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CHAPTER 1 

INTRODUCTION 

Multiple target tracking (MTT) is an essential requirement for surveillance 

systems employing one or more sensors, together with computer subsystems, to 

interpret the environment. Typical sensor systems, such as radar, infrared (IR), and 

sonar report measurements from diverse sources: targets of interest, background noise 

sources such as radar ground clutter, or internal error sources such as thermal noise. 

The (MTT) objective is to partition the sensor data into sets of observations, or 

tracks, produced by the same source. Once tracks are formed and confirmed (so that 

background and other false targets are reduced), the number of targets can be estimated 

and quantities, such as target velocity, future predicted position and target classification 

characteristics, can be computed for, each track. 

The earliest and probably still the best-known type of MTT system is the radar 

track-while-scan (TWS) system. The TWS system is a special case of an MTT system. 

The TWS system is a special case of an MTT system in which the data are received at 

regular intervals as the radar (or other sensor) regular intervals as the radar (or other 

sensor) regularly scans a predetermined search volume. 

The project consists of the introduction, six chapters and conclusion. 

The chapter 2 gives some of the required definitions, discussion of the MTT 

system design by introducing the basic elements contained in most systems. The most 

important element of an MTT system is data association ( or correlation). 

Thus, the chapter will illustrate in some detail how the related functions of 

gating and correlation are used. 

1 



Chapter 3 discusses filtering and prediction, which are the fundamental elements 

of any tracking system. An understanding of these elements is required in the 

discussion of other functions of a multiple-target tracking (MTT) system. 

In chapter 4, a discrete formulation of the continuous state equations is presented 

and the considerations involved in choosing tracking coordinates are discussed several 

coordinate systems and sets of state variables that have been implemented for multiple 

target tracking (MTT) are presented. 

Chapter 5, discusses how sensor design and measurement data processing relate 

to the overall MTT problem. The emphasis will be on radar system design, but the 

general techniques discussed for adaptive threshold setting and target resolution are also 

applicable to infrared (IR) devices. 

The purpose of chapter six is to provide the tools and the frame work that can be 

used to design a detailed Monte Carlo MTT simulation. The chapter begins with some 
\( 

preliminaries concerning the generation and use of random numbers and the application 

of the random variables associated with radar. Topics include a suggested approach for 

documentation and check out, choice of evaluation statistics, and techniques for 

presenting results. A typical detailed design is illustrated using a simulation that has 

been developed for a radar TWS system. 

Chapter 7 is concerned with the techniques for utilizing the powerful adaptive 

features of the electronically scanned antenna (ESA, agile beam or phased array radar). 

The ESA has the capability to perform adaptive sampling by directing the radar beam 

without inertia in any direction. 
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or radar Doppler (range rate), and measured attributes such as target type, identification 

. number, length, or shape. Also, an observation should contain an estimate of the time at 

which the measurements were obtained. 

2.2 Elements of a Basic MTT System 

Fig 2.1 gives a representation of the functional elements of a simple recursive 
( 

MTT system. There is considerable overlap of the functions of these elements, but this 

representation provides a convenient partitioning which will be used to introduce the 

typical functions required for an MTT system. 

Let us assume recursive processing so that tracks have been formed on the 

previous scan. Now, input data are received from the sensor, and the processing loop 

described in fig.2.1 is to be performed. Incoming observations are first considered for 

the update of existing tracks. Gating tests determine which possible observation-to-track 

pairings are "reasonable," and a more refined correlation algorithm is used to determine 

final pairings. Observations not assigned to existing tracks can initiate new tentative 

tracks. A tentative track becomes confirmed when the number and quality of the 

observations included in the track satisfies confirmation criteria. Similarly, low quality 

tracks, as usually determined by the update history, are deleted. Finally, after inclusion 

of the new observations, tracks are predicted ahead to the arrival time for the next set of 

observations. Gates are placed around these predicted positions and the processing cycle 

repeats. Next, we shall discuss these elements in more detail. 

SENSOR DATA I INPUT 
PROCESSING AND DATA 
MEASUREMENT 
FORMATION 

CORRELATION 
TRACK INITIATION, 
CONFIRMATIOl't 
ANO DELETION 

GATING 
EQUATIONS 

FILTERING AND 
PR~OICTION 

FIGURE 2.1 BASIC ELEMENTS OF A SIMPLE RECURSIVE MTT SYSTEM 
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2.2.1 Measurement Data Processing 

For MTT the sensor will typically spend a limited amount of time on a single 

target because scanning is necessary in order to provide updated information on existing 

multiple target tracks and to search for new targets. One important sensor design 

consideration is the determination of a decision rule on the return, which is received 

during the time on target, so as to discriminate between returns from targets of interest 

and returns from extraneous sources, such as potential false alarms produced by noise 

and radar clutter. 

The simplest approach to the decision process is to compare the incoming signal 

power to a threshold, which is set so that the probability of false alarm ( PD) remains 

constant. For a given threshold setting the probability of detection ( PD) generally will 

be a complicated function of the sensor capabilities, the target size and distance from the 

sensor and the environment (atmospheric attenuation, et cetera) 

2.2.2 Gating 
Gating is the first part of the correlation algorithm used to decide if an 

observation belongs to a previously established target track or to a new target. Gating is 

a coarse test that classifies an observation into one of two categories. 

1. Candidate for Track Update. The observation may satisfy the gates of one or more 

existing tracks. In this case the observation becomes a candidate for association with 

that track. Note that more than one observation may satisfy the gate of a single track. 

Also, note that an observation ultimately might not be used to update the track, even if 

the gate is satisfied. Thus, it may be used to initiate a new track. 

2. Initial Observation for New Tentative Track. The observation might not satisfy 

the gate of any existing track. In this case the observation becomes an immediate 

candidate for the initiation of a new target track. 

CATE. 04 . ------ /GATE 

. 
P1 

01.02.03.04 :e. OBSERVATION POSITIONS 
Pl. P2 ';:<_ PREDICTED TARGET POSITIONS 

dt2 = OIS'TANCE FROM P2 TO 02 

F\GURE .2 . .2 EXAMPLE OF GATING AND CORRELATION 
FOR TWO CLOSELY SPACED TRACKS 
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Fig2.2 illustrates gating for two closely spaced targets and four observations. Note that 

the gates may overlap for closely spaced targets. Gates are established, and gating is 

performed in the following general manner. 

• Estimates are made of what the measured quantity should be at the time of the next 

observation. 

• The difference between each measurement and its corresponding estimate is 

formed. It is often useful to form a total distance di from track i to observation j. 

Thus, a normalization process is required whereby the differences in each of the 

component measurements are squared, divided by the variances of the expected 

differences, and summed to form a total normalized distance. For example, if range (R) 

and angle ( B) are measured, the normalized distance is 

(2.1) 

where ((RP,BP)) is the predicted position,(R0,BJ 'is the measured position.crj is the 

variance of RP - R0, and is a; the variance of BP· - BO • 

• A maximum error between estimate and measurement is formed for all measured 
I 

quantities by using the estimate and measurement accuracy statistics. The computed 

differences are compared to the computed maximum allowable error. If the differences 

do not exceed the corresponding maximum allowable errors, the observation satisfies 

the gate. 

2.2.3 Correlation 

The correlation function takes the output of the gating function and makes final 

observation-to-track assignments. In the case where a single observation is within the 

gate of a single track, the assignment can be immediately made. However, for closely 

spaced targets, it is more likely that conflict situations, such as those shown in Fig. 2.2, 

will arise. 

Correlation conflict situations arise when multiple observations fall within the 

same gate ( or gates) and when observations fall within the gates of more than one track. 

The approach to this problem, called "nearest-neighbor," looks for a unique pairing so 

that at most one observation can be used to update a given track. Using this approach, 
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the optimal solution is obtained by assigning observations to tracks in order to minimize 

the total summed distance from all observations to the tracks to which they are assigned. 

To illustrate one suboptimal solution, the example shown in Figure 2.2 is solved using 

the following rules: 

1. 01 is assigned to 71 because 01 is the only observation within the gates of Tl while 

T2 has other observations (02, 03) within its gates. 

2. 03 is assigned to T2 because 03 is closer than 02 ( di3 < di2). 
3. 04 can, without question, be used to initiate a new track, but new track initiation 

using 02 may be restricted. This restriction is based upon the practical consideration 

that multiple observations within the gate of a single established track are often the 

result of a failure in the observation redundancy-elimination logic. Thus, this restriction 

serves to prevent initiation of extraneous tracks. 

2.2.4 Track Initiation, Confirmation and Deletion 
Observations not assigned to existing tracks are used to form new tentative 

tracks. Restrictions are sometimes used so that observations within gates of existing 

tracks may not be used to initiate new tentative tracks, even if, using nearest-neighbor 

correlation, the observations arc not assigned to an existing track. The problem of 

tentative track initiation becomes still more difficult using the all-neighbor approach. 

The author's experience with airborne radar systems using the nearest-neighbor 

approach indicates that in order to maintain accurate tracking it is best to initiate new 

tracks whenever initiation may be questionable, but then to make confirmation 

requirements more stringent. 
Once a tentative track is formed, confirmation logic is usually required because 

the probability of a single observation being from an extraneous source is too high for 

immediate confirmation. Thus, it is usually required that at least one other observation 

be assigned to a tentative track before the track is considered to be confirmed. The gate 

size and the length of time allowed for that confirming observation can be chosen as 

functions of the confidence in the validity of the original observation. 

A track that is not updated becomes degraded, and therefore must be deleted. If a 

sufficiently long time elapses without detection, the target probably will no longer be 

within the scan volume. Also, ·even if the lack of detections is consistent with an 

assumed low probability of detection, it might be best to delete a track just because of 
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its low quality. A typical simple rule is to delete a track after NO consecutive scans 

have produced no correlating observation. Alternatively, a test based upon the total 

elapsed time since track update may also be used. 

2.2.5 Filtering and Prediction 

The filtering step incorporates the correlating observations into the updated track 

parameter estimates. For those tracks that did not receive a correlating observation, the 

previous predicted estimates become the filtered estimates. Then, predictions are made 

to the time when the next data scans to be received. Thus, prediction quantities are of 

great importance because they define the center of the gated region discussed above. 

The size of the gate is also directly affected by the prediction uncertainty, which can be 

determined by the filter if Kalman filtering is used. 

Fig 2.3 illustrates the prediction and gating processes. Note that as more 

observations are received, the predicted target position should approach the true target 

position unless the target performs a random maneuver. Also, as more data are received, 

the track gate sizes should decrease while remaining large enough to enclose a 

maneuvering target. 

TIME FROM INITIAL T AR(lE,T OBSERVAllON 

FICURE 2.l llLlJstRA 710111 OF PREDICTION ANO GA rlNG 

2.3 Overview of Data Association Issues 

This section introduces the observation-to-track correlation ( or data association) 

problem, which is the key element of MTT. To begin, fig 2.4 gives a simplified, but 

instructive, interpretation of MTT data correlation. Under this interpretation there are 

basically three regions. These comprise a region of unambiguous correlation for widely 

spaced targets, an unstable region where highly inaccurate tracking may occur, and a 
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region for closely spaced targets where miscorrelation occurs but tracking remams 

stable. 

First, for sufficiently large target spacmg unambiguous correlation occurs. 

Improving correlation techniques and detection performance can expand this region of 

unambiguous correlation. Also, for most cases, this region can be expanded by sampling 

at a faster rate ( decreased sampling interval, T ). 

Next, an unstable region has been identified. Miscorrelation frequently occurs in 

this region. The result is erratic track performance and frequent premature track 

deletion, leading to a very inaccurate assessment of the target environment. The extent 

of the unstable region is also a function of the sampling rate and the probability of 

detection. 

Fig 2.5 gives an example of the type of tracking that may occur in the unstable 

region. For this example, there were four targets at an approximately constant (as seen 

by the radar) azimuth angle separation of about three times the angular measurement 

error standard deviation. Fig 2.5 shows the true targets' and the tracks' predicted azimuth 

angles as functions of time. Also, selected observations are denoted by dots, and the 

symbol D refers to the points of track deletion. This example shows how miscorrelation 

leads to large prediction errors with the result that tracks become "starved" for 

observations and are thus deleted. 

Finally, consider the lower region in Fig. 2.4. For very closely spaced targets 

miscorrelation will occur without an associated large number of tracks being degraded 

and lost. In this region, tracks may be erratic and there are typically fewer tracks than 

targets, but track loss is infrequent. Fig 2.6 illustrates what happens in this region of 

very closely spaced targets. For this example there were four targets with angular 

separation of about 1.5 times the measurement-error standard deviation. We see that 

there are fewer tracks (three) than targets (four). The tracks tend to wander back and 

forth -and to cross, but none are lost. 
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UNAMBIGUOUS 
COHRELATION 

-- UNSTABL[ 
REGION ---------- 

- - - - - - - - - RE·- - - - - - 
Duce- Mtsco - - - - - - 

RRELA.Tio - 
MISCORRELATION OCCURS rv EFFEc,s 
WITHOUT TRACK LOSS 

FIGURE 2.-t INTERPRETATION OF MTT CORRELATION 
IN A CLOSE.LY SPACED TARGET ENVIRONMENT 

SAMPLING INTERVAL - 

---TRUE.1ARGET 
---TRACK 

I • 

~ 
FIGURE ·ts EXAMPLE 01' DEGRADED TRACKING 

IN UNSTABLE REGION . 

AZIMUTH ANGLE 

FIGURE z.e TYPICAL TRACKING RESULTS FOR 
CLOSELY SPACED TARGETS 
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2.3.1 Techniques for Reducing Unstable Tracking 

Miscorrelation leading to unstable tracking can be decreased by increasing the 

probability of detection (PD), by decreasing the sampling interval, or by using improved 

correlation methods. 

Techniques, which expand the lower region of fig. 2.4, and thus decrease the 

unstable region, use an all-neighbors approach so that a single miscorrelation is less 

likely to degrade a track. Generally, in using the group tracking approach there will be 

no attempt to maintain individual tracks on closely spaced targets such as shown in fig. 

2.6. Another approach for decreasing the unstable region in the presence of unavoidable 

miscorrelations is to increase the Kalman filter covariance matrix in order to reflect the 

uncertain correlation history. 

