
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer
Engineering

Design of a Pharmacy Automation Program
With

Delphi and Paradox

Graduation Project
COM 400

Students: Hakan Tuna (991014)
Turgut Tuna (981426)

Supervisor: Halil Adahan

Lefkoşa - 2004

' (J'
; ,':!s: ii'#ı·f-'·v

Iv "ı. 9,'o"o'
<·-·· :;..,,_____ ,,,,,.

ACKNOWLEDGEMENTS

First we want to thank Mr.Halil Adahan to be our advisor. Under this guidance, we

successfully overcome many difficulties and learn a lot about Delphi programming with

Paradox database .In each discussion, he explained our questions patiently, and we felt our

quick progress from his advises. He always helps us a lot either in our study. We asked him

many questions in Delphi progragramming skills and Database applications and he always

answered our questions quickly and in detail.

Special thanks for Çağlan PHARMACY. With their kind help ,we understand the main

targets, before we designing the Pharmacy Automation program. Thanks for Faculty of

Engineering for having such a good computational environment.

We also want to thank our friends in Near East University: Cem Uludağ and Tunç
)

Samurkaş. Beingwith them make our 4 years in NEU of fun.

Finally, We want to thank our family, especially my parent. Without their endless support

and love for us, we would never achieve our current position. We wish our mother lives

happily always, and our father in the heaven be proud of us.

ABSTRACT

Delphi is the premier Windows development environment. Based upon Object Pascal,

Delphi is the first development tool to combine a powerful Object Oriented language with a

Rapid Application Development (RAD) Environment, bringing us the power to create high

quality Windows applications with short development times.

Delphi is with full support for classes, inheritance, polymorphism, pointer manipulation,

and a host of other features.

With its RAD environment, Delphi allows us to create user interfaces in a small fraction of

the time it takes with most C++ packages. Delphi's RAD development environment is

based on Borland's own Visual Component Library (VCL).

Delphi includes several dozen VCL components encapsulating every type of control,

including buttons, timers, listboxs, OLE containers, multimedia tools, common dialog

boxes, tabbed pages, Database applications ,BDE tools and lots more. But we are not

limited to just these components. Delphi allows us to build custom components and add

them into the component panel. Added components work seamlessly within the IDE.

Delphi is also a fully featured database development tool. Delphi uses the Borland

Database Engine (BDE), Borland's high performance, high level programming database

access system. Several of the VCL components are designed to interface tightly with the

BDE. Also the Borland Database Engine has native VCL components to direct access to

ODBC and drivers like Oracle, My SQL AND MS SQL.

Delphi can also build and use DLL's, so we can integrate our program with other DLL

made with any language. The Delphi compiler also supports inline assembly for high

performance optimization, or low level access programming.

11

TABLE OF CONTENTS
1.

Page
ACKNOWLEDGEMENTS

ABSTRACT

TABLE OF CONTENTS

LIST OF FIGURES

CHAPTER 1: INTRODUCTION

1.1 Database Structures

1. 1. 1 Database System Superiority

1. 1. 1. 1 To Prevent the Data Repeats

1. 1. 1 .2 To Provide DATA consistence

1. 1. 1 .3 Prevention of the Same Time Access Inconsistance

1. 1. 1 .4 Data Security

1. 1 .2 Data Models

1. 1.3 Database Objects

1. 1.3.1 Tables

1.1.3.2 Views

1.1.3.3 Indexes

1. 1 .4 Overview of Delphi's Database Features and Capabilities

1.2 Delphi Structure

1 .2. 1 Delphi IDE

1 .2. 1. 1 The Object Inspector

1.2.1.2 The Object TreeView

1 .2. 1 .3 Updated Environment Option Dialog Box

1 .2. 1 .4 The Form Designer

1 .2. 1 .5 Compiling and Building Projects

1 .2.2 Objects and Classes

1 .2.2. 1 The ShelfKeyword

1.2.2.2 Overloaded Methods

ii

iii

vii

1

2

2

3

3

3

4

5

6

6

7

7

8

9

9

11

13

13

14

14

16

17

lll

1 .2.2.3 Creating Components Dynamically

1 .2.2.4 Class Methods and Class Data

1 .2.2.5 Private, Protected and Public

1.3 Delphi and Database Relation

1.3.1 Tables and Queries

1.3.2 Specific Table Features

1 .3.3 A Query with Parameters

CHAPTER II: DELPID & DATABASE APPLICATIONS

2.1 Delphi Application Structure

2.1.1 VCL versus VisualCLX

2.1.2 DFM and XFM

2. 1 .3 Choosing a Visual Library

2. 1 .4 Conditional Compilation for Libraries

2. 1 .4. 1 TControl and Derived Classes

2.1.5 Delphi Application Object

2.1.6 Displaying the Application Window

2.1.7 System Menu Aplications and TMainMenu Component

2.1.8 Activating Application and Forms and TForm Componet

2. 1 .8. 1 Tasks

2.1.8.2 Activating Application and Forms

2.1.8.3 Creating MDI Form Applications

2.1.8.3.1 MDI in Windows: A Technical Overview

2.1.8.3.2 Frame and Child Windows in Delphi

2.1.8.3.3 The Mdi Form Example

2.1.9 Delphi Standart Components

2. 1 .9 .1 TLabel (Label) Component

2.1.9.2 TEdit (Edit) Component

2.1.9.3 TList (List) Component

2.1.9 .4 TButton (Button) Component

2.1.9.5 TComboBox (ComboBox) Component

2.1.9.6 TCheckBox (CheckBox) Component

18

19

19

21

22

23

23

27

27

28

28

29

29

30

31

32

34

34

35

36

37

37

38

41

41

41

42

42

42

42

IV

V

2.1.9. 7 TRadioButton (RadioButton) Component

2.1.9.8 TPanel (Panel) Component

2.1.1 O Delphi Win32 Components

2.1.10.1 TDateTimePicker (DateTimePicker) Component

2.1.10.2 TpageControl (PageControl) Component

2. 1. 1 1 Delphi Dialog Components

2.1.11. 1 TPrintDialog (PrintDialog) Component

2. 1. 1 1 .2 TprinterSetupDialog (PrintSetupDialog) Component

2. 1. 12 Delphi Additional Components

2. 1. 12. 1 TSpeedButton (SpeedButton) Component

2.1.12.2 TMaskEdit (MaskEdit) Component

2. 1. 13 Delphi Samples Components

2.1. 13. 1 TSpinEdit (SpinEdit) Components

2.2 Delphi Database Application Structures

2.2. 1 Understanding Delphi Database Architecture

2.2.2 Overview of the Database Desktop

2.2.3 Developing Applications for Desktop and Remote Servers

2.2.4 Delphi Borland Database Engine (BDE) Components

2.2.4. 1 TDataSet (Dataset) Component

2.2.4.2 TstoredProc (StoredProc) Component

2.2.4.3 TTable (Table) Component

2.2.4.4 TQuery (Query) Component

2.2.5 Delphi Data Access Components

2.2.5.1 TDataSource (Datasource) Component

2.2.6 Delphi Data Controls Components

2.2.6. 1 TDBGrid (DBGrid) Component

2.2.6.2 TDBEdit (DBEdit) Component

2.2.6.3 TDBText (DBText) Component

2.2.6.4 TDBNavigator (DBNavigator) Component

2.2.6.5 TDBMemo (DBMemo) Component

2.2.6.6 TDBComboBox (DBComboBox) Component

43

43

44

44

44

45

45

45

45

45

46

46

46

46

47

49

49

50

50

51

51

52

52

52

53

53

53

53

54

54

54

Vl

2.2.6.7 TDBLookupComboBox (DBLookupComBox) Component 54

2.2.6.8 TDBChart (DBChart) Component 55

2.2.7 Locating Records in a Table 55

2.2.8 The Total of a Table Column 56

2.2.9 Using Bookmarks 58

2.2. 1 O Editing a Table Column 60

2.2. 11 Customizing a Database Grid 61

2.2. 11. 1 A Grid Allowing Multiple Selection 61

2.3 Database Applications with Standard Controls 63

2.3.1 Sending Requests to the Database 63

2.3.2 Database Events 66

2.3 .3 Field Events 67

2.3.4 A Multirecord Grid 69

2.3.5 Handling Database Errors 70

CHAPTER III: PHARMACY DEVELOPMENT SUITE

3.1 Short Introduction to Pharmacy Automation Program 74

3.2 Pharmacy Description Module 75

3.3 Depot Description Module 77

3.4 Product Description Module 80

CONCLUSION 83

REFERENCES 85

APENDIXA 86

LIST OF FIGURES

Figure 1.1.1: Relationship Between Database , Database

Management System and User.

Page

2

Figure 1.1.3.1: Database Included Objects . 6

Figure 1.1.3.1.1: Database Included Tables . 7

Figure 1.1.4.1: Delphi Database Architecture. 9

Figure 1.2.1.1.1: Object Inspector. 11

Figure 1.2.1.2.1: Object Treeview and Treeview. 12

Figure 1.2.1.2.2: Object Treeview. 13

Figure 2.1.1.1: Twidget Control for Cross-Platform Applications. 28

Figure 2.1.6.1: Shows Us, Presented By ShowApp Program's Hidden Application. 33

Window.

Figure 2.1.8.2.1: The ActivApp example shows whether the application is active and 37

which of the application's forms is active.

Figure 2.1.8.3.3.1: The Mdi Form Program Uses a Series of Predefined Delphi 40

Actions Connected to a Menu and a Toolbar.

Figure 2.2.1.1: DataBase Components Architecture. 49

Vll

Figure 2.3.4.1: The DBCtrlGrid of the example at design time (on the right)

and at run time (on the left).

70

l

Figure 2.2.8.1 : Shows us the Total program's output about workers' sum of salaries. 58

Figure 2.2.11.1.1 DBGrid control that allows the selection of multiple rows. 62

Figure 2.3.1.1: We can Select the Record we want to See in a Combo Box. 65

Figure 2.3.2.1.1: Which Logs All the Events Related to Database Components. 67

Figure 2.3.3.1: The Output of the FldText Example, Which Demonstrates the 70

Use of the OnGetText and OnSetText Events of the Field Objects.

Figure 2.3.5.1: Pressing the Four Buttons on the left of the Memo Generate Errors. 74

Figure 3.2.1: Pharmacy Description Screen Layout while Executed. 76

Figure 3.3.1 Depot Descriptions Screen Layout while Executed. 81

Figure 3.4.1: Product Descriptions Screen Layout while Executed. 83

Vlll

Chapter I: Introduction

1.1 Database Structures

Database is a storage which electronic storage for data. In other words database is an

electronic storage of data. It is a depository that stores information about different

things and also contains relationships among those different things.

Complex and complicated file structures and extra more files between relations or

relationships and users access to files in those situations we see these insufficient

situations for traditional file system. To solve this matter for data manipulation to hide

the data and access the data with the new software technologies developed and directed

to DataBase Management System. In DBMS approach data access and data hide are

independent to data access apply or application programs. Use of classic file's

difference is that the registration designing and file structure's any little variation is to

cause the application programs variations and a new again design it.

Database Systems are evaluate the computer systems very important component.

Database Management Systems are to be formed, created and organized with each other

related data and United of Programs or Community of Programs.

Data community is evaluated Database. Database is the environment about the

compan7"s informations on it. Database Systems the environments about the data heaps

orderly holds and those data used with various softwares to manages.

Application
Progranıs

<J==;) USER
DATABASE

<J==;>
Database
Management
System
(DBMS)

Figure 1.1.1: Relationship Between Database, Database Management System and

User.

1

Database design requires to create entity sets, each describing a set of related entities.

Design also requires to establish all the relationships between entity and sets within the

database. The different database management software packages handle the creation and

the use of relationships in different manners. Depending upon the type of interaction,

the relationships are classified into three categories or relationships have three

characteristics:

1. One-to-one relationship: A one-to-one relationship is written as 1: 1 in short form.

1: 1 exists between two entity sets, X and Y, if an entity in entity set X has only

one matching entity in entity set Y, the same again for Y.

2. One-to-many relationship: A one-to-many relationship is written as 1 :M in short

form. It exists between two entity sets, X and Y, if an entity in entity set X has

only one matching entity in entity set Y, but an entity in entity set Y has many

matching entities in entity set X.

3. Many-to-many relationship: A many-to-many relationship is written as M:N in

short form. It exists between two entity sets, X and Y, if an entity in entity set X

has many matching entities in entity set Y and an entity in entity set Y has many

matching entities in entity set X.

1.1.1 Database System Superiority
Using the Database has many superiorities according to using the traditional file we see

and we approve. Database Systems very important benefits are explain below!

1.1.1.1 To Prevent the Data Repeats
Traditional file system's using applications , for each application parts data separately

holding. Applications are divided sub-systems and for each sub-system has own data

files. Those data repeatedly. For Example any countries province codes and province

names formed in a file can be used in personnal sub-system. But, however the same

file's copy must be in the marketing sub-system. And any other places it must be

repeatedly the same file informations.

2

3

Database Systems to consider applications plan and project in entire, establish relations

in sub-systems and for many applications project and planning datas in the same data

base use with commonly using. Every applications to need datas each other in whole

structure.For that reason data source is plans one, for another word in this system which

names Database system have a one data source and with this data repeat is protected and

prevented.

1.1.1.2 To Provide DATA Consistence

Database Systems have very important superiority is to provide data integrity. Data

integrity is explain the data's truth and consistent. Same kind of restrictions can use in

Database's to provide data as consistent and truth in integrity work with wholly.

For example: Enter the student information's birth province's code 100 value registered,

for error information matter this enter wish can don't accomplish when we want it. For

that we can define to restrict it. This restrict checked the data's truth. Those restricts

what we defined are consistent Database's data truth.

1.1.1.3 Prevention of the Same Time Access Inconsistence

In Database applications, Database objects can share niany different applications. Datas

can share at the same time different applications and however different users. For that

situations and conditions Database Management System (DBMS) is automatically solve

which that the together using matter.

For Example: A Product Stock have 100 unit rulmans and two different users enters 50

unit rulmans and 55 unit rulmans at the same time. Operation is entered at the same time

and we can think 100 unit product stocks exit 105 unit at the same time but Database

Management System don't give permission to exit those twice users enter. Exists are at

the same time but DBMS firstly give permission first exit and then for second exit make

a control for preventive work, this is the period integrity whole in DBMS.

1.1.1.4 Data Security
To provide some applications produce datas security is very important situation. To

access Database's important information by all Database users is not the wanted

situation.

4

For Example: From User in work Marketing Department Application access to another

personnel informations must be protected. Like this, every users access data defines

separately. Database Systems present restrictions about access have many developed

possibilities. In Database many authorized users can access many applications and those

authorities are hide on Database together with datas.

Databases often contain sensitive information. Different databases provide security

schemes for protecting that information. Some databases, such as Paradox and dBase,

only provide security at the table or field level. When users try to access protected

tables, they are required to provide a password. Once users have been authenticated,

they can see only those fields (columns) for which they have permission.

1.1.2 Data Models
Database Management Systems have relationship with definite Data Models. One

Database structures foundation form by Data Model concept. Order the data logical

level for using concepts, structures and operation commonuties named Data Model.

Many Data Models developed at this time around. Those Data Models can grouped four

principles.

1 Hierarchical Data Model

2 Network Data Model

3 Relational Data Model

4 Object Oriented Data Model

Hierarchical Data Model and Network Data Model are not using at the moment. Most

widespread using Data Model is Relational Data Model. The relational database model

is very popular, especially in the personal computer environment.

E. F. Codd developed the relational database model in 1970. The model is based on

mathematical set theory, and it uses a relation as the building block of the database. The

relation is represented by two dimensional flat structure known as a table. The user does

not have to know the mathematical details or the physical aspects of the data, but the

user views data in a logical two dimensional structure. A database system that manages

5

a relational database environment is known as Relational Database Management System

(RDMS).

The table is a matrix of rows and columns in which each row represents an entity and

each columns represents an attribute. In other word, a table represent an entity set as per

the database theory and it represents a relational as per the relational database theory. In

daily practice, the terms table, relation, and entity set are used interchangeably. Now

Object Oriented Data Model and Relational Data Model together using some Database

Management Systems (DBMS).

1.1.3 Database Objects

Database to be formed different structured objects. With help those objects make all

Database operations and data's orients procedures. Databases contains objects for many

different aims. Those objects most importants are listed in Figure 1.1.3.1

DATABASE

~--~~;rABLE
VIEVV

INDEX

Figure 1.1.3.1: Database Included Objects

Databases created by objects.

1. Tables

2. Views

3. Indexes

6

1.1.3.1 Tables
Tables are basic structures for Databases. Table structures most important

characteristics are in below.

1 .Tables can created during at any moment or even when the Database is using

by user.

2.We don't need to determine measure for tables. But also the advantage

known table size help us (Figure 1.1.3.1.1).

No IName Dep_No Dep_No Dep_Name

TABLES

Figure 1.1.3.1.1: Database Included Tables

Tables are the most important database objects.

1.1.3.2 Views
Views help create one or more than one tables logical sub-heaps. View's evaluate is

table supported logical table. View is not hide data physically but table is hide data

physically. Views are evaluated (hiding) SELECT expressions. A SELECT expression

again and again or repeatedly using is necessary, we can define the SELECT expression

like view and than view work is possible.

7

Views are preferring with those reasons below.

1. Views are possibilities of restricted database access. Because view, only

shows selected parts of table.

2 . Make easy for complicated interrogations.

3 . Many same using data defines with many views.

1.1.3.3 Indexes

Indexes provided in a table's lines, with constant column more speedy arrival database

objects. User's can created indexes with expressions help and also it can be create

automatically. If a define of table limit with PRIMARY KEY or UNIQUE, those

criterions can created automatically indexes.

Creatings about Primary Key or Unique Key limits indexes are with those keys

characteristics named by unique index but we can also create another criterion work

which not only unique indexes. For Example: Create a index for area of Foreign Key

brings concerning interrogations or queries speed high.

If defines indexes, quantity of read/write disc to become less, thus arrival to data is

more sepedly and effective. Indexes are forming indepent to table. If index for table

undefined, read operations scans all table. There are five types of key using see those in

below;

1. Primary Key: A single attribute used as a unique identifier.

2. Composite Key: Two or more attributes used as a unique identifier.

3. Secondary Key.· A non-key attribute used in the search operation.

4. Foreign Key: An attribute that references primary key of a table.

An added attribute used as a primary key.

1.1.4 Overview of Delphi's Database Features and Capabilities

A Delphi database application is built using Delphi database development tools, Delphi

data-access components, and data-aware GUI components. A database application uses

Delphi components to communicate with the Borland Database Engine (BDE), which in

tum communicates with databases. The following figure 1 .4 illustrates the relationship

of Delphi tools and Delphi database applications to the BDE and data sources:

8

Delptıı IDE Reportsmıttı

Database
Desktop (DBD)

BOE
Configuration

UtifüvDel!phi Application

Borland Database Engine (BDE)IID/\Pı

ReporiSmiilıDrivers

Orncıe
Sybase
!nformix
tnterBase

Figure 1.1.4.1: Delphi Database Architecture

1.2 Delphi Structures

Delphi is Borland's best-selling rapid application development (RAD) product for

writing Windows applications. With Delphi, we can write Windows programs more

quickly and more easily than was ever possible before. We can create Win32 console

applications or Win32 graphical user interface (GUI) programs. When creating Win32

, GUI applications with Delphi, we have all the power of a true compiled programming

language (Object Pascal) wrapped up in a RAD environment. What this means is that

we can create the user interface to a program (the user interface means the menus,

dialog boxes, main window, and so on) using drag-and-drop techniques for true rapid

application development. We can also drop ActiveX controls on forms to create

specialized programs such as Web browsers in a matter of minutes.

1.2.1 Delphi IDE

Delphi integrated development environment (IDE). The Delphi IDE is divided into

three parts. The top window can be considered the main window. It contains the

toolbars and the Component palette. The Delphi toolbars give us one-click access to

tasks such as opening, saving, and compiling projects. The Component palette contains

a wide array of components that you can drop onto your forms. (Components are text

labels, edit controls, list boxes, buttons, and the like.) For convenience, the components

are divided into groups.

A component is a self-contained binary piece of software that performs some specific

predefined function, such as a text label, an edit control, or a list box.

