range of windows for

buildings, or it might produce a quite different range of windows for cars.

1.5.5.1 Applications in Delphi

T.hc limctjona/jty used jn Delphi's VCL to create torrns and components is similar in

concept to the builder. Delphi creates forms using a common interface, through.
. ·, t F d th h ., TF ' ' · 'T'"<"' • ' " Appilcanon.Lrea e orm an rroug tne _ onn c.rnss t:1_1ns1n1ctur. 1 run11 rn,paiuK=H.s a.=i

common constrnctor using the resource information (DFM file) to instantiate the

process to create different representations. Delphi also makes developer extensions

easy. TForm's OnCreate event also adds a hook into the builder process to make the

functionality easy to extend.

1.5.5.2 Implementation Example

The following example includes a class TAbstractFormBuilder and two concrete classes

TRedFonnBuilder and TBlueFormBuilder. For ease of development some common

25

function GetForm: TForm; virtual;

functionality of the concrete classes has been moved into the shared

TAbstractFormBuilder class.

type

TAbstractFormBuilder = class

private

FForm: TForm;

procedure BuilderFormClose(Sender: TObject; var Action: TCloseAction);

protected

public

procedure CreateForm(AOwner: TComponent); virtual;

procedure CreateSpeedButton; virtual; abstract;

procedure CreateEdit; virtual; abstract;

procedure CreateLabel; virtual; abstract;

property Form: TForm read GetForm;

end;

type

TRedFormBuilder = class(TAbstractFormBuilder)

26

private

FNextLeft, FNextTop: Integer;

public

procedure CreateForm(AOwner: TComponent); override;

procedure CreateSpeedButton; override;

procedure CreateEdit; override;

procedure CreateLabel; override;

end;

type

TBlueFormBuilder = class(TAbstractFormBuilder)

private

FNextLeft, FNextTop: Integer;

public

procedure CreateForm(AOwner: TComponent); override;

procedure CreateSpeedButton; override;

procedure CreateEdit; override;

procedure CreateLabel; override;

27

28

end;

At runtime the client application instructs one of the concrete classes to create parts

using the public part creation procedures. The concrete builder instance is passed to the

folliwing procedure:

procedure

TAbstractFormBuilder);

\

TForml .Create3ComponentFormUsingBuilder(ABuilder:

var

NewForm: TForm;

begin

with ABuilder do begin

CreateForm(Application);

Create Edit;

CreateSpeedButton;

CreateLabel;

NewForm := Form;

ifNewForm <> nil then NewForm.Show;

end;

end;

1.5.6 Pattern: Abstract Factory

Definition: "Provide an interface for creating families of related or dependant objects

without specifying their concrete classes."

The Factory Method pattern below is commonly used in this pattern.

1.5.6.1 Applications in Delphi

This pattern is ideal where you want to isolate your application from the implementation

of the concrete classes. For example if you wanted to overlay Delphi's VCL with a

common VCL layer for both 16 and 32 bit applications, you might start with the

abstract factory as a base.

1.5.6.2 Implementation Example

The following example uses an abstract factory and two concrete factory classes to

implement different styles of user interface components. TOAbstractFactory is a

singleton class, since we usually want one factory to be used for the whole application.

TOAbstractFactory = class(TObject)

public

constructor Create;

destructor Destroy; override;

{ abstract widget constructors }

function CreateSpeedButton(AOwner: TComponent): TSpeedButton; virtual;

abstract;

function CreateEdit(AOwner: TComponent): TEdit; virtual; abstract;

29

function CreateLabel(AOwner: TComponent): TLabel; virtual; abstract;

end;

TORedFactory and TOBlueFactory override the abstract interface to support different

widget styles.

TORedFactory = class(TOAbstractFactory)

public
I

{ concrete widget constructors }

function CreateSpeedButton(AOwner: TComponent): TSpeedButton; override;

function CreateEdit(AOwner: TComponent): TEdit; override;

function CreateLabel(AOwner: TComponent): TLabel; override;

end;

TOBlueFactory = class(TOAbstractFactory)

public

{ concrete widget constructors }

function CreateSpeedButton(AOwner: TComponent): TSpeedButton; override;

function CreateEdit(AOwner: TComponent): TEdit; override;

30

function CreateLabel(AOwner: TComponent): TLabel; override;

end;

At runtime, our client application instantiates the abstract factory with a concrete class

and then uses the abstract interface. Parts of the client application that use the factory

don't need to know which concrete class is actually in use.

1.5. 7 Pattern: Factory Method

Definition :"Define an interface for creating an object, but let subclasses decide which

class to instantiate. Factory method lets a class defer instantiation to subclasses."

The Abstact Factory pattern can be viewed as a collection of Factory Methods.

1.5.7.1 Applications in Delphi

This pattern is useful when you want to encapsulate the construction of a class and

isolate knowledge of the concrete class from the client application through an abstract

interface.

One example of this might arise if you had an object oriented business application

potentially interfacing to multiple' target DBMS. The client application only wants to

know about the business classes, not about their implementation-specific storage and

retrieval.

1.5.7.2 Implementation Example

In the Abstract Factory example, each of the virtual widget constructor functions is a

Factory Method. In their implementation we define a specific widget class to return.

TRedSpeedButton = class(TSpeedButton)

public

31

constructor Create(AOwner: TComponent); override;

end;

constructor TRedSpeedButton.Create(AOwner: TComponent);

begin

inherited Create(AOwner);

Font.Color:= clRed;

end;

function TORedFactory.CreateSpeedButton(AOwner: TComponent): TSpeedButton;

begin

Result := TRedSpeedButton.Create(AOwner);

end;

1.6 APPENDIX : Key Elements of Delphi Class Definitions

1.6.1 Unit Structure

Delphi units (.PAS files) allow declaration of interface and implementation sections.

The interface defines thepart that is visible to other units using that unit. The keyword

uses can be added to a unit's interface or implementation section to list the other units

that your unit uses. This indicates to the compiler that your unit refers to parts of the

used unit's interface. Parts of a unit declared in the implementation section are all

private to that unit, i.e. never visible to any other unit. Types, functions and procedures

32

declared in the interface of a unit must have a corresponding implementation, or be

declared as external (e.g. a call to a function in a DLL).

1.6.2 Class Interfaces

Classes are defined as types in Delphi and may contain fields of standard data types or

other objects, methods declared as functions or procedures, and properties. The type

declaration of a class defines its interface and the scope of access to fields, methods and

properties of the class. Class interfaces are usually defined in the interface of a unit to

make them accessible to other modules using that unit. However they don't need to be.

Sometimes a type declaration of a class may be used only within the implementation

part of a unit.

1.6.3 Properties

Properties are a specialised interface to a field of a defined type, allowing access control

through read and write methods. Properties are not virtual, you can replace a property

with another property of the same name, but the parent class doesn't know about the

new property. It is however possible to make the access methods of a property virtual.

1.6.4 Inheritance

Delphi's inheritance model is based on a single hierarchy. Every class inherits from

TObject and can have only one parent.

A descendant class inherits all of the interface and functionality of its parent class,

subject to the scope described below.

Multiple inheritance from more than one parent is not allowed directly. It can be

implemented by using a container class to create instances one or more other classes

and selectively expose parts of the contained classes.

Private, Protected, Public and Published Scope

33

Scope refers to the visibility of methods and data defined in the interface of a class, i.e.

what parts of the class are accessible to the rest of the application or to descendant

classes.

The default scope is public, for instance the component instances you add to a form at

design time. Public says "come and get me"; it makes the data or method visible to

everything at runtime.

Published parts of a class are a specialized form of Public scope. They indicate special

behaviour for classes derived from TPersistent. A persistent class can save and restore

its published properties to persistent storage using Delphi's standard streaming methods.

Published properties also interact with Delphi Object Inspector in the IDE. A class must

descend from TPersistent in order to use Published. There's also not much point in

publishing methods, since you can't store them, although Delphi's compiler doesn't stop

you. Published also lets another application access details of the class through Delphi's

runtime type information. This would be rarely used, except in Delphi's design time

interaction with its VCL.

Encapsulation or information hiding is essential to object orientation, so Protected and

Private scope let you narrow the access to parts of a class.

Protected parts are visible only to descendant classes, or to other classes defined in the

same unit.

Private parts are visible only to the defining class, or to other classes defined in the

same unit.

It's important to note that once something is given public or published scope, it cannot

be hidden in descendant classes.

Static, Virtual and Dynamic Methods; Override and Inherited

Methods declared as virtual or dynamic let you change their behaviour using override in

a descendant class. You're unlikely to see a virtual method in the private part of a class,

since it could only be overridden in the same unit, although Delphi's compiler doesn't

stop you from doing this.

34

Override indicates that your new method replaces the method of the same name from

the parent class. The override must be declared with the same name and parameters as

the original method.

When a method is overridden, a call to the parent class's method actually executes the

override method in the real class of the object.

Static methods on the other hand have no virtual or override declaration. You can

replace a method of a class in a descendant class by redeclaring another method,

however this is not object oriented. If you reference your descendant class as the parent

type and try to call the replaced method, the static method of the parent class is

executed. So in most cases, it's a bad idea to replace a static method.

Virtual and dynamic methods can be used interchangeably. They differ only in their

treatment by the compiler and runtime library. Delphi's help explains that dynamic

methods have their implementation resolved at compile time and run slightly faster,

whereas virtual methods are resolved at runtime, resulting in slightly slower access but

a smaller compiled program. Virtual is usually the preferred declaration. Delphi's help

suggests using dynamic when you have a base class with many descendants that may

not override the method.

The inherited directive lets you refer back to a property or method as it was declared in

the parent class. This is most often used in the implementation of an override method, to

call the inherited method of the parent class and then supplement its behaviour.

1.6.5 Abstract Methods

Abstract is used in base classes to declare a method in the interface and defer its

implementation to a descendant class. I.e. it defines an interface, but not the underlying

operation. Abstract must be used with the virtual or dynamic directive. Abstract

methods are never implemented in the base class and must be implemented in

descendant classes to be used. A runtime error occurs if you try to execute an abstract

method that is not overridden. Calling inherited within the override implementation of

an abstract method will also result in a runtime error, since there is no inherited

behaviour.

35

1.6.6 Messages

Delphi's handling of Windows messages is a special case of virtual methods. Message

handlers are implemented in classes that descend from TControl. Le classes that have a

handle and can receive messages. Message handlers are always virtual and can be

declared in the private part of a class interface, yet still allow the inherited method to be

called. Inherited in a message handler just uses the keyword inherited, there is no need

to supply the name of the method to call.

1.6. 7 Events

Events are also an important characteristic of Delphi, since they let you delegate

extensible behaviour to instances of a class. Events are properties that refer to a method

of another object. Events are not inherited in Delphi 1; Delphi 2 extends this behaviour

to let you use inherited in an event. . Inherited in an event handler just uses the keyword

inherited, there is no need to supply the name of the method to call.

Events are particularly important to component developers, since they provide a hook

for the user of the component to modify its behaviour in a way that may not be foreseen

at the time the component is written.

1.6.8 Constructors and Destructors

The constructor and destructor are two special types of methods. The constructor

initializes a class instance (allocates memory initialized to 0) and returns a reference

(pointer) to the object. The destructor deallocates memory used by the object (but not

the memory of other objects created by the object).

Classes descended from TObject have a static constructor, Create, and a virtual

destructor Destroy.

TComponent introduces a new public property, the Owner of the component and this

must be initialized in the constructor. TComponent's constructor is declared virtual, i.e.

it can be overridden in descendant classes.

36

It is essential when you override a virtual constructor or destructor in a TComponent

descendant to include a call to the inherited method.is one of the best programming

tools to create software for Windows (and the .NET framework).

1. 7 Delphi Compilers

With Delphi you can without much effort create small yet powerful Windows

applications, which do not need to be installed, do not depend on Active X controls, or

special dlls. This means that you will have far fewer users complaining about

installation problems than if you created your software using Java, Visual Basic or

Visual C++. Besides, many quality Delphi freeware, shareware and open source

components can be found on the Web. See also below.

Delphi allows fast and high-level/abstract programming, like Java and Visual Basic, but

you can also use it to code at a lower/more fundamental level, like you can do with most

C++ environments. Delphi is based on the Pascal programming language making it

ideal for educational purposes as well.

1.7.1 Free Delphi IDEs and Compilers

Turbo Delphi: Free industrial strength Delphi RAD (Rapid Application Development)

environment and compiler for Windows. It comes with 200+ components and its own

Visual Component Framework. Note: this is the free edition of Borland's Delphi. The

only limitation of this free edition is that you can not install additional components.

Turbo Delphi for .NET: Free industrial strength Delphi application development

environment and compiler for the Microsoft .NET platform.

1.7.2 Free Delphi Compression Libraries

Abbrevia: Freeware open-source compression -toolkit for Borland Delphi, C++Builder,

& Kylix. It supports PKZIP 4, Microsoft CAB, TAR, & gzip formats & the creation of

37

self-extracting archives. It includes visual components that simplify the manipulation of

ZIP files.

DelphiZip: Freeware Delphi zip component including source code.

DIUcI: Delphi port of the fast and memory-efficient UCL C++-compression Library.

1. 7.3 Free Delphi Script Engines

Innerfuse Pascal Script: Freeware script engine written in Delphi. IFPS allowes you to

use most of Object Pascal language within your projects at runtime. It's a set of units

that can be compiled into your exe file so there is no need to distribute any external

files.

1.7.4 Free Database Components

B-Tree Filer: Fast file-based database-system created with Borland Delphi, and which is

not dependent on other tools, such as the Borland Database Engine or third-party dll's.

Freeware, open-source.

SOL Parser for Delphi: A string parser that is capable to parse SQL statements into

tokens, allows changing theese tokens and rebuilding (modified) SQL statement.

Direct SOL: Cross-platform (Windows and Linux) Delphi/Kylix native components for

directly accesing mySQL servers (without using any extemall dll's).

FlashFiler: Freeware, open-source client/server database created using Delphi.

FlashFiler features a component-based architecture and can be compiled into your

applications. Easy to configure, fast, and includes SQL.

kbmMemTable: Freeware. A full TDataset compatible in-memory table.

38

Open source dbExpress drivers: DbExpress driver for ODBC. Supports Delphi 7 &

6.02, BCB 6, and Kylix 2 & 3. Tested against many Databases including: Microsoft

SqlServer, Oracle, IBM DB2, Centura SqlBase, MySql, Microsoft Access, and

Real Isam: A database library (DLL) that uses the ISAM method (Indexed Sequential

Access Method) to manage access keys and variable length data records. For C++,

Delphi, Visual Basic, etc. Freeware for Windows

tDBF: A native data access component for Delphi, BCB, Kylix, FreePascal. It allows

you to create very compact database programs which don't need any special installer

programs. The DB engine code is compiled right into your executable.

TJanSOL: TjanSQL is a single user SQL Database engine using plain text files with

semi-colon separated data for data storage. In-memory handling of tables and

recordsets; semi-compiled expressions. Freeware, open-source.

MidWare: Middleware the genral term for an application Layer put in the "middle" of a

multi-tiered architecture software, allowing the various layers or "Tiers" to talk to each

other. Middleware is the "glue" used to build efficient and scalable N-Tier Client/Server

programs.The component set 'MidWare' consists of a set of 'Middleware' components

and units which allow you to create an Application Server and related thin Client

application, in just a few minutes. All without worrying about Client connections, data

formatting and other details which make a multi-tiered Client/Server program so

difficult to write. MidWare also includes CGI, ISAPI and ASP modules for web

applications.

1.7.5 Delphi UI Components

Human Interface Device controller suite: The HID controller (Human Interface

Devices) is a component suite, which gives complete access to HID devices. Handles all

devices which are in the HID subclass of USB

39

LS Speller: A non-visual Delphi component designed to add spell check capability to

any application

Soft Gems Color Picker: Free advanced color picker component for Delphi and BCB.

SynEdit: An advanced multi-line cross-platform edit control, for Borland Delphi, Kylix

and C++Builder. It supports Syntax Highlighting and code completion, it includes

exporters for html, txt and rtf.

Virtual Treeview: Very powerful freeware open-source Delphi treeview component.

1.7.6 Printing and Reports

Print Preview Suite: Excellent freeware Delphi print & preview component including

source code.

FreeReport: Free report engine for Delphi and C++ Builder with report designer and

previewer. Comparable to QuickReport3 and ReportBuilder 3.52. Freeware, full source

code, royalty-free

Report Manager: Both a print scheme designer (report) and a high level printing

(reporting) engine. Also a TCP Report Server and a Web Report Server (PDF on the

fly), supports Windows and Linux. Connectivity to almost all databases is provided.

1.7.7 Free Delphi Unicode Libraries

TntWare Delphi Unicode Controls: Delphi controls which allow you to develop

applications that take advantage of the Unicode capabilities of Windows

NT/2000/XP/2003.

SoftGems UniCodeEditor: UCE, the UniCodeEditor is an edit control for Delphi and

Borland C++ Builder with syntax highlighting and WideString/Unicode support. This

40

edit control comes with syntax highlighter classes for Delphi, CIC++, HTML, SQL and

DCG (the Delphi Compiler Generator).

Delphi Fundamentals Unicode Library: Delphi units which provide common functions

necessary to utilize Unicode strings in Delphi applications.