To illustrate the concepts discussed in this section, Table 1.1 summarizes the 

results of an MTT study for agile beam radar. The agile beam radar system can use 

adaptive sampling (either 2.5s or 1.25s sampling interval) and enhance detection 

performance. 

The results shown in Table I-I give the number of confirmed tracks' that were 

deleted for various system configurations and target spacing. The second column gives 

the target spacing (taken to be constant throughout a Monte Carlo run) as normalized 

with respect to the angular measurement-error standard deviation. The third column 

gives the total number of targets that were considered (using all Monte Carlo runs). 

------ -· --TAB~1 
NU!\18F:R OF CONFIRMED TRACK DELETIONS FOR VARIOUS SPACINGS 

AND SYSTEM CONF!Gl'RATIONS 

1.4 

Nominal r.. ( I'n,) Enhanced ll] f'o (I'",) 
Fixed Aclapt ivc 

Total Xton)ier Fixt'd Ador,ri\·e Sampling S0111pli11K 
o( Torgcts 5,-a,npling San1pli11g (JJ [JJ 

IXO ::!5 5 NE NE 
200 ~5 37 II 13 

200 '} 23 4 I 

Normalized 
Case Separation [2] 

4.2 
2 :11 

Not c I : Pm= I - ( 1-f'o, )2 

Nore 2: The target separation divided by the mr as ur e mc nt-e r r or standard deviation 

Nore 3: N[ = not examined 
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CHAPTER3 

METHODS FOR FILTERING AND PREDICTION 

This chapter discusses filtering and prediction, which are the fundamental 

elements of any tracking system. An understanding of these elements is required in the 

discussion of other functions of a multiple-target tracking (MTT) system. 

This chapter initially discusses two commonly used approaches to filtering and 

prediction for multitarget tracking. The first is to use fixed tracking coefficients, and the 

second, Kalman filtering, generates time-variable tracking coefficients that are 

determined by a priori models for the statistics of measurement noise and target 

dynamics. The first approach has computational advantages for systems with large 

numbers of targets. However, with expanding computer capabilities, the high-accuracy 

tracking associated with Kalman filtering is becoming increasingly more appealing to 

the system designer. 

Filtering and prediction methods are used to estimate present and future target 

kinematics quantities such as position, velocity, and acceleration. The introductory 

techniques presented in this chapter are most applicable when considering widely 

separated targets in a sparse false-alarm background so that the errors introduced by 

uncertain observation-to-track correlation can be ignored. Later chapters discuss 

modifications, which may be required in the presence of miscorrelation. 

3.1 Fixed-Coefficient Filtering 

3.1.1 The a - fJ Tracker 
Fixed-coefficient filters have the advantage of simple implementation usmg 

fixed parameters for the filter gains. Probably the most extensively applied fixed 

coefficient filter is the a - /J tracker. This filter is used when only position 
- 

measurement is available, and is defined by the following equations: 
A . 

X5 (k) = x(klk) = x P (k) + a[x0 (k) - x P (k)] (3. la) 

;._ 

vs (k) = x(klk) = v, (k-1) + /J/qT[x0 (k)- xP(k)] (3.1 b) 

A 

x P (k + 1) = x(k +Ilk)= x, (k) + Tv, (k) (3.lc) 
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t,,. 

x0 (k)= Observation received at k 
t,,. 

T = Sampling interval 
a, fJ = Fixed-coefficient filter parameters 

The quantity q is normally defined to be unity, but in the case where missing 
observations occur its value may be taken as the number of scans since the last 
measurement. Finally, the usual initialization process is defined by 

xs(l) = xP(2) = xP(2) = x0(1) (3.2a) 

vs(l)=O (3.2b) 

Vs (2) = [x0 (2)- X0 (1)]/T (3.2c) 

3.1.2 The a - /J - r Tracker 
The logical extension of the a - /J tracker is the a - /J - r tracker, which 

includes an estimate of acceleration. The equations for the a - fJ - y tracker are defined 
as: 

xs(k) = x P (k) + a[x0 (k)- XP (k)] (3.3a) 

Vs (k) = v, (k-1) + Ta, (k -1) + fJ /qT[x0 (k)- X P (k)] (3.3b) 

as (k) = as (k -1) + r / (qT)2 [xo (k)- x P (k)] (3.3c) 

xP(k + 1) = x.,(k) + Tv,(k) + T2 /2as(k) (3.3d) 

where the usual initialization is 

X5(1) = xP(2) = x0(1) 
vs(l) = a5(1) = a,(2) = 0 

[x0 (2)- X0 (l)] 
vs= 

T 
[x0 (3) + X0 (1)-2x0 (2)] 

T2 

(3.4a) 
(3.4b) 

(3.4c) 

(3.4d) 

3.1.3 Choice of Fixed-Coefficient Gains 
Equations (3.1) and (3.3) give examples of commonly used constant-coefficient 

filters. We next discuss how to determine the coefficient values. Decreasing coefficient 

values will lead to less responsive filters and as a result improved measures of 

performance for random noise input, while increasing coefficients leads to better 

performance versus dynamic inputs 

Relationships between the coefficients for the a - /J and a - fJ - r trackers are 
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derived. The relationships define gains that give a compromise between noise reduction 

and maneuver-following capability in the steady state. Considering a steady-state 

Kalman filter, Kalata shows the relationships to be 

/J = 2(2 - a) - 4J1 - a 
r= /32 12a 

(3.5) 

(3.6) 

Equation (3.5) is valid for both filters, while (3.6) provides the additional relationship 

required for the a - /3 tracker. 
The choice of gains for a constant-coefficient filter must reflect an overall 

compromise between noise and dynamic "(maneuver) performance. One commonly 

proposed solution to this problem is to choose filter gains based on target behavior as 

determined by a maneuver detector. A final problem associated with the use of constant 

coefficient filters occurs when PD is less than one. For non-unity PD, in order to 

improve tracking performance, the coefficients should be adjusted according to the 

input data detection sequence. Thus, although the simplicity of constant-coefficient 

filters is appealing, their inadequacy in many areas makes the choice of a variable gain 

sequence through Kalman filtering preferable when high accuracy is required. 

3.2 Kalman Filtering 
The Kalman filter is the general solution to the recursive, minimized mean 

square estimation problem within the class of linear estimators. Use of the Kalman filter 

will minimize the mean-squared error as long as the target dynamics and the 

measurement noise are accurately modeled. In addition to minimizing the mean-squared 

error, the Kalman filter has a number of other advantages for application to MTT. These 

advantages include the following properties: 

1. The gain sequence is chosen automatically, based on the assumed target maneuver 

and measurement noise models. This means that the same filter can be used for varying 

target and measurement environments by changing a few key parameters. 

2. The Kalman gain sequence automatically adapts to changing detection histories. 

This includes a varying sampling interval as well as missed detections. 

3. The Kalman filter provides a convenient measure of the estimation accuracy through 

the covariance matrix. 

4. Through use of the Kalman filter it is possible to at least partially compensate for 

the effects of miscorrelation in the dense MTT environment. 
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3.3 Approximations and Simplifications of KALMAN 

Filtering 
The computational requirements of the Kalman filter are sometimes considered 

to be beyond system capability. Each Kalman filter requires matrix multiplications of 

order n x n, where n is the order of the state vector. Also, matrix inversions of order M, . 

where M is the measurement dimension, are required. These c6mputations are usually 

required for at least three dimensions (such as the three Cartesian components x ,y ,z). 

However, the adaptivity and accuracy of the Kalman filter make it highly preferable 

from the performance viewpoint. Thus, considerable effort has been made to develop 

approximations and simplifications of the Kalman filter in an attempt to reduce 

computational requirements and loading without unacceptable degradation of overall 

tracking performance. This section discusses several of the more prominent schemes for 

approximating and simplifying the Kalman filter. 

3.3.1 Constant Gain Filtering 

Probably the simplest approximation of the Kalman filter is to use the constant 

gains that are obtained as the Kalman filter is allowed to reach a steady state. This 

approach is referred to as Weiner filtering, and, of course, it assumes that there is a 

steady state. This steady-state assumption may not be valid for many practical cases, 

such as angle tracking with changing range, or when data are missing. As an alternative 

to running the Kalman filter to steady state, it may be possible to find the steady-state 

Kalman gain and covariance from analytical expressions Another approach is to use the 

Kalman filter to determine a gain table that is computed a priori, stored and 

appropriately called upon. However, we take care that use of the table does not require 

more computational effort and storage than the Kalman filter computations which it 
' 

replaces. 

3.3.2 Simplified Generation of Kalman Gains 
One major objection to the use of steady-state gains is the large errors, which 

may develop for the initial tracking phases. Kalata [3] has developed a computationally 

convenient means of circumventing this problem. 
First, Kalata solves for the steady-state gains using the tracking index as defined 

by 
15 



(3.7) 

where a 
O 
and aw are the measurement noise and the system acceleration standard 

deviations, respectively. For example, for the a - fJ - y tracker corresponding to the 

three-state Kalman filter, the relationship (again noting the factor of 1/2 that arises due 

to different definitions of the a - fJ - r tracker): 
(3.8) 

The gains for use prior to steady state are computed recursively using an exponential 

decay relationship. 
The major problem with Kalata's method arises in the case of missing data ( or a 

varying sampling interval). If an observation is missed ( or the extrapolation period is 

extended), the Kalman gains will increase rather than exponentially decay to steady 

state values. This is illustrated in fig. 3 .1, where it may be noted that the gain K1 always 

increases after missing data. 

KALMAN GAIN K1 ® ~ KA\.MAN •CAIN Kz M • MISSED DETECTION 

© ~ © © \ ~GAONC=Mro> 

l{, 1'2 

SCAN NUMEIE fl 

FIGURE 3.1 EXAMf'L[ OF KALMAN GAIN l,llHAVIOR 

Bridgewater presents a general algorithm for recursively computing Kalman 

gains With this method, changes in sampling interval, measurement noise variance, and 

assumed target-maneuver variance are readily incorporated into the gain calculations. 

This technique is applied to the a - fJ and a - /J - r trackers for random velocity and 

acceleration models. Steady-state expressions for a - fJ and a - fJ - r trackers, which 
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are applicable for various assumed target dynamic models, are also presented by 

Bridgewater. 

The Kalata and Bridgewater methods both model the random input process noise 

as white, which differs from the more general correlated acceleration model of Singer. 

Thus, in general, a response similar to that found for a Kalman filter using Singer's 

model cannot be ensured. Use of Kalman filtering provides the covariance matrix whose 

terms are used for gating. Replacing the Kalman filter with a filter in which the gains 

are either constant or calculated recursively eliminates the necessity for the covariance 

matrix. However, a prediction variance (p11) consistent with the gain can be simply 

computed by noting the relationships involved in the Kalman gain computation. For 

example, the position prediction variance consistent with the Kalman gain K is found 

through the relationship. 

(3.9) 

So that 

(3.10) 

3.3.3 Kalman Filter State Reduction 
Another standard technique for simplification is to reduce the number of states 

( or order) of the Kalman filter. In particular, the reduction from three-state to two-state 

Kalman filters can lead to very significant reductions in required storage and processing 

time. This typically implies elimination of the acceleration state. The elimination of 

acceleration as a state is generally valid if only the Position is measured (no derivative 

measurement, such as range rate, is available) and if the sampling interval is a 

significant fraction of the maneuver time constant. One practical way to determine the 

utility of the acceleration state is to compare (through simulation) acceleration estimates 

in the presence of a typical target maneuver with the corresponding estimates that occur 

due to input noise alone for a non-maneuvering target. If random acceleration, or any 

.other state, is eliminated as an estimated state, its effects must still be introduced into 

the system model. The usual technique for doing this is by introducing "state noise". 

Hutchinson develops a technique for determining the state noise which should be used 

in order to minimize the estimation error variance for reduced-order filters. 
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3.4 Maneuver Detection and Adaptive Filtering 

The Kalman filter is determined by the assumed target kinematic model. Also, 

the choice of parameter for any approximate or simplified filter must inherently depend 

upon an assumed target maneuver model or capability. When the .actual target 

kinematics differ from the model used for filter design, mean tracking errors will 

develop. The Kalman filter models the target dynamics through the use of continuous 

random variables statistically described by known parameters. The previously discussed 

Singer model in which a time-correlated acceleration is used to describe the target's 

dynamics exemplifies this. The Kalman filter will provide optimum estimates of target 

position and velocity only if this underlying target model is correct. 
~ 

/

MANEUVER FIRST 
DETECTED 

~ 

TIME 

FIGURE 31 TYPICAL TARGET MANEUVER TIME HISTORY 

assumption and constraints on target dynamics. Then, when the LM gate, but not the 

NM or SM gates, was satisfied, the filter was reinitiated using the last two data points. 

This is the simplest method for decreasing the effects of the time lag between the 

initiation and the detection of target maneuver. Fig.3.3 illustrates the form of the three 

gates. 

Another method for maneuver detection is to examine the time history of the 

residual. With the use of Kalman filtering a generalized form of the distance function cf, 

can be formed from the residual vector y ( k)), and the residual covariance matrix S. 

d? (k) = yT (k)s_:1 y(k) 

y(k) = y(k) - Hx(kik -1) 

S = S(klk -1) = HP(kik - l)HT + Re 

(3 .11) 

(3.12) 

(3.13) 

P(kik -1) = One step prediction covariance matrix 

Re = Measurement noise covariance matrix 
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The quantity d2(k) has a chi-square(x!) probability distribution with M 

degrees of freedom, where M is the measurement dimension. Thus, d ' (k) can be 

monitored in comparison to a threshold determined by the (x ! ) distribution. 

For airborne radar tracking systems that have accurate Doppler (range rate) 

measurement capability, changes in target range rate may be used for maneuver 

detection. However, as discussed by Nelson, care must be taken in the presence of JEM. 

A simple maneuver detection technique based upon the range rate residual and 

using the suboptimum maneuver detection method. Once maneuver is detected, the 

sampling ( or update) interval can be reduced for an electronically scanned antenna. 