The Delphi Workspace, The main part of the Delphi IDE is the workspace. The

workspace initially displays the Form Designer. It should come as no surprise that the

Form Designer enables us to create forms. In Delphi, a form represents a window in our

program. The form might be the program's main window, a dialog box, or any other

type of window. You use the Form Designer to place, move, and size components as

part of the form creation process. Hiding behind the Form Designer is the Code Editor.

The Code Editor is where you type code when writing your programs.

The Object Inspector, Form Designer, Code Editor, and Component palette work

interactively as you build applications. Now that you've had a look at what makes up the

Delphi IDE, let's actually do something.

1.2.1.1 The Object Inspector
Below the main window and on the left side of the screen is the Object Inspector. It is

through the Object Inspector that you modify a component's properties and events. You

will use the Object Inspector constantly as you work with Delphi. The Object Inspector

has two tabs: the Properties tab and the Events tab. A component's properties control

how the component operates. For example, changing the Color property of a component

changes the background color of that component. The list of properties available varies

from component to component, although components usually have several common

elements.

9

The Events tab contains a list of events for a component. Events occur as the user

interacts with a component.

An event is something that occurs as a result of a component's interaction with the user

or with Windows.

An event handler is a section of code that is invoked in your application in response to

an event.

See the Figure 1.2. 1. 1. 1: A connected component expanded in the Object Inspector

while working on another component (a Data Source).

-»- " "'"~ -
Object: Inspect:or , , ~
J DataS ource9 TD ataS ource ..;; I

Properties I Events I
.6.ctive False

El DataS et I T able9

.6.utoCalcFiel True
«•n·•«»•«• ·»«+ •• s«~;, .•«•·••,.o•••, >» ••••.••«•>>M<•o•~<h>>~"~» <<+>e>«•••• «

11
::::: ::: -~~~oh::f~e;!• ~ ::::.... , ,

, Constraint,:;:.... [T CheckConstr aints
' DatabaseN a phar
i""A"YU,H."''""A"'"A"Y"A"Y,AA,Y< "'"''"''"''''""HHS,¥""' ""''""

ı DefalJltlndex True
l !:;.~:'?.1':-!~iy_~ _F_.~1.s.~ ,. .. __ .
, FieldDefs_ __ [TFieldDefs) __
, Filter[>·--·------------------·--··----·--"" .
' Filtered False
II El Filter Options] fil

i : fo1!~it~f ~J fT~:~~ii~~fs) ..
I. ,, .1n_de:-:Fı~1·~Nı-·Proname;D_epot..-
! lndexFıles [TlndexFiles)
, , _I n~e-~:N~~~ : . : .: : . .- · :: . · .~I
,""""m'-'"""''"'""'-~-• -----------~

shown

Figure 1.2.1.1.1: Object Inspector

10

1.2.1.2 The Object TreeView
Figure 1.2. 1.2.1 show us the Delphi IDE Notice the Object TreeView and the

TreeView

:J Fcrml
::,) Bıı!b:ı1
ı5 Pandl

eil'S!l
tt

Cuııçr
Dafayt ı
DrigCınoı , :,:.-rDr~g
D ,a~t.d cW •ag
Dıigl'1cdt itnll.arıual
Enatied Tne