SoftGems Unicode Library: A Delphi Unicode support library to use

WideStrings/Unicode strings in your application. It includes more than 100 functions

and classes for handling Unicode widestrings, as well as a unicode-enabled search

engine and a unicode enabled regular expression search engine.
/

1.7.8 Delphi Component Directories

Delphi Pages: Delphi components, tips, articles, forums, resumes, etc.

VCL Components: Components and libraries for Delphi, C++, Basic, Assembler, etc

Delphi Super Page: A large listing of components and sources.

Delphi32.com: Lots of Delphi-related information and downloads ordered by category.

DelphiSource: The latest news, libraries, components and utilities.

Torry's Delphi Page: Numerous components ordered by category, but a bit outdated

here and there

DelphiABC: Delphi components, tools, applications, samples, tips and articles.

ComponentSource: Very commercial components site for a variety of compilers

including Delphi and .NET.

41

1.7.9 Free Delphi Libraries, Components, Utilities

Delphi Fundamentals: Comprehensive collection of Delphi code units. Includes libraries

for Unicode, Strings, Data Structures, Socket components and Mathematics

Delphi Hotkey: Create a system wide hotkey. The way this works is that your program

will received an event whenever the specified hotkey is pressed regardless of which

application has focus.

delphi2cpp: A free utility which converts Delphi/Pascal units into C++ code.

FastMM: Fast replacement memory manager for Borland Delphi Win32 applications

that scales well in multi-threaded applications, is not prone to memory fragmentation,

and supports shared memory without the use of external .DLL files.

GpHugeFile: Encapsulation of Windows file-handling routines that allows work with

files larger than 2GB.

Jedi: A large collection of freeware/open-source components.

MYTHcode.org: A collection of object pascal libraries for parsing text strings and

macro languages HTML, XHTML, XML, CSS and others.

PSV Delphi Components Library: A set of Open Source Delphi components containing:

Windows Dialogs Library, php4Delphi, ISAPI and CGI support for Indy, RichEdit

Syntax Highlighter .

Standard Interface Library: A framework library which aims to independize we all, the

delphi developers, from the different glitches and jerks of the CLX/VCL, and attempts

to provide code that is independent from the operating system. It is based on *heavy*

use of interfaces.

42

TfisFileNotification: Creates a thread and uses it to monitor the contents of a directory

or directory tree. Many different file changes can be monitored such as file size, last

write, creation & deletion etc

TurboCASH Accounting: Entry level Delphi, Windows Accounting package for single

users, small networks and distributed networks. Accomodates developer scripts, local

plugins and multi language translation. Ideal for SME market.

TurboPower Essentials: 13 native VCL controls including drop-down calendars &

calculators, roll-up dialogs, 3-D labels, tiled backgrounds, scrolling messages, menu

buttons, and more. Freeware, open-source for Delphi and C++ Builder.

TurboPower Orpheus: Freeware, open-source UI toolkit for Borland Delphi and

C++Builder. It contains over 120 components covering everything from data entry to

calendars and clocks. Other noteworthy components include an Object Inspector,

LookOut bar, and report views.

TurboPower ShellShock: A set of freeware, open-source components that let you

customize applications with the functionality available in the Windows Shell and

Windows Explorer, all without writing code. The components are written in native VCL

for Borland Delphi and C++Builder

TurboPower SysTools: Freeware, open-source library of utility routines and classes for

Borland Delphi, C++Builder, and other environments that support COM. It includes 1-

D and 2-D bar codes, sorting, money routines, logging, high-precision math, a run-time

math expression analyzer, etc.

Unofficial VisualCLX patches: Unofficial VisualCLX patches

1.7.10 Graphics Libraries

Crispy Plotter: Plots mathematical functions at high speed.

43

Filters: An image processing library: sobel, convolution, morphology, vectorization,

segmentation, blob, blur, histogram, susan, threshold, texture, contrast, standard

deviation, canny, distance map, douglas-peuker, sklansky-gonzales, contour, edge, etc.

Genesis Device: Open Source 3D engine project to create a complete FPS game engine,

including tools to create and view a virtual-scene.

Graph Package: Two components TGraph & TGraph3D which can help users to easily

and quickly create 2D/3D graphics applications.

GraphicEx: An addendum to Delphi's Graphics.pas to enable your application to load

many additional image formats.

Graphics32: A library designed for fast 32-bit graphics handling on Delphi and Kylix.

Optimized for 32-bit pixel formats, it provides fast operations with pixels and graphic

primitives, and in most cases Graphics32 outperforms the standard TCanvas classes. It

is almost a hundred times faster in per-pixel access and about 2 - 5 times faster in

drawing lines.

Real-Time Oscilloscope DLL Library: Freeware real-time Windows Oscilloscope DLL

with an API for C++ , Delphi, Math Works Matlab and Simulink.

TEffects: Free component for creating effects similar to what can be achieved by using

commercial photo editing programs.

1.7.1130 Programming

3D Engines: Large list of 3D engines on various platforms and for various programming

languages.

3D Studio Import Library: A collection of classes and structures to allow loading 3d

Studio mli (material) and prj (project) files into your Delphi and Borland C++ Builder

application.

44

Delphi OpenGL community: German OpenGL site for Delphi programmers.

Delphi3d.net: Site devoted to rapid OpenGL development.

GLScene: OpenGL package written in Delphi; freeware, open-source.

Open GL projects including source: www.sulaco.co.za/opengl.htm,

OpenGL witb. De\pbi: Bor\ancl community article on Ol)enGL. Get acquaintecl with

OpenGL 3D graphics programming with this cookbook approach.

OpenGL.org: General home page of OpenGL.

OpenGL SG: An interface unit for using OpenGL with Delphi. It contains the

translations of the gl.h, glu.h, glx.h and glext.h header files as well as a number

additional support functions, and an interface with for most OpenGL extensions.

TOpenGL: This TOpenGL component for Borland C++ Builder allows you to build

great two or three dimensional images inside your program. You can even animate these

images.

Codehead's Bitmap Font Generator: A free bitmap font creation tool for OpenGL or

DirectX applications.

1.7.12 Delphi Game Programming

3dstate: 3D Engines and sets of tools for writing 3D games. Freeware for non­

commercial use.

About.com Delphi game programming: Real-time 2D particle systems, VCL sprite

engine, 3D engines list, basic game programming, DirectX.

45

Chessboard: Freeware chessboard component for Delphi and C++ Builder. It provides a

.• -Dimensional and customizable chessboard with a drag and drop interface and event

handlers (OnLegalMove, OnillegalMove, OnCapture, OnCheck, OnMate, OnStaleMate,

OnDraw etc.) A simple chess engine is included but of course you can use your own

chess engine as well.

1.7.13 Delphi Programs with Source

Apophysis: A windows application made in delphi for creating and editing fractal

flames. Fractal flames are a extension on the ifs fractal.

Free Delphi Programs with Source: Free Delphi programs with source code for Internet,

Database, HTML generation, RSR232 communication, terminal emulation, graphics,

data conversion, help file making and more.

Extreme Performance Hospital IS: Freeware, open-source application for hospitals,

containing a large number of modules which keep data of Patient Image, Symptoms,

Physical Condition, Investigation, Diagnosis, Treatment including Procedure I

Medication.etc. There are 50 hospitals in Thailand using this program.

Monex: Personal finance manager based on double entry bookkeeping principles.

upports download of financial data (exchange rates, stock quotes ...). Download of

online available data is intended for a Slovenian audience, but can be customized.

MultiPro - FTP Client: Windows FTP program.

OpenSeelT: An opensource image viewer program for Windows written in Delphi.

Phoenix Mail: An open source email client for Windows (and Linux?). Developed using

Delphi.

VSpeech: Application enabling users to control their computer by their voice.

46

1.7.14 Internet and Communication Components

Internet Components: Native components implementing FTP, Mail, etc. This page also

lists other components and various useful resources.

Indy Project: (I) Internet Direct (INDY) is an open source internet component suite

comprised of popular internet protocols based on blocking sockets.

(2) lndySoap is a Open Source Library for implementing Web services using Borland

Pascal Compilers.

TurboPower Async Professional: A comprehensive communications toolkit for Borland

Delphi, C++Builder, & ActiveX environments. It provides direct access to serial ports,

TAPI, and the Microsoft Speech APL It supports faxing, terminal emulation, VOIP, &

more. Freeware, open-source.

TurboPower Internet Professional: A set of freeware/open-source VCL components

providing Internet connectivity. It includes POP3, SMTP, NNTP, FTP, HTTP, Instant

Messaging, HTML viewer components, as well as components for low-level socket

access.

Kylix WebProvider: Open Source CGI WebBroker replacement. It allows you to

develop CGI applications in Apache environment using Kylix. It has a very small size

compared to WebBroker and works fine with the Indy library and IndySOAP

1.7.15 Core Delphi

Programming without: Example of a Delphi 'Hello World' application without using the

Borland application framework, but by calling the Windows API directly. The

advantage is a fast and very small program (15 Kb) but it is more work.

47

1.7.16 Resource Editors

XN Resource Editor: Freeware open-source resource editor and PE module explorer for

Windows. It works with all resource files (.RES) and PE modules (.EXE, .DLL, etc.)

and it has special knowledge of modules written in Delphi. It can display all the

modules that comprise a Delphi program, and let you edit the properties of the

components used on Delphi forms

Resource Hacker: A freeware resource editor for 32bit Windows executables and

resource files(* .res).

1.7.17 Delphi Tools

FreeVCS: Freeware, open-source version control system having a Client/Server

architecture and written in Delphi. It has syntax highlighting for Delphi, Pascal, C++,

VB, Perl, Java, JavaScript, HTML, CSS, PHP, SQL, etc. and can be integrated with the

Delphi IDE.

1.7.18 Delphi Magazines

Dr. Bob's Delphi Clinic: Indepth discussion of Delphi-related issues by Dr. Bob: links,

news, facts, tricks, articles, etc.

DelphiZine: Articles on Delphi and related matters.

1.7.19 Delphi Communities

ADUG: ADUG is an organisation dedicated to providing a forum for activities and

information that promote and improve the professional use of Delphi and related

products and services in the Australian developer community.

Borland Newsgroups: The official Borland Delphi discussion forums. Discuss your

questions, ideas and problems with other programmers.

48

BUG: UK Borland user group.

Delphi Newsgroups: Useful information regarding Delphi newsgroups.

Delphi User groups: A large list of local/country-based user groups.

Delphi-Talk: This mailing list is an open forum for discussing anything related to

Borland Delphi.

1.7.20 Tutorials

A Beginner's Guide to Delphi Database Programming: This free online course for

database beginners and those who want a broad overview of the art of database

programming with Delphi. Learn how to design, develop and test a database application

using ADO.

Delphi Basics: Help and reference for the fundamentals of the Delphi language. It is an

introduction to the Delphi Object Oriented Language for newcomers, and provides a

ready reference for experienced programmers.

Delphi Land: Tutorials for beginners and intermediate level programmers, crash Course

Delphi, projects with fully commented source code, Tips and hints, book reviews,

Questions and Answers Forum, etc.

Free Online Programming Tutorials: Free online programming tutorials for beginning

Delphi programmers.

1.7.21 Delphi Resources

The Delphi-Box: Delphi portal; 1000+ links and tips for Developers.

49

HABit Delphi links: Very large collection of well-maintained links to Delphi sites, user­

grups, downloads, tutorials, FAQs and tips.

DelphiSeek: Directory and search engine for Delphi components, resources, etc.

The Delphi compendium: Delphi-related books and links.

De1phi32.com: Components, downloads, articles and news.

EFG's Computer Lab: A page containing lots of very interesting projects. E.g. in the

area of image processing, color, graphics, encryption, mathematics, fractals and chaos,

science and engineering.

Project Jedi: The main goal of Project Jedi is to translate Windows API C++ library

calls to native pascal units which can be used in Delphi.

Another goal is to be a "portal" Website through which the whole community can share

support, reusable code and components.

About Delphi programming: Useful site containing articles on Delphi (programming,

backgrounds,news,etc.).An extensive list containing many freeware, shareware and

commercial components can be found here.

1.8 CONCLUSION ABOUT DELPHI

Delphi, as a tool, has reached a stage of maturity in that it is used fairly extensively in

organizational settings in either the paper and pencil mode or in combination with face­

to-face meetings and Nominal Group Techniques. Since most of these exercises are

proprietary in nature there is not much of this activity reported in the open literature.

The one exception to this is the applications in the medical field which are in fact

actively reported and documented (Fink, Kosecoff, Chassin, and Brook, 1984). This

clearly is a result of the growing need to formulate collaborative judgements about

50

complex issues that are associated with the production of guidelines on medical practice

and decisions.

Computer Mediated Communications has also seen some very significant applications

in the medical field with respect to the formulation of collaborative judgements. One of

the most significant to be reported in the literature was the use of leading researchers in

Viral Hepatitis to review the research literature and update guidelines for practitioners

(Siegel, 1980). While this was not run in an anonymous mode, it had all the other

aspects of structure necessary for a dozen experts to deal with some five thousand

documents and reach complete consensus on the resulting guidelines.

Another CMC application that had Delphi like structuring with Anonymity was a Group

Therapy process to aid individuals in the cessation of smoking (Schneider, 1986;

Schneider and Tooley, 1986). A general review of CMC applications in the medical

field can be found in Lerch (1988).

However, there is yet to be a true merger of Delphi with Computer Mediated

Communications. It is only now that the technology is becoming generally available to

support the high degree of tailoring necessary to dynamically structure communications

within a single conferencing system (Turoff, 1991). Most conference systems, to date,

have only represented single design structures with very little control available to

facilitators and moderators of discussions. Also, the general lack of graphics has placed

a considerable limitation on just what Delphi techniques could be adapted to the

computer environment. The merger of Delphi and Computer Mediated Communications

potentially offers far more than the sum of the two methods.

Long before the concept of Expert Systems it was known that statistical factor models

(Dalkey, 1977) applied to a large sample of expert judgements could produce

performance that was consistently in the upper quarter of the performance distribution

curve. Such models did not suffer from "regression to the mean" and could result in

matching the best decisions by the best experts in the group. Expert Systems is really

the emergence of tools to allow this to be done on a fairly wide scale. However, the

results of Expert System approaches, as currently practiced, are never going to do better

than the best experts.

51

The merger of the Delphi Method, Computer Mediated Communications and the tools

that we have discussed opens the possibility for performance of human groups that

exceeds the composite performance curve. We have termed this phenomenon

collective intelligence" (Hiltz and Turoff, 1978). This is the ability of a group to

produce a result that is of better quality than any single individual in the group could

achieve acting alone. This rarely occurs in face-to-face groups.

A recent experiment in utilizing human judgement in conjunction with the types of

models that are used in Expert Systems confirms that this is in fact possible (Blattberg

and Hoch, 1990). There has been too much attention in recent years to utilizing

computer technology to replace humans and far too little effort devoted to the potential

for directly improving the performance of human groups. This can be achieved through

integration of computer based methods and the concept of structured communications at

the heart of the Delphi Method.

52

CHAPTER2

DATABASE

2.1 INTRODUCTION TO DATABASE

Every thing around us has a particular identity. To identify anything system, actor or
person in words we need a data or information. So this information is valuable and in
this advanced era we can store it in database and access this data by the blink of eye.

For an instant if we go through the definitions of database we may find following
finitions.

• A database is a collection of related information.
• A database is an organized body of related information.
• Each database has objects such as a table, query, form, or macro

Consist Of Tables. Forms
Query

Collection Of Data

User

\)

Pictorial definition of the Database

53

2.2 De-merits of Absence of Database

A glance on the past will may help us to reveal the drawbacks in case of
absence of database.

• In the past when there wasn't proper system of database, Much paper work was
need to do and to handle great deal of written paper documentation was giant
among the problems itself.

• In the huge networks to deal with equally bulky data, more workers are needed
which affidavit cost much labor expanses.

• The old criteria for saving data and making identification was much time
consuming such as if we want to search the particular data of a person.

• Before the Development of Computer database it was a great problem to search
for some thing. Efforts to avoid the headache of search often results in new
establishments of data.

• Before the development of database it seemed very unsafe to keep the worthy
information. In Some situation some big organization had to employee the
special persons in order to secure the data.

• Before the implementation of database any firm had to face the plenty of
difficulties in order to maintain their Management. To hold the check on the
expenses of the firm, the manager faced difficulties.

2.3 Merits of database

The modem era is known as the golden age computer sciences and technology. In a
simple phrase we can express that the modem age is built on the foundation of database.

If we carefully watch our daily life we can examine that some how our daily life is
being connected with database.

• There are several benefits of database developments.
• Now with the help of computerized database we can access data in a second.
• By the development of the database we can make data more secure.
• By the development of database we can reduce the cost.

2.4 Introduction to Database Design

The design of a database has to do with the way data is stored and how that data is
related. The design process is performed after you determine exactly what information
needs to be stored and how it is to be retrieved.

A collection of programs that enables you to store, modify, and extract information
from a database. There are many different types of DBMS ranging from small systems

54

that run on personal computers to huge systems that run on mainframes. The following
are examples of database applications:

• Computerized library systems

• Automated teller machines

• Flight reservation systems

• Computerized parts inventory systems

From a technical standpoint, DBMS can differ widely. The terms relational, network,
flat, and hierarchical all refer to the way a DBMS organizes information internally. The
internal organization can affect how quickly and flexibly you can extract information.
Requests for information from a database are made in the form of a query.
Database design is a complex subject. A properly designed database is a model of a
business, Country Database or some other in the real world. Like their physical model
ounterparts, data models enable you to get answers about the facts that make up the
objects being modeled. It's the questions that need answers that determine which facts
need to be stored in the data model.