Also, the elements of the covariance matrix are increased and a filter model assuming 

larger target acceleration capability is used. When the detectors indicate that the target 

has ceased to maneuver, the nominal target acceleration model is restored. Simulation 

results have shown the technique to successfully track targets that performed maneuvers 

with acceleration up to 6g. 

The problem associated with the maneuver adaptive filtering approach discussed 

above is that, as illustrated in Fig 3.2, there may be a significant lag between the time 

when the maneuver begins and when it is detected. Then, the adaptation to the 

maneuver through the choice of more responsive filter parameters may not occur until 

large tracking errors have already developed. Thus, other approaches have been 

proposed in which, in addition to adapting filter parameters, there is a correction of the 

past effects of the acceleration. 

Chan defines a method for estimating the target input acceleration and updating 

the filter using the effects of the estimated acceleration. Thus, using this approach there 

may be a lag in detection, but, once detection occurs, an estimate of the cumulative 

effect of the acceleration is applied to the filter state estimates. Other techniques that 

effectively apply filter correction as well as adaptation are discussed below. 

3.4.1 Maneuver Detection and State Augmentation 

Bar-Shalom and Birmiwal have developed an algorithm in which a different state 

model is used by the filter upon maneuver detection. Before maneuver detection, an 

essentially constant velocity target model is assumed. After maneuver detection, 

tracking is performed with an augmented state model that uses an acceleration state. 
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This method requires the storage of previous measurements, which are used for filter 

reinitialization after maneuver detection. The augmented state model is used until the 

magnitude of the acceleration estimate is determined to be insignificant, when use of the 

initial state model is resumed. In addition to a full development of this method and 

comparative performance results, Bar-Shalom and Birmiwal also discuss other 

techniques and present an extensive list of references. 

By storing past measurements, this method anticipates the effects of a delay 

between the time when a maneuver begins and when it is detected. Then, if a maneuver 

is detected at scan k the filter is reinitiated (using the past stored data) at scan k - ~ - 1, 

where ~ is the effective lag time associated with the detector. 

3.4.2 Use of Several Parallel Filters 

Starting with Magill, a number of methods have been proposed based on the use of 

several target state models. The measurement data are used to decide upon the 

appropriate model or to obtain a "best" composite estimate based upon a statistical 

weighting. This approach typically requires the maintenance of several Kalman filters 

operating in parallel and the maintenance of concurrent a posteriori estimates of the 

relative validity of these filter models. These probability calculations are usually based 

upon application of Bayes' rule. 

Fig 3 .4 illustrates the method by showing a bank of N parallel Kalman filters. Each 

filter utilizes a different process model, and each filter operates simultaneously on the 

measurement sequence. Thus, there are effectively N hypothesized target state 

estimation vectors. 

FJ l.TEfl 
NUMBER 1 

FfL IEA 
NUMBE rt 2 

- MEASUA[.MENl LY I y- H~. y I - 
CONVE~SAON 

fl L 'TER 
Nl)MB£H N 

CONV.ERSION 

FIGURE #4,. fd.ANK OF N PARALLEL FIL TEAS 

One implementation of parallel filters uses a different assumed maneuver model for 
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each filter. For example, the simplest approach is to have just two filters in which one 

filter assumes essentially straight-line motion, while the other is matched to a worst case 

maneuver condition. The non-maneuver case is assumed until a detector is triggered and 

the switch is made to the filter with maneuver following ability. For an ESA system the 

sampling rate can also be increased at the same time that the more responsive filter is 

used. Thus, using this approach, upon maneuver detection, adaptation and correction are 

effectively applied together by switching to a more responsive filter whose output will 

be more representative of the true target state. 

An alternative bank of N filters might be implemented to model an acceleration 

that could have been initiated at any one of N discrete times in the past. In this case, the 

maneuver characteristics are governed by the starting time of the maneuver and the N 

hypotheses refers to the times of maneuver initiation. McAulay and Den linger present 

a version of this method that operates on the Kalman filter residual sequence to 

determine the time at which the maneuver was initiated. 

3.4.3 Adaptive Measurement Noise Estimation 

A convenient method for adaptive estimation of the measurement noise variance 

has been developed. The technique involves the use of recursive equations that can be 

computed in conjunction with the Kalman filtering equations. With this method, an 

updated estimate of the observation variance is obtained at each measurement 

O"; = va;N where a;N is the initial (nominal) estimate. Initially, v is chosen to be unity, 

and a new estimate of v is obtained at each measurement through the relationship 

(assuming one-dimensional observationy): 

~ v(k) [ [y(k) - HxCklk -1)]2 ] 
v(k + 1) = - V + -----'----- 

V + 1 HP(klk - l)HT + v(k)a;N 
(3.14) 

The parameter v is set to some initial value I;§. and incremented by .one each time 

another observation is used. Suggested values for mP range from 10 for a good initial 

estimate of noise variance to 2 for a poor initial estimate. 

Finally, as with maneuver detection, it is to be expected that adaptive noise 

estimation will suffer in the presence of miscorrelation. Also, problems would be 

expected in the presence of mismatch between true and assumed target maneuver 

models. 
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CHAPTER4 

CHOICE OF TRACKING COORDINATE SYSTEM 

AND FILTERING STATE VARIABLE 

In this chapter, a discrete formulation of the continuous state equations is 

presented and the considerations involved in choosing tracking coordinates are 

discussed. Several coordinate systems and sets of state variables that have been 

implemented for multiple-target tracking (MTT) are presented. 

r,;;~~11.1 r.nt; ~l~H ro,~ ,.,1::.c~;iT£:,l4r. 
cc,~r.u.~nF l\'!:".'oi.1> 

A number of coordinate Systems have been utilized for MTT. Two commonly 

used systems, spherical polar and Cartesian coordinates, are illustrated in fig. 4.1. The 

spherical coordinate system is defined by the range and two angles ( azimuth ( 77) and 

elevation ( E ) ) with respect to the Cartesian (x, y, z) axes so that 

x = R cos E cos 77, ( 4.1) 

(4.2) 

(4.3) 

y = R cos E sin 77, 

z = Rsin E, 

An alternative type of polar coordinate system, defines the range vector with 
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respect to the Cartesian coordinates by using the three direction cosines. 

It is preferable to use a non-rotating ( or inertial) coordinate system so that the 

multiple target tracks can be processed with respect to the same fixed reference. Thus, 

the transformation to the North-East-Down (NED) coordinate system that is convenient 

for airborne radar MTT systems. For airborne radar MTT applications the NED 

coordinate system can practically be considered inertial. 

The use of Cartesian coordinates is convenient for target extrapolation, but the 

form of the radar measurement introduces coupling between filters. 

Because of computational constraints, many MTT systems require relatively simple 

filtering schemes. This is particularly true for airborne radar systems, but such as not be 

the case for some other applications, such as sonar, where more time and more 

computational capabilities may be available. A requirement for simple filters implies the 

desirability of uncoupled filtering in which independent tracking is performed in each 

coordinate. For example, a particularly desirable simple filtering system f6r use with 

Cartesian coordinates would employ independent two-state (position and velocity) 

filters in each of the three components (x, y, z). 

When considering the choice of a tracking system, note that experience with 

filtering and prediction in MTT systems indicates the primary source of error to be 

miscorrelation. This motivates allocation of most computing resources to the 

improvement of correlation performance. Thus, the discussion in this chapter will 

emphasize tracking coordinates for use with linear, uncoupled filters, which minimize 

computational requirements for the filtering and prediction functions of MTT. 

4.1 North-East-Down (NED) Coordinate System 
The NED coordinate system, shown in fig.4.2, is particularly useful for airborne 

systems, but it is also applicable for surface (ground or ship based) tracking system. 

In fig. 4.2, the origin of an aircraft tracking system is the own-ship position. 

Then, the axes are determined by the north direction and the down direction pointing to 

the center of the earth. The east direction is the direction perpendicular to the north and 

down axes. 

Note that the NED system is not strictly an inertial system for a moving platform 

because the platform axes are slowly changing their orientation in space as the vehicle 

moves over the earth's surface. However, except near the North Pole, the effects of the 

rotations are negligible, and the NED system is essentially inertial for aircraft platforms. 
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Radar measurements typically give the target range and angles with respect to 

the antenna boresight axes. However, the antenna boresight axes will be rotating as a 

result of changes in aircraft orientation. 

4.2 Tracking in Cartesian Coordinates 

Tracking in Cartesian coordinates has the advantage of allowing the use oflinear 

target dynamic models for extrapolation. For example, given estimates of target velocity 

and acceleration, the Cartesian target x position prediction can be computed from the 

simple linear equation: 

x(k+l)=x(k)+Tvx(k)+Tf2ax(k) (4.4) 

The use of Cartesian coordinates has two major disadvantages. The first is that 

measured (or estimated) range must be available in order to transform the measurements 

to the Cartesian coordinates. However, measured range is not always available, as for 

the case of infrared (IR) sensors. This can present a problem for multiple-sensor 

systems using Cartesian coordinates. Also, the use of electronic countermeasures 

(ECM) may deny the radar range measurement. 

A second disadvantage with Cartesian coordinate is that measurement errors are 
coupled. 

The Cartesian coordinates (x, y) are not independent. In other words, the use of 

independent filters in the x and y coordinates may lead to less accurate filtering than 

would occur if a coupled four-state (x, vxy, vy) or six-state filter were used. 
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4.3 Polar Coordinate Systems 

Using polar coordinates allows tracking to be performed in the same system 

from which the radar measurements are obtained. Also, if; the measured range rate is 

available, it can be used directly in the range filter. There will be a range filter and, if 

azimuth and elev~tion angles are used, there will also be two angle filters. If direction 

cosines are used, there will be three angle filters. The range filter is defined in a 

straightforward manner, but the choice of angle filters is more difficult. 

The most direct choice of polar coordinate angle filtering states would be angle, 

angle rate, and possibly angle acceleration. This set of states could be used for azimuth 

and elevation angles or for direction cosines. However, nonlinearities arise in the sense 

that a constant velocity target may not produce a constant angle rate ( or even 

acceleration). Thus, in order for the filter to match the system dynamics, higher order 

derivatives are required in the system model, even for non-maneuvering targets. The 

introduction of these "pseudo-accelerations" makes accurate extrapolation difficult 

because estimates of these higher order derivatives are required. 

An angle tracking filter using angle, angle rate, and angle acceleration can be 

derived by an adaptation of the Singer model, to the angular states. The adaptation is 

that the magnitude of the angular acceleration is range dependent. Unfortunately, results 

presented in the next section show that accuracy is degraded by the higher order 

derivatives which arise in this system. 

To alleviate the problems associated with the system angular dynamics, two 

other sets of angular tracking states have been developed and will be discussed . The 

resulting angle tracking filters require the use of range and range rate estimates, which 

are taken from the range tracker and which are effectively assumed to be known 

constants, in the transition matrices. An alternative is to convert to Cartesian coordinates 

for extrapolation. The following discussion begins with range filtering, and then two 

angle tracking filters are presented. 

4.3.1 Range, Range Rate Filtering 

The range direction filter will use range, range rate, and usually range 

acceleration as states. The Singer model can be used for range acceleration. The 

derivation, leads to the Kalman filter defined by the state vector and _transition matrix: 
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1 + w;71z T T/2 

<!>R=I w2T 1 + <: r(1-PRj{) I (4.6) p 

0 0 PaR 

The random driving matrix Q for the Singer model, while the measurement matrix is 

{

[1 o 01 
H = [1 0 OJ 

0 1 0 ' 
(4.7) 

Finally, the deterministic driving vector (JR) expresses the contribution due to own 

ship acceleration in the radial direction ( a IR) 

(4.8) 

The polar coordinate systems discussed in this section eliminate the requirement 

for higher order derivatives in the prediction at the cost of introducing a coupling 

between range and angle that arises during the extrapolation. This coupling is shown by 

the term cv; in the range filter transition matrix, and it also arises in terms involving 

range and range rate. 

4.3.2 The Direction Cosine, Velocity, Acceleration (A VA) Filter 

The direction cosine (A) is defined in terms of a component of target position 

(d) in the north, east, or down direction, and the range (R): 

A=% (4.9) 

In order to derive the state equation the complete the discrete representation for the 

target acceleration to give 
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( 4.10) 

(4.11) 

Coupling with the range filter has been introduced through the range and range 

rate estimates used in <l> and f The filtered estimates are used for prediction to the next 

(k + I) time frame. The initial estimates are the measured direction cosine and v 'I 

respecti vel y. 

4.3.3 Use of Range Rate for Velocity Aiding in the AV A system 

The accurate range rate estimate from the range rate filter can be used to 

improve the less accurate velocity estimates in the direction cosine filters This approach, 

although potentially less accurate avoid- the complexity of a nonlinear filtering system 

that utilizes the range rate measurement more optimally. Farina and Pardini discuss the 

nonlinear filtering approach for a two-dimensional case. 

Given estimates of own-ship velocity components ( -0 IN, -0 IE, -0 ID) estimated range 

rate ( -0 R) and direction cosines (AN , A E, AD), an estimate of the target component of 

range rate is obtained from the equation (since -Orn = -OR +-Om): 

( 4.12) 

Then, define 

(4.13) 

where -OTRA is the estimate of the target radial component of velocity formed by using 

quantities from the angle filters: 

(4.14) 

~ ~ ~ 
AN , A E , AD = Direction cosine estimates 

-OTN, -OTE, -OTD = Estimates of the components of target velocity 

The quantity RES represents the difference between the estimated target 

component of range rate (-Orn), which is derived from the usually accurate range rate 
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measurements, and the estimated target component of range rate ( VrnA) that is derived 

from the angle filters that only use angle measurements. Because the range filter 

estimate should be more accurate, correction terms can be applied. 

The use of range rate for velocity aiding has been found to improve velocity 

estimation. This technique is also directly applicable for establishing initial (k=l) 

velocity estimates in the angle filters using the initial measured range rate. 

Finally, an estimate w P of the magnitude of the line-of-sight rate vector is 

required for the range filter. This estimate is given by 

(4.15) 

where, under the assumption that AD << 1, valid for typical conditions in airborne radar 

tracking system, we write 

( 4.16) 

4.3.4 Azimuth, Elevation Angle Filtering System 

Next, we present a pair of angle filters that uses the azimuth and elevation 

angles, as states. The azimuth angle filter uses the component of velocity ( v H ) that is 

perpendicular to the line of sight and located in the horizontal plane as the second state. 