8Fımt. (1"Ftr,f ,
H;oht 7:i , •

~;~~;[~~·1rcj:~~~::::
~~~,Re.<~; ı~~~L .. - ... _:1

.t.ldmPn ~-- ,-·---

Jüntitjed1

ı--: 8ul±on1

Bulion2

Figure 1.2.1.2.1: Object Treeview and Treeview

The Object TreeView shows all of the components and objects on the form in a tree,

representing their relations. The most obvious is the parent/child relation: Place a panel

on a form, a button inside it and one outside of the panel. The tree will show the two

buttons, one under the form and the other under the panel, as in Figure 2. 1. Notice that

the TreeView is synchronized with the Object Inspector and Form Designer, so as we

select an item and change the focus in any one of these three tools, the focus changes in

the other two tools. Besides parent/child, the Object TreeView shows also other

relations, such as owner/owned, component/sub-object, collection/item, plus varıous

specific ones, including dataset/connection and data source/dataset relations.

11



12

.:1J Forml
ıı EJ·~ MainMenu1

El···~I_ & File {Fi le 1 } ~··§~,--
! "'·1~ tUndo {Undo1}

~- -----··---------- {N4}..~~
····~ Cu&t {Cuti}·a "'"~ :l.ı[opy{Cop~1}
....%-1- &Paste {Paste1}

Figure 1.2.1.2.2: Object Treeview

Here, you can see an example of the structure of a menu in the tree. At times, the

TreeView also displays "dummy" nodes, which do not correspond to an actual object

but do correspond to a predefined one. The Object TreeView supports multiple types

of dragging:

. We can select a component from the palette (by clicking it, not actually dragging it),

move the mouse over the tree, and click a component to drop it there. This allows us to

drop a component in the proper container (form, panel, and others) regardless of the fact

that its surface might be totally covered by other components, something that prevents

us from dropping the component in the designer without first rearranging those

components. Moving instead of cutting provides the advantage that if we have

connections among components, these are not lost, as happens when we delete the

component during the cut operation. We can drag components from the TreeView to the

Diagram view, as we'll see later. Right-clicking any element of the TreeView displays a

shortcut menu similar to the component menu we get when the component is in a form.

We can even delete items from the tree. The TreeView doubles also as a collection

editor.

1. Loadable Views

Another important change has taken place in the Code Editor window. For any

single file loaded in the IDE, the editor can now show multiple views, and these



13

views can be defined programmatically and added to the system, then loaded for

given files-hence the name loadable views.

2. The Diagram View

This view shows dependencies among components, including parent/child relations,

ownership, linked properties, and generic relations. For dataset components, it also

supports master/detail relations and lookup connections.

The Diagram is not built automatically. We must drag components from the TreeView

to the diagram, which will automatically display the existing relations among the

components we drop there, and drag them all at once to the Diagram page. When we

release the mouse button, the Diagram will set up a property relation based on the

FocusControl property, which is the only property of the label referring to an edit
control.

1.2.1.3 Updated Environment Options Dialog Box 

Environment Options dialog box have been rearranged, moving the Form Designer

options from the Preferences page to the Designer page. There are also the options and
pages:

1. The Preferences page of the Environment Options dialog box has a check box

that prevents Delphi windows from automatically docking with each other.

2. A new page, Environment Variables, allows us to see system environment

(such as the standard path names and OS settings) and set user-defined

variables. The nice and clever point is that we can use both system and user

defined environment variables in each of the dialog boxes of the IDE.

3. Another page is called Internet. In this page, we can choose the default file

extensions used for HTML and XML files (mainly by the WebSnap

framework) and also associate an external editor with each extension.

1.2.1.4 The Form Designer 

Another Delphi window we'll interact with very often is the Form Designer, a visual

tool for placing components on forms. In the Form Designer, we can select a component

directly with the mouse or through the Object Inspector, a handy feature when a control

is behind another one or is very small. If one control covers another completely, we can

use the Ese key to select the parent control of the current one. We can press Ese one or



more times to select the form, or press and hold Shift while you click the selected

component. This will deselect the current component and select the form by default.

1.2.1.5 Compiling and Building Projects 

There are several ways to compile a project. If we run it (by pressing F9 or clicking the

Run toolbar icon), Delphi will compile it first. When Delphi compiles a project, it

compiles only the files that have changed. If you select Compile . Build All instead,

every file is compiled. We should only need this second command infrequently, since

Delphi can usually determine which files have changed and compile them as required.

The only exception is when we change some project options, in which case we have to

use the Build All command to put the new options into effect. To build a project, Delphi

first compiles each source code file, generating a Delphi compiled unit (DCU). (This

step is performed only if the DCU file is not already up-to-date.) The second step,

performed by the linker, is to merge all the DCU files into the executable file, optionally

with compiled code from the VCL library. The third step is binding into the executable

file any optional resource files, such as the RES file of the project, which hosts its main

icon, and the DFM files of the forms. You can better understand the compilation steps

and follow what happens during this operation if we enable the Show Compiler

Progress option .

1.2.2 Objects and Classes 

Most modem programming languages support object-oriented programming (OOP).

OOP languages are based on three fundamental concepts: encapsulation (usually

implemented with classes), inheritance, and polymorphism (or late binding).

Introducing Classes and Objects, The cornerstone of the OOP extensions available in

Object Pascal is represented by the class keyword, which is used inside type

declarations. Classes define the blueprint of the objects you create in Delphi. As the

terms class and object are commonly used and often misused, let's be sure we agree on

their definitions. A class is a user-defined data type, which has a state (its

representation) and some operations (its behavior). A class has some internal data and

some methods, in the form of procedures or functions, and usually describes the generic

characteristics and behavior of some similar objects.

14



An object is an instance of a class, or a variable of the data type defined by the class.

Objects are actual entities. When the program runs, objects take up some memory for

their internal representation. The relationship between object and class is the same as

the one between variable and type.

To declare a new class data type in Object Pascal, with some local data fields and some

methods, use the following syntax:

type

TDate = class

Month, Day, Year: Integer;

procedure SetValue (m, d, y: Integer);

function LeapYear: Boolean;

end;

The following is a complete class definition, with two methods declared and not yet

fully defined. The definition of these two methods (the LeapYear function and the

SetValue procedure) must be present in the same unit of the class declaration and are

written with this syntax:

procedure TDate.SetValue (m, d, y: Integer);

begin

:ı1onth := m;

Jay : = d;

Year : = y;

end;

function TDate.LeapYear: Boolean;

begin

// ca.1.1IsLeapYear ..in SysOt ..i.ls.pas

Result := IsLeapYear (Year);

end;

The method names are prefixed with the class name (using the dot-notation), because a

unit can hold multiple classes, possibly with methods having the same names. We can

actually avoid retyping the method names and parameter list by using the class

completion feature of the editor. Simply type or modify the class definition and press

15



Ctrl+Shift+C while the cursor is within the class definition itself; this will allow Delphi

to generate a skeleton of the definition of the methods, including the begin and end

statements.Once the class has been defined, we can create an object and use it as;

var

ADay: TDate;

begin

// create an object 

ADay := TDate.Create;

// use the object 

ADay.SetValue (1, 1, 2000);

if ADay.LeapYear then

ShowMessage ( 'Leap year: ' + IntToStr (ADay. Year));

// destroy the object 

Aoay.Free;

end;

Notice that ADay.LeapYear is an expression similar to ADay.Year, although the first is

a function call and the second a direct data access. We can optionally add parentheses

after the call of a function with no parameters. We can find the code snippets above in

the source code of the Datel example; the only difference is that the program creates a

date based on the year provided in an edit box.

1.2.2.1 The Self Keyword 

Methods are very similar to procedures and functions. The real difference is that

methods have an implicit parameter, which is a reference to the current object. Within a

method you can refer to this parameter the current object using the Self keyword. This

extra hidden parameter is needed when we create several objects of the same class, so

that each time we apply a method to one of the objects, the method will operate only on

its own data and not affect sibling objects. For example, in the SetValue method of the

TDate class, listed earlier, we simply use Month, Year, and Day to refer to the fields of

the current object, something you might express as;

Self. Month : = m;

Self.Day:= d;

16



This is actually how the Delphi compiler translates the code, not how we are supposed

to write it. The Self keyword is a fundamental language construct used by the compiler,

but at times it is used by programmers to resolve name conflicts and to make tricky

code more readable.

All we really need to know about Self is that the technical implementation of a call to a

method differs from that of a call to a generic subroutine. Methods have an extra hidden

parameter, Self. Because all this happens behind the scenes.

If we look at the definition of the TMethod data type in the System unit, we'll see that it

is a record with a Code field and a Data field. The first is a pointer to the function's

address in memory; the second the value of the Self parameter to use when calling that

function address.

1.2.2.2 Overloaded Methods 
Object Pascal supports overloaded functions and methods: we can have multiple

methods with the same name, provided that the parameters are different. By checking

the parameters, the compiler can determine which of the versions of the routine you

want to call. There are two basic rules:

1 Each version of the method must be followed by the overload keyword.

2 The differences must be in the number or type of the parameters or both. The

return type cannot be used to distinguish between two mwthods.

Overloading can be applied to global functions and procedures and to methods of a

class. As an example of overloading, I've added to the TDate class two different

versions of the SetValue method:

type

TDate

public

procedure SetValue (y, m, d: Integer); overload;

class

procedure SetValue (NewDate: TDateTime); overload;

... //tlıe rest of tlıe class declarat.ion

procedure TDate.SetValue (y, m, d: Integer);

17



;:,egin

=Date := EncodeDate (y, m, d);

end;

procedure TDate.SetValue(NewDate: TDateTime);

begin

=Date NewDate;

end;

1.2.2.3 Creating Components Dynamically 

In Delphi, the Self keyword is often used when we need to refer to the current form

explicitly in one of its methods. The typical example is the creation of a component at

run time, where we must pass the owner of the component to its Create constructor and

assign the same value to its Parent property. The following program has a simple form

with no components and a handler for its OnMouseDown event. We've used

OnMouseDown because it receives as its parameter the position of the mouse click

(unlike the OnClick event). We need this information to create a button component in

that position. Here is the code of the method:

It is very common to write code like the below method using a with statement.

procedure TForml.FormMouseDown (Sender: TObject;

3utton: TMouseButton; Shift: TShiftState; X, Y: Integer);

begin

··ith TButton.Create (Self) do

begin

?arent := Self;

::::..eft : = X;

~op := Y;

~idth :=Width+ 50;

aption : = Format ( 'Button .in id, id', [X, Y]);

end;

end;

When writing a procedure like the code you've just seen, we might be tempted to use

the Forml variable instead of Self. In this specific example, that change wouldn't make

any practical difference, but if there are multiple instances of a form, using Forml

would be an error. In fact, if the Forml variable refers to the first form of that type

18



being created, by clicking in another form of the same type, the new button will always

be displayed in the first form. Its Owner and Parent will be Forml and not the form the

user has clicked. In general, referring to a particular instance of a class when the current

object is required is bad OOP practice.

1.2.2.4 Class Methods and Class Data 
When we define a field in a class, we actually specify that the field should be added to

each object of that class. Each instance has its own independent representation (referred

to by the Self pointer). In some cases, however, it might be useful to have a field that is

shared by all the objects of a class. Other object-oriented programming languages have

ormal constructs to express this, while in Object Pascal we can simulate this feature

using the encapsulation provided at the unit level. We can simply add a variable in the

implementation portion of a unit, to obtain a class variable-a single memory location

shared by all of the objects of a class. If we need to access this value from outside the

unit, we might use a method of the class. However, this forces us to apply this method

o one of the instances of the class. An alternative solution is to declare a class method.

A class method cannot access the data of any single object but can be applied to a class

as a whole rather than to a particular instance. To declare a class method in Object

Pascal, we simply add the class keyword in front of it:

:.ype

:-:yclass = class

~lass function ClassMeanValue: Integer;

The use of class methods is not very common in Object Pascal, because we can obtain

the same effect by adding a procedure or function to a unit declaring a class. Object

oriented purists, however, will definitely prefer the use of a class method over a routine

unrelated to a class. For example, an OOP purist would add a class method for getting

the current date to a TDate class instead of using a global function.

1.2.2.5 Private, Protected, and Public 
For class-based encapsulation, the Object Pascal language has three access specifiers:

rivate, protected, and public.

19



Here are the three classic access specifiers:

1 The private directive denotes fields and methods of a class that are not

accessible outside the unit (the source code file) that declares the class.

2 Protected dirctive is used to indicate methods and fields with limited visibility.

Only the current class and its sub-classes can access protected class .

3 The public directive denotes fields and methods that are freely accessible from

any other portion of a program as well as in the unit in which they are defined.

Generally, the fields of a class should be private; the methods are usually public.

However, this is not always the case. Methods can be private or protected if they are

needed only internally to perform some partial computation. Fields can be protected so

that we can manipulate them in subclasses, but only if we are fairly sure that their type

definition is not going to change. This means that if two classes are in the same unit,

there is no protection for their private fields. Only by placing a class in the interface

portion of a unit will you limit the visibility from classes and functions in other units to

the public method and fields of the class.

-ype

_Date class

private

~onth, Day, Year: Integer;

ublic

procedure SetValue (y, m, d: Integer); overload;

rocedure SetValue (NewDate: TDateTime); overload;

:unction LeapYear: Boolean;

:unction GetText: string;

rocedure Increase;

end;

In this version, the fields are now declared to be private, and there are some new

methods. The first, GetText, is a function that returns a string with the date. You might

think of adding other functions, such as GetDay, GetMonth, and GetYear, which simply

return the corresponding private data, but similar direct data-access functions are not

always needed. Providing access functions for each and every field might reduce the

20



encapsulation and make it harder to modify the internal implementation of a class.

Access functions should be provided only if they are part of the logical interface of the

class we are implementing.

Notice that because the only change is in the private portion of the class, we won't have

to modify any of our existing programs that use it. This is the advantage of

encapsulation!

1.3 Delphi and Database Relation 

The original Delphi characteristics are high speed collector, the approach about form

based and object oriented, harmonious with Windows programming and component

technology. However, the very important element is all others basic Object Pascal

language.

The basic characteristic of this programming environment is Delphi's support to

database applications.

Let's we can talk about Borland Database Engine (BDE). BDE is coming with Paradox,

at the time when Delphi don't exist and BDE developed by Borland to supported many

SQL service units and Borland's own local databases.

Using a associated database engine's advantage is applications can be move or transport

between same category's different service units.

Using BDE's specific advantages are this technology whole with Delphi, elements are

fully and very good documented and the only logical analyze way to arrive local files

like Paradox and dBase tables.

Now we are coming this analyze's disadvantage: Borland's BDE develop is coming to

end and with another words, now it can not promotion with Delphi.

BDE is with it's advantages and disadvantages still a good analyze, but in long periods

BDE's trusty is absolutely suspicious.

21



1.3.1 Tables and Queries 

The simplest traditional way to specify data access in Delphi was to use the BDE Table

component. A Table object simply refers to a database table. When we use a Table

component, we need to indicate the name of the database you want to use in its

DatabaseName property. You can enter an alias or the path of the directory with the

table files. The Object Inspector lists the available names, which depend on the aliases

installed in the BDE. We also need to indicate a proper value in the TableName

property. The Object Inspector lists the available tables of the current database (or

directory), so you should generally select the DatabaseName property first.

Another classic dataset is the BDE Query component. A query requires a SQL language

command. We can customize a query using SQL more easily than you can customize a

table (as long as you know at least the basic elements of SQL, of course). The Query

component has a DatabaseName property like the Table component, but it does not

have a TableName property. The table is indicated in the SQL statement, stored in the
SQL property.

For example, We can write a simple SQL statement like this:

select* from Product 

Where Product is the name of a table and the asterisk (*) indicates that we want to use

all of the fields in the table. The efficiency of a table or a query varies depending on the

database we are using. In general, we can say that the Table component tends to be

faster on local tables, while the Query component tends to be faster on SQL servers,

although this is just a very general rule, and in many cases you might have the opposite
effect.

The third BDE dataset component is StoredProc, which refers to stored procedures of a

SQL server database. You can run these procedures and get the results in the form of a

database table. Stored procedures can only be used with SQL servers.

22 



1.3.2 Specific Table Features 

The BDE Table component has specific features not shared by all datasets. For

example, it has filters, ranges, and specific techniques for locating records. A filter, set

in the Filter property and activated by toggling the Filtered property, is available in each

dataset, although its role changes depending on the underlying implementation. A

range, instead, is specific to a Table and allows you to specify the two extreme values

and consider only the record falling within that interval. When using a Table, and

articularly a local one, there are specific methods we can use to find a record, such as

GotoKey, FindKey, GotoNearest, FindNearest, and Locate. The Locate method is

hared by all datasets, and I'll discuss it later along with other general features of the

TDataSet class. The other methods are specific of the TTable class and work in

onjunction with the index set in the ndexFieldNames property of the component. The

simplest approach is to use the FindNearest method for the approximate search and the

FindKey method to look for an exact match:

// qoto 
~ablel.FindNearest ([EditName.Text]); 

// qo near 
~f not Tablel.FindKey ([EditName.Text]) then 

-·~essageDlg ( 'Product not found/, mtError, [mbOk] , O) ; 

Classic BOE Components 

Both find methods use as parameters an array of constants. Each array element

orresponds to one of the fields of the current index. We can also pass only the value for

the initial field or fields of the index, so the following fields will not be considered.

1.3.3 A Query with Parameters 

When we need slightly different versions of the same SQL query, instead of modifying

the text of the Query (stored in the SQL property) each time, we can write a query with

a parameter and simply change the value of the parameter. For example, if we decide to

have a user choose the countries of a continent (using the Product table of the PHAR

database), we can write the following parametric query:

select* 

::rom Product 

· .he r e Bar code :Barcode 

23



In this SQL clause, :Barcode is a parameter. We can set its data type and startup value,

using the editor of the Params property collection of the Query component. When the

form displayed by this program, called Productinfo and uses a list box to provide all the

available values for the parameters. Instead of preparing the items of the list box at

design time, we can extract the available continents from the same Editing the

collection of parameters of a Query component database table as the program starts.

This is accomplished using a second query component, with this SQL statement:

select distinct Progroup 

from Product 

After activating this query, the program scans its result set, extracting all the values and

adding them to the list box:

procedure TProductinfo.FormCreate(Sender: TObject); 

begin 

I I get the .l.ist of cont.inents 

Query2.0pen; 

while not Query2.EOF do 

begin 

ListBoxl.Items.Add (Query2.Fields [OJ .AsString); 

Query2.Next; 

end; 

ListBoxl.Itemindex := O; 

// open the first query 

Queryl.Params[OJ .Value := ListBoxl.Items [OJ; 

Queryl.Open; 

end; 

Before opening the query, the program selects as its parameter the first item of the list

box, which is also activated by setting the Itemlndex property to O. When the list box is

selected, the program closes the query and changes the parameter:

procedure TQueryForm.ListBoxlClick(Sender: TObject); 

begin 

Queryl.Close; 

24



Queryl.Params[OJ .Value 

Queryl.Open; 

end; 

ListBoxl.Items [Listboxl.Itemindex]; 

The final refinement is that when the user enters a record with a new product, it is added

automatically to the list box. Instead of refreshing the entire list, with the same code

executed in the FormCreate method, we can do this by handling the BeforePost event