In the relational model, data is organized in tables that have the following
haracteristics: every record has the same number of facts, every field contains the same
type of facts (Data) in each record, and there is only one entry for each fact. No two
records are exactly the same.

The more carefully you design, the better the physical database meets users' needs. In
the process of designing a complete system, you must consider user needs from a
variety of viewpoints.

2.5 Database Models

Various techniques are used to model data structures. Certain models are more easily

implemented by some types of database management systems than others. For any one

logical model various physical implementation may be possible. An example of this is

the relational model: in larger systems the physical implementation often has indexes

which point to the data; this is similar to some aspects of common implementations of

the network model. But in small relational database the data is often stored in a set of

files, one per table, in a flat, un-indexed structure. There is some confusion below and

elsewhere in this article as to logical data model vs. its physical implementation.

55

2.5.1 Flat Model

The flat (or table) model consists of a single, two dimensional array of data elements,

where all members of a given column are assumed to be similar values, and all

members of a row are assumed to be related to one another. For instance, columns for

name and password might be used as a part of a system security database. Each row

would have the specific password associated with a specific user. Columns of the table

often have a type associated with them, defining them as character data, date or time

information, integers, or floating point numbers. This model is the basis of the

spreadsheet.

2.5.2 Network Model

The network model allows multiple datasets to be used together through the use of

pointers (or references). Some columns contain pointers to different tables instead of

data. Thus, the tables are related by references, which can be viewed as a network

structure. A particular subset of the network model, the hierarchical model, limits the

relationships to a tree structure, instead of the more general directed graph structure

implied by the full network model.

2.5.3 Relational Model

The relational data model was introduced in an academic paper by E.F. Cod in 1970 as

a way to make database management systems more independent of any particular

application. It is a mathematical model defined in terms of predicate logic and set

theory.

Although the basic idea of a relational database has been very popular, relatively few

people understand the mathematical definition and only a few obscure DBMSs

implement it completely and without extension. Oracle, for example, can be used in a

purely relational way, but it also allow tables to be defined that allow duplicate rows an

56

extension (or violation) of the relational model. In common English usage, a DBMS is

called relational if it supports relational operational operations, regardless of whether it

enforces strict adherence to the relational model. The following is an informal, not­

technical explanation of how "relational" database management systems commonly

work.

A relational database contains multiple tables, each similar to the one in the "flat"

database model. However, unlike network databases, the tables are not linked by

pointers. Instead, keys are used to match up rows of data in different tables. A key is

just one or more columns in one table that correspond to columns in other tables. Any

column can be a key, or multiple columns can be grouped together into a single key.

Unlike pointers, it's not necessary to define all the keys in advance; a column can be

used as a key even if it wasn't originally intended to be one.

A key that can be used to uniquely identify a row in a table is called a unique key.

Typically one of the unique keys is the preferred way to refer to row; this is defined as

the table's primary key.

When a key consists of data that has an external, real-world meaning (such as a person's

name, a book's ISBN, or a car's serial number), it's called a "natural" key. If no nature

key is suitable, an arbitrary key can be assigned (such as by given employees ID

numbers). In practice, most databases have both generated and natural keys, because

generated keys can be used internally to create links between rows that can't break,

while natural keys can be used, less reliably, for searches and for integration with other

databases. (For example, records in two independently developed databases could be

matched up by social security number, except when the social security numbers are

incorrect, missing, or have changed).

2.5.3.1 Why we use a Relational Database Design

Maintaining a simple, so-called flat database consisting-of a single table doesn't require

much knowledge of database theory. On the other hand, most database worth

maintaining are quite a bit more complicated than that. Real life databases often have

57

58

dreds of thousands or even millions of records, with data that are very intricately

lated. This is where using a full-fledged relational database program becomes

ntial. Consider, for example, the Library of Congress, which has over 16 million

ks in its collection. For reasons that will become apparent soon, a single table

ply will not do for this database.

Relationships between Tables

iben you create tables for an application, you should also consider the relationships

een them. These relationships give a relational database much of its power. There

three types of relationships between tables: one-to-one, one-to-many and many-to­

y relationships .

. 1 One-To-One Relationships

a one-to-one relationship, each record in one table corresponds to a single record in a

ond table. This relationship is not very common, but it can offer several benefits.

First, you can put the fields from both tables into a single, combined table. One reason

or using two tables is that each field is a property of a separate entity, such as owner

operators and their tracks. Each operator can operate just one truck at a time, but the

elds for the operator and truck tables refer to different entities.

A one-to-one relationship can also reduce the time needed to open a large table by

placing some of the table's columns in a second, separate table. This approach makes

particular sense when a table has some fields that are used infrequently. Finally, a one­

to-one relationship can support in a table requires security, placing them in a separate

table lets your application restrict to certain fields. Your application can link the

restricted table back to the main table via a one-to-one relationship so that people with

proper permissions can edit, delete, and add new records to these fields.

2.6.2 One-To-Many Relationships

A one-to-many relationship, in which a row from one table corresponds to one or more

rows from a second table, is more common. This kind of relationship can form the basis

for a Many-To-Many relationship as well.

2. 7 Data Modeling

In information system design, data modeling is the analysis and design of the

information in the system, concentrating on the logical entities and the logical

dependencies between these entities. Data modeling is an abstraction activity in that the

details of the values of individual data observations are ignored in favor of the structure,

relationships, names and formats of the data of interest, although a list of valid values is

frequently recorded. It is by the data model that definitions of what the data means is

related to the data structures.

While a common term for this activity is "Data Analysis" the activity actually has more

in common with the ideas and methods of synthesis (putting things together), than it

does in the original meaning of the term analysis (taking things apart). This is because

the activity strives to bring the data structures of interest together in a cohesive,

inseparable, whole by eliminating unnecessary data redundancies and relating data

structures by relationships. In the early phases of a software development project,

emphasis will be on the design of a conceptual data model. This can be detailed into a

logical data model sometimes called functional data model. In later stages, this model

may be translated into physical data model.

2.7.1 Database Normalization

Database normalization is a series of steps followed to obtain a database design that

allows for consistent storage and efficient access of data in a relational database. These

steps reduce data redundancy and the risk of data becoming inconsistent.

However, many relational DBMS lack sufficient separation between the logical

database design and the physical implementation of the data store, such that queries

against a fully normalized database often perform poorly. In this case de-normalizations

are sometimes used to improve performance, at the cost of reduced consistency.

59

2. 7.2 Primary Key

In database design, a primary key is a value that can be used to identify a particular

row in a table. Attributes are associated with it. Examples are names in a telephone

book (to look up telephone numbers), words in a dictionary (to look up definitions) and

Dewey Decimal Numbers (to look up books in a library).

In the relational model of data, a primary key is a candidate key chosen as the main

method of uniquely identifying a relation. Practical telephone books, dictionaries and

libraries can not use names, words or Dewey Decimal System Numbers as candidate

keys because they do not uniquely identify telephone numbers, word definitions or

books. In some design situations it is impossible to find a natural key that uniquely

identifies a relation. A surrogate key can be used as the primary key. In other

situations there may be more than one candidate key for a relation, and no candidate key

is obviously preferred. A surrogate key may be used as the primary key to avoid giving

one candidate key artificial primacy over the others. In addition to the requirement that

the primary key be a candidate key, there are several other factors which may make a

particular choice of key better than others for a given relation.

The primary key should generally be short to minimize the amount of data that needs

to be stored by other relations that reference it. A compound key is usually not

appropriate. (However, this is a design consideration, and some database management

systems may be better than others in this regard.)

The primary key should be immutable, meaning its value should not be changed during

the course of normal operations of the database. (Recall that a primary key is the

means of uniquely identifying a tuple, and that identity by definition, never changes.)

This avoids the problem of dangling references or orphan records created by other

relations referring to a tuple whose primary key has changed. If the primary key is

immutable, this can never happen.

60

2.7.3 Foreign Key

A foreign key (FK) is a field in a database record under one primary key that points to

a key field of another database record in another table where the foreign key of one

table refers to the primary key of the other table. This way references can be made to

link information together and it is an essential part of database normalization.

For example, a person sending an e-mail needs not to include the entire text of a book in

the e-mail. Instead, they can include the ISBN of the book, and interested persons can

then use the number to get information about the book, or even the book itself. The

ISBN is the primary key of the book, and it is used as a foreign key in the e-mail.

Note that using a foreign key often assumes its existence as a primary key somewhere

else. Improper foreign key/primary key relationships are the source of many database

problems.

2.7.4 Compound Key

In database design, a compound key (also called a composite key) is a key that consists

on 2 or more attributes.

No restriction is applied to the attribute regarding their (initial) ownership within the

data model. This means that any one, none or all, of the multiple attributes within the

compound key can be foreign keys. Indeed, a foreign key may, itself, be a compound

key.

Compound keys almost always originate from attributive or associative entities (tables)

within the model, but this is not an absolute value

61

CRAPTER3

USER'S MANUEL

When you run the program the program will meet with entry page.(Figure 3 .1)

Figure 3.1

This page verify the user name and password after the entering the user name and

password correctly, its going to main menu (Figure 3.2)

62

11e .Who am 1 # I n Ch~nge Pswcl~

e.urchase

~Help

Figure 3.2

By the way on the first page there is five administrator level.lf you are an manager,all

of the menus are enable.If you are only system analyst,the password settings are disable

This page verify the add new product, delete product and update product. This part we

will to form product Id,product name and supplier Id.Besides we will change setting

product (Figure 3 .3)

63

Add New Product Delete A Product Update A Product

'* Product ID c . . 11't ~crchl
C -. --- _J .-­
I

'* Product Name

'* Supplier ID

Quantity Per Unit ,

Unit Price L _
Reorder Level 1

'* Category Name

Description
J

Figure 3.3

If a user want ,the user can change the password settings, entering information.
(Figure 3.4)

Figure 3.4

64

When you click the customer form is add new customer, delete customer and update a
customer.This customer as below

Add New Customer II Delete A Customer

Customer ID C:
Company Name [
Contact Name. [
Contact Title I

.L
Address [
City l J
Phond !_ ...
Phone2 C __ ~ J
Phone3 :J
Fax No r ::J !

L.__

Customer Credit C

Update A Customer

Figure 3.5

This page is save to database the new customer information, call the this information

from the database, delete this information and update this information and when you

click the show button it shows the original document.(Figure 3.5)

When you click the order form is loaded and seems as below

65

- -Product(s) Information

C=:Jl11.·-l1

I - Efl11, J
I 81?1.Hffll
lo7.0l.Z007 lj
jo7.01.Z007 E]

General Information l
Fil r.;-:--J l
CJ~' L------·

j-1' Add More Product! 'i

Shipping Information

I t] 11 i.·-11

!07.01.2007 EJl
[~]
I ... :J
L----·--=---~ .. .sf

Figure 3.6

This page is search to database the scanned files information, call the this information

from the database. We will entering Bill Id and Customer Id and Employee Id after that

we will seem product information and when you click the show button it shows the

information.(Figure 3.6)

When you click the report on the main menu the report form is loaded and seems like

below.

66

Figure 3.7

The report from is mainly includes ten parts which are coming report screen .if you

want select to any report the that you can see solution report page.

This page is save to database the add a new supplier information, call the this
information from the database, delete this information and update this information and
when you click the show button it shows the original document. (Figure 3.8)

67

Add New Supplier jl belete A Supplier II Update A Supplier

·c=--· ·-··-· . ·-.·. ·~ =i * Supplier![) li-searc~
* Company Ncune [-· ·-=1
Contact Name 1 t
Contact Title E~ - :J
Address -~:J
City C =:]
Phone1 ,[= !
Phone2 [I
Phone3 c··· J
Fax No r J lfo. ~:J ti; I [.,

[1 '-f"'
Home Page

~1
~·· = ~ .•.. ,,-,~· .

Figure 3.8

When it is clicked you can delete, add and update supplier according to its

Product.(Figure 3.8)

This page is save to database the add a new shipper information, call the this
information from the database, delete this information and update this information and
when you click the show button it shows the original document. (Figure 3 .9)

68

Add New Shipper JI t>elete A Shipper][Update A Shipper

" Shipper ID c_ _J l'r Searchj
J " Company Name I

Phone 1

Phone 2 C
Phone 3 C J
Fax No C

i~ .L~hl I r ,;~ .__

Figure 3.9

This page is save to database the add a new bill information, call the this information
from the database, delete this information and update this information and when you
click the show button it shows the original document. (Figure 3.10)

Add New Bill belere A Bill Update A Bill

[J jvSearc~
~ [__ .. -

[-
[---· .

-- ... --.·.~

~Add

Figure 3.10

69

Today : 07.01.2007
·,

Now : 18:18:ll Hope you feel good.

Figure 3.11

I introduce my self in "Who am I" form names.(Figure 3.11)

The other form is showed by menu map when you enter the form you will see below. In
this form you can see all forms,it helps you to see about the program.To enter any
menu click on it. (Figure 3.12)

70

Menu Map

~
~

Customers Menu

Figure 3.12

71

CONCLUSION

A Delphi survey has been conducted to provide expert opinion on the life of

components in buildings. Thirty different components were surveyed with a range of

materials, coatings, environments and failure considered. The survey was conducted in

two stages. After the first stage, approximately 80% of questions had a consistent

answer from the survey group. In Stage 2, 10% of questions were further investigated,

with 75% of these remaining questions then having a consistent answer.

Examination of the data for internal consistency and comparisons with externally

available data indicates that the Delphi study appears reliable. However, the study was

difficult to carry out owing to difficulties in obtaining answers from possible

respondents. Thus, if a larger survey is to be undertaken to include all building

components, it is recommended that committed respondents be obtained before devising

the survey.

72

APPENDIX

PROGRAM CODE

FORMl

procedure TForml .BitBtnl Click(Sender: TObject);
var
ReorderLevel,w: integer;
begin
queryl .Close;
queryl .SQL.Clear;
queryl .SQL.Add('Select * From db\Employees Where Nick="'+editl .text+"");
queryl .ExecSQL;
queryl .Open;
if (Datasourcez.Dataxet.Recordf'ount > 0) then
begin
if (Datasource2.DataSet.fieldValues ['Password'] = edit2.text) then
begin
{ 1} if Datasource2.DataSetfieldValues ['Title'] ='Manager' then

begin

query IO.Close;
queryl O.SQL.Clear;
query 10. SQ L.Add('Select Productld,ReorderLevel, U nitslnStock-

U nitsOnOrder As Summation From db\Products Order By Productld,ReorderLevel');
querylO.ExecSQL;
queryl O.Open;

if (DatasourcelO.DataSet.RecordCount > 0) then
begin
while not (DataSourcelO.dataset.Eof) do
begin
Reorder Level := Datasource 1 O.DataSet.FieldValues['ReorderLevel'];
if ((DatasourcelO.DataSet.FieldValues['Summation'] = Null) OR

(Datasource 1 O.DataSet.FieldValues['Surnmation'] < Reorder I .evelj) then
begin
w:= datasource 1 O.DataSet.FieldValues['ProductID'];

showmessage('Product ID ('+inttostr(w)+') is under Reorder Level
('+inttostr(ReorderLevei)+') .Please check product levels. ');

end;
DataSource 1 Oidataset.Next;

end;
end;

form I .hide;
form20.BitBtn9. Visible:= True;
form2.Show;
Password;

73

end
{ 1} else

{2} if (Datasource2.DataSet.fieldValues ['Title'] ='Sales Person') then
begin
form I .hide;
form2.BitBtn3.Enabled := False;
form2.BitBtn4.Enabled := False;
form.2.SpeedButtonI .Enabled := False;
form.2.SpeedButton6.Enabled := False;
form.2.SpeedButton8.Enabled := False;
form.2.SpeedButton9.Enabled := False;
form.2.Show;
Password;

end
{2} else

{ 3} if (Datasource2.DataSet.fieldValues ['Title'] ='Accountant') then
begin
form.I .hide;
form.2.Show;
Password;

end
{3} else

{ 4} if (Datasource2.DataSet.fieldValues [Title'] ='User') then
begin
forml .hide;
form2.SpeedButton5.Enabled :::;: False;
form2.SpeedButton6.Enabled := False;
form.2.SpeedButton8.Enabled := False;
form2.SpeedButton9.Enabled := False;
form.2.BitBtn3.Enabled := False;
form2.BitBtn4.Enabled := False;
form2.BitBtn5.Enabled := False;
form.2.Show;
Password;

end
{4} else

begin
form I .hide;
form.2.Show;
Password;

end;
end

else
begin
showmessage('Y ou entered wrong password');
edit2.SetFocus;

end
end
else
begin

74

showmessage('You entered wrong User Name. Please enter correct one!');
editl.SetFocus;

end;

end;
procedure TF orm 1.BitBtn2Click(Sender: TObject);
begin
application.Terminate;

end;
procedure TForml.Password;
var
x,y : string;
begin
x := edit2.Text;
y := editl.Text;
Form l-l.Editz.Text := x;
Forml2.Editl.Text := y;
//Forml2.Edit2.Text := x;
Forml2.Edit4.Text := y;
Form12.Edit5.Text := x;
end;
procedure TForml .FormClose(Sender: TObject; var Action: TCloseAction);
begin
application. Terminate;

end;

procedure TF orm l .BitBtn3Click(Sender: TObject);
begin
winexec('C: \ windows\system3 2\osk.exe' ,9);
end;

end.