Similarly, the elevation angle filter uses the component of velocity ( v v) that is 

perpendicular to the line of sight and located in the vertical direction as the second state. 

The third states are accelerations ( a H , av) that are perpendicular to the line of sight and 

located in the horizontal plane and the vertical direction, respectively. 

The polar coordinate system is a rotating coordinate system. Equation ( 4.1) 

gives the vector equations that relate target motion in this rotating coordinate system to 

motion observed in the inertial (NED) system: 

dx d 
dt I 1 = d; I r + CU * X 

dvl dv 
dt 1 = dt I r + CU * V 

( 4.17) 

( 4.18) 

where subscripts I and r refer to inertial and rotating, respectively;. Also, cu is the 

angular rate of the rotating coordinate system with respect t-) the inertial system. 
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Finally, x and v are the vector position and velocity. 

The following unit vectors define the rotating coordinate system: 

iR=Unit vector in the direction of the range vector 

i H =Unit vector in the horizontal plane perpendicular to the range vector 

iv =Unit vector in the vertical plane perpendicular to the range vector 

(in the direction of i R * i H ). 

4.4 A Comparative Study of Angle Filtering Methods 

A study was performed to compare angle-tracking performance of three filters 

usmg the angle tracking state models described above. This study used a two 

dimensional Monte Carlo tracking simulation that examined the tracking of targets in 

the horizontal plane. The first filter used angle ( 17 ), angle rate ( f; ), and .angle 

acceleration ( ij) as states. The second system used direction cosine filters (with states 

A VA) to estimate and then the estimate azimuth angle was computed from 

( 4.19) 

This method was evaluated with and without using range rate velocity aiding. 

The third method used the angle filter, defined in the previous section, with states 

( 17, v H, a H ). Table 4.1 summarizes the characteristics of the tracking methods. 
___.------ lARLF :4.1 

SUMMARY OF TRACKIN(; METHODS EXA\IINEI> 

Ohtains Azimuth Ang7e 
Estimate (1/l 

One- One filter with ~talc~: ( r1. ry, ll·, Dircctlv 

'J WO ( l) 1 WO f1ll(:r~ with ~\ati:,;-: 
(IIN, ,.,..,.,JN) and (,\,. \ie.ae) 

(21 M;.1y use I{ aiding to 
improve velocity cstimat ion 

Threot One finer with states (T/. \'ff.fl>1) [)fre{:t !~· 

Tracking in the horizontal plane ( e =O) was considered. Two geometries were 

examined. For both geometries an initial range of 30nmi was assumed, and both the 

own-ship and the target velocity magnitudes were chosen to be flying to be 1 OOOft/sec. 

Also for both geometries, the own-ship was taken to be flying due north ( v 1 = 1000 i N ). 
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the angle rate is only about 0.35 deg/sec. Thus, the inadequacy of the first method for 

target offset conditions where higher order angle derivatives are developed is apparent. 

For the second geometry the target is assumed to perform a 3g maneuver perpendicular 

to its velocity vector and in the horizontal plane. The maneuver begins after scan 15 ( at 

time 30s) and lasts for 12s. The result is-that the target changes heading by about 66.5 

degrees, so that the target velocity vector after the tum is 
(4.20) 

Figure 4.4 shows the mean azimuth prediction error for methods one and two, but this 

time we also consider the condition where range rate velocity aiding is not used for 

direction cosine filtering (method two). Again, angle, angle rate filtering (method one) 

is significantly less accurate. The use of range rate aiding shows somewhat better angle 

prediction accuracy, but the primary benefit was found to be in the estimation of the 

north component of velocity, which has little effect on azimuth angle estimation 

accuracy for this geometry. Again, methods two and three were indistinguishable if 

range rate velocity aiding was used for method two. 
The angular prediction error standard deviations were about 12 mrad (0.012 rad) 

for all three methods for most of the encounter. The error standard deviation increased 

to a peak of about 15mrad at scan22 but returned to about I2mrad at scan 25. 
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Methods two and three require the estimated range and range rate in the 

transition matrix. All three methods require estimated range in the matrix Q. Thus, 

sensitivity to range and range rate estimation error was studied. First, the range and 

range rate measurement error standard deviations were increased from 1000 ft and 10 

ft/sec to 20.000 ft and 200 ft/sec respectively. The increase in angular prediction error 

associated with the increased range and range rate measurement errors was found to be 

negligible for both geometries. 

A second study was performed to simulate the condition where range and range 

rate measurements are unavailable, as in the case where ECM denies the radar range 

measurements. For this condition, nominal values (Rn, Rn) must be used for the range 

and range rate estimates that are required for angle tracking. The nominal values were 

chosen to be 

Rn =1000 ft /se, Rn =8nmi ( 4.21) 

The values for Rn and Rn , were chosen upon experimentation. It was found that 

a fairly small value for Rn was required in order to maintain acceptable dynamic 

response at shorter ranges. However, this led to larger random errors at ranges longer 

than Rn. 

Figure 4.5 summarizes the results obtained for methods one and two. Again 

method three gave essentially the same results, as did method two, so that only the 

results for method two ·are presented. 

Referring to the results in fig 4.5, method two now develops a large mean error, but the 
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mean error for method one is about the same as was found when measured range was 

available. Note that method one only uses estimated range to form the Q matrix and 

does not use estimated range rate. Thus, the only significant effect of the lack of range 

and range rate information is that the gains will be somewhat too large at ranges beyond 

Rn. Using an even smaller value of Rn would decrease the mean error for method two, 

but at the cost of a larger prediction error standard deviation. As the prediction-error 

standard deviations are significantly larger for both methods when measured range and 

range rate are not available. The larger prediction-error standard deviations at ranges 

greater than Rn result from improper choice of Kalman gain. Using a nominal range 

that is smaller than the actual range makes the elements of Q too large with the eventual 
result that the gains are too large. 

Tracking performance in the absence of range rate measurement was also 

examined for the second (maneuvering target) geometry. Results for this case also 

showed a significant increase in angular prediction-error standard deviation. However, 

the lack of measured range and range rate did not significantly affect the mean 

prediction error for this geometry. 

Conclusions for the typical conditions considered are that the direction cosine 

and ( 17, v H, a H) angle tracking filters performed well as long as reasonably accurate 

range and range rate were available. When range rate velocity aiding was used with the 

direction cosine filtering method, the two methods gave essentially identical 

performances. However, the angle angle rate filter developed a large bias error for the 

offset target condition examined. Even if measured range and range rate were assumed 

to be unavailable, methods two and three were still superior to method one. 

4~5 Tracking With Angle-Only Measurements 

There is an increasing utilization in MTT of passive sensors that produce no 

range measurement. Also, the use of electronic countermeasures (ECM) can deny the 

radar range measurement. Thus, specific techniques arc being developed for tracking 

when only angle is measured. The simplest approaches use either angle and angle rate as 

states or the polar coordinate systems with nominal predetermined values for range and 

range rate. However, as shown in the previous section these simple methods can lead to 

poor tracking performance. Thus, a variety of other, more complex techniques have 

been developed. 
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Several sets of coordinate Systems have been proposed for angle-only filtering. 

However, in all cases complex filtering (usually involving the extended Kalman filter) 

and changes (or maneuvers) in own-ship motion are required. Lindgren and Gong 

discuss an application using the four Cartesian states ( x, v x, y, v Y) for tracking in the 

horizontal plane with angle-only measurements. The system is shown to be 

unobservable until the own-ship motion changes direction. Convergence may occur 

after own-ship maneuver, but angle-only tracking performance is dependent upon the 

choice of own-ship maneuver and upon the initialization method used. 

Aidala and Hammel present a modified polar (MP) coordinate system that uses 

bearing (azimuth) angle, bearing rate, range rate divided by range, and the reciprocal of 

range as states. This system was derived in order to avoid the erratic performance which 

may be associated with the use of Cartesian coordinates. An extended Kalman filter is 

proposed, and again an own-ship maneuver is required. 
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CHAPTERS 

MEASUREMENT FORMATION AND PROCESSING 

FOR MULTIPLE-TARGET TRACKING 

This chapter discusses how sensor design and measurement data processing 

relate to the overall MTT problem. The emphasis will be on radar system design but the 

general techniques discussed for adaptive threshold setting and target resolution arc also 

applicable to infrared (IR) devices. 

An extremely important but difficult problem for MTT is multiple-target 

resolution. This problem presents a trade off issue between the determinations of the 

presence of multiple targets versus the false declaration of multiple targets given that 

only a single target is present 

The radar signal return is frequently corrupted by spurious returns resulting 

from jet engine (or turbine) modulation (JEM). The resulting range rate measurement 

can be highly disruptive to the tracking process. The radar signal return may also be 

corrupted by electronic countermeasures (ECM), again leading to track disruption Thus, 

we can only present a brief overview of possible techniques for eliminating, or at least 

reducing, the effects of these corrupting signals. 

5.1 Overview of Feedback Between Tracking and Detection Functions 

The observation process and the rest of the tracking loop are often designed 

independently for MTT Systems. This dichotomy can also be seen in the design 

specializations where one group of analysts is concerned with sensor design and another 

group with tracking. However, the tracking and detection functions should be 

interrelated. Thus, fig. 5.1 shows how information (feedback) from the tracking loop 

can be incorporated into the detection process. 
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Feedback can first be applied to determine antenna positioning, resource 

allocation, and transmission control. Basically, the approach is to sample important 

tracks more frequently and increase the time on target in order to improve the detection 

probability. In addition, the tactical situation may dictate that covertness he maintained. 

Thus, the transmitted power can be controlled so that tracks are maintained while 

minimizing the probability that the transmitted radar signal is detected by hostile aircraft 

or ground-based tracking systems. Possible techniques include limiting the system to 

intermittent search and adjusting the transmitted power according to the target range 

during track update illuminations. 

A more complex, but potentially important, application of feedback is to affect 

signal processing. Special processing that cannot feasibly be done everywhere may be 

performed in the limited regions of expected target returns. One application in this area 

is to form finer Doppler (range rate) filters in the region of an expected target return. For 

example, in a radar raid assessment mode (RAM) the size of the Doppler filters can be 

reduced so that multiple targets traveling in formation can be resolved based on small 

differences in range rate. Another example is the performance of detailed· signal 

processing for the purpose of determining target signature, thus indicating target type. 

However, typically, these techniques must also be accompanied by an increased time on 

target. Another application would be to apply ·special processing to recognize and 

reduce the effects of JEM returns in the vicinity of the expected target range rate. 

Basically, the approach is to reduce the threshold in the region of expected 

target return (higher probabilities of detection ( PD) and false alarm ( PFA) and to 

increase it in regions of greater than average background (clutter) power (reduced PFA. 

but also reduced PD). Thus, by selective choice of the threshold it may be possible to 
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obtain the required false alarm rate without loss of tracking performance. 

Another application of feedback is towards the final process of determining the 

number of targets present in a given return or set of returns. Because a single target can 

generate several detections in adjacent range, range rite cells, or angular positions, a 

redundancy elimination ( or merging) logic is required. This logic can be aided by the 

track-file information regarding the number of expected target returns within the region 

being processed. Thus, for example, merging of observations would be made less likely 

in regions where multiple targets are known to exist. 

5.2 Adaptive Threshold for Enhanced Detection and Tracking Performance 

Several techniques ( discussed in this section) have been proposed for choosing 

the detection threshold based upon expected MTT performance. Burlage introduced the 

idea of "coached" detection; whereby the detection threshold was reduced in the region 

of an expected tar get return. This region was chosen using the filter covariance matrix 

to identify the detection cells in the vicinity of the expected target return. The lowered 

threshold in this region led to an increase in the probability of false alarm ( PFA ) 

from 5xl 05 to5xl 03 • However, a typical resulting increase in probability of detection 

( P1'A) was, at 17km, from about 0.5 to0.9. The conclusion was that tracking range was 

increased by about 10 to 15 percent as a result of the use of adaptive threshold. 

5.2.1 Threshold Setting Based on Covariance Analysis 

Fortmann uses covariance analysis to determine the appropriate threshold 

setting. Using this analysis, the effects of missed detections and miscorrelation are 

represented by an average contribution to the covariance iteration (Ricatti) equation. 

Then, the threshold setting is chosen to minimize tracking error given the constraint of 

the set of feasible values for PD versusl's, , as defined by the receiver operating 

characteristic (ROC) curve of the system. 

5.2.2 Adaptive Threshold Setting Using One-Step Error Minimization 

The approach presented by McLane is to vary the threshold setting adaptively 

so that the expected tracking error after the next detection attempt is minimized. The 

appropriate setting is based on target SNR and position uncertainty, and the derivation 

uses a standard detection model. A standard minimization procedure is performed and 
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algebraic simplifications are made with the result that the desired threshold setting is 

(5.1) 

Tracking error was examined for azimuth angle ( 17 ), range (R), and range rate 

( R ). The results in table 5 .1 were obtained using a combination of Monte Carlo and 

covariance methods. The results were derived using 100 Monte Carlo runs. The values 

given for tracking range (T90) and tracking error standard deviation (ax) are normalized 

with respect to the values for the nominal setting. 
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Table 5.1 indicates that use of an appropriately chosen fixed threshold does nearly as 

well overall as the full adaptive method. However, PCD is somewhat better for the 

adaptive threshold method. Also, a significant -increase in the expected number of false 

correlations results from use of the fixed ( PFA = 105) versus the full adaptive threshold 

method. Note that PCD is highest (and NFc is the lowest) for the nominal setting 

(PFA = 109) because there are so few false alarms to mistake for true target returns. 

However, the nominal setting leads to many more track deletions and larger tracking 

error because of missed detections. Similarly conclusions were also obtained when an 

improved confirmation and deletion logic was used. 

5.2.3 Combined Adaptive Thresholding and Branching 

An appealing approach is to lower the threshold in the search area of an 

established track and then to apply branching for any questionable returns. What might 

be considered "questionable" could be made a function of available computer resources 
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(empty track files). The lowered threshold will improve track maintenance and the 

branching can be used to maintain tracking accuracy in the presence of the inevitable 

increased number of false alarms. This approach is particularly applicable to 

maintaining tracks moving through patches of clutter. 