and adding the continent to the list if it is not already there:

procedure TProductinfo.QuerylBeforePost(DataSet: TDataSet); 

var 

StrNewCont: string; 

begin 

// add t/Je cont.inent,, .if not a.lready .in t/Je .l.ist 

StrNewCont := Queryl.FieldByName ('Continent') .AsString; 

if ListBoxl.Items.IndexOf (StrNewCont) < O then 

ListBoxl.Items.Add (StrNewCont); 

end; 

We can add a little extra code to this program to take advantage of a specific feature of

parameterized queries. To react faster to a change in the parameters, these queries can

be optimized, or prepared. Simply call the Prepare method before the program first

opens the query (after setting the Active property of the Query component to False at

design time) and call Unprepare once the query won't be used anymore:

procedure TProductinfo.FormCreate(Sender: TObject); 

begin 

I I prepare and open t/Je f.irst query 

Queryl.Prepare; 

Queryl.Params[OJ .Value ListBoxl.Items [OJ; 

Queryl.Open; 

end; 

procedure TProductinfo.FormDestroy(Sender: TObject); 

begin 

Queryl.Close; 

25



ueryl.Unprepare; 

end; 

Prepared parameterized queries are very important when we work on a complex query.

In fact, the BDE or the SQL server must read the text of the query and determine how to

process it. If we use the same query (even if a parametric one) over and over, the engine

doesn't need to reprocess the query but already knows how to handle it.

26 



Chapter II: Delphi & Database Applications 

2.1 Delphi Applications Structure 

2.1.1 VCL versus VisualCLX 
Delphi introduces the CLX library alongside the traditional VCL library. There are

certainly many differences, even in the use of the RTL and code library classes,

between developing programs specifically for Windows or with a crossplatform

attitude, but the user interface portion is where differences are most striking. The visual

portion of VCL is a wrapper of the Window APL It includes wrappers of the native

Windows controls (like buttons and edit boxes), of the common controls (like tree views

and list views), plus a bunch of native Delphi controls bound to the Windows concept of

a window. There is also a TCanvas class that wraps the basic graphic calls, so you can

easily paint on the surface of a window.

The following figure 2. 1 .1. 1 shows the relationship of selected classes that make up the

VCL hierarchy. The CLX hierarchy is similar to the VCL hierarchy but Windows

controls are called widgets (therefore TWinControl is called TWidgetControl, for

example), and there are other differences.

TObject

Exception TlntetfacedObject TStream TP e rsistent TComObject

TGraphicObject TGraphic TComponent TCollection TStrings

'Application TDataSet TMenu TControı TCommonDialog TField
I

Most visual 
TGrnphicControl TWinControl"' controls inherit 

from TWin Control' 

TScrollingWinControl
I

TCustomForm

TCustomControl

TForm TActiveF orm

Figure 2.1.1.1: Twidget Control for Cross-Platform Applications.

27 



2. 1.2 DFM and XFM 

As we create a form at design time, this is saved to a form definition file. Traditional

VCL applications use the DFM extension, which stands for Delphi form module. CLX

applications use the XFM extension, which stands for cross-platform (i.e., AJ form

modules. The actual format of DFM or XFM files, which can be based on a textual or

binary representation, is identical. A form module is the result of streaming the form

and its components, and the two libraries share the streaming code, so they produce a

fairly similar effect. So the reason for having two different extensions doesn't lie in

internal compiler tricks or incompatible formats. It is merely an indication to

programmers and to the IDE of the type of components you should expect to find within

that definition (as this indication is ııotincluded in the file itself).

If we need to convert a DFM file into an XFM file, we can simply rename the file.

However, expect to find some differences in the properties, events, and available

components, so that reopening the form definition for a different library will probably

cause quite a few warnings.

Apparently Delphi's IDE chooses the active library only by looking at the extension of

the form module, ignoring the references in the uses statements. For this reason, do

change the extension if you plan using CLX. On Kylix, a different extension is pretty

useless, because any form is opened in the IDE as a CLX form, regardless of the

extension.

2. 1 .3 Choosing a Visual Library 

We must evaluate multiple criteria to come to the proper decision, which isn't always

easy.
The first criterion is portability. If running our program on Windows and on Linux, with

the same user interface, is a major concern to you, using CLX will probably make our

life simpler and let you keep a single source code file with very limited IFDEFs.

For a simple user interface (edits, buttons, grids), this probably won't matter much, but

if we havemany tree view and list view controls, the differences will be quite clear. On

28



the other hand,with CLX you'll be able to let your users select a look-and-feel of their

choice, different from the basic Windows look, and use it consistently across platforms.

Using native controls implies also that as soon as we get a new versıon of the

Windowsoperating system, our application will (probably) adapt to it. This is good for

the user, but might cause us a lot of headaches in case of incompatibilities. Differences

in the Microsoft common controls library over the last few years have been a major

source of frustration for Windows programmers in general, including Delphi

programmers. Another criterion is the deployment: If we use CLX, we'll have to ship

our Windows program with the Qt libraries, which are not commonly available on

Windows systems.

2.1.4 Conditional Compilation for Libraries 
If we want to keep a single source code file but compile with VCL on Windows and

CXL on Linux, we can use platform-specific symbols (such as $IFDEF LINUX) to

distinguish the two situations in case of conditional compilation. But what if we want to

be able to compile a portion of code for both libraries on Windows?

We can either define a symbol of your own, and use conditional compilation, or (at

times) test for the presence of identifiers that exist only in VCL or CLX . :

2.1.4.1 TControl and Derived Classes 
One of the most important subclasses of TComponent is TControl, which corresponds

to visual components. This base class is available both in CLX and VCL and defines

general concepts, such as the position and the size of the control, the parent control

hosting it, and more. For an actual implementation, though, you have to refer to its two

subclasses. In VCL these are TWinControl and TGraphicControl; in CLX they are

TWidgetControl and TGraphicControl. Here are their key features: Window-based

controls (also called windowed controls) are visual components based on an operating

system window. A TWinControl in VCL has a window handle, a number referring to an

internal Windows structure. A TWidgetControl in CLX has a Qt handle, TControl and

Derived Classes

29 



2.1.5 Delphi Application Object 

Structure of Delphi applications, it is time to delve into some more details of this global

object and its corresponding class. Application is a global object of the TApplication

class, defined in the Forms unit and created in the Controls unit.

The TApplication class is a component, but we cannot use it at design time. Some of its

properties can be directly set in the Application page of the Project Options dialog box;

others must be assigned in code.

To handle its events, instead, Delphi includes a handy ApplicationEvents component.

Besides allowing us to assign handlers at design time, the advantage of this component

is that it allows for multiple handlers. If we simply place two instances of the

ApplicationEvents component in two different forms, each of them can handle the same

event, and both event handlers will be executed. In other words, multiple

ApplicationEvents components can chain the handlers. Some of these application-wide

events, including OnActivate, OnDeactivate, OnMinimize, and OnRestore, allow us to

keep track of the status of the application. Other events are forwarded to the application

by the controls receiving them, as in OnActionExecute, OnAction- Update, OnHelp,

OnHint, OnShortCut, and OnShowHint. Finally, there is the OnException global

exceptions. The Onldle event used for background computing, and the OnMessage

event, which fires whenever a message is posted to any of the windows or windowed

controls of the application.

Although its class inherits directly from TComponent, the Application object has a

window associated with it. The application window is hidden from sight but appears on

the Taskbar. This is why Delphi names the window Forml and the corresponding

Taskbar icon Projectl.

The window related to the Application object the application window serves to keep

together all the windows of an application. The fact that all the top-level forms of a

program have this invisible owner window, for example, is fundamental when the

application is activated. In fact, when the windows of our program are behind those of

other programs, clicking one window in our application will bring all of that

application's windows to the front. In other words, the unseen application window is

30



used to connect the various forms of the application. Actually the application window is

not hidden, because that would affect its behavior; it simply has zero height and width,

and therefore it is not visible.

When we create a new, blank application, Delphi generates a code for the project file,

which includes the following:

begin 

Application.Initialize; 

Application.CreateForm(TForml, Forml); 

Application.Run; 

end. 
As we can see in this standard code, the Application object can create forms, setting the

first one as the MainForm (one of the Application properties) and closing the entire

application when this main form is destroyed. Moreover, it contains the Windows

message loop (started by the Run method) that delivers the system messages to the

proper windows of the application. A message loop is required by any Windows

application, but we don't need to write one in Delphi because the Application object

provides a default one.

2.1.6 Displaying the Application Window 
There is no better proof that a window indeed exists for the Application object than to

display it. Actually, we don't need to show it-we just need to resize it and set a couple

of window attributes, such as the presence of a caption and a border. We can perform

these operations by using Windows API functions on the window indicated by the

Handle property of the Application object:

procedure TForml.ButtonlClick(Sender: TObject); 

var 

OldStyle: Integer; 

begin 
II add border and caption to the app window 

OldStyle := GetWindowLong (Application.Handle, gwl Style); 

SetWindowLong (Application.Handle, gwl_Style, 

OldStyle or ws ThickFrame or ws_Caption); 

31



II set the size of the app window 

SetWindowPos (Application.Handle, O, O, O, 200, 100, 

swp_NoMove or swp_NoZOrder); 

end; 

The two GetWindowLong and SetWindowLong API functions are used to access the

system information related to the window. In this case, we are using the gwl_Style

parameter to read or write the styles of the window, which include its border, title,

system menu, border icons, and so on. The code above gets the current styles and adds

(using an or statement) a standard border and a caption to the form. The application

window is not a form. Executing this code displays the project window, as we can see in

Figure 2. 1.6. 1.
Although there's no need to implement something like this in our own programs,

running this program will reveal the relation between the application window and the

main window of a Delphi program. This is a very important starting point if you want to

understand the internal structure of Delphi applications.

J! Show App !lliH3 

I: ·.. ::::show:ı:: ::::1

Figure 2.1.6.1: Shows Us, Presented By ShowApp Program's Hidden Application

Window.

2.1. 7 System Menu Aplications and TMainMenu Component 
The Menu Designer lets us easily add menus to our form. We can simply add menu

items directly into the Menu Designer window. You can add, delete, and rearrange

menu items at design time and we do not have to run the program to see the results. Our

application menu are always visible on the Form, as they will appear during runtime.

The following example is explaining how the menu generates while the program runs.

32



procedure TForml.FormCreate(Sender: TObject); 

begin 

II add a separator and a menu item to the system menu 

AppendMenu (GetSystemMenu (Handle, FALSE), MF_SEPARATOR, O, "); 

AppendMenu (GetSystemMenu (Handle, FALSE), MF STRING, 

idSysAbout, 

'&About ... '); 

II add the same items to the application system menu 

AppendMenu (GetSystemMenu (Application.Handle, 

MF SEPARATOR, O, '' ) ;

FALSE), 

AppendMenu (GetSystemMenu (Application.Handle, FALSE), 

MF_STRING, idSysAbout, '&About ... '); 

end; 

The first part of the code adds the new separator and item to the system menu of the

main form. The other two calls add the same two items to the application's system

menu, simply by referring to Application.Handle. This is enough to display the updated

system menu, as we can see by running this program. The next step is to handle the

selection of the new menu item.

To handle form messages, we can simply write new event handlers or message-handling

methods. We cannot do the same with the application window, simply because

inheriting from the TApplication class is quite a complex issue. Most of the time we can

just handle the OnMessage event of this class, which is activated for every message the

application retrieves from the message queue.

To handle the OnMessage event of the global Application object, simply add an

Application- Events component to the main form, and define a handler for the

OnMessage event of this component. In this case, we only need to handle the

wm_SysCommand message, and we only need to do that if the wParam parameter

indicates that the user has selected the menu item we've just added, idSysAbout:

33 



procedure TForml.ApplicationEventslMessage(var Msg: tagMSG; 

var Handled: Boolean); 

begin 

if (Msg .Message = wm_SysCommand) and (Msg. wParam idSysAbout) 

then 

begin 

ShowMessage ( 'SysMenu2 example'); 

Handled:= True; 

end; 

end; 

This method is very similar to the one used to handle the corresponding system menu

item of the main form:

procedure WMSysCommand (var Msg: TWMSysCommand); 

message wm_SysCommand; 

procedure TForml.WMSysCommand (var Msg: TWMSysCommand); 

begin 

II handle a specific command 

if Msg.CmdType = idSysAbout then 

ShowMessage ( 'SysMenu2 example'); 

inherited; 

end; 

2.1.8 Activating Application and Forms and TForm Componet 

An application usually contains multiple forms: A main form, which is the primary user

interface, and other forms such as dialog boxes, secondary windows (for instance, those

that display OLE 2.0 data), and so on. We can begin our form design from one of the

many form templates provided in the Object Repository. We can save any form you

design as a template that you can reuse in other projects.Ü

2.1.8.1 Tasks 
1. To make the form stay on top of other open windows (for instance, the

Project Manager or Alignment Palette) at runtime, set the FormStyle

property to fsStayOnTop.

34



35

2. To remove the form's default scroll bars, change the value of the

HorzScrollBar and VertScrollBar properties.

3. To make the form a MDI frame or MDI child, use the FormStyle property.

4. To change the form's border style, use the Borderlcons and BorderStyle

properties. (The results are visible at runtime).

5. To change the icon for the minimized form, use the Icon property.

6. To specify the initial position of a form in the application window, use the

Position property.

7. To specify the initial state of the form, (that is, minimized, maximized, or

normal) use the WindowState property.

8. To define the working area of the form at runtime, use the ClientHeight and

ClientWidth properties. (Note that ClientHeight and ClientWidth represent

the area within the form's border; Height and Width represent the entire area

of the form.).

9. To specify which control has initial focus in the form at runtime, use the

ActiveControl property.

10. To pass all keyboard events to form, regardless of the selected control, use

the KeyPreview property.

11. To specify a particular menu, if our form contains more than one menu, use

the Menu property.

2.1.8.2 Activating Application and Forms 
This questions answer is a simple example by named ActivApp which is explain itself

or other words a selfexplanatory example. This example has two forms. Each form has a

Label component (LabelForm) used to display the status of the form. The program uses

text and color for this, as the handlers of the OnActivate and OnDeactivate events of the

first form demonstrate:

procedure TForml.FormActivate(Sender: TObject); 

begin 

LabelForm.Caption := 'Form2 Active'; 

LabelForm.Color := clRed; 

end; 



36

procedure TForml.FormDeactivate(Sender: TObject); 

begin 

~abelForm.Caption := 'Form2 Not Active'; 

~abelForm.Color := clBtnFace; 

end; 

The second form has a similar label and similar code. The main form also displays the

status of the entire application. It uses an ApplicationEvents component to handle the

OnActivate and OnDeactivate events of the Application object. These two event

handlers are similar to the two listed previously, with the only difference being that they

modify the text and color of a second label of the form.

If we try running this program, we'll see whether this application is the active one and,

if so, which of its forms is the active one. By looking at the output (see Figure 2. 1 .8.2. 1)

and listening for the beep, you can understand how each of the activation events is

triggered by Delphi.

Form1 Nol Active 

Figure 2.1.8.2.1: The ActivApp example shows whether the application is active and

which of the application's forms is active.

2.1.8.3 Creating MDI Form Applications 
A common approach for the structure of an application is MDI (Multiple Document

Interface). An MDI application is made up of several forms that appear inside a single

main form. If you use Windows Notepad, you can open only one text document,

because Notepad isn't an MDI application. But with your favorite word processor, you

can probably open several different documents, each in its own child window, because



37

they are MDI applications. All these document windows are usually held by a frame, or

application, window.

2.1.8.3.1 MDI in Windows: A Technical Overview 

1. The MDI structure gives programmers several benefits automatically. For

example, Windows handles a list of the child windows in one of the pull

down menus of an MDI application, and there are specific Delphi methods

that activate the corresponding MDI functionality, to tile or cascade the child

windows. The following is the technical structure of an MDI application in

Windows:

2. The main window of the application acts as a frame or a container.

3. A special window, known as the MDI client, covers the whole client area of

the frame window. This MDI client is one of the Windows predefined

controls, just like an edit box or a list box. The MDI client window lacks any

specific user-interface element, but it is visible. In fact, you can change the

standard system color of the MDI work area (called the Application

Background) in the Appearance page of the Display Properties dialog box in

Windows.

4. There are multiple child windows, of the same or of different kinds. These

child windows are not placed in the frame window directly, but each is

defined as a child of the MDI client window, which in turn is a child of the

MDI client window, which in tum is a child of the frame window.

2.1.8.3.2 Frame and Child Windows in Delphi 

, Delphi makes the development of MDI applications easy, even without using the MDI

Application template available in Delphi . Generally, however, the child form is not

created at startup, and we need to provide a way to create one or more child windows.

This can be done by adding a menu with a New menu item and writing the following

code:
var 

ChildForm: TChildForm; 

begin 

ChildForm := TChildForm.Create (Application); 

ChildForm.Show; 



38

Another important feature is to add a "Window" pull-down menu and use it as the value

of the WindowMenu property of the form. This pull-down menu will automatically list

all the available child windows. Of course, you can choose any other name for the pull

down menu, but Window is the standard.

To make this program work properly, we can add a number to the title of any child

window when it is created:

procedure TMainForm.NewlClick(Sender: TObject); 

var 

ChildForm: TChildForm; 

begin 

WindowMenu := Windowl; 

Inc (Counter); 

ChildForm := TChildForm.Create (Self); 

ChildForm.Caption := ChildForm.Caption +

(Counter); 

ChildForm.Show; 

end; 

+ IntToStr 

We can also open child windows, minimize or maximize each of them, close them, and

use the Window pull-down menu to navigate among them. The closed forms in Delphi

still exist, although they are not visible. In the case of child windows, hiding them won't

work, because the MDI Window menu and the list of windows will still list existing

child windows, even if they are hidden. For this reason, Delphi minimizes the MDI

child windows when you Frame and Child Windows in Delphi try to close them. To

solve this problem, we need to delete the child windows when they are closed, setting

the Action reference parameter of the OnClose event to caFree.

2.1.8.3.3 The Mdi Form Example 
This example is actually a full-blown MDI text editor, because each child window hosts

a Memo component and can open and save text files. The child form has a Modified

property used to indicate whether the text of the memo has changed (it is set to True in

the handler of the memo's OnChange event). Modified is set to False in the Save and

Load custom methods and checked when the form is closed (prompting to save the file).



This example is cased on ActionList componenet. The actions are available through

some menu items and a toolbar, as you can see in Figure 2.1.8.3.3.1 Next, focus on the

code of the custom actions. Once more, this example demonstrates that using actions

makes it very simple to modify the user interface of the program, without writing any

extra code. In fact, there is no code directly tied to the user interface.

One of the simplest actions is the ActionFont object, which has both an OnExecute

handler, which uses a FontDialog component, and an OnUpdate handler, which disables

the action (and hence the associated menu item and toolbar button) when there are no

child forms:
procedure TMainForm.ActionFontExecute(Sender: TObject); 

begin 

if FontDialogl.Execute then 

(ActiveMDIChild as TChildForm) .Memol.Font FontDialogl.Font; 

end; 

procedure TMainForm.ActionFontUpdate(Sender: TObject); 

begin 

ActionFont.Enabled := MDIChildCount > O; 

end; 

rern · ByWindows38 Network· DEVICE=C:\WINDUWS\setver.e:,e
(cl Coıi~DEVICEHIGH=C\'wlNDOWS\COMMılND\DRVSPACE SYS /MOVE

device.C:\WINDOWSICOMMAND\di,play.sys con=[eJa,,1 i
Counlry=039,850,C: \WIND O'v'/S \COMMAND vcountrv. sys

lhis d,ı ·
inlorrne]
cbcumıJ

Figure 2.1.8.3.3.1: The Mdi Form Program Uses a Series of Predefined Delphi Actions

Connected to a Menu and a Toolbar.

39

-- ------



The action named New creates the child form and sets a default filename. The Open 

action calls the ActionNewExcecute method prior to loading the file: 

procedure TMainForm.ActionNewExecute(Sender: TObject); 

var 

ChildForm: TChildForm; 

begin 

Inc (Counter); 

ChildForm := TChildForm.Create (Self); 

ChildForm.Caption := 

Lowercase (ExtractFilePath (Application.Exename)) + 'text' +

IntToStr (Counter) + '.txt'; 

ChildForm.Show; 

end; 
procedure TMainForm.ActionOpenExecute(Sender: TObject); 

begin 

if OpenDialogl.Execute then 

begin 

ActionNewExecute (Self); 

(ActiveMDIChild as TChildForm) .Load (OpenDialogl.FileName); 

end; 

end; 

The actual file loading is performed by the Load method of the form. Likewise, the 

Save method of the child form is used by the Save and Save As actions. Notice the 

OnUpdate handler of the Save action, which enables the action only if the user has 

changed the text of the memo: 

procedure TMainForm.ActionSaveAsExecute(Sender: TObject); 