FORM2

procedure TForm2.SpeedButtonl Click(Sender: TObject);
begin
form2.Hide;
form3 .show;

end;

procedure TForm2.SpeedButton2Click(Sender: TObject);
begin
form2.Hide;
form4.show;
end;

procedure TForm2.SpeedButton7Click(Sender: TObject);
begin

75

form2.Hide;
form5.show;
end;

procedure TF orm2. SpeedButton4Click(Sender: TObject);
begin
form2.Hide;
form6.show;
end;

procedure TForm2.SpeedButton3Click(Sender: TObject);
begin

form2.Hide;
form7.show;
end;

procedure TForm2.SpeedButton5Click(Sender: TObject);
begin
form2.Hide;
form8.show;
end;

procedure TForm2.SpeedButton6Click(Sender: TObject);
begin
form2.Hide;
form9.show;
end;

procedure TForm2.SpeedButton8Click(Sender: TObject);
begin
form2.Hide;
forml 0.show;
end;

procedure TForm2.SpeedButton9Click(Sender: TObject);
begin
form2.Hide;
forml 1.show;
end;

procedure TForm2.BitBtn2Click(Sender: TObject);
begin
Application. Terminate;
end;

procedure TForm2.BitBtn3Click(Sender: TObject);
begin
form2.Hide;
forml4.show;

76

end;

procedure TForm2.BitBtn4Click(Sender: TObject);
begin

form2.Hide;
forml3.show;
end;

procedure TForm2.BitBtn5Click(Sender: TObject);
begin
Form2.Hide;
Form15.Show;
end;

procedure TForm2.FormClose(Set;ider: TObject; var Action: TCloseAction);
begin
Application. Terminate;
end;

procedure TForm2.BitBtnl Click(Sender: TObject);
begin
Form2.Hide;
Form26.Show;
end;

end.

FORM3

procedure Tform3.0penUpdate ;
begin
edit24.Enabled :::;: True;
edit25.Enabled := True;
edit26.Enabled := True;
edit27.Enabled := True;
edit28.Enabled := True;
edit29 .Enabled := True;
edit30.Enabled := True;
edit3 l .Enabled := True;
edit32.Enabled := True;
edit33.Enabled := True;
DateTimePicker5.Enabled := True;
DateTimePicker6.Enabled := True;
Dblmage3 .Enabled := True;
bitbtn5.Enabled := True;
bitbtn6.Enabled := True;
bitbtn12.Enabled := True;

end;

77

procedure Tform3.CloseUpdate;
begin
edit24.Enabled := False;
edit25.Enabled := False;
edit26.Enabled := False;
edit27 .Enabled := False;
edit28.Enabled := False;
edit29.Enabled :::;:: False;
edit30.Enabled := False;
edit3 l .Enabled := False;
edit32.Enabled := False;
edit33.Enabled := False;
DateTimePicker5.Enabled := False;
DateTimePicker6.Enabled := False;
Dblmages.Enabled := False;
bitbtn5.Enabled := False;
bitbtn6.Enabled := False;
bitbtnl2.Enabled := False;

end;

procedure Tform3.0penAdd ;
begin
edit2.Enabled := True;
edit3.Enabled := True;
edit4.Enabled := True;
edit5.Enabled := True;
edit6.Enabled := True;
edit7.Enabled := True;
edit8.Enabled := True;
edit9.Enabled := True;
editl O.Enabled := True;
editl 1.Enabled := True;
DateTimePickerl.Enabled := True;
DateTimePicker2.Enabled := True;
Db Image I .Enabled := True;
bitbtn3 .Enabled := True;
bitbtii8.Enabled := True;
bitbtnl 1.Enabled := True;

end;

procedure Tform3.CloseAdd;
begin
edit2.Enabled := False;
edit3.Enabled := False;
edit4.Enabled :::;:: False;
edit5.Enabled := False;

78

edit6.Enabled := False;
edit7 .Enabled := False;
edit8.Enabled := False;
edit9.Enabled := False;
editlO.Enabled := False;
editl l .Enabled := False;
DateTimePickerl .Enabled := False;
DateTimePicker2.Enabled := False;
Dblmagel.Enabled := False;
bitbtn3.Enabled := False;
bitbtn8.Enabled := False;
bitbtnl 1.Enabled := False;

end;

procedure Tform3. OpenDelete;
begin
edit13.Enabled := True;
editl4.Enabled := True;
edit15.Enabled := True;
editl6.Enabled := True;
editl 7.Enabled := True;
editl 8.Enabled := True;
editl 9 .Enabled := True;
edit20.Enabled := True;
edit2 l .Enabled := True;
edit22.Enabled := True;
Date'Timel'icker.l.Enabled := True;
DateTimePicker4.Enabled := True;
Dblmage2.Enabled := True;
bitbtn4.Enabled := True;
bitbtn7.Enabled := True;
end;

procedure Tform3.CloseDelete;
begin

edit13.Enabled := False;
edit14.Enabled := False;
editl5.Enabled := False;
edit16.Enabled := False;
editl 7.Enabled := False;
editl 8.Enabled := False;
editl9.Enabled := False;
edit20.Enabled := False;
edit2 l .Enabled := False;
edit22.Enabled := False;
DateTimePicker3.Enabled := False;
DateTimePicker4.Enabled := False;
Dblmage2.Enabled := False;
bitbtn4.Enabled := False;

79

bitbtn7.Enabled := False;
end;

procedure Tform.3.ClearAdd;
begin

editl .Clear;
edit2. Clear;
edit3.Clear;
edit5.Clear;
edit6.Clear;
edit7.Clear;
edit8. Clear;
edit9.Clear;
editl O.Clear;
edit 11. Clear;
DateTimePicker 1. Cleanuplnstance;
DateTimePicker2.Cleanuplnstance;
Dbimage 1. Cleanup Instance;

end;

procedure Tform.3.ClearDelete;
begin

edit12.Clear;
editl 3. Clear;
editl4.Clear;
edit15.Clear;
editl 6.Clear;
editl 7.Clear;
editl8.Clear;
editl 9.Clear;
edit20.Clear;
edit21.Clear;
edit22.Clear;
DateTimePicker3. Cleanup Instance;
Date TimePicker4. Cleanup Instance;
Dblmage2.Cleanuplnstance;

end;

procedure Tform.3.ClearUpdate;
begin

edit23.Clear;
edit24.Clear;
edit25.Clear;
edit27.Clear;
edit28.Clear;
edit29.Clear;
edit30.Clear;
edit31.Clear;
edit32.Clear;

80

edit33.Clear;
Date TimePicker5. Cleanuplnstance;
DateTimePicker6.Cleanuplnstance;
Dblmage3. Cleanuplnstance;

end;

procedure TF orm3 .BitBtn2Click(Sender: TObject);
begin
form3. Close;
form2.show;
end;

procedure TForm3.BitBtn3Click(Sender: TObject);
begin

if (edit2. Text =") then
begin
showmessage('You have to enter First Name.');
edit2.SetFocus;

end
else if (edit3.Text :=;:") then

begin
showmessage('You have to enter Last Name.');
edit3.SetFocus;

end
else if (edit9.Text :=;:") then

begin
showmessage('Y ou have to enter a Salary amount.');
edit9. SetF ocus;

end
else if (editl O. Text :=;:") then

begin
showmessage('You have to enter User Name.');
editl O.SetFocus;

end
else if (editl I.Text=") then

begin
showmessage('Y ou have to enter a Password.');
editl 1.SetFocus;

end
else if (edit 1. Text <> ") then

begin
datasource I .Edit;
datasource 1.DataSet.Append;
datasource l .DataSet.FieldValues['EmployeeID'] :=editl. Text;

'I

if (edit2.Text <>")then
datasource l .DataSet.FieldValues['FirstName'] :=edit2. Text;

if (edit3.Text <>")then

81

datasourcel.DataSet.FieldValues['LastNatne']:=edit3.Text;

if (edit4.Text <>")then
datasource l .DataSet.FieldValues['Title'] :=edit 4. Text;

datasource l .DataSet.FieldValues['BirthDate'] :=
Date Time Picker I .Date;

datasource l .DataSet.FieldValues['HireDate'] :=DateTimePicker2.Date;

if (edit5.Text <>")then
datasource l .DataSet.F ieldV alues ['Address'] :=edit5. Text;

if (edit6.Text <>")then
datasource l .DataSet.FieldValues['City'] :=edit6. Text;

if (edit7.Text <>")then
datasource l .DataSet.FieldValues['HomePhone'] :=edit7. Text;

if (edit8. Text <> ") then
datasourcel.DataSet.FieldValues('Extension']:=edit8.Text;

if (edit9.Text <>")then
datasource l .DataSet.FieldValues['Salary'] :=edit9. Text;

if (editlO.Text <>")then
datasource l .DataSet.FieldValues['Nick'] :=editl O.Text;

if (editl I.Text<>") then
datasource 1.DataSet.FieldValues('Password'] .=editl 1. Text;

//if (Dblmagel .Picture<> Null) then
//datasource l .DataSet.FieldValues['Photo'] :=Db Image I .Picture;

datasource l .DataSet.Post;

showmessage('Record is Added Successfuly.');
Clear Add;
end// if

else
begin
showmessage('Y ou have to enter Employee ID');
editl .SetFocus;

end;

end;

procedure TF orm3 .BitBtn9Click(Sender: TObject);
begin
closeupdate;

82

open update;
if (edit23.Text <>") then
begin

queryl.Close;
queryl .SQL.Clear;
queryl.SQL.Add('Select * From db\Employees Where Employeeld='+edit23.Text+");
query 1.ExecSQL;
query 1. Open;

if (Datasource2.DataSet.RecordCount > 0) then
begin
open update;

if (Datasource2.DataSet.fieldValues ['FirstName'] <> Null) then
edit24.text := Datasource2.DataSet.fieldValues ['FirstName'];

if (Datasource2.DataSet.fieldValues ['LastName'] <> Null) then
edit25.text := Datasource2.DataSet.fieldValues ['LastName'];

if (Datasource2.DataSet.fieldValues ['BirthDate'] <> Null) then
Date TimePicker5 .Date:= datasource2.DataSet.FieldV alues['BirthDate'];

if (Datasource2.DataSet.fieldValues ['HireDate'] <> Null) then
Date TimePicker6.Date:= datasource2.DataSet.FieldV alues['HireDate'];

if (Datasource2.DataSet.fieldValues ['Address']<> Null) then
edit27. text := Datasource2.DataSet.fieldValues ['Address'];

if (Datasource2.DataSet.fieldValues ['City'] <> Null) then
edit28.text := Datasource2.DataSet.fieldValues ['City'];

if (Datasource2.DataSet.fieldValues ['HomePhone'] <> Null) then
edit29.text := Datasource2.DataSet.fieldValues ['HomePhone'];

if (Datasource2.DataSet.fieldValues ['Extension'] <> Null) then
edit30.text := Datasource2.DataSet.fieldValues ['Extension'];

if (Datasource2.DataSet.fieldValues ['Salary'] <> Null) then
edit31.text := Datasource2.DataSet.fieldValues ['Salary'];

if (Datasource2.DataSet.fieldValues ['Nick'] <> Null) then
edit32.text := Datasource2.DataSet.fieldValues ['Nick'];

if (Datasource2.DataSet.fieldValues ['Password']<> Null) then
edit3 3. text := Datasource2 .DataSet.fieldV alues ['Password'];

II if (Datasource2.DataSet.fieldValues ['Photo']<> Null) then
II Dblmage3.Field := datasource2.DataSet.FieldValues['Photo'];

83

if (edit24.Text <>")then
datasource l .DataSet.FieldValues['FirstName'] :=edit24. Text;

if (edit25.Text <>")then
datasourcel.DataSet.FieldValues['LastName']:=edit25.Text;

if (edit26. Text<> ") then
datasource 1.DataSet.FieldValues['Title'] :=edit26. Text;

if (DateTimePicker5.Date <> Null) then
datasource l .DataSet.FieldValues['BirthDate'] :=

Date TimePicker5 .Date;

if (DateTimePicker6.Date <> Null) then

datasource l .DataSet.FieldValues['HireDate'] :=DateTimePicker6.Date;

if (edit27.Text <>")then
datasource l .DataSet.FieldValues['Address'] :=edit27. Text;

if (edit28.Text <>")then
datasource l .DataSet.FieldValues['City'] :=edit28. Text;

I

if (edit29.Text <>")then
datasource l .DataSet.FieldValues['HomePhone'] :=edit29. Text;

if (edit30.Text <>")then
datasource l .DataSet.FieldValues['Extension'] :=edit30. Text;

if (edit31. Text <> ") then
datasource l .DataSet.FieldValues['Salary'] :=edit31. Text;

if (edit32.Text <>")then
datasourcel .Dataset.Fieldvaluesl'Nick'] :=edit32. Text;

if (edit33.Text <>")then
datasource 1.DataSet.FieldV alues['Password'] :=edit33. Text;

//if (Dblmage3.Picture <> Null) then
//datasource l .DataSet.FieldValues['Photo'] :=Dblmage3 .Picture;

datasource l .DataSet.Post;

showmessage('Record is Updated Successfuly.');
Clear Update;
Close Update;

end
else
begin
showmessage('Y ou have to enter Employee ID');

85

edit23.SetFocus;
end;

end;

procedure TForm3.PageControll Change(Sender: TObject);
begin
closeAdd;
closedelete;
closeupdate;
end;

procedure TForm3.Edit1Exit(Sender: TObject);
begin

if (editl.Text <>") then
begin
query2. Close;
query2.SQL.Clear;
query2.SQL.Add('Select EmployeeID From db\Employees Where

Employeeld='+edit 1. Text+");
query2.ExecSQL;
query2.0pen;

if (Datasource3.DataSet.RecordCount > 0) then
begin
suowmessage CThis Eml)loyeelD added before, Please Enter an.other number.');
editl .clear;
editl.SetFocus;

end
else
begin
OpenAdd;

end;
end
else
begin
//showrnessage('You have to enter EmployeeID.');
II editl.Text := ";
end;
end;:

procedure TForm3.Edit1KeyPress(Sender: TObject; var Key: Char);
begin

if ((Key in ['0' . .'9'])or (Key= #8)) then
begin
OpenAdd;

end
else
begin

86

showmessage('EmployeeID must be numeric value.');
Key :=#0;
editl .SetFocus;

end;
end;

procedure TF orm3 .BitBtn6Click(Sender: TObject);
var
up: word;
begin
up:= messagedlg('Are you really want to ignore ?',mtconfirmation, [mbyes,mbno],O);
if (up=MrYes) then
ClearUpdate;

end;

procedure TForm3.BitBtn8Click(Sender: TObject);
var
ad: word;
begin
ad:= messagedlg('Are you really want to ignore ?',mtconfirmation, [mbyes,mbno],O);
if (ad=MrYes) then
Clear Add;

end;

procedure TForm3.BitBtn7Click(Sender: TObject);
var
de: word;
begin
de:= messagedlg('Are you really want to ignore ?',mtconfirmation, [mbyes,mbno],O);
if (de=MrYes) then
ClearDelete;

end;

procedure TForm3.BitBtnlOClick(Sender: TObject);
begin
if (editl2.Text <>") then
begin
queryl.Close;
queryl .SQL.Clear;
queryl.SQL.Add('Select * From db\Employees Where Employeeld='+editl2.Text+");
queryl.ExecSQL;
query l.Open;

if (Datasource2.DataSet.RecordCount > 0) then
<begin
opendelete;

if (Datasource2.DataSet.fieldValues ['FirstName'] <> Null) then
editl 3 .text := Datasource2.DataSet.fieldValues ['FirstN ame'];

87

if (Datasource2.DataSet.fieldValues ['LastName'] <> Null) then
editl 4.text := Datasource2.DataSet.fieldValues ['LastName'];

if (Datasource2.DataSet.fieldValues ['Title'] <> Null) then
edit15.text := Datasource2.DataSet.fieldValues ['Title'];

if (Datasource2.DataSet.fieldValues ['BirthDate'] <> Null) then
Date TimePicker3 .Date:= datasource2.DataSet.FieldValues['BirthDate'];

if (Datasource2.DataSet.fieldValues ['HireDate'] <> Null) then
DateTimePicker4.Date:= datasource2.DataSet.FieldValues['HireDate'];

if (Datasource2.DataSet.fieldValues ['Address'] <> Null) then
editl6.text := Datasource2.DataSet.fieldValues ['Address'];

if (Datasource2.DataSet.fieldValues ['City'] <> Null) then
editl 7 .text := Datasource2.DataSet.fieldValues ['City'];

if (Datasource2.DataSet.fieldValues ['HomePhone'] <> Null) then
edit18.text := Datasource2.DataSet.fieldValues ['HomePhone'];

if (Datasource2.DataSet.fieldValues ['Extension'] <> Null) then
editl9.text := Datasource2.DataSet.fieldValues ['Extension'];

if (Datasource2.DataSet.fieldV alues ['Salary'] <> Null) then
edit20.text := Datasource2.DataSet.fieldValues ('Salary'];

if (Datasource2.DataSet.fieldValues ['Nick'] <> Null) then
edit2 l .text := Datasource2.DataSet.fieldValues ['Nick'];

if (Datasource2.DataSet.fieldValues ['Password'] <> Null) then
edit22.text := Datasource2.DataSet.fieldValues ['Password'];