Results given indicate that the combination of a lowered threshold and branching 

can lead to an improvement in track maintenance performance that is equivalent to an 

increase in signal power of about 2dB. It has been found that a 2dB increase in signal 

power is worth about an IO-percent increase in tracking range as measured by (T90). 

5.3 Measurement Processing for a Clutter Background 

Ideally, the threshold setting within a given detection cell could be calculated 

from the returns in surrounding reference cells on the same scan. This approach is valid 

when the background interference is uncorrelated from scan-to-scan, and when the 

reference cells are independent and representative of the background. However, when 

the ground is illuminated, the same large amplitude clutter returns may persist over 

many scans and may be contained in several reference cells. In this case, more complex 

processing is required so that the processing of the return within a given detection cell 

will also be based on the returns found within the cell on previous scans. Using this 

approach, the goal is for the tracking system at least to have interclutter visibility, so 

that it can detect and track targets that are between large clutter returns. 

The clutter background is nonhomogeneous and typically contains extraneous 

sources that produce returns which can easily be mistaken for true target returns. Fig 5.2 

gives an overview of the combined detection and tracking processes that can be used for 

a clutter background. First, a constant false alarm rate (CF AR) logic is used to adjust the 

threshold according to the observed background signal level. One technique used is to 

estimate parameters of the background signal level for use in setting the threshold so 

that the required false alarm rate is achieved. Also, the threshold should be adjusted 

based on the number of threshold crossings. This is required in order to compensate for 

modeling errors, such as the occurrence of non-Rayleigh clutter statistics when the 

Rayleigh model is used. 
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In general, feedback from the MTT tracking loop to the activity control function 

will also exist This is so that tentative tracks, which are later deleted (and thus declared 

to be false returns), can be used in the activity control statistics. Also, the number of 

stationary points, as determined by the logic discussed below, can be fed back and used 

to aid in estimation of the local clutter density. 

The clutter point canceller ( or clutter map) technique establishes tracks on 

persistent returns from stationary objects. Returns within a gated region of a stationary 

point track can be removed from further processing. Input returns that are not associated 

with either an existing stationary point or a regular moving track are used to initiate 

tentative stationary and moving tracks. Then, later data are used to determine which (if 

either) hypothesis is correct. If the return is a false alarm that is from neither a clutter 

point nor a new target, the tentative stationary and moving tracks will be deleted. 

A convenient method for maintaining a stationary point track is to keep a 

counter with the track. The counter is incremented by amount y whenever an 

observation associates with the stationary track and decremented by amount S 

whenever there is a scan with no association. The track is deleted when the counter 

reaches zero. The counter is limited to maximum value M so that tracks can be deleted 

within a reasonable length of time. It may also he appropriate to vary the form of the 

correlation and tracking algorithms as a function of the clutter background. 

5.4 Methods for Determing Target Multiplicity (Range/Range Rate Resolution) 

The question of unresolved detections is one of the major issues in MTT. For the 

radar application, this first involves the problems of detecting and resolving multiple 

targets within adjacent detection elements. Also, it is important at least to determine the 
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presence of multiple targets within the radar beam width when these targets cannot be 

resolved by using differences it) range or range rate. Techniques have been developed 

for processing the radar range, range rate (Doppler), and angle returns to determine 

target multiplicity. 

The presence of closely spaced targets can lead to problems in detection as well 

as resolution. Typically, the threshold within a given detection cell will be determined 

by the returns in adjacent cells that are used to form an estimate of the local noise level. 

Thus, the presence of one or more interfering targets within the reference cells will lead 

to an increased threshold and a resulting loss of detectability within a given detection 

cell 

The frequency discrimination capabilities of modem high pulse repetition 

frequency (HPRF) radars produce very accurate range rate estimates. Typical HPRF 

range rate measurement errors are on the order of only a few feet per second. This 

capability his led to the design of a raid assessment mode (RAM). This mode is 

periodically entered during the tracking process to determine if a given track represents 

a single target, or if it actually is a single track on several closely spiced targets. 

A radar MTT system may have difficulty resolving a stream raid or a wave 

raid scenario. A stream raid or wave raid threat consists of several closely spaced 

aircraft or missiles traveling at nearly the same velocity. The raid assessment mode 

(RAM) is used to search for targets in a designated location in space, and to determine if 

a return represents a single target or a cluster of targets. The purpose of a RAM mode is 

to provide an estimate of the number of targets it the cluster. Resolution of the elements 

of the cluster is possible by utilizing longer time on target and frequency agility. 

5.5 Target Multiplicity Detection Through Monopulse Angle Processing 

The technique presented in this section addresses the important problem of 

detecting unresolved targets through angle processing. The basic technique is general 

and can also be applied to processing in Doppler (range rate) and potentially range as 

well. 

To obtain a meaningful angle measurement in the case of multiple targets in 

the beam, an additional technique must be introduced. This is achieved by estimating 

the angular extent of the target collect ion as well as the angular centroid. Joint centroid 

extent estimation can be accomplished because the presence of more than a single point 

target in the beam tends to produce extra degrees of freedom in the observable. From 
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this an estimate can be obtained which corresponds to a measure of angular extent. If 

the individual targets themselves can be safely assumed to be of negligible angular 

extent, a large estimated value of extent serves to indicate the presence of multiple 

targets. In addition, the estimated value of extent is itself a measure of target separation 

(which can be. used to ascertain individual target locations if relative target cross 

sections are know or can be assumed). 

5.6 Measurement Degradation Due to Jet Engine Modulation and Electronic 

Countermeasures 

Jet engine modulation (JEM) has been shown to have potentially degrading 

effects upon tracking performance. Also, it is known that a 'number of electronic 

countermeasures (ECM) techniques have been developed to corrupt the radar return, 

and thus disrupt tracking. This section briefly describes some of the most relevant 

characteristics of J EM and ECM and outlines approaches that may be helpful in 

reducing their effects for the MTT problem. However, these techniques typically require 

either extensive signal processing to recognize the corrupting effects during observation, 

or extensive additions to the MTT tracking logic in order to reduce the ultimate effects 

of the corrupting measurements. 

5.6.1 MTT Modifications for JEM 

The use of pulse Doppler radar provides a range rate measurement for tricking. 

However, in practice the returns from a single aircraft target often lead to multiple 

observations at the same range and angle, but with different range rates. Unfortunately, 

the correct range rate may not even be included in the observation set. The spurious 

range rate observations are the result of modulation produced by the motion of internal 

components of the jet engine. This modulation (JEM) tends to be of highest amplitude 

for head oil geometries and begins at about two-thirds of the usual tracking range. The 

modulation is also typically characterized by harmonic relationships among the returns. 

The exact pattern of JEM returns is dependent upon the particular aircraft being 

observed and the range. However, the deviations of the JEM returns from the true target 

range rate (skin return) are often about the same as the expected deviations between true 

and expected ret urns during the conditions of target maneuver. Thus, in the absence of 

a skin return, a JEM return may correlate with the track and lead to a false indication of 

maneuver. Conversely, if the target does maneuver, a JEM return can appear closer to 
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the predicted range rate than is the true skin return, and thus be correlated with the track 

ill question. In this case, the true target maneuver may go undetected. Finally, because 

multiple spurious returns are generated from the single target there is the potential to 

form multiple tracks on the same target. 

There are basically two approaches to the JEM problem. The first approach is 

to examine the signature of the components using harmonic processing and amplitude 

information in order to identify returns that are likely to have been produced by JEM. 

Thus, once relative likelihoods of validity are determined, the correlation and track 

initiation processes are designed so that they heavily favor returns that have been 

designated as likely to be from the skin. However, this approach is highly complex. 

An alternative (or complementary) approach is to modify the MTT logic to 

account for the potential presence of JEM. For example, one technique uses the 

principle that observations which satisfy gates with existing tracks in range and angle, 

but differ in range rate, can be identified as likely JEM returns. This logic reduces 

spurious track initiations. Under certain conditions of ambiguity, range rate observations 

either can be ignored or branch-mg type logic can be used to defer decisions on the true 

range rate measurement until further data are received. However, note that range and 

angle information can be used for track update ( or new track initiation), even if the 

range rate observation is questionable. 

As discussed by Nelson, a time-delay maneuver detector can be used so that 

consistency between the range rate measurements and the target flight path is 

established before the potentially spurious range rate is accepted. Other techniques 

include the use of more complex range-range rate gating procedures and the 

maintenance of tracks on the JEM lines in addition to the target skin return. Then, using 

the latter method, spurious returns corresponding to JEM line estimates can be 

identified, and it may also be possible to update estimated target range rate using a JEM 

return and the expected offset, even though the skin return is riot present. 

5.6.2 MTT Modifications for ECM 

A wide variety of deception techniques have been developed for denying or 

confusing the measurements of range, range rate, or angle. The simplest technique is 

noise ( or barrage) jamming, which can deny the measurement of range and range rate. 

The tracking coordinate system must be chosen so that track can be maintained in the 

presence of angle-only measurements. This constraint favors the use of polar 
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coordinates over the Cartesian system. When range and range rate estimates are used in 

the angle tracking filters, it is necessary to provide "nominal" values for the cases where 

no direct range or range rate measurements are available. However, crude estimates of 

range can be obtained from the original range estimate (or measurements) and the line 

of-sight rate. Then, eventually bum-through may occur so that a range measurement can 

be obtained. Finally, special filtering techniques have been developed for tracking with 

angle-only measurements. 

Sophisticated ECM devices can corrupt the returning radar signal so that 

incorrect range, range rate, and angle information are received. Furthermore, these 

corrupting signals may be generated in a systematic manner with the intent of confusing 

the tracking system. For example, the RGPO (range gate pull-off) device can delay the 

returning radar pulses so that the tracking system "sees" the target as moving away. 

A never-ending game exists between the designers of ECM techniques and 

those designing electronic counter-countermeasures (ECCM) techniques to counter 

ECM. A variety of ECCM techniques exist in order to design the transmitted radar 

signal and the processing techniques for the received signal to be resistant to ECM. 

However, the techniques developed by the MTT system designer represent the last line 

of defense for the total ECCM system. 

For the MTT system to operate successfully in the ECM environment, it is 

necessary that models be developed to describe potential ECM returns, Then, as with 

JEM, measures of likelihood for the validity of returning observation can be used to aid 

the track initiation and correlation processes. Also, extensive consistency tests between 

the state estimates can be used to detect track degradation due to ECM before track is 

lost. For example, independent filters can be used to estimate range rate through 

measured range alone and through measured range rate alone. Consistency checks can 

then be used to determine the presence of range or range rate deception ECM. The 

important principle for the design of military systems is that ECCM (and JEM) logic 

should be an integral portion of the M'TT system design from inception. 
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CHAPTER6 

DESIGN OF A DETAILED MULTIPLE-TARGET 
TRACKING SIMULATION 

The purpose of this chapter is to provide the tools and the framework that can be 

used to design a detailed Monte Carlo MTT simulation. The previous chapter discussed 

ways to obtain preliminary estimates of system performance. However, when evaluating 

a complex problem containing many random elements, such as an MTT system, it is 

often necessary to use Monte Carlo methods. 

Briefly, the Monte Carlo approach is to examine the statistics of a random 

process by performing a large number of computer experiments and then compiling 

statistical results. Random number generators replace the random processes and 

nonrandom elements are simulated exactly. 

6.1 Generation and use of Random Numbers 

This section outlines methods for obtaining samples from commonly used 

probability densities. The process of random number generation usually begins by 

obtaining numbers from the uniform density. Computer systems typically allow the user 

convenient access to a subroutine that will generate uniform random numbers over the 

interval (0, 1 ). Some discussion has indicated potential problems associated with 

nonrandom properties, such as periodicities, that may occur for certain of these uniform 

random number generators. However, experience with MTT simulations has shown that 

problems which at first may seem to be the result of "bad" uniform random numbers are 

later typically found to be attributable to faulty system design or to programming errors. 

Perhaps the complexity of most MTT simulations and the resultant irregular 

manner in which random number generators arc called tends to mask inherent 

periodicities or similar problems. However, to be safe, some care should be exercised in 

the choice of a uniform number generator. 
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6.1.1 Conversion of Uniform to Other Random Numbers 

Convenient transformations exist for the conversion of uniform random 

numbers to numbers from other probability distributions. Define u to be a random 

number from the uniform distribution over the interval (0, 1 ). Also, define to be a 

number having the probability density f (x), such that 
00 f tcx)d.x = 1 (6.1) 
-oo 

Then, a number from distribution f(x) can (in theory) be generated using the 

relationship: 
00 

u = f f(z)dz = F(x) (6.2) 
-00 

and solving for x in terms of u. 

Equation (6.2) is convenient for generating numbers from probability densities that 

have closed form integrals. For example, consider the exponential probability density: 

(6.3) 

Then, a uniform random number u is conveniently converted to an exponential variable 

through the transformation: 
s 

u = f Ys e -Y, dz = 1 - e -~ 
0 

(6.4) 

thus, 

s =-sln(l-u) =-slnu' (6.5) 
I',. 

Note that u' =1- u, used in (6.5), just defines another uniform random number that can 

be generated and used directly. 

An MTT simulation will always require the generation of random measurement 

errors. Also, it is frequently desirable to generate random target accelerations. Both 

measurement error and target maneuver statistics are typically modeled through use of 

Gaussian random numbers. 

Numbers from the Gaussian ( or normal) probability density cannot be generated 

directly using (6.2). Box and Muller present a method which generates a pair of 

Gaussian variables ( ri, r2) from a pair of independent uniform variables (ui, u2). The 

transformation is 
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r, = J- 2 ln u, cos(2nu2) 

r. = J- 2 ln u1 sin(2nu2) 

(6.6) 

(6.7) 

The resultant r 1 and r 2 are independent Gaussian variables with 7.ero mean and 

unit standard deviation. The transformation from the zero-mean, unit standard deviation 

Gaussian r, to a generalized Gaussian x with mean µ x, and standard deviation ax is 

(6.8) 

6.1.2 Generation of Time-Correlated Random Processes 

It is often necessary to include the time-correlation properties of certain random 

variables. For example, a Gaussian measurement noise process may be correlated from 

one measurement frame to the next. There is no general solution to the problem of 

generating random numbers with arbitrary time-correlation properties while maintaining 

a specified probability distribution. However, there are simple algorithms for generating 

time-correlated random variables for the most important random processes that require 

modeling in radar detection and tracking simulation. 