begin 

II suggest the current file name 

SaveDialogl.FileName := ActiveMDIChild.Caption; 

if SaveDialogl.Execute then 

begin 

II modify the file name and save 

ActiveMDIChild.Caption := SaveDialogl.FileName; 

40 



(ActiveMDIChild as TChildForm) .Save; 

end; 

end; 

procedure TMainForm.ActionSaveUpdate(Sender: TObject); 

begin 

ActionSave.Enabled := (MDIChildCount > O) and 

(ActiveMDIChild as TChildForm) .Modified; 

end; 

procedure TMainForm.ActionSaveExecute(Sender: TObject); 

begin 

(ActiveMDIChild as TChildForm) .Save; 

end; 

2.1.9 Delphi Standart Components 

2.1.9.1 TLabel (Label) Component 
Use TLabel to add text that the user can't edit to a form. This text can be used to label

another control, and can set focus to that control when the user types an accelerator key.

Because TLabel is not a descendant of TWinControl, it does not have its own window

and can't receive direct input from the keyboard. To add an object to a form that can

respond to keyboard input (other than setting focus to another object when an

accelerator key is typed) in addition to displaying text, use TStaticText. To add an

object to a form that displays text that a user can scroll or edit, use TEdit.

2.1.9.2 TEdit (Edit) Component 
Use a TEdit object to put a standard Windows edit control on a form. Edit controls are

used to retrieve text that users type. Edit controls can also display text to the user.

When only displaying text to the user, choose an edit control to allow users to select text

and copy it to the Clipboard. Choose a label object if the selection capabilities of an edit

control are not needed.

TEdit implements the generic behavior introduced in TCustomEdit. TEdit publishes

many of the properties inherited from TCustomEdit, but does not introduce any new

behavior. For specialized edit controls, use other descendant classes of TCustomEdit or

derive from it.

41



2.1.9.3 TList (List) Component 

TList, which stores an array of pointers, is often used to maintain lists of objects. TList

introduces properties and methods to

1. Add or delete the objects in the list.

2. Rearrange the objects in the list.

3. Locate and access objects in the list.

5. Sort the objects in the list.

2.1.9.4 TButton (Button) Component 

Use TButton to put a standard push button on a form. TButton introduces several

properties to control its behavior in a dialog box setting. Users choose button controls to

initiate actions.

To use a button that displays a bitmap instead of a label, use TBitBtn. To use a button

that can remain in a depressed position, use TSpeedButton.

ote: Since the TButton caption is always centered, changing the BiDi alignment has

no effect.

2.1.9.5 TComboBox (ComboBox) Component 

A TComboBox component is an edit box with a scrollable drop-down list attached to it.

Users can select an item from the list or type directly into the edit box.

At runtime, CLX combo boxes work differently than VCL combo boxes. With the CLX

combo box, we can add an item to a drop-down list by entering text and pressing Enter

in the edit field of a combo box. We can tum this feature off by setting InsertMode to

ciNone. It is also possible to add empty (no string) items to the list in the combo box.

Also, if we keep pressing the down arrow key, it does not stop at the last item of the

ombo box list. It cycles around to the top again.

2.1.9.6 TCheckBox (CheckBox) Component 

_.\ TCheckBox component presents an option for the user. The user can check the box to

elect the option, or uncheck it to deselect the option.

42

'ı



43

A check box is a toggle that lets the user select an on or off state. When the choice is

turned on, the check box is checked. Otherwise, the check box is blank.

Set AllowGrayed to True to give the check box three possible states: checked,

unchecked, and grayed. The State property indicates whether the check box is checked

(cbChecked), unchecked (cbUnchecked), or grayed (cbGrayed).

Note: Check box controls display one of two binary states. The indeterminate state is

used when other settings make it impossible to determine the current value for the check

box.

2.1.9. 7 TRadioButton (RadioButton) Component 
Use TRadioButton to add a radio button to a form. Radio buttons present a set of

mutually exclusive options to the user- that is, only one radio button in a set can be

selected at a time. When the user selects a radio button, the previously selected radio

button becomes unselected. Radio buttons are frequently grouped in a radio group box

(TRadioGroup). Add the group box to the form first, then get the radio buttons from the

Component palette and put them into the group box.

By default, all radio buttons that are directly contained in the same windowed control

container, such as a TRadioGroup or TPanel, are grouped. For example, two radio

buttons on a form can be checked at the same time only if they are contained in separate

containers, such as two different group boxes.

2.1.9.8 TPanel (Panel) Component 
Use TPanel to put an empty panel on a form. Panels have properties for providing a

beveled border around the control, as well as methods to help manage the placement of

child controls embedded in the panel.

We can also use panels to group controls together, similar to the way we can use a

group box, but with a beveled border (or no border) rather than the group box outline.

Panels are typically used for groups of controls within a single form. If you intend to

use the same grouping in other forms, you may want to use a frame instead.



2.1.10 Delphi Win32 Components 

2.1.10.1 TDateTimePicker (DateTimePicker) Component 

TDateTimePicker is a visual component designed specifically for entering dates or

times. In dmComboBox date mode, it resembles a list box or combo box, except that the

drop-down list is replaced with a calendar illustration; users can select a date from the

calendar. Dates or times can also be selected by scrolling with Up and Down arrows and

by typing.

Although we can use a panel to implement a status bar or tool bar, it is recommended

that you use the TToolBar and TStatusBar classes instead.

Date-time picker ignores the BiDiMode setting for right-to-left reading, displaying dates

according to the system locale.

TDateTimePicker formats date and time values according to the date and time settings

in the Regional Settings of the Control panel on the user's system. Because

TDateTimePicker is a wrapper for a Windows control, these formats can't be changed

by changing the formatting variables in the SysUtils unit. However, you can use the

Windows API call DateTime_SetFormat to programmatically specify these settings.

2.1.10.2 TpageControl (PageControl) Component 

Use TPageControl to create a multiple page dialog or tabbed notebook. TPageControl

displays multiple overlapping pages that are TTabSheet objects. The user selects a page

, by clicking the page's tab that appears at the top of the control. To add a new page to a

TPageControl object at design time, right-click the TPageControl object and choose

ewPage.

To create a tabbed control that uses only a single body portion (page), use TTabControl

instead.

To create a new page in a page control at design time, right-click the control and choose

- ıew Page. At runtime, you add new pages by creating the object for the page and

setting its PageControl property:

44 



NewTabSheet = TTabSheet.Create(PageControll); 

NewTabSheet.PageControl := PageControll; 

To access the active page, use the ActivePage property. To change the active page, we

can set either the ActivePage or the ActivePagelndex property.

2.1.11 Delphi Dialog Components 

2.1.11.1 TPrintDialog (PrintDialog) Component 
The TPrintDialog component displays a standard Windows dialog box for sending jobs

to a printer. The dialog is modal and does not appear at runtime until it is activated by a

call to the Execute method.

2.1.11.2 TPrinterSetupDialog (PrintSetupDialog) Component 
TPrinterSetupDialog displays a modal Windows dialog box for configuring printers.

The contents of the dialog vary depending on the printer driver selected. The dialog

does not appear at runtime until it is activated by a call to the Execute method.

2.1.12 Delphi Additional Component 

2.1.12.1 TSpeedButton (SpeedButton) Component 
Use TSpeedButton to add a button to a group of buttons in a form. TSpeedButton

introduces properties that can be used to set graphical images that represent the different

button states (selected, unselected, disabled and so on). Use other properties to specify

multiple images or to rearrange the images and text on the button. TSpeedButton also

introduces properties that allow speed buttons to work together as a group. Speed

buttons are commonly grouped in panels to create specialized tool bars and tool

palettes.

The recommended way to implement the response of the button when the user clicks on

it is to assign an action from an action list as the value of the Action property. By setting

the Action property, you make the button a client of the action, and the action handles

updating the button's properties and responding when the user clicks the button.

45



If we are not using an action to respond when the user clicks the button, then we can

specify the button's response by writing an OnClick event handler.

2.1.12.2 TMaskEdit (MaskEdit) Component 
We use a TMaskEdit object to put a masked edit control on our form. Masked edit

controls validate the text the user enters against a mask that encodes the valid forms the

text can take. The mask can also format text that is displayed to the user.

TMaskEdit implements the generic behavior introduced in TCustomMaskEdit.

TMaskEdit publishes many of the properties and methods inherited from

TCustomMaskEdit, but does not introduce any new behavior.

2.1.13 Delphi Samples Components 

2.1.13.1 TSpinEdit (SpinEdit) Components 
TSpinEdit is a generic implementation of spin boxes, as defined in TCustomSpinEdit.

Spin boxes allow the user to choose from a range of numeric values by clicking on

special "spin buttons", or by pressing vertical arrow keys. Users can also enter the value

in a text box, as with an edit control. Spin boxes support non-numeric prefixes and

suffixes, such as currency symbols, and special values with non-numeric

representations.

2.2 Delphi Database Application Structures 
These features enable us to build database applications with live connections to Paradox

and dBASE tables, and the Local InterBase Server through the BDE. In many cases, we

can create simple data access applications with these components and their properties

without writing a line of code. Also in our project we worked with BDE paradox

Database. The BDE is built into Delphi components so we can create database

applications without needing to know anything about the BDE. The Delphi installation

program installs drivers and sets up configuration for Paradox, dBASE, and the Local

InterBase Server, so we can begin working with tables native to these systems

immediately. The BDE Configuration Utility enables us to tailor database connections

and manage database aliases.

46 



Advanced BDE features are available to programmers who need more functionality.

These features include local SQL, which is a subset of the industry-standard SQL that

enables us to issue SQL statements against Paradox and dBASE tables; low-level API

function calls for direct engine access; and ODBC support for communication with

other ODBC-compliant databases, such as Access and Btrieve.

Delphi includes Borland ReportSmith, so we can embed database report creation,

viewing, and printing capabilities in Delphi database applications. Delphi also includes

the Database Desktop (DBD), a tool that enables us to create, index, and query desktop

and SQL databases, and to copy data from one source to another.

BDE Configuration Utility Create and manage database connection Aliases used by the

BDE.

Local InterBase Server Provides a single-user, multi-instance desktop SQL server for

building and testing Delphi applications, before scaling them up to a production

database, such as Oracle, Sybase, Informix, or InterBase on a remote server.

2.2.1 Understanding Delphi Database Architecture 
In Chapter 1 we discuss the overview of Database architecture and Delphi database

features and capabilities.

Delphi uses object-oriented components to create database applications, just as it does

with non-database applications. Like standard components, database components have

attributes, or properties, that are set by the programmer at design time. These properties

, can also be set programmatically at run time.

Database components have default behavior that enables them to perform useful

functions with little or no programming. The Delphi Component palette provides two

database component pages:

1. The Data Access page contains Delphi objects that simplify database access

by
encapsulating database source information, such as the database to connect

to, the

47 



tables in that database to access, and specific field references within those

tables.

Examples of the most frequently used data access objects include TTable,

TQuery, TDataSource, and TReport.

2. The Data Controls page contains data-aware user interface components for

displaying database information in forms. Data Control components are like

standard user interface components, except that their contents can be derived

from or passed to database tables. Examples of the most frequently used data

control components include TDBEdit, TDBNavigator, and TDBGrid.

Datasets, such as TTable, TQuery, and TStoredProc components, are not visible at run

time, but provide applications their connection to data through the BDE. Data Control

components are attached to dataset components by a TDataSource component, to

provide a visual interface to data.

The following figure illustrates how data Access and Data Control components relate to

the data, to one another, and to user interface in aDelphi Databse Application;

Data Access Components Data Control Components

TDBGrid

TD BEdit

TDBG rid

·•TDBCheck

TOBE dit

TDBCheck

User Interface),

BDE

Delphi Form

Figure 2.2.1.1: DataBase Components Architecture.

48



2.2.2 Overview of the Database Desktop 

The Database Desktop (DBD) is a database maintenance and data definition tool. It

enables programmers to query, create, restructure, index, modify, and copy database

tables, including Paradox and dBASE files, and SQL tables. You do not have to own

Paradox or dBASE to use the DBD with desktop files in these formats.

The DBD can copy data and data dictionary information from one format to another.

For example, you can copy a Paradox table to an existing database on a remote SQL

server

2.2.3 Developing Applications for Desktop and Remote Servers 

Delphi Client/Server enables programmers to develop and deploy database client

applications for both desktop and remote servers. One of Delphi's strengths is the ease

with which an application developed for the desktop can be adapted to access data on a

remote SQL server. The user interface need not change even if the source of the data

changes. To an end user, a Delphi database application looks the same whether it

accesses a local database file or a remote SQL database.

For example, desktop databases like Paradox and dBASE are record-oriented. They

always display records in ascending or descending alphabetic or numeric order. They

lock and access a single record at a time. Each time a user changes a record, the changes

are immediately written to the database. Desktop database users can see a range of

records, and can efficiently navigate forward and backward through that range. In

contrast, data in SQL databases is set-oriented, and designed for simultaneous multiuser

access. Record ordering must be specified as part of an SQL query. To accommodate

multiuser access to data, SQL relies on transactions to govern access.

For simple applications that use .TQueıycomponents to access desktop data, the

transition to a remote server may be as simple as changing the data source. For other

applications, more significant changes may be in order. Some of these changes are the

result of differing conventions and concurrency issues between desktop and SQL

databases.

49 



2.2.4 Delphi Borland Database Engine (BDE) Components 

2.2.4.1 TDataSet (Dataset) Component 

TDataSet introduces the basic properties, events, and methods for working with data.

Many of these properties, events, and methods are abstract (Delphi) or pure virtual

(C++) in TDataSet. Abstract or pure virtual declarations are declarations without

implementations. At the TDataSet level they cannot be used or accessed. Developers

must use or derive descendants of TDataSet that redeclare and implement these abstract

or pure virtual methods. Many of the other TDataSet methods are declared and

implemented in TDataSet as virtual methods, but the implementations are merely stubs

that are reimplemented in descendants.

TDataSet has several

TCustomADODataSet,TIBCustomDataSet,

TCustomClientDataSet.

1. TBDEDataSet is the base class for datasets that access their data using the

Borland Database Engine (BDE). TBDEDataSet descendants include

descendants: TBDEDataSet,

TCustomSQLDataSet, and

TTable, TQuery, and TStoredProc. Developers who create custom dataset

components that use the BDE derive them from TBDEDataSet,

TDBDataSet, TQuery, TStoredProc, or TTable.

2. TCustomADODataSet is the base class for datasets that access their data

using ActiveX Data Objects (ADO). TCustomADODataSet descendants

include TADODataSet, TADOTable, TADOQuery, and TADOStoredProc.

Developers who create custom dataset components that use ADO derive

them from CustomADODataSet.

3. TIBCustomDataSet is the base class for datasets that directly access the data

in InterBase tables. TIBCustomDataSet descendants include TIBDataSet,

TIBTable, TIBQuery, and TIBStoredProc. Developers who create custom

dataset components that directly access data in an InterBase database derive

from TIBCustomDataSet.

4. TCustomSQLDataSet is the base class for unidirectional datasets.

Unidirectional datasets are read-only datasets that permit only forward

navigation. TCustomSQLDataSet descendants include the dbExpress

datasets TSQLDataSet; TSQLQuery, TSQLTable, and TSQLStoredProc.

50



Developers who create custom dataset components that use dbExpress to

access their data derive from TCustomSQLDataSet.

5. TCustomClientDataSet is the base class for in-memory datasets. Client

datasets can work with data from files on disk or with data provided by

another component via a provider. They cache that data in memory, maintain

a record of any changes in a change log, and apply cached updates at a later

point back to the source of the data. Developers who create custom datasets

that store their data in an in-memory cache derive from

TCustomClientDataSet.

Developer's can also derive custom dataset components directly from TDataSet,

providing their own mechanisms for accessing and manipulating the data.

2.2.4.2 TStoredProc (StoredProc) Component 
Use a TStoredProc object in BDE-based applications to use a stored procedure on a

database server. A stored procedure is a grouped set of statements, stored as part of a

database server's metadata (just like tables, indexes, and domains), that performs a

frequently repeated, database-related task on the server and passes results to the client.

Many stored procedures require a series of input arguments, or parameters, that are used

during processing. TStoredProc provides a Params property that enables an application

to set these parameters before executing the stored procedure.

TStoredProc reuses the Params property to hold the results returned by a stored

procedure. Params is an array of values. Depending on server implementation, a stored

procedure can return either a single set of values, or a result set similar to the result set

returned by a query.

2.2.4.3 TTable (Table) Component 
Use TTable to access data in a single database table using the Borland Database Engine

(BDE). TTable provides direct access to every record and field in an underlying

database table, whether it is from· Paradox, dBASE, Access, FoxPro, an ODBC

compliant database, or an SQL database on a remote server, such as InterBase, Oracle,

51



1/.:::,~' , ' j

~ I ~1 ,,1, o; O,
I '-'-" ,:J .').:' ;· 

Sybase, MS-SQL Server, Informix, or DB2. A table component can also wor «ıvith a" {~/
~ ->~f

subset of records within a database table using ranges and filters. t_ 1 S\~\~//..•-.::::::-::::-•.:=--::: ;:...r

At design time, create, delete, update, or rename the database table connected to a

TTable by right-clicking on the TTable and using the pop-up menu.

2.2.4.4 TQuery (Query) Component
Use TQuery to access one or more tables in a database using SQL statements. Query

components can be used with remote database servers (such as Sybase, SQL Server,

Oracle, Informix, DB2, and InterBase), with local tables (Paradox, InterBase, dBASE,

Access, and FoxPro), and with ODBC-compliant databases.

Query components are useful because they can access more than one table at a time

(called a "join" in SQL). Automatically access a subset of rows and columns in its

underlying table(s), rather than always returning all rows and columns.

Note:TQuery is of particular importance to the development of scalable database

applications. If there is any chance that an application built to run against local

databases will be scaled to a remote SQL database server in the future, use TQuery

components from the start to ensure easier scaling later.

2.2.5 Delphi Data Access Components

2.2.5.1 TDataSource (Datasource) Component

Use TDataSource to provide a conduit between a dataset and data-aware controls on a

form that enable display, navigation, and editing of the data underlying the dataset. It

Links two datasets in a master/detail relationship.

All datasets must be associated with a data source component if their data is to be

displayed and manipulated in data-aware controls. Similarly, each data-aware control

needs to be associated with a data source component in order for the control to receive

and manipulate data. Data source components also link datasets in master-detail

relationships.

52



2.2.6 Delphi Data Controls Components

2.2.6.1 TDBGrid (DBGrid) Component

Put a TDBGrid object on a form to display and edit the records from a database table or

query. Applications can use the data grid to insert, delete, or edit data in the database, or

simply to display it.

At runtime, users can use the database navigator (TDBNavigator) to move through data

in the grid, and to insert, delete, and edit the data. Edits that are made in the data grid

are not posted to the underlying dataset until the user moves to a different record or

closes the application.

TDBGrid implements the generic behavior introduced in TCustomDBGrid. TDBGrid

publishes many of the properties inherited from TCustomDBGrid, but does not

introduce any new behavior.

2.2.6.2 TDBEdit (DBEdit) Component
Use TDBEdit to enable users to edit a database field. TDBEdit uses the Text property to

represent the contents of the field.

TDBEdit permits only a single line of text. If the field may contain lengthy data that

would require multiple lines, consider using a TDBMemo object.

If the application does not require the data-aware capabilities of TDBEdit, use an edit

control (TEdit) or a masked edit control (TMaskEdit) instead, to conserve system

resources.

2.2.6.3 TDBText (DBText) Component
Use TDBText to display the contents of a field in the current record of a dataset on a

form. Field values displayed by database text controls cannot be modified by the user

using the text control. To allow the user to edit the field value, use TDBEdit or

TDBMemo instead.

If the application does not require the data-aware capabilities of IDB Text, use the label

component (TLabel) instead to conserve system resources.

53



2.2.6.4 TDBNavigator (DBNavigator) Component

Use the database navigator on forms that contain data-aware controls, such as TDBGrid

or TDBEdit. TDBNavigator lets the user control the dataset when editing or viewing the

data.

When the user chooses one of the navigator buttons, the appropriate action occurs on

the dataset to which the navigator is linked. For example, if the user clicks the Insert

button, a blank record is inserted in the dataset.

2.2.6.5 TDBMemo (DBMemo) Component

Use TDBMemo to let users edit a field that may contain lengthy textual data or to