II if (Datasource2.DataSet.fieldValues ['Photo'] <> Null} then
II Dblmage2.Picture := datasource2.DataSet.FieldValues['Photo'];

closedelete;
end

else
begin
showmessage('There are no such record.');
edit12.SetFocus;
end;

end
else
begin
showmessage('Y ou have to enter EmployeeID');
editl2.SetFocus;
end;

88

end;

procedure TForm3.BitBtn4Click(Sender: TObject);
begin
query3. Close;
query3 .SQL.Clear;
query3.SQL.Add('Delete From db\Employees Where Employeeld=(Select

EmployeeID From db\Employees Where Employeeld='+edit12.Text+')');
query3.ExecSQL;
query3.0pen;
showmessage('Record is Deleted Successfully.');
cleardelete;
editl2.SetFocus;

end;

procedure TForm3.Edit23KeyPress(Sender: TObject; var Key: Char);
begin

if ((Key in ['0' . .'9'])or (Key= #8)) then
begin
Open Update;

end
else
begin

showmessage('EmployeeID must be numeric value.');
Key :=#0;
edit23 .SetFocus;

end;
end;

procedure TForm3.Edit12KeyPress(Sender: TObject; var Key: Char);
begin

if ((Key in ['0' . .'9'])or (Key= #8)) then
begin
OpenDelete;
end

else
begin

showmessage('EmployeeID must be numeric value.');
Key :=#0;
edit12.SetFocus;

end;
end;

procedure TForm3.FormCreate(Sender: TObject);
begin
closeAdd;
closedelete;

89

closeupdate;
Datetimepicker I .Date :=(Date);
Datetimepicker2.Date :=(Date);
Datetimepicker3 .Date :=(Date);
Datetimepicker4.Date :=(Date);
Datetimepicker5 .Date :=(Date);
Datetimepicker6.Date :=(Date);
end;

procedure TF orm3 .BitBtn 11 Click(Sender: TObject);
begin

if op I .Execute then
Dbimage 1.Picture.LoadFromFile(op l .FileName);

end;

procedure TForm3.Edit31KeyPress(Sender: TObject; var Key: Char);
begin

if ((Key in ['0' . .'9'])or (Key= #8)) then
begin
end

else
begin
showmessage('Salary must be numeric value.');
Key :=#0;
edit31.SetFocus;

end;
end;

procedure TForm3.Edit9KeyPress(Sender: TObject; var Key: Char);
begin

if ((Key in ['0' . .'9'])or (Key= #8)) then
begin
end

else
begin
showmessage('Salary must be numeric value.');
Key:= #0;
"editv.Setl'ocus;
end;

end;

procedure TForm3.BitBtn13Click(Sender: TObject);
begin
Form l 6.BitBtn2.Click;
Forml6.BitBtn8.Visible:=True;
Form l 6.BitBtn2.Enabled:=False;
Form16.BitBtn3.Enabled:=False;
Forml6.BitBtn4.Enabled:=False;
Form16.BitBtn5.Enabled:=False;
Form l 6.BitBtn6.Enabled:=False;

90

F onnl 6.BitBtn7 .Enabled:=False;
Fonnl6.ShowModal;
end;

end.

FORM4

procedure Tfonn4.0penUpdate ;
begin
edit24.Enabled := True;
edit25.Enabled := True;
edit26.Enabled := True;
edit27 .Enabled := True;
edit28.Enabled := True;
edit29.Enabled := True;
edit30.Enabled := True;
edit31.Enabled := True;
edit32.Enabled := True;
edit33.Enabled := True;
bitbtn5.Enabled ::;:: True;
bitbtn6.Enabled := True;
bitbtn9 .Enabled := True;
end;

procedure Tfonn4.CloseUpdate;
begin
edit24.Enabled := False;
edit25.Enabled := False;
edit26.Enabled := False;
edit27.Enabled := False;
edit28.Enabled := False;
edit29.Enabled := False;
edit30.Enabled := False;
edit3 l .Enabled := False;
edit32.Enabled := False;
edit33.Enabled := False;
bitbtnfi.Enabled := False;
bitbtn6.Enabled := False;
bitbtn9.Enabled := False;
end;

procedure Tfonn4.0penAdd ;
begin
edit2.Enabled := True;
edit3.Enabled := True;
edit4.Enabled := True;
edit5.Enabled ::;:: True;
edit6.Enabled := True;
edit7 .Enabled := True;

91

edit8.Enabled := True;
edit9.Enabled := True;
editlO.Enabled := True;
editl I.Enabled := True;
bitbtn3 .Enabled := True;
bitbtn8.Enabled := True;
end;

procedure Tform4. CloseAdd;
begin
edit2.Enabled := False;
edit3.Enabled := False;
edit4.Enabled := False;
edit5.Enabled := False;
edit6.Enabled := False;
edit7.Enabled := False;
edit8.Enabled := False;
edit9.Enabled := False;
editl O.Enabled := False;
editl 1.Enabled := False;
bitbtn3.Enabled := False;
bitbtn8.Enabled := False;
end;

procedure Tform4. OpenDelete;
begin
edit13.Enabled := True;
edit14.Enabled := True;
edit15.Enabled := True;
edit16.Enabled := True;
editl 7.Enabled := True;
editl 8.Enabled := True;
editl9.Enabled := True;
edit20.Enabled := True;
edit21.Enabled := True;
edit22.Enabled := True;
bitbtn4.Enabled := True;
bitbtn7 .Enabled := True;
bitbtnl O.Enabled := True;
end;

procedure Tform4.CloseDelete;
begin
edit13.Enabled := False;
edit14.Enabled := False;
edit15.Enabled := False;
edit16.Enabled := False;
editl 7.Enabled := False;
edit18.Enabled := False;

92

edit19.Enabled := False;
edit20.Enabled := False;
edit2 l .Enabled := False;
edit22.Enabled := False;
bitbtn4.Enabled := False;
bitbtn7.Enabled := False;
bitbtnl O.Enabled := False;
end;

procedure Tform4.ClearAdd;
begin
editl.Clear;
edit2.Clear;
edit3.Clear;
edit4.Clear;
edit5.Clear;
edit6.Clear;
edit7. Clear;
edit8. Clear;
edit9.Clear;
editl O. Clear;
editl I.Clear;
end;

procedure Tform4.ClearDelete;
begin
editl2.Clear;
edit13.Clear;
editl 4.Clear;
edit15.Clear;
editl6.Clear;
editl 7.Clear;
edit18.Clear;
edit 19. Clear;
edit20.Clear;
edit21.Clear;
edit22.Clear;
end;

procedure Tform4.ClearUpdate;
begin
edit23.Clear;
edit24.Clear;
edit25.Clear;
edit26.Clear;
edit27.Clear;
edit28. Clear;
edit29.Clear;
edit30.Clear;
edit3 l .Clear;

93

edit32.Clear;
edit33.Clear;
end;

procedure TForm4.BitBtn2Click(Sender: TObject);
begin
form4.Close;
form2.show;
end;

procedure TForm4.BitBtn3Click(Sender: TObject);
begin

if (edit2.Text =") then
begin
showmessage('Y ou have to enter Company Name.');
edit2.SetFocus;
end

else if (edit 1. Text <> ") then
begin
datasource I .Edit;
datasource l .DataSet.Append;
datasource 1.DataSet.FieldValues['SupplierID'] :=editl. Text;

if (edit2.Text <>")then
datasource l .DataSet.FieldValues['CompanyName'] :=edit2. Text;

if (edit3. Text <> ") then
datasource l .DataSet.FieldValues['ContactN ame'] :=edit3. Text;

if (edit4.Text <>")then
datasource l .DataSet.FieldValues['ContactTitle'] :=edit4. Text;

if (edit5. Text <> ") then
datasource l .DataSet.FieldValues['Address'] :=edit5. Text;

if (edit6.Text <>")then
datasource l .DataSet.FieldValues['City'] :=edit6. Text;

if (edit7.Text <>")then
datasource l .DataSet.FieldValues['Phone 1 '] :=edit7. Text;

if (edit8.Text <>")then
datasource l .DataSet.FieldValues['Phone2'] :=edit8. Text;

if (edit9.Text <>")then
datasource l .DataSet.FieldValues['Phone3 '] :=edit9. Text;

if (editlO.Text <>")then
datasourcel.DataSet.FieldValues['Fax']:=editlO.Text;

94

if (editl l.Text <>")then
datasource l .DataSet.FieldValues('HomePage'] :=edit 11. Text;
datasource l .DataSet.Post;

showmessage('Record is Added Successfuly.');
Clear Add;
end// if

else
begin
showmessage('Y ou have to enter Supplier ID');
clearadd;
editl .SetFocus;

end;
end;

procedure TForm4.BitBtn9Click(Sender: TObject);
begin
if (edit23.Text <>") then
begin
query I .Close;
queryl.SQL.Clear;
queryl.SQL.Add('Select * From db\suppliers Where Supplierld='+edit23.Text+");
query l .ExecSQL;
queryl .Open;

if (Datasource2.DataSet.RecordCount > 0) then
begin
openupdate;
if (Datasource2.DataSet.fieldValues ('CompanyName'] <> Null) then
edit24.text := Datasource2.DataSet.fieldValues ['CompanyName'];

if (Datasource2.DataSet.fieldValues ['ContactName'] <> Null) then
edit25.text := Datasource2.DataSet.fieldValues ['ContactName'];

if (Datasource2.DataSet.fieldValues ['ContactTitle'] <> Null) then
edit26.text := Datasource2.DataSet.fieldValues ['ContactTitle'];

if (Datasource2.DataSet.fieldValues ['Address']<> Null) then
edit27.text := Datasource2.DataSet.fieldValues [Address'];

if (Datasource2.DataSet.fieldValues ['City'] <> Null) then
edit28.text := Datasource2.DataSet.fieldValues [City'];

if (Datasource2.DataSet.fieldValues ['Phone l '] <> Null) then
edit29.text := Datasource2.DataSet.fieldValues ['Phone I'];

if (Datasource2.DataSet.fieldValues ['Phone2'] <> Null) then
edit30.text := Datasource2.DataSet.fieldValues ['Phone2'];

95

if (Datasource2.DataSet.fieldValues ['Phone3'] <> Null) then
edit31.text := Datasource2.DataSet.fieldValues ['Phone3'];

if (Datasource2.DataSet.fieldV alues ['Fax'] <> Null) then
edit32.text := Datasource2.DataSet.fieldValues ['Fax'];

if (Datasource2.DataSet.fieldValues ['HomePage'] <> Null) then
edit33.text := Datasource2.DataSet.fieldValues ['HomePage'];

end
else
begin
showmessage('There are no such record.');
edit23 .SetF ocus;
end;

end
else
begin
showmessage('Y ou have to enter SupplierID');
edit23. SetF ocus;
end;

end;

procedure TForm4.BitBtn5Click(Sender: TObject);
begin

if (edit24.Text =") then
begin
showmessage('Y ou have to enter Company Name.');
edit24.SetFocus;

end
else if (edit23.Text <>")then

begin
datasource l .Edit;
if (edit24.Text <>")then
datasource l .DataSet.FieldValues['CompanyName'] :=edit24. Text;

if (edit25.Text <>")then
datasource l .DataSet.FieldValues['ContactName'] :=edit25. Text;

if (edit26.Text <>")then
datasource l .DataSet.FieldV alues['ContactTitle'] :=edit26. Text;

if (edit27.Text <>")then
datasource l .DataSet.FieldValues['Address'] :=edit27. Text;

if (edit28.Text <>")then
datasource l .DataSet.FieldValues['City'] :=edit28. Text;

96

if (edit29.Text <>")then
datasource l .DataSet.FieldValues['Phone 1 '] :=edit29. Text;

if (edit30.Text <>")then
datasourcel.DataSet.FieldValues['Phone2']:=edit30.Text;

if (edit3 l.Text <>")then
datasource l .DataSet.FieldValues['Phone3 '] :=edit3 l. Text;

if (edit32.Text <>")then
datasource l .DataSet.FieldValues['Fax'] :=edit32. Text;

if (edit33.Text <>")then
datasource l .DataSet.FieldValues['HomePage'] :=edit33. Text;

datasource l .DataSet.Post;

showmessage('Record is Updated Successfuly.');
ClearUpdate;
Close Update;

end
else
begin
showmessage('You have to enter supplier ID.');
edit23 .SetFocus;

end;

end;

procedure TForm4.PageControl l Change(Sender: TObject);
begin
closeAdd;
closedelete;
closeupdate;
end;

procedure TForm4.Edit1Exit(Sender: TObject);
begin

if (edit 1. Text <>") then
begin
query2.Close;
query2.SQL.Clear;
query2.SQL.Add('Select SupplierID From db\suppliers Where

Supplierld='+editl .Text+");
query2.ExecSQL;
query2.0pen;

if (Datasource3.DataSet.RecordCount > 0) then

97

begin
showmessage ('This SupplierID added before, Please Enter another number.');
editl .clear;
editl .SetFocus;

end
else
begin
OpenAdd;

end;
end
else
begin
llshowmessage('You have to enter SupplierID.');
II editl .Text:=";
end;
end;

procedure TForm4.Edit1KeyPress(Sender: TObject; var Key: Char);
begin

if ((Key in [' l ' . .'9'])or (Key = #8)) then
begin
OpenAdd;

end
else
begin

showmessage('SupplierID must be numeric value.');
Key:= #0;
editl .SetFocus;

end;
end;

procedure TForm4.BitBtn6Click(Sender: TObject);
var
up: word;
begin
up:= messagedlg('Are you really want to ignore ?',mtconfirmation, [mbyes,mbno],O);
if (up=MrYes) then
ClearUpdate;

end;

procedure TForm4.BitBtn8Click(Sender: TObject);
var
ad: word;
begin
ad:= messagedlg('Are you really want to ignore ?',mtcon:firmation, [mbyes,mbno],O);
if (ad=MrYes) then
Clear Add;

end;

98

procedure TForm4.BitBtn7Click(Sender: TObject);
var
de: word;
begin
de:= messagedlg('Are you really want to ignore ?\mtconfirmation, [mbyes,mbno],O);
if (de=MrYes) then
ClearDelete;

end;

procedure TForm4.BitBtnlOClick(Sender: TObject);
begin

if (editl2.Text <>") then
begin
query 1. Close;
queryl.SQL.Clear;
queryl.SQL.Add('Select * From db\suppliers Where Supplierld='+edit12.Text+");
queryl.ExecSQL;
query 1. Open;

if (Datasource2.DataSet.RecordCount > 0) then
begin

II opendelete;
if (Datasource2.DataSet.fieldValues ['CompanyName'] <> Null) then
editl3.text := Datasource2.DataSet.fieldValues ['CompanyName'];

if (Datasource2.DataSet.fieldValues ['ContactName'] <> Null) then
edit14.text := Datasource2.DataSet.fieldValues ['ContactName'];

if (Datasource2.DataSet.fieldV alues [Contact'Fitle'] <> Null) then
editl 5.text := Datasource2.DataSet.fieldValues ['ContactTitle1];

if (Datasource2.DataSet.fieldValues [Address'] <> Null) then
edit16.text := Datasottrce2.DataSet.fieldValues [Address'];

if (Datasource2.DataSet.fieldValues ['City'] <> Null) then
editl 7.text := Datasource2.DataSet.fieldValues [City'];

if (Datasource2.DataSet.fieldValues ['Phone l '] <> Null) then
editl8.text := Datasource2.DataSet.fieldValues [Phonel '];

if (Datascurcez.Dataxet.fieldvalues ['Phone2'] <> Null) then
edit! 9 .text := Datasource2.DataSet.fieldValues [Phone?'];

if (Datasource2.DataSet.fieldValues .('Phone3 '] <> Null) then
edit20.text := Datasource2.DataSet.fieldValues ['Phone3'];

if (Datasource2.DataSet.fieldValues ['Fax']<> Null) then
edit21.text := Datasource2.DataSet.fieldValues ['Fax'];

99

if (Datasource2.DataSet.fieldValues ['HomePage'] <> Null) then
edit22.text := Datasource2.DataSet.fieldValues ['HomePage'];
closedelete;
bitbtn4.Enabled := True;
bitbtn7.Enabled := True;
end

else
begin
showmessagei'There are no such record.');
editl2.SetFocus;
end;

end
else
begin
showmessage('Y ou have to enter SupplierlD');
editl2.SetFocus;
end;

end;

procedure TForm4.BitBtn4Click(Sender: TObject);
begin

if (edit12.Text <>")then
begin
table I.Open;
table l .Edit;
while not (datasource l .dataset.Eof) do
begin
if (datasource l .DataSet.Field.ByName('supplierid').AsString=editl 2. Text) then
begin
table I .Delete;
end;
datasource I .dataset.Next;

end;

tablel .Close;
tablel.Open;

showmessage('Record is Deleted Successfully.');
end
else
begin
showmessagei'You have to enter Supplier ID.');
edit12.SetFocus;
end;
cleardelete;
edit12.SetFocus;

end;

100

procedure TForm4.Edit23KeyPress(Sender; TObject; var Key: Char);
begin

if ((Key in ['l ' . .'9'])or (Key= #8)) then
begin
Open Update;

end
else
begin

showmessage('SupplierID must be numeric value.');
Key :=#0;
closeupdate;
edit23.SetFocus;

end;
end;

procedure TForm4.Editl2KeyPress(Sender: TObject; var Key: Char);
begin

if ((Key in [' l ' . .'9'])or (Key = #8)) then
begin
OpenDelete;
end

else
begin

showmessage('SupplierID must be numeric value.');
Key := #0;
editl2.SetFocus;

end;
end;

procedure TForm4.FormCreate(Sender: TObject);
begin
closeAdd;
closedelete;
closeupdate;
end;

procedure TForm4.BitBtnl 1Click(Sender: TObject);
begin
Form 19 .BitBtn2. Click;
Form 19 .BitBtn8. Visible.=T rue;
Form 19 .BitBtn2.Enabled:=False;
Forml9.BitBtn3.Enabled:=False;
Form 19 .BitBtn4.Enabled:=F alse;
Forml9.BitBtn5.Enabled:=False;
Forml 9.BitBtn6.Enabled:=False;
Form19.BitBtn7.Enabled:=False;
Forml 9.ShowModal;
end;

101

end.