Probably the most important time-correlated random process to be modeled is the 

first-order Gaussian-Markov process. This process, used to model. random target 

acceleration and correlated ( colored) noise processes, is defined for quantity x by the 
recursive relationship 

x(k + 1) = Px (k) + ~1- p; axr(k) (6.9) 

The spectral density of the first-order Markov process is 

6.10) 

Because the autocorrelation function and the spectral density are Fourier transform 

pairs, the first-order Gaussian-Markov process can be defined by either (6.10). The 

spectral representation of ( 6.10) is sometimes most suitable for fitting to experimentally 

derived data. Then, after determining r ( or equivalently fJ ) and ax, the process can be 

conveniently simulated using (6.9). The initial value, x (1), is generated as a zero-mean 

Gaussian with standard deviation ax . 
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6.2 Monte Carlo Simulation Design and Interpretation of Results 

In this section, we outline the most basic principles of interpreting Monte Carlo 

simulation data that are valid for all types of system analysis. 

6.2.1 Establishing Confidence Intervals 
The primary outputs of a Monte Carlo simulation for MTT are estimates of such 

quantities as the mean tracking error, the probability of having established a valid track, 

etc. It is important to be able to place confidence intervals on these estimates such that 

the intervals will include the actual values of the quantities being estimated with a 

known degree of uncertainty. 

Consider an estimate ( .x) of the parameter x. Then, the confidence interval is 

defined by placing upper and lower limits so that 

Pr[JL (a, .x) ~ x ~ fu (a, .x)] = 1- a (6.11) 

Some of the most basic outputs derived from a Monte Carlo simulation are 

estimates of the probabilities of occurrence of various events (such as false correlation). 

The unbiased estimate ( p) for the probability ( p) of occurrence of an event that 

occurred n times in N opportunities is 

p=n!N (6.12) 

The standard deviation of the error on the estimate p is given by 

(6.13) 

Assume enough samples such that n > 5 for p ~ 1 I 2 or N-n > 5 for p > 1/2. 

Then, the estimate p will have Gaussian distribution with mean p and we can replace p 

in (6.13) by p so that: , 

a P = Jp(l - P~ (6.14) 

Thus, the confidence limits of (6.6) are defined through the relationship: 

(6.15) 
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6.2.2 Simulation Design 

A great deal of study has gone into the development of methods for efficiently 

performing Monte Carlo simulation. The application of these methods to a problem with 

the complexity of MTT appears, however, still to be an open area for research. 

One basic principle for efficient MTT Monte Carlo simulation is to maintain the 

same conditions, as much as possible, when the comparative performance of two 

methods is being evaluated. Thus, it would be desirable to maintain the same detection 

sequence and the same random measurement errors during the comparison of two 

correlation methods. However, this requires special effort because the order of the 

random number sequences readily changes as, for example, differing numbers of tracks 

are maintained by the different correlation methods so that different target illumination 

sequences occur. 

One crucially important feature is to ensure repeatability so that ally given run ( or 

runs) of a Monte Carlo simulation can be repeated with more detailed printout. This . 

ensures that interesting, or anomalous, results can be examined in more detail without 

repeating the entire Monte Carlo experiment (for all runs). This can be accomplished by 

printing out the random number seeds (the first uniform number used) at the beginning 

of each run. Then, the run can be conveniently repeated for more detailed examination 

by initiating the simulation with the appropriate random number seed. 

6.3 Selection of Evaluation Statistics 
First, it is extremely helpful in the interpretation of results to plot time histories 

of the true target positions, the observations, and the resulting tracks that are formed. 

The plot will give either angle or range as a function of time. 

In addition to track plots, there are three main categories of statistics that should 

be compiled in summary tables and, whenever possible, plotted as functions of time. 

The three categories, discussed below, are track maintenance, correlation, and kinematic 

estimation accuracy. 

6.3.1 Track Maintenance Statistics 
The three most important track maintenance statistics are the probabilities of 

having an initiated track, a confirmed track, and a confirmed track that will not later be 

. deleted. The probabilities of having at least N confirmed tracks for a particular geometry 

with four closely spaced targets. Ideally, we would like to have exactly N = 4 confirmed 
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tracks at all times. However, for the particular system being evaluated, confirmation of 

the fourth track is delayed. Later in the ruin, spurious tracks aremaintained as a result of 

miscorrelation and the associated poor tracking performance. Finally, for the same case, 

fig. 6.1 shows the probability of having N confirmed tracks that will not later be deleted. 

Fig 6.1 indicates that a substantial number of tracks were confirmed and then were later 

deleted. 
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Another pair of interesting track maintenance statistics are the expected number 

of tracks and the number of targets in track. For the latter statistic, a track is assigned to 

the target in track which produced the last observation included in the track. Ideally, 

both of these numbers should equal the number of true targets. However, divergences 

from the ideal are shown, for example, as multiple tracks are formed on the same target. 

Fig 6.2 shows these statistics for the same k)ur-target case that produced fig 6.2. Note 

that during most of the encounter more than four tracks are expected, but the expected 

number of targets in track is less than 3.5. 
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Expected track length and the average length of the tracks remaining at the end 

of each Monte Carlo run are important statistics. Finally, track deletion statistics of 

interest are the averag_e time required to delete a track on a target that leaves the scan 

volume and the number of premature track deletions that occur when the target in track 

is still present. 

6.3.2 Correlation Statistics 
Probably the most important correlation statistics are the probability of correct 

correlation (P cc), the probability of false correlation (P re ), the probability of correct 

decision (P CD), and the probability that the gate will include a true target observation 

(P cJ. The expected number of false correlations per scan also provides a useful plot. 

Another interesting statistic is track depth. Track depth is defined for a given track as 

the number of observations which we can go back from the most recent observation 

before the actual target identity of an observation changes, or before the first 

observation of the track is reached. 

6.3.3 Kinematic Statistics 
The usual kinematic statistics are tile means and standard deviations of the 

tracking errors for such measures of position and velocity as range, range rate, angle; 

and target velocity components. However, problems can arise in the compilation of the 
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statistics in the presence of false correlation. Either a track-oriented or a target-oriented 

approach can be used. Using either approach, statistics must be compiled based upon the 

last observation received for a given track. Using the track oriented approach, the error 

are compiled for a given track by comparing the tracks estimates with the true quantities 

associated with the target that produced the last observation assigned to the track. 

Using the target-oriented approach is somewhat more complicated. Here, we 

can use the track that includes the last observation generated by the target. However, a 

provision may also be made not to use a track that has a more recent update with an 
'" 

observation from another target. Also, special logic must be used to account for the 

condition where tracks are dropped so that there ·is no longer a track on a given target. 

6.3.4 Other Statistics 
In addition to the statistics discussed previously, it may be desirable to compile 

statistics related to computational requirements. For example, the number of tracks (and 

hypotheses if multiple hypothesis tracking is used) formed, or, when using an 

electronically scanned antenna (ESA) system, the number of required track updates may 

be of interest. Finally, for conditions where the input measurement process is so 

complex that a well-defined statistical model is not available, it may be desirable to 

compile statistics on the input observations. 

6.4.5 A Single Measure of Effectiveness 
Using a variety of statistics may lead to contradictory conclusions. For 

example, one method may have smaller tracking errors and prematurely delete fewer 

tracks, while another competing method may have a closer match between the expected 

number of targets and the number of targets. Thus, the following general measure of 

effectiveness (MOE) is presented. 

An.effectiveness measure is computed at each scan (k) such that 

MOE(k) = -1 Is/k) 
Na 1=1 

(6.16) 

Finally, to evaluate tracking and correlation performance, a rule is defined such that a 

target corresponds to an existing track only if the last observation generated ( on a scan 

prior to k) by the target is included in that track and if that observation is the last 

observation in the track. Otherwise,: the target belongs to no track and any correlation 

with observations from that target are taken to be false. Thus, using this rule, the 
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condition where multiple tracks are formed on the same target is penalized. 
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Table 6.1 presents representative effectiveness values that may be assigned to 

various correlation events for an observation. The values range from zero (for incorrect 

correlation) to unity. The highest values (1.0) are assigned to correct correlation with a 

confirmed track and to the correct recognition of a new source. Correct establishment of 

a new track and correlation with an existing tentative track lead to intermediate score 

values (between zero and unity) if the target has been previously detected. The 

reasoning for this last rule is that an ideal system would have previously established a 

confirmed track and thus, for an ideal system, the observation in question would be 

correlated with a confirmed track. 

6.6 Simulation Development 

This section outlines· the steps involved in the actual development, doc 

umentation, and verification of a detailed Monte Carlo MTT simulation. The 

recommended approach is based upon the development of several TWS simulations for 

major airborne radar tracking systems. However, the general methods are applicable' to 

any detailed MTT simulation. 

Development of an MTT simulation typically takes about one year. Once 
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developed, the simulation may be used for many years. It is important to remember that 

numerous modifications and changes in personnel involved with the simulation are to be 

expected. In addition, a high degree of credibility in the analysis resulting from use of 

the simulation requires a thorough testing of the simulation, a clear understanding of 

how all functions are modeled, and how these junctions influence the results obtained. 

Thus, emphasis on modular design and extensive documentation are worthwhile (and 

probably necessary) investments irr time. Attempts to shortcut these processes may lead 

to temporary gains in development time, but in the long run such would be costly. 

In order to complete any large development in a reasonable period of time, it is 

necessary to divide the task into smaller tasks, which can be handled independently by 

different people. This can lead to difficulties when the pieces are later collected to form 

the whole. Minimization of this type of problem requires good communication between 

the members of the development team and good coordination of the team. This is 

probably best handled through the use of a coordination focal point - the team leader. It 

is also the team leader's job to see that all procedures set forth for the development are 

complied with and to understand the design and development of the various parts of the 

simulation. This understanding is necessary for the coordination of the vanous 

interfaces between modules and as a check on the clarity of the documentation. 

A convenient breakdown for Monte Carlo radar TWS simulation is shown in 
., 

fig 6.3. 
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Figu1e 6 3 

The case of modification and flexibility of use of each module is enhanced by 

breaking down each high-level module into a module driver and several subroutines 

(one such breakdown of the track initiation/deletion function. However, distributing 

development of the subroutines among too many individuals can create so many 

interface points that the integration of the entire simulation becomes difficult. Although 

proposed methods for defining a structured program differ considerably, the following 

is generally accepted by many interested in software design 'hid serves as an example of 

a technique used with success, 

-I Guidelines 

At the initiation of the development, some ground rules (programming standards 

and practices) should he set forth as a guide to how the development will proceed and to 

ensure a reliable product at completion. 

2 Language 

An appropriate choice of programming language is essential. The most 

important feature of the language is the availability of structured programming controls. 

Without these controls, the clarity of code and ease of future modification will be 

limited. A language that insists on adherence to structured programming techniques 

(e.g., if-then-else. go-to-less/top down flow control) and does not afford many pathways 
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around those techniques is best. Otherwise, the guidelines should require strict 

adherence to the structured programming facilities of the language. 

If possible, a single language (and a restricted programming style) should be 

used in writing the modules. This will make it easy for program developers to switch 

between modules when making future additions or attempting to understand or correct 

program logic. Additional convenient features to look for in a language are: (I) open 

naming of variables (large number of letters per name): (2) the ability to reference 

associated data items as a group or individually: (3) special tools for handling arrays 

(pointer and link lists) and arithmetic computations: (4) free format for commenting and 

coding: and (5) ease of input/output (I/0) between routines and between the simulation 

and the user. The latter is especially important in debugging or detailed reviewing of 

specific occurrences of particular interest in a Monte Carlo iteration and for easy 

changing of test cases for simulation execution. Other features of interest might be the 

ability to change the dimensions of arrays at compilation or at execution time, the ability 

to include identical blocks of code or data easily in all modules, and the ability to 

restrict variables as to input or output use only. Finally, if a change in the computer on 

which the simulation will reside is possible during its life, consideration should be given 

to a language that is transportable (that is, available on many machines). 

3 Module Design 
Before actually programming any functions, a flow of the process should be 

developed as a guide for the coding. This flow should be documented in an easy to read 

form (avoiding use of variable names and describing the process in terms of the ideas 

involved) that mimics the programming language. It will later serve as both a high-level 

description of the process and as a valuable aid in quickly understanding the process, 

which will enable the reader to avoid becoming bogged down in the minute details that 

often obscure the larger picture. 

4 Programming Style 
Having chosen a language with the necessary capabilities, a set of: rules 

governing the use of the language should be proposed to reduce the potential for error. 

For example, the restriction of all communication between modules to the argument list 

of the call will ensure a Well controlled and easily followed interface. Some global 

common for the entire simulation might be useful for data such as physical constants 

which should be the same wherever they appear in the simulation. Requirements for 

alphabetizing and identifying all arguments as to input or output and for defining all 
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arguments and local variables of each routine as to type, size, and function insure 

against misuse of the variables. 

Comments should precede each small block of code (several lines involved in 

a process) with additional comments to the side of those procedures that arc riot 

immediately clear otherwise. Also, each routine might be preceded by a general 

description of the purpose and function of the routine, noting any important features of 

the routine. Routines should be held to small size for ease in reading and maintenance, 

with subroutines used for all definable functions larger than a predetermined number of 

lines of code. 

5 Debugging and Detailed Analysis 

The option to list inputs and outputs of each module and its routines, specified 

at run time, should be included so as to debug the modules properly as well as 

understand what each function is doing under the unusual conditions which sometimes 

arise in one Monte Carlo iteration or another. Also, the general ability to follow the 

gross functioning of the processing (accomplished by listing such items as observed 

signal data, observation-to-track association data, and track filtering data), and the 

ability to repeat any Monte Carlo run in a series (accomplished by making the initial 

random number seed of each Monte Carlo run available) are necessary. These 

capabilities are required so that the designer may fully understand, and thus potentially 

improve upon, algorithm performance. 