simply display the contents of such a field. TDBMemo uses the Text property to

represent the contents of the field.

TDBMemo permits multiple lines of text. Thus, TDBMemo is appropriate for long

alphanumeric fields or text binary large objects (BLOBs). For short alphanumeric fields,

consider using a TDBEdit component instead.

If the application doesn't require the data-aware capabilities of TDBMemo, use a memo

control (TMemo) instead, to conserve system resources.

2.2.6.6 TDBComboBox (DBComboBox) Component

Use TDBComboBox to allow users to change the value of a field on the current record

in a dataset either by selecting an item from a list or by typing in the edit box part of the

control. The selected item or entered text becomes the new value of the field if the

database combo box's Readünly property is false. The combo box can be customized to

enable or disable typing in the edit region of the control.

2.2.6.7 TDBLookupComboBox (DBLookupComBox) Component

Use TDBLookupComboBox to provide the user with a convenient drop-down list of

lookup items for filling in fields that require data from another dataset.

54



If TDBLookupComboBox is linked to a lookup field component, it automatically reads

the relationship between the field value and the lookup values in the lookup dataset

from the field component. The relationship between field values and the corresponding

values in the lookup dataset can also be explicitly set using the properties of the lookup

combo box when the combo box is not linked to a lookup field component.

2.2.6.8 TDBChart (DBChart) Component
TDBChart derives from TChart /TCustomChart and inherits all TChart functionality.

When a Chart Series is connected to a TDBChart component, TDBChart looks in the

Series DataSource property.

If DataSource is a TTable, TQuery, TClientDataset or any valid Delphi DataSet

component, TDBChart will automatically retrieve its records preserving all Filters and

Ranges.We can also filter which records would be inserted by using the Series

OnBeforeAdd event.

TDBChart also accepts Chart Series which are connected to another Chart Series and

also Chart Series whose points are being manually added by coding. The main

difference between TChart and TDBChart is that the last one NEEDS the Borland

Database Engine to be correctly installed in the target machine, while TChart does not.

The above would be useful in case our application do not need Tables, Querys or any

standard Delphi database components.
Changing from a TChart to a TDBChart or vice versa can be done both at design and

runtime by changing the Series ParentChart and the Series Values ValueSource

properties.

2.2.7 Locating Records in a Table
To show you an example of the use of the Locate method, built the Search example,

which has a table connected to EMPLOYEE.DB. The form prepared has the data

awareedit boxes inside a scroll box aligned to the client area, so that a user can freely

resize the form without any problems. When the form becomes too small, scroll bars

will appear automatically in the area holding the edit boxes. Another feature is a toolbar

with buttons connected to Navigating a Dataset some of the predefined dataset actions

available in the ActionList component plus two custom actions to host the search code.

55



The searching capabilities are activated by the two buttons connected to custom actions.

The first button is connected to ActionGoto, used for an exact match, and the second to

ActionGoNear, for a partial match. In both cases, we want to compare the text in the

edit box with the LastName fields of the EMPLOYEE table. If the local table has an

index on the field (as in the specific case) Locate will use it, but the method will work

with or without indexes (only at a different speed).

If we've never used Locate, at first sight the help file won't be terribly clear. The idea

is that you must provide a list of fields you want to search, and a list of values, one for

each field. If you pass only one field, the value is passed directly, as in the case of the

example:

procedure TSearchForm.ActionGotoExecute(Sender: TObject);

begin

if not Tablel.Locate ( 'Last:Name', EditName.Text, []) then

MessageDlg ( '"' + Edi tName. Text + '" not: found', mtError,

[mbOk], 0);

end;

If we search for multiple fields, we have to pass a variant array with the list of the
values we

want to match. The variant array can be created from a constant array with the

VarArrayOf function or from scratch using the VarArrayCreate call. This is a code

snippet from the example:

Tablel.Locate

( 'Last:Name,:F.irst:Name ', VarArrayOf ( [ 'Cook', '.Kev.in']), [])

Finally, we can use the same method to look for a record even if we know only the

initial portion of the field we are looking for. Simply add the loPartialKey flag to the

Options parameter (the third) of the Locate call.

2.2.8 The Total of a Table Column

Now we will see how we can change some data in the table through the program code.

The idea behind this example is quite simple. The EMPLOYEE table we have been

56



using has a Salary field. A manager of the company could indeed browse through the

table and change the salary of a single employee. But what will be the total salary

expense for the company? And what if the manager wants to give a 1 O percent salary

increase (or decrease) to everyone?

These are the two aims of the Total example, which is an extension of the previous

program. The toolbar of this new example has some more buttons and actions. There are

a few other minor changes from the previous example. I opened the Fields editor of the

table and removed the Table 1 Salary field, which was defined as a TFloatField. Then I

selected the New Field command and added the same field, with the same name, but

using the TCurrencyField data type. This is not a calculated field; it's simply a field

converted into a new (but equivalent) data type. Using this new field type the program

will default to a new output format, suitable for currency values.

Now we can tum our attention to the code of this new program. First, let's look at the

code of the total action. This action lets us calculate the sum of the salaries of all the

employees, then edit some of the values, and compute a new total. Basically, we need to

scan the table, reading the value of the Table 1 Salary field for each record:

var

Total: Real;

begin

Total : = O;

Tablel.First;

while not Tablel.EOF do

begin

Total :=Total+ TablelSalary.Value;

Tablel.Next;

end;

MessageDlg ( 'Sumof new salaries .is ' +

Format ( '%m', [Total]), mtinformation, [mbük], O);

End

This code works as you can see from the output in Figure 2.2.8 , but it has some

problems. One problem is that the record pointer is moved to the last record, so the



previous position in the table is lost. Another is that the user interface is refreshed many

times during the operation.

);mp tfo P4
.tiiıe Dale ,..]3-/2_1_/-31=···-

1a$t f.J arm J Baldwin
£ir*t I~ arm I.-J-ane-t---'---

£rone Ext ]2
1da~,...ı~~-$23~,3-·0J~.O-O

Information f3 

Sum ot ner,ı saenes iı $1,3E62Ce.29

h::::::::::oK::::::::::ı

Figure 2.2.8.1 : Shows us the Total program's output about workers' sum of salaries.

2.2.9 Using Bookmarks
To avoid these two problems, we need to disable updates and to store the current

position of the record pointer in the table and restore it at the end. This can be

accomplished using a table bookmark, a special variable storing the position of a record

in a database table. Delphi's traditional approach is to declare a variable of the

TBookmark data type, and initialize it while getting the current position from the table:

var

Bookmark: TBookmark;

begin

Bookmark Tablel.GetBookmark;

At the end of the ActionTotalExecute method, we can restore the position and delete the

bookmark with the following two statements:

Tablel.GotoBookmark (Bookmark);

Tablel.FreeBookmark (Bookmark);

As a better (and more up-to-date) alternative, we can use the Bookmark property of the

TDataset class, which refers to a bookmark that is disposed of automatically. (This is

technically implemented as an opaque string, a structure subject to string lifetime

58



management, but it is not a string, so you're not supposed to look at what's inside it.)

This is how we can modify the code above:

var

Bookmark: TBookmarkStr;
'begin

Bookmark Tablel.Bookmark;

Tablel.Bookmark Bookmark;

To avoid the other side effect of the program (we see the records scrolling while the

routine browses through the data), we can temporarily disable the visual controls

connected with the table. The table has a DisableControls method we can call before the

while loop starts and an EnableControls method we can call at the end, after the record

pointer is restored.
Finally, we face some dangers from errors in reading the table data, particularly if the

program is reading the data from a server using a network. If any problem occurs while

retrieving the data, an exception takes place, the controls remain disabled, and the

program cannot resume its normal behavior. So we should use a try/finally block.

Actually, if you want to make the program 100 percent error-proof, you should use two

nested try/finally blocks. Including this change and the two discussed above, here is the

resulting code:

procedure TSearchForm.ActionTotalExecute(Sender: TObject);

var

Bookmark: TBookmarkStr;

Total: Real;

begin

Bookmark Tablel.Bookmark;

try

Tablel.DisableControls;

Total := O;

try

Tablel.First;

while not Tablel.EOF do

59



begin

Total :=Total+ TablelSalary.Value;

Tablel.Next;

end;

finally

Tablel.En~bleControls;

end

finally

Tablel.Bookmark Bookmark;

end;

MessageDlg ( 'Sum of new sa_lar.ies .is ' +

Format ( 'im/, [Total]), mtinformation, [mbOK], O);

end;

This code to show you an example of a loop to browse the contents of a table, but keep

in mind that there is an alternative approach based on the use of a SQL query returning

the sum of the values of a field. When you use a SQL server, the speed advantage of a

SQL call to compute the total can be very large, since you don't need to move all the

data of each field from the server to the client computer. The server sends the client

only the final result.

2.2.10 Editing a Table Column
The code of the increase action is similar to the one we have just seen. The

Actionlncrease- Execute method also scans the table, computing the total of the salaries,

as the previous method did. Although it has just two more statements, there is a key

difference. When we increase the salary, you actually change the data in the table. The

two key statements are within the while loop:

while not Tablel.EOF do

begin

Tablel.Edit;

TablelSalary.Value :=

SpinEditl.Value) I 100;

Total :=Total+ TablelSalary.Value;

Tablel.Next;

Round (TablelSalary.Value *

end;

60



The first statement brings the table into edit mode, so that changes to the fields will

have an immediate effect. The second statement computes the new salary, multiplying

the old one by the value of the SpinEdit component (by default, 105) and dividing it by

100. That's a 5 percent increase, although the values are rounded to the nearest dollar.

With this program, you can change salaries by any amount even double the salary of

each employee with the click of a button.

2.2.11 Customizing a Database Grid
Unlike most other data-aware controls, which are quite simple to use, the DBGrid

control has many options. The following sections explore some of the advanced

operations you can do using a DBGrid control. A first example shows how to draw in a

grid, a second one shows how to clone the behavior of a check box for a Boolean

selection inside a grid, and the final example shows how to use the multiple-selection

feature of the grid.

2.2.11.1 A Grid Allowing Multiple Selection
This example customizing the DBGrid control relates to multiple selection. we can set

up the DBGrid so that a user can select multiple rows (that is, multiple records). This is

very easy, since all we have to do is toggle the dgMultiSelect element of the Options

property of the grid. Once you've selected this option, a user can keep the Ctrl key

pressed and click with the mouse to select multiple rows of the grid, with the effect we

can see in Figure 2.2.11.1 .1.

~e~co

Nicaragua
Paragua_y

Mesico Dy
~ianaçua
Asıncön

IHffliM 
SouthPıme
South.Ame

IHIM 
SouthAme
NorthArre

Wilt-il 
HtlM 
No~hArrer
NorthArrer

au~wı;ı

Figure 2.2.11.1.1 DBGrid control that allows the selection of multiple rows.

South.~

Ii
ıi
Iiı,

J
61



Since the database table can have only one active record, what information is stored in

the grid for the selected items? The grid simply keeps a list of bookmarks to the selected

records. This list is available in the SelectedRows property, which is of type

TBookmarkList. Besides accessing the number of objects in the list with the Count

property, we can get to each bookmark with the Items property, which is the default

array property. Each item of the list is on a TBookmarkStr type, which represents a

bookmark pointer you can assign to the Bookmark property of the table.

procedure TForml.ButtonlClick(Sender: TObject);

var

I: Integer;

BookmarkList: TBookmarkList;

Bookmark: TBookmarkStr;

begin

// store the current pos.it.ion

Bookmark:= Tablel.Bookmark;

try

// empty the .l.ist box

ListBoxl.Items.Clear;

// qet the se.lected rows of the qr.id

BookmarkList := DbGridl.SelectedRows;

for I :=Oto BookmarkList.Count - 1 do

begin

// for each/ move the tab.le to that record

Tablel.Bookmark := BookmarkList[I];

// add the name f.ie.ld to the Iistbox
ListBoxl.Items.Add (Tablel.FieldByName ( 'Name/).AsString);

end;

finally

// qo back to the ..in..i t.ia.l record

Tablel.Bookmark := Bookmark;

end;

end;

62



2.3 Database Applications with Standard Controls

Although it is generally faster to write Delphi applications based on data-aware

controls, this is certainly not required. When you need to have very precise control over

the user interface of a database application, you might want to customize the transfer of

the data from the field objects to the visual controls. The general view is that this is

necessary only in very specific cases, as you can customize the data-aware controls

extensively by setting the properties and handling the events of the field objects.

However, trying to work without the data-aware controls should help you understand

the default behavior of Delphi, and introduce some more database-related events. The

development of an application not based on data-aware controls can follow two

different approaches.

2.3.1 Sending Requests to the Database
You can further customize the user interface of our application if you decide not to

handle the same sequence of editing operations as in standard Delphi data-aware

controls. This allows us complete freedom, although there might be some side effects

(such as limited ability to handle concurrency, something).

For this new example the first edit box with another combo box, and replaced all the

buttons related to table operations (which corresponded to DBNavigator buttons) with

two custom ones, used to get the data from the database and send an update to it. To

underline the difference of this example removed the DataSource component.

The GetData method, connected with the corresponding button, simply gets the fields

corresponding to the record indicated in the first combo box:
procedure TForml.GetData;

begin

Tablel.FindNearest ([ComboName.Text]);

ComboName.Text := TablelName.AsString;

EditCapital.Text := TablelCapital.AsString;

ComboContinent.Text := TablelContinent.AsString;

EditArea.Text := TablelArea.AsString;

EditPopulation.Text := TablelPopulation.AsString;

end;

63



This method is called whenever the user presses the button, selects an item of the

combo box, or presses the Enter key while in the combo box:

procedure TForml.ComboNameClick(Sender: TObject);

begin

GetData;

end;

procedure TForml.ComboNameKeyPress(Sender: TObject; var Key:

Char);

begin

if Key #13 then

GetData;

end;

To make this example work smoothly, at start-up the combo box is filled with all the

names of the countries of the table:

procedure TForml.FormCreate(Sender: TObject);

begin

// f.i.1.1 c/re .l2'st: of names 

Tablel.Open;

while not Tablel.Eof do

begin

ComboName.Items.Add (TablelName.AsString);

Tablel.Next;

end;

end;

With this approach, the combo box becomes a sort of selector of the record.

64



)-' Send To Database Rlil El

§.et 2end

Name

,Çapilal
El Salvador
Gu_yana
Jamaica
Mexico
Nicaraçıua

•

C.Qnlinenl

f:opulalion
Peru ı..r
United States of America ..,.

8rea [20855

Figure 2.3.1.1: We can Select the Record we want to See in a Combo Box.

Finally, the user can change the values of the controls and click the Send button. The

code to be executed depends on whether the operation is an update or an insert. We can

determine this by looking at the name (although with this code, a wrong name cannot be

modified any more):

procedure TForrnl.SendData;

begin

// ra.ise an except.ion .if there .is no name

if CornboNarne. Text = ı r then

raise Exception. Create ( 'Insert the neme r ı ;
// check .if the record .is a.lready .in the tab.le

if Tablel.FindKey ([CornboNarne.Text]) then

begin

// mod.ify found record

Tablel.Edit;

TablelCapital.AsString := EditCapital.Text;

TablelContinent.AsString := CornboContinent.Text;

TablelArea.AsString := EditArea.Text;

TablelPopulation.AsString

Tablel.Post;

EditPopulation.Text;

end

else

65



begin

// .insert new record
Tablel.InsertRecord ([ComboName.Text, EditCapital.Text,

ComboContinent.Text, EditArea.Text, EditPopulation.Text]);

// add to .l.ist

ComboName.Items.Add (ComboName.Text)

end;

Before sending the data to the table, we can do any sort of validation test on the values.

In this case, it doesn't make much sense to handle the events of the database

components, because we have full control on when the update or insert operation is

done.

2.3.2 Database Events
To further illustrate how we can use the events of a database application, written a

simple program that logs all the events being fired. This program handles all of the

events of a table and a data source component . For each event, simply send its

description to a list box, with the effect you can see in Fig.2.3 .2. 1. 1.

i'Dalabaıe Everıtı lllill3
I I Coun1ry I Capital jCon1inent J PL:::J Tallie_: AftorScro~

· . _ . DBGrıd:OnCoEd
Arnentına Buenos !\ıres SOIJ1tl Amerıca DBGrııı: oncoıente.r
Bolivia La Paz South America DBGrid:OrıCelClick

Bnıııı erasna SO!Utl Amerıca
C:arıada ottaıııa Nor1ihAmerica

Chile Santiı:ıgo South America
coıomıııa Baoota south amenca
Cuba
Ecuador

~ E:I Satııaılar
Gl¥)na

..ıarmııca

Tallie: BoforoEdit
DataSource: StateChanae (els.Erli
Datasource: OnDatactıanııe
Ti!llıle: AfterEdit

Havana North America
QuU.u SOıdh America~mı:mm 1111111111 Nor1ihAmerica
Georgetown -s South America

rı:ınaston NOrtll Amerıca

Fiolı:I capital: OnValictate
FiP.lı:I Capital: OnCtıangıı
Dat-asource:or1Datactıar1ı:ıe
DataSoun::e: Updı:ıte0-6l:ıı
DataSource: UpdateData
hlılıı: EkıforııPod
DataSource: stateChııınae (clsBn
Dat-asource:OriDatactıar1ı1e
Talıle: AfterPest
Fable: BofereScroll
DataSourco: OnDataChange
Tallie: NterScroll
DBGrid: OflCE!IClfCiK

rı.to:ııica Mexico City North America
North Anıerica
Stnıih nmanca

South America
Nurttı America
Soır!h Jlmeric:a
South America

Niı;;ıınıgu:ıı rııamıgıuı
Paraguay Asuncion
Peru Lima

urııted States or Anwashınu1011
Unıguay
Venezuela

Montll\lİdeo

Can:ıcas

Figure 2.3.2.1.1: Which Logs All the Events Related to Database Components.

66



Most of the event handlers simply display the name of the component and that of the

event,as in;

procedure TForml.TablelAfterEdit(DataSet: TDataset); 

begin 

AddToList ( 'Tab.le: AfterEd.it");

end; 

The field events are slightly more complex, but they use a single handler for the

variousfield components:

procedure TForml.FieldChange(Sender: TField); 

begin 

AddToList ( 'F.ie.ld ' + Sender. FieldName + ': OnC/Janqe");

end; 

The form's AddToList method adds a new item to the list box and selects it,

automatically scrolling the list if required:

procedure TForml.AddToList(Str: string); 

begin 

//add.item and se.lect .it

Listboxl.Itemindex := Listboxl.Items.Add (Str); 

end; 

2.3.3 Field Events

The DbEvts program shows the calls to the OnChange and OnValidate events of the

field objects. Two other events, OnSetText and OnGetText, are not shown, because the

handlers of these events are not simply called to indicate that an operation occurred. On

the contrary, their event handlers must perform the operation of getting data from or

setting it to the corresponding field objects.

These two events are quite special, and their use is not as simple as it might seem at first

sight. For this reason, they require a separate example, named FldText. This is only a

67 



slight revision of the DbAware example described earlier in this chapter, replacing the

DBRadioGroup control with a DBListbox control. The problem is that a DBListBox

control directly connects with a string field, while we want to connect it with an integer

field, with each value indicating an option. Of course, we don't want a user to see or

select a number, so we have to map the numbers stored in the database to the strings

visible on the screen. In the earlier example, the DBRadioGroup control provided that

mapping. Now we have to use an alternative approach.

In the FldText example, the Department field has two handlers for the OnGetText and

OnSetText events. In the OnGetText event handler, we can extract the numeric value of

the Sender field and set the value of the Text reference parameter:

procedure TDbaForm.TablelDepartmentGetText(Sender: TField; 

var Text: String; DisplayText: Boolean); 

begin 

case Sender.Asinteger of 

1: Text := 'Sa_les';
2: Text : == 'Account:.inq';
3: Text . - 'Product:.ion ';
4: Text - 'Nanaqement: ';
else 

Text : = '/Error}';

end; 

end; 

procedure TDbaForm.TablelDepartmentSetText(Sender: TField; canst 

Text: String); 

begin 

if Text 'Sa_les' then 

Sender.Value := 1 

else if Text 'Account:.inq' then 

Sender.Value := 2 

else if Text - 'Product:.ion' then 

Sender.Value := 3 

else if Text - 'Nanaqement:' then 

Sender.Value := 4 

else 

68 



raise Exception. Create ( 'Error .in Department f.ie_ld convers.ion /);

end;

The effect is that not only is the value visible in the DBListBox (as you can see in

Figure 2.3.3. 1 ), it also shows up in the DBGrid. By contrast, in the DbAware example,

the grid displayed the numeric value.

j"Yloıkeıs (Field Text Demo) l!llil 13
~dd Random Data :]

Record View I Grid View J

Hire date: 14/12/96

!:ast Name jYo~ng

first Name ]Gary

Sale:s

Production
Management

.S,ranch [La:sVegas

P ~enior

Figure 2.3.3.1: The Output of the FldText Example, Which Demonstrates the Use of

the OnGetText and OnSetText Events of the Field Objects.

2.3.4 A Multirecord Grid

So far we have seen that you can either use a grid to display records of a database table

or build a form with specific data-aware controls for the various fields, accessing the

records one by one. There is a third alternative: use a multirecord object (a

DBCtrlGrid), which allows us to place many data-aware controls in a small area of a

form and automatically duplicate these controls for multiple records.

At design time, we simply work on the active portion of the grid (see Figure 2.3.4.1, on

the right), and at run time, we can see these controls replicated multiple times (see

Figure 2.3.4.1, on the left).

69 



COl.ri.ry: O:ıı.mlıy Coınlry: /

~Jina

Caı:itol

f Boli•ı(3

Ceptel;

/Aı£entirı.:ı

Coı:ital
~onosAİl'i)¢ J B uoncc />irs$

Figure 2.3.4.1: The DBCtrlGrid of the example at design time (on the right) and at

run time (on the left).

We can simply set the number of columns and rows. Then each time you resize the

control, the width and height of each panel are set accordingly. What is not available is

a way to align the grid automatically to the client area of the form.

2.3.5 Handling Database Errors

Another important element of database programming is handling database errors in

custom ways. Of course, we can let Delphi show an exception message each time a

database error occurs, but we might want to try to correct the errors or simply show

more details.

There are basically three approaches we can use to handle database-related errors:

1. We can wrap a try/except block around risky database operations, such as a

call to the Open method of Query or to the Post method of a dataset. This is

not possible when the operation is generated by the interaction with a data