FORM 5

procedure Tform5.0pertUpdate ;
begin
edit24.Enabled := True;
edit25 .Enabled := True;
edit26.Enabled ,:= True;
edit27 .Enabled := True;
edit2~.Enahled := True;
edit29.Enabled := True;
edit30.Enabled := True;
edit3· i .t11iBled := True;
edit32.Enabied := !ti.le;
edit3 3 .Ehat1ied := Thie;
bitbtrl5.Ertabie<l := true;
bitbtn6.Ehabied := true;
bitbtn9 .Enabled := True;
end;

procedure Tfottn5.CloseUpdate;
begin -
edh24.Enabl!d := False;
e~}t25.Ena~1~d := Faise;
ectit26.BnaHi~d := False;
e~~t27 .ErtaHied := F~ise;
edit2S.Etta81M := Fal~e;
etj,it29.Enal:Md := Faise;
edit3b.Enali1ed := False;
e'dlt31.Enabled := False;
ed.it32.Enabled := False;
edit33.Enal::Jhtd := False;
bitbtn5.Enabied := False;
bitbtrt6.Enabied := Faise;
bitbtn9.Enabied := False;
end;

procedure Tform5. OpertAdd ;
begin
edit2.Enabled := True;
edit3 .Enabled := True;
edit4.Enabled := True;
edit5 .Enabled := True;
edit6.Enabled := True;
edit7 .Enabled := True;
edit8.Enabled := True;
edit9 .Enabled := True;
editlO.Enabled := True;

102

editl l .Enabled := True;
bitbtn3 .Eriabled := True;
bitbtnx.Enabled := True;
end;

procedure Tfomi5.CloseAdd;
begin
editz.Enabled := False;
edit3.Enabled := False;
edit4.Enabled := False;
edit5.Enabled := False;
edit6.Enabled := False;
edit7 .Enabled :::;: False;
edit8.Enabled := FaJse;
edit9.Ertabied := False;
editl O.Enabied := False;
editl lEnabled := False;
bitbtn3.Ertabled := False;
Bhbtn8.Enahled := False;
end;

~to,c~dµte !f~nn5. OpenDelete;
Begih · ~~!fl 3 .Ertab,i.etl := True;
edit 4.Enabied := True; ~a!t .. sJnrtbied := True;
ed1ti6.Ettabletl := True·
~did 7.Eitrtbfbd := fruei
edhi 8.EhJbied := True;
edit19 .Enabietl :c;= True;
edlt20.Eha~led := True;
edit2 i .En~bietl := True;
edit22.Enab1etl := True;
bitbtrt41rH{bled := True;
bitbtn7.En~tiled := True;
bHbtnlO.ErtJbled := True;
end· '
procedure Tform5. CloseDelete;
begin
edit13.Enabled := False;
editl 4.Enabled := False;
edit15.Enabled := False;
edit16.Enabled := False;
editl 7.Enabled := False;
editl 8.Ena:bled := False;
edit19.Enabled, := False;
edit20.Enabled := False;
edit21.Enabled := False;

103

edit22.Enabled := False;
b~tbtn4.Ehabled := False;
bttbtn7 .Eflabied := False;
bitbtnl-0.Enabled :== False;
end;

procedure TformS.ClearAdd;
begin
editl .Clear;
edit2,.Clear;
edit3.Clear;
edit4.Clear;
edit5.Clear;
edit6.Clear;
edit7. Clear;
edit8.Clectr;
edit9.C1ear;
editi O.Ciear;
editl 1. Ci ear;
end;

procedure Tform5. Clearflelete;
'' . begin
' I ,"I ediH s: Clear;

~Mttlear;
ed!tl 4. dear;
ed1H 5.tiear;
e~if i 6.tiear;
edit17.tlear;
editt$.C1eat;
edit HJ.Clear;
edlt20.C1ear;
edit2LC1ear;
t,.Ht2::tClear;
end· '
procedure Tform5.ClearUpdate;
begin
edit23. Clear;
edit24.Clear;
edit25. Clear;
edit26.Clear;
edit27. Clear;
edit28.Clear;
edit29. Clear;
edit30.Clear;
edit31.Clear;
edit32.Clear;
edit33.Clear;
end;

104

procedure TForm5.BitBtn2Click(Sender: TObject);
begin
formfi.Close;
form2.show;
end;
procedure TForm5.BitBtn3Click(Sender: TObject);
begin

if (editl.Text <>")then
begin
datasourcel .Edit;
datasource l .Databet.Append;
datasource 1.DataSet.FieldVahies['CustomerID'] :=editl .Text;

if (edit2. Text <> ") therr
datasource lDataxet.Fieldvaluesl'Companybl ame'] :=edit2.'f ext;

if (edit3.Text <>")then
datasource l .Datafiet.Field'Valuesj'Contactlv ame'] :=edit3. Text;

if (edit4. Text<> ") then
datasource 1.DataSet.FieldValues['ContactTitle'j :=edit 4. Text;

if (edit5.Text <>")then
dataseurce 1.bataSet.FieldValues['Address'] :=edit5.Text;

if Icdito.Tcxt <>")then
datasource 1.0ataSet.FieldValues['City'] :=edit6. Text;

if (edit7.Text <>")then
datasource l .DataSet.FieldValues['Phone 1 '] :=edit7. Text;

if (edit8. Text <> ") then
datasource 1.DataSet.FieldValues['Phone2']':=edit8.1ext;

if (edit9. Text <> ") then
datasourcel .Dataxet.Fieldvaluesj'Phoned '] :=edit9. Text;

if (editlO.Text <>")then
datasource l .DataSet.FieldValues['Fax'] :=editl O.Text;

if (editl 1. Text <> '') then
datasource l .DataSet.FieldValues.['CustometCredit'] :=editl 1. Text;
.datasource l .DataSet.Post;

showmessage('Record is Added Successfuly.');
Clear Add;
end// if

else

105

begin
showmessage('Y ou have to e.pter Customer ID');

.~ "~ c_ •• _cleamtlid;
€ditl~ocus;
end;

end;

procedure TFprm5.BitBtn9Click(Sender: TObject);
begin
if {edit23.Text <>") then
begin
query 1. Close;
query l .SQL.Clear;
queryl .SQL.Add('Select * From db\Customers Where Customerld='+edit23.Text+");
queryl .Exec-SQL;
queryl .Open;

if (Datasource2.DataSet.-RecordCount > 0) then
begin
openupdate;
if (Datesourcez.Dataset.fieldvalues {'CompanyName'] <> Null) then
edit24.text := Datasourcez.Dataxet.fieldvalues ['CompanyName'];

if (Datasourcez.Detaset.fieldvalues ['Contactlvame'[<> Null) then
edit2S:text := Datasource2.DataSet.fieldValues ['ContactName'];

if (tjatasource2.bataSet.fieldValues ['ContactTitle'] <> Null) then
edit:26.text := Datasource2.DataSet.fieldValues [Contact'I'itle'];

if (IJtitasource2.I:JataSet.field\r alues [Address'] <> Null) then
edit:27.text := Datasource2.DataSet.fieldValues ['Address'];

if (btttasource2.tJataSet.fieldValues t'City'] <> Null) then
edit28;text :'= Datasourcez.Dataxet.fieldvalues [City'];

if (Datasource2.bataSet.fieldValues t·Phone I'] <> Null) then
edit29 .text := Datasource2.DataSet.fieldV alues ['Phone I'];

if (Datasourcez.Dataxet.fieldvalues [Phone?'] <> Null) then
edit30.text := Datasourcez.DataSet.fleld Values ['Phone2'];

if (Datasowce2.DataSet.fieldValues ['Phone3'] <> Null) then
edit31.text := Datasource2.DataSet.fieldValues ['Phone3 '];

if (Datasourcez.DataSet.fieldvalues [Fax'] <> Null) then
edit32.text .:= Datasource2.DataSet.fieldValues ['Fax'];

if (Datasource2.DataSet.fieldValues ['CustomerCredit'] <> Null) then
edit33. text := Datasource2.DataSet.fieldVaiues ['CustomerCredit'];

106

end
else
begin
showmessage('There are no such record.');
edit23.SetFocus;
end;

end
~1~;
b~~,;f
~~iwessage('Y OU have to enter Customerll)');
'ttlit:Zl. SetF ocus;

/tii~Nif ~rtu·-; .•. · .,

pfQCedure TFonn5.BitBtrt5<;:lick(Sender: TObject);
begin
datasource l .Edit;

if (epit23. Text <> ") then
begin

if{edit24.Text <>")then
datasource l .DataSet.FieldValues['Compap.yN ame'] :=edit24. Text;

if (edit25. Text <> ") then
datasour9el.DataSet.FieldValues['ContactName']:=edit25.Text;

if (edit26.Text <> ") then
datasource l .DataSet.FieldValues['ContactTitle'] :=edit26. Text;

if (edit27.Text <>")then
datasoutce l .DataSet.FieldV:alues['Address'] :=edit27. Text;

if (edit28.Text <>")then
datasource l .DataSet.FieldValues['City'] :=edit28. Text;

if (edit29.Text <>")then
datasource 1.DataSet.FieldValues['Phone 1 '] :=edit29. Text;

if (edit30.Text <> ") then
datasource l .DataSet.FieldValues['Phone2'] :=edit30.Text;

if (edit31. Text <> ") then
datasource l .DataSet.FieldValues['Phone3 '] :=edit31. Text;

if (edit32,Text <>")then
datasource l .DataSet.FieldValues['Fax'] :=edit32.Text;

10:7

else
begin
I I showmessage('Y ou have to enter Customer ~D .');
JI editl.Text := ";
end;
end;

procedure TForm5.Edit1KeyPress{Sertd'er: T,Qbject; var Key: Char);
begin

if ((Key in ['0' .. '9'])or (Key= #8)) then
begin
OpenAdd;

end
else
begin

showmessage('CustomerID must be numeric value.');
Key:= #0;
editl .Setf'ocus;

end;
end;

procedure TForm5.BitBtn6Click(Sender: TObject);
var
up: word;
begin
up := messagedlgf'Are you really want to ignore ?',mtconfirmation, [mbyes,mbno],O);
if (up=Mr'Yes) then
Clear Update;

end;

procedure TF orm5 .BitBtn8Click(Sender: TObject);
var
ad: word;
begin
ad:= messagedlg('Are you really want to ignore ?',mtconfirmation, [mbyes.mbnol.O);
if (ad=MrYes) then
Clear Add;

end;

procedure 1'Form5.BitBtn7Click(Sender: TObject);
var
de: word;
begin
de:= messagedlgf'Are you really want to ignore ?',mtconfirmation, [mbyes.mbnoj.O);
if (de=MrYes)ihen
ClearDelete;

end;

procedure TForm5.BitBtnl OClick(Sender: TObject);

109

begin

if (edit12.Text <>") then
begin
query l.Close;
query l .SQL.Clear;
queryl.SQL.Add('Select * From db'Customers Where Customerld='+editl2.Text+");
query l ._I;:xecSQ L;
query 1. Open;

if (Datasource2.DataSet.RecordCount > 0) then
begin
openupdate;
if (Datasource2.DataSet.fieldValues ['Coh1panyN ame'] <> Null) then
edit13.text := Datasource2.DataSet.freldValues ['CompanyName'];

if (Datasource2.DataSet.fieldValues ['ContactName'] <> Null) then
editl 4.text := Datasource2.DataSet.fieldValues ['ContactName'];

if (Datasouree2.DataSet.fieldValues f'CohtactTitle'] <> Null) then
edit 15 .text := Dataso"ijrce2.DataSet.fieldVa1m~s ['CorttactTitle'];

if (Datasource2.DataSet.fieldValues ['Address'] <> Null) then
editl 6.text := Datasource2.DataSet.fieldValues ['Address'];

if (D*1asource2.DataSet.fieldValues ['City'] <> Nul-1) the:h
edit17.text := Datasource2.DataSet.fieldVaiues ['City'];

if{b.itasource2.DataSet.fieldValues ['Phonel'] <> Nuil) then
.editl ~.text := Datasource2.DataSet.fieldValues '['Phone 1 '];

if (Dttasource2.DataSet.fieldValues ['Phone2'] <> Null) then
editl 9 .text := Datasource2.DataSet.fieldValues ['Phone2'];

if (Da'tasource2.DataSet:fieldValues ['Phone3'] <> Null) then
edit20.text := Datasource2.DataSet.fieldValues ['Phone3 '];

if (Datasource2.DataSet.fieldValues ['Fax'j <> Null) then
edit2 i .text := Datasouree2.DataSet.fieldValues ['Fax'];

if (Datasource2.DiltaSet.fieldValues ['CustomerCredit'] <> Null) then
-edit22.text := Datasource2.DataSet.fieldValues ['CustomerCredit'];
closedelete;
bitbtn4.Eriabled := True;
bitbtn7.Enabled ,= True;
end

else
begin
showmessage('There are no such record.');
editl2.SetFocus;

110

end;
end
else
begin
showmessaget'Y ou have to enter CustomerID');
edit12.SetFocus;
end;

end;

procedure TForm5.BitBtn4Click(Sender: TObject);
begin

if (edit l ZText <>")then
begin
table l.Open;
table 1.Edit;
while not (datasource 1.dataset.Eot) do
begin
if (datasourcel.DataSet.Fieldt3yName('Customerid').AsString=edit12.Text) then
begin
table 1.Delete;
end;
datasource 1 .dataset.Next;
end;

tablel .Close;
tablel.bpen;

showmessagef'Record is Deleted Successfully.');
did
else
b*gin
showmessagef'You have to enter Customer ID. ');
e~it12.SetFbcus;
erid;
cleardelete;
editl2.SetFocus;
end;

procedure TForm5.Edjt23KeyPress(Sender: TObject; var Key: Char);
begin

if ((Key in ['0' .. '9'])or (Key= #8)) then
begin
Open Update;
end
else
begin

showmessage('CustomerID must be numeric value.');

111

Key:= #0;
closeupdate;
edit23. SetF ocus;

end;
end;

procedure TForrp.5.Edit12KeyPress(Sender: TObject; var Key: Char);
begin

if ((Key in ['0' .. '9'])or (Key = #8)) then
begin
OpenDelete;
enc\

else
begin

showmessage('CustomerID must be numeric value.');
key :=#0;
edit12.SetFocus;

end;
end;

procedure TFonrt5.FormCreate(Sender: TObject);
begin
clbseAqd·
closed€iete;
closeupdate;
end; .
procedure TForm5.BitBtnl 1Click(Sender: TObject);
begih ·
Form17.Bitgtn2.Click;
Forml 7.BitBtn8.Visi,ble:=True;
Forrhl 7 .Bii~trt1.th~Hied:=;::f alse;
Form 17 .BitBtn3 .Enabled.=False;
Forml 7.Bitl3tn4.Enabled:=False;
f orml 7 .Bitlhno.Enahled=False;
Forml 7.Bit$tn6.Enabled:=False;
Forml 7 .BitBtn1 .Enabled.=False;
Forml 7.ShowModal;
end;

procedure TForm5.Editl 1KeyPress(Sender: TObject; var Key: Char);
begin

if ((Key in ['0' .. '9'])or (Key= #8)) then
begin
OpenAdd;

end
else
begin

112

showmessaget'Customer Credit must be numeric value.');
Key :=#0;
editl 1.SetFocus;

end;
end;

procedure TForm5.Edit33KeyPress(Sender: TObject; var Key: Char);
begin

if ((Key in ['0' .. '9'])or (Key = #8)) then
begin
OpenAdd;

end
else
begin

showmessage('Customer Credit must be numeric value.');
Key::::; #0;
edit33.SetFocus;

end;
end;

end.