6 Testing 
Testing is the next important part in the development procedure, and it serves 

to generate a great deal of the future credibility of the simulation. Once a module is 

developed, an extensive test plan should be formulated and documented. This test 

should consider the module in isolation and exercise all logic branches, so that the 

details of the processing may be thoroughly verified in a way which would be difficult 

within the larger simulation. The test documentation also serves as a demonstration of 

what the module is expected to do and helps to clarify the functioning of the module 

further to someone unfamiliar with the code. A test driver for the stand-alone module is 

written to execute the test plan. The test driver is then saved to allow for further detailed 

investigation of the function in an environment that is isolated from the larger system. 

The test driver will also serve as an example of how the module interface is to be 

handled. 
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7 Modification of Routines 

As routines in the simulation are modified over time to add capabilities, to improve 

algorithms, a history of the nature of the changes made to each routine should become a 

part of the general description of the routine. In addition, the name of the routine should 

incorporate an identifier for the version of the routine. The above provisions help to 

ensure that the latest version of module is being used and help to trace the capabilities 

used in older versions of the simulation when making comparisons between recent and 

part simulation results Finally, very specific (non-general) processes should be isolated 

(as in module drivers) wherever possible for ease of future modification. 

8 Simulation Output Data 

The proper presentation of the data generated by the simulation is of utmost 

importance because these data form the basis of the decisions which will be made as a 

result of using the simulation. 

The most convenient form for review and analysis of statistical data is plotted 

output. Thus, access to a good plotting package is desirable. This package should be 

able to label all plots adequately and plot easily readable multiple curves on a single 

grid. 

In addition to ensemble Monte Carlo statistics, regular summary output indicating 

track quality for each Monte Carlo iteration (along with the Monte Carlo starting seed) 

is a desirable option. By examining individual runs in detail, the designer can determine 

the source of irregularities that appear in the ensemble statistics. Such output typically 

consists of a list of the tracks formed during each iteration, including track information 

such as the number of track drops, the time of track miscorrelations, the target 

originating the track, the time of track initiation, and the probability of updating the rack 

arid detecting the target for the entire iteration. 

The collection of statistics to provide meaningful data for a multiple target multiple 

track Monte Carlo simulation is riot straightforward. A major complication is that 

various tracks will represent different targets on different iterations and even on the 

same iteration if a track drop and restart occurs. In addition, an active track may be 

assigned to different targets during its life. One resolution of this problem is to assign a 

key (e.g., target identifier) to each track when it is first initiated, and then to accumulate 

(in a single group) all data for tracks having the same key. 

Another problem source is that various processes may lead to the same statistical 

representation so that interpretation of the results may be misleading unless a significant 
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variety of output representations is provided. For example, a plot of the mean and 

standard deviation for all tracks on a given target may not distinguish whether many 

tracks had a short period of large tracking error or just a few tracks had long periods of 

large tracking error. As another example, if we want to know how often spurious tracks 

are generated, simply counting the number of tracks and comparing that number to the 

number of targets is insufficient (because some targets may not be tracked at all, while 

other targets may produce many spurious tracks). 

Another deleterious effect on data interpretation of tracking error is the 

combining of tracks at various points in their histories into the same statistics point, thus 

obscuring the true track response over time. For example, a time history of the tracking 

error for a given target may, when averaged over many Monte Carlo runs, include . 

statistics on tentative as well as confirmed tracks, and thus will not give valid statistics 

for either track state. In order to control -this situation, restrictions on the data collection 

may be imposed. For example, the compilation of tracking statistics may be restricted to 

confirmed tracks. 

Another situation to look out for is the accumulation of data by specific 

number, such as the probability of having a given number of tracks at a given time. The 

number changes with each Monte Carlo iteration and varies considerably from time to 

time, leading to a jumble of data ( criss-crossed lines). An easy way to view such data is 

by having the lines represent "Nor more" occurrences for each number of interest, or by 

showing the expected number of occurrences at each time. 

Another situation to keep in mind is that a data processing period may require 

more time in one Monte Carlo than in another. It is, therefore insufficient to accumulate 

statistics on a processing period basis because these may represent widely varying times 

(for example, collection of data on a scan basis when the scan time may vary). A 

solution for this problem is to collect statistics on a time-bin (window in time) by time 

bin basis, making sure to show each event in all time bins covered by its duration if a 

discrete count of events is desired, (such as number of track drops), care should be taken 

to show each event at least once, but only once. Finally, because the interpretation of 

data depends on sample size, the number of samples used to produce the statistics must 

be included along with the statistics. 
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CHAPTER 7 

APPLICATIONS OF THE RADAR 

ELECTRONICALLY SCANNED ANTENNA TO 

MULTIPLE-TARGET TRACKING 

Techniques for utilizing the powerful adaptive features of the electronically 

scanned antenna (ESA, agile beam or phased array radar). The ESA has the capability to 

perform adaptive sampling by directing the radar beam without inertia in any direction. 

This property gives the ESA the potential to achieve MTT performance that is 

significantly improved over thatobtainable with the conventional mechanically scanned 

antenna (MSA). However, efficiently utilizing this capability requires a considerable 

departure from the previous track-while-scan (TWS) type of system design used with 

the MSA. The correlation logic becomes more complex and new problems, such as 

specifying adaptive illumination logic, arc introduced. 

Because the MSA is mechanically gimbaled, it is almost always con-strained to 
J/ 

a set of predetermined fixed scan ·patterns. These patterns can be changed periodically, 

such as to increase elevation coverage at the cost of azimuth. However, the inertia of the 

moving antenna severely limits the pointing flexibility of the MSA. On the other hand, 

the ESA can be repositioned within a few microseconds, using electronic phase shifting 

rather than mechanical gambling. 

The MSA scan constraints naturally lead to the fixed sampling rate TWS system. 

Using the TWS approach, all targets within the scan volume are illuminated during the 

scan interval ( or frame) and the observations are saved for processing at the end of the 

scan interval. Thus, for the TWS system, illumination for both search and track update 

is done simultaneously. Then, at the end of the scan interval, all observations received 

during the scan are correlated with· the existing tracks. This fixed schedule greatly 

reduces timing and other computational complexities. 
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It is desirable to exploit the ESA capability for a fast update rate for selected 

individual targets, such as those determined to be maneuvering. However, the 

illumination of individual target tracks, without illumination of neighboring tracks. can 

lead to correlation problems for closely spaced targets. This means that if nearest- 
.- 

neighbor (NN) sequential correlation techniques are used. care must be taken to 

illuminate all members of a group before correlation· is performed. Also, timing 

problems become more difficult as tracks are illuminated at different rates and search is 

intermixed with track update illumination. Thus, although the ESA offers great potential 

for performance improvement there are many practical problems involved in the 

implementation. 

7.1 Enhancing Radar Detection With The ESA 
Tracking and correlation performance in a multiple-target environment is very 

sensitive to detection performance. If observations can be obtained from all targets, the 

probability of miscorrelation (and, thus, of degraded tracking performance) can be 

significantly decreased. 
There are three main techniques for enhancing detection performance with the · 

ESA. These techniques theoretically could also be used with an MSA, but the agile 

beam capabilities of the ESA make them much more practical for ESA application. The 

first method varies the time spent during target illumination at a particular beam 

position (hereafter referred to as the time on target). This can be achieved by varying the 

number of integrated pulses used for detection. 
A second technique for improving the detection performance of high PRF radar 

is to transmit two pulse trains with different pulse repetition frequencies (PRFs) at each 

beam position (known as PRF agility). Finally, a similar strategy uses several radar 

frequencies (known as RF frequency agility) in order to use the effects of radar target 

cross section scintillation to enhance detection performance. Using two or more radar 

frequencies enhances the probability that the radar cross-section variation will be 

favorable on at least one of the frequencies. The particular is a radar design question 

that is based upon the expected target signal-to-noise ratio (SNR) and the radar 

capabilities. 
A third processing technique follows, an initial detection by a second, 

confirming update. The same PRF and RF, which provided the initial detection, are used 

for the confirming dwell because it can be assumed that these are appropriate choices 
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insofar as they produced the initial detection. 

The potential for improved detection associated with the use of the ESA. This 

figure compares the probability of detection that was obtained for a typical ESA system 

with and without use of the methods discussed above for enhancing detection. The 

enhanced system (as compared with the nominal) used a combination of longer time on 

target and RF and PRF agility. 

The enhanced detection is reflected in the probability of having a track that will 

not later be deleted. The time on target required during a single dwell for the enhanced 

system was increased by a factor of over 3.5 as compared to the nominal system. 

However, from results, derived using the Markov chain method the total illumination 

time required during the entire run for the enhanced system was only about double that 

required for the nominal. This is because the enhanced detection scheme is more · 

efficient in the sense that fewer misses occur and thus fewer repeated update attempts 

are required after unsuccessful looks. 

7.2 Adaptive Sampling With The ESA 
The ability to adaptively vary the update sample rate is probably the most 

important feature of the agile beam (ESA) radar. It is generally accepted that the 

sampling rate should be chosen to match target priority, expected target dynamics, and 
' 

the density of the multiple-target environment. However, there are several approaches to 

determining the required adaptive sampling logic. 

7.2.1 Use of Several Sampling Rates 
One approach is to choose adaptively between three sampling rates. First, low 

priority or non-maneuvering targets are updated at the search scan rate. No special 

update illumination is required for low priority targets because the search illumination 

rate is sufficient. Then, two levels of faster sampling are employed for more important 

or more dynamic targets. 
The Monte Carlo simulation considered a single target performing an S-shaped 

weave intermixed with segments of straight-line flight. Four levels of target maneuver 

were examined. The first three cases used 5g, 2.5g, and lg target accelerations normal 

to the target velocity vector during the S-tums while the fourth used a randomized 

maneuver history based on the Singer model. Comparative results were obtained for the 

ESA system with adaptive sampling and for a system with fixed (2.5 s) sampling 
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interval. Relative performance was evaluated by examining the number of tracks lost 

(failed to correlate within at least a maneuver gate) and the average number of updates 

required for those tracks that Were not lost. 

The results show that better tracking performance with fewer required samples 

for the adaptive system. The adaptive system required fewer samples because the 

longest sampling interval was chosen during the periods of target straight-line motion. 

Finally, note that the effective allocation of update illuminations (demonstrated here) for 

a given track is important so that the remaining radar resources can be used to update 

other tracks and to search for new targets. 

7.2.2 Relating Sampling Rate to Tracking Accuracy 
The approach previously discussed used a simple predetermined sampling 

schedule. Next, several more sophisticated methods for choosing a variable sampling 

rate are discussed. These methods do not, however, consider the multiple-target density 

and the potential for miscorrelation. 
Van Keuk presents an empirical expression for relating the sampling interval to the 

prediction error. First, define the one-step prediction error variance (a!) in terms of the 

first diagonal element of the Kalman filter, 
(7.1) 

Then, the relationship between the sampling interval, T, and the resulting prediction 

error can be expressed as 

T = o.4(ao,F:J04 _34 
am 1 + 0.5v 0 

(7.2) 

However, for non-unity PD the relationship should be modified by the multiplicative 

factor PD giving 
T = 0.4PD(ao,F:Jo~ _34 

am 1 + 0.5v 0 
(7.3) 

7.2.3 Allocation of ESA Between Search and Track Update 
However, there always exists the trade-off between using the ESA for the update 

of existing tracks or for the search for new targets. Thus, the next question that logically 
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s is the manner for allocation of the ESA sensor between search for new targets and 

iimuroioation of existing target tracks. 

One approach is to maintain a fixed scan rate, but to allow enough "time slots" 

that search can be interrupted regularly for track update, if required. This is, in effect, 

approach of Reference [ 1 ), where it was assumed that a fixed number of pulses were 

ilable to allocate for track update. The allocation between targets was based upon a 

mputed allocation schedule that would adapt to the sensed environment. 

~u.1.uably, this approach could be extended so that the overall number of pulses 

ted to track update of confirmed tracks could be precomputed as a function of the 

nment (number of targets, maneuver level of the targets, el cetera). 

Methods, which assign a fixed number of pulses for track update, or which 

· e sampling interval in order to maintain certain tracking error requirements, 

_ consider existing track quality. A method which simultaneously compares both the 

ted benefits from updating existing tracks and the benefits from search is 

erable. Util~ty theory provides a convenient structure under which this comparison 

be made. Also, a significant difference between the utility the6iy approach, 

sed next, to track update scheduling and the previously discussed approaches is 

the former controls the actual prediction error, whereas the latter only controls the 

e prediction error. 
A utility theory based allocation method, was used to determine when to employ 

A for search and when to perform track update. We define the utility for search 

upon the expected number of undetected targets, and thus it is a function of the 

since the particular search segment being considered was last scanned. The utility 

track update is based upon the assumed target importance and the ratio of the 

· tion-error standard deviations ( as supplied by the Kalman filter covariance 

ix) to the desired ( or assumed acceptable) estimation-error standard deviations. 

• :y calculations are made for the options to update each existing track and to search 

w targets. Then, whenever the ESA becomes availabl_e for reallocation, the option 

the highest expected utility gain (marginal utility) is chosen. 

The time history starts with the conclusion of a search on bar 2. Updates on 

I and 2 are commanded for the next two intervals. During the next search, target 3 

ted (with track 3 being initiated) and immediate update is called for track 3 after 

search is completed. Thereafter, the antenna alternates between search ( on bars I 

4) and track update. Insofar as target track I is given a higher importance 
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weighting and because it is assumed to require greater accuracy, it receives more 

frequent updates and thus maintains a lower estimation error. The estimation error is 

presented on the scale as a normalized ratio of the estimation-error standard deviation 

(taken from the Kalman filter Co-variance matrix) to the input measurement-noise 

standard deviation. 

As radar resources are allocated for track update illumination, there must be 

some degradation in search performance. For example, this degradation can be 

measured by the range at which an initial detection is received from a new target 

entering the scan volume. Results have shown, however, that by efficient allocation it is 

possible to achieve significant gains in tracking performance ( over that achieved with a 

fixed update rate) with minimal loss in search performance. 