aware control.

2. We can install a handler for the OnExpection event of the global Application

object or use the ApplicationEvent component, as described in the next
example.

3. We can handle specific events of the datasets related to errors, as

OnPostError, OnEditError, OnDeleteError, OnUpdateError. These events

will be discussed later in the example.

While most of the exception classes in Delphi simply deliver an error message, with

database exceptions we see a list of errors, showing local BDE error codes and also the

70



native error codes of the SQL server you are connected to. The EDBEngineError class

has two more properties, ErrorCount and Errors. This last property is a list of errors:

property Errors[Index: Integer]: TDBError; 

Each item within this list is an object of the class TDBError, 

which has the following properties: 

type 

TDBError class 

public 

property Category: Byte read GetCategory; 

property ErrorCode: DBIResult read FErrorCode; 

property SubCode: Byte read GetSubCode; 

property Message: string read FMessage; 

property NativeError: Longint read FNativeError; 

end; 

We used this information to build a simple database program showing the details of the

errors in a memo component. To handle all of the errors, the DBError example installs a

handler for the OnException event of an ApplicationEvents component. The event

handler simply calls a specific method used to show the details of the database error, in

case it is an EDBEngineError:

procedure TForml.ApplicationEventslException (Sender: TObject; 

E: Exception); 

begin 

Beep; 

if Eis EDBEngineError then 

ShowError (EDBEngineError (E)) 

else 

ShowMessage (E.Message); 

end; 

We decided to separate the code used to show the error to make it easier for us to copy

this code and use it in different contexts. Here is the code of the ShowError method,

which outputs all of the available information to the Memo1 component that we added

to the form:

71



procedure TForml.ShowError(E: EDBEngineError); 

var 

I: Integer; 

begin 

Memol. Lines .Add ( '/); 

Memol.Lines.Add( 'Error: '+ (E.Message)); 

Memol. Lines .Add ( 'Number of errors: ' + IntToStr (E. ErrorCount)); 

// .iterate t/Jrouq/J the Errors records

for I :=Oto E.ErrorCount - 1 do 

begin 

Memol.Lines.Add( 'Hessaqe: '+
Memol. Lines .Add ( ' Cateqory:

E.Errors[I] .Message); 

' + IntToStr (E. Errors [ I J • Category) ) ; 

Memol.Lines.Add(' Error Code: ' +

IntToStr(E.Errors[I] .ErrorCode)); 

Memo 1. Lines .Add ( ' SubCode: ' + IntToStr (E. Errors [ I J • SubCode) ) ; 

Memol.Lines.Add( ' Nat.ive

IntToStr(E.Errors[I] .NativeError)); 

Memol.Lines.Add( "); 

end; 

end; 

Error: +

Besides this error-handling code, the program has a table and a query, along with the

errorrelated event handlers. As already mentioned, we can install an event handler

related to specific errors of a dataset. The three events OnPostError, OnDeleteError, and

OnEditErrorhave the same structure. Their handlers receive as parameters the dataset,

the error itself, and an action we can request from the system; this can be set to daFail,

daAbort, or daRetry:

Procedure TForml.TablelPostError(DataSet: TDataSet; E: 

EDatabaseError; 

var Action: TDataAction); 

begin 

Memol. Lines. Add ( ' -> Post Error: ' + E. Message) ; 

end; 

72



If we don't specify an action, as in the code above, the default daFail is used, and the

exception reaches the global handler. Using daAbort stops the exception and can be

used if us event handler already displays a message. Finally, if we have a way to

determine the cause of the error and fix it, we can use the daRetry action.

The example has also a DBGrid connected with the table. You can use the DBGrid to

perform some illegal operations, such as adding a new record with the same key as an

existing one or trying to execute illegal SQL queries.

,r Database IEıroıs ~ Et
Name I C.;pilal I Corlir-ent ...•.
Bolvis La Paz Sou:hAmerica _J

~I Brazil Brasiia S oırh Ao-ıerica
Canada Otlawa Norlh America

Chile Sarıtiaoo S ouh America
Colombia Bcgota Soı..ihAmerica~

Eıras

D utiicete reco

SQL Error2

Error: T etıe does not exist.
File er drectorıı does not exst
File: C: \Pıoar am File~\Commcrı Files\Boriand
Sh<>red\Dotı:ı\Countrioı.D 8
File: C: 'Proı::ıran Fi!es\Commcrı Files\Bortand

, Shared\Data\J::::ountrieı.D BF
File: C: \Pıogr am File~\Commcrı Files\Bonand
Sh<>red\Dotı:ı\Countrio*.txt
File: C:'Progrcm Fies\Commcrı Files\Bortand
Shared\Data\J::::ountrieı

J
Chence da:a

t-lumbeı ı::i error'>. 1,
isi os=go: T eble doee not o:,;İ~t.

categ::ır,ı:3:3
Error Cede: 1 OJ24
SubCode:40
Neıive Error: O

Figure 2.3.5.1: Pressing the Four Buttons on the left of the Memo Generate Errors.

73



Chapter III: Pharmacy Development Suite
( Experimental Work)

3.1 Short Introduction to Pharmacy Automation Program

First of all in our Graduation Project, we search thoroughly how Pharmacy works?

What is the important structures while we design and develop a Pharmacy Automation

Program .We did great research about management of Pharmacy .The important point

of the software engineering is , understanding the targets to reach the maximum

efficiency when the program ends.

When we finish our research before writing the program, the next step was Data

Manipulation. This is the most important point for developing a professional program.

We have to declare a correct database before writing the program and we discuss the

Modem Database applications and relational algebras .When we took this project we

planned to use Oracle.We are generate our database and the tables but this is not

suitable to us at future steps and we used Paradox which is more flexible with Borland

Database Engine.

We are using above 20 tables under 8 program sections .These sections are the basis of

the program . Also our experimental work is not a version but we can easily say it is

beta version program at the moment .This means we can update the program easily for

future.

These 4 important sections are;

1. Pharmacy description module,

2. Depot description module,

3. Product description module,

4.Waybill description module ( see Appendix A).

The next steps of this chapter includes the important Program sections and continuously

explained what we did when we design and develop the Program step by step. We use

all of the components that we have explained in Chapter 2 and we give the short

program modules belong these components in the next sections.

74 



3.2 Pharmacy Description Module

This program section includes the pharmacy informations , like Pharmacy name, author

name and surname, pharmacist name and surname etc. This section is the easiest section

but it is very important when we sell this program to pharmacies. At the below figure

3 .2. 1 shows the screen layout of the pharmacy description module.

Product Descriptions

Depot Descriptions Ctrl+D

Product Sub Descriptions

SSK Sub Descriptions

Phama,:ı· Oesuipticns

Pharmecy Name lnmA Er.ZANES! Accounıencv Code (12

PharmacistName/SurnameJHAKAN ıjTum:aJI Tax Department l'"L_E_.F_K_O_Ş_A_T_AX__D_E_P_

Director Name/Surname jTURGUT ıjlUHA Taano j1233324534
-------------- I

Tax 1 123' il
Tax 2 lrn ]
Tax 3 fiı"1l
Tax 4 jo ']

Address jYENIşrnın MAltvUSUF EL'VEOCJÜ>OZTEK19

j APT DAIRE5

City f LEFKOŞA
State '"JK_K_T_C _

PostalCode I mmoo
Phone 1 ,...J(3_9_2_) _22-..8--3=9=c-7".".'.:7-

Phone 2 jı533J 847-90-85

Fax jf392} 228-39-71

Figure 3.2.1: Pharmacy Description Screen Layout while Executed.

As you can see the program is useful for everybody . Our program has too much error

controls. The simplest one is TButton and TDbtext combinations .When you press the

"new" button in the form, the save button is enabled and also the TDBTexts. With this

program we used too many components ( as we declared in Chapter 2 ). For example

the TSpinEdit component has no relation between TDataSource component which is

connected to TTable or Tquery component for inserting ,deleting , modifying the

database. For that reason we design a very flexible module for set the database fields to

75



the SpinEdit 's or other declared variables or homogeneus components when opening

the Pharmacy Description Form.

Procedure TPharmacydesc.Formcreate (Sender :TObject); 

begin 

//Add.inq the defauJt saved tax rates to the Sp.inEd2't components

text //property

DataModulel.Tablel.Close; 

DataModulel.Tablel.Open; 

SpinEditl.Text := DataModulel.TablelTax.Text; 

Datamodulel.Tablel.Next; 

SpinEdit2.Text := DataModulel.TablelTax.Text; 

Datamodulel.Tablel.Next; 

SpinEdit3.Text := DataModulel.TablelTax.Text; 

Datamodulel.Tablel.Next; 

SpinEdit4.Text := DataModulel.TablelTax.Text; 

Datamodulel.Tablel.Next; 

End; 

The other error control is , when we click the items in the menu and the forms are

opened so far and the clicked link will worn and disable until closing the forms. The

below codes explain how this will happened.

procedure Tpharmacy.PharmacyDescriptionlClick(Sender: TObject); 

begin 

//Create the form on the ma.ir: NDI form and d2'sabJe seJected JJ.°nk

.in the main menu.
Application.CreateForm(Tpharmacydesc, pharmacydesc); 

phar. show; 

PharmacyDescriptionl.Enabled False; 

end; 

76 



Procedure TPharmacydesc.FormClose(Sender:TObject;varAction: 

TCloseAction); 

begin 

if MessageDlg('Are you sure to Close Pharmacy Description 

page?', mtConfirmation, [mbYes, mbNo],0) = mrYes Then 

begin 

tablel.Destroy; 

table2.Destroy; 

//enabiinq t:he c-1osed forms Iink on t /re ma.in menu

pharmacy.PharmacyDescriptionl.Enabled := true; 

Action 

end 

else 

Action:= caNone; 

caFree; 

end; 

HINT: For the next sections we will not explain same things to you as we explained.

3.3 Depot Description Module

This section for describe Medicine Depots Name ,Address ,Author name and surname

for future Waybill stock entry . This section similar to Pharmacy Description Module.

The main difference is in this module we can enter to many depot descriptions to the

database and modify them .This modules has some extra button description for find the

Depots continuously. The following figure 3.3.1 shows you the Depot Descriptions
screen layout.

This section we want to explain the print statement. For printing the descriptions we use

an extra component called TPrintDialog. The following codes explains how the print
will work correctly.

77 



procedure Tdepotinfo.PrintClick(Sender: TObject); 

var 

H,i,j,lineno,line2no:integer; 

begin 

if printdialogl.Execute then 

begin 

//declare the font type and size 

printer.begindoc; 

printer.canvas.Font.Name 

printer.canvas.Font.Size 

lineno := 360; 

line2no := 350; 

//Print the First descriptions to last descriptions 

'MS sanf serif'; 

10; 

tqblel.First; 

//Print the -pharmacy depot information- word x:150, y:250 

printer.Canvas.Text0ut(150, 250, 'PHARMACY DEPOT 

INFORMATIONS'); 

printer.Canvas.MoveTo(150, 290); 

printer.Canvas.Lineto(2000, 290); 

//Print all data belong to depot table 

While not Tablel.Eof do 

begin 

IF lineno >= 2600 then 

Begin 

printer.NewPage; 

lineno:=250; 

line2no:=260; 

end; 

Printer.Canvas.MoveTo(160, line2no); 

Printer.Canvas.Lineto(2000, Line2no); 

printer.Canvas.Text0ut(160, lineno, 'Depot Name : '); 

Printer.Canvas.Text0ut(500, lineno, dbedit2.text); 

Printer.Canvas.Text0ut(1350, lineno, 'Tax Department'); 

Printer.Canvas.Text0ut(1850, lineno, dbedit4.Text); 

lineno:=Lineno + 60; 

Printer.Canvas.Text0ut(160, lineno, 'Depot Code : '); 

Printer.Canvas.Text0ut(500, lineno, dbeditl.text); 

78



Printer.Canvas.Text0ut(l350, lineno, 'Tax no'); 

Printer.Canvas.Text0ut(l850, lineno, dbeditS.Text); 

lineno:=lineno + 60; 

Printer.Canvas.Text0ut(l60, 

Printer.Canvas.TextOut(SOO, 

lineno:=lineno + 60; 

Printer.Canvas.Text0ut(l60, 

Printer.Canvas.Text0ut(500, 

lineno:=lineno + 60; 

Printer.Canvas.Text0ut(l60, 

Printer.Canvas.TextOut(SOO, 

Printer.Canvas.Text0ut(l350, 

Printer.Canvas.TextOut(lBSO, 

lineno:=lineno + 60; 

Printer.Canvas.Text0ut(l60, lineno, 'State : '); 

Printer.Canvas.TextOut(SOO, lineno, dbedit7.Text); 

Printer.Canvas.Text0ut(l350, lineno, 'Phone2 : '); 

Printer.Canvas.Text0ut(l850, lineno, dbeditll.Text); 

lineno:=lineno + 60; 

Printer.Canvas.Text0ut(l60, lineno, 'Postal Code : '); 

Printer.Canvas.TextOut(SOO, lineno, dbedit8.Text); 

Printer.Canvas.Text0ut(l350, lineno, 'Fax : '); 

Printer.Canvas.TextOut(lBSO, lineno, dbeditl2.Text); 

lineno := lineno + 80; 

line2no := line2no + 440; 

Tablel.Next; 

end; 

printer.enddoc 

lineno, 'Author : ' ) ;

lineno, dbedit3.text); 

lineno, 'Address : ');

lineno, dbedit9.Text); 

lineno, 'City : ' ) ;

lineno, dbedit6.Text); 

lineno, 'Phonel : I ) ;

lineno, dbeditlO.Text); 

end; 

end; 

This codes concordant only for A4 paper. But also this is the beta version of program.

In most professional Programs like Hospital Automation program has the Text Editors .

This Text editors can be easily re modify the default data and give some flexible add -

ons to user.

79



1123456778990764

Depot Name jMARMARA ECZA Dl

Author jHakan Tuna

Taıı Department [SSK
Tax no r.j2~3~67~8~2~35~7-2 _

Address !Yeni şehir mah.Shi.Yusuf ecved cad. Özt

jk 19 apt. Daire5

City !LEFKOŞA Phone 1

Stale jMEFISIN1 O Phone 2

Postal Code 106800 Faıı

I
jı2321 213-22-22 I
ıc,1111,1-11-1, I
JC23~J_2_13-22-22_J

I
Prınl j Oelete j

TRAKYA ECZA DEPOSU

V,

V:,i

Figure 3.3.1 Depot Descriptions Screen Layout while Executed.

3.4 Product Description Module

This section is the most difficult part of the Pharmacy Program before Waybill Entry

Section.(the waybill entry section source code will be given in Appendix A). In this

section we don't use the one table of data .We are using 12 tables For declare for one

product . Because of the user will not give the similar information of products for ( for

exanmple Firm Descriptions, Product Group Descriptions, Farmosotical Group

Descriptions etc..) each product entry. Pharmacist can easily select this sections from

TDBLookUpComboBox components on the form. This components directly connected

to the Product table, but it looks up the other tables for fast entry in query or table.

This section consist of 3 parts.

1. Product information

2. Product Minimum - Maximum values descriptions for each month (Optional).

3. Product Prospectus

80



At the same time in product information menu we use SQL Query for while we select

product from the grid .The information sorted by Product Group .On the right side of

the form we have a TList component for select the product groups. When we select

product group the following declared Query gets the product Params and lists the

informations in the grid .(See the figure 3.4.1)

select 

product."barcode",product."name",product."inamount", 

product."progroup",product."shelf",product."price", 

stock."barcode",stock."amount" 

from product,stock 

where product."barcode"=stock."barcode" and progroup=:progroup 

The following source codes will be explain how the SQL commands works.

procedure Tproductinfo.FormCreate(Sender: TObject); 

begin 

II get the list of continents 

Query2.0pen; 

while not Query2.EOF do 

begin 

ListBoxl.Items.Add (Query2.Fields [OJ .AsString); 

Query2.Next; 

end; 

ListBoxl.Itemindex := O; 

The following command is explain the work of command if select the product group the

source code will be automatically adds the data to the DBgrid.

procedure Tproductinfo.ListBoxlClick(Sender: TObject); 

begin 

Queryl.Close; 

Queryl.Params[OJ .Value 

ListBoxl.Items [Listboxl.Itemindex]; 

Queryl.Open; 

end; 

81 



Group

Pıescıiption Tvı,e

Amount 

Price 

Figure 3.4.1: Product Descriptions Screen Layout while Executed.

In Min-Max page of the program module gets the data for each month's ,minimum and

maximum values, and stores them in stock table.

In Prospectus page we Use DBMemo for enter the prospectus of product.The important

point is here, the paradox just stores 255 characters in it but we declare this as memo

and paradox creates extra file for storing this information in the database.

82 



Summary and Conclusion 

Delphi is Borland's best-selling rapid application development (RAD) product for

writing Windows applications. With Delphi, we can write Windows programs more

quickly and more easily than was ever possible before. We can create Win32 console

applications or Win32 graphical user interface (GUI) programs. When creating Win32

GUI applications with Delphi, we have all the power of a true compiled programming

language (Object Pascal) wrapped up in a RAD environment. What this means is that

we can create the user interface to a program (the user interface means the menus,

dialog boxes, main window, and so on) using drag-and-drop techniques for true rapid
application development.

The original Delphi characteristics are high speed collector, the approach about form

based and object oriented, harmonious with Windows programming and component

technology. However, the very important element is all others basic Object Pascal
language.

Let's we can talk about Borland Database Engine (BDE). BDE is coming with Paradox,

at the time when Delphi don't exist and BDE developed by Borland to supported many

SQL service units and Borland's own local databases.

Using BDE's specific advantages are this technology whole with Delphi, elements are

fully and very good documented and the only logical analyze way to arrive local files
like Paradox and dBase tables.

Delphi introduces the CLX library alongside the traditional VCL library. There are

certainly many differences, even in the use of the RTL and code library classes,

between developing programs specifically for Windows or with a crossplatform

attitude, but the user interface portion is where differences are most striking. The visual

portion of VCL is a wrapper of the Window APL It includes wrappers of the native

Windows controls (like buttons and edit boxes).

83



Finally in our Graduation Project, we search thoroughly how Pharmacy works? What is

the important structures while we design and develop a Pharmacy Automation Program.

We did great research about management of Pharmacy . The important point of the

software engineering is , understand the targets for reach the maximum efficiency when

the program ends.

84



References 

Ray Lishner,"De~hiin alVeutshe/1', O'Reilly, 2000

Marco Cantu,"MasteringDe~hi il', Sybex, 2002

Ezal Balkan,"Borlanı/De~hi 7./J', Seckin, 2003

Henry F. Korth, Abraham Silberschatz, "Database ~.n'em Concepts',
McGrawhill,1990.

David M. Kroenke,"DatabaseConcepts',PrenticeHall, 2002.

John J. Patrick, "S{!.£Funılementa/s.,;Prentice Hall, 2002.

Oya Kalıpsız, "Computer Database~.n'ems'', Air Combat School, 1993.

http.#www.about.de/phi com

http.#www.delphiturk.com

http.#www. bodandcom/delphı/index.html

85 



Appendices 
Appendix A 
Frayoi/1.Entrance Module Source Cude,, 

unit wbill; 

interface 

uses 

Windows, Messages, SysUtils, Variants, Classes, Graphics, 

Controls, Forms, Dialogs, ExtCtrls,Strutils , Grids, DBGrids, 

StdCtrls, Mask, DBCtrls, ComCtrls, Buttons, DB, DBTables, 

dbcgrids, Spin; 

type 

Twaybill = class(TForm) 

Panell: TPanel; 

Panel2: TPanel; 

DBGridl: TDBGrid; 

Labell: TLabel; 

Label2: TLabel; 

Label3: TLabel; 

depotname: TDBLookupComboBox; 

datel: TDateTimePicker; 

Label4: TLabel; 

Label5: TLabel; 

Label6: TLabel; 

date2: TDateTimePicker; 

invno: TDBEdit; 

explanation: TDBEdit; 

new: TSpeedButton; 

modify: TSpeedButton; 

save: TSpeedButton; 

cancel: TSpeedButton; 

wnew: TSpeedButton; 

wdelete: TSpeedButton; 

wsave: TSpeedButton; 

86



wcancel: TSpeedButton; 

wselect: TSpeedButton; 

wexit: TSpeedButton; 

delete: TSpe~dButton; 

Panel3: TPanel; 

Tablel: TTable; 

Table2: TTable; 

DataSourcel: TDataSource; 

DataSource2: TDataSource; 

TablelName: TStringField; 

Tablelinv date: TDateField; 

Tablelinv no: TStringField; 

TablelWay_no: TStringField; 

TablelTotal: TCurrencyField; 

TablelExplanation: TStringField; 

Label7: TLabel; 

Table3: TTable; 

DataSource4: TDataSource; 

Table3Way_no: TStringField; 

Table3Barcode: TStringField; 

Table3Amount: TFloatField; 

Table3Benefit: TFloatField; 

Table3Price: TCurrencyField; 

Table3Discount: TFloatField; 

Table3Shelf: TStringField; 

Table3Kdv: TFloatField; 

Table3Proextra: TFloatField; 

DataSource3: TDataSource; 

Table4: TTable; 

Table3Name: TStringField; 

amount: TSpinEdit; 

proextra: TSpinEdit; 

tax: TSpinEdit; 

benefit: TSpinEdit; 

discount: TSpinEdit; 

price: TDBEdit; 

total: TDBEdit; 

87



Label8: TLabel; 

Label 9: TLabel; 

Label 10: TLabel; 

Labelll: TLabel; 

Label12: TLabel; 

Label13: TLabel; 

Label14: TLabel; 

shelf: TDBLookupCornboBox; 

Label15: TLabel; 

Table5: TTable; 

DataSource5: TDataSource; 

Table5Shelf: TStringField; 

Table6: TTable; 

Table7: TTable; 

DataSource6: TDataSource; 

DataSource7: TDataSource; 

Table6Amount: TFloatField; 

Table6Barcode: TStringField; 

Table7Pronarne: TStringField; 

Table7Explanation: TStringField; 

Table7Tirne: TTirneField; 

Table7Amount: TFloatField; 

Table7Place: TStringField; 

Table7Price: TCurrencyField; 

Table7Total: TCurrencyField; 

Table7Inout: TStringField; 

update: TSpeedButton; 

DataSource8: TDataSource; 

Table8: TTable; 

Table8Barcode: TStringField; 

Table8Amount: TFloatField; 

Table8Jrnin: TStringField; 

Table8Jrnax: TStringField; 

Table8Frnin: TStringField; 

Table8Frnax: TStringField; 

Table8Mrnin: TStringField; 

Table8Mrnax: TStringField; 

88 



Table8Amin: TStringField; 

Table8Amax: TStringField; 

Table8Maymin: TStringField; 

Table8Maymax: TStringField; 

Table8Junmin: TStringField; 

Table8Junmax: TStringField; 

Table8Julmin: TStringField; 

Table8Julmax: TStringField; 

Table8Augmin: TStringField; 

Table8Augmax: TStringField; 

Table8Smin: TStringField; 

Table8Smax: TStringField; 

Table80min: TStringField; 

Table80max: TStringField; 

Table8Nmin: TStringField; 

Table8Nmax: TStringField; 

Table8Dmin: TStringField; 

Table8Dmax: TStringField; 

Table9: TTable; 

DataSource9: TDataSource; 

Table9Proname: TStringField; 

Table9Explanation: TStringField; 

Table9Amount: TFloatField; 

Table9Time: TTimeField; 

Table9Place: TStringField; 

Table9Price: TCurrencyField; 

Table9Total: TCurrencyField; 

Table9Inout: TStringField; 

Table7Depotname: TStringField; 

Table9Depotname: TStringField; 

cancel2: TSpeedButton; 

Panel4: TPanel; 

Label16: TLabel; 

Labell 7: TLabel; 

Labell 8: TLabel; 

Label19: TLabel; 

Label20: TLabel; 

89



Label21: TLabel; 

ucost: TLabel; 

usprice: TLabel; 

wttotal: TLabel; 

wdtotal: TLabel; 

witotal: TLabel; 

wtbenefit: TLabel; 

wno: TDBEdit; 

DataSourcell: TDataSource; 

Queryl: TQuery; 

Table3Wttotal: TCurrencyField; 

Table3Unitcost: TCurrencyField; 

Table3Wdtotal: TCurrencyField; 

Table3Wintotal: TCurrencyField; 

Table3Wtbenefit: TFloatField; 

QuerylSUMOFprice: TCurrencyField; 

QuerylSUMOFwttotal: TCurrencyField; 

QuerylSUMOFwintotal: TCurrencyField; 

QuerylSUMOFwdtotal: TCurrencyField; 

Querylway_no: TStringField; 

Label22: TLabel; 

kar: TLabel; 

Label23: TLabel; 

Label24: TLabel; 

Label25: TLabel; 

Label26: TLabel; 

Label27: TLabel; 

Label28: TLabel; 

Table3Total: TCurrencyField; 

Table9Datee: TDateField; 

Table7Datee: TDateField; 

TablelDatee: TDateField; 

TablelTimee: TTimeField; 

procedure wnewClick(Sender: TObject); 

procedure wsaveClick(Sender: TObject); 

procedure wcancelClick(Sender: TObject); 

procedure wnoChange(Sender: TObject); 

90 



procedure newClick(Sender: TObject); 

procedure cancelClick(Sender: TObject); 

procedure saveClick(Sender: TObject); 

procedure amountChange(Sender: TObject); 

procedure proextraChange(Sender: TObject); 

procedure taxChange(Sender: Tübject); 

procedure benefitChange(Sender: TObject); 

procedure shelfClick(Sender: TObject); 

procedure discountChange(Sender: TObject); 

procedure deleteClick(Sender: TObject); 

procedure modifyClick(Sender: TObject); 

procedure updateClick(Sender: TObject); 

procedure FormCreate(Sender: TObject); 

procedure FormClose(Sender: TObject; var Action: 

TCloseAction); 

procedure DBGridlCellClick(Column: TColumn); 

procedure cancel2Click(Sender: TObject); 

procedure Button2Click(Sender: TObject); 

procedure depotnameCloseUp(Sender: TObject); 

procedure wexitClick(Sender: TObject); 

private 

{ Private declarations } 

public 

procedure calculation(); 

end; 

var 

waybill: Twaybill; 

amounts 

bar code 

string; 

string; 

a, b, c, x, y, z, ucostl, uspricel, wttotall, wdtotall, 

witotall, wtbenefitl : real; 

implementation 

{$R *.dfm} 

uses probak, pharma; 

91



procedure Twaybill.wnewClick(Sender: TObject); 

begin 

datel.Date 

date2.date 

datel.time 

date; 

date; 

time; 