FORM 9

procedure Tl-ormv.Clear.All;
begin
editl .Clear;
edit2.t1ear;
edit3.C1ear;
edit-l.Clear;
edits.Clear;
edito.Clear;
edits.Clear;
editv.Clear;
editlO.Clear;
editl l .Clear;
editl2.Clear;
edit13.Clear;
editl 4.Clear;

end;

procedure TForm9.BitBtn2Click(Sender: TObject);
begin

Clear All;
form9.Close;
form2.show;

end;

113

procedure TForm9.EditlExit(Sender: TObject);
begin

if (editl.Text <>") then
begin
queryl .Close;
query l .SQLClear;
query l .SQL.Add('Select * From db\Products Where Productld='+editl. Text+");
query 1.ExecSQL;
query 1. Open;

if (Datasource l .DataSet.RecordCount > 0) then
begin
GroupBoxl.Visible := True;

edit3. Text := Datasource l .DataSet.FieldVa,lues['UnitPrice'];
x:= strtofloat(edit3.text);
edit9.Text := DataSoUtcel.DataSet.FieldValues['ProductName'];
editl 0. Text := Datasourcel .DataSet.FieldValues['Cat~gotyName'];

II Db Image I .Picture := Datasource 1 O.DataSet.FieldVaiues['Picture'];
II Dbirnage l .Picture.LoadFromFile(Datasource 1 O.DataSet.FieldValues['Picture']);

end
else
begin
showmessaget'This is not valid Product ID. Please enter correct one.');
edit l.clear;

end· ,
end;

end;

procedure TForm9.Edit1KeyPress(Sender: TObject; var Key: Char);
begin

if ((Key in ['0' . .'9'])or (Key= #8)) then
begin
end

else
begin
showtnessage('ProductID must be numeric value.');
Key:= #0;
editl .SetFocus;

end;
end;

procedure TFonn9.Edit2Exit(Sender: TObject);
begin

if (edit2.Text <>") then
begin

114

queryz.Close;
query2.SQL.Clear;
query2.SQL.Add('SelecJ * From db'Suppliers Where SupplierID='+edit2.Text+");
query2.ExecSQL;
query2.0pen;

if (Datasource20.DataSet.RecordCount > 0) then
begin
GroupBox2.Yisible := True;

editl 1.Text := Datasource20.DataSet.FieldValuest'ContactName'];
editl2.Text := Datasource20.DafoSet.FieldValues['City'];
editl 3. Text := Datasource20.DataSet.FieldVa1ues['Phone 1 '];
edit 14. Text := Datasourcezf .DataSet.FieldV al ues t'HomePage'];

end
else
begin
showmessage('This is not valid Supplier ID. Please enter cortect one.');
editz.clear;

end;
ehd
else
lie gin
end;
end:

procedure TForm9.Edit2keyPress(Sender: TObject; var Key: Char);
begin

if ((Key in ['0' . .'9'])or (Key= #8)) then
begin
ertd

else
begin
showmessager'Supplierll) must be numeric value.');
Key:= #0;
editz.Setl'ccus;

end· ' end;

procedure TForm9.Edit5Exit(Sender: TObject);
begin

if (edit5. Text <>") then
begin
query3 .Close;
query3.SQL.Clear;
query3.SQL.Add('Select ShipperID From db'Shippers Where

Shipperld='+edit5. Text+");
query3.ExecSQL;
query.l.Open;

115

if (Datasource30.DataSet.RecordCount > 0) then
begin
end
else
begin
end;

end
else
begin
end;
end;

procedure TForm9.Edit5KeyPress(Sender: TObject; var Key: Char);
begin

if ((Key in ['0' .. '9'])or (Key= #8)) then
begin
end
else
begin
showmessage('Shipper ID must be numeric value.');
Key :=#8;
edit5. SetF ocus;
end;

end;

procedure TForm9.Edit3KeyPress(Sender: TObject; var Key: Char);
begin

if ((Key in ['O' '1' '2' '3' '4' '5' '6' '7'' '8' '9'' '])or (Key= #8)) then ' ' ' ' ' ' ' ' ' ' . '

begin
end
else
begin
showmessage('Unit Price must be numeric value.');
Key:= #0;
edit3.SetFocus;
end;

end;

procedure TForm9.Edit4KeyPress,(Sender: TObject; var Key: Char);
begin

if ((Key in ['0' . .'9'])or (Key= #8)) then
begin
end
else
begin
showmessage('Quantity must be numeric value.');
Key:= #0;
edit4.SetFocus;
end;

116

end;

procedure TForm9.Edit6KeyPress(Sender: TObject; var Key: Char);
begin

if ((Key in ['O' 'l' '2' '3' '4' '5' '6' '7' '8' '9'' '])or (Key= #8)) then ' ' ' ' ' ' ' ' ' ' . - begin
end

else
begin
showmessage('Purchase Freight must be numeric value.');
Key:= #0;
edit6.SetFocus;

end;
end;

procedure TForrh9.FormCreate(Sender: TObject);
begin

GroupBoxl .Visible := False;
GroupBox2.Visible :=;: False;
edit9.Enabled := False;
editl 0.Enabled := False;
editl I.Enabled := False;
edit12.Enabled := False;
editl3.Enabled := False;
edit14.Ertabied != False;
Db Image 1.Ertabled := False;
Datetimepicker i .Date :=(bate);

end;

I

procedure TForm9.BitBtnlCiick(Sender: TObject};
var
q,y,z : real;
begin
if (edit2. Text =") then
begin
showmessage('Y ou have to enter Supplier ID.');
edit2. setfocus;
end
else if (edit3.Text =") then

begin
showmessage('Y ou have to enter Unit Price.');
edit3 .setfocus;
end
else if (edit4.Text =") then

begin
showmessage('You have to enter Quantity.');
edit4.setfocus;
end

else if (edit l.Texr <>")then
begin

117

table6.0pen;
datasource6.Edit;
datasource6.DataSet.Append;

datasource6.DataSet.FieldValues['ProductID']:= strtoint(edit 1. Text);

if (edit2.Text <>")then
datasource6.DataSet.FieldV alues['SupplierID'] :=edit2. Text;

if (edit3.Text <>")then
datasource6.DataSet.FieldValues['BuyingUnitPrice'] :=edit3. Text;

if (edit4.Text <>")then
datasource6.DataSet.FieldValues['Quantity']:=edit4.Text;

if (edit5.Text <>")then
datasource6.DataSet.FieldValues['ShipperID'] :=edit5 .Text;

if (edit6. Text <> ") then
datasource6.DataSet.FieldValues['PurchaseFreight'] :=edit6. Text;

if (edit8. Text <> ") then
datasource6.DataSet.FieldValues['EmployeeID'] :=edit8. Text;

datasource6.DataSet.FieldV alues['BuyingDate'] :=DateTimePicker I .Date;

datasource6.DataSet.Post;
table6. Close;

qqqqq.Open;
qqqqq.Edit;

while not (DataSourceqqqqq.dataset.Eof) do
begin
if

(DataSourceqqqqq .DataSet.FieldByN ame('Productld').AsString=edit 1. Text) then
begin
y := strtofloat(edit4.Text);

if (datasourceqqqqq.DataSet.FieldValues['UnitslnStock']<> Null) then
begin
q := datasourceqqqqq.DataSet.FieldV alues['U nitslnStock'];
end

else
begin
q :=O;

end;
z := q+y;

118

datasourceqqqqq.DataSet.Edit ;

datasourceqqqqq .DataSet.FieldValues['UnitslnStock'] := z;
end;
DataSourceqqqqq.dataset.Next;

end;
showmessage('Purchase is Added Successfuly.');
Clear All;

end
else
begin
showmessage('You have to enter Product ID.');
editl .SetFocus;
end;

end;

procedure TForm9.Edit3Exit(Sender: TObject);
var
y: real;
begin

if (editl.Text <>") then
begin

if (Datasource l .DataSet.RecordCount > 0) then
begin
y := strtofloat(edit3.Text);

if (y<x) then
begin
showmessage ('Unit Price must be greater than or equal to default Unit Price.');
edit3.SetFocus;

end
else
begin
end;

end
else
begin
end;

end
else
begin
end;
end;

procedure TForm9.BitBtn3Click(Sender: TObject);
begin
F orm20 .BitBtn2. Click;
F onn20.BitBtn8. Visible:=True;

119

Fonn20.BitBtn2.Enabled:=False;
Fonn20.BitBtn3.Enabled:=False;
Fonn20.BitBtn4.Enabled:=False;
Fonn20.BitBtn5.Enabled:=False;
Fonn20.BitBtn6.Enabled:=False;
F onn20.BitBtn 7 .Enabled:=F alse;
Form20.ShowModal;
end;

procedure TF orm9 .BitBtn6Click(Sender: TObject);
begin
Form I 6.BitBtn2.Click;
Forml 6.BitBtn8.Visible:=True;
F orml 6.BitBtn2.Enabled:=False;
Forml6.BitBtn3.Enabled:=False;
Form I 6.BitBtn4.Enabled:=False;
Forml6.BitBtn5.Enabled:=False;
Forml 6.BitBtn6.Enabled:=False;
Form 16.BitBtn 7 .Enabled:=F alse;
Forml 6.ShowModal;
end;

procedure TF orm9 .BitBtn5Click(Sender: TObject);
begin
Forml 8.BitBtn2.Click;
Form l 8.BitBtn8. Visible:=True;
Forml8.BitBtn2.Enabled:=False;
Forml 8.BitBtn3 .Enabled:=False;
Forml 8.BitBtn4.Enabled:=False;
Forml8.BitBtn5.Enabled:=False;
Form I 8.BitBtn6.Enabled:=False;
Form 18.BitBtn 7 .Enabled:=F alse;
Forml 8.ShowModal;
end;

procedure TF orm9 .BitBtn4Click(Sender: TObject);
begin
Forml9.BitBtn2.Click;
F orml 9 .BitBtn8. Visible:=True;
Forml 9 .BitBtn2.Enabled:=False;
Forml9.BitBtn3.Enabled:=False;
Forml9.BitBtn4.Enabled:=False;
Form 19 .BitBtn5 .Enabled:=False;
Form19.BitBtn6.Enabled:=False;
Forml 9.BitBtn7 .Enabled:=False;
Forml 9 .ShowModal;
end;

procedure TForm9.Edit8KeyPress(Sender: TObject; var Key: Char);
begin

120

if ((Key in ['0' .. '9'])or (Key= #8)) then
begin
end

else
begin
showmessage('SupplierID must be numeric value.');
Key :=#0;
edit8. SetF ocus;

end;
end;

end.

FORM 12

procedure TForml2.BitBtn2Click(Sender: TObject);
begin
forml2.Close;
form2.show;
end;

procedure TForml2.BitBtn3Click(Sender: TObject);
var
up: word;
begin
up:= messagedlg('Are you really want to ignore ?',mtconfirmation, [mbyes,mbno],O);
if (up=MrYes) then
editl .Clear;
edit2.Clear;
edit3.Clear;

end;

procedure TForml2.BitBtn4Click(Sender: TObject);
begin

if (edit 1. Text =") then
begin
showmessage('You have to enter a User Name');
editl .SetFocus;
end
else if (edit2.Text =") then

begin
showmessage('Y ou have to enter a Password');
edit2.SetFocus;
end
else if (edit2.Text <> edit3.Text) then

begin
showmessage('Enter your password regularly.');
edit2.Clear;
edit3.Clear;

121

edit2.SetFocus;
end

else if (edit2.Text = edit3.Text) then
begin
if ((editl.Text <>") AND (edit2.Text <>")) then
begin

queryl .Close;
queryl.SQL.Clear;
queryl.SQL.Add('Select * From db\Employees Where Nick

="'+edit4.Text+'"');
queryl .ExecSQL;
queryl.Open;

if (Datasource2.DataSet.RecordCount > 0) then
edit6. Text := Datasource2.DataSet.fieldValues ['EmployeeID']
else
showmessage ('Y anlis');

query2. Close;
query2.SQL.Clear;
query2.SQL.Add('Select * From db\Employees Where EmployeeID

='+edit6. Text+");
query2.ExecSQL;
query2.0pen;

datasource I .Edit;

if (editl. Text <> ") then
datasource l .DataSet.FieldValues['Nick'] :=edit 1. Text;

if (edit2.Text <>")then
datasourcel.DataSet.FieldValues['Password']:=edit2.Text;

datasource l .DataSet.Post;

showmessage('Information(s) changed Successfuly. ');
edit I .Clear;
edit2.Clear;
edit3.Clear;
Forml2.Close;
Form2.Show;
end
else
begin
showmessage('You have to enter your User Name and Password.');
editl .SetFocus;
end;

end
else

122

begin
showmessage('Enter your password regularly.');
edit2.Clear;
edit3.Clear;
edit2.SetFocus;

end;
end;

end.

FORM 15

procedure TForm15.SpeedButton2Click(Sender: TObject);
begin
Form15.Hide;
Form l 6.BitBtn8. Visible:=False;
Form I 6.BitBtn2.Enabled:=True;
Form I 6.BitBtn3 .Enabled:=True;
F orml 6.BitBtn4.Enabled:=True;
Forml 6.BitBtn5.Enabled:=True;
Form 16.BitBtn6.Enabled:=True;
Form l 6.BitBtn7 .Enabled:=True;
Form16.Show;
end;

procedure TF orm 15. SpeedButton3 Click(Sender: TObject);
begin
Form 15 .Hide;
Forml 7.BitBtn8.Visible:=False;
Form 17 .BitBtn2.Enabled:=True;
Forml 7.BitBtn3.Enabled:=True;
Forml 7.BitBtn4.Enabled:=True;
Forml 7.BitBtn5.Enabled:=True;
Forml 7 .BitBtn6.Enabled:=True;
Forml 7.BitBtn7.Enabled:=True;
Forml 7.Show;
end;

procedure TF orm 15 .SpeedButton4Click(Sender: TObject);
begin
Form15.Hide;
Forml 8.BitBtn8.Visible:=False;
Form 18.BitBtn2.Enabled:=True;
Form l 8.BitBtn3 .Enabled:=True;
Form l 8.BitBtn4.Enabled:=True;
Form18.BitBtn5.Enabled:=True;
Forml 8.BitBtn6.Enabled:=True;
Forml 8.BitBtn7.Enabled:=True;
Forml 8.Show;
end;

•
procedure TF orm 15 .SpeedButton5Click(Sender: TObject);
begin
Form 15 .Hide;
Form19.BitBtn8.Visible:=False;
Forml9.BitBtn2.Enabled:=True;
Form 19 .BitBtn3 .Enabled :=True;
Form 19 .BitBtn4.Enabled:=True;
F orml 9 .BitBtn5 .Enabled:=True;
Forml9.BitBtn6.Enabled:=True;
Form19.BitBtn7.Enabled:=True;
Form19.Show;
end;

procedure TF orm 15 .SpeedButton6Click(Sender: TObject);
begin
Form15.Hide;
Form20.BitBtn8.Visible:=False;
Form20.BitBtn2.Enabled:=True;
Form20.BitBtn3 .Enabled:=True;
F orm20.BitBtn4.Enabled:=True;
F orm20.BitBtn5 .Enabled:=True;
Form20.BitBtn6.Enabled:=True;
Form20.BitBtn7.Enabled:=True;
F orm20.Show;

end;

procedure TF orm 15 .SpeedButton7Click(Sender: TObject);
begin
Form15.Hide;
F orm21.BitBtn8. Visible:=False;
F orm2 l .BitBtn2.Enabled:=True;
F orm2 l .BitBtn3 .Enabled:=True;
F orm2 l .BitBtn4.Enabled:=True;
F orm21.BitBtn5 .Enabled:=True;
F orm21.BitBtn6.Enabled:=True;
Form21.BitBtn7.Enabled:=True;
Form21.Show;
end;

procedure TForm15.SpeedButton8Click(Sender: TObject);
begin
Forml5.Hide;
Form22.BitBtn8.Visible:=False;
F orm22.BitBtn2.Enabled:=True;
F orm22.BitBtn3 .Enabled:=True;
F orm22.BitBtn4.Enabled:=True;
F orm22.BitBtn5 .Enabled:=True;
Form22.BitBtn6.Enabled:=True;

124

Form22.Show;
end;

procedure TForm15.SpeedButton9Click(Sender: TObject);
begin
Form IS.Hide;
Form23.Show;
end;

procedure TForm15.SpeedButton10Click(Sender: TObject);
begin
Forml5.Hide;
Form24.Show;
end;

procedure TForm15.SpeedButtonl 1Click(Sender: TObject);
begin
Form15.Hide;
Form25.Show;
end;

procedure TForml5.BitBtnlClick(Sender: TObject);
begin
Form15.Close;
Form2.Show;
end;

end.