7.3 ESA Techniques For Improving Nearest-Neighbor Correlation 
Performance 
The adaptive update rate and the enhanced probability of detection features of 

the ESA can be used to improve correlation performance against closely spaced targets. 

For simplicity, we assume nearest-neighbor correlation techniques. However, the 

capability of the ESA to improve the information presented to any type of tracker 

correlator should lead to comparable improvements for all methods. 

The simple model to be examined can only give a preliminary indication of expected 

correlation performance because only a single correlation event is considered. To obtain 

a more complete picture of how false correlation occurs and how this leads to track 

· degradation, it is necessary to examine an entire encounter history for a group of closely 

spaced targets. This must be done through Monte Carlo simulation. Thus, correlation 

performance derived using Monte Carlo simulation will also be presented. 

7.3.1 Correlation Results from a Simple Two-Target Model 

Assume there are two dosely spaced targets with separation (Lil) in the single 

dimension x. The standard deviation of the prediction error can be defined by 

(7.4) 

Taking PD to be 0.7, typical values for v0, were found to be 0.6, 0.85, and 1.25 
\ 

corresponding to sampling intervals 0.5, 1.0; and 2.0 s, respectively. Define D to be the 

ratio of the target separation to the observation standard deviation (D = Lil /x0). Finally, 

again for simplicity, assume that the measurement and prediction errors are the same for 
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both target tracks and that there are no false alarms nor new targets detected. Next, we 

consider correlation performance using this simple model and these parameters. 

Even for the simple one-dimensional example described above, the analytical 

expressions for the probability of false correlation are complex. However, Monte Carlo 

simulation is very simple for this case. in general, 

(7.5) 

In general there appears to be a complex interrelationship involved in determining the 

relative merits of sampling more often versus spending more time on target to insure 

detection for a given sample. This conclusion is also apparent from the tracking results 

of and the Monte Carlo correlation results presented in the next section. Results given 

here for the two target case favor decreased sampling intervals, while the Monte Carlo 

results to be presented next, derived using encounter geometries with three and four 

targets, favor enhanced detection. 

7.3.2 Monte Carlo Correlation Performance Evaluation 

A Monte Carlo simulation was used to compare correlation performance of 

tracking systems in a closely spaced target environment. The simulation included a 

conventional (MSA) system and an ESA system with enhanced detection and adaptive 

sampling capability. The enhanced detection was again modeled by using two 

independent looks at the target so that the new probability of detection. "The adaptive 

sampling logic chose between sampling intervals of 5.0, 25, and 1.25 s. The shortest 

sampling interval was chosen by this logic for closely spaced targets. The MSA system 

used a fixed sampling interval (T=2.5 s) and the standard single-look probability of 

detection. 

Define D to be the ratio of the target angular separation to the angular 

measurement-error standard deviation. For spacings in order of D=3.5 or more, the 

adaptive sampling feature of the ESA was found to significantly improve tracking 

performance, For example, consider a head-on geometry in which three targets flying 

with spacing D=4.2 are approaching the tracking radar. Compare performance for a 

conventional (MSA) system with an ESA system that only utilizes the adaptive 

sampling feature. The first criterion is the probability of false correlation (PFC). A false 

correlation is defined to occur when the return associated with a particular track is not 

from the same target that produced the previous correlating return. The second criterion 
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is the number of tracks that became degraded as the result of false correlation, and 

therefore resulted in deletion. Tracks that were deleted simply as the result of missed 

observations were not included in· this sum. The final criterion is the normalized 

standard deviation of the estimation error in the component of target velocity normal to 

the true velocity vector and in the horizontal plane (denoted the target cross velocity). 

The error is normalized with respect to the value found for the conventional (MSA) 

system. 

The proportion of false correlations is small ( one percent or less) for both 

Systems. However, the ESA system has significantly fewer deleted tracks. Also, the 

velocity estimation error is smaller for the ESA system. 

Enhanced detection was again defined to be the application of a second 

independent detection attempt. This is an approximation of what can be effectively 

achieved by an ESA system through the use of adaptive RF and PRF selection. Then, 

upon applying enhanced detection, the number of deletions is significantly reduced even 

without adaptive sampling. No further correlation improvement is noted when both 

enhanced detection and adaptive sampling are applied to this case. 

7.4 Implementation of Multiple-Target Tracking Logic For an ESA System 

Previous sections have detailed the potential benefits of using the ESA for MTT. 

These benefits are also well documented in the tracking literature. However, the 

potential problems associated with using the ESA for MTT are typically not mentioned. 

Thus, this section discusses various implementation issues (and problems) and outlines 

approaches for their solution. The choice of techniques remains an open issue and is 

highly application dependent. 

For most applications the sequential nearest-neighbor (NN) correlation approach 

seems most direct. However, as indicated in the discussion to follow, the logic required 

to perform sequential NN correlation, while efficiently using the properties of ESA, can 

become quite complex. 

The problem inherent with the use of sequential NN correlation is the 

uncertainty associated with making correlation decisions under difficult conditions with 

insufficient information. 
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7.4.1 Sequential NN Logic for ESA MTT 

An important feature of the ESA in its application to MTT is that the functions 

of search and track update can be decoupled. First, priorities are established to 

determine if the antenna should search for new targets or update existing target tracks. 

Then, detection threshold settings should be set separately for these two functions. 

As the ESA searches for new targets it may also receive returns from targets 

already in track. Thus, as search observations are received they should be compared, 

using gating relationships, with the predicted positions of all existing tracks. For this 

comparison to be accurate the prediction times must either be variable (performed as 

observations are received) or all track predictions should be made in several short steps 

throughout the scan interval. Observations that do not satisfy the gates of any existing 

tracks can immediately be used to initiate new tracks, which should be updated as soon 

as possible thereafter. However, those observations that do satisfy gates of existing 

tracks present other problems. 

Except in the most clear-cut situations, there are potential problems associated 

with assigning search observations to tracks before all search observations are received. 

As previously discussed, a simple example illustrating why all targets should be 

illuminated before assignments are made. Thus, the immediate assignment of search 

observations to existing tracks should only be made if the search observations satisfy 

the gate of a single track, 

One solution to conflict resolution with search observations is to save all 

conflicting observations until the end of the search scan and then to perform correlation 

using the assignment matrix approach. This solution, in effect, mimics the MSA TWS 

solution, but can lead to the problem of-track update with "stale" search observations. 

This can occur when a track being considered for update with a search observation is 

updated with an observation received during track illumination. If the track illumination 

occurred after the search observation was received, it may be best not to use the search 

observation for track update. 

Next, considering track update illumination, one approach to MTT with an ESA 

is to treat the problem as a set of independent single-target tracking systems interleaved 

with the search for new targets. For example, existing tracks could receive update 

illuminations at a fixed update rate with each track being illuminated individually. 

However, the difficulties will arise if this approach is used for closely spaced targets. 

Thus, in order to reduce false correlation, it' is necessary to identify interacting target 
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tracks and to illuminate these tracks as a group. 

Target tracks are defined to be interacting if a return from one target has a 

significant probability of correlating with a track from another target. This condition can 

be identified by performing a proximity test (whereby all predicted target positions arc 

compared), or by noting when observations fall within the gates of multiple target 

tracks. Then, when interacting target tracks are recognized they should be illuminated as 

a group. 

Whenever possible, it is desirable to sample at a sufficiently high rate so that the 

uncertainty in predicted target position does not lead to the true position being outside 

the beam width of the initial commanded antenna position. However, due to the 

requirements for search and update of other tracks or due to missed detections, this 

condition cannot always be satisfied. Thus, a local search may be required even for the 

update illumination of a single isolated track. Then, because overlapping beams arc 

used, there will again be the necessity for observation redundancy elimination. 

Once observations are received, the use of multiple gating tests is appropriate in 

order to determine subsequent data processing and illumination requirements. For 

example, using a standard gate (SG) and a maneuver gate (MG) can lead to immediate 

observation-to-track assignment whenever an observation satisfying the SG is received. 

However, if only the MG is satisfied, it would be appropriate to attempt immediately to 

obtain a confirming second observation. Then, if a maneuver is confirmed, it is 

desirable to increase the filter covariance matrix and to sample at a faster rate as long as 

the target is determined to be still maneuvering. 

7.4.2 Multiple Hypothesis Approach to ESA MTT 

Using the measurement-oriented MHT method, the full capability of the ESA 

theoretically can be achieved. New hypotheses are formed as observations are received 

and the ultimate correct correlation of observations-to-tracks will be less dependent 

upon the simultaneous illumination of all target tracks. However, it is expected that it 

will be necessary to maintain fewer hypotheses if closely spaced targets can be 

illuminated as a group. 

Sensor allocation is less direct when the MHT approach is used. Specifically, 

there may be many more tracks contained in the multiple hypotheses than would be 

formed using the sequential NN method. Thus, the question arises regarding which 

tracks should be given update illumination. One approach is to illuminate the tracks 
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within the most likely hypothesis. An alternative approach is to illuminate the tracks 

according to their probability of validity (as computed using all hypotheses). 

Finally, it should be noted that efficient use of the ESA ought to make the MHT 

method more effective. Adaptive sampling can be used to obtain data in order to resolve 

difficult correlation decisions quickly, and thus reduce the number of required 

hypotheses. This also leads to the requirement for efficient sensor allocation. 
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CHAPTERS 

CONCLUSION 

During target tracking the waveform parameters are typically matched to the 

target characteristics. In any search application the waveform parameters are typically 

dictated by the need to search a given amount of space in a given amount of time and 

the processing implication of that goal. 

The generic PRF categories were discussed including low PRF(HPRF).LPRF is 

well suited for most ground-based application. Some airborne systems use LPRF to 

detect aircraft targets, especially at the tower RFs, as well as to detect surface targets 

below X-band. HPRF is better suited for most clutter-limited search applications, such 

as faced by an airborne tactical X-band radar. MPRF provides better detection in side 

lobe clutter and relaxes hardware requirements relation to HPRF. 

The choice of coordinate system is a complex design question that depends on 

the application and the computational resources available. To provide a convenient 

framework for discussion, two simplifications were made. First the discussion was 

limited to Cartesian coordinate systems and, second it was assumed that computational 

considerations were not a major factor in selecting the coordinate system. Relative to 

these two restrictions, a reasonable complete discussion was presented of the coordinate 

systems needed fir efficient three-dimensional radar tracking. Error can occur due to the 

difference in units. 

The choice of methods for filtering and prediction is usually the first tasks facing 

the designer of an MTT system, and an over whelming variety of approaches exists. 

Experience with airborne radar systems has shown the versatility of Kalman filters to be 

almost indispensable when dealing with the problems presented by missing data, 

variable measurement noise statistics, and maneuvering targets with the variable 

dynamic capabilities. If possible, reduced-state Kalman filters should be used. For 

example, before a designer proposes a three-state Kalman filter, including an 

acceleration state, he should ascertain that the data rate is high enough to allow accurate 

estimate acceleration. 

70 



Fixed-coefficient filters may be required as a result of computational limitations 

if the sampling internal is short or if many targets must be handled problems associated 

with transient response and missing data must be expected unless some adaptive gain 

calculation performed. However, the closed-form expressions for tracking performance 

with a - /J and a - /J-:- y trackers are often useful in preliminary design filters and 

performance prediction, even if Kalman filters are eventually used. 
' 

Tacking performance with even the best-designed filter may become very 

degraded in the presence of miscorrelation. The effects of miscorrelation can completely 

invalidate the Kalman filter. Covariance and lead to divergence. Thus for tracking in 

dense multiple-target environment, the emphasis should be on developing correlation 

logic. The filtering techniques should be kept as simple as possible in order to 

accommodate the computational requirements of data associatiop. 

The observation-to-track correlation fir data association problem is the key 

element of MTT. There are basically three regions considering with MTT data 

correlation:. These comprise a region of unambiguous correlation for widely spaced 

targets, an unstable region where highly inaccurate tracking may occur, and a region for 

closely spaced targets. Where miscorrelation occurs but tracking remains s!able. 

First, for sufficiently large target spacing unambiguous correlation occurs. This 

region of unambiguous correlation can be expanded by improving correlation 

techniques and detection performance. Also, for most cases, sampling at a faster rate 

can expand this region. Next, an unstable region has been identified. Miscorrelation 

frequently occurs in this region. The result is erratic track performance and frequent 

premature track deletion leading to a very inaccurate assessment of the target 

environment. Results show that this region may occurs for target angular separations of 

about two or five times the angular measurement-error standard deviation. The extent of 

the unstable region is also a function of the sampling rate and the probability of 

detection. Faster sampling decreases the size of the unstable region. 

Finally, the lower region. For very closely spaced targets miscorrelation will 

occur without an associated large number of tracks being degraded and lost. 

Miscorrelation leading to unstable tracking can be decreased by increasing the 

probability of detection, by decreasing the sampling interval, or by using improved 

correlation methods. 
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Since, tracking and correlation performance in a multiple-target environment is 

,ry sensitive to detection performance, if observation can be obtained from all targets, 

e probability of miscorrelation can be significantly decreased. Thus, enhanced 

tection can be achieved by the ESA. 
There are three main techniques for enhancing detection performance with the 

SA. The first method varies the time spent during target illumination at a particular 

ean position. A second technique for improving the detection performance of a high 

RF radar is to transmit two plus trains with different pulse repetition frequencies 

PRFs) at each beam position. A third processing technique follows an initial detection 

~ a second confirming update. The same PRF and RF which provide d the initial 

letection are used for the confirming dwell because if can be assumed that these are 

1ppropriate choice insofar as they produced the initial detection. 
The immediate advantage of the ESA is enhanced quality tracking and 

,limination of mechanical errors. A secondary advantage is that search can be more 

efficiently implemented since tum around times are eliminated, more exotic scan 

patterns are possible, and alert/confirm logic can be employed to lower the FAR at no 
expense to that scan rate or detection performance. The ESA also allows the detection, 

resolution, measurement and confirmation processes to be independently optimized and 

thus performance is improved. The disadvantages of the ESA include loss of effective 

aperture, cost, weight, and (for an airborne radar) clutter broadcasting. 
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