date2.time := time; 

tablel.Close; 

tablel.Open; 

tablel.insert; 

wnew.Enabled := false; 

wdelete.Enabled := false; 

wsave.Enabled := false; 

wcancel.Enabled := true; 

wselect.Enabled false; 

wexit.Enabled := true; 

depotname.Enabled := true; 

date2.Enabled := true; 

datel.Enabled := true; 

wno.Enabled := false; 

invno.Enabled := true; 

explanation.Enabled:= true; 

end; 

procedure Twaybill.wsaveClick(Sender: TObject); 

begin 

tablelDatee.Text := datetostr(datel.date); 

tablelinv date.Text := datetostr(date2.date); 

tablelTimee.Text 

tablel.post; 

wnew.Enabled := true; 

wdelete.Enabled := false; 

timetostr(datel.Time); 

wsave.Enabled := false; 

wcancel.Enabled 

wselect.Enabled 

false; 

true; 

wexit.Enabled := true; 

depotname.Enabled := false; 

date2.Enabled := false; 

92 



datel.Enabled := false; 

wno.Enabled := false; 

invno.Enabled := false; 

explanation.Enabled false; 

end; 

procedure Twaybill.wcancelClick(Sender: TObject); 

begin 

tablel.Cancel; 

tablel.Close; 

wnew.Enabled := true; 

wdelete.Enabled := false; 

wsave.Enabled := false; 

wcancel.Enabled := false; 

wselect.Enabled := true; 

wexit.Enabled := true; 

depotname.Enabled := false; 

date2.Enabled := false; 

datel.Enabled := false; 

wno.Enabled := false; 

invno.Enabled := false; 

explanation.Enabled:= false; 

end; 

procedure Twaybill.wnoChange(Sender: TObject); 

var 

T : boolean; 

le, i , count : integer; 

lastchar : string; 

begin 

wno.Text := trim(wno.Text); 

le := length(wno.Text); 

count : = O;

for i := 1 to le do 

begin 

lastchar := midstr(wno.text,i,l); 

if ((lastchar = 'O') or (lastchar '1') or 

93



'2') or (lastchar (lastchar 

'4') or 

(lastchar 

'7') or 

(lastchar 

begin 

count:=count+l; 

'5') or (lastchar 

'8') or (lastchar 

'3') or (lastchar 

'6') or (lastchar 

'9')) then 

overflow 

//Those lines controls the waybillin table for 

table4.Close; 

table4.0pen; 

T := False; 

Table4.SetKey; 

Table4.IndexFields[O] .AsString 

T := Table4.GotoKey; 

if not T then 

begin 

new.Enabled:= true; 

modify.Enabled:= false; 

delete.Enabled:= false; 

save.Enabled:= false; 

update.Enabled := false; 

cancel.Enabled := false; 

cancel2.Enabled := false; 

DBgridl.Enabled := false; 

end 

else 

begin 

new.Enabled false; 

modify.Enabled:= false; 

delete.Enabled:= false; 

save.Enabled:= false; 

cancel.Enabled:= false; 

cancel2.Enabled := false; 

update.Enabled:= false; 

DBgridl.Enabled 

end; 

false; 

wno.Text; 

94 



end 

else 

begin 

wno.text := leftstr(wno.text,i-1)+ 

midstr(wno.Text,i+l,564); 

if count> O then 

begin 

new.Enabled:= true; 

modify.Enabled:= false; 

delete.Enabled:= false; 

save.Enabled:= false; 

cancel.Enabled := false; 

cancel2.Enabled := false; 

update.Enabled:= false; 

DBgridl.Enabled := false; 

end; 

end; 

end; 

end; 

procedure Twaybill.newClick(Sender: Tübject); 

begin 

table3.close; 

table3.Filter := 'way_no =' + wno.Text; 

table3.0pen; 

wnew.Enabled := false; 

wdelete.Enabled := false; 

wsave.Enabled := false; 

wcancel.Enabled := false; 

wselect.Enabled false; 

wexit.Enabled := false; 

depotname.Enabled := false; 

date2.Enabled := false; 

datel.Enabled := false; 

wno.Enabled := false; 

95



invno.Enabled := false; 

explanation.Enabled:= false; 

new.Enabled:= false; 

modify.Enabled:= false; 

save.Enabled:= false; 

cancel.Enabled:= false; 

dbgridl.Enabled := false; 

Application.CreateForm(Tproselect, proselect); 

proselect.show; 

end; 

procedure Twaybill.cancelClick(Sender: TObject); 

begin 

table3.Edit; 

amount.Text := '0'; 

proextra.Text := 'O'; 

tax.Text := 'O'; 

benefit.Text := '0'; 

discount.Text := '0'; 

table3.cancel; 

new.Enabled:= true; 

modify.Enabled:= false; 

delete.Enabled true; 

save.Enabled:= false; 

cancel.Enabled:= false; 

cancel2.Enabled := false; 

if table3.IndexFieldCount <> O then 

begin 

dbgridl.Enabled := true; 

end 

else 

dbgridl.Enabled := false; 

update.Enabled false; 

amount.Enabled:= false; 

proextra.Enabled := false; 

tax.Enabled:= false; 

benefit.Enabled:= false; 

96



shelf.Enabled false; 

price.Enabled:= false; 

discount.Enabled:= false; 

total.Enabled:= false; 

if table3.IndexFieldCount <> O then 

begin 

modify.Enabled:= true; 

end 

else 

begin 

modify.Enabled false; 

end; 

end; 

procedure Twaybill.saveClick(Sender: TObject); 

var 

T ,Tl ,T2: Boolean; 

times ,dates : string; 

ben : string; 

begin 

if strtoint(tax.text) < 1 then 

begin 

showmessage('You must to give tax percentage'); 

end 

else 

if strtoint(benefit.Text) < 1 then 

begin 

showmessage('You must to enter benefit percentage'); 

end 

else 

if strtofloat(table3price.Text) < 1 then 

begin 

showmessage('You must to enter product price'); 

end 

else 

begin 

calculation; 

97 



times 

dates 

timetostr(datel.Time); 

datetostr(datel.Date); 

//adding product amount with product amount 

table6.Close; 

table6.0pen; 

Tl : = False; 

Table6.SetKey; 

Table6.indexFields[O] .AsString := table3barcode.text; 

Tl := Table6.GotoKey; 

if Tl then 

begin 

table6.Edit; 

table6amount.Text 

inttostr(strtoint(table6amount.Text)+ 

strtoint(table3amount.Text)); 

table6.post; 

end; 

table3wttotal.Text := floattostr(wttotall); 

table3wdtotal.Text := floattostr(wdtotall); 

table3wintotal.Text := floattostr(witotall); 

table3unitcost.Text 

table3.Post; 

//stockmovement update 

table7.Close; 

table7.0pen; 

T2 : = False; 

Table7.SetKey; 

Table7.IndexFields[O] .AsString 

floattostr(ucostl); 

table7.IndexFields[l] .AsString 

table7.IndexFields[2] .AsString 

table7.IndexFields[3] .AsString 

table7.IndexFields[4] .AsString 

table3name.Text; 

tablelname.Text; 

dates; 

Times; 

'waybill in'; 

table7.IndexFields[5] .AsString := table3amount.Text; 

table7.IndexFields[6] .AsString := table3shelf.Text; 

table7.IndexFields[7] .AsString := table3price.Text; 

table7.IndexFields[8] .AsString := table3wintotal.Text; 

98



T2 := Table7.GotoKey; 

if not T2 then 

begin 

table7.Insert; 

table7proname.text := table3name.Text; 

table7depotname.Text := tablelname.Text; 

table7explanation.text := 'waybill in'; 

table7Datee.text := dates; 

table7Time.Text := times; 

table7amount.Text := table3amount.Text; 

table7place.Text 

table7price.Text 

table7total.Text 

table7inout.Text 

table7.Post; 

end; 

//filter the calculations 

table3shelf.Text; 

table3price.Text; 

table3wintotal.Text; 

'in'; 

queryl.close; 

queryl.Filter := 'way_no =' + wno.Text; 

queryl.Open; 

wttotal.Caption 

wdtotal.Caption 

querylSUMOFwttotal.text; 

querylSUMOFwdtotal.text; 

witotal.Caption := querylSUMOFwintotal.text; 

//benefit calculation 

ben := floattostr(strtofloat(table3price.Text) * 
strtofloat(amount.text)/strtofloat(querylSUMOFwintotal.Text)- 

1) ; 

ben := midstr(ben,3,2); 

wtbenefit.Caption := ben; 

kar.Caption := floattostr(strtofloat(table3price.Text) * 
strtofloat(amount.text)- 

strtofloat(querylSUMOFwintotal.Text)); 

//Those lines controls the waybillin table for overflow 

T := False; 

table4.Close; 

table4.0pen; 

Table4.SetKey; 

99 



Table4.Fields[OJ .AsString := wno.Text; 

T := Table4.GotoKey; 

if not T then 

begin 

//if not found the waybill no insert the value; 

tablelDatee.Text := dates; 

tablelinv date.Text := datetostr(date2.date); 

tablelTimee.Text := times; 

tablelway no.Text := wno.Text; 

tableltotal.Text := querylSUMOFwintotal.text; 

tablel.post; 

end 

else 

begin 

//if found the waybill no edit the value 

tablel.Edit; 

tablelDatee.Text := dates; 

tablelinv_date.Text := datetostr(date2.date); 

tablelTimee.Text := times; 

tablelway_no.Text := wno.Text; 

tableltotal.Text := querylSUMOFwintotal.text; 

tablel.post; 

end; 

wnew.Enabled := true; 

wsave.Enabled := false; 

wcancel.Enabled 

wselect.Enabled 

false; 

true; 

wexit.Enabled := true; 

new.Enabled := true; 

modify.Enabled:= true; 

save.Enabled:= false; 

//delete.Enabled:= true; 

cancel.Enabled:= false; 

cancel2.Enabled := false; 

dbgridl.Enabled := true; 

amount.Enabled:= false; 

100 



proextra.Enabled := false; 

tax.Enabled:= false; 

benefit.Enabled:= false; 

shelf.Enabled:= false; 

price.Enabled false; 

price.Enabled:= false; 

discount.Enabled:= false; 

total.Enabled:= false; 

end; 

end; 

procedure Twaybill.amountChange(Sender: TObject); 

begin 

table3amount.text 

end; 

amount.text; 

procedure Twaybill.proextraChange(Sender: TObject); 

begin 

table3proextra.text 

end; 

proextra.text; 

procedure Twaybill.taxChange(Sender: TObject); 

begin 

table3kdv.text := tax.text; 

end; 

procedure Twaybill.benefitChange(Sender: TObject); 

begin 

table3benefit.text := benefit.text; 

end; 

procedure Twaybill.shelfClick(Sender: TObject); 

begin 

table3shelf.text shelf.text; 

end; 

procedure Twaybill.discountChange(Sender: TObject); 

101 



begin 

table3discount.text discount.text; 

end; 

procedure Twaybill.deleteClick(Sender: TObject); 

var 

Tl,T2 boolean; 

begin 

table3.Edit; 

table8.Close; 

table8.0pen; 

Tl := False; 

Table8.SetKey; 

Table8.indexFields[OJ .AsString := table3barcode.Text; 

Tl := Table8.GotoKey; 

if Tl then 

begin 

//delete stock 

table8.Edit; 

table8amount.Text 

inttostr(strtoint(table8amount.Text)- 

strtoint(table3amount.text)); 

table8.Post; 

end; 

//update stockmov table 

table9.Close; 

table9.0pen; 

T2 : = False; 

Table9.SetKey; 

Table9.IndexFields[OJ .AsString table3name.Text; 

table9.IndexFields[l] .AsString := tablelname.Text; 

table9.IndexFields[2] .AsString 

table9.IndexFields[3] .AsString 

tableldatee.Text; 

tableltimee.Text; 

table9.IndexFields[4] .AsString := 'waybill in'; 

table9.IndexFields[5] .AsString := table3amount.Text; 

102



table9.IndexFields[6] .AsString table3shelf.Text; 

table9.IndexFields[7] .AsString := table3price.Text; 

table9.IndexFields[8] .AsString := table3total.Text; 

T2 := Table9.GotoKey; 

if T2 then 

begin 

//delete stock movement 

table9.Delete; 

end 

else 

begin 

showmessage('You did not update the'+ 

'selected data'); 

end; 

queryl.close; 

queryl.Filter 'way_no =' + wno.Text; 

queryl.Open; 

wttotal.Caption querylSUMOFwttotal.text; 

wdtotal.Caption := querylSUMOFwdtotal.text; 

witotal.Caption querylSUMOFwintotal.text; 

wtbenefit.Caption := 

floattostr(strtofloat(querylSUMOFprice.Te xt) 

/strtofloat(querylSUMOFwintotal.Text)-1); 

queryl.Refresh; 

amount.Text := 'O'; 

proextra.Text := 'O'; 

tax.Text := 'O'; 

benefit.Text := 'O'; 

discount.Text := 'O'; 

table3.Delete; 

new.Enabled:= true; 

modify.Enabled:= false; 

delete.Enabled:= false; 

save.Enabled:= false; 

cancel.Enabled:= false; 

cancel2.Enabled 

dbgridl.Enabled 

false; 

true; 

103



amount.Enabled:= false; 

proextra.Enabled := false; 

tax.Enabled:= false; 

benefit.Enabled:= false; 

shelf.Enabled:= false; 

price.Enabled false; 

discount.Enabled:= false; 

total.Enabled:= false; 

update.Enabled:= false; 

end; 

procedure Twaybill.modifyClick(Sender: TObject); 

begin 

amounts table3amount.text; 

barcode := table3barcode.Text; 

table3.Edit; 

amount.Enabled:= true; 

wnew.enabled := false; 

wdelete.Enabled := false; 

wsave.Enabled := false; 

wcancel.Enabled := false; 

wselect.Enabled := false; 

wexit.Enabled := true; 

proextra.Enabled := true; 

tax.enabled:= true; 

benefit.Enabled := true; 

shelf.Enabled:= true; 

price.Enabled:= true; 

discount.Enabled:= true; 

total.Enabled := true; 

update.Enabled:= true; 

modify.Enabled:= false; 

new.Enabled:= false; 

delete.Enabled:= false; 

save.Enabled:= false; 

cancel.Enabled:= true; 

cancel2.Enabled := false; 

104 



dbgridl.Enabled 

end; 

false; 

procedure Twaybill.updateClick(Sender: TObject); 

var 

T2 ,Tl: boolean; 

ben: string; 

begin 

if strtoint(tax.text) < 1 then 

begin 

showmessage('You must to give tax percentage'); 

end 

else 

if strtoint(benefit.Text) < 1 then 

begin 

showmessage('You must to enter benefit percentage'); 

end 

else 

if strtofloat(table3price.Text) < 1 then 

begin 

showmessage('You must to enter product price'); 

end 

else 

begin 

calculation; 

dbgridl.Enabled := true; 

//update wbillno table 

table3wttotal.Text := floattostr(wttotall); 

table3wdtotal.Text := floattostr(wdtotall); 

table3wintotal.Text := floattostr(witotall); 

table3unitcost.Text 

table3.Post; 

table3.Refresh; 

//update stock table 

table8.Close; 

table8.0pen; 

Tl : = False; 

floattostr(ucostl); 

105



Table8.SetKey; 

Table8.indexFields[O] .AsString 

Tl := Table8.GotoKey; 

if Tl then 

begin 

//update stock 

table8.Edit; 

table8amount.Text 

inttostr(strtoint(table8amount.Text)-strtoint(amounts)); 

barcode; 

table8amount.Text := 

inttostr(strtoint(table8amount.Text)+strtoint(amount.Text)); 

table8.Post; 

end; 

//update stockmov table 

table9.Close; 

table9.0pen; 

T2 : = False; 

Table9.SetKey; 

Table9.IndexFields[O] .AsString table3name.Text; 

table9.IndexFields[l] .AsString tablelname.Text; 

table9.IndexFields[2] .AsString := tableldatee.Text; 

table9.IndexFields[3] .AsString := tableltimee.Text; 

table9.IndexFields[4] .AsString 

table9.IndexFields[5] .AsString 

'waybill in'; 

table3amount.Text; 

table9.IndexFields[6] .AsString := table3shelf.Text; 

table9.IndexFields[7] .AsString := table3price.Text; 

table9.IndexFields[8] .AsString := table3wintotal.Text; 

T2 := Table9.GotoKey; 

if not T2 then 

begin 

table9.edit; 

table9proname.text := table3name.Text; 

table9depotname.Text := tablelname.Text; 

table9explanation.text := 'waybill in'; 

table9Datee.text := tableldatee.Text; 

table9Time.Text := tableltimee.Text; 

table9amount.Text := table3amount.Text; 

106



table9place.Text table3shelf.Text; 

table9price.Text := table3price.Text; 

table9total.Text := table3wintotal.Text; 

table9inout.Text := 'in'; 

table9.Post; 

end 

else 

begin 

showmessage('You did not update the'+ 

'selected data'); 

end; 

queryl.close; 

queryl.Filter 

queryl.Open; 

'way_no =' + wno.Text; 

wttotal.Caption 

wdtotal.Caption 

querylSUMOFwttotal.text; 

querylSUMOFwdtotal.text; 

witotal.Caption := querylSUMOFwintotal.text; 

//benefit calculation 

ben := floattostr(strtofloat(table3price.Text) * 
strtofloat(amount.text)/strtofloat(querylSUMOFwintotal.Text)- 

1) ; 

ben := midstr(ben,3,2); 

wtbenefit.Caption := ben; 

kar.Caption := floattostr(strtofloat(table3price.Text) * 
strtofloat(amount.text) 

strtofloat(querylSUMOFwintotal.Text)); 

//button combinations for error control 

tablel.Edit; 

tableltotal.Text 

tablel.post; 

wnew.Enabled := true; 

querylSUMOFwintotal.Text; 

update.Enabled:= false; 

wsave.Enabled := false; 

wcancel.Enabled := false; 

wselect.Enabled := true; 

wexit.Enabled := true; 

new.Enabled:= true; 

107 



modify.Enabled:= true; 

save.Enabled:= false; 

cancel.Enabled:= false; 

cancel2.Enabled := false; 

dbgridl.Enabled := true; 

amount.Enabled:= false; 

proextra.Enabled := false; 

tax.Enabled:= false; 

benefit.Enabled := false; 

shelf.Enabled 

price.Enabled 

false; 

false; 

price.Enabled:= false; 

discount.Enabled:= false; 

total.Enabled:= false; 

end; 

end; 

procedure Twaybill.FormCreate(Sender: TObject); 

begin 

datel.Date := date; 

date2.date := date; 

time; 

datel.time 

date2.time 

end; 

procedure Twaybill.FormClose(Sender: TObject; var Action: 

time; 

TCloseAction); 

begin 

tablel.Destroy; 

table2.Destroy; 

table3.Destroy; 

table4.Destroy; 

table5.Destroy; 

table6.Destroy; 

table7.Destroy; 

table8.Destroy; 

table9.Destroy; 

queryl.Close; 

108 



pharmacy.waybilll.enabled := true; 

action 

end; 

procedure Twaybill.DBGridlCellClick(Column: TColumn); 

cafree; 

var 

tl : boolean; 

begin 

queryl.close; 

queryl.Filter := 'way_no =' + wno.Text; 

queryl.Open; 

wttotal.Caption 

wdtotal.Caption 

querylSUMOFwttotal.text; 

querylSUMOFwdtotal.text; 

witotal.Caption := querylSUMOFwintotal.text; 

ucost.Caption := table3unitcost.Text; 

usprice.Caption 

table3.Edit; 

amount.Text := table3amount.Text; 

proextra.Text := table3proextra.Text; 

tax.Text := table3kdv.Text; 

table3price.Text; 

benefit.Text := table3benefit.Text; 

discount.Text := table3discount.Text; 

table3.Cancel; 

table3.Refresh; 

//for controlling the data for delete button 

table6.Close; 

table6.0pen; 

Tl : = False; 

Table6.SetKey; 

Table6.indexFields[OJ .AsString table3barcode.text; 

Tl := Table6.GotoKey; 

if Tl then 

delete.Enabled true 

else 

delete.Enabled false; 

end; 

procedure Twaybill.cancel2Click(Sender: TObject); 

begin 

109



table3.cancel; 

new.Enabled:= true; 

modify.Enabled:= false; 

delete.Enabled true; 

save.Enabled:= false; 

cancel.Enabled:= false; 

cancel2.Enabled := false; 

if table3.IndexFieldCount <> O then 

begin 

dbgridl.Enabled true; 

end 

else 

wnew.enabled := true;; 

wdelete.Enabled := false; 

wsave.Enabled := false; 

wcancel.Enabled := false; 

wselect.Enabled := true; 

wexit.Enabled := true; 

dbgridl.Enabled := false; 

update.Enabled:= false; 

amount.Enabled:= false; 

proextra.Enabled := false; 

tax.Enabled:= false; 

benefit.Enabled:= false; 

shelf.Enabled false; 

price.Enabled:= false; 

discount.Enabled:= false; 

total.Enabled := false; 

if table3.IndexFieldCount <> O then 

begin 

modify.Enabled:= true; 

end 

else 

begin 

modify.Enabled false; 

end; 

end; 

110 



procedure Twaybill.calculation(); 

begin 

a := strtofloat(table3amount.Text); 

b := strtofloat(table3proextra.Text); 

c := strtofloat(table3kdv.Text); 

x := strtofloat(table3benefit.Text); 

y := strtofloat(table3price.Text); 

z := strtofloat(table3discount.Text); 

//to find the unit cost 

ucostl := y - (y * x I 100); 

if x > O then 

begin 

//if there is any discount 

ucostl := ucostl - (ucostl * z I 100); 
end; 

//unit sell price 

uspricel := y; 

//waybill product tax total 

wttotall := ucostl *a* c I 100; 

//waybill product discount total 

wdtotall := (y - (y * x I 100)) * a; 

wdtotall := wdtotall * z I 100; 

//waybill invoice product total 

witotall := ucostl * a; 

//unit cost 

ucost.caption := floattostr(ucostl); 

//unit sell price 

usprice.Caption 

end; 
floattostr(uspricel); 

procedure Twaybill.Button2Click(Sender: TObject); 
begin 

table3.Next; 

end; 

procedure Twaybill.depotnameCloseUp(Sender: TObject); 

111 



begin 

wno.Enabled 

end; 

true; 

procedure Twaybill.wexitClick(Sender: Tübject); 
begin 

waybill.Close; 

end; 

end. 

112 


	Page 1
	Titles
	NEAR EAST UNIVERSITY 
	Faculty of Engineering 
	i'#ı·f-' 

	Images
	Image 1


	Page 2
	Titles
	ACKNOWLEDGEMENTS 

	Images
	Image 1
	Image 2


	Page 3
	Titles
	ABSTRACT 

	Images
	Image 1
	Image 2
	Image 3


	Page 4
	Titles
	TABLE OF CONTENTS 
	Page 

	Images
	Image 1


	Page 5
	Images
	Image 1


	Page 6
	Images
	Image 1


	Page 7
	Images
	Image 1


	Page 8
	Titles
	Page 
	LIST OF FIGURES 

	Images
	Image 1


	Page 9
	Images
	Image 1


	Page 10
	Titles
	<J==;) USER 
	<J==;> 
	Chapter I: Introduction 

	Images
	Image 1
	Image 2


	Page 11
	Images
	Image 1


	Page 12
	Images
	Image 1


	Page 13
	Images
	Image 1


	Page 14
	Images
	Image 1
	Image 2


	Page 15
	Images
	Image 1
	Image 2


	Page 1
	Images
	Image 1


	Page 2
	Titles
	Del!phi Application 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 3
	Images
	Image 1
	Image 2


	Page 4
	Titles
	-»- " "'"~ - 
	i : fo1!~it~f ~J f T~:~~ii~~fs) .. 

	Images
	Image 1
	Image 2


	Page 5
	Titles
	~;~~;[~~·1rcj:~~~:::: 
	ı--: 

	Images
	Image 1


	Page 6
	Titles
	~··§~,-- 
	! "'·1~ tUndo {Undo1} 
	~- -----··---------- {N4} 

	Images
	Image 1
	Image 2


	Page 7
	Images
	Image 1


	Page 8
	Images
	Image 1
	Image 2


	Page 9
	Images
	Image 1
	Image 2


	Page 10
	Images
	Image 1
	Image 2


	Page 11
	Images
	Image 1
	Image 2


	Page 12
	Images
	Image 1
	Image 2
	Image 3


	Page 13
	Images
	Image 1
	Image 2


	Page 14
	Images
	Image 1
	Image 2


	Page 15
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 1
	Images
	Image 1
	Image 2


	Page 2
	Images
	Image 1
	Image 2


	Page 3
	Images
	Image 1


	Page 4
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 5
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 6
	Titles
	Chapter II: Delphi & Database Applications 

	Images
	Image 1
	Image 2

	Tables
	Table 1


	Page 7
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 8
	Images
	Image 1
	Image 2
	Image 3


	Page 9
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 10
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 11
	Titles
	I: · .. ::::show:ı:: ::::1 

	Images
	Image 1
	Image 2


	Page 12
	Images
	Image 1
	Image 2
	Image 3


	Page 13
	Images
	Image 1
	Image 2
	Image 3


	Page 14
	Images
	Image 1


	Page 15
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 1
	Images
	Image 1


	Page 2
	Images
	Image 1


	Page 3
	Images
	Image 1
	Image 2


	Page 4
	Images
	Image 1


	Page 5
	Images
	Image 1
	Image 2


	Page 6
	Images
	Image 1
	Image 2


	Page 7
	Images
	Image 1
	Image 2


	Page 8
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 9
	Images
	Image 1
	Image 2


	Page 10
	Images
	Image 1
	Image 2
	Image 3


	Page 11
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 12
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6


	Page 13
	Images
	Image 1
	Image 2
	Image 3


	Page 14
	Images
	Image 1
	Image 2


	Page 15
	Images
	Image 1
	Image 2


	Page 1
	Titles
	~ I ~1 
	~ ->~f 

	Images
	Image 1


	Page 2
	Images
	Image 1


	Page 3
	Images
	Image 1


	Page 4
	Page 5
	Images
	Image 1
	Image 2


	Page 6
	Images
	Image 1
	Image 2
	Image 3


	Page 7
	Titles
	h::::::::::oK::::::::::ı 

	Images
	Image 1
	Image 2
	Image 3


	Page 8
	Images
	Image 1
	Image 2
	Image 3


	Page 9
	Titles
	* 


	Page 10
	Titles
	IHffliM 
	IHIM 
	Wilt-il 
	Ii 
	ıi 
	Ii 
	J 

	Images
	Image 1
	Image 2


	Page 11
	Images
	Image 1
	Image 2


	Page 12
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 13
	Titles
	This method is called whenever the user presses the button, selects an item of the 
	To make this example work smoothly, at start-up the combo box is filled with all the 
	With this approach, the combo box becomes a sort of selector of the record. 
	64 

	Images
	Image 1
	Image 2


	Page 14
	Titles
	)-' Send To Database Rlil El 
	[20855 
	• 
	// ra.ise an except.ion .if there .is no name 
	// mod.ify found record 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 15
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 1
	Images
	Image 1
	Image 2
	Image 3


	Page 2
	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1


	Page 3
	Images
	Image 1
	Image 2
	Image 3


	Page 4
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8


	Page 5
	Images
	Image 1
	Image 2
	Image 3


	Page 6
	Titles
	Memol. Lines .Add ( 'Number of errors: ' + IntToStr (E. ErrorCount)); 
	Error: 
	+ 
	72 

	Images
	Image 1


	Page 7
	Titles
	,r Database IEıroıs ~ Et 
	J 

	Images
	Image 1
	Image 2

	Tables
	Table 1


	Page 8
	Titles
	Chapter III: Pharmacy Development Suite 

	Images
	Image 1
	Image 2


	Page 9
	Titles
	3.2 Pharmacy Description Module 
	75 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Tables
	Table 1


	Page 10
	Titles
	76 

	Images
	Image 1


	Page 11
	Images
	Image 1
	Image 2


	Page 12
	Titles
	78 


	Page 13
	Titles
	79 

	Tables
	Table 1


	Page 14
	Titles
	I 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6


	Page 15
	Titles
	81 

	Images
	Image 1
	Image 2


	Page 1
	Images
	Image 1
	Image 2
	Image 3
	Image 4


	Page 2
	Titles
	Summary and Conclusion 

	Images
	Image 1
	Image 2


	Page 3
	Images
	Image 1


	Page 4
	Titles
	References 

	Images
	Image 1
	Image 2


	Page 5
	Titles
	Appendices 
	Frayoi/1.Entrance Module Source Cude,, 
	86 

	Images
	Image 1


	Page 6
	Titles
	87 

	Images
	Image 1


	Page 7
	Titles
	88 

	Images
	Image 1
	Image 2

	Tables
	Table 1


	Page 8
	Titles
	89 

	Images
	Image 1

	Tables
	Table 1
	Table 2


	Page 9
	Titles
	90 


	Page 10
	Titles
	91 

	Images
	Image 1
	Image 2


	Page 11
	Titles
	92 

	Images
	Image 1
	Image 2


	Page 12
	Titles
	93 

	Images
	Image 1


	Page 13
	Titles
	94 

	Images
	Image 1

	Tables
	Table 1


	Page 14
	Titles
	95 


	Page 15
	Titles
	96 


	Page 16
	Titles
	97 


	Page 17
	Titles
	98 


	Page 18
	Titles
	99 


	Page 19
	Titles
	100 

	Images
	Image 1


	Page 20
	Titles
	101 


	Page 21
	Titles
	102 

	Images
	Image 1


	Page 22
	Titles
	103 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 23
	Titles
	104 

	Images
	Image 1
	Image 2


	Page 24
	Titles
	105 

	Images
	Image 1
	Image 2
	Image 3


	Page 25
	Titles
	106 

	Images
	Image 1


	Page 26
	Titles
	107 

	Images
	Image 1


	Page 27
	Titles
	108 

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5


	Page 28
	Titles
	109 

	Images
	Image 1


	Page 29
	Titles
	110 

	Images
	Image 1


	Page 30
	Titles
	111 

	Images
	Image 1
	Image 2


	Page 31
	Titles
	112 