FORM16

procedure TForm16.BitBtn1Click(Sender: TObject);
begin
Forml6.Close;
Form15.Show;
end;

procedure TForml6.BitBtn2Click(Sender: TObject);
begin
query 1. Close;
queryl.SQL.Clear;
queryl .SQL.Add('Select EmployeeID,FirstName,LastName, Title From db\Employees

');
queryl.ExecSQL;
queryl.Open;

end;

procedure TForm16.BitBtn3Click(Sender: TObject);
begin

125

query l .Close;
queryl .SQL.Clear;
queryl .SQL.Add('Selec;t Fi-rstNµme,LastName,Title,BirthDate From db\Employees

Order by BirthDate DESC');
queryl .ExecSQL;
queryl .Open;

end;

procedure TForml6.BitBtn4Click(Sender: TObject);
begin
query 1. Close;
queryl .SQL.Clear;
query l .SQL.Add('Select FirstName,LastName,Nick From db\Eruployees');
quetyl .ExecSQL;
q-qery 1. Open;

end;

procedure TForml6.BitBtn5Click(Sender: TObject)_;
begin
query l .Close;
queryl .SQL.Clear;
queryl .SQL.Add('Select City,count(EmployeeID)As Counter From db\Empioyees

Group By City');
query] .ExecSQL;
query 1. Open;

end: '

procedure TForm16.BitBtn(,Click(Sender: TObject);
begin
query I. Close;
queryl .SQL,C1¢at;
quety 1.SQL.Add('Select E.FirstName,E.LastN ame,count(P .EmployeeID) As Counter

From db\Erlipldyees E,db\Purchase P Where E.EmployeeID=P.EmployeeID Group By
E.FirstNamb,E.LastName');
query] .Ex~cSQL;
query i . Open;

end;

procedure TF6rml6.BitBtn7Click(Sender: TObject);
begin
query l .Close;
queryl .SQL.Clear;
query! .SQL.Add('Select FirstName,LastName,Salary From db\Employees Order By

Salary DESC');
queryl .ExecSQL;
queryl .Open;

end;

procedure TF orm l 6.BitBtn8Click{Sender: TObject);
begin

126

Forml o.Close;
end;

end.

FORM26

procedure TF6rm26.Label 1 Click(Sender: TObject);
begin
F orin26 .Hide;
Foiin8.Show;
end;

procedure TForm26.Label20Click(Sender: TObject);
begin
Form26.Hide;
Form2.Show;
end;

procedure TForm26.Label21 ClicktSender: TObject);
begin
Foith26.Hide;
F ohn9. Show;
end;

procedure TForm26.Label27ClickfSender: TObject);
1:Mgin
Fdhn26.Hide;
Formti.Show;
end;

' '
j,t'bcedure !Form26.Label31 Click(Sender: TObject);
b~gip
Forrh26.Hide· I.,... • ! '

Pormo.Taboheetz.Enabled := True;
Formo.Show;
end;

procedure TForm26.Label29Click(Sender: TObject);
begin
Form26.Hide;
Formo.Tabxheets.Enabled := True;
Formo.Show;
end:

procedure TForm26.Label46Click(Sender: TObject);
begin
Form26.Hide;
Form6.TabSheetl .Enabled := True;

127

Form6.Show;
end;

procedure TForm26.Label26Click(Sender: TObject);
begin
Fonn26.Hide;
Fortn5.Show;
end;

procedure TForm26.Label45Click(Sender: TObject);
begin
Form26.Hide;
Fdtm5.tabSheetl .Enabled := True;
F onn5. Show;
end;

procedure TForm26.Label28Click(Sender: TObject);
begin
Form26.Hide;
Form5.TabSheet3.Enabled := True;
F orm5. Show;
end;

~tocedure tForm26.Label34Click(Sender: Tdbject);
8etih
Fuhrt26.Hide;
Fotm5.!ahSheet2.Enabled := Tnie;
Formf.Show;
end;

procedure fForm26.Label25Clitk(Sender: TObjed);
tie gin
Fdhn26.Hide;
Porm-l.Show;
end;

procedure fFotrn26.Label44Click(Sender: TObject);
begin
Form26.Hide;
Form4.TabSheetl .Enabled := True;
Form4.Show;
end;

procedure TForm26.Label18Click(Sender: TObject);
begin
Form26.Hide;
Form4.TabSheet3.Enabled := True;
F orm-l, Sliow;
end;

128-

-

procedure TF orm26 .Label3 5 Click(Sender: TO bj ect);
begin
Form26.Hide;
Fortn4.TabSheet2.Enabled := True;
Fortn4,Show;
end;

procedure TForm26.Label6Click(Sender: TObject);
begin
F orm26 .Hide;
Form.I.Show;
end· '
procedure TForm26.Label43Click(Stmder: TObject);
begin
Furm26.Hide;
F orm3. Tabxheet I .Enabled := True;
F orm3. Show;
end;

procedure TForm26.Labell 7Click(Sender: TObject);
begin
Fotfu26.Hide;
Fottn3.tabSheet3.Enabled := True;
Fofm.3.Shdw;
end· '
procedure TForm26.Label32Click(Sender: TOHject);
begin
Fbtm:16.1-tide;
Fotm3.TabSheet2.Enabletl := TrUe;
Form i.Show;
end;

procedure TFbrm26.Label5Cli~k(Sender: TObject);
begin
Fbtm26.Ft1de;
Forml 1.Show;
end;

procedure TF onn26.Label40Click(Sender: TObject);
begin
Form26.Hide;
Forml 1.TabSheetl .Enabled := True;
Forml 1.Show;
end;

procedure TForm26.Label15Click(Sender: TObject);
begin
FormZo.Hide;

129

Forml l.TabSheet3.Enabled := True;
Forml l .Show;
end;

procedure TF orm.26 .Label3 OClick(Sender: TObj ect);
begin
Form.26.Hide;
Form l l .TabSheet2.Enabled := True;
Forml 1.Show;
end;

procedure TForm26.Labe122Click(Sender: TObject);
begin
Form26.Hide;
FormlO.Show;
end;

procedute TForm26.Label41 ClickrSender: TObject);
begin
Forin26.Hide;
Form10.tabSheetl.Enabled := True;
Fbrrhib.Slibw;
end: ,

ptocedure tFonn26.Label13CHck(Sender: Tdhject);
begin
Fbrlii2t1.Hitle;
FbrrnlO.fabSheet3.Enabled := True;
Fbnhi O. Show;
end: ,

procedure fForm26.Label14Clkk(Sender: TObject);
b~girt .
Fbriti26.Hide;
rBhh10.TtlbSheet2.Enabled := True;
PbinilO.Show;
ehd;

procedure tFonn26.Label23Cljck(Sendet: TObject);
begin
Fortli2t5.H1de;
Form7.Show;
end;

procedure TForm26.Label42Click(Sender:· TObject);
begin
Form26.Hide;
Form7.TabSheetl.Enabled := True·
Form7 .Show;
end;

130

•

procedure TForm26.Label 16Click(Sender: TObject);
begin
Form26.Hide;
Form7.TabSheet3.Enabled := True;
Form7.Show;
end;

procedure TForm26.Label33Click(Sender: TObject);
begin '
Fonn26.Hide;
Form7.TabSheet2.Enabled :=::; True;
Form7.Show;
end;

procedure TForm26.Label24Click(Sender: TObject);
begin
Fortn26.Hide;
Forlh15.Show;
end;

procedur~ TFotth26.Label19Click(Sender: TObject);
begin
Fdtm26.Hide;
Fdtth16.BitBtn8.Visible·:=False;
Form 16.BitBtn2.Ettableq:=ttue;
Form16.Bittltn3.Erlllbied:=ttue;
Form i 6.Bitt3tn4.Ertabiecl:=f rue;
Form 16.Bitl3tn5 .Enabied:=true;
F orm l 6.Bit~trt6.Erltlblecl:=true;
Forml 6.Bitgtn7 .Ertabled:=True;
F0rml6.ShoW;
end;

procedure T:Form16.Label2Click(Sender, TObject);
begin
Fotm26.Hid~;
Forml 7.BitBtn8.Visible:=False;
Forml 7 .BitBt112.Enabled:=True;
Forml 7.BitBtn3.Enabled:=True;
Forml 7.BitBtn4.Eriabled:=True;
Form 17 .BitBtn5 .Enabled:=True;
Forml 7.BitBtn6.Enabted:=True;
Forml 7.BitBtn7.Enabl~d:=True;
Forml 7.Show;
end;

procedur.e TForm26.Labe13Click(Sender: TObject);
begin
Form26.Hide;

131

-

Form20.BitBtn8.Visible:=False;
F orm20 .BitBtn2.Enabled :=true;
Form20.BitBtn3 .Enabled:=true;
F orm20 .BitBtn4 .Enabled :=true;
F orm20.BitBtn5 .Enabled:=Ttue;
Fotm20.BitBtn6.Enabled:=True;
Form20.BitBtn7 .Enahled:=true;
Form20.Show;
end;

procedure TFormZ6.Label4Click(Sender: TObject);

begin
Form26.Hide;
Form23.Show;
end;

procedure TFonn26.Label7Clic,k(Sender: TObject);

begin ,
Fotm26.Hide;
Forrnl8.Bitl3tn8.Visible:=False;
Porml 8.BitBln2.Ena~led:=True;
Forml8.Bit1· tn3.Enab\ed:=Ttue;
Forml8.~it tn4.En~b etl:=true;
Form 1 S .ijit tn5 .Enab\ed:=true;
Formt8.~H13tn6.Enab ed:=True;
Forml ~;tl~tBtn7 .Enabled:=True;
Forml8.Shdw;
end;

, I ' , procedure TFortrt26:Label9Click(Sender: TObject);

begin , 11

Form26.Hitle;
Form22.BH~tn8.Visible:=False;
f orm22.Bit~tn2.Enab1ed:=True;
F orm22.Bitetn3 .Enabied:=True;
Fonn22.ait~tn4.Enabied:=True;
F orm22.BitBtn5 .Enabled:=True;
Form22.BitBtn6.Enabled:=True;
Form22.Show;
end;

procedure TForm26.Label8Click(Sender: TObj_ect);

begin
Form26.Hide;
Forml9.BitBtn8.Yisible:=False·
Forml9.BitBtn2.Enabled:=True:
Form 19 .BitBtn3 .Enab
F orml ':J.Bi-tB tn4 .Enab
Form l 9-.BitBtn5 .Enab~
Forml9.BitBtn6.EnaF-..l-1 -nv·

Form19.BitBtn7.Enabled:=True;
Form19.Show;
end;

procedure TForm26.LabellOClick(Sender: TObject);

begin
Form26.Hide;
Form2 l .BitBtn8.Visib1e:=False;
F orm21.BitBtn2.Enabled:=True;
F orm2 l .BitBtnJ .En~bled:=True;
F orm2 l .BitBtn4.Enabled{=True;
F orm2 l .BitBtn5 .Enabled:=True;
F orm2 l .BitBtn6.Enabled:=True;
F orm21.BitBtn 7 .Enabled:=True;
Form21.Show;
end;

procedure TForm26.Label12Click(Sender: TObject);
begin
Form26.Hide;
Form24.Show;
end;

procedure TForm26.Labell 1Click(Sender: TObject);
begin
Form26.Hide;
:F orm25 .Show;
end;

end.

133

	Page 1
	Titles
	Faculty of Engineering

	Images
	Image 1
	Image 2

	Page 2
	Titles
	To my parents

	Page 3
	Images
	Image 1

	Tables
	Table 1

	Page 4
	Titles
	II

	Tables
	Table 1

	Page 5
	Images
	Image 1

	Tables
	Table 1

	Page 6
	Titles
	ACKNOWLEDGMENT
	KA.DIR BEKIROGLU

	Page 7
	Titles
	ABSTRACT
	V

	Page 8
	Titles
	INTRODUCTION
	VI

	Page 9
	Titles
	CHAPTERl
	DELPHI

	Page 10
	Titles
	,

	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Images
	Image 1

	Page 18
	Page 19
	Titles
	n

	Images
	Image 1
	Image 2

	Page 20
	Titles
	12

	Images
	Image 1
	Image 2

	Page 21
	Images
	Image 1
	Image 2

	Page 1
	Images
	Image 1

	Page 2
	Images
	Image 1

	Page 3
	Images
	Image 1

	Page 4
	Images
	Image 1
	Image 2

	Page 5
	Images
	Image 1
	Image 2

	Page 6
	Images
	Image 1
	Image 2

	Page 7
	Images
	Image 1
	Image 2

	Page 8
	Images
	Image 1
	Image 2

	Page 9
	Titles
	.Ł.

	Images
	Image 1

	Page 10
	Images
	Image 1

	Page 11
	Images
	Image 1
	Image 2

	Page 12
	Images
	Image 1

	Page 13
	Images
	Image 1

	Page 14
	Images
	Image 1

	Page 15
	Images
	Image 1

	Page 16
	Images
	Image 1
	Image 2

	Page 17
	Images
	Image 1

	Page 18
	Images
	Image 1
	Image 2

	Page 19
	Images
	Image 1
	Image 2

	Page 20
	Images
	Image 1

	Page 21
	Images
	Image 1

	Page 22
	Images
	Image 1

	Page 23
	Images
	Image 1
	Image 2

	Page 1
	Images
	Image 1

	Page 2
	Images
	Image 1

	Page 3
	Titles
	40

	Images
	Image 1

	Page 4
	Images
	Image 1

	Page 5
	Images
	Image 1

	Page 6
	Titles
	43

	Images
	Image 1

	Page 7
	Titles
	44

	Images
	Image 1

	Page 8
	Images
	Image 1

	Page 9
	Images
	Image 1

	Page 10
	Images
	Image 1

	Page 11
	Images
	Image 1
	Image 2

	Page 12
	Images
	Image 1

	Page 13
	Images
	Image 1

	Page 14
	Images
	Image 1

	Page 15
	Images
	Image 1
	Image 2

	Page 16
	Titles
	CHAPTER2

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 1
	Images
	Image 1

	Page 2
	Images
	Image 1

	Page 3
	Images
	Image 1

	Page 4
	Images
	Image 1

	Page 5
	Images
	Image 1
	Image 2

	Page 6
	Images
	Image 1

	Page 7
	Images
	Image 1

	Page 8
	Images
	Image 1

	Page 9
	Titles
	CRAPTER3

	Images
	Image 1
	Image 2

	Page 10
	Titles
	~Help
	e.urchase
	11e .Who am 1 #

	Images
	Image 1
	Image 2

	Page 11
	Titles
	Update A Product
	J
	Delete A Product
	c . . 11't ~crchl
	C -. --- _J
	.-�
	L _
	Add New Product

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 12
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1

	Page 13
	Titles
	L------·
	'i
	C=:Jl11.·-l1
	I - Efl11, J
	I 81?1.Hffll
	I t] 11 i.·-11
	[~]
	I ... :J
	L----·--=---~ .. .sf

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 14
	Images
	Image 1
	Image 2

	Page 15
	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 1
	Titles
	J jvSearc~
	.__
	[
	[__ .. -

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1

	Page 2
	Titles
	Hope you feel good.
	Today : 07.01.2007
	Now : 18:18:ll

	Images
	Image 1
	Image 2
	Image 3

	Page 3
	Titles
	Menu Map

	Images
	Image 1
	Image 2
	Image 3

	Page 4
	Titles
	CONCLUSION

	Images
	Image 1

	Page 5
	Titles
	APPENDIX
	PROGRAM CODE
	FORMl

	Images
	Image 1

	Page 6
	Titles
	74

	Images
	Image 1

	Page 7
	Images
	Image 1

	Page 8
	Images
	Image 1

	Page 9
	Page 10
	Images
	Image 1

	Page 11
	Images
	Image 1

	Page 12
	Images
	Image 1

	Page 13
	Images
	Image 1

	Page 14
	Images
	Image 1

	Page 15
	Images
	Image 1

	Page 16
	Images
	Image 1

	Page 1
	Images
	Image 1

	Page 2
	Images
	Image 1

	Page 3
	Images
	Image 1

	Page 4
	Images
	Image 1

	Page 5
	Images
	Image 1

	Page 6
	Images
	Image 1

	Page 7
	Images
	Image 1

	Page 8
	Images
	Image 1

	Page 1
	Images
	Image 1

	Page 2
	Images
	Image 1
	Image 2

	Page 3
	Images
	Image 1

	Page 4
	Images
	Image 1

	Page 5
	Images
	Image 1

	Page 6
	Images
	Image 1

	Page 7
	Images
	Image 1

	Page 8
	Page 9
	Titles
	begin -

	Page 10
	Titles
	Begih ·
	'

	Images
	Image 1

	Page 11
	Page 12
	Images
	Image 1

	Page 13
	Images
	Image 1

	Page 1
	Titles
	'ttlit:Zl. SetF ocus;
	~rtu·-;

	Page 2
	Page 3
	Page 4
	Page 5
	Titles
	end;
	.

	Page 6
	Titles
	FORM 9

	Images
	Image 1

	Page 7
	Titles
	,

	Images
	Image 1

	Page 8
	Titles
	'

	Images
	Image 1

	Page 9
	Titles
	' ' ' ' ' ' ' ' ' ' . '

	Page 10
	Titles
	' ' ' ' ' ' ' ' ' ' . -

	Images
	Image 1
	Image 2

	Page 11
	Images
	Image 1

	Page 12
	Images
	Image 1

	Page 13
	Images
	Image 1

	Page 14
	Images
	Image 1

	Page 15
	Images
	Image 1

	Page 16
	Images
	Image 1
	Image 2

	Page 17
	Titles
	Ł

	Images
	Image 1

	Page 18
	Images
	Image 1

	Page 19
	Titles
	'

	Images
	Image 1
	Image 2

	Page 20
	Titles
	b~gip

	Images
	Image 1

	Page 21
	Titles
	-

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 22
	Images
	Image 1

	Page 23
	Titles
	,
	,
	Ł

	Page 24
	Titles
	-

	Images
	Image 1
	Image 2

	Page 25
	Images
	Image 1

	Page 26

